
A BOURGAIN-BREZIS-MIRONESCU TYPE RESULT FOR THE

FRACTIONAL RELATIVISTIC SEMINORM

VINCENZO AMBROSIO AND FARES ESSEBEI

Abstract. We establish a version of the Bourgain-Brezis-Mironescu type formula on the

limit as s → 1− of the fractional relativistic seminorm.

1. Introduction

Let N ≥ 2 and s ∈ (0, 1). The fractional relativistic operator (see [2, 3])

(−∆+ 1)s(1.1)

is defined in Fourier space by setting

F(−∆+ 1)su(ξ) = (|ξ|2 + 1)sFu(ξ) for all u ∈ S(RN ),(1.2)

where F denotes the Fourier transform and S(RN ) is the Schwartz space of rapidly decaying

functions. Equivalently, (1.1) may be defined for all u ∈ S(RN ) via singular integral as

(−∆+ 1)su(x) = CN,sP.V.

ˆ
RN

u(x)− u(y)

|x− y|
N+2s

2

KN+2s
2

(|x− y|)dy + u(x)(1.3)

for every x ∈ RN , where P.V. stands for the Cauchy principal value,

(1.4) CN,s := 2−
N+2s

2
+1π−

N
2 22s

s(1− s)

Γ(2− s)
,

and Γ(t) =
´ +∞
0 xt−1e−x dx, for t > 0, is the usual Gamma function. Here Kν(r), with r > 0,

denotes the modified Bessel function of the third kind of order ν ∈ R (see [5, 9, 18]). It is

well-known that Kν(r) is an analytic function of r, Kν(r) is an entire function of ν and it is

symmetric with respect to ν, that is, K−ν(r) = Kν(r). Moreover, fixed ν > 0, the function

r 7→ r−νKν(r) is decreasing. We also have the following integral representation for Kν :

Kν(r) = 2−ν−1rν
ˆ +∞

0
e−te−

r2

4t t−ν−1dt.

Finally, Kν satisfies the following asymptotic formulas:

(1.5) Kν(r) ∼
Γ(ν)

2

(r
2

)−ν
as r → 0+, for ν > 0,
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2 V. AMBROSIO AND F. ESSEBEI

(1.6) Kν(r) ∼
√
π

2
r−

1
2 e−r as r → +∞, for ν ∈ R.

We recall that when s = 1
2 , the operator (1.1) is strictly related to H =

√
−∆+ 1− 1 which

has a relevant role in relativistic quantum mechanics because it corresponds to the kinetic

energy of a relativistic particle with unit mass (see [7]). The study of H has been strongly

influenced by several works on the stability of relativistic matter (see [11]). The operator (1.1)

is very important in the theory of the so-called interpolation spaces of Bessel potentials and

finds application in harmonic analysis and partial differential equations (see [10, 16]). There

exists also a deep connection between (1.1) and the theory of Lévy processes (see [7, 14]).

Note that when −∆ + 1 is replaced by −∆, (1.1) boils down to the fractional Laplacian

operator (−∆)s (see [8]) defined for all u ∈ S(RN ) via Fourier transform by

F(−∆)su(ξ) = |ξ|2sFu(ξ),

or via singular integral by

(−∆)su(x) = cN,s P.V.

ˆ
RN

u(x)− u(y)

|x− y|N+2s
dy,

where cN,s is given by (see [17, Remark 5.2])

cN,s := π−
N
2 22s

Γ
(
N+2s

2

)
−Γ(−s)

= π−
N
2 22sΓ

(
N + 2s

2

)
s(1− s)

Γ(2− s)
= 2

N+2s
2

−1Γ

(
N + 2s

2

)
CN,s.

(1.7)

It is well-known that for all u ∈ C∞
0 (RN ) it holds (−∆)su → −∆u as s → 1− (see [8,

Proposition 4.4-(ii)]). On the other hand, it is natural to expect that (1.1) converges pointwise

to −∆+ 1 as s → 1− along smooth functions. Indeed, this fact can be easily deduced from

(1.2), alternatively by using (1.3) in order to show the consistency in the definition of the

constant CN,s (see [4, Theorem 1.1]).

Motivated by the above discussion, we study the limiting behavior as s→ 1− of the following

fractional relativistic seminorm

CN,s

2
ωN

¨
Ω×Ω

|u(x)− u(y)|2

|x− y|
N+2s

2

KN+2s
2

(|x− y|) dx dy,

where Ω ⊂ RN is a smooth bounded domain and ωN is the volume of the unit ball in RN .

We recall that in [6] the authors showed that for all u ∈ H1(Ω) it holds

lim
s→1−

(1− s)

¨
Ω×Ω

|u(x)− u(y)|2

|x− y|N+2s
dx dy = KN

ˆ
Ω
|∇u|2 dx,(1.8)

where

(1.9) KN :=
1

2

ˆ
SN−1

|ω · e|2dHN−1(ω),
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here SN−1 denotes the (N−1)-dimensional unit sphere in RN , HN−1 is the (N−1)-dimensional

Hausdorff measure, e is any unit vector in RN , and · stands for the scalar product in RN .

The formula (1.8) says that H1(Ω) can be seen as a continuous limit of the spaces Hs(Ω) as

s→ 1− provided that one considers on Hs(Ω) the seminorm(
(1− s)

¨
Ω×Ω

|u(x)− u(y)|2

|x− y|N+2s
dx dy

) 1
2

.

Subsequently, this result has been extended in the fractional magnetic framework in [15] (see

also [13]). The purpose of this paper is to obtain an analogue of (1.8) in the fractional

relativistic setting. More precisely, we prove the following result.

Theorem 1.1. Let Ω ⊂ RN be an open bounded set with Lipschitz boundary. Then, for every

u ∈ H1(Ω), the following formula is true:

(1.10) lim
s→1−

CN,s

2
ωN

¨
Ω×Ω

|u(x)− u(y)|2

|x− y|
N+2s

2

KN+2s
2

(|x− y|) dx dy = 2KN

ˆ
Ω
|∇u|2 dx .

We emphasize that the factor in front of the double integral in (1.10) is different from the

one in (1.8), because of the presence of the modified Bessel function Kν . We also provide the

following variant of Theorem 1.1 for functions belonging to H1
0 (Ω).

Theorem 1.2. Let Ω ⊂ RN be an open bounded set with Lipschitz boundary. Then, for every

u ∈ H1
0 (Ω), the following formula is valid:

(1.11) lim
s→1−

CN,s

2
ωN

¨
R2N

|u(x)− u(y)|2

|x− y|
N+2s

2

KN+2s
2

(|x− y|) dx dy = 2KN

ˆ
Ω
|∇u|2 dx .

The proofs of Theorems 1.1 and 1.2 are inspired by [6, 15]. Nevertheless, due to the ap-

pearance of the modified Bessel function Kν , several technical difficulties arise in our study.

To overcome these problems, we will exploit some crucial properties of Kν that will be fun-

damental to accomplish our results. Finally, we would like to mention [1] for some limiting

formulas in the setting of fractional Sobolev spaces on the torus.

2. Proofs of the main results

Let us first prove the following useful lemma.

Lemma 2.1. For every δ > 0, we have

(2.1) lim
s→1−

CN,s

2
ωN

ˆ δ

0

KN+2s
2

(r)

r
N+2s

2

rN+1 dr = 1,

and

(2.2) lim
s→1−

CN,s

2
ωN

ˆ +∞

δ

KN+2s
2

(r)

r
N+2s

2

rN+1 dr = 0.
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Proof. We start by recalling the following formula (see [18, formula (8) at pag.388])ˆ +∞

0
Kν(r)r

µ−1 dr = 2µ−2 Γ

(
µ− ν

2

)
Γ

(
µ+ ν

2

)
for all µ > ν.(2.3)

Then, choosing µ = N+4−2s
2 and ν = N+2s

2 in (2.3), we see that

ˆ +∞

0

KN+2s
2

(r)

r
N+2s

2

rN+1 dr = 2
N−2s

2 Γ(1− s)Γ

(
N + 2

2

)
.

Exploiting (1.4), ωN = π
N
2

Γ(N
2
+1)

and that Γ(t+ 1) = tΓ(t) for all t > 0, it follows that

CN,s

2
ωN

ˆ +∞

0

KN+2s
2

(r)

r
N+2s

2

rN+1 dr =
CN,s

2
ωN2

N−2s
2 Γ(1− s)Γ

(
N

2
+ 1

)
= π−

N
2
s(1− s)

Γ(2− s)
ωNΓ(1− s)Γ

(
N

2
+ 1

)
=
s(1− s)

Γ(2− s)
Γ(1− s)

= s.

As a result,

lim
s→1−

CN,s

2
ωN

ˆ +∞

0

KN+2s
2

(r)

r
N+2s

2

rN+1 dr = 1.(2.4)

Now, using (1.6), we can find C0 > 0 and R0 > 0, independent of s, such that

KN+2s
2

(r) ≤ C0r
− 1

2 e−r for all r > R0.

Note that, for all r > R0, it holds

KN+2s
2

(r)rN+1

r
N+2s

2

≤ C0r
N+1

2
−se−r ≤ C0C

′
N,sr

−2,

where

C ′
N,s :=

(
N + 1

2
− s+ 2

)N+1
2

−s+2

e−(
N+1

2
−s+2).

Since

lim
s→1−

C ′
N,s =

(
N + 1

2
+ 1

)N+1
2

+1

e−(
N+1

2
+1),

there exists a constant L1 > 0, independent of s, such that

C ′
N,s ≤ L1 for all s near 1.

Hence,

KN+2s
2

(r)rN+1

r
N+2s

2

≤ L1r
−2,
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for all r > R0 and s near 1. Let R > max{R0, δ}. Because r 7→ Kν(r)
rν is decreasing in (0,+∞),

we see that, for all r ∈ [δ,R],

KN+2s
2

(r)rN+1

r
N+2s

2

≤
KN+2s

2
(δ)

δ
N+2s

2

RN+1 ≤
KN+2s

2
(δ)

δ
N+2s

2

RN+3r−2.

Recalling that Kν(r) is an entire function of ν, we have

lim
s→1−

KN+2s
2

(δ)

δ
N+2s

2

=
KN+2

2
(δ)

δ
N+2

2

,

and so we can find L2 > 0 independent of s such that

KN+2s
2

(δ)

δ
N+2s

2

≤ L2 for all s near 1.

Consequently, for all r ∈ [δ,R] and s near 1,

KN+2s
2

(r)rN+1

r
N+2s

2

≤ L2R
N+3r−2.

Therefore, there exists L3 > 0, independent of s, such that, for all r ≥ δ and s near 1,

KN+2s
2

(r)rN+1

r
N+2s

2

≤ L3r
−2.(2.5)

On the other hand, exploiting (1.7) and lims→1− cN,s = 0 (see [8, Corollary 4.2]), we obtain

lim
s→1−

CN,s = lim
s→1−

2−
N+2s

2
+1

Γ(N+2s
2 )

cN,s = 0.(2.6)

Then (2.5) and (2.6) imply

lim
s→1−

CN,s

2
ωN

ˆ +∞

δ

KN+2s
2

(r)

r
N+2s

2

rN+1 dr = 0.

Using the above limit and (2.4), we can infer that

lim
s→1−

CN,s

2
ωN

ˆ δ

0

KN+2s
2

(r)

r
N+2s

2

rN+1 dr = 1.

The proof of the lemma is now complete. □

Proof of Theorem 1.1. Let rΩ := diam(Ω). Let us consider a radial cut-off ψ0 ∈ C∞
0 (RN ),

with ψ0(t) = 1 for t < rΩ and ψ0(t) = 0 for t > 2rΩ. By construction, ψ0(|x − y|) = 1 for

every x, y ∈ Ω. Let (sn)n∈N ⊂ (0, 1) be a sequence such that sn → 1− as n→ +∞ and select

the following family of radial functions

(2.7) ρn(x) :=
CN,sn

2
ωN

ψ0(|x|)
|x|

N+2sn−4
2

KN+2sn
2

(|x|) for x ∈ RN and n ∈ N.
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Our aim is to apply [15, Theorem 2.5] (see also [6, Theorem 2]). More precisely, if we verify

that (ρn)n∈N satisfies

(2.8) lim
n→+∞

ˆ +∞

0
ρn(r)r

N−1dr = 1,

and, for every δ > 0,

(2.9) lim
n→+∞

ˆ +∞

δ
ρn(r)r

N−1dr = 0,

then we can conclude that

(2.10) lim
n→+∞

¨
Ω×Ω

|u(x)− u(y)|2

|x− y|2
ρn(x− y) dx dy = 2KN

ˆ
Ω
|∇u|2 dx,

where KN is the constant given in (1.9). First we check (2.8). Note that
ˆ +∞

0
ρn(r)r

N−1 dr =

ˆ rΩ

0
ρn(r)r

N−1 dr+

ˆ +∞

rΩ

ρn(r)r
N−1 dr

=
CN,sn

2
ωN

ˆ rΩ

0

KN+2sn
2

(r)

r
N+2sn

2

rN+1 dr

+
CN,sn

2
ωN

ˆ +∞

rΩ

ψ0(r)
KN+2sn

2
(r)

r
N+2sn

2

rN+1 dr .

Thanks to Lemma 2.1, we have that (2.1) implies

lim
n→+∞

CN,sn

2
ωN

ˆ rΩ

0

KN+2sn
2

(r)

r
N+2sn

2

rN+1 dr = 1,

and (2.2) yields

lim sup
n→+∞

CN,sn

2
ωN

ˆ +∞

rΩ

ψ0(r)
KN+2sn

2
(r)

r
N+2sn

2

rN+1 dr

≤ lim sup
n→+∞

CN,sn

2
ωN

ˆ +∞

rΩ

KN+2sn
2

(r)

r
N+2sn

2

rN+1 dr = 0,

whence (2.8) is true. In a similar fashion, for every δ > 0, we see that

lim sup
n→+∞

ˆ +∞

δ
ρn(r)r

N−1 dr = lim sup
n→+∞

CN,sn

2
ωN

ˆ +∞

δ
ψ0(r)

KN+2sn
2

(r)

r
N+2sn

2

rN+1 dr

≤ lim sup
n→+∞

CN,sn

2
ωN

ˆ +∞

δ

KN+2sn
2

(r)

r
N+2sn

2

rN+1 dr = 0,

where we have again exploited (2.2) in Lemma 2.1. Therefore, the assertion (2.9) is proved

and so (1.10) is valid.

□

In order to demonstrate Theorem 1.2, we recall the following result contained in [15].
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Lemma 2.2. [15, Lemma 2.1] For any compact V ⊂ RN with Ω ⋐ V , there exists C =

C(V ) > 0 such that ˆ
RN

|u(y + h)− u(y)|2 dy ≤ C|h|2 ∥u∥2H1(RN ) ,

for all u ∈ H1(RN ) such that u = 0 on V c and for all h ∈ RN with |h| ≤ 1.

Now we establish the following result.

Lemma 2.3. Let u ∈ H1
0 (Ω). Then, for all s near 1, we have

CN,s

¨
R2N

|u(x)− u(y)|2

|x− y|
N+2s

2

KN+2s
2

(|x− y|) dx dy ≤ C ∥u∥2H1(Ω) ,

where C depends only on Ω.

Proof. Pick u ∈ C∞
0 (Ω). By Lemma 2.2, we have that, for all h ∈ RN with |h| ≤ 1,ˆ

RN

|u(y + h)− u(y)|2 dy ≤ C|h|2 ∥u∥2H1(Ω) ,

where C > 0 depends only on Ω. Hence,

CN,s

¨
R2N

|u(x)− u(y)|2

|x− y|
N+2s

2

KN+2s
2

(|x− y|)) dx dy

= CN,s

¨
R2N

|u(y + h)− u(y)|2

|h|
N+2s

2

KN+2s
2

(|h|)dh dy

= CN,s

ˆ
RN

KN+2s
2

(|h|)

|h|
N+2s

2

(ˆ
RN

|u(y + h)− u(y)|2dy

)
dh

≤ CCN,s ∥u∥2H1(Ω)

ˆ
{|h|≤1}

KN+2s
2

(|h|)

|h|
N+2s

2

|h|2dh + 4CN,s ∥u∥2L2(Ω)

ˆ
{|h|>1}

KN+2s
2

(|h|)

|h|
N+2s

2

dh.

Arguing as in the proof of (2.2) in Lemma 2.1, we can see that

4CN,s ∥u∥2L2(Ω)

ˆ
{|h|>1}

KN+2s
2

(|h|)

|h|
N+2s

2

dh ≤ C2 ∥u∥2L2(Ω) ,

for all s near 1, where C2 > 0 is independent of s. On the other hand, using (2.1) in Lemma

2.1, we deduce that

CCN,s ∥u∥2H1(Ω)

ˆ
{|h|≤1}

KN+2s
2

(|h|)

|h|
N+2s

2

|h|2dh ≤ C3 ∥u∥2H1(Ω) ,

for all s near 1, where C3 > 0 is independent of s. Consequently, for all s near 1,

CN,s

¨
R2N

|u(x)− u(y)|2

|x− y|
N+2s

2

KN+2s
2

(|x− y|) dx dy ≤ C ∥u∥2H1(Ω) .

Since C∞
0 (Ω) is dense in H1

0 (Ω), we obtain the assertion. □
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At this point we have all tools needed to provide the proof of Theorem 1.2.

Proof of Theorem 1.2. Let u ∈ C∞
0 (Ω). Because u = 0 outside Ω, we get

CN,s

2
ωN

¨
R2N

|u(x)− u(y)|2

|x− y|
N+2s

2

KN+2s
2

(|x− y|) dx dy

=
CN,s

2
ωN

¨
Ω×Ω

|u(x)− u(y)|2

|x− y|
N+2s

2

KN+2s
2

(|x− y|) dx dy

+ CN,sωN

ˆ
Ω

ˆ
RN\Ω

|u(x)|2

|x− y|
N+2s

2

KN+2s
2

(|x− y|) dx dy .

Invoking Theorem 1.1, we infer that

lim
s→1−

CN,s

2
ωN

¨
R2N

|u(x)− u(y)|2

|x− y|
N+2s

2

KN+2s
2

(|x− y|) dx dy = 2KN

ˆ
Ω
|∇u|2 dx+ lim

s→1−
Rs,

where

Rs := CN,s ωN

ˆ
Ω

ˆ
RN\Ω

|u(x)|2

|x− y|
N+2s

2

KN+2s
2

(|x− y|) dx dy .

Since u ∈ C∞
0 (Ω), we have that dist(∂K, ∂Ω) > 0, where K := supp(u). Recalling that the

function r 7→ Kν(r)
rν is decreasing in (0,+∞), it follows that

ˆ
Ω

(ˆ
RN\Ω

|u(x)|2

|x− y|
N+2s

2

KN+2s
2

(|x− y|) dy

)
dx ≤ ∥u∥2L2(Ω)

ˆ
RN\Ω

KN+2s
2

(δK(y))

δK(y)
N+2s

2

dy,

where δK(y) := dist(y, ∂K). Without loss of generality, we can assume that 0 ∈ Ω. Put

R := dist(RN \ Ω, ∂K) > 0. Then there exists a constant C̄ = C̄(Ω, R) > 0 such that

δK(y) ≥ C̄|y| for all y ∈ RN \ Ω, and so

ˆ
RN\Ω

KN+2s
2

(δK(y))

δK(y)
N+2s

2

dy ≤
ˆ
RN\Ω

KN+2s
2

(C̄|y|)

(C̄|y|)
N+2s

2

dy .

Because 0 ∈ Ω, we can argue as in the proof of (2.2) in Lemma 2.1 to see that

lim
s→1−

CN,s ωN

ˆ
RN\Ω

KN+2s
2

(C̄|y|)

(C̄|y|)
N+2s

2

dy = 0.

Thus, Rs → 0 as s→ 1− and this implies that (1.10) holds whenever u ∈ C∞
0 (Ω). Assume now

u ∈ H1
0 (Ω). Hence we can find a sequence (ϕn)n∈N ⊂ C∞

0 (Ω) such that ∥∇ϕn−∇u∥L2(Ω) → 0

as n→ +∞. Consequently, ∥∇ϕn∥L2(Ω) → ∥∇u∥L2(Ω) as n→ +∞. Fix ε > 0. Then there is

n0 ∈ N such that, for all n ≥ n0,

|∥∇u∥L2(Ω) − ∥∇ϕn∥L2(Ω)| ≤ ε.(2.11)
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In light of Lemma 2.3, we know that, for all s near 1 and n ≥ n0,

(
CN,s

2
ωN

¨
R2N

|(ϕn − u)(x)− (ϕn − u)(y)|2

|x− y|
N+2s

2

KN+2s
2

(|x− y|) dx dy

) 1
2

≤ C ∥∇ϕn −∇u∥L2(Ω) ,

(2.12)

where C is independent of n and s. Therefore, using (2.11) and (2.12), we have, for all s near

1 and n ≥ n0,∣∣∣∣∣∣
(
CN,s

2
ωN

¨
R2N

|ϕn(x)− ϕn(y)|2

|x− y|
N+2s

2

KN+2s
2

(|x− y|) dx dy

) 1
2

−

(
CN,s

2
ωN

¨
R2N

|u(x)− u(y)|2

|x− y|
N+2s

2

KN+2s
2

(|x− y|) dx dy

) 1
2

∣∣∣∣∣∣
≤

(
CN,s

2
ωN

¨
R2N

|(ϕn − u)(x)− (ϕn − u)(y)|2

|x− y|
N+2s

2

KN+2s
2

(|x− y|) dx dy

) 1
2

≤ Cε,

from which (
CN,s

2
ωN

¨
R2N

|ϕn(x)− ϕn(y)|2

|x− y|
N+2s

2

KN+2s
2

(|x− y|) dx dy

) 1
2

− Cε

≤

(
CN,s

2
ωN

¨
R2N

|u(x)− u(y)|2

|x− y|
N+2s

2

KN+2s
2

(|x− y|) dx dy

) 1
2

≤

(
CN,s

2
ωN

¨
R2N

|ϕn(x)− ϕn(y)|2

|x− y|
N+2s

2

KN+2s
2

(|x− y|) dx dy

) 1
2

+ Cε.

Exploiting the fact that (1.11) is valid for ϕn, we can pass to the limit as s→ 1− in the above

inequality to see that, for all n ≥ n0,(
2KN

ˆ
Ω
|∇ϕn|2dx

) 1
2

− Cε ≤ lim
s→1−

(
CN,s

2
ωN

¨
R2N

|u(x)− u(y)|2

|x− y|
N+2s

2

KN+2s
2

(|x− y|) dx dy

) 1
2

≤
(
2KN

ˆ
Ω
|∇ϕn|2dx

) 1
2

+ Cε.

Letting n→ +∞, it follows from (2.11) that(
2KN

ˆ
Ω
|∇u|2dx

) 1
2

− Cε ≤ lim
s→1−

(
CN,s

2
ωN

¨
R2N

|u(x)− u(y)|2

|x− y|
N+2s

2

KN+2s
2

(|x− y|) dx dy

) 1
2

≤
(
2KN

ˆ
Ω
|∇u|2dx

) 1
2

+ Cε.



10 V. AMBROSIO AND F. ESSEBEI

Because ε > 0 is arbitrary, we can conclude that (1.11) is true for all u ∈ H1
0 (Ω). □

Remark 2.4. We briefly discuss the case Ω = RN . According to [3, Theorem 2.1], we know

that for all u ∈ Hs(RN ) it holds

¨
R2N

|u(x)− u(y)|2

|x− y|
N+2s

2

KN+2s
2

(|x− y|) dx dy =
2

CN,s

ˆ
RN

[
|(−∆+ 1)

s
2u|2 − u2

]
dx

=
2

CN,s

ˆ
RN

[
(|ξ|2 + 1)s − 1

]
|Fu(ξ)|2dξ.

Then we deduce that for all u ∈ H1(RN )

lim
s→1−

(1− s)

¨
R2N

|u(x)− u(y)|2

|x− y|
N+2s

2

KN+2s
2

(|x− y|) dx dy

= lim
s→1−

2(1− s)

CN,s

ˆ
RN

[
(|ξ|2 + 1)s − 1

]
|Fu(ξ)|2dξ

= lim
s→1−

Γ(2− s)(2π)
N
2

s2s

ˆ
RN

[
(|ξ|2 + 1)s − 1

]
|Fu(ξ)|2dξ

=
(2π)

N
2

2

ˆ
RN

|ξ|2|Fu(ξ)|2dξ =: κN

ˆ
RN

|∇u|2 dx,

which is comparable with (see [6, Remark 2] or [8, Remark 4.3])

lim
s→1−

(1− s)

¨
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy = KN

ˆ
RN

|∇u|2 dx .

On the other hand, we have the following asymptotic behavior as s→ 0+:

lim
s→0+

s

¨
R2N

|u(x)− u(y)|2

|x− y|
N+2s

2

KN+2s
2

(|x− y|) dx dy

= lim
s→0+

2s

CN,s

ˆ
RN

[
(|ξ|2 + 1)s − 1

]
|Fu(ξ)|2 dξ

= lim
s→0+

Γ(2− s)2
N
2
−sπ

N
2

1− s

ˆ
RN

[
(|ξ|2 + 1)s − 1

]
|Fu(ξ)|2 dξ

= (2π)
N
2 · 0 = 0,

which is completely different from (see [12, Theorem 3] or [8, Remark 4.3])

lim
s→0+

s

¨
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy = ωN−1

ˆ
RN

|u|2 dx .

Roughly speaking, this phenomenon is due to the fact that (−∆ + 1)su − u → 0 as s → 0+

while (−∆)su→ u as s→ 0+.
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[3] V. Ambrosio, On the fractional relativistic Schrödinger operator, J. Differential Equations 308 (2022),

327–368.

[4] V.Ambrosio, H.Bueno, A.H.Medeiros, G.A.Pereira, On the convergence of the fractional relativistic

Schrödinger operator, submitted.

[5] N.Aronszajn, K.T.Smith, Theory of Bessel potentials. I, Ann. Inst. Fourier (Grenoble) 11 (1961), 385–

475.

[6] J.Bourgain, H.Brezis, P.Mironescu, Another look at Sobolev spaces, Optimal control and partial differen-

tial equations, 439–455, IOS, Amsterdam, 2001.

[7] R.Carmona, W.C.Masters, B.Simon, Relativistic Schrödinger operators: Asymptotic behavior of the

eigenfunctions, J. Func. Anal 91 (1990), 117–142.

[8] E.Di Nezza, G.Palatucci, E.Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math.

136 (2012), no. 5, 521–573.
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