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Abstract. In this paper, we consider the BV least gradient problem with Dirichlet condition
on a part Γ ⊂ ∂Ω and Neumann boundary condition on its complementary part ∂Ω\Γ. We
will show that in the plane this problem is equivalent to an optimal transport problem with
import/export taxes on ∂Ω\Γ. Thanks to this equivalence, we will be able to show existence
and uniqueness of a solution to this mixed least gradient problem and, we will also prove some
Sobolev regularity on this solution. We note that these results generalize those in [7], where
we studied the pure Dirichlet version of this problem.

1. Introduction

The least gradient problem with Dirichlet condition consists in minimizing the total variation
of the vector measure Du among all BV functions u on an open domain Ω ⊂ Rd such that the
trace of u on the boundary is given by a function g ∈ L1(∂Ω) (see, for instance, [2, 16, 18, 26]):

(1.1) inf

{∫
Ω
|Du| : u ∈ BV (Ω), u|∂Ω = g

}
.

The author of [15] proves existence of a solution to Problem (1.1) in the case where g is in
BV (∂Ω) and Ω is strictly convex. While the authors of [27] showed by a counter-example that
Problem (1.1) may have no solutions as soon as g /∈ BV (∂Ω). In addition, a solution may
not exist if Ω is not strictly convex. In [26], the authors prove existence and uniqueness of
a solution u to Problem (1.1) provided that g ∈ C(∂Ω). On the other hand, the authors of
[23, 24, 6] have studied Problem (1.1) but in the case where Ω is just convex. More precisely,
they proved under some strong assumptions on the boundary datum g, that Problem (1.1)
reaches a minimum.

Now, we assume that g ∈ BV (∂Ω) and d = 2. Then, in [9, 16], the authors prove that
Problem (1.1) is equivalent to the following minimal flow formulation:

(1.2) inf

{∫
Ω
|v| : v ∈ M(Ω̄,R2), ∇ · v = 0 and v · n = f := ∂τg on ∂Ω

}
,

where ∂τg denotes the tangential derivative of g and the divergence condition ∇ · v =
0 and v · n = f on ∂Ω (where n := Rπ

2
τ is the outward normal vector to ∂Ω and Rπ

2

denotes the rotation with angle π
2 around the origin) should be understood in the weak form∫

Ω∇ϕ·dv =
∫
∂Ω ϕ df , for all ϕ ∈ C1(Ω). More precisely, one can show that inf (1.1) = inf (1.2).

Moreover, if u is a solution for Problem (1.1) then v := Rπ
2
Du solves Problem (1.2). On the

other hand, if v is an optimal flow for Problem (1.2) such that |v| gives zero mass to the
boundary, then the function u such that v = Rπ

2
Du turns out to be a solution for Problem

(1.1). It is also well known (see, for instance, [25]) that Problem (1.2) is equivalent to the
following Monge-Kantorovich problem:

(1.3) min

{∫
Ω×Ω

|x− y| dγ : γ ∈ M+(Ω× Ω), (Πx)#γ = f+ and (Πy)#γ = f−
}
,
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where f+ and f− are the positive and negative parts of f . In addition, we note that Problem
(1.3) has a dual formulation, which is the following:

(1.4) sup

{∫
Ω
w d(f+ − f−) : w ∈ Lip1(Ω)

}
.

If γ is an optimal transport plan for Problem (1.3) then the vector measure vγ defined as
follows

(1.5) < vγ , ξ >=

∫
Ω×Ω

∫ 1

0
ξ((1− t)x+ ty) · (x− y) dt dγ(x, y), for all ξ ∈ C(Ω,R2),

is a minimizer for Problem (1.2). We note also that vγ = |vγ | ∇w, where w is a Kantorovich
potential (i.e. a maximizer of the dual problem (1.4)), since one can show that for any pair
(x, y) ∈ spt(γ), w is differentiable in the interior of the transport ray [x, y] and its gradient ∇w
is given by the opposite unit direction of [x, y]. In particular, this means that transport rays
cannot intersect at an interior point. In addition, any minimizer v of Problem (1.2) is exactly
of this form v = vγ , for some optimal transport plan γ (we refer the reader to [25] for detailed
proofs of these results). The measure σγ := |vγ | is called a transport density and it plays a
special role in the optimal transport theory, since it represents the amount of transport taking
place in each region of Ω. In other words, we have

(1.6) < σγ , φ >=

∫
Ω×Ω

∫ 1

0
φ((1− t)x+ ty)|x− y| dt dγ(x, y), for all φ ∈ C(Ω).

The properties of this transport density σγ have been studied in several works. In [14, 25], the
authors proved that σγ is unique (which means that it does not depend on the choice of the
optimal transport plan γ) and it is in L1(Ω) as soon as f+ or f− is absolutely continuous with
respect to the Lebesgue measure. On the other hand, the authors of [3, 4, 5, 25] proved that the
transport density σ belongs to Lp(Ω) as soon as f+ and f− are both in Lp(Ω), for all p ∈ [1,∞].

On the other hand, the least gradient problem with Neumann boundary condition has been
considered in [22, 20]. In other words, the authors studied the following minimization problem:

(1.7) inf

{∫
Ω
|Du| −

∫
∂Ω
ψ u dH1 : u ∈ BV (Ω)

}
,

where ψ ∈ L∞(∂Ω) with
∫
∂Ω ψ = 0. More precisely, Problem (1.7) reaches a minimum (which

has to be clearly equal zero) as soon as the datum ψ is small enough, that is ||ψ||⋆ ≤ 1 where
the norm || · ||⋆ is equivalent to || · ||L∞(∂Ω) and it is defined as follows:

||ψ||⋆ := sup

{∫
∂Ω ψ u∫
Ω |Du|

: u ∈ BV (Ω)

}
.

To be more precise, if ||ψ||⋆ < 1 then u = 0 is the unique solution for Problem (1.7) while if
||ψ||⋆ = 1, then there are infinitely many minimizers. If ||ψ||⋆ > 1, the minimal value will be
−∞ and so, a solution u does not exist. However, given a bounded function ψ on ∂Ω then it
is not clear how to check whether the assumption ||ψ||⋆ ≤ 1 is well satisfied or not ! We see
that

||ψ||⋆ ≤ Λ||ψ||∞
where Λ is the best constant of the Sobolev trace embedding BV (Ω) ↪→ L1(∂Ω) for functions
with vanishing mean value over Ω. But again, this constant Λ is unknown.
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In this paper, we are mainly concerned in studying the least gradient problem with Dirichlet
condition imposed on an open connected arc Γ ⊂ ∂Ω and Neumann boundary condition on its
complementary part ∂Ω\Γ:

(1.8) inf

{∫
Ω
|Du| −

∫
∂Ω\Γ

ψ udH1 : u ∈ BV (Ω), u|Γ = g

}
,

where ψ is a bounded function on ∂Ω\Γ, g ∈ BV (Γ) and u|Γ = g is in the sense that there is an

L1 extension g̃ of g to ∂Ω such that u|∂Ω = g̃. Notice that if u is a solution for Problem (1.8),
then u solves the following 1−Laplacian PDE with mixed Dirichlet and Neumann boundary
conditions (see [19]): 

∇ · [ Du|Du| ] = 0 in Ω,

u = g on Γ,
Du
|Du| · n = ψ on ∂Ω\Γ.

On the other hand, we note that the relaxed version of Problem (1.8) is given by the following
(see [18]):

(1.9) inf

{∫
Ω
|Du|+

∫
Γ
|u− g| −

∫
∂Ω\Γ

ψ udH1 : u ∈ BV (Ω)

}
.

However, it is not easy to show existence of a solution to (1.9) since for an arbitrary bounded
function ψ on ∂Ω\Γ, the functional may not be lower semicontinuous and so, a solution may
not exist. Yet, Problem (1.8) has been already studied in [7] but in the particular case when
ψ = 0. But, we note that it is not immediate to extend the results of [7] to the case of a
general bounded function ψ. Inspired by [7, 16], we will show that Problem (1.8) is equivalent
to the following minimal flow formulation:
(1.10)

inf

{∫
Ω
|v|+

∫
∂Ω\Γ

ϕ dχ : v ∈ M(Ω,R2), χ ∈ M(∂Ω\Γ), ∇ · v = 0, v · n = f + χ on ∂Ω

}
,

where f = ∂τg and ϕ is a Lipschitz function on ∂Ω\Γ such that ψ = ∂τϕ. On the other hand,
we will also show that Problem (1.10) is equivalent to the following import/export optimal
transport problem:

(1.11) inf

{∫
Ω×Ω

|x− y|dγ +

∫
∂Ω\Γ

ϕ d[(Πx)#γ]−
∫
∂Ω\Γ

ϕ d[(Πy)#γ] : γ ∈ Π(f+, f−)

}
,

where

Π(f+, f−) :=

{
γ ∈ M+(Ω×Ω) : (Πx)#γ = f++χ+, (Πy)#γ = f−+χ−, χ± ∈ M+(∂Ω\Γ)

}
.

In [10], the authors have studied the transport problem from a diffuse measure f+ ∈ M+(Ω)
to the boundary ∂Ω. More generally, the import/export transport problem from/to ∂Ω has
been already considered in [11, 17]. Here, we study the mass transportation problem between
two masses f+ and f− on Γ ⊂ ∂Ω (which do not have a priori the same total mass) with the
possibility of transporting some mass from/to the arc ∂Ω\Γ, paying the transport cost |x− y|
for each unit of mass that moves from a point x to another one y plus an import tax ϕ(x)
for each unit of mass that enters at the point x ∈ ∂Ω\Γ and −ϕ(y) for each unit of mass
that comes out from a point y ∈ ∂Ω\Γ. This means that we can use ∂Ω\Γ as an infinite
reserve/repository, we can take as much mass as we wish from ∂Ω\Γ or send back as much
mass as we want provided we pay the import/export taxes.



4 S. DWEIK

Thanks to the equivalence between Problems (1.8), (1.10) & (1.11), we will show existence
and uniqueness of a solution u to Problem (1.8) and, we will also study its W 1,p regularity.
In the particular case ψ = 0, we have already proved in [7] existence of a solution u for this
problem (1.8) provided that Γ is strictly convex and g ∈ BV (Γ). Moreover, the solution u is
unique as soon as g ∈ C(Γ). In addition, there are several Sobolev estimates on this solution
u, under some geometric assumptions on ∂Ω. In this paper, we extend these results to some
class of bounded functions ψ. To the best of our knowledge, all these results of existence,
uniqueness, and W 1,p regularity (with ψ ̸= 0) are completely new, in the sense that in the
literature there are no results concerning at least the existence of a solution to the mixed least
gradient problem (1.8). As a last interesting point, we mention that most of the proofs in the
general case ψ ̸= 0 are not a mere translation of those given in [7] where ψ = 0.

This paper is organized as follows. In Section 2, we will prove existence and uniqueness
of a solution u to another (equivalent) version of Problem (1.8) (see Problem (2.1) below)
by showing equivalence with the import/export transport problem from/to ∂Ω\Γ. In Section
3, we will study the Sobolev regularity of this solution by studying the summablity of the
transport density in the import/export transport problem. Finally, Section 4 summarizes
the applications of these results to the least gradient problem with Dirichlet and Neumann
boundary conditions (1.8).

2. On the existence and uniqueness of a solution to the mixed least gradient
problem

Throughout the paper, Ω ⊂ R2 is assumed to be an open bounded contractible set with
Lipschitz boundary and Γ is an open connected subset of ∂Ω. Let g be a BV function on Γ
and ϕ± be two continuous functions on ∂Ω\Γ. Then, we consider the following problem:
(2.1)

inf

{∫
Ω
|Du|+

∫
∂Ω\Γ

ϕ+ d[∂τu]
+−

∫
∂Ω\Γ

ϕ− d[∂τu]
− : u ∈ BV (Ω), u|∂Ω ∈ BV (∂Ω), u|Γ = g

}
,

where ∂τu denotes the tangential derivative of the trace of u (so, ∂τu is a measure on ∂Ω since
we assume that u|∂Ω ∈ BV (∂Ω), which is of course not satisfied by any function u ∈ BV (Ω)

but here it is an additional constraint on u), [∂τu]
+ and [∂τu]

− are the positive and negative
parts of ∂τu. The aim of this section is to prove existence and uniqueness of a solution u to
this problem (2.1). The idea is similar to the one used in [7]. We prove some equivalence
between Problem (2.1) and an optimal transport problem. More precisely, we will show that
Problem (2.1) is equivalent to the following minimal flow formulation:
(2.2)

inf
v∈M(Ω,R2), χ∈M(∂Ω\Γ)

{∫
Ω
|v|+

∫
∂Ω\Γ

ϕ+ dχ+−
∫
∂Ω\Γ

ϕ− dχ− : ∇·v = 0, v ·n = f+χ on ∂Ω

}
,

where f = ∂τg, M(Ω,R2) is the set of vector measures over Ω and, M(∂Ω\Γ) is the set of
measures on ∂Ω\Γ. On the other hand, we show that Problem (2.2) is also equivalent to the
following optimal transport problem with import/export taxes on ∂Ω\Γ (we note that in [7],
∂Ω\Γ was assumed to be a “free” Dirichlet region which is equivalent to say that ϕ± = 0,
while here we have to pay some taxes ϕ± in order to import/export masses from/to ∂Ω\Γ):

(2.3) inf

{∫
Ω×Ω

|x− y|dγ +

∫
∂Ω\Γ

ϕ+ d[(Πx)#γ]−
∫
∂Ω\Γ

ϕ− d[(Πy)#γ] : γ ∈ Π(f+, f−)

}
.
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We recall that in [17, 11, 12] the authors have already studied this import/export transport
problem but in the case where the import/export region is the whole boundary ∂Ω and f±

are two densities in the interior of Ω. In the sequel, we will analyse Problem (2.3) in details.
More precisely, we will decompose Problem (2.3) into three classical transport problems: a
transport problem from Γ to Γ, an export transport problem with tax ϕ− from Γ to ∂Ω\Γ
and, an import transport problem with tax ϕ+ from ∂Ω\Γ to Γ.

First of all, we need to assume that the pair (ϕ+, ϕ−) satisfies the following condition:

(2.4) ϕ−(y)− ϕ+(x) ≤ |x− y|, for all x, y ∈ ∂Ω\Γ.

In fact, this is a natural assumption on (ϕ+, ϕ−) since it means that we do not need to transport
mass from ∂Ω\Γ onto ∂Ω\Γ. Thanks to this condition, one can show existence of a solution
to Problem (2.3).

Proposition 2.1. Under the condition (2.4), Problem (2.3) has an optimal transport plan γ.
In addition, we either have γ(∂Ω\Γ × ∂Ω\Γ) = 0 or ϕ−(y) − ϕ+(x) = |x − y|, for γ−a.e.
(x, y) ∈ ∂Ω\Γ × ∂Ω\Γ. In particular, there is always an optimal transport plan γ such that
γ(∂Ω\Γ× ∂Ω\Γ) = 0.

Proof. First, we note that the proof of this proposition is quite similar to the one in [11,
Proposition 2.1] but we introduce it here just for the sake of completeness. Let (γk)k be a
minimizing sequence in Problem (2.3). We define γ̃k := γk · 1(∂Ω\Γ×∂Ω\Γ)c . It is easy to check

that γ̃k ∈ Π(f+, f−). Moreover, we have∫
Ω×Ω

|x− y|dγk +
∫
∂Ω\Γ

ϕ+ d[(Πx)#γk]−
∫
∂Ω\Γ

ϕ− d[(Πy)#γk]

(2.5) =

∫
Ω×Ω

|x− y|dγ̃k +
∫
∂Ω\Γ

ϕ+d[(Πx)#γ̃k]−
∫
∂Ω\Γ

ϕ−d[(Πx)#γ̃k]

+

∫
∂Ω\Γ×∂Ω\Γ

[|x− y|+ ϕ+(x)− ϕ−(y)]dγk.

Thanks to (2.4), we infer that (γ̃k)k is also a minimizing sequence in Problem (2.3). Since
γ̃k ∈ Π(f+, f−) and γ̃k(∂Ω\Γ× ∂Ω\Γ) = 0, then

γ̃k(Ω× Ω) ≤ f+(Γ) + f−(Γ).

Hence, up to a subsequence, γ̃k ⇀ γ, for some γ ∈ Π(f+, f−). In fact, (Πx)#γ̃k = f+ + χ+
k

and (Πy)#γ̃k = f− + χ−
k , where χ±

k ∈ M+(∂Ω\Γ). And, we see that χ±
k ⇀ χ± where

χ± ∈ M+(∂Ω\Γ). Then, (Πx)#γ = f+ + χ+ and (Πy)#γ = f− + χ−. This yields that γ
minimizes Problem (2.3) since∫
Ω×Ω

|x−y|dγ̃k+
∫
∂Ω\Γ

ϕ+dχ+
k −

∫
∂Ω\Γ

ϕ−dχ−
k →

∫
Ω×Ω

|x−y|dγ+
∫
∂Ω\Γ

ϕ+dχ+−
∫
∂Ω\Γ

ϕ−dχ−.

Finally, the second statement follows directly from (2.5), the fact that γ̃ := γ · 1(∂Ω\Γ×∂Ω\Γ)c
is always admissible in (2.3) and, the optimality of γ. □

Let γ be an optimal transport plan in Problem (2.3) with γ(∂Ω\Γ × ∂Ω\Γ) = 0. Let
χ+ and χ− be the two nonnegative measures on ∂Ω\Γ such that (Πx)#γ = f+ + χ+ and
(Πy)#γ = f− + χ−. It is clear that γ also minimizes

min

{∫
Ω×Ω

|x− y|dγ : (Πx)#γ = f+ + χ+ and (Πy)#γ = f− + χ−
}
.
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Set

γ(Γ,Γ) = γ|Γ×Γ, γ(Γ, ∂Ω\Γ) = γ|Γ×∂Ω\Γ, γ(∂Ω\Γ,Γ) = γ|∂Ω\Γ×Γ,

and

ν+ = (Πx)#[γ(Γ, ∂Ω\Γ)], ν− = (Πy)#[γ(∂Ω\Γ,Γ)].

Then, we consider the following problems:

(2.6) min

{∫
Ω×Ω

|x− y|dγ : (Πx)#γ = f+ − ν+ and (Πy)#γ = f− − ν−
}
,

(2.7)

min

{∫
Ω×Ω

|x− y| dγ −
∫
∂Ω\Γ

ϕ− d(Πy)#γ : (Πx)#γ = ν+ and spt[(Πy)#γ] ⊂ ∂Ω\Γ
}
,

(2.8)

min

{∫
Ω×Ω

|x− y| dγ +

∫
∂Ω\Γ

ϕ+ d(Πx)#γ : spt[(Πx)#γ] ⊂ ∂Ω\Γ and (Πy)#γ = ν−
}
.

Similarly to [7, Proposition 3.3], it is not difficult to prove that the transport plans γ(Γ,Γ),
γ(Γ, ∂Ω\Γ) & γ(∂Ω\Γ,Γ) minimize Problems (2.6), (2.7) & (2.8) respectively (this follows
directly from the linearity of the functional and the fact that γ = γ(Γ,Γ) + γ(Γ, ∂Ω\Γ) +
γ(∂Ω\Γ,Γ)). In order to characterize these two optimal transport plans γ(Γ, ∂Ω\Γ) and

γ(∂Ω\Γ,Γ), we define the following multivalued map T̃± (notice that T̃± is the classical
projection map onto ∂Ω\Γ as soon as ϕ± = 0):

T̃±(x) = argmin{|x− y| ± ϕ±(y) : y ∈ ∂Ω\Γ}, for every x ∈ R2.

Now, we introduce the following:

Definition 2.1. Assume that Γ ⊂ ∂Ω. Then, we say that ∂Ω\Γ is visible from the arc Γ if
for every x ∈ Γ and y ∈ ∂Ω\Γ such that ]x, y[∩ ∂Ω\Γ = ∅, we have ]x, y[⊂ Ω.

In the sequel, we will say that the assumption (H) holds if and only if we have the following
statement:

(H) Γ is strictly convex

and

Ω is convex or the convex hull of Γ is contained in Ω, ∂Ω\Γ is visible from Γ,

and ϕ± are λ− Lip with λ < 1.

Lemma 2.2. Assume that (H) holds. Then, we have ]x, y[⊂ Ω for all y ∈ T̃±(x). Moreover,

there is a countable set D± ⊂ Γ such that T̃± is single valued on Γ\D±.

Proof. Let D ⊂ Γ be the set of points x such that T̃−(x) is not a singleton. For every x ∈ D,

let us denote by T1(x) and T2(x) two different elements of T̃−(x). Let ∆x be the interior
of the region delimited by [x, T1(x)], [x, T2(x)] and ∂Ω\Γ. First, we claim that ∆x ⊂ Ω with
L2(∆x) > 0, where L2 denotes the Lebesgue measure on R2. If Ω is convex then we clearly have
∆x ⊂ Ω and L2(∆x) > 0 since Γ is an open strictly convex arc of ∂Ω. Now, assume that ∂Ω\Γ
is visible from Γ and ϕ− is λ− Lip with λ < 1. Assume there is a point z ∈ [x, T1(x)[∩ ∂Ω\Γ.
Then, we have

|x− T1(x)| − ϕ−(T1(x)) ≤ |x− z| − ϕ−(z).
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Hence,
|z − T1(x)| ≤ ϕ−(T1(x))− ϕ−(z),

which is a contradiction since ϕ− is λ−Lip with λ < 1. This implies that [x, T1(x)[∩ ∂Ω\Γ = ∅.
Since ∂Ω\Γ is visible from Γ, then one has ]x, T1(x)[⊂ Ω (and, ]x, T2(x)[⊂ Ω). This yields
again that ∆x ⊂ Ω and L2(∆x) > 0.

On the other hand, we claim that these sets {∆x}x∈D are disjoint. For this aim, we just

need to show that T̃ (z) = {T1(x)}, for every z ∈]x, T1(x)[ and x ∈ Γ. Assume that Ω is
convex. For all y ∈ ∂Ω\Γ, one has

|z−T1(x)|−ϕ−(T1(x)) = |x−T1(x)|−|x−z|−ϕ−(T1(x)) ≤ |x−y|−|x−z|−ϕ−(y) < |z−y|−ϕ−(y),
where the last inequality comes from the fact that x, z and y are not aligned. Now, assume
that ϕ− is λ−Lip with λ < 1. If x, z and y are aligned, then we clearly have

|x− T1(x)| − ϕ−(T1(x)) < |x− y| − ϕ−(y).

But, this implies again that

|z − T1(x)| − ϕ−(T1(x)) < |z − y| − ϕ−(y).

Assume that x, x′ ∈ Γ and ∆x ∩ ∆x′ ̸= ∅. Then, there is a point z ∈]x, T1(x)[∩]x′, T1(x′)[.
But, T̃ (z) = {T1(x)} = {T1(x′)}, which is a contradiction since ∆x ∩ ∆x′ ̸= ∅. Hence, the
second claim is also proved. Consequently, the set D is at most countable. □

On the other hand, it is clear that the graph of T̃± is closed (thanks to the continuity of

ϕ±) and so, T̃± admits a Borel selector function which will be denoted by T±. Now, we are
ready to give a characterization of γ(Γ, ∂Ω\Γ) and γ(∂Ω\Γ,Γ). More precisely, we have the
following:

Proposition 2.3. The transport plans (Id, T−)#ν
+ and (T+, Id)#ν

− minimize Problems

(2.7) & (2.8), respectively. Moreover, for γ(Γ, ∂Ω\Γ)− a.e. (x, y), y ∈ T̃−(x) and, for

γ(∂Ω\Γ,Γ)− a.e. (x, y), x ∈ T̃+(y). In addition, if (H) holds and f± are atomless (i.e.
f±({x}) = 0, for all x ∈ Γ), then γ(Γ, ∂Ω\Γ) = (Id, T−)#ν

+ and γ(∂Ω\Γ,Γ) = (T+, Id)#ν
−.

Proof. Let us prove that for γ(Γ, ∂Ω\Γ)− a.e. (x, y), y ∈ T̃−(x) (in the same way, we prove

that for γ(∂Ω\Γ,Γ)− a.e. (x, y), x ∈ T̃+(y)). For this aim, assume that this is not the case.
Then, we get∫
Ω×Ω

|x−y| d[γ(Γ, ∂Ω\Γ)]−
∫
∂Ω\Γ

ϕ− d[(Πy)#γ(Γ, ∂Ω\Γ)] =
∫
Ω×Ω

[|x−y|−ϕ−(y)] d[γ(Γ, ∂Ω\Γ)]

>

∫
Ω×Ω

[|x− T−(x)| − ϕ−(T−(x))] d[γ(Γ, ∂Ω\Γ)]

=

∫
Ω×Ω

|x− y| d[(Id, T−)#ν
+]−

∫
∂Ω\Γ

ϕ− d[(Πy)#[(Id, T
−)#ν

+]].

But, this is a contradiction since γ(Γ, ∂Ω\Γ) minimizes Problem (2.9) and (Id, T−)#ν
+ is

admissible in (2.9). This shows at the same time that (Id, T−)#ν
+ is a minimizer in (2.9).

Now, assume that f+ is atomless. Then by Lemma 2.2, for γ(Γ, ∂Ω\Γ)− a.e. (x, y), we have

y ∈ T̃−(x) = {T−(x)} and so, γ(Γ, ∂Ω\Γ) = (Id, T−)#ν
+. □

In particular, under the assumption that f± are atomless, we see that γ(Γ, ∂Ω\Γ) and
γ(∂Ω\Γ,Γ) minimize the following Kantorovich problems, respectively:

(2.9) min

{∫
Ω×Ω

|x− y| dγ : (Πx)#γ = ν+ and (Πy)#γ = T−
#ν

+

}
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and

(2.10) min

{∫
Ω×Ω

|x− y| dγ : (Πx)#γ = T+
#ν

− and (Πy)#γ = ν−
}
.

On the other hand, the key point in the proof of existence of a solution to Problem (2.3) is to
show that there are no transport rays gliding on the boundary. More precisely, we have the
following:

Proposition 2.4. Assume that (H) holds. Then, for γ−a.e. (x, y), we have ]x, y[⊂ Ω. In
particular, the transport density σγ associated with γ (see (1.6)) is well defined and, it gives
zero mass to ∂Ω (i.e. σγ [∂Ω] = 0).

Proof. Thanks to (H), it is clear that ]x, y[⊂ Ω for γ(Γ,Γ)−a.e. (x, y). From Lemma 2.2,
we also have ]x, y[⊂ Ω for γ(Γ, ∂Ω\Γ) (resp. γ(∂Ω\Γ,Γ))−a.e. (x, y). Hence, ]x, y[⊂ Ω for
γ−a.e. (x, y). Recalling (1.6), this implies that σγ is well defined and, we have

σγ [∂Ω] =

∫
∂Ω×∂Ω

H1(∂Ω ∩ [x, y]) dγ(x, y) = 0. □

It is also possible to show that there is at least one special optimal transport plan γ such
that the corresponding transport density σγ is well defined and has zero mass on ∂Ω, without

assuming that the convex hull of Γ is contained in Ω but we need instead to reinforce the
assumptions on ϕ±. In the sequel, we will say that the assumption (H′) holds if we have the
following statement:

(H′) Γ is strictly convex, ∂Ω\Γ is visible from Γ and, ϕ+ = ϕ− is 1− Lip on ∂Ω\Γ.

Proposition 2.5. Assume that (H ′) holds. Then, there is an optimal transport plan γ for
Problem (2.3) such that for γ−a.e. (x, y), we have ]x, y[⊂ Ω. In particular, σγ [∂Ω] = 0.

Proof. Set E := {(x, y) ∈ Γ× Γ : ]x, y[⊂ Ω}. Let γ be an optimal transport plan in (2.3) with
(Πx)#γ = f++χ+ and (Πy)#γ = f−+χ−. Then, we define γ⋆ := γ(Γ,Γ)|E+P+

# [γ(Γ,Γ)|Ec ]+

P−
# [γ(Γ,Γ)|Ec ] + γ(Γ, ∂Ω\Γ) + γ(∂Ω\Γ,Γ), where the maps P+ and P− are defined on Ec as

follows:
P+(x, y) = (x, y′) such that y′ ∈]x, y[∩ ∂Ω\Γ and ]x, y′[⊂ Ω

and
P−(x, y) = (x′, y) such that x′ ∈]x, y[∩ ∂Ω\Γ and ]x′, y[⊂ Ω.

First, it is not difficult to check that γ⋆ ∈ Π(f+, f−). Moreover, thanks to the fact that
ϕ+ = ϕ− is 1− Lip, we have the following:∫

Ω×Ω
|x− y| dγ⋆ +

∫
∂Ω\Γ

ϕ+ d[(Πx)#γ
⋆]−

∫
∂Ω\Γ

ϕ− d[(Πy)#γ
⋆]

=

∫
E
|x−y|d[γ(Γ,Γ)]+

∫
Ec

[|x−y′|+|x′−y|+ϕ+(x′)−ϕ−(y′)] d[γ(Γ,Γ)]+
∫
Ω×Ω

|x−y|dγ(Γ, ∂Ω\Γ)

+

∫
Ω×Ω

|x− y| dγ(∂Ω\Γ,Γ) +
∫
∂Ω\Γ

ϕ+ dχ+ −
∫
∂Ω\Γ

ϕ− dχ−

≤
∫
E
|x− y| d[γ(Γ,Γ)] +

∫
Ec

[|x− y′|+ |x′ − y|+ |x′ − y′|] d[γ(Γ,Γ)] +
∫
Ω×Ω

|x− y| dγ(Γ, ∂Ω\Γ)

+

∫
Ω×Ω

|x− y| dγ(∂Ω\Γ,Γ) +
∫
∂Ω\Γ

ϕ+ dχ+ −
∫
∂Ω\Γ

ϕ− dχ−
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≤
∫
Ω×Ω

|x− y|dγ +

∫
∂Ω\Γ

ϕ+ d[(Πx)#γ]−
∫
∂Ω\Γ

ϕ− d[(Πy)#γ].

Yet, we recall that γ is an optimal transport plan in Problem (2.3) and so, γ⋆ is also a
minimizer. By definition, we have that ]x, y[⊂ Ω, for γ⋆−a.e. (x, y). But, this yields that
σγ⋆ [∂Ω] = 0. □

Thanks to Propositions 2.4 & 2.5, one can always find a “good” optimal transport plan
γ such that ]x, y[⊂ Ω, for γ−a.e. (x, y) (so, σγ is well defined and σγ [∂Ω] = 0), provided
that one of the assumptions (H) or (H ′) is well satisfied. Now, we are ready to prove some
equivalence between Problems (2.2) & (2.3).

Proposition 2.6. Assume that (H) or (H ′) holds. Let γ be a “good” optimal transport plan
in (2.3) with (Πx)#γ = f+ + χ+ and (Πy)#γ = f− + χ−. Then, we have the following:

(1) The minimal values of (2.2) & (2.3) coincide, i.e. min (2.2) = min (2.3).

(2) Let vγ be the vector measure in (1.5). Then, (vγ , χ) solves Problem (2.2) and |vγ |[∂Ω] = 0.

(3) If (v, χ) is a minimizer for Problem (2.2), then there is an optimal transport plan γ in
(2.3) such that vγ is well defined and v = vγ with (Πx)#γ = f++χ+ and (Πy)#γ = f−+χ−.

Proof. We will show statements (1) & (2) simultaneously. Since γ is a “good” optimal transport
plan, then the vector measure vγ (see (1.5)) is well defined. Moreover, (vγ , χ) is admissible in

(2.2) since, for all φ ∈ C1(Ω), we have

< vγ ,∇φ >=
∫
Ω×Ω

∫ 1

0
∇φ((1− t)x+ ty) · (x− y) dtdγ(x, y) =

∫
Ω×Ω

[φ(x)− φ(y)] dγ(x, y)

=

∫
∂Ω
φd[(f+ + χ+)− (f− + χ−)].

Moreover, we have∫
Ω
|vγ |+

∫
∂Ω\Γ

ϕ+ dχ+ −
∫
∂Ω\Γ

ϕ− dχ− = σγ(Ω) +

∫
∂Ω\Γ

ϕ+ dχ+ −
∫
∂Ω\Γ

ϕ− dχ−

(2.11) =

∫
Ω×Ω

|x− y|dγ +

∫
∂Ω\Γ

ϕ+ dχ+ −
∫
∂Ω\Γ

ϕ− dχ− = min (2.3).

But, we claim that

min (2.2) ≥ min (2.3).

Similarly to [11, Proposition 2.2], one can show that Problem (2.3) has a dual formulation
which is the following:

(2.12) sup

{∫
Ω
φd(f− − f+) : φ ∈ Lip1(Ω), ϕ

− ≤ φ ≤ ϕ+ on ∂Ω\Γ
}
.

If φ is a smooth admissible function in Problem (2.12) and (v, χ) is admissible in Problem
(2.2), then we have∫

Ω
|v| ≥ −

∫
Ω
∇φ · dv = −

∫
∂Ω
φd[f + χ] = −

∫
Γ
φdf −

∫
∂Ω\Γ

φdχ+ +

∫
∂Ω\Γ

φdχ−
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≥ −
∫
Γ
φdf −

∫
∂Ω\Γ

ϕ+ dχ+ +

∫
∂Ω\Γ

ϕ− dχ−.

Hence,

min (2.2) ≥ sup (2.12) = min (2.3).

Recalling (2.11), we infer that min (2.2) = min (2.3) and (vγ , χ) solves Problem (2.2). Now, let
us prove statement (3). Let (v, χ) be a minimizer in (2.2). In particular, we see that v solves

(2.13) min

{∫
Ω
|v| : v ∈ M(Ω,R2), ∇ · v = 0 and v · n = f + χ on ∂Ω

}
.

In order to show that there is an optimal transport plan γ such that v = vγ with (Πx)#γ =
f+ + χ+ and (Πy)#γ = f− + χ−, the idea will be to adapt the proofs of [25, Theorem 4.13]
or [10, Proposition 2.4]. First of all, we need to introduce some objects that generalize both
σγ and vγ . Let C be the set of absolutely continuous curves w : [0, 1] 7→ Ω. We call traffic
plan any positive measure Q on C such that (e0)#Q = f+ + χ+ and (e1)#Q = f− + χ−,
where e0(w) := w(0) and e1(w) = w(1). Following [10, 25], we define the traffic intensity
iQ ∈ M+(Ω) and the traffic flow vQ ∈ M(Ω,R2) as follows:

< iQ, φ >=

∫
C

∫ 1

0
φ(w(t))|w′(t)|dt dQ(w), for all φ ∈ C(Ω),

and

< vQ, ξ >= −
∫
C

∫ 1

0
ξ(w(t)) · w′(t) dtdQ(w), for all ξ ∈ C(Ω,R2).

It is easy to see that |vQ| ≤ iQ, ∇ · vQ = 0 and vQ ·n = f +χ. Moreover, by [10, Lemma 2.2],

if v ∈ M(Ω,R2) is such that ∇ · v = 0 and v · n = f + χ, then there is a traffic plan Q such
that |v − vQ|(Ω) + iQ(Ω) = |v|(Ω). Since v minimizes (2.13), then we have∫

Ω
|v| ≤

∫
Ω
|vQ| ≤

∫
Ω
iQ.

Hence, v = vQ and |v| = iQ. Thanks to the fact that the pair (v, χ) minimizes (2.2) and
(Πx)#[(e0, e1)#Q] = f+ + χ+ and (Πy)#[(e0, e1)#Q] = f− + χ−, one has

min (2.2)

=

∫
Ω
|v|+

∫
∂Ω\Γ

ϕ+dχ+ −
∫
∂Ω\Γ

ϕ−dχ− =

∫
Ω
iQ +

∫
∂Ω\Γ

ϕ+dχ+ −
∫
∂Ω\Γ

ϕ−dχ−

=

∫
C

∫ 1

0
|w′(t)| dt dQ(w) +

∫
∂Ω\Γ

ϕ+dχ+ −
∫
∂Ω\Γ

ϕ−dχ−

≥
∫
C
|w(0)− w(1)|dQ(w) +

∫
∂Ω\Γ

ϕ+dχ+ −
∫
∂Ω\Γ

ϕ−dχ−

=

∫
Ω×Ω

|x− y|d[(e0, e1)#Q] +

∫
∂Ω\Γ

ϕ+ d[(Πx)#[(e0, e1)#Q]]−
∫
∂Ω\Γ

ϕ− d[(Πy)#[(e0, e1)#Q]]

≥ min (2.3).

Yet, statement (1) implies that the above inequalities are actually equalities. In particular,
Q must be concentrated on line segments and the transport plan γ := (e0, e1)#Q minimizes
(2.3). Consequently, we have v = vQ = vγ . □

On the other hand, one can also show some equivalence between Problems (2.1) & (2.2).
More precisely, we have the following:
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Proposition 2.7. Assume that g ∈ BV (Γ) and let f be the tangential derivative of g (i.e.
f = ∂τg). Then, we have the following statements:

(1) The minimal values of (2.1) & (2.2) coincide, i.e. min (2.1) = min (2.2).

(2) Let u be a solution for Problem (2.1) with u|∂Ω = g̃. Set v := Rπ
2
Du and χ := [∂τ g̃]|∂Ω\Γ.

Then, (v, χ) solves Problem (2.2).

(3) Moreover, if (v, χ) is a minimizer in Problem (2.2) with |v|[∂Ω] = 0 then there exists
a BV function u such that v = Rπ

2
Du and, u turns out to be a solution for Problem (2.1).

Proof. First, we prove statement (1). For every h ∈ BV (∂Ω\Γ), we denote by g̃h a BV
extension of g to ∂Ω such that g̃h = h on ∂Ω\Γ. Then, we have

inf

{∫
Ω
|Du|+

∫
∂Ω\Γ

ϕ+ d[∂τu]
+ −

∫
∂Ω\Γ

ϕ− d[∂τu]
− : u ∈ BV (Ω), u|∂Ω ∈ BV (∂Ω), u|Γ = g

}
= inf

h∈BV (∂Ω\Γ)

{
inf

{∫
Ω
|Du| : u ∈ BV (Ω), u|∂Ω = g̃h

}
+

∫
∂Ω\Γ

ϕ+d[∂τ g̃h]
+−

∫
∂Ω\Γ

ϕ−d[∂τ g̃h]
−
}
.

But, by [13, Theorem 3.4] and the fact that Ω is assumed to be contractible and g̃h ∈ BV (∂Ω),
we have the following equality:

inf

{∫
Ω
|Du| : u ∈ BV (Ω), u|∂Ω = g̃h

}
= inf

{∫
Ω
|v| : v ∈ M(Ω,R2), ∇ · v = 0 and v · n = f̃h on ∂Ω

}
,

where f̃h := ∂τ g̃h. Yet, it is clear that f̃h = f + χ, for some χ ∈ M(∂Ω\Γ). Then, we get the
following:

inf (2.1) = inf
χ∈M(∂Ω\Γ)

{
inf

{∫
Ω
|v| : v ∈ M(Ω,R2), ∇ · v = 0 and v · n = f + χ on ∂Ω

}
+

∫
∂Ω\Γ

ϕ+ dχ+ −
∫
∂Ω\Γ

ϕ− dχ−
}

= inf (2.2).

Now, we prove statement (2). Let u be a minimizer in (2.1) with u|∂Ω = g̃. First, let us check
that the pair (v, χ), where v = Rπ

2
Du and χ = [∂τ g̃]|∂Ω\Γ, is admissible in (2.2). For all

φ ∈ C1(Ω), we have∫
Ω
R−π

2
∇φ ·Du =

∫
∂Ω

[R−π
2
∇φ · n]u dH1 = −

∫
∂Ω
u ∂τφdH1 =

∫
∂Ω
φd[∂τu].

Yet, ∂τu = f + χ. Then, we get∫
Ω
∇φ · dv =

∫
∂Ω
φd[f + χ], for all φ ∈ C1(Ω).

Moreover, we have∫
Ω
|v|+

∫
∂Ω\Γ

ϕ+ dχ+ −
∫
∂Ω\Γ

ϕ− dχ− =

∫
Ω
|Du|+

∫
∂Ω\Γ

ϕ+ d[∂τu]
+ −

∫
∂Ω\Γ

ϕ− d[∂τu]
−

= min (2.1) = min (2.2).

Then, (v, χ) solves Problem (2.2). It remains to prove statement (3). Let (v, χ) be a solution
to Problem (2.2) with |v|[∂Ω] = 0. Let us extend v by 0 outside Ω. Set vε = v ∗ ρε, where
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ρε is a sequence of mollifiers. First, it is clear that ∇ · vε = 0. Let uε be a smooth function
such that ∇uε = R−π

2
vε. Up to adding a constant, one can assume that

∫
Ω uε = 0 and then,

we have ∫
Ω
|uε|dx ≤ C

∫
Ω
|∇uε|dx ≤ C

∫
Ω
|v| dx.

Then, we get

∥uε∥W 1,1(Ω) ≤ (C + 1)

∫
Ω
|v|.

Hence, up to a subsequence, (uε)ε converges weakly
⋆ in BV (Ω) to some function u. And, we

have Du = R−π
2
v. Moreover, uε → u strictly in BV since |vε|⇀ |v|. Thanks to the continuity

of the trace map with respect to the strict convergence in BV, we get that∫
Ω
∇φ · d[Rπ

2
Du] = lim

ε→0

∫
Ω
Rπ

2
∇uε · ∇φdx = lim

ε→0

∫
∂Ω

[Rπ
2
∇uε · n]φdH1 = lim

ε→0

∫
∂Ω
∂τuε φdH1

= − lim
ε→0

∫
∂Ω
uε ∂τφdH1 = −

∫
∂Ω
u ∂τφdH1 =

∫
∂Ω

φd[∂τu], for all φ ∈ C1(Ω).

Yet, v = Rπ
2
Du, ∇ · v = 0 and v · n = f + χ. This implies that ∂τu = f + χ. Hence, up to

adding a constant, one can assume that u|Γ = g. In addition, u solves Problem (2.1) since∫
Ω
|Du|+

∫
∂Ω\Γ

ϕ+ d[∂τu]
+ −

∫
∂Ω\Γ

ϕ− d[∂τu]
− =

∫
Ω
|v|+

∫
∂Ω\Γ

ϕ+ dχ+ −
∫
∂Ω\Γ

ϕ− dχ−

= min (2.2) = min (2.1).

□

Consequently, we get equivalence between Problems (2.1), (2.2) & (2.3). Finally, we are in
a position to prove existence of a solution for Problem (2.1). To be more precise, we have the
following existence result (always under the assumption that (2.4) is well satisfied):

Theorem 2.8. Assume that (H) or (H ′) holds. Then, there exists a function u ∈ BV (Ω)
which attains the infimum in Problem (2.1).

Proof. Let γ be a “good” optimal transport plan in (2.3) with (Πx)#γ = f+ + χ+ and
(Πy)#γ = f−+χ−. Thanks to Proposition 2.6, we know that (vγ , χ) solves Problem (2.2) and
|vγ |[∂Ω] = σγ [∂Ω] = 0 (recall Propositions 2.4 & 2.5). Hence, by Proposition 2.7, we infer that
there is a BV function u such that vγ = Rπ

2
Du and, this u is in fact a solution to Problem

(2.1). □

Now, we study the uniqueness of the solution u in (2.1). For this aim, we need to restrict
our assumption (2.4). Let us assume that there exists λ < 1 such that

(2.14) ϕ−(y)− ϕ+(x) ≤ λ|x− y|, for all x, y ∈ ∂Ω\Γ.

Under the assumption (2.14), one can prove uniqueness of the optimal transport plan in (2.3).
Then, we have the following:

Proposition 2.9. Assume that (H) or (H ′) holds and, f+ and f− are atomless. Then, there
is a unique “good” optimal transport plan γ in Problem (2.3). In addition, Problem (2.2) has
a unique minimizer.
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Proof. Let γ be an optimal transport plan in (2.3). Thanks to Proposition 2.1, it is easy to
see that the condition (2.14) yields that γ(∂Ω\Γ × ∂Ω\Γ) = 0. Let us decompose again γ
into γ(Γ,Γ) := γ|Γ×Γ, γ(Γ, ∂Ω\Γ) := γ|Γ×∂Ω\Γ and γ(∂Ω\Γ,Γ) := γ|∂Ω\Γ×Γ. Moreover, we set

ν+ = (Πx)#[γ(Γ, ∂Ω\Γ)] and ν− = (Πy)#[γ(∂Ω\Γ,Γ)]. First of all, one can show that there are
two sets A± ⊂ Γ such that A± are two countable union of connected arcs and ν± = f± · χA± .
This follows from the fact that 0 ≤ ν± ≤ f± while the set of points which are transported at
the same time to Γ and ∂Ω\Γ is at most countable; we refer the reader to [7, Lemma 3.8] for
more details. In order to show uniqueness of the optimal transport plan γ, we proceed as in
[7, Proposition 3.9] and so, it is sufficient to show that these three parts of γ are all induced
by maps. Indeed, the functional in (2.3) is linear in γ and the constraint Π(f+, f−) is convex.
This means that if γ1 and γ2 minimize (2.3) then γ1+γ2

2 is aslo a minimizer in (2.3); but this
yields to a contradiction as soon as we prove that the three corresponding parts of any optimal
transport plan γ are induced by maps. From Proposition 2.3 and the fact that f+ and f−

are atomless, we know that γ(Γ, ∂Ω\Γ) = (Id, T−)#ν
+ and γ(∂Ω\Γ,Γ) = (T+, Id)#ν

−. It
remains to show that γ(Γ,Γ) is also induced by a map. Let D ⊂ Γ be the set of points that
belong to two different transport rays. For every x ∈ D, let us denote by R±

x two different
transport rays from x to Γ. Let ∆x ⊂ Ω be the region delimited by R+

x , R
−
x and Γ. Since

transport rays cannot intersect at an interior point, then we see that these sets {∆x}x must
be disjoint with L2(∆x) > 0. This implies that the set D is at most countable. Hence, thanks
again to the fact that f+ is atomless, we get that f+(D) = 0. In other words, for f+−a.e.
x ∈ Γ, there is a unique transport ray Rx starting at x and intersecting Γ at exactly one point
(recall that Γ is strictly convex). But, this means that γ(Γ,Γ) is also induced by a map. The
second statement follows immediately from Proposition 2.6. □

Finally, we are ready to state our result on the uniqueness of the solution u in Problem
(2.1). Hence, we conclude this section by the following (we always assume that (2.14) is well
satisfied):

Theorem 2.10. Assume that (H) or (H ′) holds. Then, the solution u of Problem (2.1) is
unique provided that g ∈ C(Γ).

Proof. Let u be a minimizer in (2.1). Thanks to Proposition 2.7, we know that the pair (v, χ),
where v = Rπ

2
Du and χ = [∂τu]|∂Ω\Γ, is a minimizer in Problem (2.2). On the other hand,

since g ∈ C(Γ) then f = ∂τg is atomless. But so, by Proposition 2.9, (v, χ) is the unique
minimizer in (2.2). This implies that the solution u of Problem (2.1) is also unique. □

3. Sobolev regularity on the solution of the mixed least gradient problem

In this section, we study the W 1,p regularity of the solution u in Problem (2.1). Thanks to
Proposition 2.7, this is equivalent to study the Lp summability of the optimal flow v in (2.2)
or equivalently, the Lp summability of the transport density σ in Problem (2.3) (i.e. between
f+ + χ+ and f− + χ−, where χ± represent the import/export masses on ∂Ω\Γ). We recall
that studying the Lp summability of σ between two singular measures (i.e. if f± /∈ Lp(Ω)) is
a delicate question ! However, the authors of [9] proved that the transport density σ, between
two measures f± on ∂Ω, is in Lp(Ω) as soon as f± ∈ Lp(∂Ω) with p ≤ 2 and Ω is uniformly
convex. Moreover, they introduced a counter-example to the Lp summability of σ for p > 2.
Yet, they also showed some Lp estimates on σ for p > 2 provided that f± are smooth
enough. Anyway, in Problem (2.3), the measures χ+ and χ− are unknown and so, it is not
clear whether χ± ∈ Lp(∂Ω\Γ) or not. Before proving our Lp estimates on σ, we need to
introduce the following:
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Definition 3.1. We say that Γ ⊂ ∂Ω is uniformly convex if there exists R < ∞ such that,
for every x ∈ Γ and every unit vector n in the exterior normal cone to Ω at x, we have
Γ ⊂ B(z,R) with z = x−Rn.

In the sequel, we will always assume that (H) or (H′) holds, f± are at least in L1(Γ) (so,
f± are atomless) and (2.14) is well satisfied. Hence, by Proposition 2.9, we know that the
optimal transport plan γ in (2.3) is unique. Let us decompose again γ into three parts:
γ(Γ,Γ), γ(Γ, ∂Ω\Γ) and γ(∂Ω\Γ,Γ). In addition, let σ(Γ,Γ), σ(Γ, ∂Ω\Γ) and σ(∂Ω\Γ,Γ) be
the transport densities associated with γ(Γ,Γ), γ(Γ, ∂Ω\Γ) and γ(∂Ω\Γ,Γ), respectively. If σ
is the transport density associated with γ, then it is clear that σ = σ(Γ,Γ) + σ(Γ, ∂Ω\Γ) +
σ(∂Ω\Γ,Γ). Thanks to [9], we have the following:

Proposition 3.1. Assume that Γ is uniformly convex. Then, the transport density σ(Γ,Γ)
belongs to Lp(Ω) provided that f± ∈ Lp(Γ) with p ≤ 2 or f± ∈ C0,α(Γ) with 0 < α ≤ 1 and
p = 2

1−α (with p = ∞ for α = 1). Moreover, σ(Γ, ∂Ω\Γ) (resp. σ(∂Ω\Γ,Γ)) is in Lp(Ω)

as soon as f+ ∈ Lp(Γ) (resp. f− ∈ Lp(Γ)) and p < 2. In particular, σ ∈ Lp(Ω) as soon as
f± ∈ Lp(Γ) and p < 2.

Proof. First, we recall that σ(Γ,Γ) is the transport density between f+ − ν+ = f+ · χA+ and
f− − ν− = f− · χA− (where A± ⊂ Γ are two countable union of connected arcs). Hence,
thanks to [9, Proposition 3.3], σ(Γ,Γ) belongs to Lp(Ω) provided that f± ∈ Lp(Γ) and p ≤ 2.
Moreover, by [9, Proposition 3.5 & Remark 5.10], one can show that σ(Γ,Γ) is in Lp(Ω) for
p > 2 as soon as f± ∈ C0,α(Γ) with α = 1− 2

p . On the other hand, σ(Γ, ∂Ω\Γ) is the transport
density between ν+ and T−

#ν
+. So, again by [9, Proposition 3.2 & Remark 5.10], σ(Γ, ∂Ω\Γ)

belongs to Lp(Ω) as soon as f+ ∈ Lp(Γ) and p < 2. Similarly, we have σ(∂Ω\Γ,Γ) ∈ Lp(Ω)
provided that f− ∈ Lp(Γ) and p < 2. □

Now, we will try to extend our Lp estimates on the transport density σ to the case p ≥ 2.
Recalling Proposition 3.1, we just need to study the Lp summability of σ(Γ, ∂Ω\Γ) (it will be
the same for σ(∂Ω\Γ,Γ)). We recall that σ(Γ, ∂Ω\Γ) is the transport density between ν+ and
T−
#ν

+. In the sequel, we will denote by Γ± ⊂ Γ the set of points x such that T∓(x) is not an

endpoint of ∂Ω\Γ. Then, we have the following:

Proposition 3.2. Assume that spt(ν+) ⊂ Γ+, ∂Ω\Γ is C1,1, ϕ+ is λ−Lip with λ < 1
and, ϕ+ ∈ C1,1(∂Ω\Γ). Hence, the transport density σ(Γ, ∂Ω\Γ) is in Lp(Ω) provided that
ν+ ∈ Lp(Γ), for all p ∈ [1,∞].

Proof. First of all, we mention that the proof of this proposition is similar to the one in [7,
Proposition 4.7]. Recalling the definition of the transport density (1.6), we have by Proposition
2.3 that

< σ(Γ, ∂Ω\Γ), φ >=
∫
Γ

∫ 1

0
φ((1− t)x+ tT−(x))|x− T−(x)|dtdν+(x), for all φ ∈ C(Ω).

Fix x0 ∈ spt(ν+). Let Γ0 ⊂ Γ+ be an arc around x0. Let α̃(s) := (s, α(s)), s ∈ [−ε, ε], be a
parametrization of the image of Γ0 by T− and, β(s) := (β1(s), β2(s)) be a parametrization of
Γ0 such that α(0) = α′(0) = 0 and T−(β(s)) = α̃(s), for every s ∈ [−ε, ε]. Now, let ∆ be the
set of all the transport rays [β(s), α̃(s)], s ∈ [−ε, ε]. For all y ∈ ∆, we see that there exists a
unique pair (s, t) ∈ [−ε, ε]× [0, 1] such that

y = ((1− t)β1(s) + ts, (1− t)β2(s) + tα(s)).
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For all φ ∈ C(∆), we have

< σ(Γ, ∂Ω\Γ), φ >:=
∫ ε

−ε

∫ 1

0
φ((1− t)β1(s)+ ts, (1− t)β2(s)+ tα(s)) l(s) |β′(s)| ν+(β(s)) dtds,

where

l(s) := |β(s)− α̃(s)|, ∀ s ∈ [−ε, ε].
Hence,

< σ(Γ, ∂Ω\Γ), φ >=
∫
Ω
φ(y)

l(s) |β′(s)| ν+(β(s))
J(s, t)

dy, for all φ ∈ C(∆),

where

J(s, t) := | det[D(s,t)(y1, y2)]| = (β1(s)− s, β2(s)−α(s)) · [(1− t)(−β′2(s), β′1(s))+ t(−α′(s), 1)].

Then,

σ(Γ, ∂Ω\Γ)[y] = l(s) |β′(s)| ν+(β(s))
J(s, t)

, for a.e. y ∈ ∆.

Now, we claim that there is a uniform constant C (which does not depend on ε) such that
|β′(s)|
J(s,t) ≤ C. Thanks to [8, Lemma 2.1], we have

(3.1)
β(s)− α̃(s)

|β(s)− α̃(s)|
= ∂τϕ

+(α̃(s)) τ(α̃(s))−
√
1− ∂τϕ+(α̃(s))

2 n(α̃(s)),

where n(α̃(s)) is the unit exterior normal vector to ∂Ω\Γ at α̃(s) and τ(α̃(s)) := R−π
2
[n(α̃(s))]

is the unit tangent vector to ∂Ω\Γ at α̃(s). Hence, it is easy to see that we have the following
inequality:

(3.2) (β1(s)− s, β2(s)− α(s)) · (−α′(s), 1) ≥
√
1− λ2 dist(spt(ν+), ∂Ω\Γ).

Let β̃(r) := (β̃1(r), β̃2(r)), r ∈ [−δ, δ], be a smooth parametrization of Γ0 such that |β̃′| = 1

and β̃
′
1 > 0. For every s ∈ [−ε, ε], let r(s) ∈ [−δ, δ] be such that T−(β̃(r(s))) = α̃(s). Thanks

to the fact that (H) or (H′) holds, it is not difficult to see that there is a uniform geometric
constant c > 0 such that

(3.3) (β1(s)− s, β2(s)− α(s)) · (−β̃′2(r(s)), β̃′1(r(s))) ≥ c.

Assume that Γ0 as well as its image by T− and ϕ+ are smooth. Then, we claim that the map
s 7→ r(s) is Lipschitz. Hence, combining (3.2) & (3.3), we infer that

J(s, t) ≥ c[(1− t)r′(s) + t].

Consequently,

(3.4)
|β′(s)|
J(s, t)

≤ c−1 r′(s)

(1− t)r′(s) + t
≤ 2c−1max{r′(s), 1}.

On the other hand, thanks to [11, Proposition 2.2], it is well known that the dual problem of
(2.9) is the following:

(3.5) sup

{∫
Γ
w dν+ : w ∈ Lip1(Ω), w = ϕ+ on ∂Ω\Γ

}
.
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We recall that γ = (Id, T−)#ν
+ is the unique optimal transport plan in (2.9). Moreover, the

Kantorovich potential w in (3.5) is clearly given by the following:

w(x) = min{|x− y|+ ϕ+(y) : y ∈ ∂Ω\Γ}, for every x ∈ Γ.

Now, we see that

(3.6) (β̃(r(s))− α̃(s)) ·Rπ
2
[Dw(α̃(s))] = 0, for all s ∈ [−ε, ε].

Thanks to [8, Proposition 2.2, Lemma 2.1 & Lemma 2.3], w is C2 on ∂Ω\Γ and, we have the
following:

Dw(α̃(s)) = Dw(α̃(0)) +D2w(α̃(0))(α̃(s)− α̃(0)) + o(|α̃(s)− α̃(0)|)
and

Dw(α̃(0)) =

(
∂τϕ

+(α̃(0)),

√
1− ∂τϕ+(α̃(0))

2

)
.

Let us denote by κ the curvature on ∂Ω\Γ. Then, by [8, Proposition 2.2], we also have the
following:

D2w(α̃(0))

= − K(α̃(0))

1− ∂τϕ+(α̃(0))
2

 1− ∂τϕ
+(α̃(0))

2 −∂τϕ+(α̃(0))
√

1− ∂τϕ+(α̃(0))
2

−∂τϕ+(α̃(0))
√
1− ∂τϕ+(α̃(0))

2 ∂τϕ
+(α̃(0))

2


where

K(α̃(0)) =

√
1− ∂τϕ+(α̃(0))

2κ(α̃(0))− ∂2ττϕ
+(α̃(0)) + ∂nϕ

+(α̃(0))κ(α̃(0)).

Hence, one has

Dw(α̃(s)) =

 ∂τϕ
+(α̃(0))√

1− ∂τϕ+(α̃(0))
2

− K(α̃(0))

1− ∂τϕ+(α̃(0))
2

[
[1− ∂τϕ

+(α̃(0))
2
]s

−∂τϕ+(α̃(0))
√
1− ∂τϕ+(α̃(0))

2 s

]
+o(s)

=

 ∂τϕ
+(α̃(0))−K(α̃(0))s+ o(s)√

1− ∂τϕ+(α̃(0))
2 + K(α̃(0))√

1−∂τϕ+(α̃(0))2
∂τϕ

+(α̃(0))s+ o(s)

 .
By (3.6), we get

[s− β̃1(r(s))]

[√
1− ∂τϕ+(α̃(0))

2 +
K(α̃(0))√

1− ∂τϕ+(α̃(0))
2
∂τϕ

+(α̃(0))s

]

+ [β̃2(r(s))− α(s)]

[
∂τϕ

+(α̃(0))−K(α̃(0))s

]
+ o(s) = 0.

But,

β̃(r) = β̃(0) + β̃
′
(0)r + o(r) =

(
∂τϕ

+(α̃(0)),

√
1− ∂τϕ+(α̃(0))

2

)
l(0) + β̃

′
(0)r + o(r).

Therefore,

[s− ∂τϕ
+(α̃(0)) l(0)− β̃

′
1(0) r(s)]

[√
1− ∂τϕ+(α̃(0))

2 +
K(α̃(0))√

1− ∂τϕ+(α̃(0))
2
∂τϕ

+(α̃(0))s

]
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+

[√
1− ∂τϕ+(α̃(0))

2 l(0) + β̃
′
2(0)r(s)− α(s)

][
∂τϕ

+(α̃(0))−K(α̃(0))s

]
+ o(s) = 0.

Then, we get[√
1− ∂τϕ+(α̃(0))

2(1−K(α̃(0))l(0))− K(α̃(0))√
1− ∂τϕ+(α̃(0))

2
∂τϕ

+(α̃(0))
2
l(0)

]
s

−
[
β̃
′
1(0)

√
1− ∂τϕ+(α̃(0))

2−β̃′2(0)∂τϕ+(α̃(0))+
β̃
′
1(0)∂τϕ

+(α̃(0))K(α̃(0))√
1− ∂τϕ+(α̃(0))

2
s+K(α̃(0))β̃

′
2(0)s

]
r(s)

+ o(s) = 0.

Hence, we have

r(s) =
1− ∂τϕ

+(α̃(0))
2 −K(α̃(0)) l(0)

β̃
′
1(0)

√
1− ∂τϕ+(α̃(0))

2 − β̃
′
2(0)∂τϕ

+(α̃(0))
s+ o(s).

By (3.3), we have

β̃
′
1(0)

√
1− ∂τϕ+(α̃(0))

2−β̃′2(0)∂τϕ+(α̃(0)) =
(
∂τϕ

+(α̃(0)),

√
1− ∂τϕ+(α̃(0))

2

)
·(−β̃′2(0), β̃

′
1(0))

= Dw(α̃(0)) ·Rπ
2
[β̃

′
(0)] ≥ c.

Recalling (3.4), we get that

|β′(s)|
J(s, t)

≤ 2c−1

(
1− ∂τϕ

+(α̃(0))
2 −K(α̃(0)) l(0)

β̃
′
1(0)

√
1− ∂τϕ+(α̃(0))

2 − β̃
′
2(0) ∂τϕ

+(α̃(0))
+ 1

)
≤ C.

Therefore, we get

||σ(Γ, ∂Ω\Γ)||pLp(∆) =

∫ ε

−ε

∫ 1

0

l(s)p|β′(s)|pν+(β(s))p

J(s, t)p−1
dtds

=

∫ ε

−ε

∫ 1

0
l(s)p

(
|β′(s)|
J(s, t)

)p−1

ν+(β(s))
p|β′(s)| dt ds ≤ Cp

∫ ε

−ε
ν+(β(s))

p|β′(s)|ds = Cp||ν+||pLp(Γ0)
.

Hence,

||σ(Γ, ∂Ω\Γ)||Lp(Ω) ≤ C||f+||Lp(Γ).

□

Consequently, under the assumption that (H) or (H′) holds and (2.14) is well satisfied, we
have the following:

Proposition 3.3. Assume that Γ is uniformly convex, spt(f±) ⊂ Γ±, ∂Ω\Γ is C1,1, ϕ± are
λ−Lip with λ < 1 and, ϕ± ∈ C1,1(∂Ω\Γ). Then, the transport density σ is in L2(Ω) as soon
as f± ∈ L2(Γ) and, σ ∈ Lp(Ω) for p > 2 provided that f± ∈ C0,α(Γ) with p = 2

1−α . In

particular, σ belongs to L∞(Ω) if f± are Lipschitz on Γ.

Proof. This follows immediately from Propositions 3.1 & 3.2. □

Finally, we conclude this section by the following Sobolev regularity on the solution u of
the mixed least gradient problem (2.1).
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Proposition 3.4. Assume that Γ is uniformly convex. Then, the solution u of Problem
(2.1) belongs to W 1,p(Ω) as soon as g ∈ W 1,p(Γ) with p < 2. In addition, assume that
spt([∂τg]

±) ⊂ Γ±, ∂Ω\Γ is C1,1, ϕ± are λ−Lip with λ < 1 and, ϕ± ∈ C1,1(∂Ω\Γ). Then,
u ∈ W 1,2(Ω) provided that g ∈ W 1,2(Γ). For p > 2, u ∈ W 1,p(Ω) as soon as g ∈ C1,α(Γ) with
p = 2

1−α . And, u is Lipschitz as soon as g ∈ C1,1(Γ).

Proof. Thanks to Proposition 2.7, the pair (v := Rπ
2
Du , χ := [∂τu]|∂Ω\Γ) is a solution to

Problem (2.2). Yet, by Proposition 2.6, |v| is nothing else than the transport density σ in
Problem (2.3). Hence, Propositions 3.1 & 3.3 conclude the proof. □

4. Applications to the least gradient problem with Dirichlet and Neumann
boundary conditions

In this section, we apply all the results of the previous sections to prove existence and
uniqueness of a solution u to Problem (1.8) and, to give W 1,p estimates on this solution u.
First, we consider the following problem:

(4.1) inf

{∫
Ω
|Du| −

∫
∂Ω\Γ

ψ udH1 : u ∈ BV (Ω), u|∂Ω ∈ BV (∂Ω), u|Γ = g

}
.

This is exactly Problem (1.8) but with the additional constraint u|∂Ω ∈ BV (∂Ω). Let γ :
[0, L] 7→ ∂Ω\Γ be a unit parametrization of ∂Ω\Γ and ψ ∈ L∞(∂Ω\Γ). Then, we introduce
the following constant:

Λψ = sup

{ |
∫ l2
l1
ψ(γ(s)) ds|

|γ(l2)− γ(l1)|
: 0 ≤ l1 < l2 ≤ L

}
.

Hence, we have the following results:

Theorem 4.1. Assume that Γ is strictly convex, ∂Ω\Γ is visible from Γ, g ∈ BV (Γ) and, ψ
is a bounded function on ∂Ω\Γ with Λψ ≤ 1. Then, Problem (4.1) reaches a minimum.

Proof. First of all, we define the Lipschitz function ϕ on ∂Ω\Γ such that ψ = ∂τϕ as follows:

ϕ(γ(l)) :=

∫ l

0
ψ(γ(s)) ds, for all l ∈ [0, L].

Then, we see that Λψ ≤ 1 implies that ϕ is a 1−Lip function on ∂Ω\Γ. Indeed, we have the
following:

|ϕ(γ(l1))− ϕ(γ(l2))| =
∣∣∣∣ ∫ l2

l1

ψ(γ(s)) ds

∣∣∣∣ ≤ Λψ|γ(l1)− γ(l2)|.

By integration by parts, we have

inf

{∫
Ω
|Du| −

∫
∂Ω\Γ

ψ udH1 : u ∈ BV (Ω), u|∂Ω ∈ BV (∂Ω), u|Γ = g

}
(4.2)

= inf

{∫
Ω
|Du|+

∫
∂Ω\Γ

ϕ∂τudH1−ϕ(γ(L)) g(γ(L)−) : u ∈ BV (Ω), u|∂Ω ∈ BV (∂Ω), u|Γ = g

}
.

Thanks to Theorem 2.8, we see that Problem (4.2) has a solution u, which turns out to be
clearly a solution to Problem (4.1). □

In the following example, we will show that if the assumption that Λψ ≤ 1 is not well
satisfied, then a solution to Problem (1.8) does not exist. More precisely, the minimal value
is not finite !
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Example 4.1.1. Let Ω be the bounded domain with Γ := {(x1, x2) : x21 + x22 = 1, x2 ≥ 0},
∂Ω\Γ := [−1, 1] × {0} and g = 0 on Γ. Fix ε > 0, then we set ψ := (1 + ε)χ|[0,1]×{0}
and, let ϕ be such that ψ = ∂τϕ. It is clear that Λψ = 1 + ε. For every n ∈ N, we define
vn := n < −1, 0 > ·H1

|[0,1]×{0}. Then, we see that vn is admissible in Problem (2.2) since we

have∫
Ω
vn · ∇φ = n

∫
[0,1]×{0}

∇φ(x) · < −1, 0 > dH1(x) = n[φ(0, 0)− φ(1, 0)] =

∫
∂Ω
φd[χ+

n − χ−
n ],

for all φ ∈ C1(Ω), where χ+
n := n δ(0,0) and χ−

n := n δ(1,0). Moreover, we have the following:∫
Ω
|vn|+

∫
∂Ω\Γ

ϕ d[χ+
n − χ−

n ] = n[1 + ϕ(0, 0)− ϕ(1, 0)] = −ε n→ −∞.

Then, inf (2.2) = −∞. Recalling Proposition 2.7, this also implies that inf (2.1) = −∞. In
particular, inf (1.8) = −∞ and so, a solution u for Problem (1.8) does not exist !

On the other hand, we have the following uniqueness result:

Theorem 4.2. Assume that Γ is strictly convex, ∂Ω\Γ is visible from Γ and, ψ ∈ L∞(∂Ω\Γ)
with Λψ < 1. Then, Problem (4.1) has a unique solution provided that g ∈ BV (Γ) ∩ C(Γ).

Proof. This follows immediately from Proposition 2.10. □

In addition, we get the following Sobolev regularity on the solution u:

Proposition 4.3. Assume that Γ is uniformly convex, ∂Ω\Γ is visible from Γ and, ψ ∈
L∞(∂Ω\Γ) with Λψ < 1. Then, the solution u of Problem (4.1) is in W 1,p(Ω) as soon as
g ∈ W 1,p(Γ) with p < 2. In addition, assume that spt([∂τg]

±) ⊂ Γ±, ∂Ω\Γ is C1,1 and, ψ is
Lipschitz. Then, u ∈ W 1,2(Ω) provided that g ∈ W 1,2(Γ). For p > 2, u ∈ W 1,p(Ω) as soon as
g ∈ C1,α(Γ) with α = 1− 2

p . In particular, u is Lipschitz as soon as g ∈ C1,1(Γ).

Proof. This follows immediately from Proposition 3.4, using the fact that ψ = ∂τϕ. □

Finally, it remains to show that Problems (1.8) & (4.1) are completely equivalent. We recall
that Problem (1.8) is given by

inf

{∫
Ω
|Du| −

∫
∂Ω\Γ

ψ udH1 : u ∈ BV (Ω), u|Γ = g

}
.

Let u ∈ BV (Ω) such that u|∂Ω = g̃ where g̃ = g on Γ. Let (g̃n)n ⊂ BV (∂Ω) be such that

g̃n = g on Γ and g̃n → g̃ in L1(∂Ω). Thanks to [1], we may find a sequence (wn)n in BV (Ω)
satisfying

wn|∂Ω = g̃n − g̃ and

∫
Ω
|Dwn| ≤

∫
∂Ω

|g̃n − g̃|+ 1

n
.

Now, set un := u+wn. It is clear that un ∈ BV (Ω) with un = g̃n on ∂Ω. So, un is admissible
in (4.1). Moreover, we have the following∣∣∣∣ ∫

Ω
|Dun| −

∫
Ω
|Du|

∣∣∣∣ ≤ ∫
Ω
|Dwn| ≤

∫
∂Ω

|g̃n − g̃|+ 1

n
.

Then, we have ∫
Ω
|Dun| −

∫
∂Ω\Γ

ψ un dH1 →
∫
Ω
|Du| −

∫
∂Ω\Γ

ψ udH1.
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Hence, we get that

inf

{∫
Ω
|Du| −

∫
∂Ω\Γ

ψ udH1 : u ∈ BV (Ω), u|Γ = g

}

≤ inf

{∫
Ω
|Du| −

∫
∂Ω\Γ

ψ udH1 : u ∈ BV (Ω), u|∂Ω ∈ BV (∂Ω), u|Γ = g

}
.

Yet, it is obvious that the other inequality also holds. Then, we infer that Problems (1.8) &
(4.1) have the same minimal values, i.e. inf (1.8) = inf (4.1). In particular, we get immediately
the following existence result:

Theorem 4.4. Under the assumptions of Theorem 4.1, Problem (1.8) admits a solution u.
Moreover, the trace of u is in BV (∂Ω).

In addition, we claim that if the assumptions of Theorem 4.2 hold and u solves Problem
(1.8), then we must have u|∂Ω ∈ BV (∂Ω). Thanks to Theorem 4.2, this will imply that the
solution u of Problem (1.8) is unique as soon as g ∈ C(Γ). The rest of the paper is dedicated
to proving this claim. Fix u a solution in (1.8). Let Ω′ be an open bounded domain containing
Ω such that ∂Ω ∩ ∂Ω′ = ∂Ω\Γ, g̃ ∈ BV (Ω′\Ω) be a function with trace g on Γ and, ũ be the
BV extension of u to Ω′ with ũ = g̃ on Ω′\Ω. First, it is easy to see that∫

Ω′
|Dũ| ≤

∫
Ω′

|D(ũ+ v)| −
∫
∂Ω\Γ

ψ v dH1,

for any function v ∈ BV (Ω′) such that spt(v) ⊂ Ω\Γ. For every s ∈ R, we define the super-level
set Es := {x ∈ Ω′ : ũ(x) ≥ s}. Then, we claim that

(4.3)

∫
Ω′

|DχEs | ≤
∫
Ω′

|D(χEs + v)| −
∫
∂Ω\Γ

ψ v dH1,

for any function v ∈ BV (Ω′) such that spt(v) ⊂ Ω\Γ. Yet, if (4.3) holds, then we clearly have

(4.4) Per(Es)−
∫
Es ∩ ∂Ω\Γ

ψ dH1 ≤ Per(E)−
∫
E ∩ ∂Ω\Γ

ψ dH1,

for all E ⊂ Ω′ such that E∆Es ⊂ Ω\Γ. In particular, we have

(4.5) Per(Es) ≤ Per(E),

for all E ⊂ Ω′ such that E∆Es ⊂ Ω. Hence, if α is a connected component of the level set
∂Es in Ω, then by (4.5) α must be a segment [xs, ys]. Now, assume that ys := γ(l⋆) is an

interior point of ∂Ω\Γ (i.e. 0 < l⋆ < L). Let ε > 0 be small enough such that B(ys, ε)∩Γ = ∅.
Set zs := [xs, ys] ∩ ∂B(ys, ε). Recalling (4.4), it is not difficult to see that depending on the
monotonicity of g at the point xs, we either have

|zs − ys|+ ϕ(ys) ≤ |zs − γ(l)|+ ϕ(γ(l)), for all 0 ≤ l ≤ L,

or

|zs − ys| − ϕ(ys) ≤ |zs − γ(l)| − ϕ(γ(l)), for all 0 ≤ l ≤ L.

Hence, we either have ys = T+(xs) or ys = T−(xs). Since u(ys) = g(xs), this implies
that u|∂Ω\Γ ∈ BV (∂Ω\Γ) with |∂τu|(∂Ω\Γ) ≤ |∂τg|(Γ). Finally, it remains to prove (4.3).
For this aim, the idea will be to follow the proof of [2, Theorem 1]. Fix r ∈ R, then we
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define u1 := max{ũ − r, 0} and u2 := min{ũ, r}. We see that u1 + u2 = ũ and, we have∫
Ω′ |Du1|+

∫
Ω′ |Du2| =

∫
Ω′ |Dũ|. Hence, we get∫

Ω′
|Du1|+

∫
Ω′

|Du2| =
∫
Ω′

|Dũ| ≤
∫
Ω′

|D(ũ+ v)| −
∫
∂Ω\Γ

ψ v dH1

≤
∫
Ω′

|D(u1 + v)|+
∫
Ω′

|Du2| −
∫
∂Ω\Γ

ψ v dH1

and so, ∫
Ω′

|Du1| ≤
∫
Ω′

|D(u1 + v)| −
∫
∂Ω\Γ

ψ v dH1,

for any function v ∈ BV (Ω′) such that spt(v) ⊂ Ω\Γ. In the same way, we see that we also
have ∫

Ω′
|Du2| ≤

∫
Ω′

|D(u2 + v)| −
∫
∂Ω\Γ

ψ v dH1.

Hence, for s ∈ R and ε > 0, we infer that the function us,ε := 1
ε min{max{ũ − s, 0}, ε} also

satisfies ∫
Ω′

|Dus,ε| ≤
∫
Ω′

|D(us,ε + v)| −
∫
∂Ω\Γ

ψ v dH1,

for any function v ∈ BV (Ω′) such that spt(v) ⊂ Ω\Γ. If L2({x ∈ Ω′ : ũ(x) = s}) = 0, then it
is clear that us,ε → χEs in L1(Ω′), when ε → 0. Moreover, we see that us,ε| ∂Ω\Γ → χEs | ∂Ω\Γ
in L1(∂Ω\Γ). If L2({x ∈ Ω′ : ũ(x) = s}) > 0, then there will be a sequence sn → s with
sn < s and L2({x ∈ Ω′ : ũ(x) = sn}) = 0, for all n. Yet, it is easy to see that χEsn

→ χEs

in L1(Ω′) and χEsn | ∂Ω\Γ → χEs | ∂Ω\Γ in L1(∂Ω\Γ), when n → ∞. But, we also know that

usn,ε → χEsn
in L1(Ω′) and usn,ε| ∂Ω\Γ → χEsn | ∂Ω\Γ in L1(∂Ω\Γ), when ε → 0. Hence, by

a diagonal argument, we infer that there is a sequence of functions {uε} with uε → χEs in
L1(Ω), uε| ∂Ω\Γ → χEs | ∂Ω\Γ in L1(∂Ω\Γ) and such that, for every ε, we have

(4.6)

∫
Ω′

|Duε| ≤
∫
Ω′

|D(uε + v)| −
∫
∂Ω\Γ

ψ v dH1,

for any function v ∈ BV (Ω′) such that spt(v) ⊂ Ω\Γ. Now, in order to pass to the limit in
(4.6) and get (4.3), we will adapt the proof of [21, Theorem 3]. Let A be a set such that
∂Ω\Γ ⊂ A, A ⊂ Ω\Γ, A ∩ Ω is open, spt(v) ⊂ A and, such that the following holds:

lim
ε→0

∫
∂A∩Ω′

|uε − χEs | = 0.

For each ε, set vε := [χEs +v−uε]χA. It is clear that vε ∈ BV (Ω′) and spt(vε) ⊂ Ω\Γ. Hence,
we have

(4.7)

∫
Ω′

|Duε| ≤
∫
Ω′

|D(uε + vε)| −
∫
∂Ω\Γ

ψ vε dH1.

Yet, ∫
Ω′

|D(uε + vε)| =
∫
Ω′

|D(uε + [χEs + v − uε]χA)|

=

∫
Ω′∩A

|D(χEs + v)|+
∫
Ω′\A

|Duε|+
∫
∂A∩Ω′

|χEs − uε|

and ∫
∂Ω\Γ

ψ vε dH1 =

∫
∂Ω\Γ

ψ χEs dH1 +

∫
∂Ω\Γ

ψ v dH1 −
∫
∂Ω\Γ

ψ uε dH1.
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Recalling (4.7), we get

(4.8)

∫
Ω′

|Duε| ≤
∫
Ω′∩A

|D(χEs + v)|+
∫
Ω′\A

|Duε|+
∫
∂A∩Ω′

|χEs − uε| −
∫
∂Ω\Γ

ψ χEs dH1

−
∫
∂Ω\Γ

ψ v dH1 +

∫
∂Ω\Γ

ψ uε dH1.

Consequently, we have∫
Ω′∩A

|Duε| ≤
∫
Ω′∩A

|D(χEs +v)|−
∫
∂Ω\Γ

ψ v dH1+

∫
∂A∩Ω′

|χEs −uε|+
∫
∂Ω\Γ

ψ (uε−χEs)dH1.

Hence,

lim inf
ε→0

∫
Ω′∩A

|Duε| ≤
∫
A∩Ω′

|D(χEs + v)| −
∫
∂Ω\Γ

ψ v dH1.

But, uε → χEs in L1(Ω′). Then, by the lower semicontinuity of the total variation, we have∫
Ω′∩A

|DχEs | ≤ lim inf
ε→0

∫
Ω′∩A

|Duε|.

So, we get that ∫
Ω′∩A

|DχEs | ≤
∫
Ω′∩A

|D(χEs + v)| −
∫
∂Ω\Γ

ψ v dH1.

This concludes the proof of our claim (4.3). We finish this paper by recalling then the following
results:

Theorem 4.5. Under the assumptions of Theorem 4.2, the solution of Problem (1.8) is unique
provided that g ∈ BV (Γ) ∩ C(Γ).

Theorem 4.6. Assume that Γ is uniformly convex. Let u be the unique solution of Problem
(1.8). Then, we have

g ∈W 1,p(Γ) ⇒ u ∈W 1,p(Ω), for all p < 2.

In addition, assume that ∂Ω\Γ is C1,1, ψ is Lipschitz and, spt([∂τg]
±) ⊂ Γ±, where Γ± ⊂ Γ

is the set of points x such that T∓(x) is an interior point of ∂Ω\Γ. Then, we have the
following statements: 

g ∈W 1,2(Γ) ⇒ u ∈W 1,2(Ω),

g ∈ C1,α(Γ) ⇒ u ∈W 1, 2
1−α (Ω), ∀ α ∈]0, 1[,

g ∈ C1,1(Γ) ⇒ u ∈ Lip(Ω).
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