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Abstract. Pattern formation in biological membranes is often explained by a coupling of the local
curvature of the thin elastic membrane to its local composition. This ansatz introduces nonlocal
terms to Canham-Helfrich type models for membranes. This paper complements a study in [22].
The main result is the derivation of a Γ-limit in a parameter regime in which complex pattern
formation is not expected. We consider the full nonlocal model as well as a local approximation
and prove that the Γ-limit in both cases is of perimeter-type. A main step in the proof is a general
strategy to include Neumann boundary conditions in the construction of a recovery sequence.
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1. Introduction

This paper complements studies in [22, 13], in which a Γ-limit of nonlocal second order energy
functionals has been studied. The latter arise from a model that has been introduced in the physics
literature to describe phase separation of a diblock copolymer in a membrane allowing out of plane
(bending) distortions (see [33, 45, 35, 43]). The model builds on the classical continuum theory for
membranes (see, e.g., [9, 30]), and incorporates the ansatz to link the local composition to the local
curvature of the membrane (see e.g. [43] for details). This modelling approach has been identified as
possible explanation for the formation of microdomains such as lipid rafts in biological membranes
(see e.g. [3, 40]) although there are still debates in the literature on the origins and structures of
these patterns (see e.g. [20, 36, 44, 36]). For completeness, we recall briefly the derivation from [22].
Precisely, the starting point is the functional

E [ϕ, h] =
∫
D

(
f(ϕ) +

1

2
b|∇ϕ|2 + 1

2
σ|∇h|2 + 1

2
κ|∆h|2 + Λϕ∆h

)
dx̄,

in terms of the height profile h : D → R of a membrane and the order parameter ϕ : D → R
modelling the local composition. The function f is a non-negative multi-well potential whose minima
represent the pure components. In this note, we shall restrict to the case of two components, i.e.,
double-well potentials f . The parameters b, σ and κ stand for the line tension between regions of
different composition, the surface tension, and the bending rigidity, respectively. We assume that the
membrane is almost flat so that its curvature is well approximated in terms of the Laplacian ∆h. The
parameter Λ > 0 introduces a coupling between the local curvature and the membrane and the local
composition, and renders the problem nonlocal. This modelling ansatz is motivated by experimental
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findings (see e.g. [3, 40]). After optimizing in h and setting

ε :=

√
κ

L2σ
, q := 1− bσ

Λ2
, W (u) :=

2κ

Λ2
f(u), F∗

ε :=
1

ε

2κ

Λ2
E ,

one ends up with the functional F∗
ε : L2(Ω) → R ∪ {+∞}, given by

F∗
ε [u] :=

{
1
ε

∫
Ω

(
W (u)− u2 + (1− q)ε2|∇u|2 + u

(
1− ε2∆

)−1
u
)
dx, if u ∈W 1,2(Ω);

+∞, if u ∈ L2(Ω) \W 1,2(Ω).

(1.1)
Throughout the text, we will restrict to the case that Ω ⊂ Rd is an open bounded set with C4-
boundary, W is a double-well potential with minima at {±1} (see Assumptions 1.1 and 1.2 below
for the precise assumptions), and the term (1 − ε2∆) is a differential operator subject to Neumann
boundary conditions, see Section 2 for a detailed discussion. We shall mainly focus on the analysis
of (1.1) but also consider a local approximation. Precisely, doing a long-wavelength approximation as
presented in [22, Appendix] the functional further simplifies to

F∗
ε,ap[u] =

∫
Ω

1

ε
W (u)− εq|∇u|2 + ε3(∆u)2dx. (1.2)

Note that F∗
ε,ap is in fact a local functional. The functionals (1.1) and (1.2) involve the parameters ε

and q. We will deal with the case ε → 0. For fixed line tension and composition-curvature coupling,
the parameter q varies with the surface tension. It turns out that the biologically relevant values
for q fall into the interval (−1.1, 1) (see [22], based on the data from [34]). The case q ≥ 0 and
ε → 0 has been treated in [22], and Γ-convergence to a perimeter functional has been proven, which
corresponds to results for the local approximation (1.2) derived independently in [10] and [11]. The
asymptotic analysis presented in the latter two references has been generalized to a large class of
singularly perturbed second order functionals (see [2]). Qualitative properties of local minimizers of
(1.2) have been studied extensively to explain the formation of periodic layered structures (see e.g.
[4, 12, 37, 41]).
Nonlocal functionals similar to (1.1) have gained large attention in the numerical and analytical
literature in the last years (see e.g. [28]). Related models for (almost) spherical membranes have been
studied e.g. in [16, 17, 18, 19], for flat domains see [15] and the references therein. A sharp interface
variant of (1.1) has recently been analyzed in a similar paramteter regime via autocorrelation functions
(see [13]; we refer to [13, Section 2] for a comparison between the two models).

In this paper, we focus on the case q ≤ 0. We note that a main advantage of the case q ≤ 0
is that the functionals (1.1) and (1.2) are non-negative. For the local functional (1.2), a special case
with q < 0 with a double-well potential related to the Fisher-Kolmogorov equation has been treated
in [31], see also [8] for a related result. The case q = 0 and the Laplacian replaced by the full Hessian
has been studied in [24].

Summarizing, the purpose of this note is threefold: First, we derive the Γ-limits of (1.1) and (1.2)
as ε→ 0. For (1.1), we show how for q < 0, arguments from [22] simplify, and obtain analogous results
under slightly weaker conditions on the potential W . In particular, we present a detailed proof of the
limsup inequality, i.e., the construction of recovery sequences which also fixes a gap in the argument
from [22] in the case q ∈ (0, q∗), see Remark 3.4 and the beginning of Section 3.3. The main difficulty
here lies in the Neumann boundary condition for the solution operator (1 − ε2∆)−1. We point out
that our construction also works for q > 0 and therefore completes the proof of [22]. Second, for d = 1,
we consider a much larger class of potentials, and prove refined results in the spirit of [10]. Finally,
for the local functional, we consider the case q = 0 with and without Neumann boundary conditions,
relying on the construction for the nonlocal case. We outline the main results in more detail below.
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1.1. Main results

In the following, we will discuss our main results for the nonlocal and the local functional separately.

1.2. The nonlocal functional (1.1)

We need to introduce some notation. We start with the assumptions on the double-well potential.

Assumption 1.1. For general d ≥ 1, we assume that W satisfies the following conditions:

(H1) W ∈ C2(R), W (s) = 0 if and only if s ∈ {±1}, and W ′′(±1) > 0.
(H2) There exist λ1, λ2 > 0 and R > 1 such that

λ1|s|2 ≤W (s) ≤ λ2|s|2 for all s ∈ R with |s| ≥ R.

We shall see that for d = 1, the assumptions on W can be relaxed. Precisely, we introduce the
following.

Assumption 1.2. For d = 1, we assume that W satisfies the following conditions:

(H1’) W : R → [0,∞) is locally Lipschitz continuous, W (s) = 0 if and only if s ∈ {±1}.
(H2’) There exist L > 0 and R > 0 such that

W (s) > L|s| for all s ∈ R with |s| ≥ R.

Note that any function W satisfying Assumption 1.1 also satisfies Assumption 1.2. As in [22]
we use the following notation to describe the limiting problem. Given a unit vector ν ∈ Sd−1, let
{ν1, · · · , νd−1, ν} form an orthonormal basis of Rd and define

Qν := Qν(0, 1) := {x ∈ Rd : |x · ν| < 1/2, |x · νi| < 1/2, i = 1, . . . , d− 1}, (1.3)

Aν :=
{
v ∈W 2,2

loc (R
d) : v = −1 in a neighborhood of x · ν = −1/2,

v = 1 in a neighborhood of x · ν = 1/2, v(x) = v(x+ νi) for all x ∈ Rd, i = 1, . . . , d− 1
}
,

(1.4)

and

md := inf

{∫
Qν

(
1

ε
W (u)− εq|∇u|2 + ε3(∆v)2 + ε5|∇∆v|2

)
dx : 0 < ε ≤ 1,−ε2∆v + v = u, v ∈ Aν

}
= inf

{
1

T d−1

∫
T ·Qν

(
W (ũ)− q|∇ũ|2 + (∆ṽ)2 + |∇∆ṽ|2

)
dx : 1 ≤ T,−∆ṽ + ṽ = ũ, ṽ(T ·) ∈ Aν

}
,

where the second line follows by a change of variables with ṽ(·) = v(ε·), ũ(·) = u(ε·), and T := 1/ε.
Further, by changing coordinates one can see that md does not depend on ν, and we define Q := Qed ,
A := Aed , where {e1, . . . , ed} denotes the standard basis of Rd.

Our main result is the Γ-convergence of the sequence of functionals defined in (1.1) as ε→ 0+ to

F∗[u] :=

{
mdPer({u = 1}), if u ∈ BV (Ω; {±1}),
+∞, if u ∈ L2(Ω) \BV (Ω; {±1}). (1.5)

Precisely, we show the following theorem. Recall that we always assume that Ω ⊆ Rd is a bounded
domain with a C4-boundary.

Theorem 1.3. If d = 1 suppose that Assumption 1.2 holds; if d > 1, then suppose that Assumption 1.1
holds. Let (εn)n∈N ⊂ R+, εn → 0. Then

1. Liminf Inequality: For every sequence (un)n∈N ⊂ W 1,2(Ω) with un → u in L2(Ω) (L1(Ω) if
d = 1),

lim inf
n→∞

F∗
εn [un] ≥ F∗[u]. (1.6)

2. Limsup Inequality: For every u ∈ L2(Ω) there exists a sequence (un)n∈N ⊂ W 1,2(Ω) such that
un → u in L2(Ω) (L1(Ω) if d = 1) and

lim sup
n→∞

F∗
εn [un] ≤ F∗[u]. (1.7)
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3. Compactness: If (un)n∈N ⊂W 1,2(Ω) is such that

sup
n

F∗
εn [un] =M <∞, (1.8)

then there exists a subsequence (unk
)k∈N of (un)n∈N and u ∈ BV (Ω; {±1}) such that

unk
→ u, and vnk

→ u in L2(Ω) (resp. L1(Ω) if d = 1),

where (1− ε2nk
∆)vnk

= unk
in Ω and

∂vnk

∂n̂ = 0 on ∂Ω.

Remark 1.4. The assumption on Ω to be a C4-domain is only needed in the construction of a recovery
sequence, i.e., in the proof of the limsup-inquality. For compactness and the liminf-inequality, a
piecewise C2-boundary is sufficient.

We note that in spite of the non-locality of the functionals (1.1), the Γ-limit functional turns out
to be of the same structure as the one obtained for the local approximation (see [10, 11]), and also
similar as for small but positive q > 0 (see [22]). By the general theory of Γ-convergence (see e.g. [5, 14])
Theorem 1.3 implies that sequences of (almost) minimizers of F∗

ε converge in the strong L2- (resp.
L1-)topology to minimizers of F∗. Note that the limit functional F∗ is minimized by phase functions
that minimize the area of interfaces, and therefore, the formation of microdomains is not expected in
the parameter regime under consideration. We point out that the construction of a recovery sequence
we present here in detail, also directly generalizes to the case q > 0.

1.2.1. Local functional (1.2). We also deal with several variants of the local functional (1.2). Precisely,
we consider F∗

ε,ap : L1(Ω) → R ∪ {+∞}, given by

F∗
ε,ap[u] =

{∫
Ω

W (u)
ε + ε3|∆u|2 dx, if u ∈ X,

+∞, otherwise.
(1.9)

The most natural choice for the set of admissible functions is X = {u ∈ L2(Ω) : ∆u ∈ L2(Ω)}, but
we can also deal with the case of additional Neumann boundary conditions. Since for every function
u ∈ L2(Ω) with ∆u ∈ L2(Ω) and Neumann boundary conditions, we have u ∈ W 2,2(Ω) (see e.g. [22,
Proposition 2.10]), this results in the choice X = {u ∈W 2,2(Ω) : ∂νu = 0 on ∂Ω}. Precisely, we have
the following results.

Theorem 1.5. Let Ω ⊆ Rd be an open, bounded, Lipschitz domain and let W : R → [0,+∞) be
continuous such that there exist R > 0 and λ1 > 0 such that
˜(H1) W (u) = 0 if and only if u ∈ {±1};
˜(H2) W (u) ≥ λ1u

2 whenever |u| > R.

Let {F∗
ε,ap}ε>0 be as defined in (1.9) with

X = {u ∈ L2(Ω) : ∆u ∈ L2(Ω)}. (1.10)

Then the following holds

(i) The Γ−limit of
{
F∗

ε,ap

}
ε>0

as ε→ 0 with respect to the strong topology on L2(Ω) is given by

F∗
ap[u] :=

{
mPer({u = 1}) if u ∈ BV (Ω; {±1})
+∞ otherwise,

with

m = min

{∫
R
W (f) + |f ′′|2dt : f ∈W 2,2

loc (R), lim
t→+∞

f(t) = +1, lim
t→−∞

f(t) = −1

}
.

(ii) Compactness: Let {uε}ε>0 ⊆ X be such that lim infε→0+ F∗
ε,ap[uε] < +∞. Then there exists a

subsequence (uεn)n∈N ⊆ {uε}ε>0 and a function u ∈ BV (Ω; {±1}) such that uεn → u in L2(Ω)
as n→ ∞.
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We note that the Γ-limiting functional involves a one-dimensional optimal profile problem, and
agrees with the one derived in [24]. There, functionals of the form (1.9) are considered, with the
Laplacian replaced by the full Hessian.

1.2.2. Outline. The remainder of the paper is organized as follows. We briefly set the notation in
Section 2. The Γ-limit in arbitrary space dimension for the nonlocal functional (1.1) is proven in
Section 3, and subsequently, in Section 4, the Γ-limit in the case d = 1 is derived under weaker
assumptions. In Section 4.1, the associated optimal profile problem is discussed. Finally, in Section 5
we deal with the local functionals (1.2). This section relies on one of the authors’ Master’s thesis [42],
where also some more details can be found.

2. Notation and preliminary results

Throughout the text, C stands for a generic constant that may change from expression to expression.
For a measurable set E ⊆ Rd, we denote by Ld(E) or |E| its d-dimensional Lebesgue measure, by
Hd−1(E) its (d− 1) - dimensional Hausdorff measure, and by ∂∗E its essential boundary. Except for
section 5, we always assume that Ω ⊂ Rd is a bounded open set with C4-boundary.
Given Ψ ∈ C∞

c (Rd), with supp(Ψ) ⊂ B(0, 1) and
∫
Rd Ψ(x) dx = 1, we define for ε > 0 the standard

mollifier

Ψε(x) :=
1

εd
Ψ
(x
ε

)
. (2.1)

If φ ∈ L1
loc(Rd) then φε := φ ∗ Ψε ∈ C∞(Rd). If additionally φ ∈ L∞(Rd), then φε → φ in Lp

loc(Rd)
for every p ∈ [1,∞),

∥φε∥L∞(R) ≤ ∥φ∥L∞(Rd), ∥∇φε∥L∞(R) ≤ Cε−1, ∥∇2φε∥L∞(R) ≤ Cε−2 and ∥∇3φε∥L∞(R) ≤ Cε−3,
(2.2)

where the constants C depend on φ but not on ε. We will use the following special cases of the
Gagliardo-Nirenberg interpolation inequalities from [26, 39]. For every open, bounded connected
domain E ⊂ Rd, there are constants C1, C2 > 0 such that for every u : E → R,

∥∇u∥L2(E) ≤ C1∥∇2u∥1/2L2(E)∥u∥
1/2
L2(E) + C2∥u∥L2(E) ≤

C1

2
∥∇2u∥L2(E) +

(
C1

2
+ C2

)
∥u∥L2(E), (2.3)

and

∥∇u∥L4/3(E) ≤ C1∥∇2u∥1/2L2(E)∥u∥
1/2
L1(E) + C2∥u∥L1(E). (2.4)

In several places throughout the text we will need to make use of equiintegrability of an energy
bounded sequence. Therefore we separate this implication in the lemma below.

Lemma 2.1. Let Ω ⊂ Rd open and bounded. Let W : R → [0,∞) be such that there exists R > 0 and
λ1 > 0 with

λ1|s|2 ≤W (s) for all s ∈ R with |s| ≥ R.

Let εn → 0 and (un) ⊂ L1(Ω) such that

sup
n

∫
Ω

W (un)

εn
dx =M

for some constant M ∈ R. Then the family (|un|2)n∈N is equiintegrable.

Proof. Fix ϵ > 0 arbitrary and let E ⊂ Ω be a measurable set. Then it holds∫
E

|un|2dx =

∫
E∩{|un|<R}

|un|2dx+

∫
E∩{|un|≥R}

|un|2dx

≤ Ld(E)R2 +
1

λ1

∫
E∩{|un|≥R}

W (un)dx

≤ Ld(E)R2 +
1

λ1
εnM.
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Since εn → 0, there exists N ∈ N such that εn < λ1

2M ϵ for all n ≥ N . Consequently, if we choose

δ̃ := ε/(2R2) then for all n ≥ N and all sets with Ld(E) ≤ δ we have ∥un∥2L2(E) ≤ ϵ. Now choose δ ≤ δ̃

small enough such that Ld(E) ≤ δ implies ∥un∥2L2(E) ≤ ε also for the finitely many u1, . . . , uN−1. □

It will be convenient to rewrite the functional Fε in different ways, see also [22]. Given u ∈
W 1,2(Ω), we define v ∈W 2,2(Ω) as the weak solution to

−ε2∆v + v = u in Ω and
∂v

∂n̂
= 0 on ∂Ω, (2.5)

where n̂ denotes the unit normal to ∂Ω, and we use the abbreviatory notation v := (1− ε2∆)−1u. If
F∗

ε [u] < ∞, then integration by parts and (2.5) allows to rewrite the functional as (see also [22] for
the detailed computations)

F∗
ε [u] =

∫
Ω

(
1

ε
W (u) + (1− q)ε|∇u|2 − ε|∇v|2 − ε3|∆v|2

)
dx

=

∫
Ω

(
1

ε
W (u)− εq|∇u|2 + ε3(∆v)2 + ε5|∇∆v|2

)
dx

=

∫
Ω

(
1

ε
W (u)− εq|∇v|2 + (1− 2q)ε3(∆v)2 + (1− q)ε5|∇∆v|2

)
dx.

(2.6)

Due to (2.6) we may also view F∗
ε [u] as Fε[v] with Fε :W

2,2(Ω) → [0,∞] and u = −ε2∆v + v, i.e.,

Fε[v] =

{∫
Ω

(
1
εW (−ε2∆v + v)− εq|∇v|2 + (1− 2q)ε3(∆v)2 + (1− q)ε5|∇∆v|2

)
dx, if ∂v

∂n̂ = 0 on ∂Ω,

+∞ otherwise.
(2.7)

Here and throughout the text, we shall use the convention that Fε[v] = +∞ if ∇∆v ̸∈ L2(Ω). Note
that for q < 1/2, Fε[v] < ∞ implies that ∆v ∈ W 1,2(Ω). If we consider restrictions of the integral to
smaller open domains E ⊂ Ω, then we set

F∗
ε [u;E] :=

{
1
ε

∫
E

(
W (u)− u2 + (1− q)ε2|∇u|2 + u

(
1− ε2∆

)−1
u
)
dx, if u ∈W 1,2(E);

+∞, if u ∈ L2(E) \W 1,2(E),

and similarly for F∗
ε,ap or Fε.

2.1. Some geometric preliminaries

In order to define the recovery sequence in Section 3.3 one needs to define diffeomorphisms of the
tubular neighbourhood of the boundary of the domain. We sketch the construction here, for more
details see e.g. [7]. Let Ω ⊂ Rd be an open, bounded, C4-domain. Then its boundary ∂Ω is a
C4−submanifold of Rd and thus there exists a normal bundle of the boundary that we denote
N(∂Ω) ⊆ ∂Ω× Rd (see [7, Definition 11.1]) with the associated natural projection to the boundary

p : N(∂Ω) → ∂Ω

p : (x, v) 7→ x.

Note that the natural projection p is a mapping of class C3 (see e.g. [25, Lemma]). Let us denote
the subset of the normal bundle that contains only vectors of length less than 2δ by N<2δ(∂Ω) :=
{(x, v) ∈ N(∂Ω) : ∥v∥ < 2δ}. Then, by the Tubular Neighbourhood Theorem (see e.g. [7, Def. 11.3
and Theorem 11.4] and compactness of ∂Ω, there exists δ > 0 such that

t : N<2δ(∂Ω) → V ′
2δ := {x ∈ Rd : dist(x, ∂Ω) < 2δ}

t : (x, v) 7→ x+ v

is a diffeomorphism, of class C3. Let

(O1, ϕ1), . . . , (OM , ϕM )
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be an atlas on ∂Ω, i.e., {O1, . . . , OM} is an open cover of ∂Ω and ϕ1, . . . , ϕM are the corresponding
local diffeomorphisms of class C3 between Oi and subsets of Rd−1. Using this atlas, we would like
to define a new atlas on the inner neighbourhood of the boundary. Notice that p−1(Oi) ⊂ N(∂Ω)
is actually diffeomorphic to Oi × R1 and we may choose the diffeomorphism such that it preserves
orientation. More precisely, for every i = 1, . . . ,M we have the diffeomorphism

p−1(Oi) → Oi × R
(x, v) 7→ (p(x, v), ori(x, v)) .

such that ori(x, v) > 0 if x + v ∈ Ω and ori(x, v) < 0 otherwise. In particular, for each i = 1, . . . ,M
there is the diffeomorphism

Θi : p
−1(Oi) → Oi × R

(x, v) 7→
(
p(x, v),

ori(x, v)

|ori(x, v)|
∥v∥
)
.

Finally, we have an atlas on N(∂Ω) given by {p−1(Oi), (ϕi × id) ◦Θi}Mi=1.
Starting from this atlas, we would like to find diffeomorphisms that ”straighten out” the inner
neighbourhood of the boundary. Therefore we define the patches of the the 2δ-neighbourhood of
the boundary via

U ′
i := t

(
p−1(Oi) ∩N<2δ(∂Ω)

)
and diffeomorphisms on them via

φi : U ′
i

t−1

−→ p−1(Oi) ∩N<2δ(∂Ω)
(ϕi×id)◦Θi−→ ϕi(Oi)× (−2δ, 2δ)

x+ v 7→ (x, v) 7→ (ϕi(x),
ori(x, v)

|ori(x, v)|
∥v∥).

However, we are only interested in the part of the neighbourhood inside Ω (previously referred to as
”inner neighbourhood”), so we define the inner patches as

Ui := U ′
i ∩ Ω, i = 1, . . . ,M

and corresponding diffeomorphisms (of class C3)

φi :Ui → ϕi(Oi)× (0, 2δ)

x+ v 7→ (ϕi(x), ∥v∥).
Denote the whole inner neighbourhood by

V2δ :=

M⋃
i=1

Ui = {x ∈ Ω : dist(x, ∂Ω) < 2δ}.

Then {Ui, φi}Mi=1 is an atlas on V2δ.
We close this section by showing that for every u ∈ BV (Ω; {±1}) extending the trace values of

u in normal direction into the tubular neighborhood V2δ agrees with u up to a set of measure at most
o(δ).

Lemma 2.2. Let Ω ⊂ Rd with a C4-boundary. For u ∈ BV (Ω; {±1}) define ũ : V2δ → R by ũ(x −
tν(x)) = Tu(x) where x ∈ ∂Ω, t ∈ (0, 2δ) and ν(x) ∈ Sd−1 the outer normal to ∂Ω. Then there exists
δ0 > 0 and C > 0 such that for all δ ∈ (0, δ0) and u ∈ BV (Ω; {±1}) it holds

Ld ({u(x) ̸= ũ(x) : x ∈ V2δ}) ≤ Cδ|Du|(V2δ).
Proof. Note that by the discussion above, we obtain that there exists δ0 > 0 such that V2δ0 can be
diffeomorphically mapped to ∂Ω × (0, 2δ0) via the orthogonal projection onto the boundary and the
distance to the boundary. Moreover, the corresponding derivative and its inverse are bounded. We
note that for δ ∈ (0, δ0) the same mapping maps V2δ diffeomorphically to ∂Ω× (0, 2δ). Fix δ ∈ (0, δ0).
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Ω

ϕi

Õi Oi

Ui

U ′
i

x+ v

xφi(x)
(φi(x), ‖v‖)

(x, v)
θi

(
p(x, v),

ori(x,v)
|ori(x,v)|‖v‖

)

Figure 1. Local diffeomorphism on the tubular neighbourhood. The picture is
oriented in such a way that ed points to the right.

Now, let v ∈ C∞(V2δ). Then we estimate∫
V2δ

|v(x)− ṽ(x)| dx ≤C
∫
∂Ω

∫ 2δ

0

|v(x− tν(x))− v(x)| dt dHd−1(x) (2.8)

≤C
∫
∂Ω

∫ 2δ

0

∫ 2δ

0

|∂ν(x)v(x− sν(x))| ds dt dHd−1(x) (2.9)

≤Cδ
∫
∂Ω

∫ 2δ

0

|∇v(x− sν(x))| ds dHd−1(x) (2.10)

≤Cδ
∫
V2δ

|∇v(x)| dx. (2.11)

Here, the constants in the first and and last inequality stem from the change of coordinates from
V2δ to ∂Ω× (0, 2δ) and vice versa. Note that these estimates are indeed uniform in δ by the uniform
bounds on the corresponding derivatives.

Next, let u ∈ BV (Ω; {±1}). Then there exists a sequence vk ∈ C∞(V2δ) such that vk → u
in L1(V2δ) and

∫
V2δ

|∇vk(x)| dx → |Du|(V2δ). Since the trace as a map from BV (V2δ) to L1(∂Ω) is

continuous with respect to strict convergence, we obtain from (2.11)∫
V2δ

|u(x)− ũ(x)| dx ≤ Cδ|Du|(V2δ).

Next, observe that since u ∈ {±1}, the same follows for its trace Tu and consequently also for ũ. In
particular, it holds 2|{u(x) ̸= ũ(x) : x ∈ V2δ}| =

∫
V2δ

|u(x)− ũ(x)| dx. Hence, the claim follows. □

3. Proof of Theorem 1.3 for d ≥ 1

In this section, we will prove Theorem 1.3 in the case of general space dimension d ≥ 1.

3.1. Compactness

To prove compactness (i.e., item 3. of Theorem 1.3) we will use an interpolation inequality from [11].
For that, we note that for any double-well potential W satisfying Assumption 1.1 there is a constant
cW > 0 such that W (s) ≥ cW (s∓ 1)2 for all s ≥ 0. Indeed, by Taylor’s expansion

W (u) =
W ′′(±1)

2
(u∓ 1)2 + o((u∓ 1)2),
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and hence there is δ > 0 such that (using that W ′′(±1) > 0 by assumption), W (u) ≥ W ′′(±1)
2 (u∓ 1)2

for all u ∈ (−1− δ,−1+ δ)∪ (1− δ, 1+ δ). Then, the lower bound on W in the compact set [−R,−1−
δ]∪ [1+ δ,R] follows from continuity of W and the assumption that W has no zero in this set. Finally,
for |s| ≥ R > 1, the lower bound follows from the growth condition in Assumption 1.1. Hence, we can
apply the following result to our setting.

Proposition 3.1. Suppose that W : R → [0,∞) is continuous and that there is a constant cW > 0
such that W (s) ≥ cW (s∓ 1)2 for all ±s > 0. Then for every bounded domain Ω ⊂ Rd, there exists a
constant C, such that for all v ∈W 2,2(Ω), and all k > 0 there exists ε0 > 0 such that for all ε ∈ (0, ε0)

k

∫
Ω

ε|∇v|2 dx ≤ 1

2

∫
Ω

(
W (v)

ε
+ Ck2ε3|∇2v|2

)
dx. (3.1)

Proof. This is shown in [11, Lemma 3.1, Remarks 3.2 and 3.5]. □

We now prove the compactness result for low-energy sequences, see the third item of Theorem 1.3.

Proof. Since q ≤ 0, the form of the functional in (2.6) and the upper bound (1.8) imply that

ε3n∥∆vn∥2L2(Ω) ≤M. (3.2)

Consider first the case q < 0. Then by the second line of (2.6),

F∗
εn [un] ≥

∫
Ω

(
1

εn
W (un)− εnq|∇un|2

)
dx ≥ min{1,−q}

∫
Ω

(
1

εn
W (un) + εn|∇un|2

)
dx,

and by the compactness result for the Modica-Mortola functional (see e.g. [38, Theorem I.]) we obtain
a subsequence (unk

)k∈N and u ∈ BV (Ω; {±1}) such that unk
→ u in L1(Ω). In addition, by the

hypotheses on W (see Assumption 1.1) and Lemma 2.1 (|un|2) is equiintegrable and by Vitali’s
convergence theorem, we obtain L2-convergence of (unk

)k∈N to u. Finally, since vn = ε2n∆vn+un, the
upper bound (3.2) implies that also (vnk

)k∈N converges to u in L2.
Consider now the case q = 0. We first prove L2-convergence of (vnk

)k∈N and deduce convergence of
(unk

)k∈N. Observe that by the hypotheses on W , since

∥un∥2L2(Ω) =

∫
Ω

(vn − εn∆vn)
2 = ∥vn∥2L2(Ω) + 2εn∥∇vn∥2L2(Ω) + ε2n∥∆vn∥2L2(Ω) ≥ ∥vn∥2L2(Ω),

we have

∥vn∥2L2(Ω) ≤ ∥un∥2L2(Ω) ≤ R2Ld(Ω) +
Mεn
λ1

≤ C1. (3.3)

We define the modified potential W̃ as

W̃ (x) :=


W (x), if 0 ≤ |x| ≤ R,

S(x), if R ≤ |x| ≤ R+ 1,

λ1x
2, if |x| ≥ R+ 1,

where S is an interpolating polynomial such that W̃ ∈ C2(R). Note that S can be chosen such that

W̃ satisfies Assumption 1.1, and additionally there is some constant CW > 0 such that

W̃ ≤ CW, and ∥W̃ ′′∥L∞(R) ≤ CW . (3.4)

In particular, we may argue as before Proposition 3.1 to find that W̃ satisfies the assumptions of
Proposition 3.1. Then clearly, by (1.8),∫

Ω

1

εn
W̃
(
−ε2n∆vn + vn

)
dx ≤ CF∗

εn [un] ≤ CM,

and ∫
Ω

1

εn
W̃ (vn) dx ≤ CM −

∫
Ω

1

εn

(
W̃ (−ε2n∆vn + vn)− W̃ (vn)

)
.
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To bound the right-hand side, we employ Taylor’s theorem, which yields∫
Ω

1

εn
W̃ (vn) dx ≤ CM +

∣∣∣∣∫
Ω

εnW̃
′(vn)∆vn dx

∣∣∣∣+ 1

2
ε3n∥W̃ ′′∥L∞(R)∥∆vn∥2L2(Ω)

≤ εn∥W̃ ′′∥L∞(R)

∫
Ω

|∇vn|2 dx+ C(M,W ), (3.5)

where we integrated by parts in the second term on the right-hand side and used (3.2) to bound the

third term. Thus by Proposition 3.1 applied to W̃ with k := ∥W̃ ′′∥L∞(R) there is ε0 > 0 such that for
all εn ∈ (0, ε0)

∥W̃ ′′∥L∞(R)

∫
Ω

εn|∇vn|2 dx ≤ 1

2

∫
Ω

(
W̃ (vn)

εn
+Kε3n|∇2vn|2

)
dx,

where we denote the corresponding constant C(k) by K. Since vn satisfies Neumann boundary
conditions, standard elliptic regularity estimates (see e.g. [32, 27, 29]) imply that

∥∇2vn∥2L2(Ω) ≤ Ce

(
∥vn∥2L2(Ω) + ∥∆vn∥2L2(Ω)

)
.

To close the estimate we observe using (3.5) that this yields∫
Ω

(
1

εn
W̃ (vn) +Kε3n|∇2vn|2

)
dx ≤

∫
Ω

(
1

2εn
W̃ (vn) + 2CeKε

3
n(∆vn)

2

)
dx+ CeKε

3
n∥vn∥2L2(Ω).

Absorbing the term involving W̃ from the right hand side on the left hand side and using (3.3) and
(3.2) we obtain ∫

Ω

(
1

εn
W̃ (vn) +Kε3n|∇2vn|2

)
dx ≤ 2C(M,W,K,Ce).

By the compactness result from [24, Proposition 3.1] applied to (vn)n∈N, there exists a subsequence

(vnk
)k∈N and u ∈ BV (Ω; {±1}) such that vnk

→ u in L1(Ω). In addition, since W̃ satisfies the same
growth condition asW , we have by Lemma 2.1 that (|vnk

|2)k∈N is equi-integrable, and L2-convergence
of (vnk

)k∈N follows from Vitali’s Convergence Theorem. Since un = −ε2n∆vn + vn, the upper bound
(3.2) yields the convergence of (unk

)k∈N.
□

3.2. Liminf Inequality

We now turn to the proof of the liminf inequality (1.6). For that, we closely follow the lines of the proof
presented in [31, 8] but, for the reader’s convenience, present the full proof adjusted to our setting.
Let u ∈ BV (Ω; {±1}). Assume that εn → 0+, and that (un)n∈N ⊂ W 1,2(Ω) satisfies (extracting a
subsequence if needed)

lim inf
n→∞

Fεn [vn; Ω] = lim
n→∞

Fεn [vn; Ω] =M <∞, (3.6)

where un → u in L2(Ω) and pointwise for Ld-a.e. x ∈ Ω, and vn = (1− ε2∆)−1un. Define E0 ⊂ Ω by

u = χE0
− χΩ\E0

, (3.7)

and note that PerΩ(E0) <∞ since u ∈ BV (Ω; {±1}). Consider Qν as defined in (1.3), and for x0 ∈ Rd

and r0 > 0 set

Qν(x0, r0) :=

{
x ∈ Rd :

(x− x0)

r0
∈ Qν

}
. (3.8)

In Appendix A, we use a blow-up argument (see, e.g., [10, 23]) to show that

lim
n→∞

Fεn [vn; Ω] ≥
∫
∂∗E0

lim
k→∞

Fεk [wk;Qν(0, 1)] dHn−1,
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where wk ∈W 2,2(Qν(0, 1)) satisfies

∥wk∥L2(Qν) ≤ ∥vnk
∥L2(Ω) and lim

k→∞
∥wk − u0∥L2(Qν(0,1)) = 0

with

u0(x) :=

{
−1 if x · ν < 0,

1 if x · ν > 0.
(3.9)

The lower bound (1.6) then follows from the following lower bound for Fεn [wn;Qν(0, 1)].

Proposition 3.2. Assume that εn → 0+ and that (wn)n∈N ⊂W 2,2 (Qν(0, 1)) satisfies

lim
n→∞

Fεn [wn;Qν(0, 1)] =M <∞,

as well as wn → u0 in L2(Qν) and for Ld-a.e. x ∈ Qν(0, 1), where u0 is defined in (3.9). Then

lim
n→∞

Fεn [wn;Qν(0, 1)] ≥ md. (3.10)

Proof. We will show that there exists a sequence (w̃n)n∈N ⊂ Aν satisfying

lim inf
n→∞

Fεn [w̃n;Qν(0, 1)] ≤ lim
n→∞

Fεn [wn;Qν(0, 1)].

For that, we follow the lines of [22] (see also [10]), which rely on an appropriate slicing argument.
Note that the argument simplifies since in our case the functional is non-negative. Let (Ψεn)n∈N be a
sequence of mollifiers as defined in (2.1), and set φn := u0 ∗Ψεn . Then, by construction, φn ∈ Aν for
εn > 0 sufficiently small. We may assume that for all n ∈ N (recall that Qν = Qν(0, 1))

Fεn [wn;Qν ] ≤ C <∞,

and, consequently,

∥∇wn∥L2(Qν) ≤ Cε−1/2
n , ∥∆wn∥L2(Qν) ≤ Cε−3/2

n , and ∥∇∆wn∥L2(Qν) ≤ Cε−5/2
n . (3.11)

Further, by elliptic interior regularity estimates (see [27, 32]), we have that for any δ > 0

∥∇2wn∥L2(Qδ
ν)

≤ Cδ(∥∆wn∥L2(Qν) + ∥wn∥L2(Qν)) ≤ Cδε
−3/2
n , (3.12)

where Qδ
ν := (1−δ)Qν and the constant Cδ depends on δ. We want to define w̃n to be equal to φn near

the boundary of Qν and to be equal to wn away from the boundary. More precisely, we fix δ ∈ (0, 1/2)
and m ∈ N such that δ < 1

2m . We first partition the set
{
x ∈ Qν : 1

m < dist(x, ∂Qν) ≤ 2
m

}
into ⌊ε−1

n ⌋
layers of width 1

m⌊ε−1
n ⌋ , i.e., for i = 1, . . . , ⌊ε−1

n ⌋ we set

Qtrans
m,n,i :=

{
x ∈ Qν :

1

m
+

i− 1

m⌊ε−1
n ⌋ < dist(x, ∂Qν) ≤

1

m
+

i

m⌊ε−1
n ⌋

}
.

For one of these layers, Qtrans
m,n := Qtrans

m,n,i∗ we have,

∥wn∥2L2(Qtrans
m,n ) ≤ Cεn∥wn∥2L2(Qδ

ν)
, ∥∇wn∥2L2(Qtrans

m,n ) ≤ Cεn∥∇wn∥2L2(Qδ
ν)
,

∥∇2wn∥2L2(Qtrans
m,n ) ≤ Cεn∥∇2wn∥2L2(Qδ

ν)
, ∥wn − φn∥2L2(Qtrans

m,n ) ≤ Cεn∥wn − φn∥2L2(Qδ
ν)
,

and Fεn [wn;Q
trans
m,n ] ≤ Cεn. (3.13)

We note that, since both wn → u0 in L2(Qν) and φn → u0 in L2(Qν), we have

ε−1
n ∥wn − φn∥2L2(Qtrans

m,n ) ≤ C∥wn − φn∥2L2(Qν)
→ 0 as n→ ∞. (3.14)

We now define

w̃m,n(x) := ηm,nwn + (1− ηm,n)φn,
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where ηm,n ∈ C∞ is such that

ηm,n(x) :=


0 if x ∈ Qout

m,n :=
{
x ∈ Qν : dist(x, ∂Qν) ≤ 1

m + i∗−1
m⌊ε−1

n ⌋

}
,

∈ (0, 1) if x ∈ Qtrans
m,n ,

1 if x ∈ Qin
m,n :=

{
x ∈ Qν : dist(x, ∂Qν) >

1
m + i∗

m⌊ε−1
n ⌋

}
,

and

∥∇kηm,n∥L∞(Qν) ≤ C

(
mk

εkn

)
, k = 1, 2, 3. (3.15)

Then w̃m,n ∈ Aν , and since w̃m,n = wn in Qin
m,n and ṽm,n = φn in Qout

m,n, we have

Fεn [w̃m,n;Qν ] = Fεn [wn;Q
in
m,n] + Fεn [w̃m,n;Q

trans
m,n ] + Fεn [φn;Q

out
m,n]

≤ Fεn [wn;Qν ] + Fεn [w̃m,n;Q
trans
m,n ] + Fεn [φn;Q

out
m,n]. (3.16)

To complete the proof, it remains to control Fεn [w̃m,n;Q
trans
m,n ] and Fεn [φn;Q

out
m,n]. By continuity of

W , the bounds on φn (see (2.2)) and using that ∇φn = 0 on Qν \ {|x · ν| ≤ εn}, we obtain

Fεn [φn;Q
out
m,n] =

∫
Qout

m,n

(
1

εn
W (−ε2n∆φn + φn)− εnq|∇(−ε2n∆φn + φn)|2 + ε3n(∆φn)

2 + ε5n|∇∆φn|2
)
dx

≤ C

εn
Ld(Qout

m,n ∩ {x ∈ Qout
m,n : |x · ν| < εn}) ≤

C

m
(3.17)

with a constant C independent of m. The contribution of Qtrans
m,n can be bounded using the product

rule, (3.11), (2.2), (3.15), (3.13), and (3.14). Then

ε1/2n ∥∇w̃m,n∥L2(Qtrans
m,n ) ≤ Cε1/2n

(
∥∇ηm,n∥L∞(Qtrans

m,n )∥wn − φn∥L2(Qtrans
m,n ) +

+ ∥ηm,n∥L∞(Qtrans
m,n )∥∇wn∥L2(Qtrans

m,n ) +

+ ∥1 + ηm,n∥L∞(Qtrans
m,n )∥∇φn∥L∞(Qtrans

m,n )

∣∣∣Qtrans
m,n ∩ {x ∈ Qtrans

m,n : |x · ν| < εn}
∣∣∣1/2)

≤ Cε1/2n

(
m

εn
ε1/2n ∥wn − φn∥L2(Qν) + ε1/2n ∥∇wn∥L2(Qδ

ν)
+

1

εn

εn
m1/2

)
→ 0, as n→ ∞, (3.18)

and similarly recalling also (3.12), with a constant Cm depending on m,

ε3/2n ∥∇2w̃m,n∥L2(Qtrans
m,n ) ≤ Cε3/2n

(
∥∇2ηm,n∥L∞(Qtrans

m,n )∥wn − φn∥L2(Qtrans
m,n ) +

+ ∥∇ηm,n∥L∞(Qtrans
m,n )

(
∥∇wn∥L2(Qtrans

m,n ) + ∥∇φn∥L2(Qtrans
m,n )

)
+ ∥∇2wn∥L2(Qtrans

m,n ) + ∥∇2φn∥L2(Qtrans
m,n )

)
≤ Cm

(
∥wn − φn∥L2(Qδ

ν)
+ εn∥∇wn∥L2(Qδ

ν)
+ ε1/2n

)
→ 0, as n→ ∞, (3.19)

and

ε5/2n ∥∇∆w̃m,n∥L2(Qtrans
m,n ) → 0 as n→ ∞. (3.20)

To bound the integral involving the potential W we proceed similarly as in the proof of compactness,
and consider separately the regions in which

∣∣−ε2n∆w̃m,n + w̃m,n

∣∣ ≤ R and
∣∣−ε2n∆w̃m,n + w̃m,n

∣∣ > R,
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respectively. Then by the growth condition on W and (3.19) we obtain∣∣∣∣∣ 1εn
∫
Qtrans

m,n

W (−ε2n∆w̃m,n + w̃m,n) dx

∣∣∣∣∣ ≤ sup|s|≤RW (s)

εn
Ld(Qtrans

m,n ) +
λ2
εn

∫
Qtrans

m,n

(−ε2n∆w̃m,n + w̃m,n)
2 dx

≤ C

m
+ 2λ2

∫
Qtrans

m,n

ε3n(∆w̃m,n)
2 dx+

2λ2
εn

∫
Qtrans

m,n

(ηm,n(wn − φn) + φn)
2
dx

≤ C

m
+ 2λ2

∫
Qtrans

m,n

ε3n(∆w̃m,n)
2 dx+

4λ2
εn

Ld(Qtrans
m,n ) + 4λ2∥wn − φn∥2L2(Qδ

ν)
≤ C

m
(3.21)

with a constant C independent of m. Inserting (3.17)-(3.21) into (3.16), we find

lim inf
n→∞

Fεn [w̃m,n;Qν ] ≤ lim inf
n→∞

Fεn [wn;Qν ] +
C

m
,

and the assertion follows by taking a diagonal sequence. □

3.3. Limsup Inequality

We finally show the limsup inequality, i.e., the second item of Theorem 1.3. The proof follows the
general lines of the respective proof for the case q > 0 in [22, Section 5]), which in turn is based on
[10]. However, in the proof presented in [22, Section 5], there is a gap in the argument in Step 2.
Precisely, if one sets Vn = 0 in a neighborhood of ∂Ω, this induces additional surface energy on the
boundary that is not reflected in the limit energy. Therefore, we present here a different construction
in detail. The main difference will be in a region close to ∂Ω where the construction presented here will
guarantee the Neumann boundary conditions by extending the (mollified) trace values of the limiting
v constantly in normal direction. This will then be glued to the construction from [22] inside Ω which
recovers the interfaces that are not too close to ∂Ω. As a main tool to estimate corresponding error
terms Lemma 2.2 is invoked. Although we consider the case q < 0, a careful inspection of the proof
shows that the analogous construction works for q ∈ (0, q∗).
We first note that it suffices to construct a recovery sequence for Fε instead of F∗

ε . Precisely, we will
prove the following result.

Proposition 3.3. Let εn → 0 and let Fε : W 2,2(Ω) → [0,∞] be as in (2.7). Then for every v ∈ L2(Ω)
there exists a recovery sequence (vn)n∈N ⊂ W 2,2(Ω), i.e. a sequence that satisfies vn → v strongly in
L2(Ω) and

lim sup
n→∞

Fεn [vn] ≤ F∗[v].

We first show that Proposition 3.3 implies the limsup-inequality from Theorem 1.3. Indeed, suppose
that Proposition 3.3 holds, and let u ∈ L2(Ω) and εn → 0. If u ∈ L2(Ω) \BV (Ω; {±1}), then
F∗[u] = ∞ and there is nothing to prove. If u ∈ BV (Ω; {±1}), let (vn)n∈N ⊂W 2,2(Ω) be the sequence
from Proposition 3.3 for v := u. Since we may assume that Fεn [vn] < ∞, we have ∆vn ∈ W 1,2(Ω)
and ∂vn

∂n̂ = 0 on ∂Ω. We define the sequence (un)n∈N ⊂W 1,2(Ω) as

un := −ε2n∆vn + vn.

Then F∗
εn [un] = Fεn [vn], which by Proposition 3.3 yields

lim sup
n→∞

F∗
εn [un] ≤ F∗[u].

Further, since up to a subsequence

sup
n

F∗
εn [un] < +∞,

we obtain by the compactness result in Theorem 1.3 (item 3), that (un)n∈N and (vn)n∈N converge to
the same limit in L2(Ω), i.e. un → u in L2(Ω). Thus, (un)n∈N is indeed a recovery sequence for u.
It remains to prove Proposition 3.3. The proof is divided into several steps depending on the shape
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of the set E := {x ∈ Ω : v(x) = −1}. The structure follows the proof of [22], the main novelty being
Step 1. For the ease of notation we introduce the set

Y := {v ∈W 2,2(Ω) :
∂v

∂n̂
= 0 on ∂Ω and ∆v ∈W 1,2(Ω)}. (3.22)

Proof. (of Proposition 3.3) Suppose that v ∈ BV (Ω; {±1}), otherwise there is nothing to prove.

Step 1. Let us first assume that the function v ∈ BV (Ω; {±1}) has a flat jump set, i.e., it is of the form
(possibly after a change of coordinates)

v(x) :=

{
−1, xd < 0,

+1, xd ≥ 0.

Let εn → 0. Using the preliminary discussion and notation from the Section 2.1, let V2εn be the
sequence of inner tubular neighbourhoods of ∂Ω and let {(Ui, φi)}Mi=1 be an atlas on V2ε0 .We
get atlases on V2εn by respective restrictions. There exists a partition of unity of the full tubular
neighbourhood ξni : V ′

2εn → [0, 1], i = 1, . . . ,M such that

ξni ≡ 0, on V ′
2εn \ U ′

i ,

M∑
i=1

ξni (x) = 1, for all x ∈ V ′
2εn , and

∥∇kξni ∥L∞(V ′
2εn

) ≤ C, k = 0, 1, 2, 3.

Since v ∈ BV (Ω; {±1}), there exists the trace Tv ∈ L1(∂Ω; {±1}). Denote by Õi := φi(Oi) ⊆
Rd−1 (where {O1, . . . , OM} form a corresponding covering of ∂Ω as in the Section 2.1). Now for
each i = 1, . . . ,M consider the mappings

Tv ◦ (φi)
−1 ∈ L1(Õi).

Let (ψεn)n∈N be the standard mollifiers on Rd−1. Define

gin := (Tv ◦ (φi)
−1) ∗ ψεn , i = 1, . . . ,M.

Then gin ∈ C∞(Õi) and

∥∇kgin∥L∞(Õi)
≤ C

εkn
, k = 0, 1, 2, 3.

Notice that we define gin on the Euclidean space, so this is just the Euclidean gradient. Now let
gn, n ∈ N be smoothed boundary values, i.e.,

gn : ∂Ω → R, gn(y) :=

M∑
i=1

ξni (y)g
i
n (φi(y)) .

Note that gn ∈ C3(∂Ω), if ξni ⌊Oi∈ C3(Oi), i = 1, . . . ,M . However, ξni ⌊Oi= ξni ◦ inci where
inci ∈ C3(Oi;Ui) is an inclusion. Finally, we define

zn : V2εn → R, zn := gn ◦ Pν ,

where by Pν we denote the normal projection from the tubular neighbourhood to the boundary.
More precisely, using notation from the Section 2.1 we have

Pν = p ◦ t−1 : Ui → Oi, x+ v 7→ x.

Note that the normal projection Pν and, consequently, the mappings zn are of class C3 if Ω is a
C4 domain. This follows from the regularity of the projection p and the mapping t which were
discussed in Section 2.1. We define the auxiliary sequence (wn)n∈N ⊆ W 2,2(Ω) using an almost
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Ω v = 1

v = −1

w

Figure 2. Sketch of the construction in Step 1: Close to the boundary the regularized
boundary values are extended in normal direction into the domain (dark green area),
the jump set is covered by cubes in which the (almost) optimal profile is used (purple
squares). Eventually, the constructions are interpolated in the light green region.

optimal profile, similarly as in [22, Section 6, Step 1]. Precisely, for ρ > 0 there exist ε0 and
w ∈ Aν such that∫

Q

( 1

ε0
W (w − ε20∆w)− qε0|∇w|2 + (1− 2q)ε30|∆w|2 + (1− q)ε50|∇∆w|2

)
dx < md + ρ.

Using this almost-optimal profile we define the sequence (wn)n∈N ⊂W 2,2(Ω) with (∆wn)n∈N ⊂
W 1,2(Ω) via

wn(x) :=


−1 if xd < − εn

2ε0
,

w( ε0xεn
) if |xd| ≤ εn

2ε0
,

+1 if xd >
εn
2ε0
.

(3.23)

Now we choose a family of cut-off functions (µn)n∈N ⊆ C∞
0 (Ω) such that

µn ≡ 1 in Ω \ V2εn ,
µn ≡ 0 in Vεn , and

∥∇kµn∥L∞(Ω) ≤
C

εkn
, k = 0, 1, 2, 3,

(3.24)

and construct (vn)n∈N via

vn(x) :=

{
(1− µn)zn + µnwn if x ∈ V2εn ,

wn if x ∈ Ω \ V2εn .
We claim that (vn)n∈N is a recovery sequence for v. First, note that by construction we have
(vn)n∈N ⊆ Y . Indeed, it holds vn ∈ W 2,2(Ω), ∆vn ∈ W 1,2(Ω), and for each n ∈ N, vn satisfies
Neumann boundary conditions since zn satisfies them as well. Next, we show that vn → v strongly
in L2(Ω). Indeed,

∥vn − v∥L2(Ω) ≤ ∥vn − v∥L2(V2εn ) + ∥vn − v∥L2(Ω\V2εn )

= ∥(1− µn)(zn − v) + µn(wn − v)∥L2(V2εn ) + ∥wn − v∥L2(Ω\V2εn )

≤ ∥zn − v∥L2(V2εn ) + C∥wn − v∥L2(εn),

(3.25)
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the first term in the previous expression satisfies

∥zn − v∥L2(V2εn ) ≤ ∥zn − v∥L∞(V2εn )

(
Ld(V2εn)

)1/2 → 0, as n→ ∞,

and for the second term it holds

∥wn − v∥L2(Ω) ≤ ∥wn∥L2({x∈Ω: |xd|≤ εn
2ε0

}) + ∥v∥L2({x∈Ω: |xd|≤ εn
2ε0

})
n→∞−→ 0

exactly as in [22, Section 6, Step 1] (see also (3.26) below for a similar argument). It remains to
show that

lim sup
n→∞

Fεn [vn] ≤ (md + ρ)PerΩ
(
{v = −1}

)
.

We use the estimate

lim sup
n→∞

Fεn [vn] ≤ lim sup
n→∞

Fεn [vn; Ω \ V2εn ]︸ ︷︷ ︸
I1

+ lim sup
n→∞

Fεn [vn;Vεn ]︸ ︷︷ ︸
I2

+ lim sup
n→∞

Fεn [vn;V2εn \ Vεn ]︸ ︷︷ ︸
I3

,

and consider the contributions to the energy in the different domains separately. Let us start
with I1. We define for k ∈ Zd the cube of sidelength ε as Q(kε, ε) := εk+(−ε/2, ε/2)d. Moreover,
for fixed n ∈ N denote the relevant region for the energy as

Pn := {x ∈ Ω \ V2εn : vn(x) /∈ {±1}}.

Then it holds with ε := εn/ε0

I1 = lim sup
n→∞

Fεn [vn; Ω \ V2εn ]

≤ lim sup
n→∞

∫
Pn

( 1

εn
W (wn − ε2n∆wn)− εnq|∇wn|2 + (1− 2q)ε3n(∆wn)

2 + (1− q)ε5n|∇∆wn|2
)
dx

≤ lim sup
n→∞

∑
k∈Zd

∫
Q(kε,ε)∩Pn

( 1

εn
W (wn − ε2n∆wn)− εnq|∇wn|2 + (1− 2q)ε3n(∆wn)

2 + (1− q)ε5n|∇∆wn|2
)
dx

≤ Hd−1(∂E ∩ Ω)

∫
Q

(
1

ε0
W (w − ε20∆w)− ε0q|∇w|2 + (1− 2q)ε30(∆w)

2 + (1− q)ε50|∇∆w|2
)
dx

≤ (md + ρ)Hd−1(∂E ∩ Ω) = (md + ρ)PerΩ({v = −1}).
(3.26)

We now turn to I2, and set

Rn := {x ∈ Vεn : vn(x) /∈ {±1}}.
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Notice that by Lemma 2.2 Ld(Rn) ≤ Cεn(|Du|(Vεn) + εn), and vn − ε2n∆vn = vn ∈ {±1} in
Vεn \Rn. Therefore, since vn = zn in Vεn ,

I2 = lim sup
n→∞

∫
Vεn

(
1

εn
W (zn − ε2n∆zn) + ε3n(1− 2q)|∆zn|2 − εnq|∇zn|2 + (1− q)ε5n|∇∆zn|2

)
dx

= lim sup
n→∞

∫
Rn

( 1

εn
W (gn ◦ Pν − ε2n∆(gn ◦ Pν))− εnq |∇(gn ◦ Pν)|2 +

+ ε3n(1− 2q) |∆(gn ◦ Pν)|2 + (1− q)ε5n |∇∆(gn ◦ Pν)|2
)
dx

≤ C lim sup
n→∞

(|Du|(Vεn) + εn)− q lim sup
n→∞

∫
Rn

εn|∇(gn ◦ Pν)|2dx︸ ︷︷ ︸
J1

+ lim sup
n→∞

∫
Rn

ε3n(1− 2q)|∆(gn ◦ Pν)|2dx︸ ︷︷ ︸
J2

+ lim sup
n→∞

∫
Rn

(1− q)ε5n|∇∆(gn ◦ Pν)|2dx︸ ︷︷ ︸
J3

= J1 + J2 + J3.

(3.27)

Let us consider J1 carefully.

J1 = |q| lim sup
n→∞

εn

∫
Rn

|∇(gn ◦ Pν)|2dx

= |q| lim sup
n→∞

εn

∫
Rn

∣∣∣∣∣∇
(

M∑
i=1

ξni (g
i
n ◦ φi) ◦ Pν

)∣∣∣∣∣
2

dx

≤ C|q| lim sup
n→∞

M∑
i=1

εn

∫
Rn

∣∣∇ (ξni (gin ◦ φi) ◦ Pν

)∣∣2 dx
≤ C|q| lim sup

n→∞
εn

M∑
i=1

∫
Rn

∣∣∇ ((ξni ◦ Pν)(g
i
n ◦ φi ◦ Pν)

)
χUi

∣∣2 dx
≤ C|q| lim sup

n→∞
εn

M∑
i=1

∫
Rn∩Ui

|∇(ξni ◦ Pν) · (gin ◦ φi ◦ Pν)|2 + |(ξni ◦ Pν)∇(gin ◦ φi ◦ Pν)|2dx

Note at this point that it holds

Pν(x) = (φi)
−1 (P e (φi(x))) , ∀x ∈ Vεn

where by P e we denote the projection in Euclidean space

P e : Rd → {xd = 0}
P e : (x1, . . . , xd) 7→ (x1, . . . , xd−1, 0).

This also implies that Pν ∈ C3(Vεn ; ∂Ω). Therefore we have

J1 ≤ C|q| lim sup
n→∞

εn

M∑
i=1

∫
Rn∩Ui

(∣∣∇(ξni ◦ (φi)
−1 ◦ P e ◦ φi) · (gin ◦ P e ◦ φi)

)
|2+ (3.28)

+
∣∣(ξni ◦ (φi)

−1 ◦ P e ◦ φi)∇(gin ◦ P e ◦ φi)
∣∣2) dx (3.29)

≤ C|q| lim sup
n→∞

εn

M∑
i=1

∫
Rn∩Ui

(
C + C

∣∣∇(gin ◦ P e ◦ φi)
∣∣2) dx. (3.30)
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It remains to consider the last term. Here the derivatives are taken with respect to the standard
basis (e1, . . . , ed). Let us instead consider another basis - fix x ∈ ∂Ω, let ν = ν(x) be the inward
pointing unit normal to ∂Ω at x and (a1, . . . , ad−1, ν) the new local basis, where

aj(x) := Dφi(x)(φi)
−1(ej), j = 1, . . . , d− 1. (3.31)

Here and in the sequel we use the notation Dxf(v) to denote the derivative of a function f at a
point x applied to v. Now for every j = 1, . . . , d− 1 it holds

∂aj
(gin ◦ P e ◦ φi)(x) = Dx(g

i
n ◦ P e ◦ φi)(aj)

= Dx(g
i
n ◦ P e ◦ φi)(Dφi(x)(φi)

−1(ej))

= Dφi(x)(g
i
n ◦ P e ◦ φi ◦ (φi)

−1)(ej)

= Dφi(x)(g
i
n ◦ P e)(ej)

= (∂ej (g
i
n ◦ P e))(φi(x))

=

d−1∑
k=1

∂ekg
i
n(P

e(φi(x))) · ∂ejP e
k (φi(x))

= (∂ejg
i
n)(P

e(φi(x)))

(3.32)

and ∂ν(g
i
n ◦ P e ◦ φi)(x) = 0. Thus we have∫

Rn∩Ui

|∇(gin ◦ P e ◦ φi)|2dx ≤ C

∫
Rn∩Ui

|∇(a1,...,an−1,ν)(g
i
n ◦ P e ◦ φi)|2dx

≤ C

∫
Rn∩Ui

d−1∑
j=1

|∂ejgin(P e(φi(x)))|2dx ≤ C

ε2n
Ld(Rn ∩ Ui).

(3.33)

Inserting this bound into (3.28), we obtain

J1 ≤ C|q| lim sup
n→∞

M∑
i=1

εnLd(Rn ∩ Ui)

(
C +

C

ε2n

)
→ 0, as n→ ∞.

Using similar ideas, we get that J2 = 0 and J3 = 0, and conclude (see (3.27))

I2 = 0.

Finally, let us consider I3.

Mn := {x ∈ V2εn \ Vεn : vn(x) /∈ {±1}}
and note that by Lemma 2.2 it holds Ld(Mn) ≤ Cεn(|Dv|(V2εn) + εn). Moreover, note that
∇vn = ∆vn = ∇∆vn = 0 almost everywhere outside Mn. Then we have

I3 = lim sup
n→∞

∫
V2εn\Vεn

1

εn
W (vn − ε2n∆vn) + ε3n(1− 2q)|∆vn|2 − εnq|∇vn|2 + ε5n(1− q)|∇∆vn|2dx

= lim sup
n→∞

∫
Mn

1

εn
W (vn − ε2n∆vn) + ε3n(1− 2q)|∆vn|2 − qεn|∇vn|2 + (1− q)ε5n|∇∆vn|2dx

≤ lim sup
n→∞

∫
Mn

1

εn
W (vn − ε2n∆vn)︸ ︷︷ ︸
Aw

+ lim sup
n→∞

∫
Mn

−εnq|∇((1− µδ)zn + µδwn)|2dx

+ lim sup
n→∞

∫
Mn

ε3n(1− 2q)|∆((1− µδ)zn + µδwn)|2dx+

+ lim sup
n→∞

∫
Mn

ε5n(1− q)|∇∆((1− µδ)zn + µδwn)|2dx.
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Let us only consider the first term in detail. Using the bounds for µn and zn we estimate similarly
to (3.26)

Aw = lim sup
n→∞

∫
Mn

1

εn
W (vn − ε2n∆vn)dx

= lim sup
n→∞

∫
Mn∩{|vn−ε2n∆vn|<R}

1

εn
W (vn − ε2n∆vn)dx+

∫
Mn∩{|vn−ε2n∆vn|>R}

1

εn
W (vn − ε2n∆vn)dx

≤ lim sup
n→∞

C

εn
Ld (Mn) +

1

εn

∫
Mn

λ2(vn − ε2n∆vn)
2dx

≤ C lim sup
n→∞

∫
Mn

(
1

εn
|vn|2 + ε3n|∆vn|2

)
dx

≤ C lim sup
n→∞

∫
Mn

1

εn
|wn|2 + ε3n

(
|∆wn|2 + |∇µn|2|∇wn|2 + |D2µn|2|wn|2

)
dx

+ C lim sup
n→∞

∫
Mn

1

εn
|zn|2 + ε3n

(
|∆zn|2 + |∇µn|2|∇zn|2 + |D2µn|2|zn|2

)
dx

≤ C lim sup
n→∞

∫
Mn

1

εn
|wn|2 + ε3n|∆wn|2 + εn|∇wn|2 +

1

εn
|wn|2dx

+ C lim sup
n→∞

∫
Mn

1

εn
dx

≤ C lim sup
n→∞

∫
Mn

1

εn
|wn|2 + ε3n|∆wn|2 + εn|∇wn|2dx + lim sup

n→∞
C(|Dv|(V2εn) + εn)

≤ lim sup
n→∞

C

∫
Mn

1

εn

∣∣∣∣w( ε0εnx
)∣∣∣∣2 + ε40

εn

∣∣∣∣(∆w)( ε0εnx
)∣∣∣∣2 + ε20

εn

∣∣∣∣(∇w)( ε0εnx
)∣∣∣∣2 dx

≤ lim sup
n→∞

C|Dv|(V2εn)
∫
Q

1

ε0
|w(y)|2 + ε30|∆w(y)|2 + ε0|∇w(y)|2dy

= 0.

We use similar computations as for J1 to bound the other three terms, which yields

I3 = 0.

This finally gives

lim sup
n→∞

Fεn [vn] ≤ (md + ρ)PerΩ({v = −1}).

The result follows by letting ρ→ 0 and taking a diagonal sequence.
Step 2. Since v ∈ BV (Ω; {±1}), v can be written as v = −χE + χΩ\E with E the set of finite perimeter

in Ω. In this step, we assume that E has the form E = Ω ∩ P for some polygonal set P . By a
polygonal set we mean that there is L ∈ N such that ∂P = H1∪ . . . HL∪F where Hi are pairwise
disjoint convex and relatively open polyhedra of dimension d−1, Hi ⊂ {x ∈ Rd : (x−xi) ·n̂i = 0}
for some xi ∈ Rd and n̂i ∈ Sd−1, i = 1, . . . , L, and F is the finite union of convex polyhedra of
dimension d− 2. The following construction is illustrated in Figure 3.3. For 0 < δ < 1 let

Uδ := {x ∈ Ω : dist(x,Ω ∩ F ) ≤ δ} .

For each i = 1, . . . , L consider H ′
i ⊂ Hi with C

∞-boundary such that{
x ∈ Hi ∩ Ω : dist(x,Ω ∩ F ) ≥ δ

2

}
⊂ H ′

i ⊂ H ′
i ⊂ Ω ∩Hi

and such that

H ′
i ∩ U δ

4
= ∅. (3.34)
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Ω v = 1

v = −1

Figure 3. Sketch of the construction in Step 2

Fix η ∈ (0, δ2 ) and ρ > 0, and consider for i = 1, . . . , L the η-neighbourhood of H ′
i, i.e. let

Ωi :=
{
x+ tn̂i : x ∈ H ′

i, |t| < η
}
.

Without loss of generality we can assume that Ωi are pairwise disjoint (one can choose η small).
Next, we introduce some auxiliary sequences for our construction. First, similarly as in (3.23), for
each Ωi we can construct a sequence (wi

n)n∈N ⊂ W 2,2(Ω) such that wi
n → v strongly in L2(Ωi)

and such that

lim
n→+∞

Fεn [w
i
n; Ωi] ≤ (md + ρ)Hn−1(Hi ∩ Ωi).

Next, we construct the mollifying sequence. Extend v to Rd such that v = −χP + χRd\P . Let
(φn)n∈N ⊆ C∞(Rd) with φn := φεn , be a mollifying sequence for v. Since v ∈ L∞(Ω), we have
the bounds from (2.2). For fixed 0 < δ < 1 consider a cut-off function ηδ ∈ C∞

c (Rd; [0, 1]) such
that

ηδ ≡ 0 in Uδ,

ηδ ≡ 1 in Rd \ U2δ, and

∥∇kηδ∥L∞(Rd) ≤
C

δk
, k = 0, 1, 2, 3.

(3.35)

Finally, we define a sequence

wn(x) :=

{
ηδw

i
n + (1− ηδ)φn, x ∈ Ωi, i = 1, . . . , L;

φn, x ∈ A := Ω \ (Ω1 ∪ · · · ∪ Ωn).

We construct the recovery sequence (vn)n∈N ⊆ Y using the interpolation procedure from the
previous step and using the auxiliary sequences (wn)n∈N and (zn)n∈N. Computations similar to
the ones in the previous step and [22, Section 6, Step 2] yield that by a diagonal argument as
δ → 0 a recovery sequence can be constructed in this way.

Step 3. Finally, suppose that v ∈ BV (Ω; {±1}), i.e. E is of finite perimeter. The recovery sequence is
constructed using the polyhedral approximation from [6].
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v = 1

v = −1

2δ

ηδ = 0 ηδ = 1
Ωj

wjn Ωi

wjn

δ

Figure 4. Sketch of the construction in Step 2 close to F

Notice that in particular it holds

v ∈ SBV (Ω; {±1}) and |Du|(Ω) = 2 Per(E; Ω) <∞.

Thus, by [6, Theorem 2.1 & Corollary 2.4] there exists a sequence (vj)j∈N ⊆ SBV (Ω; {±1}) such
that

• vj → v strongly in L1(Ω) and thus also in L2(Ω),
• for Ej := {vj = −1} there exists a finite number of d−1 dimensional simplexesH1, . . . ,HM ⊆

Rd such that

Hd−1(∂Ej△
M⋃
j=1

(Hj ∩ Ω) ) = 0,

where ∆ denotes the symmetric difference, and
• Per(Ej ; Ω) → Per(E; Ω).

Note that the sets Ej are in particular of polygonal type in the sense of Step 2. Thus, for each
j ∈ N we can construct a sequence (vkj )k∈N ⊆ Y such that

vkj → vj strongly in L2(Ω) as k → ∞ and

lim sup
k→∞

Fεk [v
k
j ] ≤ mdPer(Ej ; Ω).

Finally, we obtain a recovery sequence for v ∈ BV (Ω; {±1}) by the standard diagonalization
procedure.

□

Remark 3.4. We note at this point that the assumption q ≤ 0 is not necessary for the proof of the
lim sup-inequality. Following the steps from the proof above, one can construct a recovery sequence in
the case q > 0 the same way as previously described. In this case, the only relevant change appears
when showing the upper bound on the energies. However, all of the terms that were bounded by Cδ in
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the setting above, are still bounded by the same value (one can bound the absolute value of those terms
exactly as above). Thus, the same construction can be used to fill the gap in the construction from [22,
Section 6].

4. One dimension d = 1

We consider now the special case d = 1 and show that we obtain a Γ-convergence result under the
much weaker hypotheses on the double-well potential W stated in Assumption 1.2. Without loss of
generality, we consider the normalized interval domain I := (−1, 1). We make explicit use of the 1D
structure, and first prove an estimate that allows us to obtain a lower bound on the energy in terms
of the number of transition layers, following ideas from [24, Proposition 2.8 and Corollary 2.9]. We
use the notation u = −ε2v′′ + v and consider for (a, b) ⊂ I,

Fε[v; (a, b)] :=

∫ b

a

(
1

ε
W (u)− εq|u′|2 + ε3(v′′)2 + ε5(v′′′)2

)
dx. (4.1)

Proposition 4.1. Let εn → 0+, and let (vn)n∈N ⊂W 3,2(I). Assume that there exists a partition

−1 = x0 < x1 < · · · < xν = 1,

of I with the following property: Given η > 0, there exists Nη ∈ N such that for n ≥ Nη and
i = 1, . . . , ν − 1, there exist ai,n ∈ (xi−1, xi), bi,n ∈ (xi, xi+1) with ai+1,n > bi,n such that

|εknv(k)n (ai,n)| < η, |εknv(k)n (bi,n)| < η, k = 1, 2, 3,

|vn(ai,n) + 1| < η, |vn(bi,n)− 1| < η. (4.2)

Then we have

lim inf
n→∞

Fεn [vn] ≥ (ν − 1)m1.

Proof. Let un = −ε2nv′′n + v. Then, since the integrand in (4.1) is non-negative, and the intervals
(ai,n, bi,n) are pairwise disjoint, we have

Fεn [vn] =

∫ 1

−1

(
1

ε
W (un)− εnq|u′n|2 + ε3n(v

′′
n)

2 + ε5n(v
′′′
n )2

)
dx

≥
ν−1∑
i=1

∫ bi,n

ai,n

(
1

εn
W (un)− εnq|u′n|2 + ε3n(v

′′
n)

2 + ε5n(v
′′′
n )2

)
dx

=

ν−1∑
i=1

Fεn [vn; (ai,n, bi,n)]. (4.3)

For i = 1, . . . , ν − 1, we consider the restriction of vn to (ai,n, bi,n) and construct extensions ṽi,n to
(−1, 1) such that

lim inf
n→∞

Fεn [vn; (ai,n, bi,n)] ≥ lim inf
n→∞

Fεn [ṽi,n; (−1, 1)] ≥ m1.

For the last inequality, we note that for d = 1, by a rescaling argument, we may replace the unit
interval Qν = (−1/2, 1/2) and the set of admissible functions for the minimization in the definition of
m1, Aν , by the interval (−1, 1) and functions v : (−1, 1) → R such that v(·/2) ∈ Aν . Then, set

ṽi,n(x) :=



−1 if x ∈ [−1, ai,n − εn),

ψ̃i,n(x) if x ∈ [ai,n − εn, ai,n],

vn(x) if x ∈ (ai,n, bi,n),

ϕ̃i,n(x) if x ∈ [bi,n, bi,n + εn],

1 if x ∈ (bi,n + εn, 1]
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with

ψ̃i,n(x) := ψn

(
x− ai,n
εn

)
, where ψn(s) := (s+ 1)3pn(s)− 1, (4.4)

with a quadratic polynomial

pn(s) := p0,n + p1,ns+ p2,ns
2. (4.5)

Then ψn(−1) = −1, ψ′
n(−1) = 0, ψ′′

n(−1) = 0, and we choose the coefficients pi,n of pn such that

ψn(0) = vn(ai,n), ψ′
n(0) = εnv

′
n(ai,n), and ψ′′

n(0) = ε2nv
′′
n(ai,n). (4.6)

Then ṽi,n has a twice continuously differentiable representative on [−1, bi,n). The extension to [bi,n, 1]
can be chosen similarly. We note that the coefficients of pn are bounded successively by

|p0,n|
(4.5)
= |pn(0)|

(4.4)
= |ψn(0) + 1| (4.6)= |vn(ai,n) + 1|

(4.2)
< η, and similarly

|p1,n| = |3p0,n + p1,n − 3p0,n| = |ψ′
n(0)− 3p0,n| = |εnv′n(ai,n)− 3p0,n| < 4η, and

|p2,n| =
1

2
|ψ′′

n(0)− 6p0,n − 6p1,n| =
1

2
|ε2nv′′n(ai,n)− 6p0,n − 6p1,n| < 16η. (4.7)

Fix i = 1, . . . , ν − 1 and consider the energy. We have

Fεn [ṽi,n; (−1, 1)] = Fεn [ṽi,n; (−1, ai,n − εn)] + Fεn [ṽi,n; (ai,n − εn, ai,n)] + Fεn [vn; (ai,n, bi,n)]

+ Fεn [ṽi,n; (bi,n, bi,n + εn)] + Fεn [ṽi,n; (bi,n + εn, 1)].

We consider the terms on the right hand side separately. First, for x ∈ (−1, ai,n − εn), we have
ṽn(x) ≡ −1 and thus ũε(x) = −ε2ṽ′′n(x) + ṽn(x) = −1. Hence, since W (−1) = 0,

Fεn [ṽn; (−1, ai,n − εn)] = 0.

Next, for ai,n − εn < x < ai,n, set

zi,n :=
x− ai,n
εn

and note that |zi,n| ≤ 1.

We use the estimates (4.7) for the coefficients of pn to estimate

|pn(zi,n)| ≤ |p0,n|+ |p1,n|+ |p2,n| < 21η,

and similarly for the derivatives. Hence, we find that there exists C > 0 independent of n and η such
that for all x ∈ (ai,n − εn, ai,n), with ũi,n := −ε2nṽ′′i,n + ṽi,n,

|ṽi,n(x) + 1| = |ψ̃i,n(x) + 1| = |ψn

(
x− ai,n
εn

)
+ 1| = |(zi,n + 1)3pn(zi,n)| < Cη,

|ṽ′i,n(x)| = |ψ̃′
i,n(x)| =

1

εn
|3(zi,n + 1)2pn(zi,n) + (zi,n + 1)3p′n(zi,n)| <

Cη

εn
,

|ṽ′′i,n(x)| = |ψ̃′′
n(x)| =

1

ε2n
|6(zi,n + 1)pn(zi,n) + 6(zi,n + 1)2p′n(zi,n) + (zi,n + 1)3p′′n(zi,n)| <

Cη

ε2n
,

|ṽ′′′i,n(x)| = |ψ̃′′′
i,n(x)| =

1

ε3n
|6pn(zi,n) + 18(zi,n + 1)p′n(zi,n) + 9(zi,n + 1)2p′′n(zi,n) + (zi,n + 1)3p′′′n (zi,n)|

<
Cη

ε3n
,

|ũ′i,n(x)| = | − ε2nṽ
′′′
n (x) + ṽ′n(x)| <

Cη

εn
, and

1

εn
W (ũi,n(x)) =

1

εn
W
(
−ε2nṽ′′i,n(x) + ṽi,n(x) + 1− 1

)
≤ Cη

εn
,

where in the last estimate we used the Lipschitz continuity of W and W (−1) = 0. It follows that

Fεn [ṽi,n; (ai,n − εn, ai,n)] =

∫ ai,n

ai,n−εn

(
1

εn
W (ũi,n)− εnq|ũ′i,n|2 + ε3n|ṽ′′i,n|2 + ε5n|ṽ′′′i,n|2

)
dx ≤ Cη,
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and hence, since η > 0 was arbitrary,

lim sup
n→∞

Fεn [ṽi,n; (ai,n − εn, ai,n)] = 0.

An analogous argument for the extension to (bi,n, 1) yields

lim inf
n→∞

Fεn [vn] ≥
ν−1∑
i=1

lim inf
n→∞

Fεn [vn; (ai,n, bi,n)] ≥
ν−1∑
i=1

lim inf
n→∞

Fεn [ṽi,n; (−1, 1)] ≥ (ν − 1)m1,

which concludes the proof. □

4.1. Optimal Profile Problem

We now study the minimization problem defining m1, where we follow the method in [24]. For
simplicity of notation, we denote the class of admissible functions for m1 by

A := {V ∈W 3,2
loc (R) : there exists T > 0, such that V (z) = −1, if z < −T, V (z) = 1, if z > T}.(4.8)

Proposition 4.2. The constant m1 is positive and

m1 = min

{∫
R
[W (U)− q|U ′|2 + |V ′′|2 + |V ′′′|2] dz : V ∈W 3,2

loc (R), U = −V ′′ + V, V → ±1 as z → ±∞
}
.

Proof. We divide the proof into three steps, following the lines of the proof of [24, Lemma 2.1].
Step 1: m1 > 0. Assume for the sake of a contradiction that m1 = 0. Let (Vn)n∈N ⊂ A (see (4.8)) be

a minimizing sequence for m1. Since Vn ∈ W 3,2
loc (R) has a continuous representative and takes values

−1 and 1 for z < −T and z > T respectively, there exists zn ∈ R such that Vn(zn) = 0. Without loss
of generality we may assume Vn(0) = 0 (otherwise change variables z̃ = z − zn). Since F∞[Vn] → 0,
we have ∥V ′′′

n ∥L2(R) → 0 and ∥V ′′
n ∥L2(R) → 0. Further, on any bounded J ⊂ R we have by (H2’)

∥Vn∥L1(J) = ∥Un + V ′′
n ∥L1(J) ≤ ∥Un∥L1(J) + ∥V ′′

n ∥L1(J) ≤ ∥Un∥L1(J) + |J |1/2∥V ′′
n ∥L2(J)

≤
∫
{|Un|<R}

|Un| dz +
∫
{|Un|≥R}

|Un| dz + |J |1/2∥V ′′
n ∥L2(J)

≤ |J |R+
1

L

∫
J

W (Un) dz + |J |1/2∥V ′′
n ∥L2(J) ≤ C(J),

and by the interpolation inequality (2.4)

∥V ′
n∥L4/3 ≤ C(J)(∥Vn∥1/2L1(J)∥V ′′

n ∥1/2L2(J) + ∥Vn∥L1(J)) ≤ C(J),

where here and in the following C(J) denotes a generic constant that depends on J but not on n.
Consequently, by the Sobolev embedding, (Vn)n∈N is bounded in W 3,2(J) and we may extract a
subsequence (not relabeled) converging in W 2,∞(J) to some affine function V , i.e.,

V (z) = az + b.

Since Un = −V ′′
n + Vn → 0 + V in L2(J), by Fatou’s lemma, we have,

m1 = lim
n→∞

∫
R
(W (Un)− q|U ′

n|2 + |V ′′
n |2 + |V ′′′

n |2) dz ≥ lim
n→∞

∫
J

(W (Un)− q|U ′
n|2 + |V ′′

n |2 + |V ′′′
n |2) dz

≥
∫
J

W (az + b) dz.

By the assumption m1 = 0, this implies that az + b = ±1 for all z ∈ J . Hence, a = 0, b = ±1, which
contradicts V (0) = limVn(0) = 0. This shows that m1 > 0.
Step 2: m̃ = m1, where

m̃ := inf

{∫
R
[W (U)− q|U ′|2 + |V ′′|2 + |V ′′′|2] dz : V ∈W 3,2

loc (R), U = −V ′′ + V, V → ±1 as z → ±∞
}
.

(4.9)
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Clearly, m̃ ≤ m1. It remains to show that m1 ≤ m̃. Fix δ > 0 and let V be admissible for m̃ such
that ∫

R
(W (U)− q|U ′|2 + |V ′′|2 + |V ′′′|2) dz ≤ m̃+ δ.

It follows that V ′′′ ∈ L2(R) and V ′′ ∈ L2(R). Since V ′ is continuous by the Sobolev embedding, and
V → ±1 as z → ±∞, there are sequences (aj)j∈N and (bj)j∈N ⊂ R, such that aj → −∞, bj → ∞, and

lim
j→∞

|V (aj) + 1| = lim
j→∞

|V (bj)− 1| = lim
j→∞

V (k)(aj) = lim
j→∞

V (k)(bj) = 0, k = 1, 2, 3. (4.10)

Define

Ṽi(z) :=



−1, if z ∈ (−∞, ai − 1),

Ψ̃i(z), if z ∈ [ai − 1, ai],

V (z), if z ∈ (ai, bi),

Φ̃i(z), if z ∈ [bi, bi + 1],

1, if z ∈ (bi + 1,∞),

where we want to choose the functions Φ̃i and Ψ̃i such that for i sufficiently large

F∞[V ] ≥ F∞[Ṽi]− δ ≥ m1 − δ.

Since m̃+ δ ≥ F∞[V ] and δ > 0 was arbitrary, this implies m̃ ≥ m1. To construct Ṽi, we proceed as
in the proof of Proposition 4.1 and choose

Ψ̃i(z) := ψi (z − ai) , where ψi(s) := (s+ 1)3pi(s)− 1 with pi(s) := p0,i + p1,is+ p2,is
2.

As before we have, ψi(−1) = −1, ψ′
i(−1) = 0, ψ′′

i (−1) = 0, and we choose the coefficients p0,i, p1,i, p2,i
such that

ψi(0) = V (ai), ψ′
i(0) = V ′(ai), ψ′′

i (0) = V ′′(ai) (4.11)

to guarantee that V is twice continuously differentiable. Similarly to the proof of Proposition 4.1,
conditions (4.10) imply that for i→ ∞,

p0,i = pi(0) = ψi(0) + 1 = V (ai) + 1 → 0,

p1,i = p′i(0) = ψ′
i(0)− 3pi(0) = V ′(ai)− 3p0,i → 0,

p2,i = p′′i (0)/2 = ψ′′
i (0)/2− 3p′i(0)− 3pi(0) = V ′′(ai)/2− 3p1,i − 3p0,i → 0.

The extension Φ̃i to [bi, bi +1] can be chosen similarly. Since for z < ai − 1 and z > bi +1, Ṽ (z) = ±1

and Ṽ , V agree on (ai, bi), we have,

F∞[V ] ≥
∫ bi

ai

(W (U)− q|U ′|2 + |V ′′|2 + |V ′′′|2) dz

= F∞[Ṽ ]−
∫ bi+1

bi

(W (Ũ)− q|Ũ ′|2 + |Ṽ ′′|2 + |Ṽ ′′′|2) dz −
∫ ai

ai−1

(W (Ũ)− q|Ũ ′|2 + |Ṽ ′′|2 + |Ṽ ′′′|2) dz,

where Ũ := −Ṽ ′′ + Ṽ . To estimate the last two terms, note that for ai − 1 < z < ai, we have
|z − ai| ≤ 1, and hence, as in the proof of Proposition 4.1, for i→ ∞,

∥Ṽi(·) + 1∥L∞(ai−1,ai) = ∥Ψ̃i(·) + 1∥L∞(ai−1,ai) = ∥ψi (· − ai) + 1∥L∞(ai−1,ai)

= ∥(· − ai + 1)3pi(· − ai)∥L∞(ai−1,ai) → 0, and

∥Ṽ ′
i ∥L∞(ai−1,ai), ∥Ṽ ′′

i ∥L∞(ai−1,ai), ∥Ṽ ′′′
i ∥L∞(ai−1,ai) → 0.

It follows that

∥Ũ ′
i∥L∞(ai−1,ai) =

∥∥∥−Ṽ ′′′
i + Ṽ ′

i

∥∥∥
L∞(ai−1,ai)

→ 0,
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and

∥W (Ũi)∥L∞(ai−1,ai) = ∥W (−Ṽ ′′
i + Ṽi)∥L∞(ai−1,ai) → 0,

which implies ∫ ai

ai−1

(W (Ũi)− q|Ũ ′
i |2 + |Ṽ ′′

i |2 + |Ṽ ′′′
i |2) dz → 0.

A similar argument yields that∫ bi+1

bi

(W (Ũi)− q|Ũ ′
i |2 + |Ṽ ′′

i |2 + |Ṽ ′′′
i |2) dz → 0.

Hence, for i sufficiently large we obtain from (4.12),

m̃+ δ ≥ F∞[V ] ≥ F∞[Ṽi]− δ ≥ m1 − δ,

which concludes the proof of the assertion m1 = m̃.

Step 3: m̃ is attained. Let (Vk)k∈N be a minimizing sequence for m̃. We can again assume without

loss of generality that Vk(0) = 0 for all k ∈ N and that (Vk)k∈N is equibounded inW 3,2
loc (R). Extracting

a subsequence (not relabeled) we may assume that Vk → V strongly in W 2,∞
loc (R) and weakly in

W 3,2
loc (R). Hence if J is an arbitrary interval, using Fatou’s Lemma and the lower semicontinuity of

the Lp norms yields

m̃ = lim
k→∞

∫
R
(W (Uk)− q|U ′

k|2 + |V ′′
k |2 + |V ′′′

k |2) dz ≥ lim inf
k→∞

∫
J

(W (Uk)− q|U ′
k|2 + |V ′′

k |2 + |V ′′′
k |2) dz

≥
∫
J

(W (U)− q|U ′|2 + |V ′′|2 + |V ′′′|2) dz.

Since J was arbitrary, we have

m̃ ≥
∫
R
(W (U)− q|U ′|2 + |V ′′|2 + |V ′′′|2) dz,

and it remains to show that V is admissible for m̃. Let

L := {l ∈ R : l is a limit point of V (z) as z → ∞}.

If l ∈ L then, since U = −V ′′
+ V and V

′′ → 0 as z → ∞, l must be a limit point of U . Since∫
RW (U) dz <∞, we have that −1 ∈ L or 1 ∈ L. Suppose that 1 ∈ L and assume for a contradiction
that there exists some 1 ̸= l ∈ L. We may assume without loss of generality that l ̸= −1 (otherwise,
since V ∈ C2(R), there exists another limit point l ∈ (−1, 1)). By definition, there are two monotone
sequences (yi)i∈N and (zi)i∈N such that yi+1−yi ≥ 3, zi ∈ [yi+1, yi+1−1], V (yi) → 1, and V (zi) → l.
For 0 < δ < min{|l + 1|, |l − 1|}, define

h := inf
{∫ w

y

(W (U)− q|U ′|2 + |V ′′|2 + |V ′′′|2) dz :

w − y ≥ 3, V ∈W 3,2(y, w), U = −V ′′ + V,∃z ∈ [y + 1, w − 1] s.t. |V (z)− l| ≤ δ
}
.

Since |V (zi)− l| ≤ δ for large i ≥ I, we have∫
R
(W (U)− q|U ′|2 + |V ′′|2 + |V ′′′|2) dz ≥

∞∑
i=I

∫ yi+1

yi

(W (U)− q|U ′|2 + |V ′′|2 + |V ′′′|2) dz ≥
∞∑
i=I

h.

It follows that h = 0. We will show that this leads to a contradiction. Let (Vn)n∈N be a minimizing
sequence for h. Translating the intervals, we may assume without loss of generality that zn = 0,
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yn ≤ −1, wn ≥ 1, Vn → V = p0 + p1z in W 2,∞([−1, 1]). It follows that

h ≥ lim
n→∞

∫ wn

yn

(W (Un)− q|U ′
n|2 + |V ′′

n |2 + |V ′′′
n |2) dz

≥ lim
n→∞

∫ 1

−1

(W (Un)− q|U ′
n|2 + |V ′′

n |2 + |V ′′′
n |2) dz ≥

∫ 1

1

W (p0 + p1z) dz ≥ 0.

If h = 0, we have p0 + p1z = ±1 for all z ∈ (−1, 1), and so V (z) = p0 = ±1 for all z ∈ (−1, 1). This
contradicts |Vn(0)− l| < δ for all n ∈ N. Hence, our assumption was wrong, and V (z) → 1 as z → ∞.
A similar argument shows that V (z) → ±1 as z → −∞.
Therefore, we have limz→±∞ V (z) ∈ {±1}. If limz→−∞ V (z) ̸= limz→∞ V (z) then either V (·) or V (−·)
is admissible and hence a minimizer. Therefore, it remains to exclude the possibility V (z) → −1 as
z → ±∞. (V (z) → 1 as z → ±∞ is analogous.) If this was the case, then there was zn → ∞ such that

|V (k)
(zn)|+ |V (zn) + 1|+ |U(zn) + 1| → 0,

and, since Vk → V in W 2,∞
loc , up to a subsequence Vkn(zn) → −1, V

′

kn
(zn), V

′′

kn
(zn) → 0, and∫

R

(
W (Ukn)− q|U ′

kn
|2 + |V ′′

kn
|2 + |V ′′′

kn
|2
)
dz =

∫ zn

−∞

(
W (Ukn)− q|U ′

kn
|2 + |V ′′

kn
|2 + |V ′′′

kn
|2
)
dz

+

∫ ∞

zn

(
W (Ukn

)− q|U ′
kn
|2 + |V ′′

kn
|2 + |V ′′′

kn
|2
)
dz ≥

∫ zn

−∞

(
W (Ukn

)− q|U ′
kn
|2 + |V ′′

kn
|2 + |V ′′′

kn
|2
)
dz + m̃

−
∫ zn

−∞

(
W (Ũkn

)− q|Ũ ′
kn
|2 + |Ṽ ′′

kn
|2 + |Ṽ ′′′

kn
|2
)
dz,

where the extensions Ṽkn and Ũkn of Vkn and Ukn , respectively, are defined as in (4.11). A similar
argument as in Step 2. shows that

lim
n→∞

∫ zn

−∞
(W (Ũkn

)− q|Ũ ′
kn
|2 + |Ṽ ′′

kn
|2 + |Ṽ ′′′

kn
|2) dz = 0.

Finally, since Vkn
→ V in W 2,∞

loc , taking n→ ∞, and using Fatou’s Lemma in the second line gives

m̃ = lim
n→∞

∫
R
(W (Ukn

)− q|U ′
kn
|2 + |V ′′

kn
|2 + |V ′′′

kn
|2) dz

≥ lim sup
n→∞

∫ zn

−∞
(W (Ukn

)− q|U ′
kn
|2 + |V ′′

kn
|2 + |V ′′′

kn
|2) dz + m̃ ≥

∫ ∞

−∞
(W (U) + |V ′′|2) dz + m̃,

which implies V
′′ ≡ 0 and hence U = −V ′′

+ V = V with V (z) = p0 + p1z. Again, W (U) ≡ 0 implies
U = V = p0 = −1, which contradicts Vn(0) = 0 for all n ∈ N. This concludes the proof. □

4.2. Compactness

We are now in the position to prove compactness of low-energy sequences i.e., item 3. of Theorem 1.3
in the case d = 1. Note that in the case q < 0, the result follows from

Fεn [un] ≥
∫
I

(
1

ε
W (un)− εnq|u′n|2

)
dx

and the compactness result for the Modica-Mortola functional (see [38]). For the general case q ≤ 0,
we follow the proof of [24, Proposition 2.7], which requires to show some a priori estimates. We first
note that for q ≤ 0, (4.1) and (1.8) imply that

∥v′′n∥L2(I) ≤ Cε−3/2
n , and ∥v′′′n ∥L2(I) ≤ Cε−5/2

n , (4.12)
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and, consequently, (un)n∈N and (vn)n∈N are bounded in L1(I) since by (H2’) and (1.8)

∥un∥L1(I) ≤
∫
{|un|≤R}

|un| dx+

∫
{|un|>R}

|un| dx ≤ R|I|+ 1

L

∫
I

W (un) dx ≤ C, and

∥vn∥L1(I) = ∥un + ε2nv
′′
n∥L1(I) ≤ ∥un∥L1(I) + ε2n∥v′′n∥L1(I) ≤ ∥un∥L1(I) + |I|1/2ε2n∥v′′n∥L2(I) ≤ C.

By (2.4) and (4.12), we have

∥u′n∥L4/3(I) =
∥∥−ε2nv′′′n + v′n

∥∥
L4/3(I)

≤ ε2n∥v′′′n ∥L4/3(I) + ∥v′n∥L4/3(I)

≤ Cε2n∥v′′′n ∥L2(I) + ∥v′n∥L4/3(I)

≤ C
(
ε2n∥v′′′n ∥L2(I) + ∥vn∥1/2L1(I)∥v′′n∥

1/2
L2(I) + ∥vn∥L1(I)

)
≤ Cε−3/4

n . (4.13)

The compactness result for q = 0 now follows from Proposition 4.1 and the proof of Proposition 2.7
in [24].

4.3. Liminf Inequality

The proof of the liminf inequality follows essentially from Proposition 4.1. Precisely, let u ∈ BV (I; {±1})
and assume without loss of generality that there exists a partition

−1 = x0 < x1 < · · · < xν = 1,

with u(x) = −1 in (x2i−2, x2i−1) and u(x) = 1 in (x2i−1, x2i). Assume that εn → 0+ and that
(un)n∈N ⊂W 1,2(I) satisfies (extracting a subsequence if needed)

lim inf
n→∞

Fεn [vn] = lim
n→∞

Fεn [vn] =M <∞,

and un → u in L1(I) and pointwise for L1-almost every x ∈ I. It follows from the compactness

argument in the previous section that if q ≤ 0 and k = 1, 2, 3 then εknv
(k)
n → 0. In addition, vn =

un + ε2nv
′′
n → u for L1-a.e. x ∈ I. Hence, the hypotheses of Proposition 4.1 are satisfied and the liminf

inequality follows.

4.4. Limsup Inequality

To prove the limsup inequality we proceed as in Step 1 in Subsection 3.3. Let δ > 0 and u ∈
BV (I; {−1, 1}) and −1 = x0 < x1 < · · · < xν = 1, where x1, . . . , xν−1 are the jump points of u.
Without loss of generality we may again assume u = −1 on (−1, x1). Pick an admissible V ∈ A (see
(4.8)), such that with U = −V ′′ + V∫

R
(W (U)− q|U ′|2 + |V ′′|2 + |V ′′′|2) dz ≤ m+

δ

ν
.

Consider a sequence εn → 0+. To construct a recovery sequence, we set for i = 1, . . . , ⌊ν
2 ⌋

vn(x) :=


V (x−x2i−1

εn
) if x ∈ I2i−1 := (x2i−1+x2i−2

2 , x2i+x2i−1

2 ),

V (−x−x2i

εn
) if x ∈ I2i := (x2i+x2i−1

2 , x2i+1+x2i

2 ),

u(x) otherwise.

Then vn → u in L1((−1, 1)), vn is constant in (−1, x1−1
2 ) and in (xν−1+1

2 , 1) and hence satisfies

Neumann boundary conditions. For n sufficiently large, we have vn ∈ W 3,2(−1, 1) and with un =
vn − ε2nv

′′
n, we have changing variables y := 1

εn
(x− x2i−1)∫

I2i−1

(
1

εn
W (un(x))− εnq(u

′
n(x))

2 + ε3n(v
′′
n(x))

2 + ε5n(v
′′′
n (x))2

)
dx

≤
∫
R

(
W (U(y))− q(U ′(y)2 + (V ′′(y))2 + (V ′′′(y))2

)
dy ≤ m+

δ

ν
,
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and similarly∫
I2i

(
1

εn
W (un(x))− εnq(u

′
n(x))

2 + ε3n(v
′′
n(x))

2 + ε5n(v
′′′
n (x))2

)
dx ≤ m+

δ

ν
.

Therefore, Fεn [vn] ≤ (ν − 1)m + δ, and since δ > 0 was arbitrary, this concludes the proof of the
limsup-inequality, see the discussion following Proposition 3.3.

5. Local approximation

We now turn to the local functional (1.2) and prove Theorem 1.5. Here we restrict ourselves to the case
q = 0 (see the discussion in the introduction). Thus, we consider the family of functionals introduced
in (1.9) with X = {u ∈ L2(Ω) : ∆u ∈ L2(Ω)}. The proof of the Γ-convergence results follows from
results in the literature, and therefore, we only sketch them here.

Proof. (of Theorem 1.5) (i) Let us first discuss the case d = 1. Note that by the Gagliardo-Nirenberg
inequality in bounded domains (see e.g. [39]) in the case of a one-dimensional domain we have X =
{u ∈ L2(I) : u′′ ∈ L2(I)} = W 2,2(I). Thus, the functionals F∗

ε,ap coincide with the functionals
considered in [24], where, under weaker growth conditions on W , Γ-convergence and compactness
is proven with respect to the strong L1-topology. By Lemma 2.1 and Vitali’s theorem, we deduce
Γ−convergence and compactness with respect to the strong L2−topology. Further, in [24], it is also
shown that m > 0 and

m = min

{∫ +∞

−∞
W (f(t)) + (f ′′(t))2dt : f ∈W 2,2

loc (R), lim
t→+∞

f(t) = 1, lim
t→−∞

f(t) = −1

}
.

Let us now discuss the case d > 1.

lim inf −inequality The liminf inequality follows very closely the lines of [31, 8] and we sketch it only

for completeness. Let εn → 0 and (un)n∈N ⊆ L1(Ω) with un → u in L2
loc(Ω). We will show in

part (ii) that lim infn→∞ F∗
εn,ap[un] = +∞ if u ̸∈ BV (Ω; {±1}), and hence, the liminf-inequality

follows. Therefore we may assume that u ∈ BV (Ω; {±1}), and

sup
n∈N

F∗
εn,ap[un] <∞.

We proceed by a blow-up argument, similarly as in Appendix A. For a Borel set A ⊆ Ω, we set

µεn(A) :=

∫
A

W (un)

εn
+ ε3|∆un|2 dx.

Then the sequence (µεn)n∈N is equibounded, and there exists a subsequence (not relabeled) and
a Radon measure µ such that such that

µεn
∗
⇀ µ. (5.1)

By the Radon-Nikodym theorem we have the decomposition

µ = µaLd + µJHd−1⌊Ju + µs

where Ju denotes the jumpset of the function u. Suppose we had the inequality

µJ(x0) ≥ m, for Hd−1-almost every x0 ∈ Ju. (5.2)



30 J. Ginster, G. Hayrapetyan, A. Pešić, B. Zwicknagl

Let (φk)k∈N ⊆ C∞
0 (Ω) be such that 0 ≤ φk ≤ 1 and φk(x) ↗ 1 on Ω. Then

lim inf
n→∞

F∗
εn,ap[un] ≥ lim inf

n→∞

∫
Ω

(
W (un)

εn
+ ε3n|∆un|2

)
φkdx

(5.1)
=

∫
Ω

φk dµ

≥
∫
Ju

µJφk dHd−1

(5.2)

≥ m

∫
Ju

φk dHd−1.

Taking the limit as k → ∞, by the monotone convergence theorem we obtain the assertion

lim inf
n→∞

F∗
εn,ap[un] ≥ mPerΩ({u = −1}).

In order to prove (5.2), let x0 ∈ Ju be a Lebesgue point for µ with respect to Hd−1⌊Ju, i.e.

µJ(x0) = lim
ρ→0

µ(Qν(x0, ρ))

Hd−1(Qν(x0, ρ) ∩ Ju)
= lim

ρ→0

µ(Qν(x0, ρ))

ρd−1
(5.3)

where ν := νu(x0) is the approximate normal and Qν(x0, ρ) is the d-dimensional cube centered
at x0 with diameter ρ and with one of the sides normal to ν. By Besicovitch’s differentiation
theorem, (5.3) holds for Hd−1-almost every point x0 ∈ Ju. Since x0 ∈ Ju, we can assume that

lim
ρ→0

1

ρd

∫
(Qν(x0,ρ))±

∣∣u(x)− u±(x0)
∣∣ dx = 0

where (Qν(x0, ρ))
± := {x ∈ Qν(x0, ρ) : ±⟨x− x0, ν⟩ > 0}. Therefore we have

µJ(x0) = lim
ρ→0

1

ρd−1

∫
Qν(x0,ρ)

dµ

(∗∗)
≥ lim

ρ→0
lim sup
n→∞

1

ρd−1
µεn(Qν(x0, ρ))

= lim
ρ→0

lim sup
n→∞

1

ρd−1

∫
Qν(x0,ρ)

(
W (un)

εn
+ ε3n(∆un)

2

)
dx

= lim
ρ→0

lim sup
n→∞

ρ

∫
Qν

(
W (un(x0 + ρy))

εn
+ ε3n(∆un(x0 + ρy))2dy

)
= lim

ρ→0
lim sup
n→∞

∫
Qν

(
ρ

εn
W (un,ρ(y)) +

ε3n
ρ3

(∆un,ρ(y))
2

)
dy

≥ lim
ρ→0

lim sup
n→∞

F∗
εn
ρ ,ap[un,ρ;Qν ],

where we denoted un,ρ(y) := un(x0 + ρy) and (∗∗) follows from [1, Proposition 1.62(a)]. Now
by a standard diagonalization argument we can extract monotonically decreasing subsequences
(εnh

)h∈N and (ρh)h∈N such that

σh :=
εnh

ρh
→ 0, uεnh

,ρh

L2(Qν)−→ u as h→ ∞, and µJ(x0) ≥ lim
h→∞

F∗
σh,ap

[unh,ρh
;Qν ].

By rotational symmetry, we may assume ν = en and set Q(δ) := (− 1
2 +δ,

1
2 −δ)d. Since µJ(x0) ≥

limh→∞ F∗
σh,ap

[unh
;Q(δ)] it suffices to show that limh→∞ F∗

σh,ap
[unh

;Q(δ)] ≥ m. For simplicity of

notation we for now drop the indices h and nh. By density, we may assume that unh
∈ C∞(Q(δ)).

∆xu = ∂zzu+∆yu
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with z ∈ (− 1
2 +δ,

1
2 −δ) and y ∈ Q

′
(δ) := (− 1

2 +δ,
1
2 −δ)d−1. Let η ∈ C∞

0 (Q(δ)) with ∥η∥L∞ = 1,
and note that

|∂zzu+∆yu|2η2 = (∂zzu)
2η2 + |∆yu|2η2 + 2(∂zzu)η

2∆yu. (5.4)

We consider the last term, which is the one that does not have a sign, and note that by integration
by parts (first in z and then in y) and Young’s inequality∫ 1

2−δ

− 1
2+δ

(∫
Q′ (δ)

(∂zzu)η
2∆yu dy

)
dz = −

∫ 1
2−δ

− 1
2+δ

∫
Q′ (δ)

(
(∂zu)η

2∆y(∂zu)− 2(∂zu)η(∂zη)∆yu
)
dydz

=

∫ 1
2−δ

− 1
2+δ

∫
Q′ (δ)

(
|∇y(∂zu)|2 η2 − 2(∂zu)η⟨∇y(∂zu),∇yη⟩Rd−1 − 2(∂zu)η(∂zη)∆yu

)
dydz

≥
∫ 1

2−δ

− 1
2+δ

∫
Q′ (δ)

(
|∇y(∂zu)|2 η2 −

(
|∇y(∂zu)|2η2 + (∂zu)

2|∇yη|2
)
−
(
1

2
|∆yu|2η2 + 2(∂zu)

2(∂zη)
2

))
dydz.

Therefore,∫ 1
2−δ

− 1
2+δ

∫
Q′ (δ)

|∂zzu+∆yu|2η2 dydz ≥
∫ 1

2−δ

− 1
2+δ

∫
Q′ (δ)

(
(∂zzu)

2η2 − 2(∂zu)
2|∇yη|2 − 4(∂zu)

2|∂zη|2
)
dydz

Hence, with c(η) := max
{
2|∇yη|2 + 4(∂zη)

2
}
, we have

F∗
σ,ap[u,Q(δ)] ≥

∫ 1
2−δ

− 1
2+δ

∫
Q′ (δ)

(
1

σ
W (u) + σ3

h(∂zzu)
2

)
η2 dydz −

∫
Q(δ)

c(η)σ3(∂zu)
2 dx. (5.5)

By interior elliptic regularity (see e.g. [21, Section 6.3.1, Theorem 1]), there is a constant CR > 0
depending only on δ such that for all h ∈ N

∥∇2unh
∥L2(Q(δ)) ≤ CR

(
∥unh

∥L2(Qν) + ∥∆unh
∥L2(Qν)

)
,

and hence the (rescaled) Gagliardo-Nirenberg interpolation inequality (see (2.3)) yields, using
the growth condition (H2) and the fact that F∗

σh,ap
[unh

, Qν ] ≤ C,

σ3
h∥∂zunh

∥2L2(Q(δ)) ≤ Cσ2
h

(
1

σh

∫
Q(δ)

u2nh
dx+ σ3

h∥∇2unh
∥2L2(Q(δ))

)

≤ C(δ)σ2
h

(∫
Q(δ)

W (unh
)

σh
dx+ σ3

h∥∆unh
∥2L2(Q(δ))

)
+ C(δ)σh. (5.6)

Inserting the estimate (5.6) into (5.5), we obtain that for all δ > 0 and all η ∈ C∞
0 (Q(δ)),

lim
h→+∞

F∗
σh,ap

[unh
, Q(δ)] ≥ lim inf

h→∞

∫ 1
2−δ

− 1
2+δ

∫
Q′ (δ)

(W (unh
)

σh
+ σ3

h(∂zzunh
)2
)
η2 dydz. (5.7)

Now choose δ̂ > δ and η ∈ C∞
0 (Q(δ)) such that η ≡ 1 on Q(δ̂) ⊂ Q(δ). Then, for such η we get

µJ(x0) ≥ lim
h→∞

F∗
σh,ap

[unh
, Q(δ)]

(5.7)

≥ lim inf
h→∞

∫ 1
2−δ

− 1
2+δ

∫
Q′ (δ)

(W (unh
)

σh
+ σ3

h(unh
)2
)
η2 dydz

≥ lim inf
h→∞

∫ 1
2−δ̂

− 1
2+δ̂

∫
Q′ (δ̂)

(W (unh
)

σh
+ σ3

h(∂zzunh
)2
)
dydz

Fatou
≥

∫
Q′ (δ̂)

lim inf
h→∞

∫ 1
2−δ̂

− 1
2+δ̂

(W (unh
)

σh
+ σ3

h(∂zzunh
)2
)
dzdy

≥ mHd−1(Q
′
(δ̂))
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where the last inequality follows from the one-dimensional case. Finally, by letting δ̂ → 0 we
obtain (5.2).

lim sup−inequality A recovery sequence is constructed exactly as in [24]. Note that strong convergence

in L2(Ω) of the constructed sequence follows by Vitali convergence theorem (in particular, L1

convergence implies convergence in measure and Lemma 2.1 yields uniform integrability).

(ii) Compactness: Consider {uε}ε ⊆ X such that lim infε→0 F∗
ε,ap[uε; Ω] < ∞. We use again that for

every v ∈ X and for every U ⊂⊂ Ω by [21, Section 6.3.1, Theorem 1] there holds

∥∇2v∥L2(U) ≤ c(Ω, U)
(
∥v∥L2(Ω) + ∥∆u∥L2(Ω)

)
. (5.8)

Thus we have for ε > 0 small enough, using the growth condition (H2),

F∗
ε,ap[un; Ω] =

∫
Ω

(
1

ε
W (uε) + ε3(∆uε)

2

)
dx

≥
∫
Ω

1

ε
W (uε)dx+ ε3C(Ω, U)

∫
U

|∇2uε|2dx− ε3
∫
Ω

u2ndx

= ε3C(Ω, U)

∫
U

|∇2uε|2dx+

∫
Ω

(
1

ε
W (uε)− ε3u2ε

)
dx

≥ ε3C(Ω, U)

∫
U

|∇2uε|2dx+

∫
Ω

(
1

ε
W (uε)− cε3

(
(W (uε) +R2

))
dx

= ε3C(Ω, U)

∫
U

|∇2uε|2dx+

∫
Ω

(
W (uε)

(
1

ε
− cε3

)
− cR2ε3

)
dx

≥
∫
U

1

2ε
W (uε) + C(Ω, U)ε3|∇2uε|2dx− cR2ε3ε|Ω|

≥ c̃

∫
U

(
1

ε
W (uε) + ε3|∇2uε|2

)
dx− cR2ε3|Ω|.

Now by [24, Proposition 3.1] there exists a subsequence (uεn)n∈N such that

uεn
L1(U)−→ u ∈ BV (U ; {±1}).

By a standard diagonal argument, we find a subsequence (not relabeled) such that uεn −→ u in
L1
loc(Ω). In particular, (uεn)n∈N converges in measure to u and is uniformly integrable (by Lemma

2.1). Thus Vitali’s convergence theorem implies

uεn
L2(Ω)−→ u ∈ BV (Ω; {±1}).

□

Appendix A

In this appendix, we briefly outline the blow-up argument to show that for a sequence {vn}n∈N with
bounded energy, we have

lim
n→∞

Fεn [vn; Ω] ≥
∫
∂∗E0

lim
k→∞

Fεk [wk;Qν(0, 1)] dHd−1,

where wk ∈W 2,2(Qν(0, 1)) satisfies

∥wk∥L2(Qν) ≤ ∥vnk
∥L2(Ω) and lim

k→∞
∥wk − u0∥2L2(Qν(0,1))

= 0

with

u0(x) :=

{
−1 if x · ν < 0,

1 if x · ν > 0.
(5.9)
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Let

Qν(x0, r0) := {x ∈ Rd : (x− x0)/r ∈ Qν} (5.10)

Given a Borel set A ⊂ Ω, let

µn(A) = Fεn [vn;A]. (5.11)

Then, there exists a signed Radon measure µ such that

µn
∗
⇀ µ. (5.12)

Consider the nonnegative measure

ξ(A) := Hd−1(A ∩ ∂∗E0) <∞, (5.13)

where A ⊂ Ω is a Borel set. Then, by Radon-Nykodym and Lebesgue Decomposition theorems (see
[23, (1.180)]),

µ = µac + µs, (5.14)

where µs ≥ 0 is a bounded Radon measure, µac << ξ and

lim
n→∞

Fεn [vn; Ω] ≥ µ(Ω) ≥
∫
Ω∩∂∗E0

dµac

dHd−1
(x)dHd−1. (5.15)

In addition, for x0 ∈ ∂∗E ∩ Ω,

dµac

dHd−1
(x0) = lim

r→0+

µ(Qν(x0, r))

Hd−1(Qν(x0, r) ∩ ∂∗E0)
= lim

r→0+

µ(Qν(x0, r))

rd−1
<∞, (5.16)

where ν is the outward unit normal to E0 at x0. Thus, choosing (rk)k∈N such that µ(∂Qv(x0, rk)) = 0,
yields for all x0 ∈ Ω ∩ ∂∗E0,

dµac

dHd−1
(x0) = lim

k→∞
1

rd−1
k

lim
n→∞

∫
Qν(x0,rk)

(
1

εn
W (un)− εnq|∇un|2 + ε3n(∆vn)

2 + ε5n|∇∆vn|2
)
dx

= lim
k→∞

lim
n→∞

∫
Qν(0,1)

(
rk
εn
W (un,k(x))−

εn
rk
q|∇un,k|2 +

ε3n
r3k

|∆vn,k|2 +
ε5n
r5k

|∇∆vn,k|2
)
dx

= lim
n→∞

∫
Qν(0,1)

(
1

εn
W (un,n(x))− qεn|∇un,n|2 + ε3n|∆vn,n|2 + ε5n|∇∆vn,n|2

)
dx,(5.17)

where we used change of variables un,k(x) := un

(
x−x0

rk

)
, vn,k(x) := vn

(
x−x0

rk

)
in the second line and a

diagonalization argument with εn = εn
rn

→ 0 in the third line. We remark that −ε2n∆vn,n+vn,n = un,n
still holds in Qν := Qν(0, 1). In addition, since vn → u in L2(Ω),

lim
n→∞

∥vn,n − u0∥2L2(Qν(0,1))
= 0, (5.18)

where

u0 :=

{
−1, if x · ν < 0,

1, if x · ν > 0,
(5.19)

since on the sets where u
(

x−x0

rk

)
and u0 differ,

lim
r→0

1

rd
Ld({x ∈ Qν(x0, r) \ E0 : x · ν < 0}) = 0, (5.20)

lim
r→0

1

rd
Ld({x ∈ Qν(x0, r) ∩ E0 : x · ν > 0}) = 0. (5.21)

In addition, we may assume Qν(x0, rn) ⊂ Ω and changing variables yields,

∥vn,n∥L2(Qν) ≤ ∥vn∥L2(Ω). (5.22)
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