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Abstract. In this work, we demonstrate that a functional modeling the self-
aggregation of stochastically distributed lipid molecules can be obtained as the
Γ-limit of a family of discrete energies driven by a sequence of independent and
identically distributed random variables. These random variables are intended to
describe the asymptotic behavior of lipid molecules that satisfy an incompressibility
condition. The discrete energy keeps into account the interactions between particles.
We resort to transportation maps to compare functionals defined on discrete and
continuous domains, and we prove that, under suitable conditions on the scaling
of these maps as the number of random variables increases, the limit functional
features an interfacial term with a Wasserstein-type penalization.
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1. Introduction

Lipid bilayers are the fundamental component of cell membranes. They are composed of
two layers of lipid molecules, with the hydrophilic heads facing outward and the hydrophobic
tails facing inward. Lipid bilayers act as barriers, preventing the uncontrolled exchange of
materials between the inside and outside of the cell [7]; they are dynamic and can change
their shape and composition in response to various stimuli. For example, cells can regulate
the fluidity of the membrane by altering the types of lipids, allowing them to respond to
changes in temperature or other environmental factors [21]. Understanding the structure
and functioning of lipid bilayers is essential for modeling basic biological processes such as
cell signaling and membrane transport [29].

In the last decades, a vast body of literature has been devoted to describing different
mathematical settings to study the properties of biomembranes in a rigorous manner. In
this regard, Canham [10] and Helfrich [20] considered continuous models, where a lipid
bilayer membrane assumes curved shapes to accommodate a spontaneous curvature which
is influenced by factors such as lipid composition, temperature, and external stresses [29].
In a similar setup, motivated by the works of Bates [6] and Fredrickson [14] on chains
of copolymers, the authors of [7] proposed a continuous model to tackle the problem of
self-aggregation of lipid molecules, which was not addressed in Helfrich’s seminal paper
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[20]. We also refer the reader to [4, 8, 11, 13], where pattern formation of cell aggregates
is analyzed by means of kinetic models or aggregation-diffusion equations.

Lipid membranes can be studied at different length scales; in [26], the authors proposed
three different models for micro-, meso, and macroscopic scales through suitable energy
functionals for idealized and rescaled head-tail densities. Their main result is the rigorous
meso-to-macro limit in the two-dimensional setting, which recovers the Canham–Helrfich
model. In the same paper a formal derivation of the mesoscopic model was also proposed.
From that paper, a series of contributions stemmed, where the nature of curved membranes
was analyzed [24, 25, 27]. However, even though these models well describe self-aggregation
of lipid molecules, they do not take into account the discrete nature of the problem. In
fact, there are few works where the behavior of lipid molecules is modeled by functionals
defined on discrete structures, see, e.g., [18, 30]. One main reason for the lack of results in
this direction is that capturing the contribution of the principal curvatures in a discrete
setting is a subtle task.

In this paper, we perform the rigorous micro-to-meso derivation that was proposed in
[26]. To do so, we upscale (i.e., we take the limit as n→∞) discrete energies depending on
a large number of molecules modeled by independent and identically distributed (according
to a probability density ρ) random variables X1, . . . , Xn (n ∈ N) contained in some bounded
region D ⊂ Rd. Given δn > 0, we consider a rescaled kernel κδn(Xi −Xj) that takes into
account the interaction between lipid molecules at scale δn, for i, j = 1, . . . , n. As the
number n of molecules increases, the interaction length-scale δn must vanish due to the
boundedness of the container D, so that a crucial role in the identification of the mesoscopic
limit will be played by the relationship between n and δn. We encode this interaction in a
functional GFn,δ defined, for a general interaction length-scale δ (see the precise definition
in (3.1) below), in such a way that the amphiphilic nature of the molecules is taken into
account: more precisely, the vicinity of hydrophilic heads and water or the hydrophobic
tails is favored, whereas the vicinity of the hydrophobic tails and water is penalized.

A major difficulty in taking the limit as n→∞ and to recover a continuous functional
is due to the stochasticity of the system; a key ingredient in performing this limit is the
used of transportation maps to set the problem in a continuous framework. Our main
result is Theorem 3.3 below where we show that, under a suitable rescaling of δn (see
assumption (H3) below), the discrete GFn,δn Γ-converges to a weighted total variation
functional (originally introduced in [5]). This means that, when modeling lipid bilayers
using a sequence X := {Xi}i∈N of random variables that interact at the scales dictated by
hypothesis (H3), the resulting mesoscopic energy is a surface functional which depends on
the geometric properties of the interface between the heads and the tails of the amphiphilic
molecules.

As a byproduct of our Theorem 3.3, in the case of uniform distributed random variables,
that is, when ρ = |D|−1, we recover the usual perimeter functional formally derived in
[26]. More precisely, we consider the functional Gn,δn defined in (3.8) below, given by
the sum of GFn,δn and a Wasserstein-like term and we prove in Theorem 3.5 that Gn,δn
Γ-converges to the same mesoscopic functional of [26]. This is a significant result, which
sets the ground for a derivation of the Canham–Helfrich functional starting from the more
natural discrete stochastic setting.

The paper is organized as follows: in Section 2, we recall the derivation of the model
proposed in [26] and some preliminary concepts needed later on. In Section 3, we introduce
our main assumptions and state our main results, whose proofs are presented in Section 4.

2. Preliminaries

In this part, we start by recalling the derivation of the mesoscopic model to treat bilayer
molecules.

2.1. Lipid models. A lipid molecule consists of a head and two tails. The head is usually
charged and hydrophilic, while the tails are hydrophobic. This difference in polarity causes
lipids to aggregate, and inside a cell, lipids are typically found in a bilayer structure (see
Figure 1 below).
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Figure 1. A typical bilayer structure (see [7, Figure 1]).

In such a structure, the energetically unfavorable tail-water interactions are avoided by
collecting the tails together in a water-free region created by the heads. Suppose that we
have a system of particles composed of Xt

i , Xh
i , and Xw

i , which are the lipid tail, lipid
head, and water beads, respectively, for i = 1, . . . , n, where n ∈ N. Assuming that the
beads are confined to a space D ⊂ Rd, the full microscopic state space for the system is
then D3n. Elements X ∈ D3n are called microstates [25]. We describe the system in terms
of probability densities on D3n; that is, the state ψ of the system is described through a
probability density on D3n

ψ ∈ E, where E :=
{
ψ : D3n → R+ :

ˆ
D3n

ψ(x) dx = 1
}
.

Moreover, suppose that Xt, Xh, and Xw are composed of independent and identically
distributed random variables, which are distributed according to probability laws µ, ν,
and η, respectively, and that these distributions depend on ψ. Suppose that µ, ν, and η are
absolutely continuous with respect to the d-dimensional Lebesgue measure Ld, and thus
have densities u, v, and w, respectively. A typical assumption when modeling biomembranes
is that u+v+w = 1. This condition is usually referred to as the incompressibility condition
for particles [26, Appendix A]. It is a point-wise relation that aims to balance the portion of
particles of different types stored in D. To specify the behavior of the system of particles, we
consider two functionals: the ideal free functional F id : E→ R, ψ 7→ F id(ψ), which models
the effects of entropy and the interaction between beads of the same type, and the non-ideal
free energy functional F nid : E→ R, ψ 7→ F nid(ψ), which represents the interaction of beads
of different types. The total energy of the system is then F nid(ψ) + F id(ψ). Typical terms
in the non-ideal free energy are convolution integrals in which proximity of hydrophilic
beads and tail beads is penalized: up to a physical constant which we disregards, F nid can
be expressed as

F nid(ψ) :=
¨
D×D

(v(x) + w(x))u(y)κ(x− y) dxdy,

where κ is the kernel of interaction. Since we are interested in interactions at a small scale
δ > 0, the kernel κ is usually rescaled to κδ := δ−dκ(·/δ). For the ideal free energy F id,
one can assume the form

F id(ψ) =
ˆ
D3n

ψ(x)H id(x) dx,

where H id is a suitable interaction potential. The choice of the potential H id models certain
phenomena, such as attraction, repulsion, and combinations thereof. The function H id

is usually called the interaction potential, and it is in general assumed to be radially
symmetric [4, 8], i.e., H id(x) = w(|x|), for some w : [0,+∞)→ R.

In 2009, Peletier and Röger [26] proposed a mesoscale model for biomembranes in
the form of an energy functional for idealized and rescaled head-tail densities. Such a
model is derived from the functional F nid + F id, in which heads and tails are treated
as separate particles. The term F nid penalizes the proximity of tails to either heads or
water particles, and the term F id implements the head-tail connection. In particular,
they proposed F id(ψ) = Wp(u, v), the Wasserstein distance of order p ∈ [1,∞). From an
analytic point of view, configurations of head and tail particles are modeled by suitable
density functions belonging to the space of functions of bounded variation in Rd [2]. A
formal upscaling procedure leads to the following model: configurations of head and tail
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particles are described by two rescaled density functions

u ∈ BV(Rd; {0, ε−1}), v ∈ L1(Rd; {0, ε−1})

with uv = 0 a.e. in Rd and with prescribed total mass M > 0, namelyˆ
Rd
u(x) dx =

ˆ
Rd
v(x) dx = M. (2.1)

Here ε > 0 is a small parameter measuring the size of the support of u. We denote by
Kε ⊂ L1(Rd × Rd) the space of such configurations, that is

Kε :=
{

(u, v) ∈ BV(Rd, {0, ε−1})× L1(Rd, {0, ε−1}) : (2.1) holds and uv = 0 a.e. in Rd
}
.

In [26] the asymptotic behavior of the energy functional

Fε(u, v) :=

{
ε ||Du||+ 1

ε
W1(u, v) if (u, v) ∈ Kε,

+∞ otherwise in L1(Rd)× L1(Rd)
(2.2)

is studied. The term ||Du|| represents the total variation of u and it measures the boundary
of the support of tails. By a rigorous analysis via Γ-convergence, it is shown in [26] that
the energy (2.2) has a preference for thin structures without ends and a resistance to
bending of the structure. To be precise, in the limit as ε→ 0, the densities concentrate
along families of regular curves, and a Euler-type functional appears. The result is in the
two-dimensional case, whereas in the three-dimensional case one might expect convergence
to a Canham–Helfrich-type functional; nonetheless, in this situation, only partial results
are known [24, 25].

2.2. Γ-convergence. In this section, we briefly review the definition of Γ-convergence of
a sequence of functionals defined on a metric space, both in the deterministic and in the
stochastic case. Let (Y, dY ) be a metric space and let Fn : Y → [0,∞] be a sequence of
functionals.

Definition 2.1. The sequence {Fn}n∈N Γ-converges with respect to metric dY to the
functional F : Y → [0,∞] if the following inequalities hold:

i) For every y ∈ Y and every sequence {yn}n∈N converging to y

F (y) ≤ lim inf
n→∞

Fn(yn);

ii) For every y ∈ Y there exists a sequence {ȳn}n∈N converging to y such that

lim sup
n→∞

Fn(ȳn) ≤ F (y).

In this case, we then say that F is the Γ-limit of the sequence of functionals {Fn}n∈N with
respect to the metric dY . Since the sequence {ȳn}n∈N in ii) satisfies condition i) we have
limn→∞ F (ȳn) = F (y), and the sequence {ȳn}n∈N is called recovery sequence.

In the same way, we define the Γ-convergence for random functionals.

Definition 2.2. Let (Ω,T,P) be a probability space. For a sequence of random functionals
Fn : Y × Ω → [0,+∞] and F : Y → [0,+∞] a deterministic functional, we say that the
sequence of functionals {Fn}n∈N Γ-converges with respect to the metric dY to F , if for
P-almost every ω ∈ Ω, the sequence {Fn(·, ω)}n∈N Γ-converges to F according to Definition
2.1.

We now recall the notion of convergence in law and convergence in probability. Let
Y and Z be metric spaces. Given a probability measure µ ∈ P(Y ) and a measurable
mapping T : Y → Z, we denote by ν := T#µ the push-forward of µ by T , namely the
measure ν ∈P(Z) such that ν(A) = (T#µ)(A) = µ(T−1(A)), for any Borel set A ⊂ Z.

Definition 2.3. Let {Fn}n∈N be a sequence of random functionals with Fn defined on the
probability space (Ωn,Tn,Pn). Let F∞ be a random functional defined on the probability
space (Ω∞,T∞,P∞). We say that {Fn}n∈N converges in law to F∞ if the sequence of
measures µn := (Fn)#Pn converges weakly-* as n→∞ to µ∞ := (F∞)#P∞.
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Definition 2.4. Let {Fn}n∈N be a sequence of random functionals defined on a com-
mon probability space (Ω,T,P). We say that Fn converges in probability to a random
functional F∞ if

lim
n→∞

P ({ω ∈ Ω : d(Fn, F∞) > η}) = 0, for all η > 0

where d is a suitable metric in the space of functionals (see [12, Proposition 1.12]).

A well-known result about the convergence of random functionals is the following one.

Proposition 2.5 ([12, Proposition 2.9]). Suppose that {Fn}n is a sequence of random
functionals which converges in law to F∞ : Y × Ω→ [0,+∞]. If F∞ is constant, that is,
if there exists F : Y → [0,+∞] such that F∞(ω) = F for P-almost every ω ∈ Ω, then the
convergence of {Fn}n in law and the convergence in probability are equivalent.

2.3. The TLp topology and some of its properties. In this section, we recall some
useful facts about the topology of measure-functions pairs spaces. This topology was
introduced in [16] to treat the convergence of functionals defined on graphs. Given an open
bounded subset D ⊂ Rd, we define for all p ∈ [1,+∞)

TLp(D) := {(µ, f) : µ ∈P(D), f ∈ Lpµ(D)}.

This space can be endowed with a distance (see (2.5) below) and thus it is a metric space
[16, Proposition 3.3].1 Note that for a generic bounded Borel map f : D → R, the following
change of variables ˆ

D

f(T (x)) dµ(x) =
ˆ
D

f(y) dν(y),

holds true if and only if ν = T#µ, in which case we say that the Borel map T : D → D is
a transportation map between the measures µ ∈ P(D) and ν ∈ P(D). In this case, we
associate with T a transportation plan πT ∈ Γ(µ, ν) defined by

πT := (Id, T )#µ (2.3)

where (Id, T ) : D → D×D is given by (Id, T )(x) = (x, T (x)). Here, Γ(µ, ν) is the set of all
couplings between µ and ν, that is, the set of all Borel probability measures on D ×D for
which the marginal on the first variable is µ and the marginal on the second variable is ν.

We notice that when µ is absolutely continuous with respect to the Lebesgue measure,
the weak-* convergence of µn to µ as n→∞ is equivalent to the existence of a sequence
{Tn}n∈N of transportation maps such thatˆ

D

|x− Tn(x)|p dµ(x)→ 0 as n→∞. (2.4)

This motivates the following definition.

Definition 2.6. We say that a sequence of transportation maps {Tn}n∈N is stagnating if
(2.4) holds.

Given p ∈ [1,∞) and (µ, f), (ν, g) ∈ TLp(D) their distance is defined by

dTLp
(
(µ, f), (ν, g)

)
:= inf

π∈Γ(µ,ν)

¨
D×D

(|x− y|p + |f(x)− g(x)|p) dπ(x, y) (2.5)

It is well known [3, 28] that when µ is absolutely with respect to the Lebesgue measure,
problem (2.5) admits a solution. In particular, if p > 1 there exists a unique transport
map T inducing the transport plan πT in (2.3).

The following proposition characterized the convergence in TLp.

Proposition 2.7 ([16, proposition 3.12]). Let (µ, f) ∈ TLp(D) and let {(µn, fn)}n∈N be
a sequence in TLp. The following statements are equivalent:

1. (µn, fn) converges to (µ, f) in TLp(D) as n→∞, in symbols (µn, fn) TL
p

−→ (µ, f)
as n→∞.

1The definition for the case p = ∞ can be presented in the usual way; we neglect it here for the sake
of conciseness.
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2. µn ⇀ µ weakly∗ and for every stagnating sequence of transportation plans {πn}n∈N ⊆
Γ(µ, µn) ¨

D×D
|f(x)− f(y)|p dπn(x, y)→ 0, as n→∞. (2.6)

3. µn ⇀ µ weakly∗ and there exists a stagnating sequence of transportation plans
{πn}n∈N ⊆ Γ(µ, µn) for which (2.6) holds.

Moreover, if the measure µ is absolutely continuous with respect to the Lebesgue measure,
the following are equivalent to the previous statements:

4. µn ⇀ µ weakly∗ and there exists a stagnating sequence of transportation maps
{Tn}n∈N such thatˆ

D

|f(x)− fn(Tn(x))|p dµ(x)→ 0, as n→∞; (2.7)

5. µn ⇀ µ weakly∗ and for any stagnating sequence of transportation maps {Tn}n∈N
(2.7) holds.

Let ν = ρLd with the density ρ bounded from below and from above by positive
constants. We consider a sequence {Xi}i∈N of independent random variables which are
identically distributed according to ν, and supported on a common probability space
(Ω,T,P). In the next, we make use of upper bounds on the transportation distance
between ν and the empirical measure νn := 1

n

∑n

i=1 δXi . This will play an important role
in the proof of our Γ-convergence results. In particular, we will use estimates of

d∞(ν, νn) := inf
{
||Id− T ||∞ where T : D → D, T#ν = νn

}
which measures what is the least maximal distance that a transportation map T between ν
and νn has to move the mass. Here, for a map S : D → D, we denote by ‖S‖∞ :=
supx∈D |S(x)|. In particular, we are interested in the case where ρ is a uniform probability
density in D. Let us suppose that D = (0, 1)d, and consider P = {pi, . . . , pn} the set of n
points in D where each point in P is the center of a cube contained in D with volume 1

n
. In

[22] it is shown that, if D is connected with Lipschitz boundary, for d ≥ 3 and ρ constant,
there exist two positive constants λ,Λ such that the event

λ(logn)1/d

n1/d ≤ min
σ

max
i∈{1,...,n}

|pi −Xσ(i)| ≤
Λ(logn)1/d

n1/d

has probability 1 and where σ ranges over all permutations of {1, . . . , n}. This result was
further extended in [15], and we report it here.

Theorem 2.8 ([16, Theorem 2.5]). Let D ⊂ Rd be an bounded connected open set with
Lipschitz boundary. Let ν be a probability measure on D with density ρ which is bounded
from below and from above by positive constants. Let {Xi}n∈N be a sequence of independent
and identically distributed random variables distributed on D according to the measure ν
and let νn := 1

n

∑n

i=1 δXi . Then there exists a constant C > 0 such that for P-almost
everywhere ω ∈ Ω there exists a sequence of transportation maps {Tn}n∈N from ν to νn
(i.e., (Tn)#ν = νn) and such that

if d = 2 then lim sup
n∈N

n1/2 ||Id− Tn||∞
(logn)3/4 ≤ C,

if d ≥ 3 then lim sup
n∈N

n1/d ||Id− Tn||∞
(logn)1/d ≤ C.

(2.8)

Remark 2.9. As a consequence of (2.8), we have that ||Id− Tn||∞ → 0. In particular, the
sequence {Tn}n∈N is stagnating according to Definition 2.6.

2.4. Weighted BV functions. We now recall the notion of total variation and weighted
total variation which will be used to state our main result. Let ψ : D → (0,+∞) be a
continuous function, and consider the measure ν = ψLd. Following [5], given u ∈ L1

ν(D)
we define the weighted total variation of u with respect to ψ as

TV (u;ψ) := sup
{ ˆ

D

u divφdx : φ ∈ C∞c (D;Rd), |φ(x)| ≤ ψ(x) for all x ∈ D
}
.
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We denote BV(D;ψ) the set of all functions u ∈ L1(D;ψ) for which TV (u;ψ) < +∞. In
particular, when ψ ≡ 1 we recover the usual space BV(D). For a measurable set B ⊂ D,
we then define the perimeter in D as the weighted total variation of the characteristic
function of B, that is, Per(B;ψ) := TV (χB ;ψ).

Proposition 2.10 ([5, Theorem 3.3]). A function u ∈ L1(D;ψ) belongs to BV(D;ψ) if
and only if there exist a finite Radon measure |Du|ψ and a |Du|ψ-measurable function
σ : D → Rd such that |σ(x)| = 1 for |Du|ψ-almost every x ∈ D and such that

ˆ
D

u(x) divφ(x) dx = −
ˆ
D

φ(x) · σ(x)
ψ(x) d|Du|ψ(x). (2.9)

The measure |Du|ψ and the function σ are uniquely determined by (2.9) and the weighted
total variation TV (u;ψ) is equal to |Du|ψ(D).

Note that, using (2.9), one can check that |Du|ψ = ψ|Du|, so that

TV (u;ψ) =
ˆ
D

ψ(x) d|Du|(x). (2.10)

Since the functional TV (·;ψ) is defined as the supremum of linear continuous functionals
in L1(D;ψ), it is lower semicontinuous with respect to the L1(D;ψ) metric. The following
density theorem for weighted BV functions will be used in the proof of Theorem 3.3 below.

Theorem 2.11 ([15, Theorem 2.4]). Let D be an open subset of Rd with Lipschitz boundary
and let ρ : D → R be a continuous function which is bounded from below and above by
positive constants. Then for every u ∈ BV(D; ρ) there exists a sequence {un}n∈N ⊆ C∞c (Rd)
such that un → u in L1(D) and

´
D
|∇un|ρ dx→ TV (u; ρ) as n→∞.

For a general statement for density of regular functions in the space BV(D; ρ), we refer
to [5, Theorem 3.4].

3. Setting of the problem and main results

In this section, we give a precise description of the functionals we are interested in and a
precise statement of our main results. Let X := {Xi}i∈N be a sequence of independent and
identically distributed random variables with distribution ν which is absolutely continuous
with respect to the Lebesgue measure in Rd, that is there exists a function ρ ∈ L1(D) such
that ν = ρLd. Let κ : Rd → [0,+∞) be a function and, for any δ > 0, let κδ : Rd → [0,+∞)
be defined as

κδ(x) := 1
δd
κ
(
x

δ

)
.

For n ∈ N, we consider the non-ideal free energy functional GFn,δ : L1
ν(D) → [0,+∞]

defined by

GFn,δ(u) :=


2
δn2

n∑
i,j=1

κδ(Xi −Xj)(1− u(Xi))u(Xj) if 0 ≤ u ≤ 1,

+∞ otherwise.
(3.1)

Our contribution in this work is to study the asymptotic behavior of GFn,δn , for a
suitable scaling δn depending on the number of particles n.

The factor 2/δ in (3.1) comes from a modeling assumption, whereas the factor 1/n2 is
a rescaling that keeps into account the number of particles. The scaling δn := δ(n) that
we are going to consider is the one that will allow us to obtain a law of large numbers
as n → ∞. Our main result will be to show that the Γ-limit of GFn,δn is |Du|ρ2 (see
Section 2.4), and we prove this in Theorem 3.3 below.

For d > 1, we make the following assumptions which will be valid for the remainder of
the paper.
(H1) The set D ⊂ Rd is bounded, connected, and open and has Lipschitz boundary.
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(H2) The kernel κ : Rd → [0,+∞) is isotropic and thus it can be written as κ(x) = η(|x|),
for a certain radial profile η : [0,+∞)→ [0,+∞). We assume that η is non-increasing,
continuous at 0, and that η(0) > 0, and also that

ˆ +∞

0
η(r)rd+1 dr < +∞. (3.2)

(H3) X = {Xi}i∈N is a sequence of independent and identically distributed random
variables, distributed according to a probability distribution ν = ρLd with Lipschitz
continuous density ρ : D → R which is bounded from below and above by positive
constants a and b, respectively. Associated with X, we consider the sequence of
empirical measures

νn := 1
n

n∑
i=1

δXi , (3.3)

and by Tn the transportation maps such that (Tn)#ν = νn.
(H4) We let {δn}n∈N be an infinitesimal sequence of positive numbers satisfying

lim
n→∞

(logn)3/4

n1/2δn
= 0 if d = 2,

lim
n→∞

(logn)1/d

n1/dδn
= 0 if d ≥ 3.

(3.4)

Remark 3.1. Let us now give some comments about our assumptions.
(1) Hypothesis (H2) is physically motivated and it is needed to treat, among other

problems, Ising spin systems on graphs [1]. By elementary considerations, it is
immediate to notice that there exists a step function η0 : [0,+∞) → [0,+∞) of
the form

η0(r) =
{
A if r < r0,
0 if r ≥ r0,

(3.5a)

where 0 < A < η(0) and 0 < r0 < +∞, such that

η0(r) ≤ η(r) for all r ∈ [0,+∞). (3.5b)

Clearly, η0 satisfies (3.2).
(2) Hypothesis (H3) describes how each lipid molecule moves randomly in the envi-

ronment independently of all other molecules.
(3) Hypothesis (H4) is crucial to obtain the compactness result in Lemma 3.2 below;

in particular, the conditions (3.4) are quite technical and are related to upper
bounds on the transportation distance between the empirical measure (3.3) and
the distribution ν. It is related to the connectedness property of the limiting graph
obtained starting from a random graph with edges X1, . . . , Xn and edge weights
κδn(Xi−Xj) as n→∞. That is, the conditions (3.4) guarantee that the resulting
graph is connected with probability 1 as n→∞ (see [19]).

Lemma 3.2. (Compactness) Assume that (H1–4) hold true. Consider a sequence of
functions {un}n∈N such that un ∈ L1

νn(D) for every n ∈ N, where νn is given by (3.3) and
suppose that

sup
n∈N
||un||L1

νn
(D) < +∞ and sup

n∈N
GFn,δn(un) < +∞. (3.6)

Then {(νn, un)}n∈N is relatively compact in TL1(D).

We now state the main result of this paper. To this aim, we define

αd :=
(  

Sd−1
| 〈z, e〉 | dH d−1(z)

)
·
( ˆ

Rd
|x|κ(x) dx

)
, (3.7)

where e ∈ Sd−1 any unit vector (it is not difficult to see that the averaged integral is indeed
independent of e).
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Theorem 3.3. Assume that (H1–4) hold true. Then the functionals GFn,δn : L1
νn(D)→

[0,+∞] defined by (3.1) Γ(TL1(D))-converge to the functional αdTV (·; ρ2) : L1
ν(D) →

[0,+∞], where αd is defined in (3.7) and where, using (2.10),

TV (u; ρ2) =


ˆ
Su

ρ2(x) dHd−1(x)
if u ∈ BV(D; ρ)
and u(x) ∈ {0, 1} for ν-a.e. x ∈ D,

+∞ otherwise in L1
ν(D).

The next two results that we present hold in the case of constant density ρ = |D|−1.
For D ⊂ Rd such that |D| ≥ 2, consider the class

X (D) :=
{

(A,O) ∈ B(D)×B(D) : |A| = |O| = 1, |A ∩O| = 0
}
.

We study the asymptotic behavior as δn → 0 of the sequence of functionals Gn,δn : B(D)×
B(D)→ [0,+∞] defined as

Gn,δn(A,O) :=
{
GFn,δn(χA) +Wp(A,O) if (A,O) ∈ X (D),
+∞ otherwise.

(3.8)

Here, we use the notation Wp(A,O) to denote the p-th Wasserstein distance between the
indicator functions χA and χO of two sets A,O ∈ B(D) such that |A| = |O| = 1.

Lemma 3.4. Assume that (H1–4) hold true with ρ = |D|−1. Let {(An, On)}n ⊂ X (D)
be a sequence such that

Gn,δn(An, On) ≤ inf
(Ã,Õ)∈X (D)

Gn,δn(Ã, Õ) + 1
n
. (3.9)

Then there exists (A,O) ∈ X (D), with A a set of finite perimeter, such that (up to
subsequence)

χAn → χA in L1(D) and χOn
∗
⇀ χO in L∞(D) as n→∞. (3.10)

Finally, we will prove the following Γ-convergence result.

Theorem 3.5 (Gamma-convergence). Assume that (H1–4) hold true with ρ = |D|−1.
Then (

Γ− lim
n→∞

Gn,δn

)
(A,O) = αd

|D|2 Per(A;D) +Wp(A,O),

where αd is defined in (3.7), and the metric of the Γ-convergence is (s-L1(D))×(w∗-L∞(D)).

Remark 3.6. In view of Proposition 2.5 we point out that both the Γ-convergence results
in Theorems 3.3 and 3.5 hold also in law.

4. Proofs

We start by proving our compactness result.

Proof of Lemma 3.2. Considering the sequence of transportation maps {Tn}n∈N, we have

GFn,δn(un) = 2
δn

¨
D×D

κδn(Tn(x)−Tn(y))un(Tn(x))
(
1−un(Tn(y))

)
ρ(x)ρ(y) dxdy, (4.1)

and, by the second condition in (3.6), there exists C > 0 such that
+∞ > C >GFn,δn(un)

= 2
δd+1
n

¨
D×D

η

(
|Tn(x)− Tn(y)|

δn

)
un(Tn(x))

(
1− un(Tn(y))

)
ρ(x)ρ(y) dxdy

≥ 2a2

δd+1
n

¨
D×D

η0

(
|Tn(x)− Tn(y)|

δn

)
un(Tn(x))

(
1− un(Tn(y))

)
dxdy

where we have used, in sequence, the very definition of the rescaled kernel κδ, hypothesis
(H3), and (3.5b).

Observe now that, by the definition of ‖·‖∞, for almost every x, y ∈ D the following
implication holds true

|Tn(x)− Tn(y)| > r0δn ⇒ |x− y| > r0δn − 2 ||Id− Tn||∞ , (4.2)
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where r0 has been introduced in (3.5a). We define the quantity

δ̃n := δn − 2r−1
0 ||Id− Tn||∞ (4.3)

and notice that, by (2.8) and (3.4),

lim
n→∞

δ̃n
δn

= 1, (4.4)

so that, in particular, for large enough n, we have that δ̃n > 0. Moreover, for almost every
x, y ∈ D, (4.2) yields

η0

(
|x− y|
δ̃n

)
≤ η0

(
|Tn(x)− Tn(y)|

δn

)
. (4.5)

By (4.4) and (4.5), we can continue with the chain of inequalities above and obtain that

+∞ > C >
1

δ̃d+1
n

¨
D×D

η0

(
|x− y|
δ̃n

)
un(Tn(x))

(
1− un(Tn(y))

)
dxdy

for n large enough. Then by [23, Theorem 3.1] {un ◦Tn}n∈N is relatively compact in L1
ν(D)

so that by Remark 2.9, condition (2.7) is satisfied with p = 1. Therefore, by Proposition 2.7-
5, we obtain that the pair {(νn, un)}n∈N is relatively compact in TL1(D). �

In order to prove Theorem 3.3, we define the auxiliary functional Fδ(·; ρ) : L1(D) →
[0,+∞] defined as

Fδ(u; ρ) :=


2
δ

¨
D×D

κδ(x− y)(1− u(x))u(y)ρ(x)ρ(y) dxdy if 0 ≤ u ≤ 1,

+∞ otherwise in L1(D).
(4.6)

To prove the following result, our inspiration comes from the proof strategy of the main
result in [23], which, in turn, relies on the main result of [1]. The idea in [23] was to notice
that their functional u 7→ Fε(u) (see [23, Section 3]) could be written, up to the change of
variables v = 2u− 1, as the functional (see [1, formula (1.1)]) v 7→ Fε(v) =: ABε(v; J,W )
for a suitable choice of the interaction kernel J and of the potential W .
Proposition 4.1. The sequence {Fδ(·; ρ)}δ>0 Γ-converges with respect to the L1(D) metric
to αdTV (·; ρ2).

Proof. Notice that, upon defining v := 2u− 1 ∈ L1(D), we have

Fδ(u; ρ) = Φδ(v;κ, ρ) + Ψδ(v;κ, ρ) =: ÃBδ(v;κ, ρ), (4.7)
where Φδ(·;κ, ρ),Ψδ(·;κ, ρ) : L1(D)→ [0,+∞] are defined by

Φδ(v;κ, ρ) :=


1
4δ

¨
D×D

κδ(x− y)(v(x)− v(y))2ρ(x)ρ(y) dxdy if −1 ≤ v ≤ 1,

+∞ otherwise,
and

Ψδ(v;κ, ρ) :=


1
2δ

¨
D×D

κδ(x− y)(1− v2(x))ρ(x)ρ(y) dxdy if −1 ≤ v ≤ 1,

+∞ otherwise,

respectively. Equality (4.7) is a matter of some algebraic computations (see [23, proof of
Theorem 3.1]).

Step 1 – liminf inequality. For fixed κ and ρ, and v ∈ L1(D; [−1, 1]), we consider the set
functions ÃBδ(v;κ, ρ; ·),Φδ(v;κ, ρ; ·),Ψδ(v;κ, ρ; ·) : A(D)→ [0,∞]→ [0,+∞) defined as

ÃBδ(v;κ, ρ;A) := Φδ(v;κ, ρ;A) + Ψδ(v;κ, ρ;A), (4.8)
where

A 7→ Φδ(v;κ, ρ;A) := 1
4δ

¨
A×A

κδ(x− y)(v(x)− v(y))2ρ(x)ρ(y)dxdy,

A 7→ Ψδ(v;κ, ρ;A) := 1
2δ

¨
A×A

κδ(x− y)(1− v2(x))ρ(x)ρ(y)dxdy.
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For given x̄ ∈ D a point, r > 0 a sufficiently small radius, and v : D → R a function, we
define the r-rescaling of v at x̄ by

Rx̄,rv(x) := v(x̄+ rx)

for all x ∈ r−1(D − x̄).
We start by proving that for every set A ∈ A(D), r > 0 small enough, and x̄ ∈ D we

have
ÃBδ(v;κ, ρ; x̄+ rA) ≥ rd−1(ρ(x̄)− rc)2ABδ/r(Rx̄,rv;κ;A) (4.9)

for some constant c > 0 only depending on the Lipschitz constant of ρ. In (4.9), the
functional ABε(w;κ;A) is the localization of the functional defined by

ABε(w;κ) := 1
4ε

¨
D×D

κε(x− y)(w(x)− w(y))2 dxdy + τd
2ε

ˆ
D

|1− w2(x)| dx,

which is a particular case of the functional Fε in [1], with interaction kernel J = κ and
potential W (s) = τd|1− s2|/2, where τd =

´
Rd κ(z) dz.

Indeed, by the changes of variables x′ = r−1(x− x̄) and y′ = r−1(y − x̄), we get

Φδ(v;κ, ρ; x̄+ rA) = 1
4δ

¨
(x̄+rA)×(x̄+rA)

κδ(x− y)(v(x)− v(y))2ρ(x)ρ(y)dxdy

= r2d

4δ

¨
A×A

κδ(r(x′ − y′))(v(x̄+ rx′)− v(x̄+ ry′))2ρ(x̄+ rx′)ρ(x̄+ ry′) dx′dy′

= rd−1

4δ/r

¨
A×A

κδ/r(x′ − y′)(v(x̄+ rx′)− v(x̄+ ry′))2ρ(x̄+ rx′)ρ(x̄+ ry′) dx′dy′

≥ rd−1(ρ(x̄)− cr)2
¨
A×A

κδ/r(x′ − y′)(v(x̄+ rx′)− v(x̄+ ry′))2 dx′dy′

= rd−1(ρ(x̄)− cr)2Φδ/r(Rx̄,rv;κ, 1;A),

where we have used the Lipschitz estimate (for z′ = x′, y′)
|ρ(x̄+ rz′)− ρ(x̄)| ≤ Lip(ρ)r|z′| ≤ Lip(ρ) max

z∈D
|z| r =: cr.

Notice that ρ(x̄)− cr > 0 for r > 0 small enough, owing to (H3). The same reasoning can
be carried out for the functional Ψδ, so that (4.9) follows.

Let us now take functions u, uδ ∈ L1(D; ν) such that uδ → u. Without loss of generality,
we can assume that

lim inf
δ→0

Fδ(uδ; ρ) < +∞ (4.10)

(otherwise the Γ-liminf inequality is trivial). Then uδ(x) ∈ [0, 1] for ν-a.e. x ∈ D, so that
the corresponding vδ = 2uδ − 1 ∈ [−1, 1] for ν-a.e. x ∈ D. By (4.7) and (H3), we can write

Fδ(uδ; ρ) = ÃBδ(vδ;κ, ρ) ≥ a2ABδ(vδ;κ)
Compactness for the functional ABδ(·;κ) with respect to the L1-convergence is proved
in [1, Theorem 3.1], so that we obtain that v = 2u − 1 ∈ BV(D; {−1, 1}), that is
u ∈ BV(D; {0, 1}).

Let us now consider the energy densities associated with ÃBδ(vδ;κ, ρ;A) and (the
localization) ABδ(vδ;κ,W ;A) given, for each x ∈ A, by

g̃δ(x) := 1
4δ

ˆ
A

κδ(x− y)(vδ(x)− vδ(y))2ρ(x)ρ(y) dy

+ 1
2δ

ˆ
A

κδ(x− y)(1− v2
δ (x))ρ(x)ρ(y) dy,

gδ(x) := 1
4δ

ˆ
A

κδ(x− y)(vδ(x)− vδ(y))2ρ(x)ρ(y) dy + 1
δ
W (vδ(x)),

and the corresponding energy distributions

λ̃δ := g̃δL
d A and λδ := gδL

d A.

By (4.10), the total variation of λ̃δ is bounded uniformly with respect to δ, so that, up to
a (not relabeled) subsequence, λ̃δ

∗
⇀ λ̃, for a certain non-negative Radon measure λ̃.
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We now take a point x̄ ∈ Su = Sv where ν := νu(x̄) = νv(x̄) is well defined, and we
compute the Radon–Nikodým derivative of λ̃ with respect to Hd−1 Sv at x̄. Letting Qν
be a unit cube with two faces perpendicular to ν, we have, owing to (4.9),

dλ̃
dHd−1 Sv

(x̄) = lim
r→0

λ̃(x̄+ rQν)
rd−1 = lim

r→0
lim
δ→0

λ̃δ(x̄+ rQν)
rd−1

= lim
r→0

lim
δ→0

ÃBδ(vδ;κ, ρ; x̄+ rQν)
rd−1

≥ lim
r→0

lim
δ→0

(ρ(x̄)− rc)2ABδ/r(Rx̄,rvδ;κ;Qν).

(4.11)

Arguing as in the proof of [1, Lemma 4.3], we can use a standard diagonalization argument
and find two sequences rn → 0 and δn → 0 such that

δn := δn/rn → 0, dλ̃
dHd−1 Sv

(x̄) = lim
n→∞

λ̃(x̄+ rnQν)
rd−1
n

,

and, letting vδ
n

:= Rx̄,rnvδn ,

lim
n→∞

vδ
n

= v in L1(Qν), where v(x) = vx̄(x) :=
{

+1 if 〈x, νu(x̄)〉 > 0,
−1 if 〈x, νu(x̄)〉 < 0.

so that we can continue in (4.11) with

dλ̃
dHd−1 Sv

(x̄) = lim
n→∞

λ̃(x̄+ rnQν)
rd−1
n

≥ lim
n→∞

(ρ(x̄)− rnc)2ABδn(vδn ;κ;Qν)

= ρ2(x̄) lim
n→∞

ABδ
n

(vδ
n

;κ;Qν) ≥ ρ2(x̄)αd,

where the last equality follows since ABδ
n
is bounded and rn → 0 and the last inequality is

obtained as in [1, Lemma 4.3], for our choice of W (see [23, Theorem 3.1] for the details).

Step 2 – limsup inequality. By standard approximation results on sets of finite perimeter
(see, e.g., [17, Theorem 1.24]), it is enough to prove the limsup inequality only for polyhedral
functions u ∈ BV(D; {0, 1}), that is, functions whose jump set Su is a polyhedral set,
i.e., a set whose faces are the essential union of finitely many affine hyperplanes (see [1,
Definition 5.1] for the details).

As a matter of fact, the proof of [1, Theorem 5.2] can be replicated in its entirety, so
we will not report it here. Two crucial steps are the covering argument and the rescaling
property, both of which need care, due to the presence of the weight ρ in the functional
Fδ(·; ρ). In particular, the translation invariance of the set functional ÃBδ(v;κ, ρ; ·) defined
in (4.8) is not available in our case (here, as before, v = 2u− 1).

In what follows, we show how to adapt the chain of inequalities [1, equation (5.8)] to
our case. Owing to the Lipschitz property of ρ, estimate (4.9) can be reversed to obtain

ÃBδ(w;κ, ρ; x̄+ δA) ≤ δd−1(ρ(x̄) + δc)2AB1(Rx̄,δw;κ;A), (4.12)

for any function w in the domain of the functional. Let now consider a polyhedral set
A ⊂ D as in the proof of [1, Theorem 5.2] and let v := 2χA − 1 and let {vδ}δ>0 be a
sequence of Lipschitz functions such that

(1) vδ → v in L1(D) as δ → 0;
(2) sup

δ>0

ˆ
D

|∇vδ(x)| dx < +∞;

(3) AB1(Rx̄,δvδ;κ;E)→ αd as δ → 0, for every open set E ⊂ D and for almost every
x̄ ∈ Sv.

Notice that conditions (1) and (2) hold true thanks to standard BV-approximation by
Lipschitz functions, while (3) is yielded by the L1-continuity of AB1 .
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By covering A with finitely many rescaled cubes {x̄i + δC}h(δ)
i=1 , and using the subaddi-

tivity of the integral and (4.12), we have

ÃBδ(vδ;κ, ρ;A) ≤ ÃBδ
(
vδ;κ, ρ;

h(δ)⋃
i=1

(x̄i + δC)
)
≤

h(δ)∑
i=1

ÃBδ(vδ;κ, ρ; x̄i + δC)

≤
h(δ)∑
i=1

δd−1(ρ(x̄i) + δc)2AB1(Rx̄i,δ vδ;κ;C)

=αd

ˆ
A∩Su

ρ2(x) dHd−1(x) + o(1),

(4.13)

so that inequality [1, formula (5.6)] becomes, in our case, by choosing the recovery sequence
uδ = (vδ + 1)/2 for every δ > 0,

lim sup
δ→0

Fδ(uδ; ρ) = lim sup
δ→0

ÃBδ(vδ;κ, ρ;A) ≤ αd
ˆ
A∩Su

ρ2(x) dHd−1(x).

Notice that in (4.13) we have applied (3) with E = C, to obtain
lim
δ→0

AB1(Rx̄i,δ v;κ;C) = AB1(vx̄i ;κ;Qν) = αd.

The proposition is proved. �

Remark 4.2. We point out that, in the proof of the limsup inequality in Proposition 4.1
above, the Lipschitz regularity of the recovery sequence {vδ}δ>0 has never been used.
Indeed, one could take the constant recovery sequence vδ = v for every δ > 0. We decided
to require Lipschitz regularity so that the very same sequence {vδ}δ>0 introduced in this
proof can be used in the proof of Theorem 3.3 below.

4.1. Proof of Theorem 3.3. In this section, we prove the convergence of GFn,δn to
αdTV (·; ρ2) with respect to the TL1 topology. If u ∈ L1

ν(D) and 0 ≤ u ≤ 1 then GFn,δn(u)
is given by (4.1). We divide the proof into two steps.

Step 1 – liminf inequality. Let u ∈ L1
ν(D) and let un ∈ L1

νn(D) be such that (νn, un) TL
1

−→
(ν, u) (without loss of generality, we can assume that 0 ≤ un ≤ 1 for every n ∈ N). By
Remark 3.1(1), let us consider a kernel η0 as in (3.5). Recall that for almost every x, y ∈ D
the implication in (4.2) holds true and, defining δ̃n as in (4.3), we have that

GFn,δn(un) ≥
(
δ̃n
δn

)d+1

Fδn(ũn; ρ),

where ũn = un ◦ Tn and Fδn(·; ρ) is defined in (4.6). By (4.4) and Proposition 4.1, we
obtain that u ∈ BV(D; {0, 1}) and

lim inf
n→∞

GFn,δn(un) ≥ αdTV (u; ρ2).

For general kernel η as in (H2), we can find a sequence {ηm}m∈N such that each ηm is
of the form

ηm =
m∑
i=1

ηi0

for some ηi0 as in (3.5), for i = 1, . . . ,m, and ηm ↑ η. Set GFmn,δn and GF 0,i
n,δn

to be
the functional in (3.1) defined with kernels ηm and ηi0, respectively (keep hypothesis
(H2) into account), and α0,i

d and αmd the constants in (3.7) relative to the kernels ηi0
and ηm, respectively (notice that αmd =

∑m

i=1 α
0,i
d ). By the previous argument and the

superadditivity of the lim inf, we can write

lim inf
n→∞

GFn,δn(un) ≥ lim inf
n→∞

GFmn,δn(un) ≥
m∑
i=1

lim inf
n→∞

GF 0,i
n,δn

(un) ≥
m∑
i=1

α0,i
d TV (u; ρ2).

By the monotone convergence theorem, we conclude that

lim inf
n→∞

GFn,δn(un) ≥ lim
m→∞

m∑
i=1

α0,i
d TV (u; ρ2) = lim

m→∞
αmd TV (u; ρ2) = αdTV (u; ρ2).
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Step 2 – limsup inequality. Observe that it is not restrictive to assume that u ∈ BV(D; ρ)
with u(x) ∈ {0, 1} for ν-a.e. x ∈ D, and also that u is polyhedral. Let uδ be the recovery
sequence for Fδ as in the proof of the limsup inequality in Proposition 4.1; in particular,
the functions uδ are Lipschitz for every δ > 0, supδ>0

´
D
|∇uδ(x)| dx < +∞, and

lim sup
δ→0

Fδ(uδ; ρ) ≤ αdTV (u; ρ2).

We are going to show that the sequence un = uδn ∗ νn for all n ∈ N is a recovery sequence
for u.

By Remark 3.1(1), let us consider a kernel η0 as in (3.5). Define now

δ̃n := δn + 2r−1
0 ||Id− Tn||∞

and let ũn := un ◦ Tn. Notice that, whereas (4.4) still holds true for this new definition
of δ̃n, inequality (4.5) is reversed, so that we have that, for almost every (x, y) ∈ D ×D,

η0

(
|x− y|
δ̃n

)
≥ η0

(
|Tn(x)− Tn(y)|

δn

)
.

Then, for all n ∈ N,

1
δ̃d+1
n

¨
D×D

η0

(
|Tn(x)− Tn(y)|

δn

)
ũn(x)(1− ũn(y)) dxdy

≤ 1
δ̃d+1
n

¨
D×D

η0

(
|x− y|
δ̃n

)
ũn(x)(1− ũn(y)) dxdy.

(4.14)

Since for x, y ∈ D

un(x)(1− un(y))− ũn(x)(1− ũn(y))
= (un(x)− ũn(x))(1− un(y)) + ũn(x)(ũn(y)− un(y))

and 0 ≤ un ≤ 1, recalling (H3), we have

1
δ̃n

∣∣∣∣¨
D×D

η0

(
|x− y|
δ̃n

)
(un(x)(1− un(y))− ũn(x)(1− ũn(y))) ρ(x)ρ(y) dxdy

∣∣∣∣
≤ b2

δ̃n

¨
D×D

η0

(
|x− y|
δ̃n

)
|(un(x)− ũn(x))(1− un(y)) + ũn(x)(ũn(y)− un(y))|dxdy

≤ 2b2

δ̃n

¨
D×D

η0

(
|x− y|
δ̃n

)
|un(x)− un(Tn(x))| dxdy

≤ C

δ̃n

ˆ
D

|un(x)− un(Tn(x))| dx ≤ C‖Id− Tn‖∞
δ̃n

ˆ
D

|∇uδn(x)| dx→ 0

owing to the boundedness of the last integral and to Remark 2.9. This implies, invoking
(4.4) and inequality (4.14), that

lim sup
n→∞

GFn,δn(un)

= lim sup
n→∞

2
δ̃d+1
n

¨
D×D

η0

(
|Tn(x)− Tn(y)|

δn

)
ũn(x)(1− ũn(y))ρ(x)ρ(y) dxdy

≤ lim sup
n→∞

2
δ̃d+1
n

¨
D×D

η0

(
|x− y|
δ̃n

)
ũn(x)(1− ũn(y))ρ(x)ρ(y) dxdy

= lim sup
n→∞

2
δ̃d+1
n

¨
D×D

η0

(
|x− y|
δ̃n

)
un(x)(1− un(y))ρ(x)ρ(y) dxdy

= lim sup
n→∞

F
δ̃n

(u
δ̃n

; ρ) ≤ αdTV (u; ρ2).

The case of general η satisfying (H2) can now be obtained by adapting the argument of
Step 2 in the proof of [16, Theorem 4.1], which concludes the proof of our theorem. �
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4.2. Proofs of Lemma 3.4 and Theorem 3.5.

Proof of Lemma 3.4. By (3.9), we have that GFn,δn(χAn) is uniformly bounded with
respect to n, so that, by combining Lemma 3.2 and Proposition 2.7-5, there exists a
set A ∈ B(D) with finite perimeter such that χAn → χA in L1(D), obtaining the first
convergence in (3.10).

By compactness, there exists a function θ̄ ∈ L∞(D) such that χOn
∗
⇀ θ̄ in L∞(D). We

observe that θ̄ ∈ C(A), where, for any B ∈ B(D), we define

C(B) :=
{
θ ∈ L1(D) : 0 ≤ θ ≤ 1,

ˆ
D

θ dx = 1,
ˆ
B

θ dx = 0
}
.

Since, for every Õ ∈ B(D) such that χ
Õ
∈ C(An), by (3.9) we have that

Wp(An, On) ≤Wp(An, Õ) + 1
n
,

letting n→∞, we obtain that

Wp(A, θ̄) ≤Wp(A, Õ) for every Õ ∈ B(D) such that χ
Õ
∈ C(A).

By a relaxation argument, we deduce that
Wp(A, θ̄) ≤Wp(A, θ) for every θ ∈ C(A),

so that θ̄ solves the minimization problem
min

{
Wp(A, θ) : θ ∈ C(A)

}
(4.15)

By [9, Theorem 3.10], the solution θ̄ to problem (4.15) is the characteristic function, θ̄ = χO,
of a certain set O ∈ B(D). The second convergence in (3.10) follows and the proof is
concluded. �

We now give the proof of Theorem 3.5.

Proof of Theorem 3.5. We start by observing that the term (A,O) 7→ Wp(A,O) is a
continuous perturbation of GFn,δn with respect to the topology in which we compute the
Γ-limit, so that it will only be necessary to prove that(

Γ(L1(D))− lim
n→∞

GFn,δn

)
(·) = αd

|D|2 Per(·;D).

The liminf inequality is a direct consequence of Theorem 3.3. We now prove the limsup
inequality. The limsup inequality follows from a standard approximation result once we
prove it for a polyhedral set A ⊂ D. By Remark 4.2 and Theorem 3.3, the constant
sequence is a recovery sequence for A. �
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