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ABSTRACT. We introduce and study the class of totally dissipative multivalued probability vector
fields (MPVF) F on the Wasserstein space (P2(X), W2) of Euclidean or Hilbertian probability
measures. We show that such class of MPVFs is in one to one correspondence with law-invariant
dissipative operators in a Hilbert space L? (©, B,P; X) of random variables, preserving a natural
maximality property. This allows us to import in the Wasserstein framework many of the
powerful tools from the theory of maximal dissipative operators in Hilbert spaces, deriving
existence, uniqueness, stability, and approximation results for the flow generated by a maximal
totally dissipative MPVF and the equivalence of its Eulerian and Lagrangian characterizations.

We will show that demicontinuous single-valued probability vector fields satisfying a metric
dissipativity condition as in [CSS23a] are in fact totally dissipative. Starting from a sufficiently
rich set of discrete measures, we will also show how to recover a unique maximal totally dissipative
version of a MPVF| proving that its flow provides a general mean field characterization of the
asymptotic limits of the corresponding family of discrete particle systems. Such an approach also
reveals new interesting structural properties for gradient flows of displacement convex functionals
with a core of discrete measures dense in energy.
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1. INTRODUCTION

The theory of evolutions of probability measures is experiencing an ever growing interest from
the scientific community. On one side, this is justified by its numerous applications in modeling
real-life dynamics: social dynamics, crowd dynamics for multi-agent systems, opinion formation,
evolution of financial markets just to name a few. We refer the reader to the recent preprint
[Pic23] for a more complete overview of the many applications of control theory for multi-agent
systems, i.e. large systems of interacting particles/individuals. On the other side, dealing with
mean-field evolutions, expecially in the framework of optimal control theory in Wasserstein spaces
[For+19; Cav+22; CM22], provides interesting insights into mathematical research. We mention
for instance the recent contributions [Ave22; BF21b; BF23] for the study of a well-posedness
theory for differential inclusions in Wasserstein spaces, [AK22; BF21a; Pogl6] for necessary
conditions for optimality in the form of a Pontryagin maximum principle, the references [JMQ20;
BF22a; CMP20] for the study of Hamilton-Jacobi-Bellman equations in this framework. Finally,
other contributions devoted to the development of a viability theory for control problems in the
space of probability measures are e.g. [AMQ21; BF22¢; BF22b; CMQ21].

In addition to these studies, we have all the applications of the theory of gradient flows in
Wasserstein spaces [AGS08] which are impossible to summarize here even briefly. In particular,
in the case of geodesically convex (resp. A-convex) functionals [McC97], the geometric viewpoint
and the variational approach introduced by [Ott01; JKO98a] have been extremely powerful to
construct a semigroup of contractions (resp. Lipschitz maps) [AGS08], which provides a robust
background for various applications.

In the present paper, we continue the project, started in [CSS23al, to extend the theory beyond
gradient flows. Our aim is to investigate the evolution semigroups generated by a A-dissipative
multivalued probability vector field (in short, MPVF) F in the Wasserstein space (P2(X), Wa).
The space Py(X) denotes the set of Borel probability measures with finite quadratic moment
on a separable Hilbert space X. The geometric notion of dissipativity is intimately related to
the L?-Kantorovich-Rubinstein-Wasserstein distance Wy between two measures jig, 1 € Po (X),
which can be expressed by the solution of the Optimal Transport problem

WQZ(,uo,,ul) = min{/\xo — :c1|2du(x0,x1) CpE I’(,uo,,ul)}, (1.1)

where I'(uo, 1) denotes the set of couplings p € Po(X x X) with marginals pg and py. It is well
known that the set I'y(uo, 11) where the minimum in (1.1) is attained is a nonempty compact
and convex subset of I'(ug, 7).

We refer to [CSS23a] for a detailed discussion of the various approaches to such kind of problems;
let us only mention here the Cauchy-Lipschitz approach via vector fields [BF21b; BF23], the
barycentric approach in [Pic19; Pic18; Cam+21] and the variational approach to characterize
limit solutions of an Explicit Euler Scheme for evolution equations driven by dissipative MPVFs
in [CSS23a].

Let us just recall here the main features of this approach. A MPVF F can be identified
with a subset of the set of probability measures P2(TX) on the space-velocity tangent bundle
TX = {(z,v) € X x X}, with proper domain D(F) := {x4® : & € F} and sections F[u] := {® € F :
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x3® = pu}, where x(x,v) := x is the projection on the first coordinate in TX. Since every element
® ¢ F has finite quadratic moment in the tangent bundle, the L?-norm of the velocity marginal

D3 :—/]v|2d@(x,v) is finite.

The disintegration {®,},ex of ® € Flu] with respect to p provides a Borel field of probability
measures on the space of velocity vectors, which can be interpreted as a probabilistic description of
the velocity prescribed by F at every position/particle z, given the distribution x. An important
case, which is simpler to grasp, occurs when F is concentrated on maps and therefore ®, = ¢,
is a Dirac mass concentrated on the deterministic velocity f (in this case we say that F is
deterministic): for every measure p € D(F)

the elements ® € F[u] have the form (ix, f);u for a vector field f € L*(X, u; X), (1.2)

where ¢x denotes the identity map on X. In this case, F is dissipative if for every ®; = (ix, f;)sti €
D(F),i=0,1,

€ Topio ) optimal, such that / (Folwo) — F1(01), 20 — 21) dpalao, @) < 0. (1.3)

Notice however that, even in the deterministic case, the realization of F[u| as an element /subset
of P(TX) is crucial to deal with varying base measures p, since for different pg, 1 € D(F) the
representation (1.2) yields corresponding maps f, f; which belong to different L? spaces and
therefore are not easy to be compared.

When F is not concentrated on maps, the dissipativity condition between two elements &g €
F|uol, ®1 € F[u1] guarantees the existence of a coupling ¥ € I'(®g, P1) C Po(TX x TX) such that
the “space” marginal projection (xg,x1)s¥ is optimal, thus belongs to I',(j0, 111), and moreover

/<Ul — Vo, T1 — .730) dﬁ(xo,vo;xl,vl) S 0. (1.4)

Such a property appears as a natural generalization of the corresponding condition introduced in
[AGS08] for the Wasserstein subdifferentials of geodesically convex functionals.

The geometric interpretation of this condition becomes apparent by considering its equivalent
characterization in terms of the first order expansion of the squared Wasserstein distance: in the
case (1.2) it can be written as

W3 ((ix + hfo)sro, (ix + hf1)sp1) < Wi (po, 1) + o(h) as h | 0.

In principle, one may interpret the flow generated by F in terms of absolutely continuous
(w.r.t. the Wasserstein metric) curves p : [0,4+00) — P2(X), u(t) = e, in D(F) solving the
continuity equation

at/JJt +V. (:ut ft) =0 in (Oa OO) X X? (7:Xa ft)ﬁlut € Fv

and obeying a Cauchy condition ), = Ho- However, the derivation of such a precise formulation
is not a simple task and, in general, it requires more restrictive assumptions on F as

D(F) = Po(X), Flu] = (ix, flp])spe  (thus F is single-valued),
o = = (i, Flen])gpn — (2, Flu])sn

We introduced in [CSS23a] the more flexible condition of EVI solutions, borrowed from the
theory of gradient flows [AGS08] and from the Bénilan notion of integral solutions to dissipative
evolutions in Hilbert/Banach spaces [Bén72]: a continuous curve p : [0, +00) — P2(X) with

(1.5)

values in D(F) is an EVI solution if it solves the system of Evolution Variational Inequalities

d1
ain(ut, v) < —[®, ], for every ® € F[v], v € D(F) in 2'((0,+00)), (1.6)
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where for every ® = (ix, f)yv € F the duality pairing [®, z1], is defined by

[®, u], = min{/(f(:vo),xo —z1)dp(zo, z1) = pp € To(v, M)}

In [CSS23al, we studied the properties of the flow in P2(X) generated by F by means of the
explicit Euler method and we proved that, under suitable conditions, every family of discrete
approximations obtained by the explicit Euler method converges to an EVI solution when the
step size vanishes, also providing an optimal error estimate.

The use of the explicit Euler method is simple to implement and quite powerful when the
domain of F coincides with the whole P3(X) and F is locally bounded [CSS23a, Cor. 5.23], i.e.
|®|2 remains uniformly bounded in a suitable neighborhood of every measure p € P3(X) (but
much more general conditions are thoroughly discussed in [CSS23a]). Dealing with constrained
evolutions or with operators which are not locally bounded requires a better understanding of
the implicit Euler method.

Mazimal totally dissipative MPVFs. One of the starting points of the present investigation
(see Sections 3.3 and 8) is the nontrivial fact that a large class of A-dissipative MPVFs including
the demicontinuous fields (1.5) satisfies a much stronger dissipativity condition, which we call
total \-dissipativity: in the simplest case A = 0 when (1.2) holds and F is single-valued, such a
property reads as

/(f[uo](fﬁo) — flml(z1), 20 — 1) dpp(wo, x1) <0 for every p € I'(po, p11) (1.7)

and can be compared with the notion of L-monotonicity of [CD18, Definition 3.31]. Total
dissipativity thus holds along arbitrary couplings between pairs of measures g, 1 in the domain
of F, whereas the metric dissipativity condition (1.3) involves only optimal couplings. The
relaxed version of (1.7) allowing for A-dissipativity includes the class of Lipschitz probability
vector fields f satisfying

Flrol(wo) — f[/u](xl)‘ < L(Ixo — x|+ W2(uo,u1)> for every z; € X, p; € Pa(X)

for A = 2L (see Example 3.11).

Motivated by this remarkable property, it is natural to extend the notion of total dissipativity to
a general MPVF F. Here there are two possible approaches: the weakest one, modeled on the
general definition of metric dissipativity (1.4), would require that for every ®g € F|ug], ®1 € F[u1]
and every coupling pu € T'(uo, 1) (p is not optimal) there exists ¥ € I'(®g, 1) such that
(X0,%1)4¥ = p and (1.4) holds.

The strongest condition, which we will systematically investigate in this paper, requires that

for every &g, ®; € F and every 9 € I'(®g, P1) /<U1 — g, x1 — o) d¥(x0, vo; T1,v1) < 0. (1.8)

It is clear that total dissipativity for arbitrary MPVFs is much stronger than the metric
dissipativity condition (1.4). We address two main questions:

(Q.1) What are the structural properties of totally dissipative MPVF's satisfying the stronger
condition (1.8) and their relation with Lagrangian representations by dissipative operators
in the Hilbert space

X := L*(Q,B,P;X),
where P is a nonatomic probability measure on a standard Borel space (2, B), which
provides the domain of the parametrization. A similar lifting approach has been used also
in e.g. [Lio07; Carl3; GT19; CD18; JMQ20], in particular for functions defined in Po(X)
and their Fréchet differential. This is the content of Section 3 and 4, with applications to
the case of gradient flows in Section 5.
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(Q.2) Under which conditions a dissipative MPVF is totally dissipative and, more generally, it
is possible to recover a unique maximal totally dissipative “version” of the initial MPVF
starting from a sufficiently rich set of discrete measures. This is investigated first in
Section 3.3 and more extensively in Section 8, starting from the results of Sections 6 and
7 on the geometry of discrete measures.

Lagrangian representations. Concerning the first question (Q.1), in Section 3.2 we will show
that

there is a one-to-one correspondence between totally dissipative MPVF's and law
invariant dissipative operators in the Hilbert space X := L?*(Q, B,P;X); such a
correspondence preserves mazimality.

This representation is very useful to import in the metric space (P2(X), W3) all the powerful tools
and results concerning semigroups of contractions generated by maximal dissipative operators
in Hilbert spaces, see e.g. [Bré73]. This approach overcomes most of the technical limits of the
explicit Euler method adopted in [CSS23a] and allows for a more general theory of existence, well
posedness, and stability of solutions. In particular, even if the results are new and relevant also
in the finite dimensional Euclidean case, the theory does not rely on any compactness argument
and thus can be fully developed in a infinite dimensional separable Hilbert space X. We can
in fact lift a totally dissipative MPVF F to a dissipative operator B C X x X, that we call
Lagrangian representation of F, defined by

(X,V)e B +<— (X, V))PeF.

It turns out that B is law invariant (i.e. if (X, V) € B and (X', V’) has the same law as (X, V),
then (X', V') € B as well) and admits a maximal dissipative extension B which is law invariant
and corresponds to a maximal extension of F still preserving total dissipativity. In particular, F
is maximal in the class of totally dissipative MPVFs if and only if B is a law invariant operator
which is maximal dissipative.

Such a crucial result depends on two important properties: first of all, if the graph of B is
strongly-weakly closed in X x X (in particular if B is maximal) then law invariance can also be
characterized by invariance w.r.t. measure-preserving isomorphisms of €2, i.e. essentially injective
maps g :  —  such that gP =P = g, !P (Theorem 3.4). The second property (Theorem
3.12) guarantees that every dissipative operator in X which is invariant by measure-preserving
isomorphisms has a maximal dissipative extension enjoying the same invariance (and thus also
law invariance). Such a result has been obtained in [CSS23b] and exploits remarkable results
of [BW09; BW10] providing an explicit construction of a maximal extension of a monotone
operator.

The equivalence between law-invariance and invariance by measure-preserving tranformations
also plays a crucial role to prove that the resolvents of B, its Yosida approximations, and the
generated semigroup of contractions (S¢)s>0 in X are still law invariant. The family (S¢); thus
induces a projected semigroup of contractions in P9(X) defined by

St(ug) = (Sth)ﬁP whenever (Xo)ﬁ]P) = Up € D(F), (19)

which is independent of the choice of Xy parametrizing the initial law pg, which satisfies the EVI
formulation (1.6) and the stability property (here for arbitrary A € R)

181 X0 — SiYolx < eM|Xo — Yolx, Wa(Si(10), Si(vo)) < eMWa(uo, vo)- (1.10)

Another crucial property of totally dissipative MPVFs concerns the barycentric projection, which
can be obtained by taking the expected value of the disintegration {®,},cx of an element ® € F
with respect to its first marginal p = x;®:

bo(z) := /vd@x(v) for p-a.e. x € X; bg € LQ(X,;L; X).
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The barycenter bg also represents the conditional expectation E[V|X] of V' given (the o-algebra
generated by) X, for every (X,V) € F with (X, V)P = ®:

E[V|X] =bgo X in L*(Q,0(X),P;X).
It turns out that, if F is maximal totally dissipative (or, equivalently, its Lagrangian representation
B is maximal dissipative), then F is invariant with respect to the barycentric projection:

(X,V)P=®ecF — (ix,ba)sucF, (X,E[V|X]) e B. (1.11)

Thanks to (1.11), for every up € D(F), the solution p; expressed by the Lagrangian formula (1.9)
can be characterized as a Lipschitz curve in Po(X) satisfying the continuity equation

8t,ut + V- (,ut ’Ut) =0 in (O, +OO) x X (112)

for a Borel vector field v satisfying
t— / lv(2)|* due(x) s locally integrable in [0, +00), (ix,v:)sut € F for ae. t > 0. (1.13)

We may also equivalently write (1.12) in a weaker form assuming that there exists a Borel family
®,, t > 0, such that

o, € F[yy] forae. t>0, t— / |v|?d®; is locally integrable in [0, +00),

((;t/(d,ut = /<U, V{(z)) d®¢(z,v) for every ¢ € Cyl(X) and a.e. t > 0.

A more precise formulation of (1.12) and (1.13) can be obtained by introducing the minimal
selection B° (i.e. the element of minimal norm) of B: we will prove that for every X € D(B)
with X3P = p, B° is associated with a vector field f° € L?(X, u; X) through the formula

V=BX, XP=u = V=/FfX) (1.14)

The measure (ix, f°[u])spe can be characterized as the unique element ® € F[u] minimizing
|®|2 and the solution p : [0, +00) — Po(X) provided by (1.9) is also the unique Lipschitz curve
satisfying the continuity equation

Outie + V- (i £olu]) =0 in (0,400) x X (1.15)

with initial datum po € D(F). It is remarkable that a maximal totally dissipative MPVF always
admits a minimal selection which is concentrated on a map.

It turns out that the evolution driven by F preserves the class of discrete measures with finite
support; if moreover g = + SN 4., € D(F) (or also in D(F) if X has finite dimension) then

the unique solution of (1.15) can be expressed in the form p; = + 27]1\[:1 Oy, (t) Where t — x,(t)
are locally Lipschitz curves satisfying the system of ODEs

Xn(t) = FOlue](xn(t)) a.e.in (0,400), x,(0)=x,, n=1---,N. (1.16)

Thanks to (1.10), if a sequence of discrete initial measures u) = % 25:1 0,y converges to a

limit pg in P2(X) as N — oo, then the corresponding evolving measures ¥ obtained by solving
(1.16) starting from ) will converge to s = Sy(p0). As a general fact [Szn91], this correspond
to the propagation of chaos for the sequence of symmetric particle systems (1.16).

Maximality also shows that EVI curves are unique; when they are differentiable (in particular
when po € D(F)) we can recover the representation (1.15) and the Lagrangian representation (1.9),
in an even more refined version involving characteristic curves. This representation immediately
yields regularity, stability, perturbation, and approximation results thanks to the corresponding
statements in the Hilbertian framework.

Among the possible applications, we just recall that we can also use the Implicit Fuler Method
(corresponding to the JKO scheme for gradient flows) to construct the flow (Corollary 4.7).
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Starting from MY := g € D(F), for every step size 7 > 0 we can find a (unique) sequence
(M?)nen in D(F) which at each step n € N solves

(x — 7v)y @2 = MP  for some @I € F[MI . (1.17)

Selecting 7 := t/N, the sequence N +— Mtij converges to S¢(pp) as N — oo with the a-priori
error estimate

% .
W2(5t(/i0)7Mt]7N) < ﬁ”f [110] 11 £2 (X o) (1.18)

When D(F) = P2(X) and F is single-valued as in (1.5), it follows that maximality is equivalent
to the following demicontinuity condition: for every sequence (p,)nen converging to p in Po(X)
one has

sup /lf[un]\Qdun <00, (ix, flun))gpn — (ix, flu])gp n PXxXY), (1.19)

n—oo

where X denotes the Hilbert space endowed with its weak topology. Clearly, in this case the
map f representing F coincides with f°. Notice that (1.19) surely holds if F is represented by a
map f : Po(X) — Lip(X; X) (see also the map F’ in [CB18, Section 2.3]) satisfying the integrated
Lipschitz-like condition along arbitrary couplings

J e = flnlen)| duteo,en) < 22 [ la - a1 dufan,an) - for every € Dlpo, ).

(1.20)
On the other hand, this class of regular dissipative PVFs is sufficiently rich to approximate the
minimal selection of any maximal totally dissipative MPVF F: in fact, by using the Yosida
approximation, it is possible to find a sequence of regular PVFs F,, associated to Lipschitz fields
f,, according to (1.20) (w.r.t. a possibly diverging sequence of Lipschitz constant L,,) satisfying
the dissipativity condition (1.7) and

tiw [ [£,00)(@) ~ £l du(e) =0 for every p € D(F)

So, the class of totally dissipative MPVF's arises as a natural closure of more regular PVFs
concentrated on dissipative Lipschitz maps. This statement (Corollary 3.23) justifies a posteriori
the choice of the strongest notion of total dissipativity given in (1.8).

We cannot develop here all the applications of the abstract Hilbertian theory (which we aim to
study in a future review paper) in the measure-theoretic setting: an incomplete list contains:

e regularizing effects under suitable assumptions on F,

asymptotic behaviour,

error estimates for the Yosida regularization and for time discretizations (see also
[CSS23a]), Chernoff and Trotter formulas,

stability and convergence of sequences of A-contractive semigroups,

discrete to continuous limit and chaos propagation,

the case of time dependent MPVFs,

applications to the stochastic gradient descent method.

We will however devote a particular effort to clarify some relations between totally dissipative and
metrically dissipative MPVFs, showing that they are intimately connected with the possibility
to construct a MPVF starting from discrete measures.

Construction of a maximal totally dissipative MPVF from a discrete core. We in-
vestigate the second issue (QQ.2) in Section 8, i.e. how to recover a (unique) maximal totally
dissipative “version” of a (totally or metrically) A-dissipative MPVF F defined on a sufficiently
rich core C of discrete measures. This corresponds to the derivation of a mean-field description
from a compatible family of discrete particle systems.
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Just to give an idea of a simple case of core, we consider a totally convex subset D of the set
P¢(X) of discrete measures with finite support: total convexity here means that, whenever the
marginals xéu, i =0,1, of p € P¢(X x X) belong to D, then also ((1 — )x° + tx!)yp belong to D
for every t € (0,1).

For every N € N we consider the collection Cp of uniform discrete measures p, = % 22;1 0z,
belonging to D, where & = (21, -- ,2y) is a vector in XV with distinct coordinates. The set Cx
corresponds to a subset Cn of XY which is invariant under the action of the group of permutations
Sym(N) of the components,

o = (Te(1), ", To(Ny), for every o€ Sym(N), ¢ = (z1,---,7N) € XN,

We will suppose that Cy is relatively open in X for every N € N. Examples of D are provided by
the collection of all the discrete measures p such that supp(u) is contained in a given convex open
subset U of X. Another interesting case, assuming 0 € U, is given by all the discrete measures
such that supp(u) — supp(p) C U. The case of the whole set Pf(X) is still interesting.

Suppose that we have a deterministic single-valued PVF F defined in C = |J5 Cny (when F is
not deterministic, the construction is more subtle). We can then represent F on each Cy by a
vector field £V : Cy — XV satisfying the invariance property £V (cz) = o fV(x), so that

N
1
Fluz] = ¥ Z‘S(xn,fﬁ(w)) for every « € Cy,
n=1

and, at least for a short time, the evolution of discrete measures in Cp can be described by
[ = % 27]1\[:1 Opn(t) = Ma(r) Where the vector x(t) = (z1(t),---xn(t)) € Cy solves the system

a(t) = £V ((1)). (1.21)

We assume the following A-dissipativity conditions on the maps f~: for every pair of integers
M,N € Nwith M | N, if ¢ € Cjy, y € Cy and 6 is an optimal correspondence from {1,--- , N}
to {1,--+, M} such that

N N
1 1
Ha = Nzém)(n) and Nzwn _x‘g(n)‘Q = W22(/~Lac=’/y)v
n=1 n=1
then
N N
E<.f7jzv(y) - f%n)(m)ayn - 909(n)> < )\Z ‘yn - xG(n)IQ'
n=1 n=1

We will show that F is in fact totally A-dissipative and admits a unique maximal extension F,
whose flow can be interpreted as the unique mean-field limit of the particle systems driven by
(1.21). This fact guarantees two interesting properties: the local in time evolution corresponding
to (1.21) admits a unique global extension which induces a semigroup (S;¥);>0 on Cy which
corresponds to the restriction to Cy of the semigroup S; generated by F (and characterized
e.g. by the continuity equation (1.15) and by (1.16)). Moreover, thanks to (1.10) for every
to € C and every sequence (uév )Nen with ,uév € Cy and converging to ug as N — oo we have
SN(pd) — St(po) in P2(X) locally uniformly w.r.t. t € [0, +00).

Thanks to the stability properties of the Lagrangian flow, Theorem 4.9 also shows that the
trajectories of the discrete particle system uniformly converge in a measure-theoretic sense to
the characteristics of the mean-field system.

As a byproduct, we obtain that when the domain of a totally dissipative MPVF F contains a
dense core then its maximal extension is unique and can be characterized by a suitable explicit
construction starting from the core itself and its flow has a natural mean-field interpretation.
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Our result also provides interesting applications to geodesically convex functionals and their
approximations (see Sections 5,9).

First of all, if the proper domain of a lower semicontinuous and geodesically convex functional
¢ : Po(X) — (—o0, +00] contains a discrete core C which is dense in energy, then ¢ is totally
convex, i.e. it is convex along all the linear interpolations induced by arbitrary couplings. An
important class is provided by continuous and everywhere defined geodesically convex functionals,
which thus turn out to be totally convex.

The same property holds for any functional ¢ : Po(X) — (—o0, +00] which arises as Mosco-like
limit of a sequence of continuous and geodesically convex functionals which are everywhere finite.
In particular, such approximation is impossible for all the functionals which are not totally
convex, as the relative entropy functionals w.r.t. log-concave measures.

Plan of the paper. After a quick review in Section 2 of the main tools on Wasserstein spaces
used in the sequel, we summarize in Subsection 2.2 the notation and the results concerning
Multivalued Probability Vector Fields and EVI solutions.

In Section 3, we introduce the notion of totally dissipative MPVF and we study its consequences
in terms of existence and description of Lagrangian solutions: in Subsection 3.1 we study the
properties of the Yosida approximations, the resolvent operator and the minimal selection of
law-invariant operators in the Hilbert space X of parametrizations, Subsection 3.2 deals with the
relation between dissipativity for such law-invariant subsets of X and the corresponding total
dissipativity for their law. These results are used in Subsection 3.3 to study the particular case
of deterministic totally dissipative PVFs.

Section 4 contains the main existence, uniqueness, stability, and approximation results for the
Lagrangian flow generated by a totally dissipative MPVF, together with its various equivalent
characterizations.

In Section 5, we study the behaviour of functionals ¢ : Po(X) — (—o00, +00] which are convex
along any coupling, proving the existence of gradient flows (equivalently, EVI solutions for the
MPVF given by their subdifferential) still exploiting their representation in terms of a convex
functional ¢ defined in the parametrization space X.

Section 6 is devoted to study the properties of couplings between discrete measures, in particular
showing that such couplings are “piece-wise” optimal. This property is then exploited in Section
7 where we show that a dissipative MPVF is totally dissipative along discrete couplings.

In Section 8 we show that starting from a dissipative MPVF F definied on a sufficiently rich
core C of discrete measures, it is possible to construct a maximal totally dissipative MPVF F, in
a unique canonical way.

Section 9 is in the same spirit but in the case of a geodesically convex functional ¢: under
analogous approximation properties, it is possible to show that ¢ is actually totally convex and
then satisfies the assumptions of Section 5.

Finally, Appendix A contains many useful results related to A-dissipative operators in Hilbert
spaces that are more commonly known for A = 0 (the main reference is [Bré73]), while Appendix
B lists some of the results of [CSS23b] related to Borel partitions and approximations of couplings
that are used in the present work.

Acknowledgments. G.S. and G.E.S. gratefully acknowledge the support of the Institute for
Advanced Study of the Technical University of Munich, funded by the German Excellence
Initiative. G.C. and G.S. have been supported by the MIUR-PRIN 2017 project Gradient
flows, Optimal Transport and Metric Measure Structures. G.C. also acknowledges the partial
support of INDAM-GNAMPA project 2022 Evoluzione e controllo ottimo in spazi di Wasserstein
(CUP_E55F22000270001) and the funds FSR Politecnico di Milano Prog. TDG3ATENO02. G.S.
also thanks IMATI-CNR, Pavia.
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2. PRELIMINARIES

In the following table, we provide a list of the adopted symbology for the reader’s convenience.
We then recall the main notions and results of Optimal Transport theory and finally, in Subsection
2.2, we collect the fundamental objects and basic results taken from [CSS23a] needed to develop
our analysis. As a general rule, we will use bold letters to denote maps (even multivalued) with
values in the Hilbert space X or measures/sets of measures in product spaces as couplings in
X x X or probability vector fields in TX.

bo

B

B,

BO

cl(F)

co(E),co (F)

D(F)

D(¢)

fO

F, F|y]

A

I'(p,v)

Lo, v)

L, LQ,LX,@(’Y

ix

Jr

mg(y)

D]z

R

(Q,B,P)

(Qv‘BJP)’ (;BN)NE‘JI)
P(X)

Pp(X), Prn(X)
Pov, Pum(X)
:PC(X)7CP2(X)
P5(X)
ot s
['7 ']r’ [" ']l
[‘I)’ﬂ]r,tv [(I)7’l9]l,t
[Fa/'I']T,h [F7ﬂ']l7t
S(Q2) =S(Q,B,P)
S~ (€2)

St, 8¢

St

8(X,D), 8(X)
WQ(N?”)

X

X, Xy, Xoo

X5, Xw

>

X, X*, v, v

Xt

bk ikl

the barycenter of ® € P(TX) as in Definition 2.3;

the A-transformation of a set B as in Remark A.1;

Yosida approximation of a maximal dissipative B, see Appendix A;

minimal selection of a maximal dissipative B, see Appendix A;

the sequential closure of F', see Proposition 2.20;

convex and closed and convex envelope of a set E in a Hilbert space;

the proper domain of a set-valued function as in Definition 2.14;

the proper domain of a functional ¢;

the map defined in Theorem 3.17;

a multivalued probability vector field and its section at p € P(X), see Definition 2.14;
the A-transformation of F as in (2.18);

the set of admissible couplings between p, v, see (2.1);

the set of optimal couplings between pu, v, see Definition 2.3;

the maps as in the beginning of Section 3;

the identity map on a set X;

the resolvent operator of a maximal dissipative B, see Appendix A;

the 2-nd moment of v € P3(X) as in Definition 2.3;

the partial 2-nd moment of & € P5(TX) as in (2.5);

a directed subset of N w.r.t. the order induced by <, see Appendix B;

a standard Borel space endowed with a nonatomic probability measure, Def. B.1;
a -refined standard Borel probability space, see Definition B.3;

the set of Borel probability measures on the topological space X;

the sets defined in (3.19),(3.20);

the sets in (8.2);

measures in P(X) with compact support or finite quadratic moment, see (2.6);
the space P2(TX) endowed with the strong-weak topology as in Definition 2.4;
projections from a product space to one or more factors as in (2.1);

the pseudo scalar products as in Definition 2.12;

the duality pairings as in Definition 2.12;

the duality pairings as in Definition 2.18;

measure-preserving isomorphisms on (€2, B, P), see Appendix B;

subset of S(2, B,P) of maps that are By — By measurable;

Eulerian and Lagrangian semigroups, Def. 4.1;

semigroup generated by a maximal dissipative B, see Appendix A;

the subsets of X x P2(X) as in (2.15);

the L2-Wasserstein distance between p and v, see Definition 2.3;

a separable Hilbert space;

the Hilbert spaces L%(€2, B,P; X), L?(2, By, P; X) and the union of the X respectively;
a separable Hilbert space endowed with its strong and weak topologies;

the tangent bundle to X, usually endowed with the strong-weak topology;

the projection maps defined in (2.2) and in Section 2.2;

the evaluation map defined in (2.4).

In this first section of general measure theory preliminaries, we consider X,Y to be Lusin
completely regular topological spaces. We recall that a topological space X is completely reqular
if it is Hausdorff and for every closed set C' and point € X \ C there exists f : X — [0, 1]
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continuous function s.t. f(C) = {1} and f(x) = 0. This general setting is convenient to be
adapted to our analysis which deals with Borel probability measures defined in (subsets of) a
separable Hilbert space X, which could be endowed with the strong or the weak topology.

We denote by P(X) the set of Borel probability measures on X endowed with the weak/narrow
topology induced by the duality with the space of real valued continuous and bounded functions
Cp(X). Thus, given a directed set A, we say that a net (tq)aca C P(X) converges narrowly to
€ P(X), and we write po — p in P(X), if

lim/ godua:/ edu Ve e Cy(X).
@ Jx X

Given p € P(X) and a Borel function f: X — Y, we define the push-forward fyu € P(Y') of u

through f by
/SOd(fﬁ#):/ pofdu
Y X

for every ¢ : Y — R bounded (or nonnegative) Borel function.
We recall the so-called disintegration theorem (see e.g. [AGS08, Theorem 5.3.1]).

Theorem 2.1. Let X, X be Lusin completely reqular topological spaces, p € P(X) andr: X — X
a Borel map. Denote with p = ryp € P(X). Then there exists a pi-a.e. uniquely determined Borel
family of probability measures {p,}rex C P(X) such that py (X \ r~1(x)) =0 for p-a.e. v € X,

and
| #l)anta) = | ( L e duw(ﬂc)) e

for every bounded Borel map ¢ : X — R.

Remark 2.2. When X = X; x X, and r is the projection 7! on the first component, we can
canonically identify the disintegration {p, }zex, C P(X) of p € P(X1 x Xo) wrt. p = wéu with

a family of probability measures {jiz, z,ex, C P(X2). We write p = / oy dp(xy).
X3

Given u € P(X), v € P(Y), we define the set of admissible transport plans
D(p,v) :={y€P(X xY)| 7Tjjl")’ = [, 7757 =v}, (2.1)

where we denoted by 7, i = 1,2, the projection on the i-th component and we call Wé")/ the ¢-th
marginal of ~.

2.1. Wasserstein distance in Hilbert spaces and strong-weak topology

From now on, we denote by X a separable (possibly infinite dimensional) Hilbert space with
norm | - | and scalar product (-,-). When it is necessary to specify it, we denote by X* (resp. X*)
the Hilbert space X endowed with its strong (resp. weak) topology. We remark that X% is a
Lusin completely regular space and that X® and X" share the same class of Borel sets and thus
of Borel probability measures. Therefore, we are allowed to adopt the simpler notation P(X) and
to use the heavier P(X%) and P(X™) only when we will refer to the correspondent topology.

We adopt the notation TX for the tangent bundle to X, which is identified with the cartesian
product X x X with the induced norm |(z,v)| := (Jz|> + |v|?) /2 and the strong-weak topology of
X% x X" (i.e. the product of the strong topology on the first component and the weak topology
on the second one). The set P(TX) is defined thanks to the identification of TX with X x X and
it is endowed with the narrow topology induced by the strong-weak topology in TX.

We will denote by x,v : TX — X the projection maps defined by

x(z,v) =z, v(z,v)=n0. (2.2)
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When dealing with the product space X? we use the notation
s: X2 = X2 s(zg,x1) = (21, 70),
X X2 X, XM wg,x1) = (1 — t)zo + txy, te[0,1]. (2.4)
Definition 2.3. Given p € P(X) and ® € P(TX) we define

/ o du(e), (0= [ e (25)
™
and the spaces
Pa(X) :={p € P(X) | ma(p) < +oo}, Pao(TX|p) := {‘11 € P(TX) : ¥ = p, T2 < oo} (2.6)
Given W € Po(TX|u), the barycenter of W is the function by € L*(X, u; X) defined by

by (z) = /de\Ilz(U) for p-a.e. x € X, (2.7)

where {Vy }zex C Pa(X) is the disintegration of W w.r.t. pn. We set bar (¥) := (ix, by )su. We
say that ¥ is concentrated on a map (or it is deterministic) if ¥ = bar (V).

For the following recalls on Wasserstein spaces we refer e.g. to [AGS08, §7]. On Py(X) we define
the L?-Wasserstein distance Wa by

WGt =int { [ o=y arto) v € D)} (2.5)

For the sequel, the set I',(u, ') denotes the subset of admissible plans in I'(u, ') realizing the
infimum in (2.8). We say that a measure v € Po(X x X) is optimal if v € Fo(ﬂév,wg‘y). We
recall that v € Po(X x X) is optimal if and only if its support is cyclically monotone i.e.

for every N € N and {(2n, yn) }o_; C supp~y with zo := zy we have

N
> (Yo n — 21) = 0. (2.9)

n=1
We recall that the metric space (P2(X), Ws) is a complete and separable metric space and the
Wa-convergence (sometimes denoted with &)) is stronger than the narrow convergence. More
precisely, if (fin)nen C P2(X) and p € P2(X), the following holds (see [AGS08, Remark 7.1.11])

— p in P(X®
unv—vg,u,asn%—i—oo = = p i PX), as n — +oo.
ma (pin) — ma(p),

In the following Definition 2.4 and Proposition 2.5, we recall the topology of P5¥(TX) (see [NS21;
CSS23al).

Definition 2.4 (Strong-weak topology in P2(TX)). We denote by P5¥(TX) the space P2(TX)
endowed with the coarsest topology which makes the following functions continuous

D — /C(w,v)d@(x,fu), ¢ € C3¥(TX),

where C3*(TX) is the Banach space of test functions ¢ : TX — R such that
¢ is sequentially continuous in TX = X% x XY,
Ve>03A4:.>0:[¢(z,v)] < Ac(1 + |z]?) + o> for every (z,v) € TX.

The following Proposition (whose proof can be found in [NS21]) summarizes some of the properties
of the topology of P5¥(TX).
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Proposition 2.5.
(1) If (®r)nen C P2(TX) is a sequence and ® € Po(TX), then ®,, — @ in P5(TX) as n — oo
if and only if
(a)q) — & in P(TX) = P(X* x X¥)

) /|x| 4D, ( /|a:|2d<1> 2.0)

(c) Sup/\v] d®,(z,v) < oo.

n
(2) For every compact set X C Pa(X?®) and every constant ¢ < oo the sets
K. = {(I) € Po(TX) : 4@ € K, /\Uqu)(a:,v) < c}
are sequentially compact in P5¥(TX).

For the sequel, we recall the concept and main properties of geodesics in Py(X). We denote
equivalently by p(t) or p; the evaluation at time t € J C R of a curve p : I — Po(X).

Definition 2.6 (Geodesics). A curve p : [0, 1] — P2(X) is said to be a (constant speed) geodesic
if for all 0 < s <t <1 we have

Wa(ps, p1t) = (t — s)Wa(po, p1)-
We also say that u is a geodesic from g to 1.

Definition 2.7 (Geodesic and total convexity). We say that A C Po(X) is a geodesically convex
set if for any pair pg, p1 € A there exists a geodesic  : [0,1] — Po(X) from ug to py such that
pe € A for all t € [0,1].

We say that A C Po(X) is totally convex if for any pair po, p1 € A and any coupling v € T'(po, p11),
we have that (x')yy € A for any t € [0,1].

Remark 2.8. Since total convexity will play a crucial role in the present paper, let us recall a
few examples of totally convex sets in Po(X), which are induced by a lower semicontinuous and
convex function P : X — (—o00, +00] and a real number ¢: it is sufficient to consider the set of
w € Po(X) satisfying one of the following conditions:

P([aau@) <e. [Pajan@) <. [Pa-y)dus ey <c

Clearly, one can replace large with strict inequalities in the previous formulae. Choosing P as
the indicator function of a convex set U C X (i.e. P(z) =0 if z € U, P(z) = 400 otherwise), one
obtains conditions confining the barycenter, supp u, or supp ¢ — supp p to a given set U.

The following useful result (see [AGS08, Theorem 7.2.1, Theorem 7.2.2]) on geodesics also points
out that total convexity is stronger than geodesic convexity.

Theorem 2.9 (Properties of geodesics). Let po,pu1 € Po(X) and p € To(po, p1). Then u :
[0,1] = Po(X) defined by

Mt = (Xt)ﬁ“> te [07 1]1 (210)
is a (constant speed) geodesic from g to pi. Conversely, any (constant speed) geodesic . from
Lo to p1 admits the representation (2.10) for a suitable plan p € T'o(p0, pi1)-
Finally, if p is a geodesic connecting po to w1, then for every t € (0,1) there exists a unique
optimal plan p,, between g and o (resp. pyy between py and py) and it is concentrated on a
map w.r.t. e, meaning that there exist Borel maps r¢, 7} : X — X such that

Moo = (Ex,7e)spe, Moy = (Ex, 7710

The following defines the counterpart of C3°(R?%) when R? is replaced by X
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Definition 2.10 (The space Cyl(X) of cylindrical functions). We denote by I14(X) the space
of linear maps ™ : X — RY of the form w(x) = ((x,e1),---,{(x,eq)) for an orthonormal set

{e1,-+ ,eq} of X. A function ¢ : X — R belongs to the space of cylindrical functions on X,
Cyl(X), if it is of the form

p=1pom
where m € M4(X) and ¢ € CL(RY).

Given v € Po(X) we define the tangent bundle to P2(X) at v by

L2(X,v: X
Tan, Po(X) = (Vo | p € Cyl(X)}~ ),

If J C R is an open interval and p : I — Po(X) is a locally absolutely continuous curve, we define
the metric velocity of p at t € J as

— lim VVz2 (Nt+h7 Mt)

‘2 . LA
' h—0 h2 ’

|t

which exists for a.e. t € J.
The following result (see [AGS08, Theorem 8.3.1, Proposition 8.4.5 and Proposition 8.4.6])
characterizes locally absolutely continuous curves in Pa(X).

Theorem 2.11 (Wasserstein velocity field). Let p: 3 — Po(X) be a locally absolutely continuous
curve defined in an open interval I C R. There exists a Borel vector field v : I x X — X and a set
A(p) € I with Z(J\ A(p)) = 0 such that for every t € A(u) the following hold

(1) vy € Tan,, Po(X);

(2) Jxlvil? dpe = |ul*;
(8) the continuity equation Oy + V - (vepy) = 0 holds in the sense of distributions in J x X.

Moreover, v; is uniquely determined in L*(X, pg; X) for t € A(u) and

I Wa((x + hvg)gpue, purn)
1m
h—0 |h|

=0 foreveryte A(p).

2.2. Duality pairings

In this subsection we collect the main objects involving duality pairings between measures in
P2(TX). We report here a summary of the results needed in the sequel and we refer to [CSS23a]
for a wider discussion on this matter.

As usual, we denote by x?, v, x! : TX x X — X the projection maps of a point (xq,vg, 1) into z,
v or x1, respectively (and similarly with x% v% x!, v! when they are defined in TX x TX).

Definition 2.12 (Metric-duality pairings). For every ®g, ®; € P2(TX), u1 € Po(X), 9 €
Pa(X x X), t €[0,1] and ¥ € ‘.PQ(TX|X§19), we set

A(®o, 1) := {o € T'(Po, 1) | (0, x )0 € Lo(x¢®o, 1) }
A(®g, @1) := {© € (g, 1) | (x°,x1);© € ['y(x; Lo, x;P1) } ,
L0, 9) := {0 € Po(TX x X) | (. x' )y =0, (x' o (x",x!),V0);0 = U} .



A LAGRANGIAN APPROACH TO TOTALLY DISSIPATIVE EVOLUTIONS IN WASSERSTEIN SPACES 15

We set

[®o, p1], == mln{ xg — x1,v0)do | o € A((I)O,,ul)}
TX><X

[@o, p1]; == max{ (xg — x1,v0)do | o € A(@o,ul)} ,
TXXxX

[CI)O,(I)I] ;= min {/ wo — 1,00 — ’U1> de | O c A((I)(), @1)}
TX X

[(I)O,(I)l] :max{/ X0 — T1,U 0—1)1)(21@’@6/\@0,‘1’1)}
TXx

[\If ’19] = {/<x0 — X1, V0 da(xo,vo,:rl) | o c Ft(\l’ ’19)}

(W, 9], := max{/ xo — 1, v0) do(zg, v, 1) | 0 € T (¥, 19)}
The following Theorem summarizes some of the properties of duality pairings analyzed in
[CSS23al.

Theorem 2.13. The following properties hold.
(1) (Inversion) For every 9 € Po(X?), t € [0,1], ® € ?2(TX|X§19) it holds

[(I)a ﬂ]r,t = _[(I)7 Sﬁ’ﬂ]l,l—ta

where s is as in (2.3).
(2) (Comparison) For every po, i1 € P2(X) and every ®g € Po(TX|uo), P1 € Po(TX|u1), it

holds
(@0, ], = inf  [@0, 00, [Po,u];=  sup [P, Iy,
9€lo (1o 1) 0€To(1o,k1)
(@0, ], + [@1, po), < [Po, @1l [Po, pu]; + [P1, k0], = [Po, 1y
and

(@0, ®1], < [®o, pu],. + [P1, po]; < [Po, P1]; -
(3) (Restriction) For every 9 € Po(X?), every 0 < s <t < 1 and every ® € Pa(TX[x3),
v e TQ(—D(|X§'I9) we have
1
= S[CI), (x*,x")9r0, [V, 9] = E[\P’ (x*, x40, (2.11)
(4) (Trivialization) If 9 € Po(X?), t € [0,1], ® € ﬂ’g(TX\xgﬂ) and xt : X2 — X is 9-essentially
injective or ® is concentrated on a map, then I'y(®,9) contains a unique element and

®, 9], = [®, 9], = /<b¢ (!0, 21)) s 0 — 1) A9z, 1), (2.12)

with be the barycenter of ® as in Definition 2.5. '
(5) (Semicontinuity) Let (®!)nen C P2(TX) be converging to ' in P (TX), i = 0,1, let
(9n)nen C Pa(X2) be converging to 9 in Pa(X?), let (vn)nen C P2(X) be converging to v

in Po(X) and let t € [0,1]. Then
lim inf [<I> ] > [(I)O,I/}T, lim sup [Cbg,l/n]l < [CDO,V]

n—oo n—oo

[®, 3]s

I

liminf [®), @] > [®°,®'] , limsup [}, ®,], < [°, ']

n—oo n—oo

lim 1nf[<I> Inlrt [CI)O,'B]M, lim sup[@?l,ﬁn]l,t < [@0,19]17,5

n—ro0 n— 00

1
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(6) Let 3 C R be an open interval, let p',p? : I — Po(X) be locally absolutely continuous
curves and let v',v? : J x X — X be Borel vector fields such that [0l 2(x i x) € L} .(9),
i =1,2, and such that
Oepiy + V - (vipg) =0
holds in the sense of distributions in J x X, i = 1,2. Let A(u'), A(u?) C J be as in

Theorem 2.11. Then '
(a) for every v € Po(X) and every t € A(u'), i = 1,2, it holds

WZZ(Mi.Fha V) - WQZ(:UL V)

1}1\1&)1 oh == [(iX7 ’U%)ﬂ/ﬂi, l/],,,7
Wi v) = Wi v)
g ) SR

(b) there exists a subset A C A(p') N A(u?) of full Lebesque measure such that s
W2(ul, u2) is differentiable in A and for every t € A it holds

1d . . . .
5@”@(###?) = [(ix, v)ui s (i, )i ], = [(ix, vi)eiae s (i, v3)as] -

Proof. We give a few references for the proofs. Property (1) is [CSS23a, (3.27)]. Property (2)
comes from the definition and [CSS23a, Corollary 3.7]. We sketch the proof only for the last
property in (2): take o € A(Pg, p1) such that

(Do, p1], = / (xo — x1,v0) do,
TXxX

and consider ©® € Py(TX x TX) such that (x’,v?,x!);® = o and (x',v!);© = ®;. Then
® € A(Pg, 1), so that

[@o, P1], < / (o — 21,00 — v1) dO
TXXTX

= / (xg — x1,v0) do +/ (x1 — x0,v1)dO
TXxX TXXTX
< [®g, 1], + [P1, pro]; -

The strategy for proving the remaining inequality in (2) is identical.
Assertion (3) follows from the fact that, if we define 7 : TXx X — TXx X and £ : Po(TX x X) — R
as

T(x07v07$1> = (Xs(.%'(],x1)7vo,xt(x0,$1)), L(O’) = / <U(),I'() - 1‘1> dO'(I'(),’U(),.’L'l),
TXxX

it is clear that
(@, p)s = nf{L(0) | & € Ty(®, )}, [, (<", x)spalro = inf {£ () | & € To(@, (x*,x)ypa)}

Then, the first equality in the statement follows noting that T3 (I's(®, ) = To(®, (x5, x")sp) and
that L(Tyo) = (t — 5)L(0o) for every o € Po(TX x X). The second equality follows from the first
one and (1). Item (4) is [CSS23a, Remark 3.19]. Item (5) easily follows by [CSS23a, Lemma
3.15]. Finally, item (6) is provided by [CSS23a, Theorem 3.11, Theorem 3.14, Remark 3.12]. O

2.3. Multivalued probability vector fields, metric dissipativity and EVI solutions

We recall now the main definition of Multivalued Probability Vector Field and of metric dissipa-
tivity.
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Definition 2.14 (Multivalued Probability Vector Field - MPVF). A multivalued probability
vector field F is a nonempty subset of Po(TX) with D(F) := x4(F) = {x4® : ® € F}. Given any
w € Pa(X), we define the section Fu] of F as

Flu] :={® e F [ x® = u}.

We say that F is a Probability Vector Field (PVF) if xy is injective in F, i.e. Flu] contains a
unique element for every u € D(F).

A selection F' of a MPVF F is a PVF such that F' C F and D(F') = D(F).

A MPVF F C Po(TX) is deterministic or concentrated on maps if every ® € F is deterministic
(see Definition 2.3).

Starting from a MPVF F, the barycentric projection (2.7) induces a deterministic PVF which
we call bar (F): it is defined by

bar (F) [1] = {bar () = (ix, ba)gu : @ € Flul}, p € D(F). (2.13)
We will also use the notation
map (F) [u] i= { £ € L2(X, 1;X) : (ix, f)aps € F[u]}, € D(F), (2.14)

to extract the deterministic part of a MPVF F: notice that a MPVF F is deterministic if and

only if F = bar (F) = {(ix, £)st : f € map (F) i), o € D(F)}.
Conversely, for a given set D C Py(X) let us consider a continuous map f : 8 (X, D) — X where

S(X,D):={(x,n) e Xx D |z esupp(p)}, with 8 (X):=8(X,Pa2(X)). (2.15)

If, for every p € D, the integral / |f(z, 1)|? dpu(z) is finite, then f induces a PVF F defined by

F = {(ix, f(--1)spe : p € D}, D(F)=D.
We often adopt the convention to write f[u] for the function
flu)(z) == f(z,p), =z €supp(p),
in particular when f[u] is just an element of L?(X, u; X).

Definition 2.15 (Metrically A-dissipative MPVF). A MPVFE F C Po(TX) is (metrically) A-
dissipative, \ € R, if

[@g, ®1], < AWE (o, p11) Vo, @1 €F, po = x3®o, p11 = x3P1. (2.16)
In case X\ =0, we simply say that ¥ is dissipative.

Remark 2.16. Thanks to Theorem 2.13(2), (2.16) implies the weaker condition

[®0, 1], + [@1, pol, < AW3 (o, 1), ¥V o, @1 € F, o = x3@0, p1 = x3®1. (2.17)

Given a MPVF F C P3(TX), we define its A-trasformation, F*, and its opposite, —F, as
F = L)F = {LQ@ L P F} : (2.18)
—F :={(x,~v);®: & € F}, (2.19)

where L* : TX — TX is the bijective map defined by
L = (x,v — Ax).

Similar to Remark A.1 for the case of operators in Hilbert spaces, we recall the following result
(cf. [CSS23a, Lemma 4.6])

Lemma 2.17. F C Po(TX) is a A-dissipative MPVF (resp. satisfies (2.17)) if and only if F* is
dissipative, i.e. 0-dissipative (resp. satisfies (2.17) with A =0).
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Definition 2.18. Let F C Po(TX), po, p1 € D(F). We define the set
(0, i |F) = {p € D(po, 1) | xgpe € D(F) for every ¢ € [0,1]}.
If p € I'(po, p1|F) and t € [0, 1], we define
[F, plrs :=sup{[®, plre | 2 € Flue]},  [F,pfie := inf{[®, plis | & € Fpu]}.
In the following Theorem we discuss the behaviour of duality pairings with F along geodesics.

Theorem 2.19. Let F be a MPVF, let p19, 11 € D(F), let pu € T'(po, p1|F) N oo, p1) and let
W?2 = W2(uo, ). If F satisfies (2.17), then the following properties hold.

(1) [F, iy < [F, iy for every t € (0,1);

(2) [F,pmlrs < [F,plie + AW2(t — s) for every 0 < s <t <1;

(3) t > [F,ple + AW?t and t — [F, u]i + AW?t are increasing respectively in [0,1) and in
(0,1];

(4) [F,plie = [F, plre at every point t € (0,1) where one of them is continuous and thus
coincide outside a countable set.

Proof. Item (1) immediately follows from the definition. Item (2) is proven in [CSS23a, Theorem
4.9], while (3) and (4) follow from (2). O

Proposition 2.20. If F is a \-dissipative MPVF then its sequential closure

cl(F) = {@ € Po(TX): 38, € F: B, — & in fP;“’(TX)}. (2.20)
is A-dissipative as well.
Proof. 1t follows from Theorem 2.13(5). See also [CSS23a, Proposition 4.15]. O
We recall the definition of A-EVI solution for a MPVF.

Definition 2.21 (A-Evolution Variational Inequality). Let F be a MPVF and let A € R. We
say that a continuous curve p:J — D(F) is a \-EVI solution for the MPVF F if
1d
2dt
where the writing 2'(int (J)) means that the expression has to be unerstood in the distributional
sense in int (J).
Remark 2.22. In light of Theorem 2.13(6a) and recalling [CSS23a, Remark 5.2], an absolutely
continuous curve p : J — D(F) is a A-EVI solution for the MPVF F if and only if

W3 (116, x:®) < AW (g, x4 @) — [®, ], in P’ (int (3)) for every ® € F,

lim VV22 (:ut+h7 V) — W22 (Mtr I/)
hl0 2h

where A(p) C Jis as in Theorem 2.11.

< /\WQQ(,ut,XﬁCI)) — [P, ], for every t € A(u) and every ® € F,

3. INVARIANT DISSIPATIVE OPERATORS IN HILBERT SPACES AND TOTALLY DISSIPATIVE MPVFs

From now on, X will denote a separable Hilbert space; we will also consider a standard Borel
space (2, B) endowed with a nonatomic probability measure P (see Appendix B and in particular
Definition B.1) and the Hilbert space X := L?(Q, B,P; X). We will use capital letters X,Y,V,...
to denote elements of X (i.e. X-valued random variables).

We denote by ¢ : X — Po(X) and 12 : X x X — Po(X x X) = P2(TX) the push-forward operators

UX) = XP, A(X,V) = (X, V)P (3.1)
We frequently use the notations tx = ¢(X) and L?Xy =2(X,V).
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Definition 3.1 (Measure-preserving isomorphisms). We denote by S(2) the class of B-B-
measurable maps g : Q — Q which are essentially injective and measure preserving, meaning that
there exists a full P-measure set Qg € B such that g is injective on Qg and g = P. Every g € S()
has an inverse g~ € S(Q) (defined up to a P-negligible set) such that g~ og = gog ! = iq
P-a.e. in ).

In Section 3.1 we report some properties (see [CSS23b] for details and proofs) of the resolvent
operator, the Yosida approximation and the minimal selection of a maximal A-dissipative operator
B C X x X which is invariant by measure-preserving isomorphisms. In Section 3.2 we study the
relation between A-dissipativity for an invariant subset B of X x X, and correspondent total
A-dissipativity of the image/law F of B in Py(TX). The particular case of deterministic MPVFs
is considered in section 3.3. These results are then used, in Section 4, to analyze well-posedness of
the Eulerian flow for F generated by the corresponding Lagrangian one for B and the generation
of A-EVI solutions in Py(X).

3.1. Law invariant dissipative operators

Given a set B C X x X (as usual, we will identify subsets of X x X with multivalued operators),
we define BX :={V € X : (X,V) € B} and the domain D(B) := {X € X: BX # 0}.

When B is maximal A-dissipative, J., B, and B° denote respectively the resolvent operator,
the Yosida approximation and the minimal selection of B (we refer to Appendix A). Here, we
just recall that J, := (iy — 7B)~!is a (1 — A7)~ !-Lipschitz map defined on the whole X for
every 0 < 7 < 1/AT, where we set AT := AV 0 and 1/A\* = 400 if AT = 0. The minimal selection
B° : D(B) — X of B is also characterized by

B°X = limﬂ.
710 T

I

The Yosida approximation of B is defined by B, := J% For every 0 < 7 < 1/AT, B, is
2—\T

maximal A/(1 — A\7)-dissipative and 7(iogy-Lipschitz continuous.

If B is a maximal \-dissipative operator, then there exists (cf. Theorems A.5,A.6 in Appendix
A) a semigroup of e*-Lipschitz transformations (S;);>0 with S; : D(B) — D(B) s.t. for every
Xo € D(B) the curve t — S;Xj is included in D(B) and it is the unique locally Lipschitz
continuous solution of the differential inclusion

{Xt e BX; ae. t>0,

}(hZOZZ.Xb.

By Theorem A.5(3), we also have
. Si+nXo — St Xo
im
h10 h

= B°(S:Xy), for every Xo € D(B) and every ¢t > 0.

Let us now consider the particular classes of operators which are invariant by measure-preserving
isomorphisms or law-invariant.

Definition 3.2 (Invariant operators). We say that a set (or a multivalued operator) B C X x X
is invariant by measure-preserving isomorphisms if for every g € S(Q) it holds

(X,V)eB = (Xog,Vog) € B.
A set B C X x X is law invariant if it holds
(X,V)eB, X'V eX, (X,VP=(X,V)P = (X'V') € B.

An operator A : X D D(A) — X, is invariant by measure-preserving isomorphisms (resp. law
invariant) if its graph is invariant by measure-preserving isomorphisms (resp. law invariant).
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We recall the notation in (2.15) and that ¢(D(B)) = {Xﬁp X € D(B)} is the image in P2(X)

of the domain of B. The results in the following Lemma 3.3 and Theorem 3.4 are presented in
[CSS23b, Section 4] to which we refer for the proofs.

Lemma 3.3 (Closed invariant sets). Let B C X x X be a closed set. Then B is invariant by
measure-preserving isomorphisms if and only if it is law invariant.

Theorem 3.4 (Representation of resolvents, Yosida approximations, and semigroups). Let
B C X x X be a mazximal \-dissipative operator which is invariant by measure-preserving
isomorphisms. Then for every 0 < 7 < 1/AT, t > 0 the operators B, B,,J,, Sy, B° are law
invariant. Moreover there ezist (uniquely defined) continuous maps j, : 8 (X) = X, b, : § (X) — X,

and 5, : 8 (X, o(D(B)) ) = X such that
(1) for every u € Pa(X), the map j. (-, 1) : supp(u) — X is (1 — A7) ~L-Lipschitz continuous,
for 0 <71 <1/
(2) for every u € Po(X), the map b (-, p) : supp(p) — X is 7(21__’\/\77) -Lipschitz continuous, for
0<T<1/AT;
(3) for every p € L(D(B)), the map sy(-, p1) : supp(p) — X is e-Lipschitz continuous,

and
for every X € X, J: X (w) = 5, (X(w), XyP) for P-a.e. w e Q, (3.2)
for every X € X, B; X (w) = b (X (w), XyP) for P-a.e. w € ,
for every X € D(B), S; X (w) = 8(X (), X4P) for P-a.e. w € Q, (3.4)

together with the invariance and semigroup properties
peuDB)) = sl uhpecuDB)); peuDB) = si(-p)n e (D(B)),
sten(, 1) = sn(si(w, 1), si( i) for every (z,1) € 8 (X,o(D(B)) ), t.h > 0.
Finally, for every p € o(D(B)), there exists a map b°[u] € L*(X, p; X) such that for every X € X
if X4P = p then X € D(B), B°X(w) = b°[u)(X(w)) for P-a.e. w € . (3.6)

(3.5)

For every u € L(D(B)), the map b°[u] is A-dissipative in a set Xg C X of full u-measure and
satisfies
2

i [ ‘}11(8t+h($,u)—St(af,u))—b°[8t(wu)ﬂu](8t(x,ﬂ)) du(@) =0, t>0.  (37)

hlO

Notice that when p € «(D(B)), (3.5) and (3.7) yield

2

im | \,ﬁsh(x,u) )~ b(@)| du@) =0, (3.8)

h10

Remark 3.5. By Theorem A.3(1) and Lemma 3.3, a maximal A-dissipative operator B C X x X,
A € R, is law invariant if and only if it is invariant by measure-preserving isomorphisms. Hence,
in this case, we will simply use the word invariant. Notice moreover that if B is law invariant,
then also D(B) is law invariant in the sense that if X € D(B) and YjP = X;P then also Y
belongs to D(B). It is an immediate consequence of (3.6).

3.2. Totally dissipative MPVFs

The aim of this section is to study the properties of MPVFs enjoying a strong dissipativity
property that we call total dissipativity.
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Definition 3.6 (Total dissipativity). We say that a MPVFE F C Py(TX) is totally A-dissipative,
X € R, if for every ®o, 1 € F and every 9 € T'(Po, P1) we have

/(vl — v, x1 — x) A (zg, v, T1,v1) < )\/ |z — ﬂ?o’zd’ﬂ. (3.9)

We say that F is maximal totally A-dissipative if it is mazimal in the class of totally A\-dissipative
MPVFs: if F' O F and F' is totally \-dissipative, then F' = F.

Of course, total A-dissipativity implies A-dissipativity (see Definition 2.15).

Remark 3.7. Notice that for a deterministic MPVF (recall Definition 2.14) total A-dissipativity is
equivalent to the following condition (when A = 0 see the analogous notion of L-monotonicity of
[CD18, Def. 3.31)): for every p; € D(F) and f; € map (F[u;]), i = 0,1, and every p € I'(uo, p1)
it holds

[ 1rm) = Folan, o)1 = o) dutan,a) < [ lor = 2o du(eo,z). (310)

We introduce now the natural notion of Lagrangian representation of a MPVF, based on the
maps ¢, ¢ introduced in (3.1).

Definition 3.8 (Lagrangian representations and Eulerian images). Given B C X x X and
F C Po(TX), we say that B is the Lagrangian representation of F if

B=(2)"Y(F) = {(X, V)eXxX: (X,V)Pe F}
Conversely, if B C X x X we say that F is the Eulerian image of B if
F = .2(B) = {(X, V)P (X,V) € B}.

Clearly, the Lagrangian representation B of F is law invariant, moreover B is the Lagrangian
representation of F if and only if F is the Eulerian image of B and B is law invariant.
Similarly to Remark A.1 concerning operators in Hilbert spaces, we highlight the following result
which allows a reduction of many arguments to the dissipative case A = 0.

Lemma 3.9. The following hold:

(1) F C Py(TX) is totally \-dissipative if and only if B> (cf. (2.18)) is totally 0-dissipative;

(2) F C Py(TX) is mazimal totally \-dissipative if and only if F* is mazimal totally O-
dissipative;

(8) B C X x X is invariant by measure-preserving isomorphisms (resp. law invariant) if
and only if B* := B — \ix is invariant by measure-preserving isomorphisms (resp. law
invariant);

(4) B C X x X is the Lagrangian representation of F C Po(TX) if and only if B is the
Lagrangian representation of F*.

Proof. The proof of claim (1) is similar to [CSS23a, Lemma 4.6] and it is based on the bijectivity
of the map L* := (x,v — Ax) : TX — TX. Hence, if ®; € F and ®} := Lé‘q),' e F, i =1,2, then
¥ € I'(®g, ®y) if and only if 9* € (@), ®7), with 9 = (x0,v0 — A0, x v — )\xl)ﬁﬂ. We can
thus prove only the left-to-right implication, the other will follow from the same procedure. We
have

/<U1 — Vo, 1 — .71(]) dﬂ’\(xo,vo,xl,vl) = /<’U1 — Vg — )\($1 — .7}0),1’1 — $0> dﬁ(xg,vg,xl,vl)

/(vl — v, 1 — To) dY — )\/ |z — 3:0|2dz9
0,

IN
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by total A-dissipativity of F.

Items (2), (3) and (4) are straightforward. O
A first basic fact is stated by the following Proposition.

Proposition 3.10. Let B C X x X be the Lagrangian representation of F C Po(TX) according
to Definition 3.8. Then F is totally A-dissipative if and only if B is A-dissipative.

Proof. By Lemma 3.9 and Remark A.1, it is sufficient to prove the result in case A = 0. Let us
first assume that F is totally dissipative. Let (Xo, V), (X1, V1) € B. Since &g = (Xo, Vo);P € F,
P, = (Xl, Vl)ﬁp € F and ¥ := (Xo,%,Xl,Vl)ﬁP S F(q)o,q)l), (39) yields

/<V1—VO,Xl—X0>dP:/<v1—vo,$1—xo>dﬂSO.

In order to prove the converse implication, let us assume that B is dissipative and take &g, ®; € F,
VNS F((I)(),(I)l) and (Xo,‘/(),Xl,Vi) € X* such that (X(),%,Xl,‘/l)ﬁp = 1. Since ¥y, P, € F,
there exist (X{,Vy) € B and (X{,V]/) € B such that

(X0, Vo) = ®g = (Xo, VO)sP, (X1, V)P = @1 = (X1, V)P
By the law invariance of B, we have that (Xo, Vp), (Yo, Wy) € B, so that

/<v1 —vg, 1 — xo) d¥ = (V1 =V, X1 — Xo)x <0

by the dissipativity of B. O

Ezample 3.11. Let us consider a map f : 8 (X) — X (recall (2.15)) such that there exists L > 0
for which we have

|f(z1, 1) — f(xo, po)| < L (Wa(po, p1) + |xo — x1])  for every (wo, po), (z1, 1) € 8 (X).

We can also identify f with the map sending p — f(-,u) € Lip(X;X) (compare with the
framework analyzed by Bonnet and Frankowska in [BF21b; BF23] and with the hypoteses in
[Cav+-22; Amb+21]). Let us define the map B : X — X and the (single-valued, deterministic)
PVF F C P3(TX) as

B(X)(w) = f(X(w),tx), XeX, weq,
Flu] == (ix, £ (- )t 1 € Po(X).

It is not difficult to check that B is 2L-Lipschitz and that F is maximal 2L-totally dissipative.
Indeed, for every X,Y € X, we have

|IBX — BY |y = </Q | BX (w) — BY(W)|2dP(w)>1/2
— (/ﬂ |f(X(w),ex)) — f(Y(“)’LY)PdP(w)>1/2
<L (/Q (Wa(ix,ty) + | X (W) = Y (w)])? dJP’(w)>1/2

<r ((/Q WQQ(LX,Ly)dP(w)>1/2 + (/Q [ X(w) = Y(w)\zdp(w)>l/2)

<2LIX — Yy

so that B is 2L-dissipative and therefore F is 2L-totally dissipative as well by Proposition 3.10.
Maximality follows by the maximality of B and the next Theorem.

Theorem 3.12 (Maximal dissipativity).
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(1) Every X-dissipative operator B C X x X which is invariant by measure-preserving isomor-
phisms has a mazimal \-dissipative extension with domain included in €o (D(B)) which
is invariant by measure-preserving isomorphisms (and therefore also law invariant).

(2) Let us suppose that B C X x X is the A-dissipative Lagrangian representation of the
totally A-dissipative MPVFE F C Po(TX). Then B is mazimal A-dissipative if and only if
F is maximal totally A-dissipative.

(8) If F C Po(TX) is a totally A-dissipative MPVF with domain included in a closed and
totally convex set C, then there exists a mazximal totally A-dissipative extension of F with
domain included in C.

Proof. By Lemma 3.9 and Remark A.1, it is sufficient to prove the result in case A = 0. Claim
(1) is [CSS23b, Theorem 4.6]. Notice that, being maximal A\-dissipative and invariant by measure-
preserving isomorphisms, a maximal \-dissipative extension of B is also law invariant by Lemma
3.3.

Claim (2) follows by the equivalence result of Proposition 3.10 and by Claim 1. In fact, if B
is maximal dissipative it is clear that F' is maximal. Conversely, suppose that F is maximal
and B is its Lagrangian representation. By contradiction, if B is not maximal, Claim 1 shows
that there exists a maximal and proper extension B of B which is law invariant. Therefore, B
induces a strict extension of F' which is totally dissipative.

Claim (3) is a consequence of Claim 1 and Claim 2. O

Remark 3.13. Notice that if B is the Lagrangian representation of a maximal totally \-dissipative
MPVF F, then .~*(D(F)) = D(B). In fact, it is sufficient to prove that if ¢(X) = p € D(F)
then X € D(B), since the converse inclusion is trivial. We can thus find a sequence p,, € D(F)
converging to p in Py(X). Applying the last statement of Theorem B.5 we can then find a
sequence X, € X such that ¢«(X,) = p, and lim,_,~ | X;, — X |x = 0. We deduce that X,, € D(B)
by Remark 3.5 and therefore X € D(B).

We now apply Theorem 3.12 to get useful insights on the structure of totally dissipative MPVFs.
The first result concerns the existence of a solution to the resolvent equation, which provides an
equivalent characterization of maximality and will be the crucial tool to implement the Implicit
Euler method, see Corollary 4.7.

Theorem 3.14 (Solution to the resolvent equation). A totally A-dissipative MPVF F C Po(TX)
is mazimal \-dissipative if and only if for every p € Po(X) and every 0 < 7 < 1/AT there exists
® € F such that (x — 7v)3® = p.

Proof. Let B be the Lagrangian representation of F that is A-dissipative by Proposition 3.10. If
F is maximal \-dissipative, then B is maximal A\-dissipative as well by Theorem 3.12(3), so that
for every Y € X with V3P = g and 0 < 7 < 1/A% there exists (X, V) € B such that X —7V =Y
(cf. Theorem A.2(1)) so that ® := (X, V)P € F satisfies (x — 7v)y® = p.

Conversely, let us now suppose that F is not maximal A-dissipative, so that B is not maximal
A-dissipative and it admits a proper maximal A-dissipative law invariant extension B by Theorem
312 Let (X,V) e B\B,0<7 <1/AT,Y := X —7V, and p := ffﬁ]P’. We claim that the
equation ® € F, (x — 7v)y® = p has no solution. We argue by contradiction, and we suppose
that ® € F is a solution: we could find (X, V) € B such that setting (X, V)P = ® and setting
Y := X — 7V we have Y}P = p.

We use the maximal A-dissipativity of B and we denote by J - the resolvent associated to B , by
4, the map induced by Theorem 3.4 as in (3.2), and we set b, (z) := %(jT(x, w) —x), x € supp(p).
We have X = J,.Y = 5.(V,pu), X = J,Y = 5. (YV,p), V = Lx-Y) = b, (Y) and V =
L(X —Y) = b, (Y). It follows that (X, V)P = (j,(-, 1), br)sp = (X,V);P = ® € F so that
(X, V) has the same law of (X, V) and therefore belongs to B, a contradiction. O
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We now show that a maximal totally A-dissipative MPVF is sequentially closed in the strong-weak
topology of P5*(TX), recall (2.20).

Proposition 3.15 (Strong-weak closure). The sequential strong-weak closure cl(F) of a totally
A-dissipative MPVF F is totally \-dissipative as well. In particular, if F is maximal, then
cl(F) = F.

Proof. As usual, it is sufficient to check the property for A = 0. Let ®' ®" € cl(F) and
¥ € T'(®’, 9”). Denoting by {e;};cn an orthonotmal system for X; we introduce on X and on TX
respectively the distances

1/2
Z? (v e[ A1), A (o0, (@2, 02)) 1= (a1 —aaf} +d (01, 2)?) )

whose induced topologies are weaker than the weak (resp. the strong-weak) topology of X
(resp. TX), see also the proof of [NS21, Proposition 3.4]. Denoting by W5* the 2-Wasserstein
distance on Po(TX) induced by d**, we have

O, > ® inPPE(TX) = W5¥(D,,d) — 0.

By definition of cl(F) we can find two sequences (P )nen, (P2 nen in F respectively converging to
9’ and " in P5¥(TX). We denote by v}, € I's¥(®], ') and v, € I's* (D", d!) the corresponding
optimal plans for W3".

Denoting the elements of TX? by (z),v},21,v1, x2,v2, 25, v4) and using the gluing Lemma
we can find a plan o, € Po(TX*) such that (X1, V1, X1, V1400 = Yo, (X1,V1,X2,V2)40, = 9,
(X2, V2, X5, V4 g0y = 5. We also have

lim /|:E/1 —x1 2 4 |z — 252 4 d¥ (v, v1)? + dY (v, v2)? doy, = 0,

n—oo

sup [ (104 +loaf? + Juaf? + o ) dery < o,
neN

so that setting &, := (x|, x5, V], V5 )0, we have
Gn — (x1,%2,v1,v2)30  in P (X2 x X?).

Since (x},V],x5,V5)30p, € T(®;,, ®71), the total dissipativity of F yields
/<v1 — Vo, X1 — Xg) d&, = /(v’l — Vv, x] —x5)do, <0 for every n € N. (3.11)

Since the function ((z1,x2;v1,v2) := (v1 — va,X1 — x2) belongs to C‘;“’(XQ x X?), the convergence
in P5¥ (X2 x X?2) is sufficient to pass to the limit in (3.11) and thus get

/<V1—V2,X1—X2>d’l9§0‘ U

We can also prove that the sections F[u] of a maximal totally dissipative MPVF are (conditionally)
totally convex. In the following statement we consider the space X x XY whose variables
are denoted by (x,v1,--- ,vy) and the corresponding projections are x(x,vi,--- ,vn) = x,
vi(z, v, ,oN) = v

Proposition 3.16 (Total convexity of sections of maximal totally dissipative MPVF). If
F C Po(TX) is a mazimal totally A-dissipative MPVF, then for every u € D(F) the section F|u]
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satisfies the following total convexity property:
if A € Po(X x XN) satisfies (x,vi)sA € Flu] and o; >0, i=1,--- , N with Zai =1, then
(x, Z%W)uA € Flul.
(3.12)

Proof. Since F is maximal totally A-dissipative, by Theorem 3.12, its Lagrangian representation
B C X x X is maximal \-dissipative.

We can find (X, Vy,Va, - V) € X x XV such that (X, Vi, Va,- - VN )sP = A. We deduce that
(X,V;) € Bsince (X, V;)yP € F. since the sections of B are convex, we deduce that (X, ). o;V;) €
B as well, so that

(x, Zaivi)ﬁA = (X, Zaﬂfi)ﬁ]? eF. O

We can now derive a remarkable information on the structure of a totally dissipative MPVF,
which involves the barycentric projection introduced in (2.13).

Theorem 3.17 (Barycentric projection). Let F be a MPVF and p € D(F) such that Flu] is
closed in Po(TX) and satisfies the total converity property (3.12). Then bar (F) [u] C F[u]. In
particular, if F is a mazimal totally A-dissipative MPVF, then bar (F) C F.

Proof. We use an argument which is clearly inspired by the Law of Large Numbers.

Let {®;},ex be the disintegration of & € F w.r.t. its first marginal ;4 € D(F). For a given
integer N and every z € X we define the product measure ®2 := (®,)®N € Py(X") and the
corresponding plan

AN = /595 @ N du(x) € Po(X x XN).

It is clear that A" satisfies the condition of Proposition 3.16: choosing «; := 1/N we deduce
that UV := (x, % Soivi)g AN € Flul.

Let now VU := (ix, bg)su. We can easily estimate the squared Wasserstein distance between ¥
and UV by

w2(oN, v /‘Zvl—btp ( dAszlv/‘v—bq)(m)fdcb

where we used the following orthogonality for i # j

/(vi —bg(x),v; — ba(x)) dAN = / (/(v, —bo(z),v; — ba(z)) dPs(v;) ® @m(vj)) dup(z) =0

and the fact that

/|vi—bq>(a:)2dAN:/ /m—b@( )12, () dp(a /‘v—bq) 4o,

We deduce that UV — ¥ in Py(TX) as N — +oo, so that ¥ € F[u] as well. O

Corollary 3.18. Let F C P3(TX) be a totally \-dissipative MPVF. Then the extended MPVF F
defined by

F :=F Ubar (F),
with bar (F) as in (2.13), is totally \-dissipative. In particular, for every ®; € Flu;], i = 1,2,
and every p € T(p1, p2),

/ (b, (1) — bus, (02), 21 — 2) dpa(r, 22) < A / 21 — 29 dpa(1, 2).



26 GIULIA CAVAGNARI, GIUSEPPE SAVARE, AND GIACOMO ENRICO SODINI

Proof. 1t is sufficient to consider an arbitrary maximal totally A-dissipative extension F of F: by
the previous Theorem 3.17 clearly F D F. O

Theorem 3.19 (The minimal selection). Let F C Po(TX) be a maximal totally \-dissipative
MPVF.

(1) For every u € D(F) there exists a unique vector field f°[u] € L*(X, u; X) such that

(ix, £°[ul)gp € Flu), / £l dp < / [v|?d®  for every ® € Fpu]. (3.13)
We denote the minimal selection of F at u by
FO ] = (ix, 7))ot (3.14)

(2) If B is the Lagrangian representation of F, then for every u € D(F), we have

folu] =0b°[u]  p-ae.,
where b° has been defined by (3.6) and, if 0 < T < 1/\T, the following hold

[1oetz) = £ld@f an < [0 dn- @ =230 [[botenf du (315)

(=302 [ forte P dnt [ 150 du a7 L0 (3.16)

with by as in (3.3).
(3) The map |F|2 : Po(X) — [0, 400] defined by

o 1R an e o)
oo i 1 ¢ D(F)

|F|2 (3.17)

1s lower semicontinuous.
4) Finally, if Y is a Polish space, p € P(XxY) with marginal v = w2 p and the disintegration
#

{1y }yey of p w.r.t. v satisfies
e dute) + [ [l dvly) < +oo, (3.18)
XxY Y

then the map f(z,y) :== f°[u,](z) belongs to L*(X x Y, p; X) (in particular it is uniquely
defined up to a p-negligible set and it is p-measurable).

Proof. Claim (1) is an immediate consequence of the closure of F in P5*(TX) (so that the map
® — |P|2 has compact sublevels in the set Po(TX) with fixed first marginal equal to p) and of
the previous Theorem 3.17.

To prove the second claim, it is enough to notice that, trivially, b°(-, u) satisfies (3.13). Estimates
(3.15) and (3.16) follow by Theorem A.3(5).

The third claim still follows immediately by the closure of F in P5¥(TX) and the fact that the
map ® + |®|3 defined by (2.5) is lower semicontinuous w.r.t. the topology of P5¥(TX).

Let us now prove claim (4). We first notice that (3.18) yields p, € D(F) for v-a.e. y € Y. Let us
now prove that the map b (z,y) := br(x, p1y) is p-measurable.

Recall that the set

8o :={(z, ) € X x P(X) : & € supp(p) }
is a G5 (thus Borel, cf. [FSS22, Formula (4.3)]) subset of X x P(X). Since the inclusion map of
X x P(X) in X x P(X) is continuous, we deduce that

8 :=8p N (X x P2(X))
is a G set in X x Py(X).
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Since the map j(z,y) = (z, py) is Borel from X x Y to X x P(Y), we deduce that the set
8 :=j718) = ({(x,y) € Xx Y :x € supp(ny)} is Borel in X x Y and it is immediate to check
that p is concentrated on 8'. Since the map (z, u) — b (x, ) is continuous in 8 (cf. Theorem
3.4) then its composition with j (which is the map (z,y) — b-(z, 1)) is p-measurable. Passing
to the limit as 7 J 0 and using (3.15) and (3.16) we conclude that b, — f in L2(X x Y, u; X) so
that also f is p-measurable. O

We now show that discrete measures are sufficient to reconstruct a maximal totally A-dissipative
MPVEF. For a general Polish space X, we set

Pi(X) = {,u € P(X) : supp(u) is ﬁnite}, (3.19)

Prn(X) = {ueﬂ’f(X):Nu(A) eN for everyACX}, Proo(X) = | Prn(X). (3.20)
NeN

Corollary 3.20. Let F C Py(TX) be a mazimal totally A-dissipative MPVF and let
Dfoo(F) :=Ps oo (X) N D(F).

Then for every p € D(F) there exists a sequence i, € Dy oo(F) such that F°[u,] — F°[u] in
P2(TX) as n — oo, where F° has been defined in (3.14). Moreover, a measure & € Po(TX) with

x3® € D(F) belongs to F if and only if for every pn € Dy o (F) and every v € I'(®, ) we have
o= Fna - v o) <3 [ 1o =y dyeoy)

Proof. We denote by B C X x X the Lagrangian representation of F and we set D := 1™ (P o (X)).
Since P¢ o (X) is dense in Po(X), by e.g. the last part of Theorem B.5 we have that D is dense
in X and by Theorem 3.4 (see in particular (3.2)) it satisfies J (D) C D. We can thus apply
Corollary A.16. O

3.3. Totally dissipative PVFs concentrated on maps

We devote this section to the study of the important case of single-valued and everywhere defined
PVFs. Recall that for a deterministic PVF, total A-dissipativity can be equivalently stated as in
Remark 3.7.

Definition 3.21 (Demicontinuity). A single-valued PVF F is demicontinuous if the map
w— Flu] satisfies

tn = inPe(X) = Flu,] = Flu| in P (TX).

A single-valued PVFE F is hemicontinuous if its domain is totally convex and, for every vy € Po(Xx
X) with marginals in D(F), the restriction of F to the set {xé’y 1t €10,1]} is demicontinuous.

Theorem 3.22 (Characterization of deterministic totally dissipative PVF). Let F be a single-
valued totally A\-dissipative PVF.

(1) If F is mazximal, then it is deterministic and Fu] = (ix, f°[u])sp for every p € D(F),
where f° is the minimal selection of F as in Theorem 3.19.

(2) If D(F) = Po(X), then F is mazimal if and only if it is deterministic and demicontinuous
(or, equivalently, deterministic and hemicontinuous)

(3) If D(F) = P2(X) and Flu] = (ix, fu])sp for every p € Pa(X), then F is mazimal if and
only if for every ¢ € C5*(TX) and for every sequence pu, — p in Po(TX)

lim [ ((z, flpn)(z)) dpn (x /C z, flu dp(z).

n—oo
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Proof. Claim (1) is an obvious consequence of Theorem 3.17.

Claim (2): let us first assume that F is maximal and let B be its Lagrangian representation. Since
D(B) =X, B is locally bounded (see Theorem A.3(3)) so that if a sequence p,, is converging to
p in Po(X) and ®,, = F|u,], we can assume that there exists a constant C' > 0 such that

/]v\ZdQn(w,v) < C for every n € N.

The compactness criterium of Proposition 2.5 shows that (®,,)nen is relatively compact in P5%(TX).
On the other hand, since F = cl(F) by Proposition 3.15, we know that any accumulation point
of ®,, belongs to F and therefore it should coincide with F[y].

In order to prove the converse implication, it is sufficient to consider the case A = 0 and F
deterministic and hemicontinuous; we try to reproduce the argument of [Bré73] in the measure
theoretic framework.

We first observe that the Lagrangian representation B of F is everywhere defined and single-valued,
since ¢(X) = p, and (2(X,V) = Flu] = (x, f)sp yield V = fo X.

Let (Y, W) € X x X satisfying

/(BX —W, X -Y)xdP <0 forevery X € X.
Replacing X with Y; := (1 — )Y +tX, t € (0,1) and setting u¢ := ¢(Yy), f; == flue], Vi :=

fioY, = B(Y;) we get

t
H/(ft(yi)—VV,X—YtﬂdPSO for every X € X,

i - Wy vycap -

so that
/(V} W, X —Y)xdP <0 forevery X € X. (3.21)
Let us now set 9y := (X, Yy, V;)4P € P2(X? x X). Denoting by x,y, v the projections of the points
of X3 to their components, since (y, V) = F[u,], by hemicontinuity assumption we know that

(v, V)9 = (Y, foo Y )iP = Fluo], in P3¥(X x X) ast | 0.

On the other hand, (x,y)y9: = :?(X,Y;) converges to 2(X,Y) in P2(X?) so that by compactness,
we can also find a sequence n — ¢(n) | 0 such that 9, — @ in P5*(X? x X). Clearly
(y,v)p? = (ix, fo)spo is concentrated on a graph, so that 9 = (X, Y, fqo Y)P.

Since

[, x = vipap = [(w.o ) av,

and the function ¢(x,y,v) := (v, z — y) belongs to C5¥(X? x X) we deduce that

lim [ (Frm (Vi) X — Vi) dP = / (0,2 — ) dd = / (Fo(Y). X — V) dP.

n—00

Thus, we can pass to the limit in (3.21) obtaining
/(fO(Y) —W, X —Y)xdP <0 forevery X € X,

in particular it holds for X = f,(Y) — W +Y. We deduce that W = f;oY = BY so that B is
maximal and F is maximal as well.

Claim (3) is just the equivalent way to express the demicontinuity of F, recalling Definition
2.4. O
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An important example of single-valued, everywhere defined demicontinuous PVF is provided
by the Yosida approximation: starting from a maximal totally A-dissipative MPVFE F and its
Lagrangian representation B, for every 7 € (0,1/\") we consider its Yosida approximation B
and define the corresponding (single-valued) PVF

F, :=/*(B,). (3.22)

Notice that F, is maximal totally A\/(1 — A7)-dissipative (see Theorem A.3). Moreover, by
Theorem 3.22(1), (3.3) and (3.22) we get that

Frlu] = (ix, f-u])gp,  for all p € Po(X),

where f_: 8§ (X) — X are given by f_[u](-) := b:(-, n) with b; as in (3.3); notice f_ admits a
continuous version defined in 8 (X) and f.(-, 1) belongs to Lip(supp(u); X) for every u € Pa(X)
and clearly admits a Lipschitz extension to X (see Theorem 3.4). Setting L, := 1(2—A7)/(1— A7),
by L,-Lipschitz continuity of B, and the representation (3.3), we get the following Lipschitz

condition
2
fr(@o, o) — Fo (w1, )| dp(wo, m1) < L7 / |w — @1]* dpa(wo, 1) for every p € I'(uo, pu1),

/
(3.23)

which clearly implies demicontinuity of F... We have thus proved the following result, recalling
also Theorem 3.19(2).

Corollary 3.23. Let F C P(TX) be a maximal totally \-dissipative MPVF. There exist sequences
Ay L, € R and a sequence of maps f, : P2(X) — Lip(X, X) satisfying the Lipschitz condition
(3.23) with Ly, in place of L. inducing a sequence of single-valued maximal totally A, -dissipative
PVFs F,,, and satisfying

tim [ |uli)(@) ~ £ (@) dule) = 0 for every € D(F),

where f° is as in Theorem 3.19.

4. LAGRANGIAN AND BEULERIAN FLOW GENERATED BY A TOTALLY DISSIPATIVE MPVF

In this section, making use of the results obtained in the previous Section 3, we study well-
posedness for \-EVI solutions driven by a maximal totally A-dissipative MPVF F. These curves
are characterized (time by time) as the law of the unique semigroup of Lipschitz transformations
S of the Lagrangian representation B of F. As in the previous Section, we will consider a
standard Borel space (2, B) endowed with a nonatomic probability measure P and the Hilbert
space X := L?(Q, B, P; X).

Definition 4.1 (Lagrangian flow). Let F C Po(TX) be a mazimal totally A-dissipative MPVF.
We call Lagrangian flow the family of maps sy : S(X,W) — X defined by Theorem 3.4 starting
from the Lagrangian representation B of F.

The Lagrangian flow induces a semigroup of (Py(X), Wa)-Lipschitz transformations Sy : D(F) —

D(F) defined by Sy(yio) = st o)t
We say that the continuous curve p : [0,+00) — Py(X) is a Lagrangian solution of the flow

generated by F if py = S(po) = s¢(-, pro)gpeo for every t > 0.
Notice that, if x4 is a Lagrangian solution, the semigroup property (3.5) of the Lagrangian flow
s; yields in particular

fit = St—s(-, ps)gps  for every 0 < s < t.

In particular, to construct a Lagrangian solution starting from pg € D(F) it is sufficient to choose
an arbitrary map X € X satisfying (Xo)3P = po and set ji; := (Xy)guo for the (unique) locally
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Lipschitz solution X € Lip;,.([0, 00); X) of

d o ]
aXt =B Xt a.e. 1 (0, —|—OO)7 X|t:0 = XO-

An immediate consequence of Theorem 3.4 is the following result.

Theorem 4.2 (Existence of Lagrangian solutions). If F C Po(TX) is a mazximal totally \-
dissipative MPVF then for every py € D(F) there exists a unique Lagrangian solution pu :
[0, +00) — Po(X) starting from py.

If up € D(F), then py € D(F) for every t > 0, the curve p : [0,+00) — Po(X) is locally Lipschitz
continuous, and

152 (o) < [ 17 @) duoe) o every £ > 0 (4.1)

where f° is defined in Theorem 3.19 and induces a map (z,t) — f°(x, ) which is p-measurable
with respect to p = [ py dt in every set X x (0,T), T > 0.

Moreover, i is the unique Eulerian solution of the flow generated by F in the following sense:
[0, +00) = Pa(X) is the unique distributional solution of

Ope + V- (e £ ) =0 in (0, +00) x X (4.2)
among the class of locally absolutely continuous curves satisfying pi—o = po € D(F) and
T
/ / | Fo (@, ) |> dpeg At < o0 for every T > 0. (4.3)
0

Finally, for every po € D(F) and t > 0 we have
(1) if supp(po) is finite, then supp(u) is finite and its cardinality is nonincreasing w.r.t. t.
In particular, if pg € P n(X) for some N € N (recall (3.20)) then py € Py n(X) for every
t >0y
(2) if;upp(,uo) is compact, then supp(ut) is compact;
(8) if supp(po) is bounded, then supp(uy) is bounded and diam(supp(p)) < eM diam(supp(uo));
(4) if [y |z[P dpo(z) < o0 for some p > 1, then [y |z|P dp(x) < 400 and

/|x—y\pdﬂt®utéew/|~"3—y\pduo®uo-

Proof. The existence and the regularity properties of Lagrangian solutions follow by Theorem
3.4, while (4.1) follows by Theorem A.5(4).

Property (3.7) clearly implies (4.2).

Concerning uniqueness of solutions to (4.2) satisfying (4.3), we have

d

GG <2 (o) = £ o)

< 2)\/ |1 — 2o 2dp,
= 2AW5 (11, 1)

for a.e. t > 0 and every pu, € To(ui,pu?), by Theorem 2.13(6b) thanks to (4.3), the total
A-dissipativity of F and (3.13). Hence, by Gronwall inequality, we get

Walut, 1i) < NWalpug, 13)-
The p-measurability of the map (x,t) — f°(x, u;) follows by continuity of ¢ — p; together with
Theorem 3.19(4) with Y = [0, 7. Indeed, (3.18) holds thanks to (4.1).

The last assertions (1-4) come from the fact that p; = s¢(-, po)gpo and this map is e M-Lipschitz
continuous (cf. Theorem 3.4(3)). O
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Remark 4.3 (A sticky-particle interpretation). We may interpret property (1) of the previous
Theorem 4.2 by saying that the flows of totally dissipative MPVFs model sticky particle evolutions,
(see also [NS09]). This fact reflects at a dynamic level the barycentric projection property stated
in Theorem 3.17. In contrast, we immediately see that the example of %—dissipative PVF, with
X =R, analysed in [Pic19, Section 7.1], [Cam+21, Section 6] and later discussed in [CSS23a,
Section 7.5, Example 7.11], cannot be maximally total %—dissipative since it produces a %—EVI
solution which splits the mass for positive times if e.g. g = do. Notice indeed that, as highlighted
in the following Theorem 4.4, if F is maximal totally dissipative then Lagrangian and EVI
solutions coincide.

It is remarkable that the Lagrangian flow s; provides an explicit representation of the flow of
Lipschitz transformations generated by the unique A-EVT solution, see [CSS23a, Definition 5.21]
and Definition 2.21.

Theorem 4.4 (EVI solutions and contraction). If F C Po(TX) is a maximal totally \-dissipative

MPVF, then for every po € D(F), the curve p : [0, 4+00) — Pa(X), pe := St(po), is the unique
\-EVI solution starting from po and S; is a semigroup of e -Lipschitz transformations satisfying

Wa(Se (1), Se(1g)) < eMWaluh, i) for every p, pg € D(F), t > 0.

Proof. The proof is an immediate consequence of [CSS23a, Theorem 5.22(e)] and Theorem 4.2.
Indeed notice that [CSS23a, Theorem 5.22(e)] can be applied even if the absolutely continuous
curve  satisfies the differential inclusion

(2x, ve)ghee € Flpg] (4.4)

w.r.t. to any Borel vector field vy s.t. (1, v) solves the continuity equation and ¢ — |vi|r2(x %) €
L} (0,+00). For instance it holds for the vector field f°. Indeed, the proof of [CSS23a, Theorem

loc

5.22(e)] relies on [CSS23a, Theorem 5.17(2)] which holds even if the differential inclusion (4.4),
with v the Wasserstein vector field, is replaced by a general velocity field v as above. See also
[CSS23a, Remark 3.12]. O

As a further consequence, in the case of maximal A-totally dissipative MPVF all the various
definitions of solutions coincide.

Theorem 4.5. Let F C Po(TX) be a maximal totally A-dissipative MPVF, let py € D(F) and
let p : [0, +00) — Po(X) be a continuous curve starting from pg. The following properties are
equivalent:

(1) p is a Lagrangian solution.
(2) pis a A-EVI solution.

If moreover o € D(F) or there ezists a sequence t, | 0 for which u(t,) € D(F), the above
conditions are also equivalent to the following ones:

(3) there exists a Borel vector field w; satisfying

t— / \wy(x)|* dpse(x)  is locally integrable in (0,+00), (ix,w¢)sus € F for a.e. t >0

(4.5)
and the pair (u, w) satisfies the continuity equation

Ope + V- (ppwy) =0 in (0, +00) x X; (4.6)
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(4) there exists a Borel family ®;, t > 0, such that

&, € Fluy] forae.t>0, t+— / [v|>d®; s locally integrable in (0, +00), (4.7)

/ (/8,5C(t,:c) dpe + /(v, V{(t,x)) d‘bt(x,v)) dt =0 for every ¢ € Cyl((0, +00) x X);
0

(4.8)
(5) e € D(F) for every t > 0, p is locally Lipschitz in (0,+00) and it satisfies

t— / | Fo(x, ) |> A is locally bounded in (0, +00),

and (4.2).

Proof. The equivalence between (1) and (2) is a consequence of Theorem 4.4.

We can now consider the case when py € D(F) (the argument for the case u(t,) € D(F) along
an infinitesimal sequence t,, is completely analogous). Theorem 4.2 clearly yields (1) = (5). The
implication (5) = (3) is obvious. Theorem 3.17 shows that (3) and (4) are equivalent. Indeed
(3) implies (4) by choosing ®; := (ix, w;)su: and (4) implies (3) by choosing w; := bg,. The
implication (3) = (2) follows by Theorem 5.4(1) of [CSS23a]. O

In the case when o € P¢(X) has finite support (recall (3.19), (3.20)), we can obtain a more
refined characterization, which also yields a regularization effect when X has finite dimension
and recovers the characterization (1.16) anticipated in the Introduction. Recall that by Theorem
4.2(1) any Lagrangian solution starting from pg € Py n(X) must stay in Py n(X) for every time
t>0.

Corollary 4.6 (Regularization effect and Wasserstein velocity field for discrete measures). Let
F C Po(TX) be a mazimal totally \-dissipative MPVF, let ug € D(F) N Ps n(X) for some N € N
and let pi : [0, +00) = Pr n(X) be a continuous curve starting from pg. Assume moreover that at
least one of the following properties holds:

(a) po € D(F),

(b) D(F) NPy n(X) has non empty relative interior in Py n(X),

(¢c) X has finite dimension.
Then conditions (1),...,(5) of Theorem 4.5 are equivalent and, in this case, the minimal selection
f° of F (cf. Theorem 3.19) coincides with the Wasserstein velocity field v of i (cf. Theorem
2.11) and p also satisfies the right-differentiability property

1
vy = 1}318 7 <t§+h - z'x) = f°lmw] in L*(X, pue; X)  for every t > 0, (4.9)
where ti"'h is the optimal transport map pushing py into peyp.

Finally, i is a Lagrangian solution for F starting from pg if and only if there are curves x,, €
C([0, +00); X), n=1,--- , N which are locally Lipschitz in (0,400) such that u; = % 27]:[:1 O (1)
for every t > 0 and the curves (x,(t)))_; solve the system of ODEs

Xn(t) = £ (Xn, pt)  a.e. in (0,+00). (4.10)

Proof. Case (a) is part of Theorem 4.5. In order to prove the first equivalence statement in
cases (b) and (c), we briefly anticipate an argument that we will develop more extensively in
Section 8: we introduce the standard Borel space € := [0,1) endowed with the Lebesgue measure
(still denoted by PP), the Lagrangian representation B of F, and we consider the closed subspace
Xn C X of maps X : Q — X which are constant on each interval [(k—1)/N,k/N), k=1,--- ,N.
Thanks to Theorem 3.4, X is invariant with respect to the action of the resolvent map J.. We
can thus apply Proposition A.8 obtaining that the operator By := BN (Xx x X ) is maximal
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A-dissipative in X and, if we select a Lagrangian parametrization Xy € D(By) of pg, still by
Proposition A.8(ii), we get that S;Xo, the semigroup generated by B, coincides with Siv Xo, the
semigroup generated by By and, under any of the conditions (b) and (c), SV has a regularizing
effect (see Theorem A.7, Corollary A.9 and notice that, in case (c¢), X has finite dimension) so
that S Xy € D(By) € D(B) for every t > 0. We immediately obtain that the conditions (1),
.., (5) of Theorem 4.5 are equivalent.

In order to check (4.9) we can use (3.8) observing that, for sufficiently small h, (ix, sp)4p is an
optimal coupling between ji; and i1, being p; € Pr n(X), see the next Lemma 6.1.

Finally, in order to check the last representation formula, it is sufficient to write ug as % Eﬁ;l Tn
for suitable points z, € X and to set x,,(t) := s¢(xn, o).

A further application concerns the convergence of the Implicite Euler Scheme (also called JKO
method in the framework of gradient flows, see Proposition 5.2). We just recall here the main
Crandall-Liggett estimate, referring to [NSV00; NS06] for more refined a-priori and a-posteriori
error estimates.

Corollary 4.7 (Implicit Euler Scheme). Let F C Po(TX) be a mazimal totally A-dissipative
MPVFEF. For every u € Po(X) and every 0 < 7 < 1/AT there exists a unique ® € F such that
(x = 7v)® = p. (4.11)

Moreover M, = x3® = j_(-, p1)gpu, where j, is as in Theorem 3.4 applied to the Lagrangian
representation of F. If ug € D(F), then setting M2 := pg, M := j_(-, M™);M", n € N, we
have

lgnoo Mtij =z for everyt >0, (4.12)
where py = Sy(po) with Sy as in Definition 4.1. Moreover, for every T > 0 there exist N(\,T) € N
and C(N\,T) > 0 (with C(0,T) = 2T ) such that

W2(Mt]>[Nnut) < CE;\]’VT) Iluo]

for every 0 <t <T,n>N(\T) and every py € D(F), where f° is as in Theorem 4.2.

: (4.13)
L2(X7NO§X)

Proof. The existence of ® satisfying (4.11) follows by Theorem 3.14. Uniqueness follows by the
well posedness of J, and its invariance by law, stated in Theorem 3.4. The approximation in
(4.12) follows by the Lagrangian one

S X (Joyn)N(X)

= lim
N—oo

holding for any X € D(B) (see Theorem A.6), B the Lagrangian representation of F.
Finally, (4.13) follows by Theorem A.6. O

We conclude this section with two results concerning the uniqueness and the stabiility of the
characteristic system representing the solution of (4.5) and (4.6).

Using the notation of Theorem 3.4, we preliminary observe that choosing py € D(F) the
Lipschitz maps s¢(x) := s¢(x, p19) belong to Lip(supp(uo); X) and the curve t — s; is Lipschitz in
L%(X, po; X) with derivative bg(s;) where b (+) := b°(, (s¢)310). It follows that for every 7' > 0
and for pig-a.e. = the curve ¢t — s;(x) belongs to H'(0,T;X) and satisfies 3;(z) = b (s(z)). We
can thus associate to (s¢)¢>0 a po-measurable map

s: X — HY0,T;X), s[z](t) := s¢(z, po)- (4.14)
In a similar way, if Xy € X with ¢«(X¢) = po, we can define
X(w,t) := s¢(Xo(w), o), X[w] :=s 0 X, (4.15)
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obtaining a distiguished Caratheodory representative of S; Xy which satisfies
X(w,t) = (8¢ Xo)(w) for P-a.e. w € Q, for every ¢t > 0 (4.16)

and
T

X(w,-) € HY(0,T;X) for P-a.e. w, / ( / yatX(w,t)th) dP(w) < Te?T|B° X2, (4.17)
0

since

T T
/(/0 |8tX(w,t)|2dt) d]P’(w)z/(/O \bg(X(w,t))]zdt) dP(w)

T

— / BOX( 1) dt
0

< Te*T|B°Xoly,

where we have used Theorem A.5(4). It follows that X can be identified with a P-measurable
map w +— X[w] which belongs to L?(Q, B,P; H(0,T;X)).

Theorem 4.8 (Uniqueness of the characteristic fields). Let F C Po(TX) be a mazimal totally
A-dissipative MPVF | let us fir T > 0 and let us suppose that (u,v) is a solution to (4.5) and (4.6)
in the interval [0,T] starting from ug € D(F). Let n € P(C([0,T]; X)) be a probability measure
concentrated on absolutely continuous curves and satisfying the following properties:

(1) (e)sm = pr for every t € [0.T], where ey(y) = (t) for every 5 € O(0,T]: X);
(2) m-a.e. v is an integral solution of the differential equation #(t) = vi(v(t)) a.e. in [0,T].

Then 1 = sypo, where s is defined as in (4.14). In particular n is unique and vi(x) = b;(z)
pe-a.e. in X.

Proof. We can find a Borel map Z : Q — C([0, T]; X) such that Z;P = . Let B be the Lagrangian
representation of F. We can then define X; := ¢; o Z. Since (X;)4P = y; € D(F) by Theorem
4.5(5), recalling Remark 3.5 we see that X; € D(B) C X. It is also clear that for P-a.e. w we
have

t+h
Xppp(w) — X (w) = /t vs(Xs(w))ds

and therefore | X p — Xy¢|x < ftt+h Vs L2(x us;x) ds so that ¢ — X; belongs to HY(0,T;X). At
every differentiability point we have X; = v¢(Xy) so that (Xt,Xt)ﬁIF’ = (ix,v¢)spe € Fug) and
eventually X; € BX;. We conclude that X;(w) = s;(Xo(w)) and therefore 1 = sypq. O

Theorem 4.9 (Stability of the Lagrangian flows). Under the same conditions of the previous
Theorem 4.8, let (uf)nen be a sequence in D(F) satisfying the following properties:

(1) (uf)nen converges to po in Pa(X), as n — oo;
(2) sup,, |Fl2(ug) < oo, where |F|a(+) is defined in (3.17).

If s",s: X — C([0,T]; X) are the Lagrangian maps defined as in (4.14) starting from pug and o
respectively, then (ix,s™)gug — (ix,8)guo in Po(X x C([0,T]; X)) as n — oo.

Proof. By the last part of Theorem B.5, we can select a sequence (X{)nen in X strongly converging
to Xo such that «(X{') = pg and ¢(Xo) = po. We now consider the family of P-measurable maps
X" : Q — HY(0,T;X) C C([0,T]; X) defined as in (4.15) starting from X} and the corresponding X
defined starting from Xy. Our thesis follows if we prove that X® — X in L2(Q, B, P; C([0, T]; X)).
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The equivalence (4.16) and the contraction estimates on S; (cf. (A.8)) show that

T
X" = Xy = [ ([ 1X7e0) = Xl O ) dPe)

T
:/0 (/|X”(w,t)—X(w,t)]Qd]P’(w)) dt

T
= / 1S, X5 — 8 Xo|% dt
0
< TePMTIXPE — Xol32 =0 as n — oo
Moreover, recalling (4.17), we have

sup ”(Xn),||%2(Q;L2(07T;X)) < Te** T sup |B°XP|2 < oo for every n € N,
n n

so that X" is uniformly bounded in L?(Q2, B,P; H'(0,T; X)) by some finite constant S > 0. The
interpolation inequality (cf. [Brel0, p.233 (iii)])

IY1E0m10 < CIY 20050 1Y laromx)  for every Y € H'(0,T;X),

gives that the sequence X" strongly converges to X in L?(£2, B, P; C([0, T]; X)), since
X" = Xl @ nzcomn = / X"l - Xl I 70 4P
< [ X" = Xl 200050 1X" 6] = Xl 70 4P

n n 1/2
<cf /HX 0 ) ([ 17 0] = Xl o7 oP)

< CO(S + Xl 2 ,3,p;51 (0,70 1K™ = Xl 2 02522(0,7:%)) -

5. TOTALLY CONVEX FUNCTIONALS IN P2(X)

In this section we analyze the case of a proper and lower semicontinuous functional ¢ : Po(X) —
(—o0, +00] which is totally (—\)-convez, A € R, i.e. it is (—\)-convex along any coupling:

X — 9 X; M- z —y? x
0l0a) < (L= 06041) +16(4p0) + 510 =1) [l =3l du(e.)

for every p € Po(X x X), t € [0,1]. Notice that, in particular, ¢ is (—\)-convex along generalized
geodesics [AGS08, Definition 9.2.4] and thus also geodesically (—\)-convex. It is also easy to
check that ¢ is totally (—\)-convex if and only if

o () == () + A/]w\Qdu is totally convex.

We recall that the Wasserstein subdifferential d¢ C P2(TX) of ¢ is defined as the set of ¥ € Po(TX)
such that

XU =peD(@), ov)— () > —[V,v] +0(Walu,v) asv— pin Py(X).

When ¢ is geodesically (—\)-convex, then it is possibile to show that ¥ belongs to ¢ if and
only if ¥ and = x3 ¥ € D(¢) satisfy

d(v) — p(p) > — [V, v], — %Wg(u, v) for every v € Pa(X). (5.1)
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It is easy to check that —8¢ (cf.(2.19)) is a A-dissipative MPVF (see also [CSS23a, Section 7.1]),
but in general not totally A-dissipative.

Let us now consider a totally A-convex, proper and lower semicontinuous functional ¢. We
fix a standard Borel space (€2, B) endowed with a nonatomic probability measure P, with
X := L?(Q, B,P; X) and we consider the Lagrangian parametrization of ¢ given by

P : X — (—o0,+o0] defined as  (X) :=¢(tx) for every X € X. (5.2)
Clearly, ¢ is proper, Ls.c. and (—\)-convex, i.e. X — ¥(X) + 3|X|? is convex.

As a preliminary result, we study the (opposite of the) subdifferential of v, showing in particular
that it is an invariant maximal A-dissipative operator. This allows to consider its resolvent
operator J, and compare, in Proposition 5.2, the scheme generated by J, with the Wasserstein
JKO scheme ([JKO98b]) for the functional ¢ in P2(X). We then show relations between —0dv and
—0¢, dealing in particular with the respective elements of minimal norm. Finally, in Theorem 5.4,
we show that the Lagrangian solution to the flow generated by the maximal totally A-dissipative
MPVF 12(—0%) is the unique Wasserstein gradient flow for ¢ and the unique A\-EVI solution for
—0¢. Analogously to Theorem 4.4, this Wasserstein semigroup can be characterized as the law
of the semigroup of Lipschitz transformations S; of —0%.

Proposition 5.1 (Total subdifferential). Let ¢ : Po(X) — (—o0,+00] be a proper, lower
semicontinuous and totally (—\)-convex functional and let 1) be as in (5.2).
(1) The opposite of the subdifferential of 1, —0, is an invariant mazimal \-dissipative
operator in X x X.
(2) The total subdifferential —8¢ := 12(—0v) is mazimal totally \-dissipative.
(3) An element W € Po(TX) satisfying p = x4 ¥ € D(¢) belongs to —0v¢ if and only if for
every v € D(¢) and every plan 9 € T'(V,v) we have

A
60) =00 = [ (twa 1) = Sl = o) a0z 0.0, (53)
In particular 0y¢ C 9.

Proof. As usual it is sufficient to check the case A = 0.
Claim (1): by maximality of the A-dissipative operator —0y in X x X (cf. Theorem A.3(1)
and Corollary A.4) and thanks to Theorem 3.4, it is enough to prove that —0v is invariant by
measure-preserving isomorphisms.
Let (X,V) € —0¢ and let g € S(2). We have

YY) —(X)>(V,X =Y)yx forevery Y € X.

For every Z € X, choosing Y := Z o g~}

W(Z) = (X og)=p(Zog ) —¢(X) 2 (V. X —Zog ')x
=Vog,Xog—Z)x.
This shows that (X o g,V og) € —0.
Claim (2) follows immediately by Theorem 3.12(3).
Claim (3): let us first show that an element ¥ satisfying (5.3) belongs to —0;¢: it is sufficient to
take a pair (X,V) € X x X such that LE(’V = W. For every Y € D(v), setting v := 1y € D(¢)
and 9 := (X, V,Y )P, we get

BY) — $(X) = $(v) — o) > / (0,2 — ) dB(z,v0,y) = (V, X — V),

which shows that V' € —9y(X) and therefore ¥ € 12(—0) = —8yé.
In order to prove the converse implication, we just take ¥ = 2(X',Y’) € 12(—0¢) for some
(X', Y'") € =0y, v € D(¢), and ¥ € T'(¥,r). We can find elements X,V,Y € X such that

we get
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(X, V,Y)P = 9. In particular ;P = v so that ¢(Y) = ¢(v) and (X,V)yP = ¥ so that
(X,V) € —0v, since —0% is law invariant and the law of (X,V) coincides with the law of
(X',Y"). Since ¥(X) = ¢(tx) = ¢(p) and (X,V) € —0¢, we get (5.3)

B(v) — du) = B(Y) — H(X) > (V,X — ¥y = / (0,7 — ) dB(z, v, 7). 0

In view of the invariance and the maximal A-dissipativity of —dv, by Theorem 3.19(1,2) we
have that the subdifferential of 1 contains elements concentrated on maps, in the sense that for
every X € D(9v) there exist f € L?(X,tx;X) such that fo X € —99(X). An analogous result
has been obtained in [GT19, Theorem 3.19(iii)] for real-valued functionals when X has finite
dimension (cf. also [JMQ20, Lemma 8, Proposition 5]).

The next result gives a correspondence between the minimal selection and the resolvent operators
of —dvy and ¢. It is remarkable that the minimal selection @°¢ of 8¢ is an element of the smaller
set Oy¢ and therefore coincides with 97¢. This fact guarantees that the “Eulerian-Wasserstein”
approach to the gradient flow of ¢ coincides with the “Lagrangian-Hilbertian” construction.

In the following, J, denotes the resolvent of the invariant maximal A-dissipative operator —0
for 0 < 7 < 1/A" with the corresponding map j . introduced in Theorem 3.4.

Proposition 5.2 (JKO scheme, Wasserstein and total subdifferential). Let ¢ : Po(X) —
(—o0, +00] be a proper, lower semicontinuous and totally (—\)-convez functional and let v be as
in (5.2). Then:
(1) For every p € Po(X) and 0 < 7 < 1/AT the measure pr := j.(-, p)sp is the unique
solution of the JKO scheme for ¢ starting from pu, i.e. pr is the unique minimizer of

Vi %Wg(,u, v) + ¢(v). (5.4)

Equivalently, if p = o«(X) for some X € X, then pur = o(J:X).

(2) For every p = vx € D(8¢¢), the element of minimal norm 8¢ ¢[u] (equivalently, the law
of the element of minimal norm of 0Y(X)) is the element of minimal norm of d¢[u].

(8) We have that 1(D(0v)) = D(8v¢) = D(8¢) and the minimal selection —8°¢p of —0¢ is
concentrated on a map and it is totally \-dissipative.

(4) The MPVF 2(—0v) is the unique mazimal totally \-dissipative extension of —8°¢ with
domain included in D(¢).

Proof. By Theorem 5.1 and Theorem 3.4, we have that p; does not depend on the choice of
X € X such that 1x = pu; if v € Pa(X), v # ur, we can thus find (X',Y) € X? such that
Gy = (XY WP € To(p,v), pr = (J2X')4P, and Y # J . X', since VP = v # pir = J, X'. By
the properties of the resolvent operator J, (cf. Corollary A.4), we have that

1 1 1 1
¢(u7)+§W§(unu) < @Z}(JTX’)JrgIJTX’—X'\%c < ¢(Y)+§IY—X’I§C = ¢(V)+§W§(u, V),

which shows that p, is a strict minimizer of (5.4).
To prove (2), first of all notice that, thanks to [AGS08, Lemma 10.3.8], ¢ is a regular functional
according to [AGS08, Definition 10.3.9]. Let —0°¢(X) be the element of minimal norm in
—09(X) and let us denote by @, := (X, —0°¢y(X))4P € —0¢[tx] by Proposition 5.1. Denoting
W= tx, we have

P(X) — (I X)

2,3 = |~ 0w (0} = tim P ZIIER)  g 20 2 000)

=| = 8°¢(n)l3,

where —8°¢(p) denotes the unique element of minimal norm in —9¢[u] (cf. [AGS08, Theorem
10.3.11)), the last equality comes from [AGS08, Remark 10.3.14] and the second equality comes
from Corollary A.4. This proves (2).
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Also (3) follows by Corollary A.4, while the fact that —8°¢ = —0{¢[u] is concentrated on a map
follows by Theorem 3.19(1) being —8;¢[u] maximal totally A-dissipative by Proposition 5.1(2).
To prove (4) it is enough to notice that, if G is a maximal totally A-dissipative extension of

—0°¢ with domain included in D(¢), then its Lagrangian representation B has domain included
in D(v) and it is A-dissipative with every element of the minimal selection of —0% (cf. Theorem
3.12). By (A.3) we thus get that B C —0 and thus, being both maximal \-dissipative, they

coincide. O

Remark 5.3 (Comparison with similar notions of subdifferentiability). Part of Proposition 5.2
can be compared with the deep results obtained by [GT19] for the Fréchet subdifferential of
general (not necessarily A-convex) real-valued functionals when X has finite dimension. Using
our notation, [GT19] restricts the analysis to elements of the Wasserstein-Fréchet subdifferential
9¢ of ¢ which can be expressed by maps; it is proven in [GT19, Theorem 3.21, Corollary 3.22]
that such a subset of ¢(u) is nonempty if and only if the Fréchet subdifferential of ¢ at X with
i = tx is nonemtpty. Moreover in [GT19, Theorem 3.14] it is proven that, given p € D(¢), all
the maps f belonging to Tan,, P2(X) for which (ix, f)su belongs to d¢(p) correspond to elements
foX in 0y(X); in particular [GT19, Corollary 3.22] shows that the element of minimal norm
of the Fréchet subdifferential of 1) at X can be written as f° o X, where f° is the element of
minimal norm of the Fréchet subdifferential of ¢ at tx (compare in particular with items (2),(3)
in Proposition 5.2). On the other hand, working with general MPVF's and elements in 0¢(X)
which not necessarily have the form f o X allows to prove the law invariance of di and to work
with functions ¢ whose proper domain D(¢) is strictly contained in Pa(X).

We also mention that the lifting technique we are using here is of fundamental relevance for
the concept of L-derivative considered in [CD18, Definition 5.22], [Carl3, Definition 6.1], and
inspired by [Lio07]. Using our notation, in [CD18; Carl3] a function ¢ : P2(X) — R is said to
be L-differentiable at u = tx € Pa(X), for X € X, if the lifted function ¢ : X — R is Fréchet
differentible at X. The notion of L-differentiability can also be used to define a notion of convexity
(called L-convexity) for functionals ¢ : Po(X) — R which are continuously differentiable: we refer
the interested reader to [CD18, Section 5.5.1, Definition 5.70] and we only mention that for such
a class of regular functionals this definition is equivalent to total convexity. If dim X > 2, we will
also show (see Remark 9.2) that for continuous functionals taking real values total convexity is
in fact equivalent to geodesic convexity.

Theorem 5.4 (Gradient flows of totally convex functionals). Let ¢ : Po(X) — (—o0, 00| be
a proper, lower semicontinuous and totally (—\)-convex functional and let i) be as in (5.2).
For every o € D(¢), let us denote by (Sp)>o the family of semigroups in Po(X) induced by
the Lagrangian flow associated to the mazimal total \-dissipative MPVF —8i¢ = 12(—0v)
(cf. Definition 4.1). Then the locally Lipschitz curve p : [0, +00) — Pa(X), pe := Si(uo), is the

unique gradient flow for ¢ starting from po, in the sense that

(ix, ve)gpe = —0°@lpi] = =07 Plps]  for a.e. £>0,

where v is the Wasserstein velocity field of p coming from Theorem 2.11 and therefore satisfies
all the properties of [AGS08, Thm. 11.2.1].
Moreover, t — S¢(uo) is also the unique (—\)-EVI solution for the MPVFE —90¢ starting from

po € D(¢) and Sy is a semigroup of eM-Lipschitz transformations satisfying

Wa(St(1o), Se(pn)) < eMWal(puo, 1) for any po, p1 € D(¢).

Proof. Since ¢ is lower semicontinuous and (—\)-convex along generalized geodesics, in particular
it is coercive thanks to [NS21, Theorem 4.3]: we can apply [AGS08, Theorem 11.2.1] to get that
there exists a unique gradient flow p : [0, +00) — P3(X) for ¢ starting from pg. By [CSS23a,
Theorem 5.22(e)] this also shows that u is the unique (—\)-EVI solution for —0¢ starting from

Ho-
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Since 8°¢ = 07 ¢ by Proposition 5.2, we can apply Theorem 4.2 and Theorem 4.4 to show that
w coincides with S;(ug), first for every g € D(8¢) and then also in its closure, thanks to the
regularization effect. U

We conclude the section with a pivotal example of a functional ¢ to which the results of this
section can be applied.

Ezample 5.5. Let P,{W : X — (—o00,+00] be proper, lower semicontinuous and (—\)-convex
functions, with W even. We define the functional ¢ : Po(X) — (—o0, +00] as

00 = [ Papss [ Wa—n)ds pey). e R,

Notice that W(0) is finite so that, if zy € D(P), then ¢(d5,) = P(z¢) + 3W(0) < 400, so
that ¢ is proper. Moreover, by [AGS08, Propositions 9.3.2 and 9.3.5], we have that ¢ is lower
semicontinuous and totally (—\ A 0)-convex.

6. LOCAL OPTIMALITY AND INJECTIVITY OF COUPLINGS

In this section we study the local optimality and the injectivity of a few classes of couplings. We
first start with arbitrary couplings between discrete measures.

6.1. Local optimality of couplings between discrete measures

We want to show that the linear interpolations induced by arbitrary couplings between discrete
measures can be decomposed in a finite union of geodesics.
The main quantitative information is contained in the following lemma.

Lemma 6.1. Let pog, 1 € Pa(X), v € (o, p1)- If po has finite support S = {Z1,--+ ,Tpr} with
:=min {|z; — 7, : 4,5 € {1,--- , M}, i#j} >0 and
sup{\y —z|:(z,y) € Supp’y} <4/2

then v € To(po, 1) and W3 (po, 1) = [ |y — x> dv.

Proof. 1t is sufficient to prove that the support of v satisfies the cyclical monotonicity condition
(2.9).
If {(xn,yn)}N_, are points in supp~ with xg := zy and z, # z,_1 then

(Yny T — Tn—1) = (Yn — Tn, Tn — Tn—1) + (Tn, Tn — Tn_1)

5 1 1 1
> —5\:1371 — Tpo1| + §’$n - 33n—1’2 + 5‘5%‘2 - §|$n—1‘2

1 1
> §|$n|2 - §|an*1|2

since |yp, — o] < 0/2 and |z, — zp—1| > 0. If 2, = x,—1 we trivially have (yn,x, — p—1) =
%‘an - %|xn71|27 so that

As a consequence we obtain the following result.

Theorem 6.2 (Local optimality of discrete interpolations). Let ug, 1 € P2(X) be two measures
with finite support, v € T'(po, p1) and py := (x)gy, t € [0,1]. Then the following properties hold.
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(1) For every s € [0,1] there exists § > 0 such that for every t € [0,1] with |t —s| < 0
Yot = (xs,xt)w 18 an optimal plan between us and g, so that

W2 (ts, ) = / ly— 22 dv,, = |t — sf? / ly — 2? dv(z, y).

(2) There ezist a finite number of points tg =0 < t; < ta < --- < txg =1 such that for every
k=1,--- K, 'u’[tk—lytk] 1s a minimal constant speed geodesic and

W3 (o, ) = |t — / ly—aldy(z,y) for cvery ¢t € [ty 1, 1.

1/2
(3) The length of the curve t — p; coincides with (f ly — x|? d'y) .

Proof. The first statement follows by Lemma 6.1, since every measure ps has finite support and
for every t € [0, 1]
sup {|y — | : (z,y) € suppy,,} = |t — s|sup {|y — 2| : (z,y) € supp~}
< |t — s|max{|y — x| : x € supp po, y € supp,ul}.

In order to prove the second claim, we define an increasing sequence (t,,)5, C [0, 1] by induction
as follows:

e 1y :=0;

e if ¢, <1 then ¢, :=sup {t € (tn, 1) : Wiy, ) = [t — to|* [y — x\gd"/};

o ift, =1 then t,4; = 1.

The sequence is well defined thanks to the first claim. It is easy to see that there exists K € N
such that tx = 1. If not, ¢, would be strictly increasing with limit ¢, <1 as n — oco. By the
first claim, there exists > 0 such that the restriction of u to [te — 7, too] is @ minimal geodesic,
so that whenever t,, > to, — r we should get ¢,,+1 = to, a contradiction.

Claim (3) follows immediately by (2). O

6.2. Injectivity of interpolation maps
Given two pairs of points (a,b') and (a”,b”) in X? it is easy to check that
(1-t)d' +tv # (1 —t)a"+tv" foreveryte (0,1) <« b'-b' ¢ {—s(a"—a’) 15> 0}. (6.1)
In particular, given a set A C X we consider the set of directions
dir(A) := {s(a' —d"):seR, d,d € A} = U s(A—A). (6.2)
seR

Definition 6.3. Given A, B C X we say that the chords of B are not aligned with the directions
of A if

(B — B)Nndir(A) = {0}. (6.3)
In this case, for every t € (0,1) the map x* : X2 — X is injective on A x B.

When X has at least dimension 2, it is remarkable that in the discrete setting, it is always possible
to perturb the elements of a finite set B in order to satisfy condition (6.3) with respect to a fixed
finite set A. In particular, we can always find a suitable small perturbation of the points in B,
so that the chords of the perturbed set are not aligned with the directions of the fixed set A.

Proposition 6.4 (Injectivity by small perturbations). Assume that dimX > 2 and A C X be
a finite set. For every finite set of distinct points B = {b,}\_, C X there exzists a finite set
B' = {V,}N_, of distinct points with |bl, — b,| < 1 such that, setting

bu(s) := (1 — 8)b, + sbl,,  B(s) := {ba(s)}_4, (6.4)
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we have that #B(s) = N for all s € [0,1] and
(B(s) — B(s)) Ndir(A) = {0} for every s € (0,1]. (6.5)

In particular, for every t € (0,1) the restriction of the map x' to A x B(s) is injective for every
s € (0,1].

Proof. We split the proof of the Proposition in two steps.

Claim 1: there exists a finite set of distinct points B” := {b/"}V

oy with |bl — by| < 1 satisfying
(B" — B")Nndir(A) = {0}. (6.6)

We can argue by induction with respect to the cardinality N of the set B. The statement is
obvious in case N =1 (it is sufficient to choose bf := by).
Let us assume that the property holds for all the sets of cardinality NV —1 > 1. We can thus find a
finite set of distinct points B, , = {b//}N"}! satisfying (B%_, — B%_,) Ndir(A) = {0}. We look
for a point b5, € U \ BY,_,, where U := {z € X : |x — by| < 1}, such that BY, := BY,_; U{V\}
satisfies (6.6). by, should therefore satisfy

by €U, by —bl &dir(A) foreveryne {1,---,N —1}.
Such a point surely exists, since dir(A) is a closed set with empty interior (here we use the fact
that the dimension of X is at least 2) and the union UnN;11 (b + dir(A)) has empty interior as
well, so that it cannot contain the open set U.

Claim 2: If B” satisfies the properties of the previous claim, then there exists § € (0,1] such that
setting

b, = (1 — 8)by + S0, (6.7)

the set B' = {b/,})_, satisfies the thesis.
We denote by a the cardinality #A of A and we first make a simple remark: for every z, 2" € X
#{s€[0,1]: 2(s) := (1 —8)z + 52" €dir(A)} >a? = 22" € dir(A). (6.8)

Indeed, the set A — A contains at most a? distinct elements, so that if the left hand side of
(6.8) is true, then there are at least two distinct values s1,s9 € [0,1], 71,72 € R and a vector
w € A — A such that (1 —s1)z+ 12" = riw, (1 — s2)z+ s22” = row. We then get

51— s =00
52 S1 i~ -

2(s) = z(s1) + S

w € dir(A) for every s € [0, 1],

hence (6.8). As a particular consequence of (6.8) we get that if z” does not belong to dir(A),
then the set {s € (0,1] : 2(s) := (1 — s)z + s2” € dir(A)} is finite, so that
Vz,2"eX: 2/ gdir(A) = 35>0: (1-s)z+s2" €dir(A) for every s € (0,6]. (6.9)
Let us now apply property (6.9) to all the pairs (z, 2”) of the form z = b, — b,,, 2" = b = bl |
n,m € {1,---, N}, with n % m. Since b}, — b);, & dir(A) we deduce that there exists 0y, > 0
such that
(1= 8)(by, — b)) + s(bl — V) & dir(A)  for every s € (0, 8p.m]- (6.10)
Setting .
d :=min{|b, —by| : nme{l,...,N}, n#m} >0
and choosing § := miny, ;,{n,m, 5 /3} > 0, then it is not difficult to check that B’ satisfies the
thesis, with b/, as in (6.7). Indeed, |b, —b,| = d|b, —b]/| < 1, and for every s € [0, 1] and n we get
bn(s) := (1 — 8)by + sby, = (1 — s)by + s(1 — 8)by, + b, = (1 — 65)b, + dsb],
so that
ba(5) — bin(s) = (1 — 65)(bn — by) + Bs(bY, — b1) & dix(A)
thanks to (6.10) and the fact that s < 0y, . O
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7. TOTAL DISSIPATIVITY OF MPVFS ALONG DISCRETE MEASURES

We will consider the following subsets of the space P(X) of probability measures with finite
support in a general Polish space X: for every N € N

Prn(X) = {M €PHX): Nu(A) eNVAC X},
Pun(X) = {u € Pp(X): Nu(A) € {0,1} VA C X} (7.1)

_ {M € Pra(X): #supp(p) = N}-

Notice that every measure p € Py n(X) can be expressed in the form
| N
b= ;(5% for some points 1, ey € X.
The measure p belongs to P4y (X) if the points x1,- - ,z, are distinct.
If Fis a MPVF, pug, pu1 € P(X), we correspondingly set

Di(F) := D(F) N Pu(X), T'w(po, 1) :=T'(uo, 1) NPL(X x X), (7.2)

where « is replaced by one of the symbols f,¢,b, (f,N), #N above.
For every po, p11 € P¢(X) we introduce the L>-Wasserstein distance by

Woo (o, p11) = min{‘xo — X! Lo (xxex i) ¢ B E F(Mo,m)}- (7.3)

In the following, we investigate the results recalled in Theorem 2.19 in the case of marginals
1o, 41 with finite support, but removing the optimality requirement over the coupling p. Recall
that the set T'(uo, u1|F) has been introduced in Definition 2.18.

Lemma 7.1. Let F be a MPVF satisfying (2.17) and let po, 1 € D (F) with p € T'(po, p11|F)
satisfy at least one of the following conditions:

(1) for every t € (0,1), x is p-essentially injective;

(2) for every t € (0,1), there exists an element ®; € F[xﬁu] which is concentrated on a map.

Then
[F,plrs — [Foplie < Mt —s)W?, W= / lzo — 212 dp,  for every 0 <s <t <1. (7.4)

In particular, t — [F, plry + AW?2t and t — [F, u]; ¢ + AW?2t are increasing respectively in [0,1)
and in (0,1], [F, p];; = [F, u]rs at every t € (0,1) where one of them is continuous, hence they
coincide outside a countable set of discontinuities.

Proof. By Theorem 2.19 it is not restrictive to assume A = 0; we can also assume s =0 and t = 1
thanks to (2.11). We set u; := xﬁu and we select an element ®; € F[y;] (in case (2) we can also
suppose that ®; is concentrated on a map).

Applying Theorem 6.2, we can find points tg =0 < t; < --- < txg = 1 such that

pF = et xRy € Ty 1 [F) O Doty s pity,)  for every k=1,--- K.
In particular, from (2.11) and Theorem 2.19(2), we get
1

_ [(I)tky ,u‘k]l,l = [(I)tk ) p’]lﬂfk :
tp — tk—1

® Moo < ———
[ tk*l’“ ]T70 — tk _ tkfl

(o, sttty 1 =
Since, for 1 < k < K, x'* is p-essentially injective (if assumption (1) holds) or ®;, is concentrated
on its barycenter (if assumption (2) holds), Theorem 2.13(4) yields [®y, , pt]1r, = [Pt tt]rt, SO
that

[@o, tt]r0 < [P1, )11



A LAGRANGIAN APPROACH TO TOTALLY DISSIPATIVE EVOLUTIONS IN WASSERSTEIN SPACES 43

Taking the supremum w.r.t. &y € F[uo] and the infimum w.r.t. ®; € F[u;] we obtain (7.4). The
last part of the statement follows as in the proof of Theorem 2.19. O

Theorem 7.2 (Self-improving dissipativity along discrete couplings). Assume that dim X > 2.
Let F be a MPVF satisfying (2.17), N € N, let po, i1 € Dp(F), p € I'(po, p11) and let py = x’éu,
t €10,1]. Assume that one of the following conditions is satisfied:

(1) p € Py n(X xX) and for every t € (0,1) py belongs to the relative interior of Dy n(F) in
:Pf,N(x);
2) for every t € (0,1) u belongs to the interior of D¢(F) in the metric space (P¢(X), Wo).
f f

Then

[F, s — [Foplie S ANt —s)W?, W?:= / lzo — 212 dp,  for every 0 <s <t <1. (7.5)

Proof. We carry out the proof in case (1), the proof in case (2) is analogous. By Theorem 2.19
it is not restrictive to assume A = 0; we can also assume s = 0 and ¢ = 1 thanks to (2.11). By
Theorem 6.2 we can find 0 < § < 1/2 and 7 € (5,1 — §) s.t. x?,x7 and x' 79 are p-essentially
injective and (xo,x‘s)ﬁ u, (xl_‘s,xl)ﬁ p are optimal. In this way, since by Theorem 2.19 the relation
(7.5) is true both for the case s = 0,t =0 and s = 1 — §,t = 1, we only need to prove it for s = §
andt=1-46.

We set A = supp(us) Usupp(ui—s) and B = supp(u,). By compactness, we can find € > 0 such
that every measure in P x(X) in the Wa-neighborhood of radious € > 0 around i is contained
in D(F) for every 6 <t <1-29.

Applying Proposition 6.4 we can find a map b: B — X with values in the open ball of radious
e centered at 0 such that setting b°(z) := = + sb(z) for every s € [0,1] and = € B, the set
B?® := b®(B) satisfies (B* — B®*) Ndir(A) = {0} and #B* = #supp(u,) for every s € (0,1].
Considering the measures v, := (b*)s/1-, we can pick ¥, € F[v,] with barycenter v, : B® — X, i.e.

0.(p)i= [vdv. (o).

1 1—6)

Now for every (xo,x1) € supp((x°,x ~°)sp) we set

zq = xY(xg, 1), b :=b%(z,), 077 :=0°(b"7),

where a = 17_—7255. Notice that x, € B = supp(ur), so the above definitions are well-posed. Let

us consider ®5 € Flus], ®1-5 € Flur—s] and o € P(TX x TX) s.t. (x0,x')yo = (x°,x!0)yp,
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(x%,v%)40 = @5 and (x!,v!)yo = ®1_5. For every (z¢,vo,21,v1) € supp(o) we have

(vo — v1, 20 — 1) = (Vg — V¥, 29 — 1) + (V1 — V¥, 21 — )

1 S, T

—a<1)0 v, xg xa)—i-l_a
1

= —(vo—v*", 9 — b>") +
a

(v1 =07, 21 — g)

T v vt e = %)

1 1
+ E<,UO _ ,US,T, bs,T o xa> + - a<v1 _ 'US’T, bS,T _ $a>

1
= (v — V"7 29— b7) + (v — 07, 2y — b*T)

1—-a
1 1
+ m@l,r — 0T b5 — xg) + m((l — a)vy + avy — Ul,r’ b5 — )
1
- E<U0 — 0¥, o — b7 + (v — V¥, 1 — b>7)
S 1,7 st 11,7 ST S .

- L ) b [ R— b ) _— 1 — — 3 b ST o).

e A )+ ol =gy (1~ @+ av =o', )
(7.6)

We have that

/<vo —v¥7(xg, x1), 2o — b5 (20, 1)) do = (s, u* 7|0 — [V, u*711,
/<Ul —v>7(wo, 1), 71 — b¥7 (w0, 1)) do = [®1 5, 477 |10 — [Vs, #7711,

/(’Ul’T(ﬂﬁo, x1) — v*7 (20, 1), b7 (20, 1) — b7 (w0, 1)) do = [W1, 9% 0 — [Wy, 9711,

(7.7)
where p*7 = (x°, b5 )yo, 157 = (x1,b°7 )0, 957 = (b7, b%7 )0 and the equalities with the
pseudo scalar products come from the fact that all those plans are concentrated on a map
w.r.t. their first marginal. Indeed, we can use Theorem 2.13(4) thanks to the p-essential
injectivity of x°,x7, x!=% and use the fact that the cardinality of B is constant w.r.t. s. By

construction, these plans satisfy the hypotheses of Lemma 7.1 so that all the expressions at the
right-hand side of (7.7) are nonpositive. Combining this fact with (7.6), we end up with

/(vo —v1,x0 —x1)do < ﬁ /((1 —a)vy + avy — obT BT — xq) do.

Passing to the limit as s | 0 we obtain

/(vg — 1,20 — x1)do < 0.
Passing to the supremum w.r.t. &5 € F[us] and to the infimum w.r.t. ®;1_s5 € Flui_s|, we get
[, ¢, ) gpalro — [, 006! )smia < 0,
which is (7.5) with s = ¢ and ¢ = 1 — § thanks to Theorem 2.13(3). O
Remark 7.3. If F C P5(TX) is a A-dissipative MPVF with D(F) = Po(X), then F is A-dissipative

along discrete couplings thanks to Theorem 7.2 and Theorem 2.13, i.e.

(@, ¥], < A/ |z — y|* dvy(z,y)
XxX

for every ®, ¥ € F and any ~ € I'(xy®, x; ¥) such that x;®,x; U belong to P ¢(X).
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Let us introduce the notion of “collisionless couplings”.

Definition 7.4 (Convexity along collisionless couplings). Let p9, u1 € P¢(X). We say that
w € T(uo, p11) is collisionless if x! is u- essentially injective for every t € [0,1].

We say that a set C C P(X) is convex along collisionless couplings if for every collisionless
v € Py(X?), with xgv,xéu € C, and every t € (0,1) we have xéu eC.

Notice that if g, 11 € Pxn(X) a coupling p in I'(po, 1) is collisionless if and only if
p € Tun(X?), xéu € Pun(X) for every t € (0,1). (7.8)

Theorem 7.5 (Selfimproving dissipativity along collisionless couplings). Assume that dim X > 2,
N €N, let F be a MPVF satisfying (2.17) and such that Dyy(F) is convex along collisionless
couplings. If po, p1 belong to the interior of Dyn(F) in the metric space (Pyn(X), Wa) and

p € Lyn(po, 1) then
F.to — [Foplis <22 W2 [ fag = o (7.9)

Proof. The proof is very similar to the one of Theorem 7.2, we keep the same notation.

Since p € Py N(X2), x%, x! are p-essentially injective, so that we can select § = 0. We can then
choose 7 € (0,1) such that x™ is p-essentially injective and € > 0 sufficiently small so that the
ball of radious e centered at fi; is contained in Dy n(F) for every t € [0,1]. We can then proceed
with the same perturbation argument of the previous proof. In the last part of the proof, we use
the fact that Dy (F) is convex along collisionless couplings. U

The following result shows that in case of a deterministic demicontinuous PVF (recall Definition
3.21) A-dissipativity yields total A-dissipativity. Similarly, we can lift the Lipschitz continuity
along optimal couplings to arbitrary couplings.

Theorem 7.6 (Deterministic demicontinuous dissipative PVFs are totally dissipative). Let
F C P3(TX) be a deterministic demicontinuous \-dissipative PVF with D(F) = Po(X), of the
form

Flu] == (ix, £ p))ap, p € P2(X), (7.10)
for a map f:8(X) — X, where 8§ (X) is as in (2.15). Then F is mazimal totally \-dissipative.
If moreover there exists L > 0 for which the following condition holds: for every o, p1 € Pa(X)
there exists p € T'o(10, 1) satisfying

/ Flan 1) — F(@o o) dpa(wo, a1) < L2 / 21— 2o dp(ao,ar),  (7.11)
XxX XxX

then (7.11) holds for every p € T'(pg, pi1)-

Proof. By Lemma 7.1(2) and the fact that F is single-valued and concentrated on a map
f:8(X) — X, recalling Theorem 2.13(4) we know that F satisfies (3.9), or, equivalently, (1.7)
for every pig, p1 € P¢(X). We use an approximation procedure to get the general formulation for
every po, 1 € P2(X) and every p € I'(po, p11): we take sequences (uq)n, (17 )n C Pr(X) such that
Wa(ug, o) — 0 and Wa(ul, 1) — 0 and optimal plans v§ € To(u, po) and 4 € To(p1, u)-
Let o, € P(X*) be such that 7rﬁl’2crn = ~, 7rﬂ2’3crn = p and w?’4an = ~7. Notice that we
also have that p,, := 77&’40'” belongs to I'(u, ut') and converges to p in P2(X?) as n — oo.
Thanks to the demicontinuity of F and the fact that F is concentrated on f, we obtain that

U = (Ixxx, f(@o, o) ¥ F(z1, p01))gpy, converges to 9y, = (ixxx, f(2o, po) X f(21,11))gpe in
P5¥(X? x X2). We can then pass to the limit in the inequality

/<.f($17,u«1) — f(zo, o), x1 — xo) dp, (x0, 1) = /@1 — vg, £1 — x0) d¥y, (20, 21, v0,v1) <0
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obtaining

/(f(fﬁl,m) — f(zo, o), z1 — xo) dp(zo, 1) = /@1 — vg, 71 — wo) d¥(z0, 71, v0,v1) < 0.

We can eventually apply Theorem 3.22 to get the maximality of F'.

Concerning the second part of the Theorem, let us first show that the condition (7.11) holds for
every po, i1 € Pp(X) and every p € I'(po, p11): by Theorems 6.2 and 2.9 there exists some K € N
and points 0 =ty < t1 < --- < tg_1 < tg = 1 such that ( i—1 oyt “)gpe is the unique element of

I‘O(x;i‘lp,,xﬁ’p) for every i = 1,..., K. We thus have for every i = 1,..., K that

, 9 1/2 1/2
([lroe s = soemrsmf an) < n— o) ([ o= ol dutanen))
X XxX

Summing up these inequalities for i = 1,..., K and using the triangular inequality in L?(X x
X, p; X), we get that (7.11) holds for every pg, i1 € P¢(X) and every p € I'(uo, pi1).

By using the same approximation procedure (and the same notation) of the first part of this
proof, we show that (7.11) holds for every po, p1 € P2(X) and every p € I'(pg, 11): in fact we
have the estimate

1/2
( [ 1) = £ o) du(xo,m)) £ 1) — P )] 2o

< Hf(7r37:u'1) - f(7r47:u?)HL2(X2,a‘n, + Hf( 7:“1 f(ﬂlaug)HLZ(X2,a'n;X)
+ £t ug) — f(ﬂ27ﬂo)‘|L2(X2,an;X)

1/2
< LWl ) + Wt ) + 2 [l = vP )

Passing to the limit as n — 400, we get that (7.11) holds for every g, u1 € P2(X) and every
p € IT'(po, ). O

8. CONSTRUCTION OF A TOTALLY A-DISSIPATIVE MPVF FROM A DISCRETE CORE

We have seen at the end of Section 3.2 (Corollary 3.20) that a maximal totally A-dissipative
MPVF is determined by its restriction to the set of uniform discrete measures.

In this section, we want to investigate a closely related question, which plays a crucial role in the
construction of a maximal totally A-dissipative MPVF': if we assign a MPVF F on a sufficiently
rich subset of discrete measures, is it possible to uniquely construct a maximal extension of F?
In the Hilbert setting, such kind of problems are well understood if the domain of the initial
operator is open and convex (see in particular [Qi83], Proposition A.12 and Theorem A.13).
However, dealing with open sets at the level of P5(X) will prevent the use of discrete measures.
We will circumvent this difficulty by a suitable localization of the open condition in each subset
PN (X), which relies on the notion of discrete core.

In order to allow for the greatest flexibility, we consider collections of discrete measures indexed
by an unbounded directed subset 91 C N with respect to the partial order given by

m<n < m|n, (8.1)

where m | n means that n/m € N. We write m < n if m < n and m # n. Typical examples are
the set of all natural integers 91 := N or the dyadlc one N:={2":n ¢ N}. We set

Pro(X) = [ Prn(X), Ppo(X) = | Pan(X (8.2)
NeN Nen

observing that, for every N € M, Py y(X) is closed in P2(X) and Py (X) is a relatively open
and dense subset of P n(X).
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Definition 8.1 (M-core). Let N be an unbounded directed subset of N w.r.t. the order relation <
as in (8.1). A discrete M-core is a set C C Pyun(X) such that C C Po(X) is totally convex and
the family Cn := CNPun(X), N € N, satisfies the following properties:

(1) Cn is nonempty and relatively open in Pyn(X) (or, equivalently, in Psn(X));
(2) Cn coincides with the relative interior in P n(X) of CNPyn(X).

In the next result we will present several equivalent characterizations of 91-cores, which we fully
justify in the next section, adopting a Lagrangian viewpoint (see Lemma 8.12).

Lemma 8.2 (Equivalent characterizations of M-cores). Let C C Pyun(X); then the following
properties are equivalent:

(a) C is a M-core;
(b) there exists a subset D of P¢m(X) such that, for every N € M, the set Dy := DN Py n(X)
satisfies the following two conditions
(1’) Dy is relatively open in P ¢ n(X),
(2’) Dy is convex along couplings in P ¢ n(X x X),
and C=DnN ﬂ)#m(X),
(c) there exists a totally convex and closed subset E of Po(X) such that
(17) for every N € N the sets

Ey := relative interior of (ENPyn (X)) in Py (X)

are not empty,
(27) ENPym(X) is dense in E,
and C = UNE‘JI Exn ?#N(X);
(d) the family of sets Cy = C N Pun(X) satisfies
(1*) Cn is relatively open in Pyn(X) (or, equivalently, in Py n(X)),
(2%) Cn is convex along collisionless couplings (cf. Definition 7.4),
(3*) if M,N € t, M | N then Cy = CNﬂfPfM(X)
(4%) Cy is convez along couplings in P n (X x X).

In the above cases the sets Cn, Dy, EN, C, D and E are linked by the following relations

CN:DNQT#N(X):ENH?#N(X), C= U Cn,, (83)
Nen
Dy = EN = relative interior of Cn in Prn(X), D= U Dy = U EN, (8.4)
Nen Nen
Cn =Dy =ENPn.
C=D=E. (8.6)

Lemma 8.3. Let C C Pyun(X); if dim(X) > 2, then condition (4*) in Lemma 8.2 follows by
(1%)-(3%).

Our first result shows how to recover a totally A-dissipative MPVF starting from a (metrically)
A-dissipative MPVF F whose domain is a 91-core C.

Theorem 8.4 (From dissipativity to total dissipativity). Let X be a separable Hilbert space, let

F C Po(TX) be a MPVF and let C C Pyun(X) be a N-core. Let us assume either one of the the
following hypotheses:

(i) F is \-dissipative, D(F) = C and dim(X

)

) =2
(ii) F is totally \-dissipative and C C D(F) C 6
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For every N € N consider the MPVF Fy defined by the following formula: ® € Fy (] if and
only if ® € Py n(TX), p € Cn and for every v € Cy, ¥ € Flv], ¥ € Iy (P, v) we have

/(Uo - b\p(fL'l), o — x1> dﬂ(l‘o,’vo,xl) < )\/ |x0 - .%‘1’2 dﬂ(.’L’o, Vo, xl). (8.7)

We have the following properties:
(1) For every N € R, the elements of Fy satisfy (3.9) for couplings ¥ € Pr n(TX x TX) and
D(Fy) contains Cy.
(2) For every u € Cy, f € map (ﬁ‘N) (1] (cf. (2.14)) if and only if for every v € Cy,
U eFv], pelyn(p,v) we have

/(f(a:o) —by(z1), 20 — x1) dp(xo, 1) < )\/ |z — z1)? dp(zg, 21). (8.8)

Moreover, in order for f to belong to map (FN) (1], it is sufficient to check (8.8) only
for all the measures v € Cy and all the couplings p € T'(u,v) such that p is the unique
element of T'o(p, ).

(3) M | N implies D(Fyr) C D(Fy).

(1) The MPVF

Foolp == U ﬂ Fylu]  with domain D(Fu) = U D(Fy) D C (8.9)
MeN M|N MeN
1s totally A\-dissipative.
(5) There exists a unique mazximal totally \-dissipative MPVF F extending F o whose domain
is contained in C. For every u € C, f‘[u} is characterized by all the measures ® € Po(TX|pu)
satisfying

/ (v~ ),z — y)dd(z,0,) < A / oy do (8.10)

for every ¥ € T(®,v) with v € D(Fs) and (ix, flv € Fo. The MPVF F also coincides
with the strong closure of Foo in Po(TX). Finally, if p € C then the minimal selection Fe
ofF satisfies

Felu] € Foo[p].

We discuss two particular cases in more detail: the first one occurs when F is a deterministic
A-dissipative MPVF: as in Theorem 7.6 we obtain that A-dissipativity implies total A-dissipativity;
here however, we deal with a MPVF (not necessarily single-valued) defined in a much smaller
domain.

Theorem 8.5 (Deterministic dissipative MPVF's on a core are totally dissipative). Let us suppose
that dim X > 2 and F C Po(TX) is a deterministic A-dissipative MPVFE whose domain is a N-core
C. Then F is totally \-dissipative, Foo (cf. (8.9)) is a totally \-dissipative extension of F and,

for every u € UNemm, f € map <]§‘OO) (1] if and only if

/(f(l’o) —g(z1),z0 — 1) dp(zo, 21) < )\/ |20 — x1|? dp(o, 1) (8.11)

for all the measures v € C, g € map (F) [v], and all the couplings p € T'(u,v) such that p is
the unique element of T'y(,v). The MPVF F of Theorem 8.4(5) provides the unique maximal
totally \-dissipative extension of F with domain included in C. If moreover F is single-valued
and the restriction of F to each set Cn, N € M, is demicontinous, then the restrictions of Foo
and F° to C coincide with F.
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A second case occurs when we know that F is totally A-dissipative.

Theorem 8.6 (Unique maximal extension of totally dissipative MPVF). If F is a totally \-
dissipative MPVF whose domain contains a dense M-core C. Then the MPVF F constructed as

in Theorem 8.4 provides the unique mazimal totally \-dissipative extension of F with domain
included in C.

We devote the remaining part of this section to the proof of the above main theorems. We
adopt a Lagrangian viewpoint, lifting the MPVF F to the Hilbert space X := L?(£2, B,P; X) and
parametrizing probability measures by random variables in X as we did in Section 3.2.

8.1. Lagrangian representations of 91-cores

For the whole section, we fix a standard Borel space (€2, B) endowed with a nonatomic probability
measure P (see Definition B.1).

Given M an unbounded directed subset of N w.r.t. the order relation < as in (8.1), we consider
a M-segmentation of (2, B,P) (see Definition B.3) that we denote by (Pn)nvem. We define
By =0 (Pn), N € N, and we denote by (2, B,P, (Pn)nen), with By = {Qnn}tner,y and
Iy :=4{0,..., N — 1}, the M-refined probability space as in Definition B.3 induced by (Pnx)nem
on (2, B,P). We set

o= L2(Q,B,P;X), Xy i= LX(QBy,PiX), NeM, Xwi= | Xy,
NeN

and we recall that X, is dense in X by Proposition B.4.
Even if the choice of a general standard Borel space allows for a great generality, it would not be
restrictive to focus on the canonical example below, at least at a first reading.

Ezample 8.7. The canonical example of 9i-refined standard Borel probability space is

([O> 1)a B([Ov 1))a A, (jN)NE‘ﬁ)a

where A is the one dimensional Lebesgue measure restricted to [0,1) and Iy = (Ink)ker, With
Ing :=1[k/N,(k+1)/N), k€ Iy and N € 9. The space X can then be identified with the class
of functions which are (essentially) constant in each subintervals Iy, k € I, of the partition
jN,k-
As in Section 3, we parametrize measures in P(X) by random variables in (€2, B,[P) and we use
the notation ¢ : X — P2(X) for the map sending X € X to ¢(X) = X3P = 1x € P2(X). Recall
that

Wa(ex,ty) <|X —=Y|x forevery X,Y € X. (8.12)
If (X,V) € X x X recall the notation L%QV = (X, V)P € Po(TX).
We can identify Xy with the space XV of vectors @ : Iy — X such that X (w) = x(n) whenever
w € Qn,p. In this case we set X = Fy(x). Clearly o(Xn) = Py n(X) and ¢(Xoo) = Pro(X).
The isomorphism .#y preserves the scalar product on XV

N-1
(@ yhxv = N (@(n),y(n) = E[(In(@), Ix ()] = (An(e), An@)a @y e XY,
n=0

The conditional expectation Iy = E[-|By] provides the orthogonal projection of an arbitrary
map X € X onto Xn:

y[X](w) =N XdP ifw e Q.

Notice that
ifM|Nthen By C By and Iy =117 o .
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For every X = Fn(x) € Xy the probability measure tx = X3P takes the form 1x =
ZN 15 (n) S U)ny(X).

We denote by On C XV the subset of the injective maps and by Oy := #x(Ox) C Xy. Clearly,
t(On) = Pun(X). Since the complement of Oy is the union of a finite number of proper closed
subspaces with empty interior S;; := {& € XV : @ (i) = z(j)}, i # j, of XV, then Oy is open and
dense in XV,

Every permutation o € Sym(Iy) acts on XV via ox(n) := x(c(n)) and can be thus extended to
Xy via o(Hn(x)) := In(o(x)). It is not difficult to see that, for every X,Y € Xy, tx =ty is
equivalent to Y = o X for some o € Sym(Iy).

As in Section 3, we denote by S(2) the class of B-B-measurable maps g : Q@ — Q which are
essentially injective and measure-preserving, meaning that there exists a full P-measure set
{1y € B such that g is injective on €y and g;IP = P. Moreover, for every N € 0, we denote by
Sn(§2) :=S(2, B,P; Bn) the subset of S(2) of Bx-By measurable maps.

Remark 8.8. Clearly, if X = Zn(x) € Xn and g € Sy(2) then X o g € Xy and there exists
a unique permutation ¢ = o, € Sym(Iy) such that X o g = 0, X = Fy(x 0 gy). Conversely,
if o € Sym(Iy) there exists g € Sy(€2) such that ¢ = 0,4, as shown in Lemma B.2. We set
Glo] :={g€SN(Q) 10y =0}.

There is an interesting relation between projections and permutations.

Lemma 8.9. Let N, M € N be such that M | N. If X is a convex subset of Xy invariant by the
action of Sym(Iy), then

KN Xy =T (X). (8.13)
Moreover, o
KNy =KNXy (8.14)
and, denoting by K the relative interior of X in Xy, ifﬂoc s mot empty then we have
XN Xar coincides with the relative interior of X N Xy in Xpy. (8.15)

Proof. Let us first compute the explicit representation of the orthogonal projection Ty, (X) for
every X € Xy. If K := N/M we consider the cyclic permutation o : Iy — Iy defined by

(n) mK+k+1 ifn=mK+k, mely, 0<k<K-1,
o(n) =
mK ifn=mK+ K -1, m € I,

and its powers oP, p € Ik. It is not difficult to check that ol =50 = i1y and for every Y € Xy
we have o?Y =Y for every p € Ix. Therefore for every X € Xy we obtain the representation

=
= — Z oPX.
K

If K is a convex subset of X invariant by the action of Sym(Iy), we get I, (X) € K for every
X € X, so that I (X) = K N Xy, hence we proved (8.13).

In order to check (8.14), we observe that in general X N Xy C K N Xys; on the other hand
XN Xar = Mar(X) € My (K) = KN Xy by (8.13).

Slmllarly, if we denote by ) M the relative 1nter1or of KNX M in X37, as a general fact KX M C X% M
so that Ky is not empty, since by (8.13) KN Xy = HM(fK) is not empty. On the other hand, by
(8.14), XN Xy = XN Xy =KNXy =KXKNXy = HCM so that the open convex sets XN Xr
and K » have the same closure and therefore coincide. O

We will now show that if the sections AN Xy of a set A C X are invariant by the action of
Sym(Iy), then A is law invariant.
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Lemma 8.10. Let A C X be a set such that Ay := AN Xy are invariant w.r.t. Sym(Iy) for
every N € M. Then A is law invariant.

Remark 8.11. The same statement applies to subsets of Xoo X Xoo-

Proof. Since A is a closed set, by Lemma 3.3, it is sufficient to prove that it is invariant by
measure-preserving isomorphisms: for every X € A and g € S(Q2) we want to show that X og € A.
It is enough to prove that there exist Z,, € A s.t. Z, — X og. Let X,, be a sequence in A
such that X,, — X; since A C X, for every n € N, there exists some N, € 9 such that
X, € An,. Let (bg)r € 0 be the sequence given by Proposition B.4; by Theorem B.5(1) applied
to (2, B, P, (Ps, )ren) and 7 := (i, 9);P, we can find a strictly increasing sequence (M;); C N
and maps g; € Sij () such that

(U, W)s(iq, gj)§P — (U, W)3(iq, g)4P in Pa(X)
for every U,V € X. Since M; is strictly increasing and (B.1) holds, then we can find a strictly
increasing sequence n + j(n) such that g;u,y € Sy, (©2). Thus setting g, := g;(n), 7 € N, by the
invariance of Ay, we get that Z,, := X,, 0g], € Ay, C A and of course we have

(U, W)s(i0, gh)sP = (U, W)y (ia, g)4P in P2(X?) (8.16)
for every U,V € X. We are left to show that
Zp — Xogin X. (8.17)

Since |Z, — X og}|x = | Xy — X|x, in order to get (8.17) it is enough to show that X og/, = X og
which, on the other hand, is implied by X o g/, — X o g, since |X o g/|x = | X|x = |X o g|x. Let
Y € X and let us take U =Y, W = X in (8.16) so that

(X 0gpY)x :/

(@) A((Y. X) 0 (i )P = [ (2,90 AV, X) 0 (i g))P = (X 09, V),
X2 X2

since op(x,y) := (z,y) is a real valued function on X? with less than quadratic growth (see
e.g. [AGS08, Proposition 7.1.5, Lemma 5.1.7]). This shows that X o g; — X o g as desired, thus
(8.17) and so X og € A. O

If Cis a D-core and N € N, we set
GNZZ{XE:X:N:L)(GCN}, Goo::{XEDCOO:LXeC

——

- U Cn
Nen

Dy :=co(Cx), Do = U Dy, Eoo :=Cxo.
NeN

(8.18)

Notice that G is in fact a subset of On and Dy is a subset of X .

Lemma 8.12. Assume that C C Pun(X) satisfies property (d) in Lemma 8.2. Then for every
N € I it holds:

(1) Cn and Dy are relatively open subsets of Xy, invariant with respect to the action of
permutations of Sym(Iy).

(2) The relative interior of Cn in X coincides with Dy, in particular Cy is dense in Dy
and Cn = Dy.

(3) Dy NON =Cpn.

(4) If M € Nt and M ‘ N then Dy = DyNXpy = HM(DN) andm = TNHXM = HM(TN)

(5) Coo C Doo C Doo = Cop = Euo and € is conver.

(6) Dy =D NXy = HN(QOO) and TN =8 NXy= HN(Eoo)-

(7) €00 = Doo = Cop is law invariant.
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Proof. (1) The set Cy is relatively open, since the map X + ¢x is Lipschitz from Xy to Py n(X),
thanks to (8.12), and Cy is relatively open in P n(X). Dy is relatively open in Xy since it is
the convex hull of an open set.

(2) Since Dy = co(Cy) we immediately get Dy C €. On the other hand, since Dy D Cn we

also have Dy = Cy. Being Dy open and convex, it coincides with the interior of its closure.
(3) It is clear that Cxy C Dy N On. Let now show that any element X = #y(x) € Dy NOx
belongs to Cx. If By is the open unit ball in X% it is easy to see that there exists a sufficiently
small ¢ > 0 such that the open set B, := {(Fn(x + €2z), In(x —€z)) : z € By} is contained
in (D NNO N)z. Since Cp is relatively open and dense in Dy N Oy the intersection of B, with
(G N)2 is not empty.

It follows that we can find z € By such that In(x + €2), In(x — ez) € Cy and therefore
X € Cp since Cy is convex along collisionless couplings.

(4) If we apply Lemma 8.9 to the closure of Dy we obtain Iy;(Dy) = Dy N Xys. On the other
hand, using property (3*) in Lemma 8.2 and the density of €y in Dy we have Dy N Xy =
Cn N Xy =Cyr =D

Similarly, still using Lemma 8.9, we obtain ITy;(Dx) = Dy N Xys. Applying (8.15) to Dy, since
by (2) the relative interior of Dy in Xy is Dy, we get that D N Xy coincides with the relative
interior in Xy of Dy N Xar = Dy which is equal to Dy, again by claim (2).

(5) Since Cy = Dy for every N € M by claim (2), we have that Do, C € so that equality
follows by the trivial inclusion Co, C Dyo. Since UCN = Cu, to prove that Co is convex, it is
enough to show that UCy is convex. If X,Y € UCy, we can find M, N € 9 such that X € Cy
and Y € €y, so that by claim (4), both X and Y belong to €y which is convex by assumption.
(6) The first property follows by the identity Dy = DN Xy = IIx(Dy) for any L € N such that

N | L (cf. claim (4)) and the fact that Do, = U{DL :LeMn, N | L}, since M is a directed set.

Setting D’ := UyemD v and starting from the second identity of claim (4), the same argument
shows that Dy = D' N Xy = (D). Since Dy is closed, we get that Iy (D’) is closed, so that
Hy (D) C Uy (D) = Uy (D'). Since clearly Iy (D) C TIn(D), we get that Dy = D' N XAy =
[y (D) =T (D). We also have D' N Xy = My (D' NXy) C In(D') = D' N Xy, so that we get
D'NXy =D NXy. The thesis then follows since D' = Do, = E.

(7) The fact that £ is law invariant follows from Lemma 8.10 and the previous claim, which
shows that €, N Xy = Dy which is invariant w.r.t. Sym(Zy) by claim (1). O

As an immediate consequence of Lemma 8.12 we have the following result.
Corollary 8.13 (Cores are totally convex). If C is as in Lemma 8.12, then C is totally convex.
We can now justify the equivalent characterization of J-cores of Lemma 8.2.

Proof of Lemma 8.2.

Claim 1: (d) implies (a), (b) and (c).

The fact that (d) implies (b) and (c) follows by setting D := ¢(Ds) defined in (8.18) and E := C,
as a consequence of Lemma 8.12 and Corollary 8.13. We prove that (d) implies (a): by Corollary
8.13, we have that C is totally convex. Notice that the sets Cy are nonempty for every N € N
thanks to (3*%) and the fact that C is nonempty. Finally, by Lemma 8.12, we have that the
relative interior in Pf x(X) of CN P4y (X) is given by Dy NP4y (X) = Cy (cf. Lemma 8.12(3)).
Claim 2: (b) implies (d).

If D is a subset of Pyn(X) satisfying conditions (1’),(2') and C = D N Pyuy, we see that
Cy = Dy N Pyn(X) for every N € 91. Clearly Cy is relatively open and convex along
collisionless couplings in P (X). Also, since P4y (X) is obviously dense in Py n(X) and Dy
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is open, we see that Cy is dense Dy i.e. Cy = Dy. It is also clear that Cy is convex along
couplings in Py n(X x X). Finally Dy N Prm(X) = Dy thanks to the convexity of Dy and Dy,
as an application of (8.15) to their Lagrangian representations.

Claim 3: (c) implies (b).

Let E be a totally convex and closed subset of Po(X) satisfying conditions (1), (2"”) and C =
UnenEn N Pun(X). We define Dy and D as in (8.4). The only thing to check is that

Dﬂﬂjf’N(X) = Dy. (819)

Denote by €. the Lagrangian parametrization of E (hence, law invariant) and denote by
EN = Ex N Xy, which is closed and convex. The relative interior & n of Enx in X provides
a Lagrang1an parametrization of E ~ = Dy. Hence, proving (8.19) is equlvalent to prove that
DNy = SN, where D' = UNGWEN Using (8.15), if M | N we get EnN Xy = EM, also
observing that €y is invariant by the action of Sym(/y), as a consequence of the law invariance
of €. Therefore we deduce that D' N X = E .

Claim 4: (a) implies (c).

It is clear that setting E := C we have that E it totally convex and closed. Moreover, since
Ey contains the relative interior in Prn(X) of ENPyun(X) (coinciding with Cy), Ey is not
empty. Since the intersection of Ey with Pun(X) is given by Cy, we immediately see that
Un(Ex N Pyn(X)) = C. Finally

ENP;m(X) = UvE N Ppn(X) = UnCn = C,

where we have used again that the intersection of Ey with Pun(X) is given by Cy and that the
closure of E N P4y (X) coincides with the closure of its (relative) interior. O

Proof of Lemma 8.3. Assume that (1*)-(3*) hold. We need to prove that Cy is convex along
couplings in Pf y(X x X) for every N € M. This is equivalent to prove the convexity of Cy so
that it is sufficient to show that, for every Xy, X; € Cy and t € [0, 1], their linear interpolation
X; := (1 —t)Xo + tX1 belongs to Cy. By Proposition 6.4, we can find small perturbations X (s)
of Xi, s € [0, 1], such that X;(s) € Cn, Xi(s) = X1 as s | 0, and the perturbed interpolation
Xot = (1 —t)Xo + tX1(s) belongs to Cy for every ¢t € [0,1] and s > 0. It follows that the
coupling p, = Lg(m X1 (s) belongs to Py (X x X) and it is collisionless for every s > 0 and therefore
Mot = xﬁus belongs to Cy for every t. Since ps+ = 1(Xs) we have X, € Cy. Passing to the
limit as s | 0 we conclude that X; € Cy. O

8.2. Lagrangian representations of discrete MPVFs: construction of Fy

Let us now study in more detail the Lagrangian representations of a MPVF F C P5(TX) defined
on a M-core. If ® € F we can consider the (not empty) set of all the maps (X, V) € X? such that
(X, V)4P = ®. A particular case arises when the first marginal p = x3® of ® belongs to P n(X).
In this case, X has the form X = Zx(x) € X, so that p = X;P = + > kely Oa(k), and we can
construct V from the representation of ¢ given by

1
N > Bk, ¢ Ph = Sagr)s
kEIN

for a family {®ilrery, C P(TX), by setting V(w) = Vi(w) if w € Qnp, where Vi, €
L2(QN7]€,]P)|QN’]€;X) are maps such that (Vi)sPlay, = + vy Dy

In the general case, when ® € Po(TX), it is easy to check that if (X, V)P = ® and Y € X then
[, % ylro < (V. X = Y. (8.20)
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A particular important case arises when X € Oy and Y € Xpy: in this case @ is uniquely
determined by the disintegration of ® w.r.t. u, and Vg v coincides with Vi, with Vi, as above,
and
<V,X - Y)jx = <HNV,X - Y)x, HNV(LU) = b@(ib(k‘)) ifwe QN,Im (8.21)
where bg is the barycenter of @ as in Definition 2.3. It is easy to check that
[(I), L?X,Y]Tyo = <V,X — Y)x = <HNV,X — Y>x if (X, V)ﬁP =0, X €0y, Y € Xy, (8.22)
since L%QY is concentrated on a map.
Proposition 8.14. Assume the same hypotheses of Theorem 8.4. Let us define the sets
F= {(X, V) € CooxX: (X, V)P e F} Fy = {(X,HNV) X ey, (X,V)e F} (8.23)

where N € M. Then Fy C Xy X Xy is A\-dissipative, has open domain D(F ) = Cn, and it is
invariant by permutations: if (X,V) € Fn and o € Sym(Iy), then (cX,0V) € Fy.

Proof. In case (ii) of Theorem 8.4, the dissipativity of F'y immediately follows. In case (i)
of Theorem 8.4, (8.22) and the A-dissipativity of F along couplings in P4y (X x X), given by
Theorem 7.5, yield

(X, V), ,W)eFy = (V=W X=Y)x <AX Y[, (8.24)
so that F'y is A-dissipative. In any of the cases (i) and (ii) of Theorem 8.4, if (X,V) € Fy and
o € Sym(Iy), then there exists W € X such that (X,W);P € F and V = IIxyW. By Lemma

B.2, we can write X = X og € Cy for some g € G[o] and (X o g, W o g);P € F. To conclude, it
suffices to notice that IIy(W og) =oV. 0

Proposition 8.15. Under the same assumptions of Theorem 8.4, for every N € 91 the A-
dissipative operator F'n admits a unique mazimal \-dissipative extension F in Xy x Xn with
Dy CD(Fy) C Dy. The operator Fn can be equivalently characterized by

(X,V)eFy & XcDy,VeXy, (V-W,X-Y)x<AX-Y}} V(Y,W)¢€ Fy, (8.25)
and, whenever X € Dy, FnX = @(FNX), where

FnX = {VEDCN:H(Xn,Vn) € Fy:Xn— X, Vnév}. (8.26)
F N 1S invariant with respect to permutations, i.e.
(X,V)e Fy, 0 €Sym(Iy) = (0X,0V)eFy (8.27)
and for every X,Y € Dy, we have
VeFNX, PeFly] = (V,X-Y)x+[¥, 4 xlno <AX -Y]. (8.28)

Finally, if M | N = KM, X € Dy, and (X,V) € Fy then Iy V € FyX. Conversely, if
X € Dy and W € F ;X then there exists V € Xy such that

(X,V)e Fy, W =IyV. (8.29)

Remark 8.16. It is worth noticing that the Eulerian image of F N is the MPVF F N defined in
Theorem 8.4.

Proof. (8.25) and (8.26) follow by the fact that Dy is convex and open and the domain of F
is dense in Dy, see Lemma 8.12 and Theorem A.13 in the Appendix.

Using (8.25) it is immediate to check that F'y satisfies (8.27), since for every (X, V) € Fy and
(Y, W) e Fyn

(oV —W,0X = Y)yx =(V-0"'W, X —07V)y <AX -0 V|3 = NoX - Y3,
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since F'y and the scalar product in X are invariant by the action of permutations in Sym(Iy).
If (X,V) € Fy, (8.28) follows immediately since there exists W € X such that ® := (X, W),;P €
F,V =TIyW, and (8.22) yields (V, X = Y)x = [®, 1% y]r0 so that

<V7X - Y>3C + [\I/7 L%/,X]T,O = [(I)v [’g(,Y]T,O + [\Ij7 L%’,X]T,O < A‘X - Y|§C (8'30)

Notice that in case (i) of Theorem 8.4, the last inequality in (8.30) follows by (7.5), while this is
obvious in case (ii) of Theorem 8.4.

If X € Dy and V € FyX according to (8.26), then there exist (X,,V,,) € Fn, X,, € Cy, such
that X,, — X and V;, = V. We can pass to the limit in (8.30) written for (X,,V,) and using
Theorem 2.13(5) we obtain that (X, V) satisfies (8.30) as well. Finally, since (8.30) holds for
every V € FnX, it also holds for every V € ¢ (FnX), hence (8.28).

Let us now suppose that M | N, (X,V) € Fy and X € Dy;. We want to show that W := I,V
belongs to F ;X by using (8.25). If (Y,U) € Fj; with Y € €y, we have U = II;U’ with
(Y,U')4P =: @ € F, so that (8.28) yields
(V.X =Y)x + [®,55 x]ro < AMX = Y3 (8.31)
Since Y € Oy and X € X/, we have [(I),L%X]T’Q = (U, Y — X)y by (8.22); since X — Y € Xy,
we also have (V; X —Y)y = (II)yV, X — Y)yx and we get
(W, X =Y)x + (U, Y = X)x = (V, X = Y)x + [®,0] x]r0 S AX = Y3 (8.32)
Hence, by (8.25) (X, W) € Fj;. In particular, the above property shows that if G : Dy — X is

an arbitrary single-valued selection of F ~, the restriction of IT; o G to Dy is a selection of F M-
We fix such a selection. To conclude we need to prove that the property holds also if X € Djy.

Recall that by Lemma 8.12(3), D(F ;) = Cyr = Dys. Then if X € Dy, by Corollary A.14 we
have that W belongs to F; X if and only if

(W =My oG)|py, (Y),X —Y)xy <AX —YI[} forevery Y € Dy,
i.e., if and only if
(W—-GY,X —-Y)yx <ANX Y|} forevery Y € Dy,. (8.33)
Ifve FNX, then using Corollary A.14 we have
(V-GY,X -Y)x <ANX Y3 forevery Y € Dy D Dy,

hence (8.33) holds and we get II);V € Fp/X.
Let us now show the converse implication. If X € Dy; and W € F; X, we need to prove that

W e Il (FNX>. Since D(G) = Dy, by Corollary A.14 and Theorem A.13 applied to B = G,
we get Ty (FyX) =Ty (GX) =TIy (5 (GX)), where

N—

GX =

=

ZeXn:3X, €Dy Xy — X, GXnAZ}.
Similarly, denoting by G := (Il o G) |p,,, by Corollary A.14 and Theorem A.13 we get
FuX=6X=e(5X)=c0({Z € Xn:3Xn €D X, — X, §X,, = Z})
C Iy (c0 (GX)),
where the proof of the last equality can be pursued as follows. We first observe that
{ZeXy:3X, €Dy X, = X, §X,, —~ 7}
Cly({WeXy:3X,€Dy: X, = X, GX,, =~ W}) =y (GX),
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by using the local boundedness of G as a selection of G (see Theorem A.3(3)) and the fact that
IIys is a linear and continuous operator. Then we notice that

() (HM(GX)) = HM<CO(GX)) = HM(@ (GX)),
where the first equality follows by linearity of II;; and, for the second, we exploit again the

local boundedness of G as a selection of G and the linearity and continuity of II);. Hence the
conclusion. O

It is remarkable that F'y can also be characterized by those (X,V) € Dy x Xy satisfying
inequality (8.25) restricted to those Y € Cx for which (*(X,Y) is the unique optimal coupling
between 1(X) and t(Y).

Proposition 8.17. We assume the same hypothesis of Theorem 8.4. Let X € Dy and V € Xy
be satisfying

(V-W, X -Y)y <AX -Y|[}
for every (Y,W) € Fy s.t. 1*(X,Y) is the unique element of To(1x,1y).
Then (X,V) € Fy.

(8.34)

Proof. Let us consider an arbitrary element (Y, W) € Fy; in particular Y € Cy. Since €y C Dy
and Dy coincides with the interior of the convex set Dy (relatively to Xx), we deduce that all
the points Y; := (1 — ¢) X + tY belong to Dy for ¢t € (0, 1].
Since for t in a neighborhood of 1 we have that Y; € Cny C Oy, we deduce that Y; € Oy with
possible finite exceptions (observe that if two lines ¢ — (1 — t)z; + ty;, ¢ = 1,2, in X coincide at
two distinct values of ¢ then they coincide everywhere). Therefore there exists € > 0 such that
Y; € Op for every t € (0,¢). Since Dy N Oy = Cy (cf. Lemma 8.12), we deduce that Y; € Cy
for every t € (0,¢).
By Theorem 6.2, we can thus find 7 € (0,¢) such that Y, € Cy and (2(X,Y;) is the unique
optimal coupling between tx and vy,.. Let W, € Fx(Y;), then
(V-WX-Y)x=W, =W X-Y)x+(V-W,X-Y)x
1 1
= ﬁ<WT - VVaYT - Y)DC + ;<V - W‘r»X - YT>X

<AX YR,

where we have used (8.34) and the A-dissipativity of F . Since (Y, W) is an arbitrary element
of Fn, we deduce that (X,V) € Fy by (8.25). O

Let us now show that, under the particular assumptions of Theorem 8.5, Fy coincides with F
on Cu.

Corollary 8.18. Under the assumptions of Theorem 8.4, assume also that the MPVF F 1is
deterministic. Then Fy is an extension of Fy = F on Cp, for every N € M. Under the further
assumptions that F is a single-valued PVF and demicontinuous on each Cy, then F coincides
with FN on Cp.

Proof. The first statement is an immediate consequence of Proposition 8.15; the equality Fy = F
on Cp follows from the fact that F is a deterministic MPVF by assumption. Let us now assume
that F is single-valued and its restriction to Cpy is demicontinuous. Let X be an element of Cy,
p = (X); Fu] contains a unique element ® which may be represented as bar (®) = (ix, ba )3
so that there is a unique element V' = by 0 X € Xy such that (X,V);P = ®. This shows
that FX is single-valued. If W € FyX, we can find a sequence (X,,, FX,,) = (X, f,, © X»)
converging in the strong-weak topology of X x X to (X, W), for maps f,, € L*(X, pn; X) with
tn = tx,. On the other hand, since F is demicontinuous and deterministic, we have that



A LAGRANGIAN APPROACH TO TOTALLY DISSIPATIVE EVOLUTIONS IN WASSERSTEIN SPACES 57

Flux,] = (ix, fu)spm — Flex] = (ix, £)gp in P3¥(TX) for a map f € L*(X, i X). If ¢ € Cy(X; X),
we can test the convergence in P5"(TX) against ((x,y) := (¢(z),y) so that

ww&mfnoxmx=1£<daﬁfmwm—f£Cdumfnu=@MXLfoXm>

On the other hand ¢(X,) — ¥(X) and f,, o X,, = W so that we deduce that
(Y(X), foX)x = (V(X),W)x for every 1 € Cyp(X; X).

By arbitrariety of 1 we deduce that W = foX = FX. We thus deduce that F y X coincides with
F X and then it contains a unique element V', and therefore by (8.26) FyX = co(FyX) =V as
well. 0O

A similar result holds under the assumptions of Theorem 8.6. Let us first recall that, by Corollary
3.18, if F is totally A-dissipative also F := F U bar (F) is totally A-dissipative.

Corollary 8.19. Under the assumptions of Theorem 8.6, let B be the Lagrangian representation
of F = FUbar (F), and let B' be any \-dissipative extension of B. For every N € M, Y € Dy,
(Y,W) € B, we have (Y,IINW) € Fy and, in particular,

(V—IxW,X —Y)y <ANX Y% forevery (X,V)e Fy,Y €Dy, (Y,W)e B, (835)
where F'y is constructed as in Proposition 8.15 starting from the restriction of F to C.

Proof. Observe that, by construction, F' (constructed starting from the restriction of the MPVF
F to C) and Fy are subsets of B hence of B’; this implies that Fy is dissipative with B’ in the
sense that

(X -Y,V-W)x <MNX-Y}} forevery (X,V) e Fy, (Y,W)e€ B. (8.36)

Restricting (8.36) to Y € Dy, the very definition of Fy in (8.25) yields (Y,IIyW) € Fy; in
particular, we get (8.35). O

In the general case, we can still improve the compatibility result obtained in (8.28) between Fy
and F with the following.

Lemma 8.20. We keep the same assumptions of Theorem 8.4, and let N € 0. Then
(V,.X =Y)x+ ¥, § xlro < AX — Y% (8.37)
for every (X,V) € Fy, Y € D(Fy) and every ¥ € Fliy].

Proof. We start by proving (8.37) in case X € Dy. Let Y; := (1 — )Y 4+ sX € Dy for every
€ (0,1]; then, by (8.28), we have

<V7X - }/S>9C + [Fv L%/S,X]ﬁo < >‘|X - YZ?‘%C
Using (2.11) we can rewrite the above equation as
(V,X = Y)x + (1= )[F, 15 x]rs < AX - Y53

Using (7.5) in case (i) of Theorem 8.4, or the total A-dissipativity of F in case (ii) of Theorem
8.4, we get

(VX = Yy)a + (1= 8)[F, i xlno — s(1 — )AX — Y} < AIX — Y, 2.
Passing to the limit as s | 0, we obtain

(VX =Y)x+ [, 3 xlo SANX —Y[} VX €Dy, VeFyX,YeD(Fy), ¥ eFLy] (8.38)
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We come now to the general case; let (X,V) € Fy, Y € D(Fy) and ¥ € Fliy]. We define
Z=(X+Y)/2€ Dy and, given T € Dy and Vp € FNT, we set Z; := (1 —t)Z + Tt € Dy for
every t € (0,1]; we take, for every ¢ € (0,1], some V; € FnZ;. Clearly

(X, V), (Z,V}), (T, V) e Fx Vite (0,1].
We compute

(V,X =Y)x+ [V, 65 x]r0 =
= V-V, X =Y)x — (i, Y = X)xx + [, 3, xJro
=2(V =V, X = Z)x = 2(Vi, Y = Z)x + 2[¥, 53 70
=2V = Vi, X — Z)x — 2(Vo, Y — Zy)x 4+ 2[V, 3 2,0

F 2V = Vi Zy — Z)x — 20V, Zt — Z)x — 29,3 5, )r0 + 21T, 3 4]0
=2V = Vi, X — Zi)yx — 2(Vi,Y — Zy)x 4+ 2[V, 3 2,0

+ UV — Vi, Zy — Zyx + 20V = 2Vp, Zy — Z)x — 20,3 5 )0 + 2[¥, 3 4]0
=2V = Vi, X — Z)x + 2(Vi, Z — V) + 2], (3 2,10

4t
+ 7V = Vi, T = Zi) 4+ 26V = 2V, T = Z)x = 210,43, 710 + 2[¥, 13 710

<24V =2V, T — Z)x — 2[¥, 03 2,10 + 2[¥, 13 20
4t
+2MX — Zy)3 +20Y — Z|3 + T - Z|%,
where we have used again (2.11), the A-dissipativity of Fy and (8.38) applied to Z; € Dy,

Vi € FnZ,. Passing to the limsup as t | 0, we get
(VX =Y )+ [, o < 200,68 7)o — 2limint (9,1 7)o + XX =Y S AX -V

by Theorem 2.13(5). O

8.3. Lagrangian representation of the maximal extension

The last and crucial step in the construction of F of Theorem 8.4 exploits an important invariance
property of the resolvents of F'n with respect to N.

Proposition 8.21. We keep the same assumptions of Theorem 8.4. For every X € Xy and
every 0 < 7 < 1/A" there exists a unique X, € Xoo such that

XeXy=X,eDFy)CXy and X, — X € 7 FyX,. (8.39)
Moreover
1
1= A7
Proof. Since X € X, there exits N € 91 such that X € X. Since Fy is maximal A-dissipative,
recalling Theorem A.2(1), there exists a unique solution X, xy € D(Fy) of

XT,N —Xe€ TFN(XT7N).

| Xr(w') = Xr(w")] <

| X (W) — X(W")|  for every W', " € Q. (8.40)

The invariance of F'y by permutations, stated in (8.27), shows that (0.X), x = o(X,,n) for every
o € Sym(Iy). In particular, by A-dissipativity of F'y we have
(0Xrn —0X — (Xon = X),0Xr N — Xon)x < MloXen — Xenli

so that
(1=A71) o XN — Xrnlx < |oX — X|x for every o € Sym(Iy).
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If ' € Qny, W’ € Qnj, 4,5 € Iy, and we choose as o the transposition which shifts ¢ with j, we
get

2 2 ! "y12 2 / 11\ |2

N (= AT Xen (W) = Xen (W) < X (W) = X (W)
which yields (8.40).
Let us now suppose that X € Xj; with M | N. Then X, y belongs to Xps by (8.40), so that
XN € Dy N Xy = Dy by Lemma 8.12(4). By Proposition 8.15, for every Y € D) and
W e FMY we can find V € FNY such that W = II;,;V, so that by A-dissipativity of FN we
have

(Xon =X -7V, XNy — Y)x < M| X, n — Y} (8.41)

Since X, y—Y € Xy, we can replace V with W = 11,V in (8.41), thus obtaining that X; y—X €
TF i (X;n) by Corollary A.14, ie. X; v = X, p. If M, N are arbitrary and X € Xy N Xy,
then setting R := M N the previous argument shows that X, s = X; p = X7 . O

Corollary 8.22. We keep the same assumptions of Theorem 8.4, let M € N and let X € D(FM).
Then

(1) X € D(Fy) for every N € Wt s.t. M| N.

(2) F°X :=lim. g XT;X € FyX. In particular F°X € FnyX for every N € M s.t. M | N.

(3) |F°X|x < |Vl|x for every V € FxX and for every N € 0 s.t. M | N.
(4) 1 =A7)| X, — X|x < 7|F°X|x for every 0 <7 < 1/AT.

Moreover, for every X,Y € UNemD(FN): we have

(F°X —F°Y,X —Y)x < A\ X - Y3 (8.42)
Proof. By Theorem A.3(5) there exists the limit

X - X
lim
710 T

—F°X € FyX

and (4) holds. If N € Miss.t. M | N, then X € D(Fy;) € Dy € Dy, by Lemma 8.12. Moreover
by Proposition 8.21, we have that

X, -X .
e FyX, VO<7<1/AT.

In particular

X, - X
{

i
so that, passing to the limit as 7 | 0, we get

—W, X, —Y)x < MNX, - Y3 VY, W)eFy VY0<7<I1/AT,

(F°X —W, X —Y)x <NX -Y[|2 Y(Y,W)e Fy,

since X; — X as 7 | 0 by Theorem A.3(4). This proves that (X, F°X) € Fy and, in particular,
that X € D(F ). This proves (1) and (2), while (3) immediately follows, also using Theorem
A3(5).

Finally, if X,Y € Uyecq D(F ), then there exist N, M € N s.t. X € D(Fy) and Y € D(Fy) so
that, taking R := M N, we have

(X,F°X),(Y,F°Y) € Fp

by (2). The A-dissipativity of Fp gives (8.42). O
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We can therefore define the operator Fog C X x X
Fo = {(X,V) € Xoo X Xoo : IM €N: (X,V) € Fy YN €N, M| N}. (8.43)

Equivalently, F o has domain D(F.) = UNE‘)’ID(FN) and
Fo X = U m FyX  for every X € D(Fy). (8.44)

MeN M|N

Notice that F is the Lagrangian representation of the MPVF Fo defined by Theorem 8.4.
We can summarize the previous results in the following statement.

Corollary 8.23. We keep the same assumptions of Theorem 8.4. The operator Fo defined by
(8.43) or (8.44) satisfies the following properties:
(1) F is \-dissipative with domain D(Fs) = UNemD(FN) and Cos C Doo C D(F) C
D(FOO) :A@ = ﬁ A
(2) The map F° defined by Corollary 8.22 provides the minimal selection (F)°.

(3) For every X € Xoo and every 0 < 7 < 1/AT there exists a unique X, € D(Fo) such that
X=X eTF X,

Proof. Claim (1) follows by Proposition 8.15 and Lemma 8.12. Claim (2) comes by (8.43) and
Corollary 8.22. Claim (3) is a consequence of Proposition 8.21 and the A-dissipativity of Fo,. O

Corollary 8.24. Under the assumptions of Theorem 8.4, there exists a unique mazimal extension
F of F, and it satisfies the following:

(1) D(F) € D(Fo) = €,

XnND(F) =D(Fy), XoND(F)=D(Fy), (8.45)
and, if X € Xoo and 0 < 7 < 1/XT, then
JTX = XT7 (846)

where J; is the resolvezlt operator ofF and X, is as in Proposition 8.21.
(2) When restricted to D(Fy) (resp. D(Fy)), the minimal selection of F coincides with
Fy)° (resp. (Foo)® = F° as in Corollary 8.23(2)).

(3) The following characterization holds
(X, V)eF & XeCu (V-WX-Y)x<AX-Y[ forevery (Y,W) € Fu; (8.47)
or, equivalently,

(X,V)eF & XeCo (V-FY,X-Y)y<AX-Y[J foreveryY € D(Fs). (8.48)

(4) F=F
Proof. Thanks to Corollary 8.23, the existence and uniqueness of the maximal extension F of

F, with domain D(F) C D(F,) and characterized by (8.47) follows by Lemma A.15, with
D =Xw

Notice that (8.46) holds since, by Corollary 8.23(3), when X € Xo then X- plays the role of
the resolvent for FOo and we just proved that F is a maximal extension of F . We prove the
equivalences in (8.45): let X € Xy ND(F) and 0 < 7 < 1/AT, then

J X -X
T

XxX
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belongs to Fy X, thanks to Proposition 8.21 and (8.46), moreover it is bounded being X € D(F)
(cf. Theorem A.3(5)). By maximality of Fy and applying again Theorem A.3(5), we deduce
that X € D(Fy), hence Xy ND(F) € D(Fy). The reverse inclusion is trivial.

Claim (2) comes from Claim (1) and Theorem A.3(5). The assertion involving Fis, comes from
Corollary 8.23(2) and the proof of Lemma A.15.

The characterization in (8.48) is a consequence of Corollary A.16, applied to B = F with
D = X, and of (8.45).
Finally, Claim (4) comes by Lemma A.15 and the density of X in X. O

Remark 8.25. Notice that Corollary 8.24(2) makes the notation F°, used in Corollary 8.22,
coherent with the one used in Appendix A to denote the minimal selection of F'.

Theorem 8.26. Under the assumptions of Theorem 8.4, F is a law invariant mazimal \-
dissipative operator according to Definition 3.2 and the Fulerian images Fy,Foo, F of FN, Fo,F
respectively (cf. Definition 3.8) satisfy the properties stated in Theorem 8.4.

Moreover, if Y € D(F') and ¥ € Fy]|, we have

(V,X —-Y)x + ¥, L%X]ﬁo <ANX —Y[  for every (X,V) € F. (8.49)
Finally, if X € Cy for some N € N and ® € Fux], then

|FX|} < / |bo|? dex, (8.50)
X
where bg is the barycenter of ® as in Definition 2.3.

Proof. We can apply Lemma 8.10 (see also Remark 8.11) to the set Foo C Xoo X Xoo- By
construction, if (X, V) € Foo N (Xas x Xay) there exists some M’ € M such that (X, V) € Fy
for all N multiple of M’. In particular, choosing M"” € 9 so that M | M"” and M’ | M",
(X,V) € Fy for all N multiple of M”. On the other hand, all the permutations ¢ € Sym(Iy;)
induce admissible permutations of Sym(/y); therefore, by (8 27), we have that (0 X,0Y") belongs
to F'y for every N multiple of M"”. We deduce that (¢ X,0Y) € F, so that Fo N (Xar X Xps)
is invariant by Sym(Is). Since F is the closure of F, by Corollary 8.24(4), Lemma 8.10 yields
that F' is law invariant.

Let us now consider the Eulerian images F N, FOO and F. Since F is law-invariant and maximal
A-dissipative, by Proposmon 3.10 and Theorem 3.12, we have that the MPVF F is maximal
totally A-dissipative. Since F is an extension of Foo, we deduce that Foo is totally A-dissipative as
well. The remaining part of the statement of Theorem 8.4 follows by Proposition 8.15, Proposition
8.17, Corollary 8.22, Corollary 8.23, Corollary 8.24 and the definitions of Fo and F.

We now prove (8.49). Let Y € D(F') and let N € 91 be such that Y € Cn; let ((Xy, Vo))n as
before. If ¥ € F[y], then, for every n € N, we can find M,, € D¢ such that

(X0, Vo) € Fn,Y €eD(Fy) VN eN, M, < N.
By Lemma 8.20, we have
(Vo Xn = Y)x + [0, 08 x, Jro S A X — Y[R VneN.
Passing to the liminf as n — 400 and using Theorem 2.13(5) we obtain (8.49).

Let now X € Cy C Dy for some N € 91, and observe that, since Dy is open by Lemma 8.12,
then J, X € Dy for 0 < 7 < 1/AT sufficiently small, since J,X — X as 7 | 0, where J, is the
resolvent of F'. We can thus apply (8.28) and get

1
;(JTX — X, T X = X)x +[®, 0% 5, xIr0 S AX — J- X3
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Since we have shown that F' is an invariant maximal A-dissipative operator, by Theorem 3.4,
there exists a Lipschitz function f such that J.X = f o X; thus L_2X7 J,x is concentrated on a
map so that, by Theorem 2.13(4), we have

[(I>7 L%QJTX}T,O = <b<I>,X — JTX>x.
We hence get
1
7|J7'X _X‘%C < ’X - JTX|3C (’b<1>‘ +>\‘X — JTX’f)C);
-

dividing by |X — J,X|x and passing to the limit as 7 | 0, we obtain (8.50) (cf. Theorem A.3(5)).
O

We conclude this section with the proofs of Theorems 8.5. and 8.6

Proof of Theorem 8.5. Let us first check that F C Foo. It is sufficient to prove that if we Cy
and M | N, M, N € N, then every element ® = (ix, f)su € F[u] belongs to Fylu]. Adopting a
Lagrangian viewpoint (thanks to Theorem 8.26), if X € Cj; we want to show that V = fo X
belongs to FxX. This follows easily by the fact that Gy C Dy, the A-dissipativity of F and
Proposition 8.17. Being Foo totally A-dissipative, the inclusion F C Fo shows that F is totally
A-dissipative and Foo is a totally A-dissipative extension of F. By construction, F is a maximal
totally A\-dissipative extension of F' and its uniqueness follows as a particular case of Theorem 8.6.
The characterization in (8.11) follows by definition of Fo, and Proposition 8.17. Let us now check
the second statement, under the assumptions that F is also single-valued and demicontinuous in
Cxy. By Corollary 8.22, we know that, on each Cp, the minimal selection F° is a subset of Fy
and therefore, by Corollary 8.18, F°X = FX for every X € Cu

O

Proof of Theorem 8.6. Let B be a law invariant maximal A-dissipative extension of the La-
grangian representation B of F with domaln included in the convex set Co, whose existence is
given by Theorem 3.12. Notice that +?(B) is maximal totally A-dissipative and contains F so that
it also contains bar (F') by Theorem 3.17. We deduce that B is the Lagrangian representation of
a A-dissipative extension of F U bar (F).

We want to show that B C F' and we split the argument in a few steps.

Claim 1: for every Y € D(B) N (UNefﬁ @N) and W € BY , we have W € FY.

Let Y and W be as above and let X € D(F Foo). We can find some M,L € 91 such that
Y € D(B)N Dy and X € D(Fy). In particular Y € D(B) N Dy and X € D(Fy) for every
N € 91 such that ML | N (cf. Corollary 8.22 and Lemma 8.12). By (8.35) we have

(X —Y,F°X —TINW)y < A\|X —Y|% for every N € 0N such that ML | N. (8.51)
Passing to the limit as N — oo in 91 and using (8.48) we deduce that (Y, W) € F.

Claim 2: D(B <UNem®N>: D(B) N Xoo

It is sufficient to prove that D(B) N Dy = ( YN Xy for every N € 91 and since Dy C Xy it is
sufficient to prove the inclusion

D(B)NXy C Dy. (8.52)
We first show that

D(F)NXy C Dy. (8.53)
Indeed, by Proposition 8.21 and Corollary 8.24, for every X € D(ﬁ‘) NXyand 7 > 0, J, X
belongs to D(FN) C Dy: passing to the limit as 7 | 0, since X € D(IA;‘)7 we conclude that
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X belongs to DiN as well, thus proving (8.53). Since D(B) C Do = D(F), by (8.53), we get
D(B)N Xy C D(F)N Xy C Dy, which shows (8.52).

Claim 3: BcC F ) )

Setting B := BN (X x X), the first two claims yield By C F. On the other hand, the maximal
A-dissipativity and the law invariance of B show (cf. Theorem 3.4) that X is invariant under
the action of the resolvent of B; since X is also dense in X, we can apply (A.24) of Lemma
A.15 obtaining that B coincides with the strong closure of By in X x X which is also contained
in F since F' is maximal - dissipative.

(|
8.4. Examples and applications

Let us suppose that F satisfies the assumptions of Theorem 8.4 and let F be the maximal totally
A-dissipative MPVF induced by F. Since C is dense in D( ), if we characterize the Lagrangian
solutions to the flow generated by F starting from every measure of C, we can then obtain all
the other evolutions by approximation.

We want to show that the evolution of every measure in the core C can be characterized in a
metric way, involving only F.

Theorem 8.27. Under the assumptions of Theorem 8.4, let ug € Cy for some N € N and
let p: [0,+00) = Po(X) be a continuous curve starting from py. The following properties are
equivalent:
(1) w is a Lagrangian solution of the flow generated by F (cf. Definition 4.1);
(2) p is locally absolutely continuous in (0,+00), it takes values in Cy, in particular y; €
Prn(X) for every t > 0, and p is a \-EVI solution for the restriction of F to Cy;
(3) 1 is locally absolutely continuous in [0, +00) and locally Lipschitz continuous in (0, +00),
there exists a constant C' > 0 such that the Wasserstein velocity field v of u (cf. Theorem
2.11) satisfies

1/2
1)( / wdn) " <O ae in (0.1), (8.54)
e € D(Fy) C D(F) for every t > 0, and it holds
vy = folu]  for Lt-a.e. t >0, (8.55)
where f° is the minimal selection map induced by (F)° as in Theorem 3.19 and I5(t) is

as in (A.11).
Proof. We split the proof in various steps.
Claim 1. (1) & (3)
To see that (3) implies (1), it is sufficient to notice that by (8.55) u satisfies the inclusion

(ix, v¢ )y € Flue] for ae. t > 0, so that it is clearly a A-EVI solution for F (see also [(SS23a,
Theorem 5.4(1)]); by Theorem 4.5 we get that u is a Lagrangian solution of the flow generated
by F. We are left to check that (1) implies (3).

Since pp € Cy, we can represent jg as t(Xo) for some Xg € Cy = Dy = D(I:"N) (cf. Lemma
8.12 and Proposition 8.15); if (Sy)s>0 is the semigroup generated by F we have p; = ¢(X;) where
X; = S Xo. -

By Corollary 8.24(1), the restriction of the resolvent J . of F to Xy coincides with the resolvent
of Fy: using the exponential formula (cf. Theorem A.6), we obtain that the restriction of the
semigroup (Sy)i>0 to Dy coincides with the semigroup generated by Fx. Since the interior of the
domain of Fy in X is not empty (cf. Proposition 8.15 and Lemma 8.12), we can apply Theorem
A.7 obtaining that S; Xy is locally absolutely continuous in [0, +00), it is locally Lipschitz in
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(0, +00), it satisfies I (t)| X¢|]x < C in (0,1) for a suitable constant C' (so that we get (8.54)), it
belongs to D(F'y) for every t > 0, and it solves the equation

X; = (FN)OXt for ZL-ae. t > 0.

Corollary 8.24(2) then shows that X, = (F)°X; as well, so that we get (4.2), with f° in place of
f°, and therefore (8.55): indeed the tangent space Tan,,, P2(X) (cf. Theorem 2.11 and [AGSO08,
Theorem 8.3.1, Propositions 8.4.5, 8.4.6]) coincides with L2(X, us; X) being supp(u;) of finite
cardinality.

Claim 2: (3) = (2)

We know that solves the continuity equation with velocity field v, = f°[u] so that, by Corollary
8.24(2), we have (ix,v;)sur € Fy. Let ® € F with v := x;® € Cy and let ¢t € A(u) C [0, +00),
where A(y) is the full .#!-measure set given by Theorem 2.13(6a). By Theorem 8.4(2) we have
that

/ (o), 2 — y) dpry () < / (~(ba()y—2) + Nz — ) dp(ey)  (856)
XxX XxX

for every pu; € I's (e, 7). Choosing p; optimal, by Theorem 2.13(6a) we have that
d1

SaWE ) = o], < | (wile).o =) dude.y).

On the other hand, since p, is concentrated on a map w.r.t. v, (2.12) gives that

| tbatw) = o) dunlenn) = (@
XxX

where s is as in (2.3). So that, using (8.56), we obtain that
d1
dt2
By passing to the supremum w.r.t. p, € Iy(ue,v) and recalling Theorem 2.13(2), we finally
obtain

W22(Hta V) < _[(I)v sﬁ#’t]r,o + )\WQZ(MH V)'

d1
angg(Mt, v) < —[®@, ], + AW3 (g, v);

this implies that p is a A-EVI solution for the restriction of F to Cy.

Claim 3. (2) = (1)
We apply [CSS23a, Lemma 5.3, (5.5a)] obtaining that for every ¢ in a set A(u) C [0, +o00) of full
ZL'measure, every v € Cy and ® € F[v] we have

[(iXa vt)ﬂluta V]T' + |:<D7 Nt],r. < )\WQQ(Mtv V)? (857)

where v; is the Wasserstein velocity field of p. Let ¢ € A(p) be fixed; restricting (8.57) to all the
measures v for which T', (¢, V) contains a unique element (denoted by ), Theorem 2.13(4) yields

[(ix, ve)gp, V], = /(Ut(xo)awo — z1) dp(zo, 71),

[q),,ut]r = /(bq;(:zl),:cl — xg) dp(zg, z1).

Proposition 8.17 and (8.57) then yield that (ix,v:)su € Fn[p).
Let us now consider the Lagrangian solution fi; := S¢(po) of the flow driven by F. By the first

Claim, we know that fi is absolutely continuous, fi; € D(Fy) € D(F)NCy for t > 0, and satisfies
(8.55).
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We can then compute the derivative of Wy, fir): for £1-a.e. t > 0, we can choose an arbitrary
€ To(pe, fie), in particular a coupling in P n (X x X), obtaining, by Theorem 2.13(6b),

a1 ) o
aﬁwg(ﬂtaﬂt) = /<Ut(l“0) — fOliu) (z1), w0 — 1) dpay (wo, w1) < AW (e, v)
by A-dissipativity of Fy, since (ix, i [fue))s e € Fx by Corollary 8.24(2). We thus have that
pe = jig for every t > 0 and v, = £°[u]. O

Remark 8.28. The example of %—dissipative PVF F, with X = R discussed in Remark 4.3 provides
also a counterexample to the validity of the above Theorem 8.27 in case dim(X) = 1 and F is not
totally %-dissipative: the evolutions driven by F and F should coincide by Theorem 8.27, but
this is impossible since F is maximal totally %-dissipative and the evolution driven by F splits
mass, a contradiction with Theorem 4.2.

We can now fully justify the example given in the Introduction.

Ezample 8.29. Assume that dim X > 2 and that F is a A-dissipative single-valued deterministic
PVF induced by a map f : 8 (X,C) — X, where C is a core as in Definition 8.1. This means
that f induces a vector field £V : Cy — XY defined on Cy := f]\_,l(C?N) (where Cy is as
in (8.18)), which is an open subset of XV, whose vectors have distinct coordinates: for every
x = (r1,...,zy) € Cy we have

(@) = (f(2n, 00 IN(@))n=t,...N-

Clearly f% is invariant with respect to permutations, in the sense that f~(cx) = o f™ (), for
every & € Cy and every o € Sym(Iy). If F is demicontinuous in Cp, fV is demicontinuous
(i.e. strongly-weakly continuous) in Cy.

The previous theorem shows that starting from pV = % 25:1 o,y € Cn the evolution Y =
Si(p'V), at least for a short time, has the form

N
1 Z
N N N/ .N
He = N n=1 617127(15) where T (t) = -fn (IB (t))

Such an evolution admits a unique extension (see Theorem 8.5) which in fact corresponds to
the unique maximal (and invariant by permutation) extension of the A-dissipative vector field
fY to Cy. It is then possible to follow the path of each single particle by using the Lagrangian
flow starting from j9 € C and defining N locally Lipschitz curves x)) (t) = s;(z2, uo). If now
uN — o as N — oo with a uniform control of the initial velocities, i.e.

N

1 N Ny|2

Sl&pﬁz | (7)) < oo,
n=1

then the measures ¥ will converge to p; = Sy(ug) for every t > 0 in Py(X) and, by Theorem 4.9,

the measures carried on the discrete trajectories 3 >N 25 () € P2(C([0,T7]; X)) will converge

to sy where s is the Lagrangian map starting from g as in (4.14).

Ezample 8.30 (A kinetic model of collective motion). Consider in the phase space X := R% xR? the
evolution of N-particles characterized by position-velocity coordinates (z,,v,) € X,n=1,..., N,
satisfying the system [DOr+06; CCR11]

En(t) = vn(t),
1 N
on(t) = (@ = Bloa())on(t) + 57 D hlan(t) = zm(1)),

m=1

(8.58)
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with & > 0,3 > 0 and h : R? — R? a given Lipschitz vector field. For a given p € Po(X) we can
consider the lower semicontinuous and (—a)-totally convex functional ¢ : Po(X) — (—o0, +0o0]

¢ww=AWWCﬁ%—§W%mwm, (8.59)

whose proper domain is D(¢) := {u € Po(X) : / | dp(z, v) < oo}. The minimal selection of
—04¢(u) is given by (ix, g)sp with

glz,vi) = (0, (a = BloP)o) (8.60)

with proper domain D(9y¢) = {,u € Pa(X) : /|U]6 dp(z,v) < oo}
We can also define the deterministic PVF induced as in (7.10) by h : §(X) — X

h(z,v;p) = (v, /]Rded h(z —y)du(y, w)) (8.61)

It is easy to check that a collection of N particles (z,(t), v, (t)) satisfies (8.58) if and only if the
measure [y = % Zﬁ;l (2 (t)vn (1)) 18 @ Lagrangian solution of the system (4.10) associated with
the deterministic PVF

f@, o) = g(@,v;p) + h(z,v;p),  p € D(8i9). (8.62)

Since the Lagrangian representation of f corresponds to the sum of a maximal a-dissipative
operator (the subdifferential of ¢ = ¢ o) and a Lipschitz operator, it is maximal a-dissipative
thanks to [Bré73, Lemma 2.4, Chapter II], so that the deterministic PVF associated with (8.62)
is totally a-dissipative and we can apply all the results of Section 4.

In the following we give an example of totally dissipative MPVF F having a core contained in its
domain.

Ezample 8.31. Let W : X — (—o00, +00] be a proper, lower semicontinuous, even and convex
function and denote by D(W) its proper domain. Let B C X x X be a maximal dissipative
set (see Appendix A) and suppose that 0 € int (D(WW)) and int (D(B)) # 0. Possible examples
of W and B are given by the indicator of a convex set in X (or a function diverging at the
boundary of a convex set) and the gradient of a convex function in X (or its sum with a linear
and antisymmetric function) respectively. Let wyp be an odd single-valued measurable selection
of OW and let vp be an arbitrary single-valued selection of B. We define the set

E:={ueP(X) : suppp C int (D(B)), supp p — supp . C int (D(W))},

where P.(X) denotes the subset of measures in P(X) with compact support. We define the
single-valued probability vector field F as follows:

€ Pa(X).

_ ) Gx,—(uw xp) +vp)yp, fpekE
otherwise
Notice that the convolution between wy and p is well posed since p is discrete; moreover
(uw * p) +vp € L2(X, u; X) if p € E; indeed vg and uy are both locally bounded in the
interior of the respective domains (see Corollary A.4 and Theorem A.3(3) and recall that
int (D(OW)) = int (D(W))), so that D(F) = E and F C P2(TX). It is not difficult to check that
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F is totally dissipative: for every v € I'(u,v) and every p,v € E,
1 1

5 Wy —y2)dv @ v)(y1,92) — 5 W(zy —x2) d(p @ p) (21, 22)
2 Jxxx 2 Jxxx

> ;/)(4<UW($1 —22), (y1 — y2) — (21 — z2)) d(v @ v)(x1,y1, T2, y2)

- ;/Xd (uw (21— 22), y1 — a1) dp(z2) dy (@1, 91)

1
+ B /3<UW(332 —x1),y2 — x2) dp(z1) dy(w2, y2)
X

= [ (@) - 2) dy (o),
XxX
where we have used Fubini’s theorem and the fact that uyy is odd. This immediately gives that

/X = () + () ). = 3) dy(ay) <0 (3.63)

Thus

/X () (@) + 5 () + (e #0)(3) ~05(0).7 — 1) ()
- / (—uw * 1) () + (uw * v)(), 2 — v) dv(z, )
XxX

+ / (ws(@) - v5(Y), e — ) dv(z,y)
XxX
<0,

where we have used (8.63) and the dissipativity of B.
Given any unbounded directed subset 91 C N, we can define D as

D :={p € Pyn(X) : suppp C int (D(B)), supp pu — supp p C int (D(W))}.

Trivially, being D C P.(X), then D C D(F) N Py n(X). Moreover, for any N € 9, the set
DNPs n(X) is open in Py n(X) and convex along couplings in P x (X x X), being both int (D(OW))
and int (D(B)) convex sets (see Corollary A.4 and Theorem A.3(3)). Thus, setting C :=
D N Pyn(X) and recalling Lemma 8.2, then Definition 8.1 is satisfied for C.

Ezample 8.32. Assume dim X > 2. Let U C X be an open convex subset of X containing 0 (e.g. an
open ball of radious r > 0 centered at 0) and let A be the set of all measures p € Po(X) such that

supp p — /;Ud,u(:v) c U.

In the case U is an open ball, A imposes the constraint that the support of p is contained in
the ball with same radious as U centered at the barycenter of u. We can then consider the set
D :=Uyen(A NPy n) and inducing a corresponding core C as in Lemma 8.2.

Let f : 8(X) — X be a map as in Theorem 7.6 inducing a A-dissipative demicontinuous PVF F
by (7.10).

The restriction of f to § (X, C) induces a unique maximal totally A-dissipative MPVF F’, whose
evolution corresponds to the evolution driven by f and constrained by A.

We conclude with an example of two probability vector fields F, G generating the same evolution

semigroup. The assumptions could be considerably refined: we just discuss a simple case, for
ease of exposition.
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Example 8.33 (Superposition of PVFs). Let (©, T, m) be a probability space and let f : Xx© — X
be a B(X) ® T-measurable map satisfying the properties
f(-,0) : X — X is A\-dissipative and demicontinuous for m-a.e. § € O,
there exists A > 0 such that | f(z,0)| < A(1 + |z|?) for every € X and m-a.e. § € ©.
We denote by 7% : X x © — X the projection on the first component, 7%(z, ) := z, and we set
Flu] = (7%, fl(n@m), pe PaAX). (8.64)
Clearly
PLa = [ ([ 170 am()) dutz) < A +mi(0) <
so that D(F) = P5(X). Using the plan ¥ := (x°, f(x°,40),x!, f(x',i0))s(p ® m) where p €

To(po, 1), we see that F is A-dissipative. Its barycentric selection (cf (2.13)) G :=bar (F) is a
deterministic PVF induced by the demicontinuous map
/ J(z,6)dm(6 (8.65)

G is a maximal totally A\-dissipative PVF (cf. Theorem 3.22). Whenever f(-, #) is not constant in
aset Oy C O of positive m-measure (and therefore F # G), then F cannot be totally A-dissipative
since this would lead to a contradiction with the maximality of its barycentric projection G.
Applying [CSS23a, Corollary 5.23, Theorem 5.27], we know that F generates a unique A\-EVI
flow whose trajectories have the barycentric property, and therefore coincide with the Lagrangian
solutions of the flow generated by G, i.e. F and G generates the same evolution semigroup. It
would not be difficult to check that G coincides with the operator F of Theorem 8.4 constructed
from the restriction of F to the core of discrete measures.

9. GEODESICALLY CONVEX FUNCTIONALS WITH A CORE DENSE IN ENERGY ARE TOTALLY
CONVEX

In this section, we provide sufficient conditions for the total (—\)-convexity property (cf. Section
5), A € R, of a functional ¢ : P2(X) — (—o0,+00] which is proper, lower semicontinuous and
geodesically (—\)-convex (see [AGS08, Definition 9.1.1]) with proper domain D(¢) := {u €
P2(X) @ p(p) < 400}, where we assume dim(X) > 2. This ensures the applicability of the results
of Section 5, in particular Theorem 5.4.

Recall that ¢ : P2(X) — (—o0, +00] is geodesically (—\)-convex if for any po, p1 in D(¢) there
exists p € T'y(uo, 1) such that

A
$pe) < (1= 1)d(ho) + () + (1 — W3 (o, 1) Vit €[0,1],
where 1 := xjp.

Theorem 9.1 (Geodesic convexity vs total convexity). Assume that dimX > 2, ¢ : Po(X) —
(—00, 00| is a proper l.s.c. geodesically (—\)-convez functional such that D(¢) contains a N-core
C (see Definition 8.1) which is dense in energy, meaning that for every u € D(¢p) there exists
(tn)n C C such that

pn =i and  (pn) = ¢(u).
Then ¢ is totally (—\)-convex (cf. Section 5).

Proof. Notice that ¢ is geodesically (resp. totally) (—\)-convex if and only if ¢y := ¢ + %m%()
is geodesically (resp. totally) convex. Moreover the assumptions of the present Theorem hold
for ¢ if and only if they hold for ¢). We can thus prove the Theorem only in case A = 0. We
proceed in a few steps, keeping the notation of Section 8.1. First of all, we introduce a standard



A LAGRANGIAN APPROACH TO TOTALLY DISSIPATIVE EVOLUTIONS IN WASSERSTEIN SPACES 69

Borel space (2, B) endowed with a nonatomic probability measure P as in Definition B.1 and let
X := L%(Q, B,P; X). We lift ¢ to the Ls.c. functional ¢ : X — (—oc0, +00] defined as

P(X) :=((X)) for every X € X. (9.1)

(1) The restriction of ¥ to Cn is continuous and locally convex.

By construction the function ¢ is finite and lower semicontinuous in Cp. It is also clear, recalling
Lemma 6.1, that for every X € Cy there is an open ball B of X and centered at X such that
B C Cn and the restriction of ¢ to B is convex. Since B is open, it follows that ¢ is locally
convex and continuous in Cp: in particular it is convex along each segment contained in Cy.

(2) For every Xo, X1 € Cn we have
(1 =) Xo +tX1) < (1= 1)9p(Xo) + th(X1). (9-2)

Let X, X1 € Cp; setting A := supp(¢(Xp)) and B := supp(t(X1)) we can apply Proposition 6.4
and use the fact that Cy is relatively open to find X| € Cx such that X;(s) := (1—s) X1 +sX] €
Cn for every s € [0,1] and X, := (1 — )Xo + tX1(s) belongs to Oy for every ¢ € [0,1] and
s € (0,1]. Since Cy is convex along collisionless couplings, we deduce that X, € Cy for every
s,t € (0,1) and P(Xs¢) < (1 —t)p(Xo) + t1p(X1(s)). Passing to the limit as s | 0, using the the
lower semicontinuity of ¢ and its continuity in €y we deduce (9.2).

(3) Let K € N, X1, X9, - Xg € Cn and By, -+, Bk > 0 with Z/i(:ugk =1. For everye >0
there exist X; € Cn with | Xy, — X;| <e, k=1,--- K, such that Zszl BrX;, € Cn.

It is sufficient to observe that the map S : X% — X, Sg(Xq, -, Xg) := Zszl Br X}, is linear,
continuous, and surjective, in particular it is an open map. If Xy, X5, - X € Cn and B is an
open ball of radious € around the corresponding vector in X* and contained in (Cy)%, Sk (B.)
is open in Dy = co(Cx) so that its intersection with the open and dense subset Cy is not empty.

4) For every K € N, X1, X9, - Xg € Cn and ay, -+ ,ax > 0 with K ap = 1 we have
Y k=1

K K
PO arXp) <D arth(Xp). (9.3)
k=1 k=1

We argue by induction on the number K. By claim (2) the statement is true if K = 2. Let us
assume that it is true for K € N and let us consider X € Cn, 1 < k < K + 1 and corresponding
coefficients ay. It is not restrictive to assume 0 < axy1 < 1 and we set G := ai/(1 — ax+1),
1< k<K, so that 8 > 0 and Zszlﬁkzl.

We can use the previous claim and for every € > 0 we can find X (¢) € Cy with [ X (e) — X < ¢
such that X'(e) := Zszl Br X () € Cn.

Using claim (2) we get

(1= ax1)X'(e) + ax 11Xk 1) < (1 —ax)P(X'(e)) + ak1¥ (Xk11).

Using the induction step we also get

K
(1= axp)Y(X'(e) <D awp (X4 (e)).
k=1

Combining the two inequalities and passing to the limit as ¢ | 0 using the lower semicontinuity
of ¢ and its continuity in Cx we conclude.

(5) v is conver in Dy.
Let us consider the convex envelope of the restriction of ¢ to Dy = co(Cp) defined by

K K

K
wN(X):Zinf{EZCwﬁﬂﬁk):X%EEeN,akEiO,226%221,}:C%X%::;Y,KTGIN}, X € Dy.
k=1 k=1 k=1
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By the previous claim P(X) <Yn(X) for every X € Dy. We then consider the lower semicon-
tinuous envelope ¥y : Dy — (—00, +00] of ¥ defined by

Pn(X) = inf { liminf ¥x(X,) : Xp € Dy, X — X asn — oo}, X € Dy.
Since v is lower semicontinuous and vy is continuous in Cpy, we have
»(X) <Pn(X) forevery X € Dy, Pn(X) =9n(X) =9(X) if X €Cn.  (94)

We want to show that 1) = ¢ in Dy. Let us suppose that X € Dy, with ¢(X) < co. We take
Y € Cy, so that X; := (1 — )X +tY € Dy for every t € (0,1] (since Dy is convex and its
relative interior coincides with Dy by Lemma 8.12) and X; € Cy with possibly finite exceptions.
Therefore, possibly replacing Y with X;, for a sufficiently small ¢y > 0, it is not restrictive to
assume that X; € Cy for every t € (0,1] and (?(X,Y) is the unique optimal coupling between its
marginals (see Lemma 6.2) , so that 1 is convex along (Xt);c(o,1] being ¢ geodesically convex.
We deduce that

N (Xp) = (X)) < (1= )(X) +tp(Y)  for every ¢ € (0,1],

so that ¥ (X) < liminfyo¥n(Xe) < (X).

(6) 9 is convex.

Let X,Y € D(¢), and let = +(X),v = 1(Y) € Po(X). We thus have that u,v € D(¢) C C.

By density, we can find sequences (tin)n, (vn) C C such that Wa(up, u) — 0, Wa(vp,v) — 0,
d(pn) = ¢(p) and ¢(vy) — ¢(v) as n — +o00. By the last part of Theorem B.5, we can find
sequences (X,)n, (Yy)n C Co such that tx, = pn, ty, = vp, X, > X and Y,, — Y. Since
Xn € Crr(n), Yn € Cyp) for some M(n), N(n) € 9t and N is a directed set, we can find P(n) € N

such that M(n) | P(n), N(n) | P(n); so that X,,, Y, € Dp(y). By claim (5), we we have that
(1 —t)X, +tY,) < (1 —t)Y(X,) + t(Ys), for any n € N.

Passing to the limit as n — oo and using the lower semicontinuity of v yield the sought
convexity. U

Remark 9.2 (Geodesic convexity implies total convexity for continuous functionals). Let ¢ :
P2(X) — R be a lower semicontinuous and geodesically (—\)-convex functional which is ap-
proximable by discrete measures, i.e. for every p € Po(X) there exists a sequence p, € Pyun(X)
converging to p such that ¢(u,) — ¢(u) (e.g. ¢ is continuous). Then ¢ satisfies the assumptions
of Theorem 9.1 with C = P4n(X). This in particular gives that such kind of functionals are
totally (—\)-convex and locally Lipschitz.

As a consequence, we notice that non totally (—\)-convex functionals cannot be approximated
in the Mosco sense by everywhere finite, continuous and geodesically (—\)-convex functionals
defined on P2(X) (this is because total (—\)-convexity is preserved by the Mosco limit).

As previously mentioned, thanks to Theorem 9.1 we are allowed to apply all the results obtained in
Section 5 to the totally (—\)-convex functional ¢. In particular, we get existence and uniqueness
of the \-EVI solution for the MPVF F := —8¢ starting from g € W and its Lagrangian
characterization as the law of the semigroup generated by —0v, where 1 is defined as in (9.1).
We conclude the section by showing that the total subdifferential —8¢ := 12(—0%) coincides

with the operator F obtained by the 91-core construction of Theorem 8.4.

Proposition 9.3. Let us suppose that dimX > 2, ¢ : Po(X) — (—o0,+00] is a proper,
l.s.c. geodesically (—\)-convex functional such that D(8¢) contains a N-core C which is dense in
energy in the sense that for every p € D(¢) there exists (pn)n C C s.t.

fin = fy H(pn) = G(H).
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The maximal totally A-dissipative MPVFE F, obtained by Theorem 8./ starting from the minimal
selection —3°¢A7’est7’icted to C, coincides with —8y¢ Adeﬁned as in Section 5. FEquivalently, if
Y= ¢or and F is the Lagrangian representation of F, then

F=_0y.

Proof. By Theorem 9.1, we have that ¢ is totally (—\)-convex so that we can apply the results of
Section 5. By Propositions 5.1 and 5.2 we know that 8°¢ coincides with 97¢ and 8¢ ¢ is totally
A-dissipative.

Theorem 8.6 shows that F provides the unique maximal totally A-dissipative extension of the
restriction of 8{¢ to C with domain included in C. Therefore, F must coincide with 8¢, being
91 ¢ maximal totally A\-dissipative as well (cf. Proposition 5.1) and observing that by Proposition
5.2(3) we have D(8¢) = D(8¢) C C. O

APPENDIX A. DISSIPATIVE OPERATORS IN HILBERT SPACES AND EXTENSIONS

In this section, we recall useful definitions, properties and results on A-dissipative operators in
Hilbert spaces used in Sections 3 and 8, with A € R. Our main reference is [Bré73].

Let 3 be a Hilbert space with norm | - | and scalar product (-,-). Given E C H, we denote by
co(E) the convex hull of E and by ¢o (E) its closure. Given an operator B C H x H (which
we identify with its graph) we define its sections Bz = B(z) := {v € H : (z,v) € B} and its
domain D(B) := {x € H : Bx # 0}. An operator B C H x H is A-dissipative (A € R) if

(v—w,z—1y) <Nz —y|*> forevery (z,v), (y,w) € B. (A.1)

A \-dissipative operator B is maximal if it is maximal w.r.t. inclusion in the class of A-dissipative
operators or, equivalently, if [Bré73, Chap. II, Def. 2.2]

(z,0) e HxH, (w—wxz—y)<Nz—y|* forevery (y,w)e B = (z,v)€ B. (A.2)

Remark A.1 (Dissipativity, monotonicity). Let B C H x H; we define —B := {(z, —v) : (z,v) €
B} and we say that B is A-monotone if —B is (—\)-dissipative. It is easy to check that B
is \-dissipative if and only if B* := B — \ig is O-dissipative (or simply, dissipative) if and
only if —B” is 0-monotone (or simply, monotone). The same holds for maximal A-dissipativity,
maximal dissipativity and maximal monotonicity (with analogous definition). Observe also that

D(B) = D(B") = D(—B").

We list in the following theorems a few well known properties of A-dissipative operators that have
been extensively used in the previous sections. Since these results are more commonly known
for A =0 (cf. [Bré73]), we prefer to state them here in the general case. For this reason, in the
proofs, we point out only the changes that have to be made compared to the case A = 0. Recall
that AT := AV 0 and we set 1/A\" = +o0 if AT = 0.

Theorem A.2. Let B C H x H be a A-dissipative operator. Then:
(1) B is mazimal if and only if the resolvent operator J, := (igc — 7B) ™! is a (1 — A1)~ !-
Lipschitz continuous map defined on the whole H for every 0 < 7 < 1/A\T;
(2) there exists a maximal extension B of B (meaning that B C B and B is mazimal
A-dissipative) whose domain is included in ¢6 (D(B)).

Proof. (1) We can use Remark A.1 and apply [Bré73, Proposition 2.2] to —B* and then obtain
that B is maximal \-dissipative if and only if ((1+AJ)ig —9B) ! is a contraction on K for every
¥ > 0. Since z — z/(1 — Az) is a bijection between (0,1/A") and (0, +00), this is equivalent to
say that ((1 — A7)~ !(igc — 7B))~! is a contraction on H for every 0 < 7 < 1/A* which is to say
that J, is a (1 — A7) ~!-Lipschitz map defined on the whole .

(2) This follows immediately from Remark A.1 and [Bré73, Corollary 2.1]. O
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Theorem A.3. Let B be a maximal \-dissipative operator. Then:

(1) B is closed in the strong-weak (or the weak-strong) topology in H x H;
(2) for every x € D(B), the section Bz is closed and convex so that it contains a unique
element of minimal norm denoted by B°x;

(3) if int (co(D(B))) # 0, then int (D(B)) is convez, int (D(B)) = int (D(B)) # 0 and B is
locally bounded in the interior of its domain;

(4) D(B) is convex and for every x € D(B), Jrx — x as 7] 0;

(5) for every 0 < T < 1/A*, the Moreau-Yosida approzimation of B, B, := JT;i“, s maxi-

mal ﬁ—dissipative and T(Ql_f);) -Lipschitz continuous. Moreover, for every x € D(B),

(1= A7)|Brz| 1 |B°z|, asTl]0,

B,x — B°z, asTl]0,

|B,xz — B°z|? < |B°z|*> — (1 — 2X\71)|Bz|*, for0<71<1/AT.
If x ¢ D(B), then |B;x| — 400. Finally, B; — B in the graph sense:

for every (x,v) € B there exists (z;)r>0 C H such that v — x, Brz; — v, as 7] 0.

(6) B° is a principal selection of B i.e.
(z,v) € D(B)xH, (v—B°y,z—y) <\Nz—y|*> foreveryyecD(B) = (z,v)€c B. (A.3)
Proof. (1) and (2) follow immediately from (A.2).
(3) follows immediately by Remark A.1 and [Bré73, Proposition 2.9].
(4) follows by Remark A.1 and [Bré73, Theorem 2.2] observing that

(1 + X9) (i3 + 9(—B)) 1z = x.

lim J,z = lim
710 910
(5) The Lipschitz constant of B can be estimated by (L + 1), where L is the Lipschitz constant

of J -, so that the value of the constant follows by Theorem A.2(1). The fact that B is A\/(1— A7)
dissipative is a consequence of the inequality

|$—y|2,

A
T 1-=Ar
where we used the Lipschitz continuity of J.. Maximality of B, follows by Remark A.1 and
[Bré73, Proposition 2.6]. The fact that (1 — A\7)|B,z| is increasing and bounded from above by
| B°z| follows precisely as in the proof of [Bré73, Proposition 2.6]: exploiting the dissipativity
inequality

1 1
(Brx — Bry,x —y) = ;(JTﬂc —Jry,r—y) — ;Ifc -y <

(B°2 — Brx,x — J x) < Mz — JTx\2

one gets that |B,x|?(1 — A7) < (B°z, B,x) for every € D(B). Substituting to B, in the same
inequality, the A\/(1 — An)-dissipative operator B,,, we get that

|By 2> (1 = M1+ 1) < (1 = M)(Byz, Byirz) for every x € 3 and every 0 < n,7 < 1/AY.
This shows that the quantity (1 — A7)|B, x| is nondecreasing as 7 | 0 for every x € 3. This
means in particular that there exists the limit ¢ := lim, o |B,z| € [0,400]. The above estimate
also gives that

1 —Xn+27)

1—An

so that (B,x), is Cauchy whenever it is bounded. Thus, if z € D(B), then (1—A7)|B x| < |B°z]|
so that Bz — v for some v € H. By (1), (z,v) € B and |v| < |B°z| which implies that v = B°z.
On the other hand, if x ¢ D(B), we have that |B,z| — +o0o: indeed, if by contradiction |B x|

is bounded, then we have shown that B,z must converge to some v € H so that we also have
J.x=7B;x+x — x. Since (J,;z,B:x) € B and (J,;z, B x) — (z,v), by (1) we deduce that

|B,+-7 — Byz|* < |Byz|* — |B, x> for every x € K, (A4)



A LAGRANGIAN APPROACH TO TOTALLY DISSIPATIVE EVOLUTIONS IN WASSERSTEIN SPACES 73

(z,v) € B, a contradiction. Observe that passing to the limit as | 0 in (A.4), we get that
|B,z — B°z|? < |B°x|? — (1 — 2\7)|B,z|?. To conclude the proof of (5) we only need to show
the graph convergence of B, to B. Let (x,v) € B and let us define x,; := x — 7v. Then 2, — x
and J;z; = z. Then Bz, = (v — z;)/T = v.

(6) Follows exactly as in [Bré73, Proposition 2.7]: performing similar computations, we get

1
§(y1 — 2,1 — x2) < —(y1 +y2, 7 — T x) + M| Jrx — 21)? + | Tz — 22]?)

for every (x1,y1), (x2,y2) € M, where
M = {(y,w) €D(B) x H : (B°z —w,z —y) < Mz —y|> for every z € D(B)},

and z := (z1 + x2)/2. Passing to the limit as 7 | 0 we obtain that M is A-dissipative so that,
since B C M, we get that M = B. O

For the next result we recall that a proper functional ¢ : H — (—o0, +00] is said to be A-convex
if the map x + 1)(z) — 3|z|? is convex. Its Fréchet subdifferential 91 is characterized by

(r,v) €Yy << xe€D()and Y(y) — () > (v,y —x) + %|a: —y*  for every y € H.

Corollary A.4. Let i) : H — (—o0,+0o0] be a proper, lower semicontinuous and (—\)-convex

function. Then —0v is a maximal A-dissipative operator. Moreover, denoting by B := —0v, we
have that
—(J
hﬁ}w = |B°z|*>  for every x € D(B),
T T

1 1
e = ToafP £ o(Tew) < Sle— g+ ly)  for every vy €36,y £ T

Proof. Notice that ¢y := ¢ + %] - |? is convex and that 9y = vy + Aiy so that by [Bré73,
Example 2.3.4] and Remark A.1, the operator —9, is maximal dissipative and thus —0v is
maximal \-dissipative. By definition of subdifferential of a (—\)-convex function, we have that
for every 0 < 7 < 1/A% it holds

A A
(x) —Y(Jrx) > (Brx,Jrx — ) — §|J-,-ZL‘ —z|? = 7|Bz]? — §|JTm — z|?,

A A
V(Jrx) —(x) > (B°z,x — Jrx) — §\J7x — 2> = —7(B°z, B,z) — §]J7x —z|%

Dividing the first (resp. the second) inequality by 7 > 0 (resp. —7 < 0) and passing to the lim inf
(resp. to the limsup) as 7 | 0, gives the desired equality thanks to Theorem A.3(5). The fact that
the limit diverges outside the domain of B follows again by Theorem A.3(5) and the first inequality
above. The last assertion follows simply observing that y — U(7,z;y) = 5|z — y[> + ¢(y)
is proper and strictly convex, so that z is a strict minimum point for ¥(r,z;-) if and only if
0 € 0Y(7,x;2), which is satisfied if and only if z = J,x. O

Theorem A.5. Let B be a mazimal \-dissipative operator and let zo € D(B). There exists a
unique locally Lipschitz function x : [0, 4+00) — H, with x(0) = xq, such that:

(1) z(t) € D(B) for everyt > 0;

(2) ©(t) € Bx(t) for a.e. t > 0;

(3) the map t — B°xz(t) is right continuous, t — x(t) is right differentiable at every t > 0

and its right derivative at t coincides with B°(x(t)) for every t > 0;

(4) the function t — e~|B°x(t)| is decreasing in [0, 4+00).

Moreover, if x,y : [0,400) — H are solutions of the differential inclusion in (2), then

j2(t) = y(t)] < ¥|2(0) = y(0)|  for every t > 0.
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Proof. The proof of the last assertion is trivial. The proof of the points (1),(2),(3) and (4) is
completely analogous to the one of [Bré73, Theorem 3.1] with only few differences that we point
out in case A # 0. In what follows, we take 0 < 7,7 < 1/A*. To prove existence one starts from
the approximate problems

Ty — Brx: =0
which have unique smooth solutions thanks to e.g. [Bré73, Theorem 1.6] together with the

estimate
At
1—X

|Brz.(t)| = |2(t)] < eljﬁ]BTxo\ < 16 )\T |B°xzo| for every t > 0, (A.5)
— AT

still provided by [Bré73, Theorem 1.6] and Theorem A.3(5). Performing the same computations
of the proof of [Bré73, Theorem 3.1], using A-dissipativity instead of monotonicity, one obtains
|z (t) — 2y(t)| < C(N )| B°xo|\/T+1n for every t >0,

where C'(A,t) is a positive constant that depends in a continuous way only on A and ¢. This
proves that x,; converges locally uniformly to = on [0, +00) with the estimate

|z, (t) — x(t)| < C(\t)|B°x|/T  for every t > 0. (A.6)

Since
At
1—X

e T
|Jrxr — x| = 7|Bres| < T T /\T|B°xo\,

we also get that J,z, converges to x locally uniformly in [0, +00) and this, together with the
estimate (A.5) and Theorem A.3(1), shows that z(¢) € D(B) and |B°x(t)| < e\|B°xq| for every
t > 0; in particular this proves (1). Since |Z.| is uniformly bounded on every interval [0, T] by
(A.5), it converges weakly* in L>°([0,T]; H) (and thus also weakly in L2([0,T]; H()) to a function
v € L*(]0,T]; H) which turns out to be the almost everywhere derivative of x in [0, T (cf. [Bré73,
Appendix]) so that, applying Theorem A.3(1) to the extension of B to L2([0,T]; ) (see [Bré73,
Examples 2.1.3, 2.3.3] and Remark A.1), we obtain (2) and also the inequality

12(t)| < eM|B°xo| for a.e. t > 0. (A.7)

Observing now that, for every ¢ty > 0, t — x(t + to) is a solution of (2) with initial datum x(t¢),
we get that |B°z(t + to)| < eM|B°x(to)| which proves (4). It remains only to prove (3). The
right continuity of ¢ — |B°z(t)| follows precisely as in [Bré73, Theorem 3.1]: it is enough to
prove it at ¢ = 0; if 0 < ¢,, < 1 is such that ¢, | 0, then |B°(z(t,))| < e|B°xg| by (4), so that,
up to a unrelabeled subsequence, B°(x(t,)) converges weakly to some v € H. Since z(t,) — o
and thanks to Theorem A.3(1), v belongs to Bxy. However |v| < |B°zg| so that it must be
v = B°x. The strong convergence follows observing that limsup |B°(z(t,))| < |v| = |B x|
Being the limit independent of the subsequence, we obtain convergence of the whole sequence.
We still follow the proof of [Bré73, Theorem 3.1] to prove the right differentiability of x and the
inclusion for its right derivative: for every tg, h > 0 we have that

to+h Y 1
/ z(s)ds

to

2t + h) — a(to)| = <

| B®(x(t0))];

where we have applied (A.7) to t — x(t + to). If £ is a point of differentiability for z(¢) such
that #(tp) € Bx(to), dividing by h and passing to the limit as h | 0 in the above inequality,
we get that |2 (to)| < |B°z(to)| so that &(tg) = B°z(tp). We can thus integrate this equality in
[to, to + h] for every ¢ty > 0 and every 0 < h < 1 to obtain that

to+h) — z(t !
lim 2o + i)L 2(to) =lim | Bou(to + sh) ds = Ba(to),

where we used the right continuity of ¢ — B°(z(t)) and the dominated convergence theorem that
we can apply since |B°z(to + rh)| < e*|B°z(tg)| by (4). This concludes the proof of (3). [
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Theorem A.6. If B is maximal \-dissipative, there exists a semigroup of Lipschitz transforma-
tions St : D(B) — D(B) such that, for every x € D(B), the curve t — x(t) := Sz is the unique
solution of the differential inclusion &(t) € Bx(t), for a.e. t > 0, starting from x. Moreover, we

have

1Sz — Syy| < eMa—y|  for every x,y € D(B) and every t > 0. (A.8)

Finally, for every x € D(B) we have that
;‘/nfc — Sz asn — +oo

and for every T > 0 there exist N(A\,T) € N, C(X\,T) > 0 (with C(0,T) = 2T ) such that
| B°x|

vn
Proof. The first assertion follows by extending by continuity the semigroup (whose existence
follows by Theorem A.5) from D(B) to the whole D(B) (see also [Bré73, Remark 3.2]). The
second assertion for A < 0 follows immediately from [Bré73, Corollaries 4.3, 4.4] applied to
—B. We only prove the second assertion in case A > 0 following the same strategy of [Bré73,

Corollaries 4.3, 4.4]. We fix 29 € D(B) and we consider as in the proof of Theorem A.5 the
approximated problems

[T — Siw| < C(A\T) for every 0 <t <T,n>N(\T), z € D(B). (A.9)

r(t) — Brz.(t) =0, xz:(0) = xo,
where we are assuming from now on that 0 < 7 < 1/\. By [Bré73, Theorem 1.7] we have that

) 1/2
t t
L | < (1 — \r) M - —
|- (t) — J2zo| < (1 — A7) "eM|z0 fo0|<<” 7(1_AT)> JrT(l—)\T))

. 9 . 1/2
o —n— i
< |B°zo|(1 — Ar) " LeM ((Tn— 1 )\T> + 1 _)\T> )

where we have also used that J, is (1 — A7)~ !-Lipschitz continuous (see Theorem A.2(1)) and

Theorem A.3(5). Using this inequality together with (A.6) with 7 = t/n we get that for every

T > 0 we can find an integer N(\,T") and a positive constant C(\,T") such that

| B°x|
vn

This proves (A.9) and also the convergence of J), zo to Sixo, whenever zp € D(B). In case

|Jrzg — Szl < C(N\,T) for every n > N(\,T) and every t € [0,T].

yo € D(B) and zp € D(B) we can estimate
[T my0 — Seyol < [In90 — Tnwol + |Siyo — Sixo| + [Sixo — J ¢, 20|
< lwo = ol (1= Xt/n) ™" + M) + [Symo — T30,
where we have used again Theorem A.2(1). Passing to the limit as n — 400 gives that

limsup |J7),,50 — Siyo| < 2eM|x0 — yo
—+00

ans passing to the inf w.r.t. xg € D(B) gives the sought convergence. O

The following result corresponds to [Bré73, Theorem 3.3] and concerns the regularizing effect
for the semigroup generated by maximal A-dissipative operators whose domain has nonempty
interior.

Theorem A.7. Let B be a mazimal \-dissipative operator such that int (D(B)) # (0 and let

xg € D(B). Then the curve x(t) := Sixg, t > 0 (cf. Theorem A.6) has the following properties:
(1) x is locally absolutely continuous in [0,+00) and locally Lipschitz in (0, +00);
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(2) x(t) € D(B) for everyt > 0;
(3) there exists a constant C > 0 (depending solely on xg, A\ and B) such that

L()z@t)| <C  forae. te(0,1), (A.10)

where
— At

¢ l—e ‘
L) = / Mot gg = A PAF0 s, (A.11)
A / if A =0,

Proof. The proof closely follows the one of [Bré73, Theorem 3.3] and it is divided in several
claims.

Claim 1. For every y € int (D(B)) there exist o, M > 0 such that

olv] < (v,y — ) + M(Jz —y| + o) + X (Jz —y| + 0)*  for every (z,v) € B.

Let y € int (D(B)) and let (z,v) € B be fixed. By Theorem A.3(3), there exist o, M > 0 such
that, for every z € H with |z| = 1 and every w € B(y — pz), it holds |w| < M. Testing the
A-dissipativity of B with (x,v), (y — 0z, w) € B, we get

(v—w,z —y+02) < Az —y + 02|
so that
o(v,2) < (v,y —z) + AT (Jo — y|* + 20(x — y, 2) + °[2°) + M(|lz — y| + o|2])
< (v,y— )+ Mz —y|+ 0) + AT (Jz — y| + 0)*.

Passing to the supremum in z € H with |z| = 1 proves the claim.

We consider, as in the proof of Theorem A.5, the approximated problems
- (t) — Brz-(t) =0, z,:(0) = xo,
where we are assuming from now on that 0 < 7 < 1/AT.

Claim 2. For every T > 0, the curves xr and J,x, converge to t — Sixo uniformly in [0,T] as
71 0.

Let us first show that x, converges to ¢t — Sz uniformly in [0, 7]: let us denote by (S7):>0 the
semigroup associated by Theorem A.6 to the maximal ﬁ—dissipative operator B (cf. Theorem
A.3(5)), so that in particular x,(t) = S7x¢ for every ¢ > 0. For every yo € D(B) and t € [0, 7],
we estimate

2 (t) — Sexol < 18750 — STuol + 1590 — Suyol + 1Seso — Seo
A o
< eTx g — yo| + C (A )| B°yo|v/T + ez — o

+
< (T AT = nl + sup CODIB IV
te[0,7)
where we have used (A.8) for B and B; and (A.6). Passing first to sup,cp 77, then to the limit

as 7 | 0 and finally to the infimum w.r.t. yo € D(B), gives the sought uniform convergence of x,
to t — Sixo in [0, T]. The argument for J,z, is similar: for every t € [0,7] and every yo € D(B)
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we estimate

|JTxT(t) - Stl'O’ S |JTxT(t) - JTStxO‘ + ’JTStxO - JTSt90’ + |J7'Sty0 - Sty()‘ + ’Sty(] - St$0|

1 At
< m’wr(t) — Syxo| + (1 . T eAt) |zo — yo| + 7| B+ Swyol|
1 s 6/\t v At B
< — t) — _ o
< ol = Sl + (55 + ) b =l + B
1 T e T o
< sup |z (t) — Sixo| + ( —- t ) |wo — ol + | B®yol

L = AT tepo1) 1-MA7 1-A1

where we have used the (1 — A7)~ !-Lipschitzianeity of J, coming from Theorem A.2(1), (A.8)
for B, the definition of B,, Theorem A.3(5) and Theorem A.5(4) applied to B (notice that this
is possible since yg € D(B)). Passing first to sup;c(o 71, then to the limit as 7 ] 0 and finally to
the infimum w.r.t. yo € D(B), concludes the proof of the claim.
Claim 3. For every T > 0 there exists a constant M > 0 (not depending on 7) such that
|B,z(T)| < M for every 0 < 7 < 1/AT.
We fix some y € int (D(B)) and we apply Claim 1 to (z,v) := (Jrz.(t), Brz-(t)) € B, with
t €[0,T) and 0 < 7 < 1/AT so that
1d

0 ’Brx'r(t)’ < _ia‘xr(t) - y’2 + Mo+ M’JTxT(t) —yl+ AT (‘J'rxr(t) - y’ + Q)2 :

Integrating in [0, 7] and using Theorem A.5(4) applied to B, we get

o|Brz(T)| Ilfx

1 T
(1) < loo—of+ MeT+ [ [MITrarn(®) =yl 4 A (e l6) = o] + 0] .
T 0

By Claim 2, the right hand side of the previous inequality is uniformly bounded (w.r.t. 7 €
(0,1/A")) so that we conclude the proof of the claim.
Claim 4. Proof of points (1), (2) and (3).
By Claim 3, we have that for every ¢t > 0, up to an unrelabeled subsequence, Bz, (t) — v for
some v € H. By Claim 2, we have that J,z.(t) — Sixo so that we deduce by Theorem A.3(1)
that Syzo € D(B); this proves (2). We can then fix some y € int (D(B)) and apply Claim 1 to
(x,v) = (z(t), 24+ (t)), t > 0, where @4 (¢) is the right derivative of ¢ — z(¢) at ¢. Indeed, since
Sizo = Si—5(Ssz0) and Ssxg € D(B) for every 0 < § <t by (2), we can apply Theorem A.5(3)
to get that (z(t),24(t)) € B. We then obtain
) 1d

Ol (0] < — 5 <L la(t) — yf? + Mo+ Mla(t) — ] + X (a(t) — o] + o).

Integrating the above inequality in [s, 1] for any 0 < s < 1, we get

1 1
. 1
o [ NerOlde < Sloo— g + Mo+ [ [Mla(t) = gl + X (Ja(t) — ] + 0] at.
Thanks to (A.8) and Theorem A.5(4) we have that for every t € [s, 1] it holds

+ (e}
[2(t) — y| < eMlzo —y| + Sty —y| < e (lzo — y| + |B°y|).

This proves that there exists some constant C' > 0 (depending solely on z, A, y, 0 and M) such
that

1
/ |z4(t)|dt < C  for every s € (0,1).
S
Being the constant independent on s, we conclude that z is absolutely continuous in (0, 1); using

also Theorem A.5, this proves (1). To prove (3), it is enough to use the above estimate with
Theorem A.5(3),(4). O
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Proposition A.8. Let B be a maximal \-dissipative operator, let Y C H be a closed subspace
and suppose that Y is invariant for the resolvent of B, i.e. Jrx € Y for every x € Y. Then the
operator By := BN (Y x'Y) has the following properties:
(i) By is mazimal \-dissipative in'Y;
(ii) the resolvent (resp. the semigroup) of B coincides with the resolvent (resp. the semigroup)
of By when restricted to Y.
(iii) D(By) =D(B)NY;
(i) D(By) = D(B) NY;
(v) (By)°z = B°z for every x € D(By).

Proof. Tt is clear that the restriction of J,, the resolvent of B, to Y provides the resolvent
operator for By and it is a (1 — A7)~ !-Lipschitz map defined on the whole Y: by Theorem A.2(1),
By is maximal A-dissipative in Y. This proves (i) and (ii), also using the exponential formula
(cf. Theorem A.6). To prove (iii), it is enough to show the inclusion “2”: if x € D(B)NY,
then (Jrx —z)/7 € Y is bounded by Theorem A.3(5) and, by the same result together with
(ii), it must be that z € D(By). The inclusion “C” in (iv) follows by (iii), while the inclusion
“>” follows simply noticing that, if x € D(B)NY, then J;x — x by Theorem A.3(4) and
Jrz € D(B)NY = D(By). Assertion (v) follows again by Theorem A.3(5). O

Corollary A.9. Let B be a mazximal \-dissipative operator and suppose that H has finite
dimension. Then the conclusions of Theorem A.7 hold.

Proof. Up to a translation, we can assume that 0 € D(B). Let Y be the subspace generated by
D(B). Since H is finite dimensional, then Y is closed. We can thus apply Proposition A.8 and
obtain that By := BN (Y x Y) is maximal A-dissipative in Y, has the same domain of B and
its semigroup coincides with the semigroup generated by B. Since H is finite dimensional, the
relative interior of co(D(By)) in Y is nonempty and thus we conclude by Theorem A.3(3) that
the relative interior of D(By) in Y is nonempty, so that we can apply Theorem A.7 to By and
obtain the conclusion of such theorem for the semigroup generated by B. U

Corollary A.10. Let By and By be mazimal \-dissipative operators with D(B1) = D(B3y)
and let S} and S be the semigroups of Lipschitz transformations associated to By and By
respectively given by Theorem A.6. If for every x € D(B1) = D(B2) there exists § > 0 such that
S%x = S?w for every 0 <t < ¢, then By = Bs.

Proof. This can be proven as in [Bré73, Theorem 4.1]: let x € D(B;) and let y € D(B3); by
hypotesis, we can find some § > 0 such that S;z = Sz and S}y = Sy for every 0 < ¢ < 4.
Thus, for every 0 <t < d, we have

(

Six—x Swy—y
t t

1 1
w=y) < 218w = Slle —y| - Sl -yl
A 1
t
where we have used that Sy := S} = §% is eM-Lipschitz by (A.8). Passing to the limit as ¢ | 0
and using Theorem A.5(3), we get that
(Bjz — B3y, z —y) < Az —y|*.

By (A.2) we get that D(B1) = D(B32) and thus that B] = Bj3. By (A.3) we thus get that
B; = Bs. O

(&

S ‘x_y‘27

The following proposition is a slight generalization of [Att79, Lemma 2.3] but we report its proof
for the reader’s convenience.
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Proposition A.11. Let B C H x H be mazimal \-dissipative and let G C B be s.t. D(G) is
dense in D(B). Then for every x € int (D(B)) it holds

Bz =co({veH | Izp,vn) € G s.t. zp = x, vy — V}). (A.12)
Proof. Let x € int (D(B)) and let us define
Mz :=c6({veH|IHzp,vn) € Gs.t. xy =, v = V}).
If (xn,vn) € G C B with x,, — = and v, — v, by A-dissipativity of B, we have that
(on —w,xn —y) < Alzy —y[* V(y,w) € B.
Passing to the limit we get
(v —w,z —y) <Nz —y|* V(y,w)€ B,

so that v € Bx by (A.2). This, together with the closure and convexity of Bx given by Theorem
A.3(2), proves that Mx C Bz. Let us prove the other inclusion by contradiction: suppose that
there is some v € Bz s.t. v ¢ Mx. The sets {v} and Mx are disjoint, closed, convex and {v} is
also compact. By Hahn-Banach theorem we can find some z € H with |z| =1 s.t.

(v,2) > (u,2) Yué€ M. (A.13)
Since z € int (D(B)), if we define z,, := x + z/n, we have that z, € int (D(B)) for n sufficiently
large. We can thus find z,, € D(G) s.t. |z, — 2| < n~2. Clearly z,, — x and it is easy to check
that (z,, — x)/|zn — x| — 2. Since z,, € D(G), we can find v, € Gz,. Since B is maximal, it is
locally bounded (cf. Theorem A.3(3)) at z. Being G C B and being x,, — x, the sequence (v,)
is bounded so that, up to an unrelabeled subsequence, it converges weakly to some point u € H.
By A-dissipativity of B we have

(V= v, —x) < Nz — x| VneN,
so that, dividing by |z,, — | and passing to the limit, we obtain
<U —u, Z> < 05

a contradiction with (A.13) since, obviously, u € M. O

The following proposition is an immediate consequence of [Qi83, Theorem 1] and Remark A.1.

Proposition A.12. Let B C H x H be A-dissipative with open non empty convexr domain. Then

there exists a unique mazimal A-disipative B > B with D(B) C D(B) and it is characterized by
B = {(w,v) eEDB)XxH|(v—w,z—y) <Nz —y*> V(yw) EB}.

As a consequence of Propositions A.11 and A.12 we can prove the following.

Theorem A.13. Let B C J{ x I be A-dissipative with

C :=D(B) is convez, int(D(B)) # 0.

Then there exists a unique mazimal \-dissipative B > B with D(B ) C C and it is characterized
by
B={(z,0) eCxH|(w—wa—y)<Nz—y* V(y,w) € B}. (A.14)

Moreover, for every x € int <D(B)> it holds

Bz =co({veH|Izp,vn) € B s.t. xy = x, vy, = v}). (A.15)
Finally

int (C) = int (D(B)) c D(B) c D(B) = C. (A.16)
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Proof. Let B’ be a A\-dissipative maximal extension of B with D(B’) C C, whose existence is
granted by Theorem A.2(2); by A-dissipativity of B’ and since B C B’, then B’ C B, where B
is defined as in (A.14). We need to prove the other inclusion.

Since D(B) C D(B’) C C, we have that D(B’) = C. Moreover, being B’ maximal \-dissipative
and being the interior of its domain nonempty, we have by Theorem A.3(3) that

int (D(B')) is convex , int (D(B’)) = int (D(B’)) =int (C).

It is then clear that Bg := B’N(int (D(B’)) x H) is M\-dissipative with open and nonempty convex
domain so that, by Proposition A.12, there exists a unique maximal \-dissipative B” D Bg with
D(B") c D(By) = int (D(B’)) = int (C) = C (C is convex) and it is characterized by

B'={(z,0) eCxH|(v—w,z—y) <Az —y[* V(y,w) € By}. (A.17)

Since B’ D By, B’ is maximal M-dissipative and D(B’) C C, it must be that B’ = B”.
By (A.17), we need to prove that

Bc{(z,0) eCxH|{w-w,ax—y)<ANz—y> V(y,w)€ Bog}. (A.18)

To this aim we apply Proposition A.11 to the maximal A-dissipative B’ and its subset B noticing
that D(B) is dense in D(B’). In this way, we obtain that

Byy =t (By), y e D(By), (A.19)

where o

By ={u € H | yn,un) € B s.t. yp =y, up — u}.
If (z,v) € B and (y,w) € D(By) x H is such that w € By, we can find a sequence (y,,u,) € B
s.t. y, — y and u,, — w; then, by the very definition of B, we have

(V= tp,z— 1Y) < ANz —yn|?> VneN,
so that, passing to the limit, we get
(v—w,z—1y) <Nz —y|?
This proves that, if (z,v) € B, then
(v—w,z—1y) <Nz —y|> Ywe By, VyeD(By). (A.20)

Finally, if (z,v) € B and (y,w) € By, we can find a sequence (N, ), C N, numbers (aMNm < [0,1]
and points (w?)Yn € By s.t.

Nn
Za?: 1VneN, nll)rfooZa

i=1
y (A.20)
(w—wlz—y) <MNx—y|> Vi=1,...,N,, VneN,
so that, multiplying by o} and summing up w.r.t. ¢ we obtain

U—Zaw z—y) <Nz —y* VneN.

Passing to the limit as n — +oo, we obtain

(v —w,z—y) < Nz -yl
so that (A.18) holds. Finally notice that (A.15) is already stated in (A.19) since we just proved
that B’ = B” = B. O

As a consequence, we have the following corollary.
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Corollary A.14. Let B C H x H be as in Theorem A.13 and let G : int (C) — H be a

single-valued selection of the maximal \-dissipative extension B of B. Then the unique mazimal
A-dissipative extension of G with domain included in C, G, coincides with B and in particular

(z,20) eBezeC (v—Gyz—y) <ANz—y|> Vyeint(C). (A.21)

Let us consider a different situation when we do not assume that D(B) contains interior points
but there exists a subset D dense in D(B) which is invariant with respect to the resolvent map
Jr, ie.

DO>D(B)and VreD, 0<7<1/AY 3z,€D: 2, — 7Bz, > . (A.22)

Since B is A-dissipative, the point x, solving the inclusion in (A.22) is unique and defines a map
J.:D— DnND(B).

Lemma A.15. Let B C H x H be \-dissipative with C' := D(B) convez, let us assume that
D C K satistifies (A.22), and let us set Bg := BN (D x H). The following hold:

(1) B admits a unique mazimal \-dissipative extension B with D(B) C C characterized by

B = {(:U,v) €CxH | (v—wp) <Nz —x0 for every (zo,v0) € Bo}. (A.23)

(2) If moreover the interior of D contains C, we have

B = {(:C,v) eHxH:3(xy,vn) € By:xy = 2,0, =0 asn—)oo}. (A.24)

Proof. We first prove Claim (1). Let B’ be any maximal A-dissipative extension of B with
domain included in C' (whose existence is granted by Theorem A.2(2)) and let J”. be the resolvent
associated with B’. By dissipativity of B’ and since By C B C B’, we have that B C B defined
as in (A.23). We need to prove the other inclusion.

Clearly, the restriction of J”. to D coincides with J,; since J. is Lipschitz and D is dense in C,
it is the unique Lipschitz extension of J, to D D C.

If (z,v) € B, (A.23) and the fact that for every y € D, %(er —y) € BJ,y yield by density that

(=1 Jy—y),z—Jy <MNz—-Jy?* VyeDB), VOo<t<I1/AT, (A.25)

and passing to the limit as 7 | 0 we obtain that
(v—B"°y,z—y) <Nz —y*> VyeDB), (A.26)
where we also used Theorem A.3(4), (5). We can then apply (A.3) and conclude that (z,v) € B’.

We prove Claim (2). Since By C B, it is sufficient to prove the opposite inclusion B C Bi,.
Let (z,v) € B, let 0 < 7 < 1/AT and set y := x — 7v. Clearly J'y = x; since D contains a
neighborhood of every element of D(B) C C, for sufficiently small 7 > 0 there exists a sequence
(yn)n C D converging to y as n — oo. Setting =, := J,y, and v, := (v, — yn)/7 € Bx,, we
clearly have lim,, o0 n, = x, lim,_ oo v, = v. O

Corollary A.16. Let B C H x H be mazimal A-dissipative, let us assume that D C H satistifies

(A.22) and the interior of D contains C := D(B). The following hold:

(1) For every x € D(B) there exists a sequence x,, € D N D(B) converging to = such that
B°z,, — B°x as n — oo.
(2) B can be determined by the restriction of the minimal section B® to D i.e.

B = {(a;,v) € D(B) x K | (v — B°xg,) < Nz — z0|® for every o € DN D(B)}. (A.27)
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Proof. We first prove Claim (1). Since B is maximal A-dissipative, the closure of its domain C
is convex (see Theorem A.3(4)). We can thus apply the second claim of the previous Lemma
A.15 (in this case B = B) to find a sequence (z,,v,) € BN (D x H) such that z, —
and v, — B°x. Let us first prove that B°z,, — B°x weakly in H as n — oo: extracting an
unrelabeled subsequence, since |B°z,| < |v,| is bounded, we can suppose that there exists an
increasing subsequence k + n(k) and an element v € H such that B°z,,;) — v as k — oo. Since
the graph of B is strongly-weakly closed (cf. Theorem A.3(1)), we deduce that (z,v) € B so
that |v| > |B°z|. On the other hand, the lower semicontinuity of the norm yields

|B°z| < [v| < liminf [ Bz, | < limsup [B°x, 4| < limsup |vy,g| = [Bz].
k—o0 k—oo k—oo

We deduce that B°r, ) — B°z and limy_,oo |[B°2, 4| = |B°2| so that the convergence is
also strong. Since the starting (unrelabeled) subsequence was arbitrary, we deduce the strong
convergence of the whole sequence.

Claim (2) now follows easily by approximation using the previous claim and Theorem A.3(6). O

APPENDIX B. BOREL PARTITIONS AND ALMOST OPTIMAL COUPLINGS

In this appendix we summarize some of the results of [CSS23b] related to standard Borel
spaces, Borel partitions and optimal couplings between probability measures that have been used
throughout the whole paper. We refer to [CSS23b, Section 3] for the proofs.

Definition B.1. A standard Borel space (2, B) is a measurable space that is isomorphic (as a
measurable space) to a Polish space. Equivalently, there exists a Polish topology T on Q such that
the Borel sigma algebra generated by T coincides with B. We say that a probability measure P on
(Q,B) is nonatomic if P({w}) = 0 for every w € Q (notice that {w} € B since it is compact in
any Polish topology on Q).

If (Q,B) is a standard Borel space endowed with a nonatomic probability measure P, we denote
by S(€2, B,P) the class of B-B-measurable maps g :  — € which are essentially injective and
measure-preserving, meaning that there exists a full P-measure set )9 € B such that g is injective
on ©y and gP =P. If A C B is a sigma algebra on Q we denote by S(€2, B,IP; A) the subset of
S(Q2,B,P) of A — A measurable maps.
We will often use the notation

Iy:={0,...,.N—1}, NeN N>1
while Sym(Iy) denotes the set of permutations of Iy i.e. bijective maps o : Iy — In. We will
consider the partial order on N given by

m<n < m|n

where m | n means that n/m € N. We write m < n if m < n and m # n.
This first result shows a correspondence between permutations and measure-preserving isomor-
phisms.

Lemma B.2. Let (2, B) be a standard Borel space endowed with a nonatomic probability measure
P, and let Pn = {Qnk}kery C B be a N-partition of (2, B) for some N € N, i.e.

U k=9, QnenQup=01ifhkely, h#k
keln

assume moreover that P(Qn ) = P(Q)/N for every k € In. If o € Sym(In), there exists a
measure-preserving isomorphism g € S(2, B,P;0(Bun)) such that

(gk)ﬁP’QNﬂk = ]P)‘QN,o(k) Vk € IN,

where gy, s the restriction of g to Qn k.
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We introduce now the notion of refined standard Borel measure space which turns out to be
useful when dealing with approximation of general measures with discrete ones.

Definition B.3. Let (Q,B) be a standard Borel space endowed with a nonatomic probability
measure P, and let N C N be an unbounded directed set w.r.t. <. We say that a collection of
partitions (Pn)nem of Q, with corresponding sigma algebras By = o(Pn), is a N-segmentation
of (2,B,P) if

(1) Bn = {QNx}kery is a N-partition of (Q,B) for every N € N,

(2) P(Qn k) =P(Q)/N for every k € In and every N € N,

(3) if M | N = KM then Us—' Onmr ik = Qtms m € Inr,

(4) o ({Bn | N € N}) = B.
In this case we call (Q, B, P, (Pn)nvem) a N-refined standard Borel probability space.

Proposition B.4. For any standard Borel space (2, B) endowed with a nonatomic probability
measure P and any unbounded directed set M C N w.r.t. <, there exists a M-segmentation of
(Q,B,P). If N1 C N is an unbounded directed subset w.r.t. <, then there exists a totally ordered
cofinal sequence (by,), C N satisfying

o b, < by for everyn € N,

e for every N € N there exists n € N such that N | b,.
In particular, for every N-refined standard Borel measure space (2, B, m, (B )nem) it holds that
(B, Jnen is a filtration on (Q,B),

for every N € M there exists n € N such that By C By, , (B.1)
and o ({By, | n € N}) = B.
For every every separable Hilbert space X, we thus have that
U L*(Q, By, m; X) is dense in L*(Q, B, m; X). (B.2)

Nen

The next theorem contains approximation results for couplings by means of maps in different
situations.

Theorem B.5. Let (2, B, P, (PBn)nem) be a N-refined standard Borel probability space. Then:
(1) For every v € I'(P,P) there exist a totally ordered strictly increasing sequence (Ny)n, C N
and maps gn, € S(Q, B, P; By,,) such that, for every separable Hilbert space X and every
X,Y € L?(Q, B,P; X) it holds
(X, )slie, gu)aP — (X @Y )y in P06, (B.3)
(2) If X is a separable Hilbert space and X, X' € L*(Q,B,P;X), then for every p €
D(XyP, X{P) there exist a totally ordered strictly increasing sequence (Ny), C I and
maps gn € S(2, B,P; By, ) such that
(X, X' 0 gn)sP — p in Po(X?). (B.4)
In particular, if XyP = XQ]P), there exist a totally ordered strictly increasing sequence
(Np)n C N and maps g, € S(Q, B, P; By,) such that X' o g, — X in L*(Q, B,P;X) as
n — oo.

Finally, if (Q,B) is a standard Borel space endowed with a nonatomic probability measure P, X
is a separable Hilbert space, u,v € Po(X) and X € L*(Q, B, P;X) is s.t. XyP = pu, then, for every
e > 0, there exists Y € L?(Q, B, P; X) s.t. Y;P =v and

X = Yr2appx) < Wa(p,v) +e
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