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Abstract

We prove an integral-representation result for limits of non-local quadratic forms
on H1

0 pΩq, with Ω a bounded open subset of Rd, extending the representation on
C8

c pΩq given by the Beurling-Deny formula in the theory of Dirichlet forms. We give
a counterexample showing that a corresponding representation may not hold if we
consider analogous functionals in W 1,p

0 pΩq, with p ‰ 2 and 1 ă p ď d.
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1 Introduction

In this paper we continue our investigation on functionals defined on Sobolev spaces in
which a non-local part, in the form of a double integral, is present beside a usual local part
depending on the gradient. In general this question can be formulated as the characteri-
zation of limits of functionals of the form

Fkpuq “

ż

ΩˆΩ
fkpupxq ´ upyqqdµkpx, yq `

ż

Ω
gkpx,∇upxqq dx,

defined in some Sobolev space W 1,p
0 pΩq with p ą 1. Different types of stability of such a

class can be studied: in [2] we have given a notion of convergence on measures µk that
guarantees the separate stability of the integrals on Ωˆ Ω and on Ω, while in [3] we have
explored conditions under which a limit of a sequence of such functionals may still be of
this form, but the integrands of the limit are determined by the interaction between the
local and non-local terms. The theory of Dirichlet forms [6] gives the stability of such a
class under the only condition that fk and gk be quadratic, with very mild conditions on
the measures µk (see [9]).
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In this paper we analyze the properties of the Γ-limits of these quadratic functionals,
and show that, rather surprisingly, the same stability property does not hold if we consider
only a slight variation of quadratic forms; namely, when all integrands are p-th powers
with p ‰ 2. Previous examples of lack of stability were known in the case of relaxation
results for non-convex functionals F , where the local term is dropped (or, equivalently, if
and fk “ f is not convex and gk ” 0). In that case, the lower-semicontinuous envelope
in the weak Lp topology of a double integral can be non-representable in the same form
[1, 7, 8]. Our counterexample shows that a similar issue arises even for sequences of convex
and equicoercive functionals in W 1,p

0 pΩq.
In this paper, we first show a result connected to the theory of Dirichlet forms. If we

consider quadratic forms defined in H1
0 pΩq of the type

ż

ΩˆΩ
|upxq ´ upyq|2akpx, yq dxdy `

ż

Ω
|∇upxq|2 dx, (1.1)

with Ω a bounded open set in Rd and ak positive functions equibounded in L1pΩˆΩq and
not concentrating on the boundary, we prove that the corresponding Γ-limit, in the weak
topology of H1

0 pΩq, can be written on functions u P C8c pΩq in the form

ż

ΩˆΩ
|upxq ´ upyq|2dµpx, yq `

ż

Ω
|∇upxq|2 dx,

where µ is a positive bounded Radon measure (see Theorems 2.2 and 2.4, and Proposition
2.7). The main effort is spent in proving the boundedness of such a measure, which does not
seem to follow directly from the representation obtained from the Beurling-Deny formula
[6, Theorem 4.5.2].

We will show that if p ‰ 2 (and 1 ă p ď d) this does not hold. More precisely, a
counterexample can be obtained as follows. Given x0 P Ω and a sequence εk of positive
numbers converging to 0, we set

akpx, yq “

#

|Bεkpx0q|
´1 if y P Bεkpx0q

0 otherwise,

where Brpxq denotes the ball of centre x and radius r. In this case the functionals

Fkpuq “

ż

ΩˆΩ
|upxq ´ upyq|pakpx, yq dxdy `

ż

Ω
|∇upxq|p dx, (1.2)

defined for u P W 1,p
0 pΩq, have a Γ-limit, in the weak topology of W 1,p

0 pΩq, that can be
directly expressed on that space as

F puq “

ż

Ω
|upxq ´mppuq|

p dx`

ż

Ω
|∇upxq|p dx, (1.3)
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where mppuq is the unique minimizer of t ÞÑ
ş

Ω |upxq ´ t|p dx. In the proof of this result
the inequality p ď d is crucial, implying that a single point has zero p-capacity; this also
explains the fact that the Γ-limit is independent of x0.

If p ‰ 2 we will show that there exist no continuous function f : R2 Ñ R and no
non-negative bounded Radon measure µ on Ωˆ Ω such that

ż

Ω
|upxq ´mppuq|

p dx “

ż

ΩˆΩ
fpupxq, upyqqdµpx, yq (1.4)

for all u P C8c pΩq (see Corollary 3.10).
Note that the representation of F as above is not in contrast with the representability

as a double integral when p “ 2. Indeed, in that case

m2puq “
1

|Ω|

ż

Ω
upyq dy,

so that
ż

Ω
|upxq ´m2puq|

2 dx “

ż

Ω
|upxq|2 dx´

1

|Ω|

´

ż

Ω
upyq dy

¯2

“
1

2|Ω|

ż

ΩˆΩ
|upxq ´ upyq|2 dxdy, (1.5)

and µ is just a multiple of the Lebesgue measure on Ωˆ Ω.
The same observations lead to an example of failure of integral representability in the

theory of relaxation. This can be obtained by considering the functional defined on C1
c pΩq

by

Fx0puq “

ż

Ω
|upxq ´ upx0q|

p dx`

ż

Ω
|∇upxq|p dx,

where x0 is a given point in Ω. Then the lower-semicontinuous envelope with respect to
the weak topology of W 1,p

0 pΩq is given by the same F as in (1.3), so that it cannot be
represented in an integral form. Note that the first term in Fx0puq can be interpreted as
an integral on Ω ˆ Ω with respect to the d-dimensional Hausdorff measure restricted to
Ωˆ tx0u, which is the weak limit of the measures µk “ ak dxdy defined above.

The plan of the paper is as follows. Section 2 is dedicated to the quadratic case. We
first apply the Beurling-Deny formula to obtain a representation on C8c pΩq of the Γ-limit
F of the functionals Fk in (1.1) involving two measures µ and ν on Ωˆ Ω and Ω, respec-
tively (Theorem 2.2). We then analyze some properties of such measures deriving from
the estimates satisfied by F , proving that both measures are capacitary and finite (Theo-
rems 2.4 and 2.5). Using some additional lower-semicontinuity and truncation properties,
satisfied by the Γ-limit, we then extend the integral representation to the whole of H1

0 pΩq
(Corollary 2.8). Section 3 is devoted to the counterexample described above. We show
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that the Γ-limit of functionals (1.2) is given by (1.3). We then extend (1.4) to character-
istic functions u “ 1A and show that, in this case, the right-hand and left-hand sides of
this equality depend only on the measure of A. A careful inspection of the form of this
dependence shows that they must be different if p ‰ 2, concluding the counterexample
(Corollary 3.10).

2 The case p “ 2

Throughout the paper Ω is a connected bounded open subset of Rd, with d ě 1, even
though some limit arguments become trivial if d “ 1. Let ak P L

1pΩˆΩq be non-negative
functions such that

}ak}L1pΩˆΩq ďM for all k (2.1)

for some M ą 0, and consider the functionals

Fkpuq :“

ż

ΩˆΩ
|upxq ´ upyq|2akpx, yq dxdy `

ż

Ω
|∇upxq|2 dx (2.2)

defined for u P H1
0 pΩq. Since they are equicoercive in the weak topology of H1

0 pΩq, we
can use the the sequential characterization of Γ-limits in the weak topology given in [4,
Proposition 8.10].

Note that each Fk satisfies the following truncation property: FkpΨpuqq ď Fkpuq for
every 1-Lipschitz function Ψ: R Ñ R with Ψp0q “ 0 and for every u P H1

0 pΩq. Moreover,
(2.1) implies

Fkpuq ďM poscΩuq
2 `

ż

Ω
|∇upxq|2 dx, (2.3)

where oscΩu :“ ess supΩu´ ess infΩu denotes the oscillation of u on Ω.

Proposition 2.1. Assume that Fk Γ-converges in the weak topology of H1
0 pΩq to a func-

tional F . Then F satisfies the following properties:
(a) the domain of F , DpF q :“ tu P H1

0 pΩq : F puq ă `8u, is a linear space containing
H1

0 pΩq X L
8pΩq;

(b) F is a quadratic form; that is, there exists a bilinear form B : DpF q ˆDpF q Ñ R
such that F puq “ Bpu, uq for every u P DpF q;

(c) the space DpF q endowed with the norm } ¨ }F defined as

}u}F “
`

}u}2L2pΩq ` F puq
˘1{2

(2.4)

is a Hilbert space;
(d) we have F pΨpuqq ď F puq for every 1-Lipschitz function Ψ: R Ñ R with Ψp0q “ 0

and for every u P H1
0 pΩq;

(e) the space C8c pΩq is dense in DpF q with respect to the norm } ¨ }F .
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Proof. (a) If u P H1
0 pΩq X L

8pΩq then (2.3) gives

F puq ď lim inf
kÑ`8

Fkpuq ď
`

2}u}L8pΩq
˘2
M ` }∇u}2L2pΩ;Rdq; (2.5)

(b) follows from general properties of Γ-convergence (see [4, Theorem 11.10]); (c) following
from the lower semicontinuity of F by a standard argument; (d) can be obtained from the
truncation property of Fk using the definition of Γ-limit.

As for (e), we first prove that H1
0 pΩqXL

8pΩq is contained in the closure of C8c pΩq with
respect to the norm } ¨ }F . Indeed, for every u P H1

0 pΩq X L8pΩq there exist uk P C
8
c pΩq

converging to u in H1
0 pΩq and with }uk}L8pΩq ď }u}L8pΩq. From this and (2.5) we deduce

that }uk}F is equibounded, which implies that uk á u weakly in the Hilbert space DpF q,
showing the desired inclusion. It remain to prove that H1

0 pΩq X L8pΩq is dense in DpF q.
To that end, if u P DpF q we can consider um “ Ψmpuq, where Ψmptq “ pm^ tq _ p´mq is
a truncation operator. Then um P H

1
0 pΩq XL

8pΩq, um Ñ u in H1
0 pΩq, and F pumq ď F puq

by (d). This again implies that }um}F is equibounded, so that um weakly converges to u
in DpF q, concluding the proof.

Theorem 2.2. Assume that Fk Γ-converges in the weak topology of H1
0 pΩq to a functional

F . Then there exist two positive Radon measures µ and ν on Ω ˆ Ω and Ω, respectively,
such that

(a) for u P C8c pΩq

F puq “

ż

ΩˆΩ
|upxq ´ upyq|2dµpx, yq `

ż

Ω
|upxq|2dνpxq `

ż

Ω
|∇upxq|2 dx; (2.6)

(b) µ is symmetric; i.e., µpA ˆ Bq “ µpB ˆ Aq for every pair of Borel sets A and B
contained in Ω;

(c) setting ∆ :“ tpx, xq : x P Rdu, we have

µppΩˆ Ωq X∆q “ 0. (2.7)

Proof. From the previous proposition it follows that the bilinear form B defined therein is
a Dirichlet form (see [6]), and that C8c pΩq is a core for B. Consequently by the Beurling-
Deny Theorem ([6, Theorem 2.2.2]), we have the decomposition

F puq “ Fnpuq ` F `puq ` F cpuq for every u P C8c pΩq,

where F ` is a local term, Fn is a non-local term, and F c is a local term depending only
on the derivatives. More precisely, there exist a symmetric matrix of Radon measures µij ,
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and two positive Radon measures µ and ν such that

Fnpuq “

ż

ΩˆΩ
|upxq ´ upyq|2dµpx, yq, F `puq “

ż

Ω
|upxq|2dνpxq, (2.8)

F cpuq “
d
ÿ

i,j“1

ż

Ω

Bupxq

Bxi

Bupxq

Bxj
dµijpxq (2.9)

for every u P C8c pΩq. Note that it is not restrictive to suppose that µ is symmetric and
(2.7) holds since |upxq ´ upyq|2 “ 0 on ∆.

We now show that in our case F cpuq “

ż

Ω
|∇upxq|2 dx. Note that

ż

Ω
|∇upxq|2 dx ď F puq ďM poscΩuq

2 `

ż

Ω
|∇upxq|2 dx (2.10)

for every u P C8c pΩq, using the lower semicontinuity of the first integral for the first
inequality and (2.3) for the second one.

Given ω P C8c pΩq and ξ P Rd, let ϕ and ψ be defined by

ϕpxq “ ωpxq cospx ¨ ξq and ψpxq “ ωpxq sinpx ¨ ξq.

By a direct computation we have

F cpϕq ` F cpψq “ F cpωq `
d
ÿ

i,j“1

ż

Ω
ω2pxqξiξjdµijpxq,

ż

Ω
|∇ϕpxq|2 dx`

ż

Ω
|∇ψpxq|2 dx “

ż

Ω
|∇ωpxq|2 dx`

ż

Ω
ω2pxq|ξ|2dx,

so that

ˇ

ˇ

ˇ

d
ÿ

i,j“1

ż

Ω
ω2pxqξiξjdµijpxq ´

ż

Ω
ω2pxq|ξ|2dx

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
F pϕq ´

ż

Ω
|∇ϕpxq|2 dx

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
F pψq ´

ż

Ω
|∇ψpxq|2 dx

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
F pωq ´

ż

Ω
|∇ωpxq|2 dx

ˇ

ˇ

ˇ

`F `pϕq ` F `pψq ` F `pωq ` Fnpϕq ` Fnpψq ` Fnpωq

Using (2.10) we get

ˇ

ˇ

ˇ

d
ÿ

i,j“1

ż

Ω
ω2pxqξiξjdµijpxq ´

ż

Ω
ω2pxq|ξ|2dx

ˇ

ˇ

ˇ

ď 12M}ω}2L8pΩq ` 3F `pωq ` Fnpϕq ` Fnpψq ` Fnpωq. (2.11)
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Let K “ suppω. We observe that

Fnpϕq “

ż

KˆK
|ωpxq cospx ¨ ξq ´ ωpyq cospy ¨ ξq|2dµpx, yq

`

ż

KˆpΩzKq
|ωpxq cospx ¨ ξq|2dµpx, yq `

ż

pΩzKqˆK
|ωpyq cospy ¨ ξq|2dµpx, yq

ď 4}ω}2L8pΩqµpK ˆKq `

ż

KˆpΩzKq
|ωpxq|2dµpx, yq `

ż

pΩzKqˆK
|ωpyq|2dµpx, yq

ď 4}ω}2L8pΩqµpK ˆKq `

ż

ΩˆΩ
|ωpxq ´ ωpyq|2dµpx, yq

ď 4}ω}2L8pΩq
`

µpK ˆKq `M
˘

`

ż

Ω
|∇ωpxq|2 dx,

where in the last inequality we again use (2.10). Using the analogous estimate for Fnpψq,
from (2.10) and (2.11) we get

ˇ

ˇ

ˇ

ˇ

d
ÿ

i,j“1

ż

Ω
ω2pxqξiξjdµijpxq ´

ż

Ω
ω2pxq|ξ|2dx

ˇ

ˇ

ˇ

ˇ

ď }ω}2L8pΩqp8µpK ˆKq ` 20Mq ` 5

ż

Ω
|∇ωpxq|2 dx.

Applying this estimate with ξ replaced by λξ we obtain

ˇ

ˇ

ˇ

ˇ

d
ÿ

i,j“1

ż

Ω
ω2pxqξiξjdµijpxq ´

ż

Ω
ω2pxq|ξ|2dx

ˇ

ˇ

ˇ

ˇ

ď
1

λ2

´

}ω}2L8pΩqp8µpK ˆKq ` 20Mq ` 5

ż

Ω
|∇ωpxq|2 dx

¯

.

Letting λÑ `8 we then have

d
ÿ

i,j“1

ż

Ω
ω2pxqξiξjdµijpxq “

ż

Ω
ω2pxq|ξ|2 dx.

By polarization we have

d
ÿ

i,j“1

ż

Ω
ω2pxqξiηjdµijpxq “

ż

Ω
ω2pxqξ ¨ η dx for all ξ, η P Rd.

Taking ξ, η P te1, . . . , edu and using the arbitrariness of ω, we obtain that µij “ 0 for i ‰ j
and µii “ Ld, so that F cpuq “

ş

Ω |∇upxq|
2 dx. Using this we also have

Fnpuq ` F `puq ďM poscΩpuqq
2 (2.12)

for all u P C8c pΩq.
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The following example shows that a non-trivial measure measure ν may indeed appear
in the limit.

Example 2.3. Let d “ 2 and Ω “ p0, 1q ˆ p0, 1q, with akpx, yq “ αkpxq ` αkpyq, where

αkpxq “

#

k if x P Rk :“ p0, 1q ˆ p0, 1
k q,

0 otherwise.

Then (2.1) is satisfied with M “ 2. We now show that the corresponding Fk converge to
the functional given by

F puq “ 2

ż

Ω
|upxq|2 dx`

ż

Ω
|∇upxq|2 dx,

which corresponds to µ “ 0 and ν “ 2Ld.
In order to prove the liminf inequality we fix uk converging weakly to u in H1

0 pΩq. We
have

ż

ΩˆΩ
|ukpxq ´ ukpyq|

2akpx, yq dxdy

“ 2k

ż

Rk

|ukpxq|
2 dx´ 4k

ż

Rk

ukpxq dx

ż

Ω
ukpyq dy ` 2

ż

Ω
|ukpyq|

2 dy. (2.13)

Moreover, using a Poincaré-inequality argument in Rk, we obtain

k

ż

Rk

|ukpxq|
2 dx ď

1

k

ż

Rk

|∇ukpxq|2 dx. (2.14)

This gives

lim
kÑ`8

k

ż

Rk

|ukpxq|
2 dx “ 0 (2.15)

since the right-hand side in (2.14) converges to 0. By Hölder’s inequality we also obtain

lim
kÑ`8

k

ż

Rk

|ukpxq| dx “ 0.

These limits imply that, by (2.13),

lim
kÑ`8

ż

ΩˆΩ
|ukpxq ´ ukpyq|

2akpx, yq dxdy “ 2

ż

Ω
|upxq|2 dx.

By the lower semicontinuity of the gradient term this shows that lim inf
kÑ`8

Fkpukq ě F puq.

On the other hand, (2.13) with uk “ u shows that lim
kÑ`8

Fkpuq “ F puq, completing the

proof of the Γ-convergence of Fk to F .
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We now analyze the properties of the measures µ and ν given in Theorem 2.2 in order
to extend the representation result to the whole H1

0 pΩq.

Theorem 2.4. Let F : C8c pΩq Ñ r0,`8q be such that there exist exist two positive Radon
measures µ and ν on ΩˆΩ and Ω, respectively, that satisfy (a), (b), and (c) of Theorem 2.2.
Suppose in addition that there exists M ą 0 such that

F puq ďM poscΩuq
2 `

ż

Ω
|∇upxq|2 dx (2.16)

for all u P C8c pΩq. Then
(a) the measures µ and ν are uniquely determined;
(b) µpΩˆ Ωq ă `8 and νpΩq ă `8.

Proof. We begin by proving that ν is a finite measure. From (2.16) and (2.6) we first
obtain

ż

Ω
|upxq|2dνpxq ďM poscΩuq

2 for all u P C8c pΩq.

Approximating the constant 1 by an increasing sequence of non-negative functions uk P
C8c pΩq we obtain that νpΩq ďM .

We now complete the proof of claim (b), showing that the measure µ is finite. We
preliminarily note that from (2.16) and (2.6) we also obtain

ż

ΩˆΩ
|upxq ´ upyq|2dµpx, yq ďM poscΩuq

2 for all u P C8c pΩq. (2.17)

Since the proof is rather complex we first consider the case d “ 1, hoping it may clarify
the arguments used. For given η ą 0 we let

∆η :“ tpx, yq P Rd ˆ Rd : |x´ y| ď ηu, (2.18)

and cover pΩ ˆ Ωqz∆η ‘in the average’ by a family of ‘checkerboard-type’ sets depend-
ing on two parameters α and β, showing that the covering has some average properties
independent of η.

With given α, β P R, with β ą 0, we define

Aα,β “
ď

h even

rα` hβ, α` ph` 1qβq, (2.19)

and
Eα,β “

ď

h`k odd

prα` hβ, α` ph` 1qβq ˆ rα` kβ, α` pk ` 1qβqq. (2.20)

Note that Eα`kβ,β “ Eα,β for all k P Z and

Eα,β “ pα, αq ` E0,β; (2.21)
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moreover, we have

pΩˆ Ωq X Eα,β “ ppΩXAα,βq ˆ pΩzAα,βqq Y ppΩzAα,βq ˆ pΩXAα,βqq. (2.22)

We claim that
µppΩˆ Ωq X Eα,βq ďM, (2.23)

where M is defined in (2.16). To prove the claim we take a sequence uk P C
8
c pΩq such that

0 ď uk ď 1 and ukpxq Ñ 1Aα,β pxq for all x P Ω. We then have

lim
kÑ`8

ż

pΩXAα,βqˆpΩzAα,βq
|ukpxq ´ ukpyq|

2dµpx, yq “ µppΩXAα,βq ˆ pΩzAα,βqq. (2.24)

If this latter measure is finite this limit is obtained by using the Dominated Convergence
Theorem; otherwise, it follows by applying Fatou’s Lemma. From (2.17), (2.24), and the
analogous limit for µppΩzAα,βq ˆ pΩXAα,βqq, we obtain the claim thanks to (2.22).

The next argument is, given η ą 0, to determine ε ą 0 such that, setting Dε “ tpα, βq :
0 ď α ă β, ε ď β ă 2εu, we have

ż

Dε

1Eα,β px, yqdαdβ ě
´1

2
´ η

¯

|Dε| (2.25)

for every px, yq P pΩ ˆ Ωqz∆η, where ∆η us defined in (2.18). Once (2.25) is proved we
obtain

´1

2
´ η

¯

|Dε|µppΩˆ Ωqz∆ηq ď

ż

ΩˆΩ

ż

Dε

1Eα,β px, yqdαdβdµpx, yq

“

ż

Dε

ż

ΩˆΩ
1Eα,β px, yqdµpx, yqdαdβ

ď |Dε|µpEα,βq ď |Dε|M

by (2.23). Dividing by |Dε| we obtain that

´1

2
´ η

¯

µppΩˆ Ωqz∆ηq ďM.

Taking into account (2.7) we obtain

µpΩˆ Ωq ď 2M (2.26)

by the arbitrariness of η, concluding the proof of the boundeness of µ.
It remains to prove (2.25). By Fubini’s Theorem we have

ż

Dε

1Eα,β px, yqdαdβ “

ż 2ε

ε
L1ptα P r0, βq : px, yq P Eα,βuqdβ.
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We now claim that L1ptα P r0, βq : px, yq P Eα,βuq depends on z :“ y ´ x and that, setting

γzpβq :“ L1ptα P r0, βq : px, yq P Eα,βuq,

we have
γzpβq “ |z ´ 2mβpzqβ|,

where mβpzq P Z is the unique integer such that

p2mβpzq ´ 1qβ ď z ă p2mβpzq ` 1qβ.

We first observe that, by the periodicity of Eα,β, the set tα P R : px, yq P Eα,βu is a
periodic subset of R of period β. Moreover, using (2.21), we have

tα P R : px, yq P Eα,βu “ tα P R : p0, zq P Eα,βu ` αβpxq,

with αβpxq :“ x´ βtxβ u, where t¨u denotes the integer part; hence,

L1ptα P r0, βq : px, yq P Eα,βuq “ L1ptα P r0, βq : p0, zq P Eα,βuq

by the periodicity of the set, which proves the fact that γz indeed depends only on z.

xβ

z

y

β

Figure 1: geometrical interpretation of γz; the grey zone represents E0,β.

We now observe that, using the periodicity of E0,β, we can write

γzpβq “ L1ptα P r0, βq : p0, zq P pα, αq ` E0,βuq “ L1ptα P r0, βq : p0, zq ` pα, αq P E0,βuq,

so that we have γzpβq “ 0 when |z| “ mβ for m even and γzpβq “ β for |z| “ βm for m
odd. Otherwise, the function γz is the piecewise-affine interpolation determined by these

11



conditions on βZ. In Fig. 1 we give a pictorial representation of the value γzpβq, given
by the length of the projection on the x-coordinate axis of the intersection of the line
tp0, zq ` pα, αq : α P Ru with E0,β X pr0, βq ˆ Rq. In the figure we have pictured the cases
of a generic z and of the two possibilities, z even or odd, when z P Z (dashed lines).

In terms of γz, (2.25) is equivalent to

ż 2ε

ε
γzpβqdβ ě

´1

2
´ η

¯

|Dε|. (2.27)

Note that |Dε| “
3
2ε

2, but in most of the computations we do not need this explicit value.

|z| |z| |z| |z|
2m-22m-12m+1 2m

γ

β

Figure 2: a part of the graph of γz.

In order to prove (2.27) note that

ż
|z|

2m´2

|z|
2m

γzpβqdβ ě

ż
|z|

2m´1

|z|
2m`1

pβ ´ γzpβqqdβ (2.28)

for every m P N with m ě 2 (this is just a comparison between the areas of the two triangles
in Fig. 2). We define h “ hp|z|, εq and k “ kp|z|, εq setting

h “ max
!

m P N : ε ď
|z|

2m

)

, k “ min
!

m P N :
|z|

2m
ă 2ε

)

,

and observe that k ď h. From (2.28), summing on the set of integer m with k ă m ď h
we deduce that

ż 2ε

ε
γzpβqdβ ě

ż
|z|
2k

|z|
2h

γzpβqdβ

ě

ż
|z|

2k`1

|z|
2h`1

pβ ´ γzpβqqdβ ě

ż 2ε

ε
pβ ´ γzpβqqdβ ´ |z|

2ε

k2
,

12



so that
ż 2ε

ε
γzpβqdβ ě

1

2
|Dε| ´ |z|

ε

k2
“ |Dε|

´1

2
´

2|z|

3k2ε

¯

. (2.29)

Note that 1
k ă

4ε
|z| , so that 2|z|

3k2ε
ď 32ε

3|z| . By choosing ε ă 3
32η

2 we then have 2|z|
3k2ε

ď η for all

z with |z| ě η, and estimate (2.27) holds.

If d ą 1, for all i P t1, . . . , du and α, β P R, with β ą 0, we consider the set

Eiα,β “ tpx, yq P Rd ˆ Rd : pxi, yiq P Eα,βu,

where Eα,β is defined in (2.20). Correspondingly, we define

Aiα,β “ tpx, yq P Rd ˆ Rd : pxi, yiq P Aα,βu,

where Aα,β is defined in (2.19). As in (2.22) we get

pΩˆ Ωq X Eiα,β “ ppΩXA
i
α,βq ˆ pΩzA

i
α,βqq Y ppΩzA

i
α,βq ˆ pΩXA

i
α,βqq.

Repeating the steps in the proof in the case d “ 1 we obtain, as in (2.25),
ż

Dε

1Eiα,β
px, yqdαdβ ě

´1

2
´ η

¯

|Dε| for all i P t1, . . . , du,

and hence that µppΩ ˆ Ωqz∆iq ď 2M , where ∆i “ tpx, yq P Rd ˆ Rd : xi “ yiu. Since
∆ “

Şd
i“1 ∆i, and µppΩˆ Ωq X∆q “ 0, we deduce that

µpΩˆ Ωq ď 2dM,

which concludes the proof of (b).

In order to prove (a), we first note that for all disjoint open subsets A and B of Ω,
thanks to (2.6) and the symmetry of µ we have

2µpAˆ pΩzAqq ` νpAq “ lim
kÑ`8

´

F pukq ´

ż

Ω
|∇ukpxq|2 dx

¯

,

2µpB ˆ pΩzBqq ` νpBq “ lim
kÑ`8

´

F pvkq ´

ż

Ω
|∇vkpxq|2 dx

¯

,

2µppAYBq ˆ pΩzpAYBqqq ` νpAYBq

“ lim
kÑ`8

´

F puk ` vkq ´

ż

Ω
|∇ukpxq `∇vkpxq|2 dx

¯

,

where uk, vk are sequences in C8c pΩq with 0 ď uk ď 1A and 0 ď vk ď 1B, such that
ukpxq Ñ 1Apxq and vkpxq Ñ 1Bpxq for all x P Ω. Summing up the first two equations
above and subtracting the third one we have

µpAˆBq “
1

2

´

µpAˆ pΩzAqq ` µpB ˆ pΩzBqq ´ µppAYBq ˆ pΩzpAYBqqq
¯

“ ΦF pA,Bq,

13



where

ΦF pA,Bq :“
1

4
lim

kÑ`8

`

F pukq ` F pvkq ´ F puk ` vkq
˘

.

This shows that if µ1 and µ2 are symmetric bounded Borel measures and satisfy (2.6) then

µ1pAˆBq “ µ2pAˆBq (2.30)

for all disjoint open subsets A and B of Ω. This property can be extended first to disjoint
compact subsets of Ω and then to disjoint Borel subsets of Ω.

To extend this equality to arbitrary Borel subsets of Ω we fix η ą 0 and write

A “

mη
ď

i“1

Ai, B “

nη
ď

j“1

Bj ,

where Ai and Bj are Borel partitions of A and B, respectively, with diampAiq ă
η
2 and

diampBjq ă
η
2 for all i, j. Setting Dη “ tpi, jq : Ai X Bj ‰ Hu and observing that

AˆB “
Ť

pi,jqpAi ˆBjq and that
Ť

pi,jqPDηpAi ˆBjq Ă ∆η, by (2.30) we obtain that

|µ1pAˆBq ´ µ2pAˆBq| “

ˇ

ˇ

ˇ
µ1

´

ď

pi,jqPDη

pAi ˆBjq
¯

´ µ2

´

ď

pi,jqPDη

pAi ˆBjq
¯ˇ

ˇ

ˇ

ď µ1ppΩˆ Ωq X∆ηq ` µ2ppΩˆ Ωq X∆ηq.

Therefore, if µ1 and µ2 also satisfy (2.7), then, by letting η Ñ 0 we obtain that µ1pAˆBq “
µ2pAˆBq for all pairs of Borel sets, and hence that µ1 “ µ2. Finally, by (2.6) we deduce
that for every u P H1

0 pΩq the integral
ş

Ω |upxq|
2dνpxq is uniquely determined by F , which

gives the uniqueness of such a ν, and concludes the proof of (a).

In the following theorem we use the classical notion of capacity, and rupxq denotes the
precise representative of a function u P H1

0 pΩq, which is defined up to sets of zero capacity
(see [5, Sections 4.7 and 4.8]). A similar result can be proved using the intrinsic capacity
of the Dirichlet form F and the corresponding precise representatives (see [6, Theorem
4.5.2]).

Theorem 2.5. Let F : H1
0 pΩq Ñ r0,`8q and let µ and ν be two bounded positive Radon

measures on Ω ˆ Ω and Ω, respectively, that satisfy (a), (b), and (c) of Theorem 2.2.
Suppose also that F be lower semicontinuous in the weak topology of H1

0 pΩq and that there
exists M ą 0 such that (2.16) holds for all u P C8c pΩq. Then

(a) if B Ă Ω is a Borel set with zero capacity, then µpB ˆ Ωq “ νpBq “ 0;
(b) for every u P H1

0 pΩq X L
8pΩq

F puq “

ż

ΩˆΩ
|rupxq ´ rupyq|2dµpx, yq `

ż

Ω
|rupxq|2dνpxq `

ż

Ω
|∇upxq|2 dx; (2.31)

(c) if, in addition, F pΨmpuqq ď F puq for all u P H1
0 pΩq and m P N, where Ψmptq “

pm^ tq _ p´mq, then (2.31) holds for every u P H1
0 pΩq.

14



Proof. We observe that, by the strong continuity of u ÞÑ
ş

Ω |∇upxq|
2 dx,

u ÞÑ

ż

ΩˆΩ
|upxq ´ upyq|2dµpx, yq `

ż

Ω
|upxq|2dνpxq is lower semicontinuous (2.32)

on C8c pΩq with respect to the strong topology of H1
0 pΩq.

Let K be a compact subset of Ω with zero capacity. We now prove that

µpK ˆ pΩzKqq “ 0 and νpKq “ 0. (2.33)

Given η ą 0 let U be an open set such that K Ă U Ă Ω and

µppUzKq ˆ Ωq ď η and νpUzKq ď η, (2.34)

and let w P C8c pΩq be such that 0 ď w ď 1 on the whole Ω, w “ 1 in a neighbourhood
of K, and w ď 1

4 on ΩzU . Since K has zero capacity there exist a sequence uk P C
8
c pΩq

converging to w strongly in H1
0 pΩq, such that 0 ď uk ď 1 on the whole Ω, uk “ 0 on K

and uk “ w on ΩzU . Then we have
ż

ΩˆΩ
|ukpxq ´ ukpyq|

2dµpx, yq `

ż

Ω
|ukpxq|

2dνpxq

ď 2

ż

KˆpΩzUq
|wpyq|2dµpx, yq `

ż

pΩzUqˆpΩzUq
|wpxq ´ wpyq|2dµpx, yq

`µppUzKq ˆ pUzKqq ` 2µppUzKq ˆ pΩzUqq `

ż

ΩzU
|wpxq|2dνpxq ` νpUzKq

ď
1

8
µpK ˆ pΩzUqq `

ż

pΩzUqˆpΩzUq
|wpxq ´ wpyq|2dµpx, yq

`

ż

ΩzU
|wpxq|2dνpxq ` 3η,

while
ż

ΩˆΩ
|wpxq ´ wpyq|2dµpx, yq `

ż

Ω
|wpxq|2dνpxq

ě 2

ż

KˆpΩzUq
|1´ wpyq|2dµpx, yq `

ż

pΩzUqˆpΩzUq
|wpxq ´ wpyq|2dµpx, yq

`νpKq `

ż

ΩzU
|wpxq|2dνpxq.

Hence, noting that 1 ´ wpyq ě 3
4 if y P ΩzU , from the convergence of uk to u and (2.32)

we obtain

9

8
µpK ˆ pΩzUqq ` νpKq ď

1

8
µpK ˆ pΩzUqq ` 3η.
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Taking into account that µpK ˆ pUzKqq ď η thanks to (2.34) and the symmetry of µ we
obtain

µpK ˆ pΩzKqq ` νpKq ď 4η,

and (2.33) is proved by the arbitrariness of η.
We now claim that

µpK ˆKq “ 0, (2.35)

Given η ą 0 we can find a finite number of compact sets Ki such that K “
Ť

iKi and
diamKi ď

η
2 . Since

K ˆK Ă
ď

i,j

pKi ˆKjq “
ď

pi,jqPD
pKi ˆKjq Y

ď

pi,jqRD
pKi ˆKjq,

where D “ tpi, jq : Ki XKj ‰ Hu, we have

µpK ˆKq ď µ
´

ď

pi,jqPD
pKi ˆKjq

¯

`
ÿ

pi,jqRD
µpKi ˆKjq.

Since Kj Ă ΩzKi if pi, jq R D, by (2.33) applied to Ki the terms in the last sum are all
zero. On the other hand

Ť

pi,jqPDpKi ˆKjq Ă ∆η, where ∆η is defined in (2.18), so that
µpK ˆKq ď µppΩˆ Ωq X∆ηq. Since µppΩˆ Ωq X∆q “ 0 and µ is finite we obtain (2.35)
by letting η Ñ 0.

Finally, (2.33) and (2.35) give that µpK ˆ Ωq “ νpKq “ 0 for any K compact set with
zero capacity. Claim (a) is then obtain by approximation of B with compact sets contained
in B.

In order to prove claim (b), by proceeding as in the proof of Proposition 2.1(e) for all
u P H1

0 pΩq X L8pΩq we have a sequence uk P C
8
c pΩq converging strongly to u in H1

0 pΩq,
such that }uk}L8pΩq ď }u}L8pΩq and uk converge weakly to u with respect to the Hilbert
structure induced by the norm defined in (2.4). By Mazur’s theorem we obtain a new
sequence vk P C

8
c pΩq converging strongly to u in H1

0 pΩq, such that }vk}L8pΩq ď }u}L8pΩq
and vk converge strongly to u both in H1

0 pΩq and with respect to the Hilbert structure
induced by the norm defined in (2.4). In particular F pvkq Ñ F puq and, upon passing to
a subsequence, vk Ñ ru quasi-everywhere (in the sense of capacity). Together with the
uniform bound, this implies that

lim
kÑ`8

ż

ΩˆΩ
|vkpxq ´ vkpyq|

2dµpx, yq “

ż

ΩˆΩ
|rupxq ´ rupyq|2dµpx, yq

lim
kÑ`8

ż

Ω
|vkpxq|

2dνpxq “

ż

Ω
|rupxq|2dνpxq,
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and claim (b) follows.
In order to prove (c), let G : H1

0 pΩq Ñ r0,`8s be defined by the right-hand side in
(2.31), and let u P H1

0 pΩq. Let um “ Φmpuq and note that lim
mÑ`8

Gpumq “ Gpuq by the

Monotone Convergence . Since F pumq “ Gpumq to conclude the proof it is enough to note
that lim

mÑ`8
F pumq “ F puq, which follows from the hypothesis on truncations and the lower

semicontinuity of F .

Remark 2.6. Note that equality (2.31) may not hold on the whole H1
0 pΩq if the additional

assumption in (c) is dropped. For instance, if G is defined by the right-hand side in (2.31),
and F is defined as equal to G except on a single u0 P H1

0 pΩqzL
8pΩq, where we set

F pu0q “ 0, then F is lower semicontinuous, F and G are equal on H1
0 pΩq X L8pΩq, but

equality does not hold in the whole H1
0 pΩq.

Proposition 2.7. In addition to the hypotheses of Theorem 2.2, suppose that ak satisfies
the following condition: for every ε ą 0 there exists a compact set Kε Ă Ω such that

ż

pΩˆΩqzpKεˆKεq
akpx, yq dxdy ď ε for every k P N. (2.36)

Then the measure ν in Theorem 2.2 is the null measure.

Proof. Let u P C8c pΩq such that 0 ď u ď 1 and u “ 1 on Kε. Then, by using u as test
function in the Γ-limit we have

F puq ď lim inf
kÑ`8

ż

pΩˆΩqzpKεˆKεq
|upxq ´ upyq|2 dxdy `

ż

Ω
|∇upxq|2 dx

ď ε`

ż

Ω
|∇upxq|2 dx.

Since F puq “ Fnpuq ` F `puq `
ş

Ω |∇upxq|
2 dx we conclude that F `puq ď ε for all such u.

We now fix a compact K in Ω and for each ε ą 0 take uε P C
8
c pΩq with 0 ď uε ď 1

and uε “ 1 on K YKε. By the estimate above we have

νpKq ď

ż

Ω
|uεpxq|

2dνpxq “ F `puεq ď ε.

By the arbitrariness of ε we obtain that νpKq “ 0 for all K compact of Ω, which proves
the claim.

The following corollary improves the conclusions of Theorem 2.2 in light of Theorems
2.4 and 2.5 and of Proposition 2.7.
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Corollary 2.8. Let Fk be given by (2.2), with ak satisfying (2.1). Suppose that Fk Γ-
converges to F with respect to the weak topology in H1

0 pΩq. Then there exist two positive
finite Radon measures µ and ν on Ωˆ Ω and Ω, respectively, such that

(a) µ is symmetric and µppΩˆ Ωqz∆q “ 0;
(b) µpB ˆ Ωq “ νpBq “ 0 for all Borel sets B Ă Ωwith zero capacity;
(c) for every u P H1

0 pΩq

F puq “

ż

ΩˆΩ
|rupxq ´ rupyq|2dµpx, yq `

ż

Ω
|rupxq|2dνpxq `

ż

Ω
|∇upxq|2 dx; (2.37)

If, in addition, ak satisfies property (2.36), then ν “ 0.

Proof. This corollary is an immediate consequence of Theorems 2.2, 2.4, and 2.5, noting
that the hypothesis of Theorem 2.5(c) is satisfied thanks Proposition 2.1(d). The last
statement follows from Proposition 2.7.

Remark 2.9 (extension to general double integrals). The conclusions of Corollary 2.8
remain valid if we consider the functionals defined by

Fkpuq “

ż

ΩˆΩ
|rupxq ´ rupyq|2dµkpx, yq `

ż

Ω
|∇upxq|2 dx (2.38)

for every u P H1
0 pΩq, with condition (2.1) substituted by

µkpΩˆ Ωq ďM for every k P N, (2.39)

and (2.36) substituted by

µkppΩˆ ΩqzpKε ˆKεqq ď ε for every k P N. (2.40)

3 The counterexample

We fix p P p1,`8q. For simplicity of notation we suppose 0 P Ω, and let Br be the ball
of centre 0 and radius r. We fix a sequence of positive numbers εk converging to 0, and
define the functionals Fk : W 1,p

0 pΩq Ñ R by setting

Fkpuq “
1

|Bεk |

ż

Ω

ż

Bεk

|upxq ´ upyq|p dy dx`

ż

Ω
|∇upxq|p dx (3.1)

for every u PW 1,p
0 pΩq.
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Definition 3.1. For all u P LppΩq we define mppuq as the unique minimum point of

t ÞÑ

ż

Ω
|upxq ´ t|p dx.

Lemma 3.2. The map mp : LppΩq Ñ R is continuous.

Proof. Let uk Ñ u in LppΩq. Then the sequence mppukq is bounded since

|mppukq| ď }uk ´mppukq}LppΩq ` }uk}LppΩq ď 2}uk}LppΩq.

We can suppose, upon subsequences, that mppukq Ñ t0. With fixed t P R, we can pass to
the limit in the inequalities

ż

Ω
|ukpxq ´mppukq|

p dx ď

ż

Ω
|ukpxq ´ t|

p dx,

and obtain that
ż

Ω
|upxq ´ t0|

p dx ď

ż

Ω
|upxq ´ t|p dx,

which concludes the proof.

Theorem 3.3. If p P p1, ds then the Γ-limit of Fk with respect to the weak W 1,p
0 -convergence

is the functional F defined by

F puq “

ż

Ω
|upxq ´mppuq|

p dx`

ż

Ω
|∇upxq|p dx (3.2)

for every u PW 1,p
0 pΩq.

Proof. Let uk á u weakly in W 1,p
0 pΩq. Then also uk Ñ u strongly in LppΩq. Hence, using

Jensen’s inequality, the minimality of mppukq, and applying Lemma 3.2, we get

lim inf
kÑ`8

1

|Bεk |

ż

Ω

ż

Bεk

|ukpxq ´ ukpyq|
p dy dx

ě lim inf
kÑ`8

ż

Ω

ˇ

ˇ

ˇ

ˇ

ukpxq ´
1

|Bεk |

ż

Bεk

ukpyq dy

ˇ

ˇ

ˇ

ˇ

p

dx

ě lim inf
kÑ`8

ż

Ω
|ukpxq ´mppukq|

pdx ě

ż

Ω
|upxq ´mppuq|

pdx.

Since the term
ş

Ω |∇upxq|
p dx is lower semicontinuous, this proves the liminf inequality.
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To prove the upper bound, we first construct a recovery sequence if u “ 0 in a neigh-
bourhood of 0. In this case, let vk be the p-capacitary potential of Bεk with respect to Ω;
that is, the minimizer of

min
!

ż

Ω
|∇vpxq|p dx : v PW 1,p

0 pΩq, v “ 1 on Bεk

)

.

Since p ď d it is known that vk Ñ 0 in W 1,p
0 pΩq (see e.g. [5, Section 4.7]). We then set

uk “ u`mppuqvk, and obtain

lim sup
kÑ`8

Fkpukq “ lim sup
kÑ`8

´

ż

Ω
|ukpxq ´mppuq|

p dx`

ż

Ω
|∇ukpxq|p dx

¯

“ F puq

Since F is continuous in W 1,p
0 pΩq and the set of function C8c pΩq which are 0 in a neigh-

bourhood of 0 is dense in W 1,p
0 pΩq, the claim follows.

Remark 3.4 (Γ-limit in W 1,ppΩq). If Ω is a bounded open set with Lipschitz boundary,
then the functionals defined by (3.1) for u PW 1,ppΩq Γ-converge with respect to the LppΩq
convergence to the functional defined by (3.2) for u PW 1,ppΩq. Indeed, in the proof we only
use the boundary condition to deduce the equi-coerciveness of the functionals, a property
that is also assured by the regularity of BΩ.

We now want to show that F cannot be represented in the form

F puq “

ż

ΩˆΩ
fpupxq, upyqqdµpx, yq `

ż

Ω
gpupxqqdνpxq `

ż

Ω
|∇upxq|p dx

for u P C8c pΩq, where f : R2 Ñ R and g : R Ñ R are continuous functions, while µ and ν
are two positive bounded Radon measures on Ω ˆ Ω and Ω, respectively. To that end we
examine the two integrals with respect to µ and ν separately from the third one.

Proposition 3.5. Let f : R2 Ñ R and g : RÑ R be continuous functions, and let µ and ν
be two positive bounded Radon measures on Ωˆ Ω and Ω, respectively. Suppose that

ż

Ω
|upxq ´mppuq|

p dx “

ż

ΩˆΩ
fpupxq, upyqqdµpx, yq `

ż

Ω
gpupxqqdνpxq (3.3)

holds for u P C8c pΩq, then the same equality holds also for u “ 1A, for all A open of Ω;
that is,

ż

Ω
|1Apxq ´mpp1Aq|

p dx “

ż

ΩˆΩ
fp1Apxq, 1Apyqqdµpx, yq `

ż

Ω
gp1Apxqqdνpxq. (3.4)

20



Proof. Preliminarily, note that, taking u “ 0 in (3.3), we obtain

0 “ fp0, 0qµpΩˆ Ωq ` gp0q νpΩq.

It is then not restrictive to assume that

fp0, 0q “ gp0q “ 0, (3.5)

up to substituting fps, tq with fps, tq ´ fp0, 0q and gpsq with gpsq ´ gp0q.
Let now A be an open set relatively compact in Ω, and let uk be a sequence in C8c pΩq

converging pointwise to 1A and such that 0 ď ukpxq ď 1Apxq. By the convergence of uk
to 1A in LppΩq and Lemma 3.2 we have the convergence of the left-hand term in (3.3) to
the corresponding term in (3.4). As for the right-hand side of (3.3), it suffices to apply the
Dominated Convergence Theorem.

Remark 3.6 (computation of mppuq for characteristic functions). For any measurable set
A the constant mpp1Aq is obtained by minimizing

ż

Ω
|1Apxq ´ t|

p dx “ |A||1´ t|p ` p|Ω| ´ |A|q|t|p.

The minimal t P r0, 1s is determined by p|Ω| ´ |A|qtp´1 “ |A|p1´ tqp´1; that is, we have

1´ t

t
“

´

|Ω| ´ |A|

|A|

¯1{pp´1q
and mpp1Aq “

|A|1{pp´1q

p|Ω| ´ |A|q1{pp´1q ` |A|1{pp´1q
.

Remark 3.7. From the previous remark we have that
ż

Ω

|1Apxq ´mpp1Aq|
p dx “ Φpp|A|q, (3.6)

where

Φppsq :“
sp|Ω| ´ sqp{pp´1q ` p|Ω| ´ sqsp{pp´1q

pp|Ω| ´ sq1{pp´1q ` s1{pp´1qqp
“

sp|Ω| ´ sq

pp|Ω| ´ sq1{pp´1q ` s1{pp´1qqp´1
. (3.7)

The following proposition relates the function Φp defined in (3.7) and the measure µ.

Proposition 3.8. Under the assumptions of Proposition 3.5 for all A,B open sets in Ω
with AXB “ H we have

Φpp|A|q ` Φpp|B|q ´ Φpp|A| ` |B|q “ Cf pµpAˆBq ` µpB ˆAqq, (3.8)

where Cf “ fp1, 0q ` fp0, 1q ´ fp1, 1q.
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Proof. From (3.4) and (3.6) we have

Φpp|A|q “ fp1, 1qµpAˆAq ` fp1, 0qµpAˆ pΩzAqq

`fp0, 1qµppΩzAq ˆAq ` gp1qνpAq, (3.9)

and analogous formulas for Φpp|B|q and Φpp|A|` |B|q “ Φpp|AYB|q, from which the claim
follows.

Proposition 3.9. If there exists a bounded Radon measure µ on Ω ˆ Ω such that (3.8)
holds, then p “ 2.

Proof. Take A1, A2, and B disjoint open subsets of Ω, and let s1 “ |A1|, s2 “ |A2|, and
t “ |B|. From (3.8) we then have

Φpps1 ` s2q ` Φpptq ´ Φpps1 ` s2 ` tq “ Cf pµppA1 YA2q ˆBq ` µpB ˆ pA1 YA2qqq

“ Cf pµpA1 ˆBq ` µpB ˆA1q ` µpA2 ˆBq ` µpB ˆA2qq

“ Φpps1q ` Φpptq ´ Φpps1 ` tq ` Φpps2q ` Φpptq ´ Φpps2 ` tq,

or, equivalently, that for every fixed t P p0, |Ω|q the function

gpsq “ Φppsq ` Φpptq ´ Φpps` tq

is additive on p0, |Ω|´ tq, which implies that there exists a constant ct such that gpsq “ cts.
In particular, taking into account the differentiability of Φp, we have

Φ2ppsq ´ Φ2pps` tq “ g2psq “ 0 for all s, t P p0, |Ω|q such that s` t ă |Ω|.

This implies that Φ2p is constant, so that it equals a second-order polynomial P .
It is now convenient to write Φppsq “ sp|Ω| ´ sqphppsqq

1´p, where

hppsq “ s1{pp´1q ` p|Ω| ´ sq1{pp´1q.

Since hppsq ‰ 0 we have P psq “ 0 if and only if s “ 0 or s “ |Ω|, so that P psq “ κsp|Ω|´sq
for some constant κ. This implies that hppsq “ κ for every s P p0, |Ω|q and then also for
s “ 0 and s “ |Ω| by continuity. In particular, this gives

|Ω|1{pp´1q “ hpp0q “ hp

´

|Ω|

2

¯

“ 2
´

|Ω|

2

¯1{pp´1q
,

which holds only if p “ 2.

Combining the previous results, we are now in a position to prove that F cannot be
represented in an integral form when 1 ă p ď d and p ‰ 2.
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Corollary 3.10. Let 1 ă p ď d and let F be the Γ-limit, with respect to the weak W 1,p
0 -

convergence, of the sequence Fk defined by (3.1). Suppose that there exist two real valued
continuous functions f and g, defined on R2 and R, and two positive bounded Radon
measures on Ωˆ Ω and Ω, respectively, such that

F puq “

ż

ΩˆΩ
fpupxq, upyqqdµpx, yq `

ż

Ω
gpupxqqdνpxq `

ż

Ω
|∇upxq|p dx (3.10)

for every u P C8c pΩq. Then p “ 2 and in this case we have µ “ 1
2|Ω|L

2d and ν “ 0, while

fps, tq “ |s´ t|2 for every s, t P R.

Proof. By Theorem 3.3 the functional F is given by (3.2). By (3.10) this implies that
the assumptions of Proposition 3.5 are satisfied, and by Proposition 3.8 we can apply
Proposition 3.9, which gives p “ 2. The explicit form of of f , µ, and ν follows from (1.5)
and (3.2).
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