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Abstract. The aim of this paper is the study, in the one-dimensional case, of the
relaxation of a quadratic functional admitting a very degenerate weight w, which may
not satisfy both the doubling condition and the classical Poincaré inequality. The main
result deals with the relaxation on the greatest ambient space L0(Ω) of measurable
functions endowed with the topology of convergence in measure w̃ dx. Here w̃ is an
auxiliary weight fitting the degenerations of the original weight w. Also the relaxation
w.r.t. the L2(Ω, w̃)-convergence is studied. The crucial tool of the proof is a Poincaré
type inequality, involving the weights w and w̃, on the greatest finiteness domain Dw

of the relaxed functionals.
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4.3. Poincaré-type inequalities 15
4.4. Convergence in measure 18
4.5. Relaxation results 20
5. Comparison between different Lebesgue weighted spaces 26
References 30

1. Introduction

This paper is devoted to the study in the one-dimensional framework of the integral
representation of a functional obtained by relaxation of a quadratic weighted functional
admitting a degenerate weight w. The main difficulty is that we do not require on w
any additional assumption, as the doubling or Muckenhoupt condition (see Definitions
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2.7 and 2.8 below). We recall that, as proven in [13], in one dimension, the measures
satisfying the doubling condition and the Poincaré inequality are precisely the Mucken-
houpt A2-weights. One of the main goals of the paper is to single out an appropriate
ambient topological space containing the widest expected finiteness domain Dw of the
relaxed functional (see (4)). Typically, this study has been carried out by prescribing a
priori the ambient space.

More precisely, let us consider

FX(u) =


∫
Ω
|∇u|2w dx if u ∈ C1(Ω)

+∞ if u ∈ X \ C1(Ω),

where Ω is an open bounded subset of Rn and X is an appropriate topological space
composed of measurable functions. Let F := sc−(X) − FX : X → [0,+∞] denote the
relaxed functional (or lower semicontinuous envelope) of F w.r.t. the topology of X.
Here w is a degenerate weight, i.e. we assume only that it is a nonnegative L1

loc function,

without any assumption on the function 1
w . It is well-known that, if w is a Muckenhoupt

weight in the A2 class (this implies that 1
w belongs to L1), then X = L2(Ω, w) and the

relaxed functional is finite in the Sobolev weighted space W 1,2(Ω, w) (for its definition
see section 2) and it admits the following form

FX(u) =


∫
Ω
|∇u|2w dx if u ∈ W 1,2(Ω, w)

+∞ if u ∈ L2(Ω, w) \W 1,2(Ω, w).

If w is degenerate, the study of this relaxation problem is very complicated since it is
unknown a priori what is the optimal natural ambient space where the finiteness domain

dom(FX) = {u ∈ X : FX(u) < +∞}

is contained. As well, a Meyers-Serrin type theorem needs in the weighted Sobolev
space W 1,2(Ω, w), that is, whether C1(Ω)∩W 1,2(Ω, w) is dense in W 1,2(Ω, w) (see [31]).
Otherwise a Lavrentiev phenomenon may occur. The first space X considered in lit-
erature was the space L2(Ω) (see [16, 23, 26, 27]). In particular a characterization of
the relaxed functional w.r.t. the L2(Ω) convergence is studied in [16]. Moreover, in
[1, 2, 14, 15] the variational convergence of functionals of this type is considered. See
also [11] (and the references therein) for the relation with the non occurrence of the
Lavrentiev phenomenon.

On the other hand, another natural ambient space is the space L2(Ω, w) firstly studied
in the framework of the theory of Dirichlet forms (see [28]).

Recently, the theory of Sobolev spaces in metric measure spaces, initially developed
in [17], has been extended to more general situations (see e.g. [3, 4, 5, 6, 7, 8, 9, 10, 25]
and the references therein).

In all these theories, crucial tools are the doubling condition and the Poincaré in-
equality. We observe that we will consider very degenerate weights w, which may not
satisfy these assumptions (see Remarks 4.12 and 5.2 below). Notice that our approach
is different from the previous ones where the ambient space X is a priori fixed. For a
comparison with these previous results see section 2.
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Our investigation is confined to the relaxation of degenerate quadratic functionals in
the simplest one-dimensional case, but with very general degenerations w. We are going
to show that the space L2(Ω) and L2(Ω, w) are not always the appropriate ambient
spaces for the relaxation of a quadratic functional with general degeneration w.

We consider a weight w : R → R satisfying

(1) w ≥ 0 a.e., w ∈ L1
loc(R) .

Let Ω = (a, b) be a bounded open interval. Let IΩ,w denote the set

IΩ,w :=
{
x ∈ Ω :∃ ϵ > 0 such that

1

w
∈ L1 ((x− ϵ, x+ ϵ))

}
.(2)

The set IΩ,w is the biggest open set in Ω such that 1
w is locally summable. Without

loss of generality we can assume that there exist two countable sets {ai}, {bi} such that
a ≤ ai < bi ≤ b, the intervals (ai, bi) are disjoint and

(3) IΩ,w =

Nw⋃
i=1

(ai, bi) ,

with Nw ∈ N ∪ {+∞}.

Definition 1.1. (i) If IΩ,w = ∅, we put Nw := 0.
(ii) If 1 ≤ Nw < ∞ we say that w is finitely degenerate in Ω.
(iii) If Nw = ∞ we say that w is not finitely degenerate in Ω.

Let

Dw :=
{
u : Ω → R : u (Lebesgue) measurable,

u ∈ W 1,1
loc (IΩ,w),

∫
IΩ,w

|u′|2w dx < +∞
}
.

(4)

The class Dw turns out to be the possible widest finiteness domain candidate for the
relaxed functional FX as soon as the convergence in X provides a mild pointwise con-
vergence in IΩ,w (see Lemma 4.5).

It is well-known (see Theorems 3.1 and 3.3 below) that when X = L2(Ω)

dom(FX) = Dw ∩ L2(Ω).

On the other hand, it is easy to see that, for suitable w

Dw ⊈ L2(Ω)

(see Remark 5.3 below). Meanwhile, the same argument can be applied to the space
L2(Ω, w). This amounts that both L2(Ω) and L2(Ω, w) are not the appropriate spaces
containing Dw.

The aim of our paper is to identify two ambient spaces which contain Dw and to
provide a representation of the relaxed functional FX in those spaces. The first ambient
space is the greatest one X = (L0(Ω), dm) or (L

0(Ω), dm̃), where

(5) L0(Ω) :=
{
u : Ω → R : u is (Lebesgue) measurable

}
,
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m and m̃ are the measures on Ω

(6) m = w dx and m̃ = w̃ dx ,

dm and dm̃ are the distances defined according to (38) with µ = m and µ = m̃, respectively,
which induce the convergence in measure (see (37) below). Here w̃ is an auxiliary new
weight, associated to w, which fits the degeneration of w (see (25) for its definition)
and it is is equal to 0 at the points where 1

w is not integrable. Then we deal with the

relaxation on the ambient spaces X = (L0(Ω), dm) and (L0(Ω), dm̃) and we study the
lower semicontinuous envelopes w.r.t. the convergences in measure m and m̃, that is

(7) F̂ j = sc−(dm)− F j
X , F̃ j = sc−(dm̃)− F j

X j = 1, 2, 3, 4 ,

where F j , j = 1, 2, 3, 4 are defined in (13)–(16), and their finiteness domains

D̂j := {u ∈ L0(Ω) : F̂ j(u) < +∞}, D̃j := {u ∈ L0(Ω) : F̃ j(u) < +∞} .

Our main result (see Theorem 4.18 (i)) states that

D̃2 = Dw

and the following representation holds

(8) F̃ 2(u) =


∫
IΩ,w

|u′|2w dx if u ∈ Dw

+∞ if u ∈ L0(Ω) \Dw.

In particular, in the case when w = 0 a.e. in Ω \ IΩ,w, we show that D̂2 = D̃2 = Dw

and F̂ 2 = F̃ 2 on L0(Ω) (see Theorem 4.18 (ii)). We also study the coincidence among

the relaxed functionals F̃ j if j = 1, 2, 3, 4 (see Corollary 4.20).
The second ambient space where we study the relaxation isX = L2(Ω, w̃), by considering
the relaxed functionals

F j := sc−(L2(Ω, w̃))− F j
X , j = 1, 2, 3, 4 ,

and their finiteness domains

Dj := {u ∈ L2(Ω, w̃) : F j(u) < +∞} .

We are able to show that D2 = Dw ∩ L2(Ω, w̃) and F 2 = F̃ 2 on L2(Ω, w̃) (see The-
orem 4.21). Note that, if the weight w is not finitely degenerate, it may happen that
Dw ⊈ L2(Ω, w̃) (see Remark 5.3). However, if w is finitely degenerate, the same rep-

resentation as in (8) holds for F 2, that is, D2 = Dw and F 2 = F̃ 2 on L2(Ω, w̃) (see

Corollary 4.22). We also study the coincidence among the relaxed functionals F j if
j = 1, 2, 3, 4 (see Corollary 4.23).
A crucial tool of the proofs either of Theorems 4.18 and 4.21 is a Poincaré type inequal-
ity involving the two weights w and w̃ (see Theorem 4.11). Recall that, as proven in
[29], an Hardy type inequality holds for the pair (w̃, w) in the Muckenhoupt class, but
unfortunately we need a Poincaré type inequality. The classical Poincaré inequality with
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the usual rescaling does not work (see Remark 4.12). Anyway a Poincaré type inequality
is true, but in a different form: for every u ∈ Dw

+∞∑
i=1

−
∫ bi

ai

∣∣∣∣u(η)− u

(
ai + bi

2

)∣∣∣∣2 w̃(η) dη ≤
∫ b

a
|u′(y)|2w(y) dy .

which does not seem to yield a Lipschitz approximation as in previous cases (see [21]
and [30]).

2. Some previous results

In this section we will recall some previous results, where the relaxation of degenerate
integral has been dealt with.

2.1. Weighted L2 and Sobolev spaces. In order to introduce some definitions, ac-
cording to the classical definitions of Sobolev spaces, let us fix a bounded open set
Ω ⊂ Rn with Lipschitz boundary and a function w : Rn → R satisfying

w ≥ 0 a.e. in Rn, w ∈ L1
loc(Rn) .

If m is a Radon measure on Rn, let us define

L2(Ω, m) := {u : Ω → R : u Borel measurable,

∫
Ω
u2 dm < +∞}

and

L2(Ω, w) := L2(Ω, m)

with m = wLn. If w = 0, then L2(Ω, w) = {0}, where we mean that for each function
u ∈ L2(Ω, w) we have u(x) = 0 for wLn a.e. x ∈ Ω.

If X = Lp(Ω) (1 ≤ p < ∞), or L2(Ω, w), we define the following type-Sobolev spaces:

(9) W 1(Ω, X,w) =
{
u ∈ W 1,1

loc (Ω) : (u,Du) ∈ X × (L2(Ω, w))n
}
,

equipped with the norm

∥u∥X,w,Ω :=
√
∥u∥2X + ∥Du∥2

L2(Ω,w)
;

H1(Ω, X,w) :=the closure of Lip(Ω) in W 1(Ω, X,w)

endowed with the norm ∥ · ∥X,w,Ω ,

H̃1(Ω, X,w) :=
{
u ∈ X : ∃(uh)h ⊂ Lip(Ω), v ∈ (L2(Ω))n,

uh → u in X,
√
wDuh → v in (L2(Ω))n

}
.

We observe that

H1(Ω, X,w) ⊆ H̃1(Ω, X,w).

Remark 2.1. Since Ω ⊂ Rn is a bounded open set with Lipschitz boundary, in the
definition of H̃1(Ω, X,w), we may assume that (uh)h ⊂ C1(Ω̄).
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An explicit characterization of H̃1(Ω, X,w) can be provided (see [16]).
Let

V ≡ V (Ω, X,w)

denote the closure in X × (L2(Ω))n of the linear subspace{
(u,

√
w∇u) : u ∈ Lip(Ω)

}
⊂ X × (L2(Ω))n ,

and let Π1 and Π2 denote, respectively, the projections from X × (L2(Ω))n into X and
(L2(Ω))n respectively. Then it is easy to see that

H̃1(Ω, X,w) = Π1(V (Ω, X,w)) .

For u ∈ Π1(V ) let Vu denote the space

Vu :=
{
v ∈ (L2(Ω))n : (u, v) ∈ V

}
.

Remark 2.2. Since Vu = Π2

(
({u} × (L2(Ω))n) ∩ V

)
and since Π2 is an isomorphism

from {u} × (L2(Ω))n into (L2(Ω))n, Vu is a closed affine subspace of (L2(Ω))n for each
u ∈ Π1(V ). In particular V0 is a closed subspace of (L2(Ω))n. For (u, v) ∈ V , we have
that Vu = v + V0.

If u ∈ W 1(Ω, X,w), we denote by Du the usual distributional gradient, that exists by
definition (9). If w satisfies the additional property

if (φh)h ⊂ Lip(Ω), ∥φh∥X → 0 and ∥∇φh − v∥L2(Ω,w) → 0(10)

then v = 0 a.e. in Ω ,

then, if u ∈ H̃1(Ω, X,w), Vu is a singleton and we are allowed to define the gradient
∇X,wu in the following way: if (φh)h ⊂ Lip(Ω) satisfies

∥φh − u∥X → 0 and ∥∇φh − v∥L2(Ω,w) → 0

then we set ∇X,wu := v.

Remark 2.3. In general the gradient of a function u ∈ H̃1(Ω, X,w) does not need to
be uniquely defined, that is the space Vu need not be a singleton. An example of this
situation is given, for instance, in [20, Section 2.1].

Remark 2.4. An interesting case in which condition (10) occurs is when there exist a
finite number of points x1, . . . , xk in Ω such that 1

w ∈ L1
loc(Ω \ {x1, . . . , xk}) (see [20,

Section 2.1]). In this case it is easy to see that H̃1(Ω, X,w) ⊂ W 1,1
loc (Ω \ {x1, . . . , xk})

and ∇X,wu = Du a.e. in Ω for each u ∈ H̃1(Ω, X,w). It is also interesting to observe

that, even if u ∈ H̃1(Ω, X,w) and it admits a distributional gradient, it may occur
that ∇X,wu ̸= Du (see, for instance, [18, Example 2.1]). This means that, in general,

H̃1(Ω, X,w) ̸= H1(Ω, X,w) and that
(
W 1(Ω, X,w), ∥ · ∥X,w,Ω

)
need not be complete.

If w satisfies the stronger assumption 1
w ∈ L1(Ω), it is well-known that(

W 1(Ω, X,w), ∥ · ∥X,w,Ω

)
is a Banach space and H̃1(Ω, X,w) = H1(Ω, X,w) ⊆ W 1(Ω, X,w). Moreover it is easy
to see that

W 1(Ω, L2(Ω, w), w) ⊂ W 1(Ω, L1(Ω), w) ⊂ W 1,1(Ω) .
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In this case the agreement H1(Ω, X,w) = W 1(Ω, X,w) turns be out an important issue,
which need not be true (see [18] and [10]).

Another characterization of H̃1(Ω, X,w) by relaxation was provided in [16] in the case
X = Lp(Ω).

Let F : X → [0,+∞] denote the functional defined by

F (u) :=


∫
Ω
|∇u|2w dx if u ∈ Lip(Ω)

+∞ otherwise

and let F : X → [0,+∞] denote the relaxed functional (or lower semicontinuous enve-
lope) of F w.r.t. the topology of X.

Theorem 2.5. ([16, Theorem 1.1]) Let 1 ≤ p < ∞.

(i) H̃1(Ω, Lp(Ω), w) = {u ∈ Lp(Ω) : F (u) < +∞}.
(ii) For u ∈ H̃1(Ω, Lp(Ω), w) and v ∈ Vu, we have

F (u) = min

{∫
Ω
|v|2 dx : v ∈ Vu

}
= min

{∫
Ω
|v + v|2 dx : v ∈ V0

}
.

Corollary 2.6. We consider the case X = Lp(Ω). Assume that 1
w ∈ L1

loc(Ω\{x1, . . . , xk}).
Then

(i) H̃1(Ω, X,w) ⊂ W 1,1
loc (Ω \ {x1, . . . , xk}) and ∇X,wu = Du a.e. in Ω;

(ii)

F (u) =

∫
Ω
|∇X,wu|2w dx ∀u ∈ H̃1(Ω, X,w).

Proof. This follows from Theorem 2.5 and previous arguments. □

When X = L2(Ω, w), the space H̃1(Ω, X,w) can be also characterized in the setting
of metric measure Sobolev spaces (see, for instance, [4, 5, 17, 25]).

2.2. Dirichlet forms approach. In the setting of Dirichlet forms, property (10) can
be understood saying that the form a defined by

D(a) := W 1(Ω, L2(Ω, w), w) ⊂ H := L2(Ω, w)

(11) a(u, v) :=

∫
Ω
DuDv w dx u, v ∈ D(a) ,

is closable (see [28, pg. 373], [2, 14, 15]). We recall some notions on the Dirichlet
forms (for the general theory we refer to [22]). We fix a positive Radon measure µ
on Ω, with suppµ = Ω, which is called the “volume” measure on X. A form a in H
is a non-negative definite symmetric bilinear form a(u, v) defined on a linear subspace
D[a], called the domain of a, of the Hilbert space H = L2(X,µ), equipped by the scalar
product (u, v). It is possible to associate with a[u, v] a quadratic functional

F (u) = a(u, u)

for every u ∈ D[a]. A form a is closed in H = L2(X,µ) if its domain D[a] is complete
under the intrinsic inner product a(u, v)+(u, v). The following characterization holds: a
form a is closed in H if and only if the quadratic functional F (u) is lower semicontinuous
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on H. Moreover a form a is closable in H = L2(X,µ) if (un) ⊂ D[a], a(un − um, un −
um) → 0, (un, un) → 0, as n,m → +∞, imply a(un, un) → 0, as n → +∞. We have
that a form a is closable in H = L2(X,µ) if and only if the completion of D[a] under
the intrinsic inner product a(u, v) + (u, v) is injected in the space H = L2(X,µ). The
closure a(u, v) of a closable form a is a closed form and it coincides with the relaxed form
defined by the relaxed functional F (u), by using the polarization identity

a(u, v) =
1

2
{a(u+ v, u+ v)− a(u, u)− a(v, v)} =

1

2
{F (u+ v)− F (u)− F (v)}.

Its domain is D[a] = {u ∈ H : F (u) < +∞}. A form a in H is Markovian if for every u ∈
D[a] the truncated function v = inf{sup{u, 0}, 1} belongs to D[a] and a(v, v) ≤ a(u, u).
A Dirichlet form in H is a closed Markovian form in H. In [12] some suitable doubling
condition and Poincaré inequality are considered. In this framework, a very particular
case is a weighted Dirichlet form

aw(u, v) =

∫
Ω
DuDv wdx

associated to the integral functional

F (u) =

∫
Ω
|Du|2wdx.

It satisfies all the previous assumptions if the µ = wLn and w is a Muckenhoupt weight
A2 or a weight w(x) = | detF ′|1−2/n associated with a quasi-conformal transformation
F in Rn. Let us recall that, in the one-dimensional case, the following simple closability
criterion was proved by Hamza (see [22, Th. 3.1.6] and [24]): the weighted form (11) is
closable in L2(Ω, w) if and only if the weight w satisfies the following so-called Hamza’s
condition, i.e.

for a.e. x ∈ Ω = (a, b), w(x) > 0 implies that

∃ ϵ > 0 such that

∫ x+ϵ

x−ϵ

1

w(y)
dy < +∞ .

(12)

Eventually, for the reader’s convenience, we recall the following definitions of doubling
and A2-weight.

Definition 2.7. We say that a weight w ∈ L1
loc(Ω) is doubling on Ω if the measure

m := w dx is doubling, that is, there exists a constant C > 0 such that

m(B(x, 2r)) ≤ Cm(B(x, r))

for all x ∈ Ω and r > 0 such that B(x, 2r) ⊆ Ω.

Definition 2.8. We say that a weight w : Rn → [0,+∞[ is in the Muckenhoupt class
A2 if w, 1

w ∈ L1
loc(Rn) and there exists a constant C > 0 such that, for all balls B in Rn,

we have (
1

|B|

∫
B
w(x) dx

)(
1

|B|

∫
B

1

w(x)
dx

)
≤ C,

where |B| denotes the Lebesgue measure of B.
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3. The one-dimensional case: previous results

Let w is a weight satisfying (1). Let Ω = (a, b) be a bounded open interval. We
consider the following functionals defined on a topological space (X, τ), where X will be
a suitable space of functions endowed with a topology τ .

(13) F 1(u) ≡ F 1
X(u) :=


∫ b

a
|u′|2w dx if u ∈ C1([a, b])

+∞ if u ∈ X \ C1([a, b])

(14) F 2(u) ≡ F 2
X(u) :=


∫ b

a
|u′|2w dx if u ∈ Lip([a, b])

+∞ if u ∈ X \ Lip([a, b])

(15) F 3(u) ≡ F 3
X(u) :=


∫ b

a
|u′|2w dx if u ∈ H1((a, b))

+∞ if u ∈ X \H1((a, b))

(16) F 4(u) ≡ F 4
X(u) :=


∫ b

a
|u′|2w dx if u ∈ AC([a, b]) = W 1,1((a, b))

+∞ if u ∈ X \AC([a, b])

and the corresponding lower semicontinuous envelopes w.r.t. the τ -convergence

F j(u) = sc−(τ)− Fj(u) j = 1, 2, 3, 4 .

To our knowledge, in the one-dimensional case, integral representations for relaxed
functionals was already provided in [26] and then in [16].

Theorem 3.1. ([26, Theorem 5)]) Let X = H1((a, b)) endowed with the Lp topology
with 1 ≤ p ≤ ∞ and assume also that 0 ≤ w(x) ≤ c for a.e. x ∈ (a, b) and for a
suitable constant c > 0. Then

F 3(u) =

∫ b

a
|u′|2w dx ∀u ∈ H1((a, b)) ,

where

w(x) = lim
ϵ→0

2ϵ
[ ∫ x+ϵ

x−ϵ

1

w(y)
dy
]−1

.

Let I ≡ IΩ,w denote the set in (2).

Remark 3.2. We point out the following two particular cases:
(i) If I = ∅, then 1

w /∈ L1((x − ϵ, x + ϵ)) for every x ∈ Ω and for every ϵ > 0 . In this

case w ≡ 0 and F 3(u) = 0 for every u ∈ H1(Ω) and, by (57), even F 4(u) = 0 for every
u ∈ H1([a, b]).
(ii) If I = (a, b), then 1

w ∈ L1
loc((a, b)); assume also that w satisfies the assumption of

Theorem 3.1. We obtain that w = w a.e. and F 3(u) = F 3(u) for every u ∈ H1([a, b]).
Then, since H1([a, b]) ⊂ AC([a, b]), as a consequence of Theorem 3.1,

(17) F 4(u) = F 4(u) for every u ∈ H1([a, b]) .
9



We will prove (see Corollary 4.23) that (17) holds for each u ∈ AC([a, b]). In this case,
we get the coincidence w = w∗ = w̃.

In the one-dimensional case, the following improvement of Theorems 2.5 and 3.1 holds.

Theorem 3.3. ([16, Theorem 3.1]) Let X = Lp(Ω) with 1 ≤ p < ∞, endowed with the
Lp- topology.

(i) I is the biggest open set in Ω such that 1
w is locally sommable;

(ii)

H̃1(Ω, Lp(Ω), w) := {u ∈ Lp(Ω) : F
2
(u) < +∞}

=

{
u ∈ Lp(Ω) ∩W 1,1

loc (I) :

∫
I
|u′|2w dx < +∞

}
= Lp(Ω) ∩Dw ;

(iii)

F 2(u) =

∫
I
|u′|2w dx ∀u ∈ H̃1(Ω, Lp(Ω), w) .

Remark 3.4. Theorem 3.3 does not hold in higher dimensions, even though 1
w ∈ L1(Ω).

Indeed in [18] it is has been showed that, if n ≥ 2, there exists a weight w for which
1
w ∈ L1(Ω) and H̃1(Ω, X,w) = H1(Ω, X,w) ⊊ W 1(Ω, X,w) ⊂ W 1,1(Ω).

4. New result in the one-dimensional case

4.1. Structure of the weight and optimal finiteness domain. The set IΩ,w defined

in (2) is the biggest open set in (a, b) such that 1
w is locally sommable. Then it is well-

known, being IΩ,w an open set of the real line, IΩ,w can be decomposed in the union
of its open connected components, that is there exist a family of disjoint bounded open
intervals (ai, bi) i = 1, . . . , Nw, with Nw finite, i.e. Nw ∈ N, or Nw = ∞, such that

(18) IΩ,w =

Nw⋃
i=1

(ai, bi) .

Notice also that the decomposition in (18) is unique and Nw is also uniquely defined.
Moreover

1

w
∈ L1

loc(IΩ,w) .

Let us stress the following simple characterization of weights satisfying Hamza’s condi-
tion (12).

Proposition 4.1. Let w be a weight on Ω. Then the following are equivalent:

(i) w satisfies Hamza’s condition (12);
(ii) w = 0 a.e. in Ω \ IΩ,w.

Moreover, if w is lower semicontinuous a.e. in Ω\IΩ,w or Riemann integrable in Ω, then
(ii) is satisfied.
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Proof. The implication (i) (⇒) (ii) is immediate. Let us show the opposite implication.
It is sufficient to show that

(19) w(x) > 0 for a.e. x ∈ IΩ,w .

By contradiction, assume there is a set E ⊂ IΩ,w with |E| > 0 and w(x) = 0 for each
x ∈ E. Then, there exists a point x0 ∈ E of density 1, that is

(20) lim
r→0

|E ∩ (x0 − r, x0 + r)|
2r

= 1 .

By (20), it follows that, there exists a small r0 > 0, such that for each r ∈ (0, r0),

∞ =

∫
E∩(x0−r,x0+r)

dx

w
≤
∫
(x0−r,x0+r)

dx

w
.

Thus a contradiction, since x0 ∈ IΩ,w and (19) follows. Assume now w is lower semi-
continuous at x ∈ Ω \ IΩ,w, and let prove that w(x) = 0. Indeed, by contradiction, if we
assume that w(x) > 0, since

lim inf
y→x

w(y) ≥ w(x),

then there exists ϵ > 0 such that for every y ∈]x− ϵ, x+ ϵ[

w(y) >
w(x)

2
=: m.

This implies that ∫ x+ϵ

x−ϵ

1

w(y)
dy <

2ϵ

m
< ∞

and this is a contradiction. Moreover, if w is Riemann integrabile in Ω = (a, b), it is
well-known that is continuous a.e. in x ∈ (a, b), then w(x) = 0 a.e. in Ω \ IΩ,w. □

Remark 4.2. Note that a weight w in Ω may not satisfy the condition (ii) of Proposition
4.1, even though it is finitely degenerate. Indeed, there exist weights w in (0, 1) with
IΩ,w = ∅ and w(x) > 0 a.e. in (0, 1) (see, for instance, [26, p. 212] or [20, p. 92]). Note
that, if we extend such a weight as 1 in (−1, 0], we obtain a finitely degenerate weight
in (−1, 1) which do not satisfy the condition (ii) of Proposition 4.1.

Remark 4.3. For each finite measure µ in Ω, if Nw = ∞, then limi→+∞ µ((ai, bi)) = 0.
Indeed, in this case,

∑+∞
i=1 µ((ai, bi)) ≤ µ((a, b)) < +∞.

If IΩ,w ̸= ∅ , let Dw denote the class defined in (4).
If IΩ,w = ∅ let us define Dw := {0}.

Remark 4.4. We note that, if 1
w ∈ L1(Ω), then, obviously, w is finitely degenerate in Ω

with Nw = 1. In this case

Dw = {u ∈ AC([a, b]) :

∫ b

a
|u′|2w dx < +∞}

(since IΩ,w = Ω = (a, b) and AC([a, b]) = W 1,1((a, b))).

Theorems 3.1 and 3.3 (see also Remark 3.2) suggest that Dw contains the finiteness
domain of a relaxed functional, when X = L2(Ω, µ) and µ is a finite Borel measure on
Ω with its support sptµ containing IΩ,w. The lemma below confirms this suggestion.
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Lemma 4.5 (Optimal finiteness domain). Let (uh)h ⊂ AC([a, b]) such that

(a) sup
h∈N

∫
IΩ,w

|u′h|2w dx < +∞ ,

(b) for every i = 1, . . . , Nw there exists ci such that ai < ci < bi and there exist
finite the following limits

lim
h→+∞

uh(ci) = di ∈ R .

Then there exists a subsequence (uhk
) and a function u : IΩ,w → R such that

(i) lim
k→+∞

uhk
(x) = u(x) for every x ∈ IΩ,w ,

(ii) u ∈ Dw,

(iii)

∫
IΩ,w

|u′|2w dx ≤ lim inf
k→+∞

∫
IΩ,w

|u′hk
|2w dx .

Proof. Let us note that, by assumption (b), IΩ,w ̸= ∅. By (a), there exist a subsequence
(uhk

)k of (uh)h, and a function v ∈ L2(IΩ,w, w) such that

(21) u′hk
→ v weakly in L2(IΩ,w, w) as k → ∞ .

Moreover, since 1
w ∈ L1

loc(IΩ,w) we have that

(22) L2
loc(IΩ,w, w) ⊂ L1

loc(IΩ,w) .

In particular, from (21) and (22), we get that v ∈ L1
loc(IΩ,w) and

(23)

∫ β

α
u′hk

dx →
∫ β

α
v dx as k → ∞ ,

for each [α, β] ⊂ IΩ,w. Let us consider u : Ω → R defined in the following way: firstly
for every i = 1, . . . , Nw

ui(x) :=

 0 if x ∈ Ω \ (ai, bi)

di +

∫ x

ci

v(y)dy if ai < x < bi.

Then we define

u(x) =

Nw∑
i=1

ui(x)χ(ai,bi)(x).

By definition,

u ∈ W 1,1
loc (IΩ,w) and u′ = v a.e. in IΩ,w .

For every i = 1, . . . , Nw,

uhk
(x) = uhk

(ci) +

∫ x

ci

u′hk
(y)dy if ai < x < bi .

By (b) and (23), taking the limit as k → ∞ in the previous equality, condition (i) follows.
Condition (ii) is immediate by the definition of u. Eventually, by (21) and the lower
semicontinuity of the norm w.r.t. the weak convergence, (iii) is achieved. □
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4.2. Auxiliary weights. Let w : Ω = (a, b) → [0,∞) be a weight, that is a function
satisfying (1) and (18). Let w̃, w∗ : Ω → [0,+∞[ be defined as

(24) w∗(x) :=



lim
x→a+i

(∫ ai+bi
2

x

1

w(y)
dy

)−1

if x = ai(∫ ai+bi
2

x
1

w(y) dy

)−1

if ai < x ≤ 3ai+bi
4(∫ ai+3bi

4
3ai+bi

4

1
w(y) dy

)−1

if 3ai+bi
4 ≤ x ≤ ai+3bi

4(∫ x
ai+bi

2

1
w(y) dy

)−1
if ai+3bi

4 ≤ x < bi

lim
x→b−i

(∫ x

ai+bi
2

1

w(y)
dy

)−1

if x = bi

0 if x ∈ Ω \ IΩ,w ,

and

(25) w̃(x) := min{w(x), w∗(x), 1}
if x ∈ (a, b) is a Lebesgue’s point of w at x and 0 otherwise. Let us collect some properties
of functions w∗ and w̃ in the following proposition, whose proof is elementary taking the
definitions into account.

Proposition 4.6 (Properties of w∗ and w̃).
(i) If 1

w is not locally summable in Ω, i.e. IΩ,w = ∅, then w∗ = w̃ ≡ 0.
(ii) w̃ ∈ L∞(Ω) and

(26) L2(Ω, w∗) ∪ L2(Ω, w) ∪ L2(Ω) ⊂ L2(Ω, w̃) .

Moreover the inclusion of each space L2(Ω, µ) (µ = w∗ dx,w dx, dx) in L2(Ω, w̃)
is continuous. In particular, the measure m̃ = w̃ dx is finite in Ω.

(iii) For each i = 1, . . . , Nw, w
∗ is constant in [3ai+bi

4 , ai+3bi
4 ], increasing in [ai,

3ai+bi
4 ],

decreasing in [ai+3bi
4 , bi] and absolutely continuous in each interval. In particu-

lar, it holds that

0 < w∗(x) ≤ sup
y∈(ai,bi)

w∗(y) < ∞ ∀x ∈ (ai, bi) ,

inf
x∈[α,β]

w∗(x) > 0 for each x ∈ [α, β], ai < α < β < bi,

and w∗(ai) = 0 (respectively w∗(bi) = 0) if and only if 1
w /∈ L1(ai,

ai+bi
2 ) (re-

spectively 1
w /∈ L1(ai+bi

2 , bi)). Moreover

(w∗)′ =
(w∗)2

w
a.e. in

(
ai,

3ai + bi
4

)
∪
(
ai + 3bi

4
, bi

)
.

(iv) If 1
w ∈ L1(Ω), then there exists a constant c > 0 such that

0 <
1

c
≤ w∗(x) ≤ c a.e. x ∈ Ω .
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(v) If w is finitely degenerate in Ω, i.e. (18) holds with 1 ≤ Nw < ∞, then there
exists a constant c > 0 such that

0 ≤ w∗(x) ≤ c a.e. x ∈ Ω .

In particular, the measure m∗ := w∗dx is finite in Ω.
(vi) If w is not finitely degenerate in Ω, i.e. (18) holds with Nw = ∞, then w∗ ∈

L∞
loc(IΩ,w). In particular, the measure m∗ = w∗dx is σ-finite in Ω.

Example 4.7. If w is not finitely degenerate in Ω, then it can occur that w∗ /∈ L1(Ω)
as we will show later. On the contrary, w̃ ∈ L∞(Ω) and the associated space L2(Ω, w̃)
contains the main spaces of regular functions we will deal with, as AC, Lip, H1 and C1.
Notice also that w̃ turns out to be a weight according to (1). Let us consider the following
example. Let (ai, bi), i : 1, . . . ,∞, be a sequence of disjoint open intervals in (0, 1) and
(mi)i be a sequence of positive real numbers to be fixed later. Let w : (0, 1) → [0,∞[
defined as follows

w(x) :=


mi(x− ai)

α if ai ≤ x ≤ ai+bi
2

mi(bi − x)α if ai+bi
2 ≤ x ≤ bi

0 outside,

where α > 0, α ̸= 1. It is immediate to see that w is not finitely degenerate if α > 1, i.e.
Nw = ∞, and IΩ,w = ∪+∞

i=1 (ai, bi). Let us fix ai ≤ x ≤ 3ai+bi
4 , then, by definition of w∗

we have

w∗(x) =
(α− 1)mi(x− ai)

α−1

1−
(2(x−ai)

bi−ai

)α−1
.

Now, since

0 ≤ 2(x− ai)

bi − ai
≤ 1

2
,

then

(α− 1)mi(x− ai)
α−1 ≤ w∗(x) ≤ (α− 1)mi(x− ai)

α−1

1−
(
1
2

)α−1 ,

that is

w∗(x)=̃mi(x− ai)
α−1, ai ≤ x ≤ 3ai + bi

4
.

It is easy to see that ∫ 3ai+bi
4

ai

w∗(x) dx=̃mi(bi − ai)
α

then, if we choose the sequence mi such that
+∞∑
i=1

mi(bi − ai)
α = +∞,

we can conclude that w∗ /∈ L1(Ω).

Remark 4.8. We note that w∗ is Lipschitz continuous in interval [c, d] ⊂ (ai,
3ai+bi

4 )
where it is nondecreasing and for every x ∈ [c, d]

|(w∗)′| ≤ (w∗(d))2

w(c)
.
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The same condition holds for every [c, d] ⊂ (ai+3bi
4 , bi) where w is nonincreasing.

4.3. Poincaré-type inequalities. Firstly, we prove some preliminary lemmas.

Proposition 4.9. We fix u ∈ Dw and i = 1, . . . , Nw. For every η, x such that ai < η ≤
x ≤ ai+bi

2 we have:

(27) |u(x)− u(η)|
√

w∗(η) ≤
(∫ x

η
|u′(y)|2w(y) dy

) 1
2

;

(28) |u(η)|2w∗(η) ≤ 2|u(x)|2w∗(η) + 2

∫ x

ai

|u′(y)|2w(y) dy .

For every η, x such that ai+bi
2 ≤ x ≤ η < bi we have:

(29) |u(x)− u(η)|
√
w∗(η) ≤

(∫ η

x
|u′(y)|2w(y) dy

) 1
2

;

(30) |u(η)|2w∗(η) ≤ 2|u(x)|2w∗(η) + 2

∫ bi

x
|u′(y)|2w(y) dy .

Proof. Since u ∈ ACloc(ai, bi), for every x ∈]ai, ai+bi
2 ] such that ai < η ≤ x ≤ ai+bi

2 we
have

|u(x)− u(η)| =
∣∣∣∣∫ x

η
u′(y) dy

∣∣∣∣ ≤ (∫ x

η
|u′(y)|2w(y) dy

) 1
2
(∫ x

η

1

w
(y) dy

) 1
2

≤
(∫ x

η
|u′(y)|2w(y) dy

) 1
2

(∫ ai+bi
2

η

1

w
(y) dy

) 1
2

.

(31)

Observe now that, if ai < η ≤ min{3ai+bi
4 , x}, then (27) follows by (31) and the definition

of w∗; if 3ai+bi
4 ≤ η ≤ x ≤ ai+bi

2 , since(∫ ai+bi
2

η

1

w
(y) dy

) 1
2

≤ 1√
w∗(η)

,

(27) still follows by (31) and the definition of w∗. Then, since

|u(η)|2 ≤ 2|u(x)|2 + 2|u(η)− u(x)|2 ,
by (27), (28) follows. Similarly, (29) and (30) can be obtained. □

By Proposition 4.9, we can study the behaviour of functions in Dw near the end points
ai, bi, i = 1, . . . , Nw.

Corollary 4.10. Let u ∈ Dw and fix i = 1, . . . , Nw.

(i) |u(η)|2w∗(η) ≤ 2

∣∣∣∣u(ai + bi
2

)∣∣∣∣2 w∗(bi) + 2

∫ bi

ai

|u′(y)|2w(y) dy , for each η ∈

(ai, bi). In particular u ∈ L2((ai, bi), w
∗) and in the finitely degenerate case

u ∈ L2(Ω, w∗).
15



(ii) If

∫ ai+bi
2

ai

1

w
dx = +∞ (respectively if

∫ bi

ai+bi
2

1

w
dx = +∞) there exists lim

x→a+i

u2w∗ =

0 (respectively lim
x→b−i

u2w∗ = 0) .

(iii) If

∫ ai+bi
2

ai

1

w
dx < ∞ (respectively if

∫ bi

ai+bi
2

1

w
dx < ∞), then

u ∈ AC
([

ai,
ai + bi

2

])
(respectively u ∈ AC

([ai + bi
2

, bi
])

.

Proof. (i) From (28) and (30) with x = ai+bi
2 , we get that desired inequality.

(ii) Let ai < η ≤ x ≤ ai+bi
2 . By the hypothesis

∫ ai+bi
2

ai

1

w
dx = +∞ and by definition

of w∗, we have limη→a+i
w∗(η) = 0. For fixed x ∈ (ai,

ai+bi
2 ) by (28) we have the following

inequality

lim sup
η→a+i

|u(η)|2w∗(η) ≤ 2

∫ x

ai

|u′(y)|2w dy.

Taking the lim as x → a+i in the previous inequality, we get that

lim
η→a+i

|u(η)|2w∗(η) = 0 .

Respectively, if we assume

∫ bi

ai+bi
2

1

w
dx = +∞, we have

lim
η→b−i

|u(η)|2w∗(η) = 0 .

(iii) Since u ∈ AC([ai + δ, ai+bi
2 ]), for each δ > 0, in order to prove u ∈ AC

([
ai,

ai+bi
2

])
it is sufficient to prove that there exists the following limit

(32) lim
η→a+i

u(η) ∈ R.

Observe now that

(33) u′ ∈ L1

(
ai,

ai + bi
2

)
,

since

u′ = u′
√
w

1√
w

and u′
√
w, 1√

w
∈ L2(ai,

ai+bi
2 ).

Now, by the fundamental theorem of Calculus for every η ∈ (ai,
ai+bi

2 ]

(34) u(η) = u
(ai + bi

2

)
−
∫ ai+bi

2

η
u′(x)dx.

Thus, by (33) and (34), (32) follows. The other case is analogous. □
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Theorem 4.11 (Poincaré type inequality on Dw). The following Poincaré type inequal-
ity holds: for every u ∈ Dw

+∞∑
i=1

−
∫ bi

ai

∣∣∣∣u(η)− u

(
ai + bi

2

)∣∣∣∣2 w̃(η) dη ≤
+∞∑
i=1

−
∫ bi

ai

∣∣∣∣u(η)− u

(
ai + bi

2

)∣∣∣∣2w∗(η) dη

≤
∫
IΩ,w

|u′(y)|2w(y) dy .
(35)

Proof. The first inequality

+∞∑
i=1

−
∫ bi

ai

∣∣∣∣u(η)− u

(
ai + bi

2

)∣∣∣∣2 w̃(η) dη ≤
+∞∑
i=1

−
∫ bi

ai

∣∣∣∣u(η)− u

(
ai + bi

2

)∣∣∣∣2w∗(η) dη

immediately follows since w̃ ≤ w∗ on Ω. Let us show the second inequality. In (27) we

take x = ai+bi
2 , then∣∣∣∣u(η)− u

(
ai + bi

2

)∣∣∣∣2w∗(η) ≤
∫ ai+bi

2

ai

|u′(y)|2w(y) dy.

By integrating w.r.t. to η we obtain∫ ai+bi
2

ai

∣∣∣∣u(η)− u

(
ai + bi

2

)∣∣∣∣2w∗(η) dη ≤ bi − ai
2

∫ ai+bi
2

ai

|u′(y)|2w(y) dy.

Similarly we have∫ bi

ai+bi
2

∣∣∣∣u(η)− u

(
ai + bi

2

)∣∣∣∣2w∗(η) dη ≤ bi − ai
2

∫ bi

ai+bi
2

|u′(y)|2w(y) dy.

Therefore ∫ bi

ai

∣∣∣∣u(η)− u

(
ai + bi

2

)∣∣∣∣2w∗(η) dη ≤ (bi − ai)

∫ bi

ai

|u′(y)|2w(y) dy.

Hence

−
∫ bi

ai

∣∣∣∣u(η)− u

(
ai + bi

2

)∣∣∣∣2w∗(η) dη ≤
∫ bi

ai

|u′(y)|2w(y) dy.

The conclusion follows since u ∈ Dw and so

+∞∑
i=1

∫ bi

ai

|u′(y)|2w(y) dy ≤
∫
IΩ,w

|u′(y)|2w(y) dy < +∞.

□

Remark 4.12. Notice that, if w(x) = |x|, Ω = (−1, 1), then the doubling property holds
for the measure m = w dx, but the Poincaré inequality does hold. Indeed there is an
interesting characterization in [13] which provides that the Poincaré inequality holds if
and only if w belongs to the Muckenhoupt class A2, and it is well known that w is not
in A2.
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4.4. Convergence in measure. We will consider two types of ambient spaces for the
relaxation: the space L0(Ω) endowed with the topology induced from the convergence
in measure and the space L2(Ω, w̃).

Note that the measure m and m̃ in (6) are always finite on Ω , while m∗ is finite if w is
a finitely degenerate and σ-finite in the general case (see Proposition 4.6). We are going
to study the absolute continuity relationships bewteen m and m̃. It is easy to see that, in
the general case m may not be absolutely continuous w.r.t. m̃, even though w is finitely
degenerate (see Remark 4.2) . However if w satisfies Hamza’s condition (12), then m is
absolutely continuous w.r.t. m̃. The reverse relationship always turns out to be true.

Theorem 4.13. (i) m̃≪ m in Ω;
(ii) if w = 0 a.e. in Ω \ IΩ,w, then m≪ m̃ in Ω.

Proof. (i) It is immediate since, by definition of w̃ (see (25)), m̃ ≤ m on the class of
measurable sets in Ω.
(ii) Let us show that m ≪ m̃ in Ω. Let E ⊂ Ω be mesaurable such m̃(E) = 0. Then we
can decompose E as

E = (E ∩ (Ω \ IΩ,w)) ∪ (E ∩ IΩ,w) = E1 ∪ E2 .

In particular, it follows that

(36) m̃(E2) :=

∫
E2

w̃ dx = 0 .

From (19) and Proposition 4.6 (iii), it follows that w(x) > 0 and w∗(x) > 0, for a.e.
x ∈ IΩ,w, respectively. Thus w̃(x) > 0, for a.e. x ∈ IΩ,w and, by (36), we get |E2| = 0,
as well m(E2) = 0. Therefore, since w = 0 a.e. in Ω \ IΩ,w,

m(E) = m(E1 ∪ E2) = m(E1) + m(E2) = 0 ,

and we are done. □

Let L0(Ω) be the space defined in (5). Given a measure µ on Lebesgue measurable
sets of Ω, we identify, as usual, two function u, v ∈ L0(Ω) such that u = v µ-a.e. in
Ω. A natural convergence on L0(Ω) is the convergence in measure µ. Let us recall that
a sequence of functions (uh)h ⊂ L0(Ω) is said to converge in measure µ to a function
u ∈ L0(Ω), written u = µ− limh→∞ uh if

(37) lim
h→∞

µ ({x ∈ Ω : |uh(x)− u(x)| > ϵ}) = 0 for each ϵ > 0 .

Let us collect in the following theorem some main properties of the convergence in
measure we will need later.

Theorem 4.14. Let (uh)h and u be in L0(Ω), and let µ be a measure on the σ-algebra
of Lebesgue measurable subsets of Ω.

(i) If µ is finite and uh → u µ-a.e. in Ω as h → ∞, then u = µ− limh→∞ uh.
(ii) If u = µ − limh→∞ uh, there is a subsequence (uhk

)k such that uhk
→ u µ-a.e.

in Ω as k → ∞.
(iii) If (uh)h and u are in Lp(Ω, µ), with 1 ≤ p ≤ ∞, and limh→∞ ∥uh−u∥Lp(Ω,µ) =

0, then u = µ− limh→∞ uh.
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(iv) Suppose that µ is finite and let

(38) dµ(u, v) :=

∫
Ω

|u− v|
1 + |u− v|

dµ if u, v ∈ L0(Ω) .

Then dµ is a metric on L0(Ω) and

lim
h→+∞

dµ(uh, u) = 0 ⇐⇒ u = µ− lim
h→∞

uh

Proof. See, for instance: (i) [19, Proposition 3.1.1]; (ii) [19, Proposition 3.1.2]; (iii) [19,
Proposition 3.1.4]; (iv) [19, Chap. 3, Sect. 2, Exercise 5]. □

Let us now study the relationships between the convergence in measure m and m̃, as
well as if they imply, up to a subsequence, the pointwise convergence in some points of
IΩ,w.

Proposition 4.15. Let (uh)h and u be in L0(Ω).

(i) Assume that u = m− limh→∞ uh ( or u = m̃− limh→∞ uh ). Then there exists a
subsequence (uhk

)k and a sequence of points (ci)i such that

ci ∈ (ai, bi) and lim
k→∞

uhk
(ci) = u(ci) for every i .

(ii) Assume that u = m− limh→∞ uh. Then it also holds that u = m̃− limh→∞ uh.
(iii) Assume w = 0 a.e. in Ω \ IΩ,w and u = m̃− limh→∞ uh. Then it also holds that

u = m− limh→∞ uh.

Proof. (i) Suppose first that u = m − limh→∞ uh. Then, from Theorem 4.14 (ii) with
µ = m, there exists a subsequence (uhk

)k and a m-null set Z ⊂ Ω such that

(39) lim
k→∞

uhk
(x) = u(x) ∀x ∈ Ω \ Z .

By contradiction, if (ai, bi) ⊂ Z for some i, then m((ai, bi)) = 0. This would imply that
(ai, bi) ⊂ Ω \ IΩ,w and then a contradiction. Thus

(40) (ai, bi) \ Z ̸= ∅ for each i = 1, 2, . . . ,

and we get the desired conclusion. Suppose now that u = m̃ − limh→∞ uh. Then, still
from Theorem 4.14 (ii) with µ = m̃, there is now m̃- null set Z ⊂ Ω such that (39) holds.
From Proposition 4.6 (ii), m̃((ai, bi)) > 0 for each i. Therefore (40) holds. Thus we still
get the desired conclusion.
(ii) From Theorem 4.13 (i), and since m̃ is finite in Ω, by applying the Radon-Nikodym
Theorem, there exists f ∈ L1(Ω, m) = L1(Ω, w) such that

(41) m̃(E) =

∫
E
f dm for each measurable set E ⊂ Ω .

For given ϵ > 0 let

Eh := {x ∈ Ω : |u(x)− uh(x)| > ϵ} ,

then, since limh→∞ m(Eh) = 0, by (41) and the absolute continuity of the integral, we
also get that limh→∞ m̃(Eh) = 0.
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(iii) From Theorem 4.13 (ii), and since m̃ is finite in Ω, by applying the Radon-Nikodym
Theorem, there exists g : Ω → [0,∞] such that

(42) m(E) =

∫
E
g dm̃ for each measurable set E ⊂ Ω .

Since m(Ω) < ∞, by (42), it follows that g ∈ L1(Ω, m̃) = L1(Ω, w̃). Then, arguing as in
(ii), we get the desired conclusion. □

Remark 4.16. Note that, by assuming only that the weight w is finitely degenerate, the
convergence in measure m̃ = w̃ dx does not imply the one in measure m = w dx. For in-

stance, let w : Ω = (−1, 1) → [0,∞] be the weight in Remark 4.2, uh :=

{
1 in (−1, 0]

h in (0, 1)

(h = 1, 2, . . . ) and u :=

{
1 in (−1, 0]

0 in (0, 1)
. Then, it is easy to see that u = m̃− limh→∞ uh,

but the sequence (uh)h cannot converge to u w.r.t. the convergence in measure m.

Remark 4.17. Note that each Lp(Ω, µ), with 1 ≤ p ≤ ∞, can be meant as a subspace of
L0(Ω). Indeed, if u : Ω → R̄ is a function in Lp(Ω, µ) and Zu := {x ∈ Ω : |u(x)| = ∞},

then |Zu| = 0. If ũ : Ω → R is defined as ũ(x) :=

{
u(x) if x ∈ Ω \ Zu

0 if x ∈ Zu
, then

ũ ∈ L0(Ω). Moreover, if µ is finite, the map

(Lp(Ω, µ), ∥ · ∥Lp(Ω,µ)) ∋ u 7→ ũ ∈ (L0(Ω), dµ)

is also continuous, by Theorem 4.14 (iii) and (iv).

4.5. Relaxation results. First we consider X = (L0(Ω), dm̃) and (L0(Ω), dm) and the
lower semicontinuous envelopes in (7).

Theorem 4.18. Let w be a weight satisfying (1).

(i) Then

(43) D̃2 = Dw

and the representation (8) holds for the relaxed functional F̃ 2.
(ii) If w = 0 a.e. in Ω \ IΩ,w, then

F̃ 2 = F̂ 2 on L0(Ω) .

Proof. (i) Firstly, we note that if IΩ,w = ∅, then w̃ ≡ 0. This implies that (L0(Ω), dm̃) =

{0}, D̃j = {0} and F̃ j(u) = 0 for each u ∈ L0(Ω) j= 1, 2, 3, 4. Let us show (8). By

Proposition 4.15 (i) and Lemma 4.5 , it follows that D̃2 ⊆ Dw and, by Proposition 4.9,

we have that and for every u ∈ D̃2

u ∈ W 1,1
loc (IΩ,w) ∩ L2(IΩ,w, w

∗), u2w∗ ∈ L∞(IΩ,w) .

Let us first show that for every u ∈ L0(Ω)∫
IΩ,w

|u′|2w dx ≤ F̃ 2(u).
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Without loss of generality we can assume that F̃ 2(u) < +∞. Therefore there exists a
sequence (uh) ⊂ Dw such that limh→∞ dm̃(uh, u) = 0 and

F̃ 2(u) = lim
h→+∞

F 2(uh) = lim
h→+∞

∫
Ω
|u′h|2w dx.

Again, we can apply Proposition 4.15 (i) and Lemma 4.5 and, up to a subsequence, we
get ∫

IΩ,w

|u′|2w dx ≤ lim inf
h→+∞

∫
Ω
|u′h|2w dx = lim

h→+∞

∫
Ω
|u′h|2w dx = F̃ 2(u)

In order to complete the proof we have to prove that

(44) F̃ 2(u) ≤
∫
IΩ,w

|u′|2w dx ∀u ∈ Dw

and so Dw ⊆ D̃2. Let us first prove that

(45) F̃ 2(u) ≤
∫
IΩ,w

|u′|2w dx ∀u ∈ Dw ∩ L2(Ω) .

By Theorem 3.3, for each u ∈ Dw ∩ L2(Ω), there exists (uh)h ⊂ Lip(Ω) such that

(46) uh → u in L2(Ω) as h → ∞ ,

and

(47) lim
h→∞

F 2(uh) =

∫
IΩ,w

|u′|2w dx .

By (26) and (46), it follows that

(48) uh → u in L2(Ω, w̃) as h → ∞ .

Moreover, from Theorem 4.14 (iii) with µ = w̃ dx, (48) implies that

(49) u = m̃− lim
h→∞

uh .

Thus, by (47), (49) and the definition of F̃ 2,

F̃ 2(u) ≤ lim inf
h→∞

F 2(uh) = lim
h→∞

F 2(uh) =

∫
IΩ,w

|u′|2w dx ,

and (45) follows. It is sufficient in order to complete the proof that, for each u ∈ Dw,
there exists (ũh)h ⊂ Dw ∩ L2(Ω) such that

(50) u = m̃− lim
h→∞

ũh ,

and

(51) ũ′h → u′ in L2(IΩ,w, w) as h → ∞ .

Indeed, from (45),(50) and (51) and the semicontinuity of F̃ 2, it will follow that

F̃ 2(u) ≤ lim inf
h→∞

F̃ 2(ũh) ≤ lim
h→∞

∫
IΩ,w

|ũ′h|2w dx =

∫
IΩ,w

|u′|2w dx ,
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and we will get (44). Eventually let us show (51) and assume that Nw = ∞. The
case Nw < ∞ follows by slight changes. Since u′ ∈ L2(IΩ,w, w), by a classical result
of measure theory, there exists a sequence of functions (vh)h ⊂ C0

c (IΩ,w) ⊂ L2(IΩ,w, w)
such that

(52) ∥vh − u′∥2L2(IΩ,w,w) =

+∞∑
i=1

∫ bi

ai

|vh − u′|2w dx → 0 as h → +∞ .

Let us define, for given h ∈ N, ũ(i)h : (ai, bi) → R, i = 1, 2, . . . , h as

(53) ũ
(i)
h (x) := u

(
ai + bi

2

)
−
∫ ai+bi

2

x
vh(y) dy , x ∈ (ai, bi).

and ũh : (a, b) → R as

(54) ũh :=
h∑

i=1

ũ
(i)
h χ(ai,bi) .

Observe that ũ
(i)
h ∈ C1([ai, bi]) for i = 1, . . . , h, (ũh)h ⊂ Dw ∩ C1(IΩ,w) ∩ L2(Ω) and

ũh

(
ai + bi

2

)
= u

(
ai + bi

2

)
for each i = 1, . . . , h ,

(55) ũ′h = vh in ∪h
i=1 (ai, bi) and ũ′h = 0 in ∪∞

i=h+1 (ai, bi) .

Thus, (51) follows. By Poincaré type inequality (35) with ũh − u instead of u and since

ũh

(
ai+bi

2

)
= u

(
ai+bi

2

)
, we have, for each ϵ > 0,

m̃ ({x ∈ Ω : |ũh − u| ≥ ϵ}) ≤ 1

ϵ2

∫
Ω
|ũh − u|2 w̃ dx

=
1

ϵ2

+∞∑
i=1

∫ bi

ai

|ũh − u|2 w̃ dx

≤b− a

ϵ2

+∞∑
i=1

−
∫ bi

ai

|ũh − u|2 w̃ dx

≤ b− a

ϵ2

∫
IΩ,w

|ũ′h − u′|2w dx

=
b− a

ϵ2

(
h∑

i=1

∫ bi

ai

|vh − u′|2w dx+

∞∑
i=h+1

∫ bi

ai

|u′|2w dx

)

≤ b− a

ϵ2

(∫
IΩ,w

|vh − u′|2w dx+

∞∑
i=h+1

∫ bi

ai

|u′|2w dx

)
.

(56)

Since u′ ∈ L2(IΩ,w),

lim
h→∞

∞∑
i=h+1

∫ bi

ai

|u′|2w dx = 0
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as h → ∞ in (56), by (52), (53) and (55) , (50) follows and we are done.
(ii) From Proposition 4.15 (ii) and (iii), the coincidence

F̃ 2 = F̂ 2 on L0(Ω)

immediately follows. □

Remark 4.19. Under the assumptions of Theorem 4.18 (i), we do not know whether

F̃ 2 = F̂ 2 on L0(Ω). Indeed, from Proposition 4.15 (ii), it follows that F̃ 2 ≤ F̂ 2 on
L0(Ω), but the coincidence is not clear since the convergences w.r.t. measure m = w dx
and m̃ = w̃ dx in Ω are no longer equivalent (see Remark 4.16).

Corollary 4.20. Let w be a weight satisfying (1). For every u ∈ L0(Ω) we have

F̃ 1(u) = F̃ 2(u) = F̃ 3(u) = F̃ 4(u),

where F̃ j(u), j = 1, 2, 3, 4 are the functionals in (7).

Proof. Since

(57) F 4(u) ≤ F 3(u) ≤ F 2(u) ≤ F 1(u) for each u ∈ L0(Ω) ,

the inequalities

(58) F̃ 4(u) ≤ F̃ 3(u) ≤ F̃ 2(u) ≤ F̃ 1(u) for each u ∈ L0(Ω)

are trivial. Moreover, arguing as in the proof of Theorem 4.18, it follows that

(59) D̃j ⊆ Dw and

∫
IΩ,w

|u′|2w dx ≤ F̃ j(u) for each u ∈ D̃j , j = 1, 2, 3, 4 .

Let us begin to prove that

(60) F̃ 2(u) = F̃ 3(u) = F̃ 4(u) for each u ∈ L0(Ω) .

By (43), (58) and (59) it follows that Dj = Dw for each j = 2, 3, 4 and (60) follows. To
conclude the proof we are going to show that the following inequality

F̃ 1(u) ≤ F̃ 2(u) for each u ∈ L0(Ω) .

It suffices to apply the classical argument of approximation by convolution. We fix

u ∈ L0(Ω) and we can assume that F̃ 2(u) < +∞; then there exists a sequence (uh)h ⊂
Lip([a, b]) such that uh → u in L0(Ω) and

F̃ 2(u) = lim
h→+∞

∫ b

a
|u′h|2w dx < +∞.

Let us extend uh to the whole R by defining uh(x) = uh(a) if x ≤ a and uh(x) = uh(b)
if x ≥ b. Let us consider uh,ϵ := uh ∗ ρϵ, where ρϵ is a classical family of mollifiers on R.
Then, from the classical properties of the approximation by convolution, for given ϵ > 0,
(uh,ϵ)h ⊂ C∞(R), uh,ϵ → uh uniformly on [a, b], as ϵ → 0, for a given h, u′h,ϵ = u′h ∗ ρϵ
and u′h,ϵ → u′h in Lp(Ω) for every p ∈ [1,∞). Moreover

|u′h ∗ ρϵ|(x) ≤ ∥u′h∥L∞(Ω), x ∈ Ω
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for every ϵ > 0. This implies that

F 1(uh,ϵ) =

∫ b

a
|u′h,ϵ|2w dx →

∫ b

a
|u′h|2w dx , as ϵ → 0.

Therefore

F̃ 1(uh) ≤ lim
ϵ→0+

F 1(uh,ϵ) =

∫ b

a
|u′h|2w dx.

Hence, we obtain

F̃ 1(u) ≤ lim inf
h→+∞

F̃ 1(uh) ≤ lim inf
h→+∞

∫ b

a
|u′h|2w dx = F̃ 2(u).

□
Now we consider the relaxation w.r.t. the L2(Ω, w̃)-topology, which is stronger than

the convergence in measure m̃. By using the same strategy of the proof of Theorem 4.18,
we show the two relaxed functional coincide. Indeed, let X = L2(Ω, w̃) were w̃ is the
weight in (25) and the lower semicontinuous envelopes w.r.t. L2(w̃)-convergence, that is

(61) F j(u) = sc−(L2(w̃))− F j
X(u) j = 1, 2, 3, 4

and let

Dj = {u ∈ L2(Ω, w̃) : F j(u) < +∞} .
We recall that, if IΩ,w = ∅, then w∗ ≡ 0 (see Proposition 4.6 (i)) and so w̃ ≡ 0, too.

This implies that L2(Ω, w̃) = {0}, Dj = {0} and F j(u) = 0, j= 1, 2, 3, 4.

Theorem 4.21. Let w be a weight satisfying (1). Then

D2 = Dw ∩ L2(Ω, w̃)

and the following representation holds for the relaxed functional

F 2(u) =


∫
IΩ,w

|u′|2w dx if u ∈ Dw ∩ L2(Ω, w̃)

+∞ if u ∈ L2(Ω, w̃) \Dw.

In particular

F̃ 2 = F 2 on Dw ∩ L2(Ω, w̃) .

Proof. It is immediate that

F̃ 2 ≤ F 2 on L2(Ω, w̃) .

In order to complete the proof we have only to prove that

(62) F 2(u) ≤
∫
IΩ,w

|u′|2w dx ∀u ∈ Dw .

Let us first prove that

(63) F 2(u) ≤
∫
IΩ,w

|u′|2w dx ∀u ∈ Dw ∩ L2(Ω) .
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As in the proof of Theorem 4.18, by Theorem 3.3, for each u ∈ Dw ∩L2(Ω), there exists

(uh)h ⊂ Lip(Ω) such that (48) and (47) hold. Thus, by (48) and the definition of F 2,

F 2(u) ≤ lim inf
h→∞

F 2(uh) = lim
h→∞

F 2(uh) =

∫
IΩ,w

|u′|2w dx ,

and (63) follows. It is sufficient in order to complete the proof that, for each u ∈
Dw ∩ L2(Ω, w̃), there exists (ũh)h ⊂ Dw ∩ L2(Ω) such that

(64) ũh → u in L2(Ω, w̃) ,

and

(65) ũ′h → u′ in L2(IΩ,w, w) as h → ∞ .

Indeed, from (63), (65) and the semicontinuity of F 2, it will follow that

F 2(u) ≤ lim inf
h→∞

F 2(ũh) ≤ lim
h→∞

∫
IΩ,w

|ũ′h|2w dx =

∫
IΩ,w

|u′|2w dx ,

and we will get (62). Observe now that (64) and (65) can be proved by using the same
sequence (ũh)h in (54). Indeed (51) immediately implies (65). Arguing as in (56), we
get ∫

Ω
|ũh − u|2 w̃ dx

≤ (b− a)

(∫
IΩ,w

|vh − u′|2w dx+
∞∑

i=h+1

∫ bi

ai

|u′|2w dx

)
.

(66)

Since u′ ∈ L2(IΩ,w),

lim
h→∞

∞∑
i=h+1

∫ bi

ai

|u′|2w dx = 0 .

Therefore, by (65) and (66) , (64) follows. □

If w is finitely degenerate, by Corollary 4.10 (i),

Dw ⊂ L2(Ω, w∗) ⊂ L2(Ω, w̃) .

Thus, as an immediate consequence of Theorem 4.21, we get the characterization of
relaxed functional F 2 for finitely degenerate weights.

Corollary 4.22. Let w be a finitely degenerate weight. Then

D2 = Dw

and the following representation holds for the relaxed functional

F 2(u) =


∫
IΩ,w

|u′|2w dx if u ∈ Dw

+∞ if u ∈ L2(Ω, w̃) \Dw.

In particular

F̃ 2 = F 2 on Dw .
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Corollary 4.23. Let w be a weight satisfying (1). For every u ∈ L2(Ω, w̃) we have

F 1(u) = F 2(u) = F 3(u) = F 4(u),

where F j(u), j = 1, 2, 3, 4 are the functional in (61).

Proof. The proof can be carried out as the one of Corollary 4.20 by replacing the role
of the convergence in measure m̃ with the one in L2(Ω, w̃) and the domain Dw with
Dw ∩ L2(Ω, w̃). □

5. Comparison between different Lebesgue weighted spaces

In this section we will present some examples in order to compare the different
Lebesgue weighted spaces L2(Ω, w) and L2(Ω, w∗). Moreover we will show that space
Dw may not be contained in L2(Ω, w) and in L2(Ω, w∗).

Example 5.1. We are going to study here the inclusion relationships between L2(Ω, w∗)
and L2(Ω, w) by means of the behaviour of weight w. In particular we will prove they
are independent. Namely we will show that all three cases

(67) L2(Ω, w∗) = L2(Ω, w) ,

(68) L2(Ω, w∗) ⊊ L2(Ω, w) ,

(69) L2(Ω, w∗) ⊋ L2(Ω, w) ,

can occur, even though w is finitely degenerate and w = 0 a.e. in Ω \ IΩ,w. The same
relationships holds by considering the corresponding spaces L2

loc. Moreover we will see
below that

(70) L2(Ω, w∗) ̸⊆ L2(Ω, w)

and

(71) L2(Ω, w) ̸⊆ L2(Ω, w∗) .

We will first consider the simple situation when the weight w is finitely degenerate
with Nw = 1. More precisely, let Ω = (a, b) = (0, 1), w : (0, 1) → (0,∞), w ∈ L1((0, 1))
and 1

w ∈ L1((δ, 1)) for each δ ∈ (0, 1). Under these assumptions, according to our
notation, IΩ,w = (a, b) = (a1, b1) = (0, 1) and the weight w∗ : (0, 1) → (0,∞) in (24)
satisfies the following properties:

(72) 0 < inf
[1/2,1)

w∗(x) ≤ sup
[1/2,1)

w∗(x) < ∞ ,

(73) w∗ ∈ C0((0, 1/2]) and ∃ lim
x→0+

w∗(x) ∈ [0,∞) .

(i) Assume that

(74) lim
x→0+

w∗(x) ∈ (0,∞) .
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Observe that (74) is equivalent to require that

(75)
1

w
∈ L1((0, 1)) .

Then, from (72), (73) and (74), we can infer that

0 < inf
x∈(0,1)

w∗(x) ≤ sup
x∈(0,1)

w∗(x) < ∞ ,

and thus

(76) L2(Ω, w∗) = L2(Ω) .

By choosing w(x) = xα with α ∈ (−1, 1), (74) is satisfied, since (75) holds. Therefore,
by (76), we can conclude that, if α ∈ (0, 1), since w(x) < 1 for each x ∈ (0, 1),

L2(Ω, w∗) = L2(Ω) ⊊ L2(Ω, w) ;

if α = 0, since w(x) = 1 for each x ∈ (0, 1),

L2(Ω, w∗) = L2(Ω) = L2(Ω, w) ;

if α ∈ (−1, 0), since w(x) > 1 for each x ∈ (0, 1),

L2(Ω, w∗) = L2(Ω) ⊋ L2(Ω, w) .

Therefore cases (67), (68) and (69) can occur.

(ii) Assume that

(77) lim
x→0+

w∗(x) = 0 .

Observe that (77) is equivalent to require that

1

w
/∈ L1((0, 1)) .

In particular, it holds true that

lim sup
x→0+

w(x) = 0 and lim
x→0+

∫ 1/2

x

1

w
(y) dy = ∞ .

Assume now that

(78) lim sup
x→0+

(
w(x)

∫ 1/2

x

1

w
(y) dy

)
< ∞ .

Notice that (78) trivially holds if w : (0, 1/2) → (0,∞) is nondecreasing. From (78) and
(72), we have that there is positive constant C such that

w(x) ≤ C w∗(x) ∀x ∈ (0, 1) ,

which in turn implies (67) or (68).
The more interesting case is when (78) does not hold. For instance, when the weight

w oscillates as x → 0+ and it is the case we are going to deal with. More precisely , let
us denote

I1h :=

(
1

h+ 1
,
1

2

(
1

h+ 1
+

1

h

)]
, I2h :=

(
1

2

(
1

h+ 1
+

1

h

)
,
1

h

]
,

I1 := ∪∞
h=1I

1
h, I2 := ∪∞

h=1I
2
h
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and

Ih := I1h ∪ I2h =

(
1

h+ 1
,
1

h

]
.

Let us define

w(x) := xγ χI1(x) + x3 χI2(x)

= xγ
∞∑
h=1

χI1h
(x) + x3

∞∑
h=1

χI2h
(x) x ∈ (0, 1)

(79)

where 0 ≤ γ < 1 and χA denotes the characteristic function of a set A. Notice that

(80)
1

w(x)
=

1

xγ

∞∑
h=1

χI1h
(x) +

1

x3

∞∑
h=1

χI2h
(x) x ∈ (0, 1) .

In this example, IΩ,w = (0, 1) and so Nw = 1, then it is finitely degenerate. Notice that
1
w is locally summable in (0, 1).
Let us prove that there exists a positive constant c1 > 0 such that

(81)
1

c1
x2 ≤ w∗(x) ≤ c1 x

2 ∀x ∈ (0, 1/4) .

From (79) and (81) it follows that the weights w and w∗ are not comparable.
According to (24), by (80), if x ∈ (0, 1/2),

1

w∗(x)
=

∫ 1

x

1

w(y)
dy

=
∞∑
h=1

∫
I1h∩[x,1]

y−γ dy +
∞∑
h=1

∫
I2h∩[x,1]

y−3 dy

= v1(x) + v2(x) .

(82)

We are now going to estimate functions vi (i = 1, 2), from above and below. The estimate
as far as v1 is concerned is quite trivial. Indeed

0 ≤ v1(x) =

∞∑
h=1

∫
I1h∩[x,1]

y−γ dy ≤
∞∑
h=1

∫
Ih∩[x,1]

y−γ dy

=

∫ 1

x
y−γ dy ≤

∫ 1

0
y−γ dy ≤ 1 ∀x ∈ (0, 1/2) .

(83)

Notice now that, if N(x) denotes the integer part of 1/x with x ∈ (0, 1/2), then

v2(x) =

∞∑
h=1

∫
I2h∩[x,1]

y−3 dy =

N(x)−1∑
h=1

∫
I2h

y−3 dy +

∫
IN(x)∩[x,1]

y−3 dy .(84)

From (84), since for 1 ≤ h ≤ N(x)− 1 we have

1

2

(
1

h
+

1

h+ 1

)
≥ x,
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we can infer that

N(x)−1∑
h=1

∫
I2h

y−3 dy ≤ v2(x) ≤ 2

∫ 1

x
y−3 dy =

1

x2
− 1 ∀x ∈ (0, 1/2) .(85)

By a simple calculation, we get

v2(x) ≥
N(x)−1∑
h=1

∫
I2h

y−3 dy ≥
N(x)−1∑
h=1

h3
∣∣I2h∣∣ = 1

2

N(x)−1∑
h=1

h3

h(h+ 1)

≥ 1

2

N(x)−1∑
h=1

h =
(N(x)− 1)N(x)

4

≥ 1

2

(
1

x
− 2

)(
1

x
− 1

)
∀x ∈ (0, 1/2) .

(86)

From (85) and (86), it follows that

(87)
1

2

(
1

x
− 2

)(
1

x
− 1

)
≤ v2(x) ≤

1

x2
− 1 ∀x ∈ (0, 1/2) .

Therefore, by (82), (83) and (87), (81) follows. Eventually, by considering the weight w
in (79), it is easy to see, because of (81), that (70) and (71) can occur.

Remark 5.2. The weight (79) is not a doubling weight. Indeed, let xh, rh such that
B(xh, rh) = (12(

1
h + 1

h+1),
1
h), then rh = 1

4
1

h(h+1) . We obtain that

m(B(xh, rh)) =

∫ 1
h

1
2
( 1
h
+ 1

h+1
)
x3 dx =̃C1

1

h5
+ o
( 1

h5
)
.

On the other hand, since (
1

h
,
1

h
+

1

4h(h+ 1)

)
⊆ B(xh, 2rh),

we get

m(B(xh, 2rh)) ≥
∫ 1

h
+ 1

4h(h+1)

1
h

xγ dx =̃C2
1

hγ+2
+ o
( 1

hγ+2

)
.

We proceed by contradiction by assuming that m is a doubling measure. Then there
exists a constant C such that

C2
1

hγ+2
+ o
( 1

hγ+2

)
≤ m(B(xh, 2rh)) ≤ Cm(B(xh, rh)) =̃C1

1

h5
+ o
( 1

h5
)
.

Thus we have a contradiction since γ + 2 < 5.

Remark 5.3. If w is finitely degenerate, then, by Corollary 4.10 (i),

Dw ⊆ L2(Ω, w∗) ⊆ L2(Ω, w̃) .

If w is not finitely degenerate, thenDw ⊆ L2
loc(IΩ,w, w

∗). We observe thatDw ̸⊆ L2(Ω, µ)
for each finite measure µ on Ω such that IΩ,w ⊂ spt(µ). In fact, let u(x) = λi on (ai, bi)
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for every i ∈ N; then u ∈ Dw, but u /∈ L2(Ω, µ) if we choose

λi =
1

µ((ai, bi))
.

Indeed, ∫
Ω
|u2| dµ =

+∞∑
i=1

∫ bi

ai

|u2| dµ =
+∞∑
i=1

1

µ((ai, bi))

does not converge, since µ((ai, bi)) → 0, as i → +∞, by Remark 4.3. In particular, this
argument applies to measure µ = w̃ dx since by (19) and Proposition 4.6, IΩ,w ⊂ spt(µ).
Thus Dw ̸⊆ L2(Ω, µ) = L2(Ω, w̃), if w is not finitely degenerate. This also implies that
Dw ̸⊆ L2(Ω, w), Dw ̸⊆ L2(Ω, w∗) and Dw ̸⊆ L2(Ω), if w is not finitely degenerate.
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