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1. Introduction

The purpose of this paper is to study the Γ-limits of sequences of integral functionals of
the form

Ef,g(u,A) :=

∫
A

f(x,∇u)dx+

∫
A

f∞
(
x,

dDcu

d|Dcu|
)
d|Dcu|+

∫
A∩Ju

g(x, [u], νu)dHd−1, (1.1)

defined for all bounded open subsets A of Rd , d ≥ 1, and for all functions u in a suitable
function space contained in the space GBV (A) of generalized functions with bounded vari-
ation on A , for which we refer to [1, 2]. More precisely, we shall assume that u belongs
to the space GBV?(A) introduced in [8]. Hereafter ∇u is the approximate gradient of u ,
Dcu is the Cantor part of the distributional gradient Du of u when u ∈ BV (A), and a
suitable measure that extends this notion when u ∈ GBV?(A), |Dcu| is the variation of the

measure Dcu , dDcu
d|Dcu| is the Radon-Nykodim derivative of Dcu with respect to |Dcu| , Ju

is the jump set of u , [u] denotes the amplitude of the jump, νu is the approximate unit
normal to Ju , and Hd−1 is the Hausdorff measure of dimension d− 1.

We assume that f(x, ξ) has linear growth with respect to ξ (see Definition 3.6) and that
f∞ is its recession function with respect to ξ (see Definition 3.8). As for the function g ,
we assume that it is bounded and satisfies the inequalities c|ζ| ≤ g(x, ζ, ν) ≤ C|ζ| when |ζ|
is small, for suitable constants 0 < c < C (see Definition 3.7). These hypotheses on g are
natural in cohesive models in fracture mechanics, as for instance the Dugdale model [10],
(see also [5]) where g(ζ) = min{c|ζ|, κ} .

The boundedness of g is the main difference with respect to the paper [6], where the
inequalities c|ζ| ≤ g(x, ζ, ν) ≤ C|ζ| are assumed to hold for every ζ ∈ R . Thanks to this
hypothesis, in [6] the problem is studied in the space BV (A). On the contrary, when g is
bounded the functional Ef,g(u,A) does not control the norm of u in BV (A), because there
is no control on the amplitude of the jump. As a consequence, the Γ-limit of a sequence
of functionals of the form (1.1) can be finite also out of BV (A). This forces us to study
the problem in GBV?(A) and to consider the topology of convergence in measure as the
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underlying topology for Γ-convergence, since a bound on Ef,g(u,A) provides compactness
only in this topology.

We introduce a class F of volume integrands f (see Definition 3.6) and a class G of
bounded surface integrands g (see Definition 3.7), and study the properties of Γ-limits of
sequences Efk,gk with fk ∈ F and gk ∈ G . In particular, we prove that if Efk,gk(·, A)
Γ-converges to E(·, A) for every bounded open set A , then the natural extension of E to
Borel sets satisfies the following property (see Theorem 3.16 and Remark 4.2): for every
bounded open set A and every u ∈ GBV?(A) the set function B 7→ E(u,B) is a measure
on the Borel subsets of A , that can be decomposed as sum of three measures:

E(u,B) = Ea(u,B) + Ec(u,B) + Ej(u,B) ,

where Ea(u, ·) is absolutely continuous with respect to the Lebesgue measure Ld , Ec(u, ·)
is absolutely continuous with respect to |Dcu| , and Ej(u, ·) is absolutely continuous with
respect to the restriction to Ju of the Hausdorff measure Hd−1 . Moreover, (see Theorems
3.16 and 6.3) we prove that there exist a function f ∈ F and a function g ∈ G such that
for every bounded open set A we have

Ea(u,B) =

∫
B

f(x,∇u)dx and Ej(u,B) =

∫
B∩Ju

g(x, [u], νu)dHd−1 (1.2)

for every u ∈ GBV?(A) and every Borel subset B of A . As for the Cantor part, we have
the integral representation

Ec(u,B) =

∫
B

f∞
(
x,

dDcu

d|Dcu|
)
d|Dcu|

under an additional continuity assumption of E with respect to translations (see Theo-
rem 6.7).

Since the Γ-convergence considered in this paper refers to the topology of convergence in
measure, it is convenient to extend the functionals introduced in (1.1) to functionals, still
denoted by Ef,g (see Definition 3.10), defined for every measurable function u : Rd → R
and for every Borel set B ⊂ Rd in such a way that for every u the set function Ef,g(u, ·) is
a measure on the Borel σ -algebra of Rd , and Ef,g(u,A) = +∞ if A is a bounded open set
in Rd and u|A /∈ GBV?(A).

To prove the results of our paper we introduce (see Definition 3.1) a class E of functionals,
defined for every measurable function u on Rd and every Borel set B ⊂ Rd , which contains
all functionals Ef,g with f ∈ F and g ∈ G . All functionals E ∈ E are local, i.e., if A is a
bounded open set and u = v Ld -a.e. on A , then E(u,A) = E(v,A). Moreover, for every u
the set function E(u, ·) is a Borel measure on the Borel σ -algebra of Rd .

We prove the following compactness result (see Theorem 3.16): if Ek is a sequence in E ,
then there exists a subsequence, not relabelled, and a functional E ∈ E such that Ek(·, A)
Γ-converges to E(·, A) for every bounded open set A ⊂ Rd .

Since, by definition, u ∈ GBV?(A) if and only if the truncations of u belong to BV (A)
and satisfy suitable estimates, in order to reduce our problem to BV (A) it is crucial that
the definition of E implies that for every E ∈ E we have careful estimates on the differ-
ence between the values of E on u and on its truncations (see (g) in Definition 3.1 and
Remark 3.4).

The main difficulty in the proof of the compactness result is to show that for the limit
functional E the set function E(u, ·) is a Borel measure for every u . Thanks to the estimates
mentioned above this is done first for bounded BV functions and then extended to arbitrary
functions. Finally, the decomposition E(u,B) = Ea(u,B) +Ec(u,B) +Ej(u,B) for E ∈ E
follows from the upper bounds in the definition of E .

A second result of our paper concerns the integral representation of functionals in E
(see Theorem 6.3). We prove that if E ∈ E and for every bounded open set A ⊂ Rd the
functional E(·, A) is lower semicontinuous with respect to convergence in measure, then
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there exist two functions, f ∈ F and g ∈ G , such that (1.2) holds. Moreover, we show
that for every x ∈ Rd we can determine f(x, ξ) and g(x, ζ, ν) by considering the minimum
values of E on small cubes centered at x , with suitable boundary conditions depending on
ξ , ζ , and ν , and taking the limits, after suitable rescalings, as the size of the cubes tends
to 0 (see Definition 4.12 and Theorem 6.3).

These compactness and integral representation results, together with the characterisation
of f and g , will be applied in a future work to the study of stochastic homogenisation
problems for this class of free discontinuity functionals.

The integral representation result (1.2) is well-known in BV (A), under the additional
assumption that there exist two positive constants c and C such that

c|Du|(A) ≤ E(u,A) ≤ C(Ld(A) + |Du|(A))

for every bounded open set A ⊂ Rd and every u ∈ BV (A), see [4]. Since the functions g ∈ G
are bounded, the functional Ef,g cannot satisfy this estimate, and hence our definition of
the class E cannot imply such a condition. To obtain the integral representation result for
E ∈ E we first introduce for every ε > 0 the functional Eε defined by

Eε(u,A) = E(u,A) + ε|Du|(A)

for every bounded open set A and every u ∈ BV (A). From the results in [4] we deduce
that for every bounded open set A we have

Eaε (u,B) =

∫
B

fε(x,∇u)dx and Ejε(u,B) =

∫
B∩Ju

gε(x, [u], νu)dHd−1

for every u ∈ BV (A) and every Borel subset B of A (see Theorem 6.1). Taking the limit
as ε→ 0+ we get (1.2) for every u ∈ BV (A). The extension to GBV?(A) can be obtained
using the estimates on the difference between the values of E on u and on its truncations.

Thanks to the characterisation of fε and gε given in [4], the integrands f and g can be
obtained as limits of rescaled minimum values of Eε on small cubes, as the size of the cubes
and the parameter ε tend to zero. To prove that f and g can be obtained directly as limits
of rescaled minimum values of E on small cubes we use a technical result (see Lemma 4.16),
which allows us to estimate of the L∞ -norm of suitable quasi-minimisers of the minimum
problems for E .

The characterisation of the pointwise values of f and g by means of minimum problems
on small cubes is also used to prove that f and g satisfy the inequalities that define F and
G , respectively (see Theorem 5.1).

The result for the Cantor part, under the additional assumption of continuity with respect
to translations, is obtained using the same line of proof (see Theorem 6.7).

In the last part the paper we fix a bounded open set Ω ⊂ Rd and we study the convergence
of minimum values and of quasi-minimisers of some minimum problems in Ω for functionals
in E , under the assumption of Γ-convergence. The first one concerns

min
u∈GBV?(Ω)

(
Ef,g(u,Ω) +

∫
Ω

ψ(x, u)dx
)
,

where f ∈ F , g ∈ G , and ψ : Ω× R→ R is a Carathéodory function satisfying

a1|s|p − a2 ≤ ψ(x, s) ≤ a3|s|p + a4 for Ld-a.e. in Ω and every s ∈ R (1.3)

for some p ≥ 1, a1 > 0, a2 ≥ 0, a3 > 0, and a4 ≥ 0. We prove (see Theorem 7.1) that
the Γ-convergence of Efk,gk(·,Ω) to Ef,g(·,Ω) implies the convergence of the corresponding
minimum values and, up to a subsequence, the convergence in Lp(Ω) of the quasi-minimisers
to a minimiser of the limit problem.

When Ω has a Lipschitz boundary and fk ∈ F and gk ∈ G are two given sequences,
we also consider the following weak formulation of the minimum problems with Dirichlet
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boundary condition :

min
u∈GBV?(Ω)

(
Efk,gk(u,Ω) + c̃

∫
∂Ω

|trΩu− ϕ| ∧ 1dHd−1
)
, (1.4)

where c̃ is a positive constant and ϕ ∈ L1(∂Ω). To determine the limit problem we introduce

the functionals Ẽk defined by

Ẽk(u,A) := Ef,g(u,A ∩ Ω) + c̃
(∫

A\Ω
|∇u|dx+ |Dcu|(A \ Ω) +

∫
(A∩Ju)\Ω

|[u]| ∧ 1dHd−1
)

and we assume that there exists Ê ∈ E such that Ẽk(·, A) Γ-converge to Ê(·, A). By the
integral representation results previously mentioned, there exists ĝ ∈ G such that for every
bounded open set A ⊂ Rd

Êj(u,B) =

∫
B∩∂Ω∩Ju

ĝ(x, [u], νu)dHd−1

for every u ∈ GBV?(A) and every Borel subset B of A . Under an additional assumption
on gk (see (7.43)), which is always satisfied when gk is even with respect to ζ , we prove
that the limit problem of (1.4) is

min
u∈GBV?(Ω)

(
Ê(u,Ω) +

∫
∂Ω

ĝ(x, ϕ− trΩu, νΩ)dHd−1
)
, (1.5)

where νΩ is the outer unit normal to Ω. More precisely (see Corollary 7.15), we prove
that the minimum values of (1.4) converge to the minimum value of (1.5) and that, up to
a subsequence, we can construct a sequence of quasi-minimisers of (1.4) which converges in
measure to a minimiser of (1.5).

2. Notation and preliminaries

We begin by introducing some notation.

(a) Throughout this paper d ≥ 1 is fixed integer. The Euclidean norm in Rd is denoted

by | · | . We set Sd−1 := {ν ∈ Rd : |ν| = 1} and Sd−1
± := {ν ∈ Sd−1 : ±νi(ν) > 0} ,

where i(ν) is the largest i ∈ {1, . . . , d} such that νi 6= 0. Note that Sd−1 =

Sd−1
+ ∪ Sd−1

− .

(b) Given an open set A ⊂ Rd , let A(A) be the collection of all open subsets of A and
let Ac(A) := {A′ ∈ A(A) : A′ ⊂⊂ A} , where A′ ⊂⊂ A means that A′ is relatively
compact in A . Given a Borel set B ⊂ Rd , B(B) denotes the σ -algebra of all Borel
measurable subsets of B .

(c) For every x ∈ Rd and ρ > 0 let Q(x, ρ) := {y ∈ Rd : |(y−x)·ei| < ρ/2, for every i =
1, . . . , d} , where (ei)i=1,...,d is the canonical basis in Rd , and · denotes the scalar
product.

(d) For every ν ∈ Sd−1 we fix a rotation Rν : Rd → Rd such that Rν(ed) = ν . We
assume that Red is the identity, that the restrictions of the function ν 7→ Rν to the

sets Sd−1
± are continuous, and that Rν(Q(0, ρ)) = R−ν(Q(0, ρ)) for every ν ∈ Sd−1

and every ρ > 0.
(e) For every λ > 0, ν ∈ Sd−1 , x ∈ Rd , and ρ > 0 let Qλν (x, ρ) be the rectangle defined

by

Qλν (x, ρ) := x+Rν((−λρ2 ,
λρ
2 )d−1 × (−ρ2 ,

ρ
2 )) . (2.1)

(f) For every x ∈ Rd , ξ ∈ Rd , ζ ∈ R , ν ∈ Sd−1 we define the functions `ξ : Rd → R
and ux,ζ,ν : Rd → R by

`ξ(y) := ξ · y ,

ux,ζ,ν(y) :=

{
ζ if (y − x) · ν ≥ 0 ,

0 if (y − x) · ν < 0 ;
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moreover, we set Πν
x = {y ∈ Rd : (y − x) · ν = 0} .

(g) Given A ∈ A(Rd) and an Ld -measurable function u : A → R , we say that a ∈ R
is the approximate limit of u as y → x ∈ A if for every neighbourhood U of a we
have

lim
ρ→0+

Ld({y ∈ A ∩Q(x, ρ) : u(y) /∈ U})
ρd

= 0 ;

the same definition is meaningful also if x ∈ ∂A provided limρ→0+
Ld(A∩Q(x,ρ))

ρd
> 0 ;

moreover, the set of points x ∈ A where the approximate limit ũ(x) exists and is
finite is a Borel subset of A , and the function x 7→ ũ(x) is a Borel function defined
on it; we say that ξ ∈ Rd is the approximate gradient of u at x if the approximate

limit of u(y)−u(x)−ξ·(y−x)
|y−x| as y → x is equal to 0.

(h) Given A ∈ A(Rd) and an Ld -measurable function u : A→ R , the jump set Ju is the
set of all points x ∈ A for which there exist u+(x), u−(x) ∈ R , with u+(x) 6= u−(x),
and νu(x) ∈ Sd−1 such that u±(x) is the approximate limit as y → x of the
restriction of u to the set {y ∈ A : ±(y − x) · νu(x) > 0} . It is easy to see that
the triple (u+(x), u−(x), νu(x)) is uniquely defined up to a swap of the first two
terms and a change of sign in the third one. For every x ∈ Ju we set [u](x) :=
u+(x) − u−(x). It can be proved that Ju is a Borel set and that, if we choose νu
so that νu(x) ∈ Sd−1

+ for every x ∈ Ju , then the functions u+, u−, [u] : Ju → R and

νu : Ju → Sd−1 are Borel functions.
(i) For every A ∈ A(Rd) and u ∈ BV (A) let Du be the distributional gradient of u ,

which can be decomposed as the sum of three Rd -valued measures:

Du = Dau+Dcu+Dju ,

where Dau is absolutely continuous with respect to the Lebesgue measure Ld , Dcu
is singular with respect to the Lebesgue measure and vanishes on all B ∈ B(A)
with Hd−1(B) < +∞ , and Dju is concentrated on the jump set Ju of u . The
approximate gradient of u at x exists for Ld -a.e. x ∈ A and is denoted by ∇u(x);
it is known that the function ∇u coincides Ld -a.e. in A with the density of Dau
with respect to Ld . Moreover, it is known that Dju = [u]νuHd−1 Ju , where for
every measure µ the measure µ E is defined by µ E(B) := µ(E ∩B). For these
and related fine properties of BV functions we refer to [2].

Given B ∈ B(Rd), u : B → R = R∪{+∞,−∞} , and m > 0 the truncation u(m) of u is
defined as

u(m)(x) := (u(x) ∧m) ∨ (−m) ,

where a∧b and a∨b denote the minimum and the maximum between a and b , respectively.
Let us now recall the definition of GBV?(A) introduced in [8, Definition 3.1].

Definition 2.1. Given A ∈ Ac(Rd), the space GBV?(A) is defined as the space of functions
u : A→ R such that u(m) ∈ BV (A) for every m > 0 and

sup
m>0

(∫
A

|∇u(m)|dx+ |Dcu(m)|(A) +

∫
J
u(m)

|[u(m)]| ∧ 1dHd−1
)
< +∞ .

It follows immediately from the definition that GBV?(A)∩L∞(A) ⊂ BV (A) ⊂ GBV?(A)
⊂ GBV (A), where the last space is defined in [2, Definition 4.26]. For the reader’s conve-
nience in the following theorem we summarize the main properties of GBV? functions.

Theorem 2.2. Let A ∈ Ac(Rd) and u ∈ GBV?(A) . Then the following properties hold:

(a) the approximate limit ũ(x) of u as y → x is finite for Hd−1 -a.e. x ∈ A \ Ju ;
moreover, u+(x) and u−(x) are finite for Hd−1 -a.e. x ∈ Ju ;
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(b) there exists a function ∇u ∈ L1(A;Rd) such that for Ld -a.e. x ∈ A the vector
∇u(x) is the approximate gradient of u at x ; moreover ∇u(x) = ∇u(m)(x) for
every m > 0 and Ld -a.e. x ∈ {|u| ≤ m} ;

(c) there exists a unique Rd -valued Radon measure on A , denoted by Dcu , such that
for every m > 0 Dcu(B) = Dcu(m)(B) for every Borel set B ⊂ {x ∈ A \ Ju :
ũ(x) exists and |ũ(x)| ≤ m} and Dcu(B) = 0 for every Borel set B such that
Hd−1(B \ Ju) = 0 ; moreover, for every B ∈ B(A) we have

Dcu(m)(B)→ Dcu(B) as m→ +∞ , (2.2)

lim
m→+∞

|Dcu(m)|(B) = sup
m>0
|Dcu(m)|(B) = |Dcu|(B) ; (2.3)

finally, Dcu is singular with respect to the Lebesgue measure Ld and Dcu(B) = 0
for every B ∈ B(A) with Hd−1(B) < +∞ ;

(d) for every m > 0 we have Ju(m) ⊂ Ju up to a set of Hd−1 -measure zero and
|[u(m)]| ≤ |[u]| Hd−1 -a.e. on Ju(m) ∩ Ju ; moreover, for Hd−1 -a.e. x ∈ Ju , there
exists mx ∈ N such that x ∈ Ju(m) for every m ∈ N with m ≥ mx and [u(m)](x)→
[u](x) as m→ +∞ with m ∈ N ; finally, Hd−1 Ju is σ -finite;

(e) if, in addition, A has Lipschitz boundary, then for Hd−1 -a.e. x ∈ ∂A the approxi-
mate limit of u at x exists and is finite; its value is denoted by (trAu)(x) and the
function trAu , Hd−1 -a.e. defined on ∂A , is called the trace of u on ∂A .

Proof. Property (a) is proved in [8, Theorem 3.8]. The properties in (b) are proved in [8,
Proposition 2.6 (b) and Proposition 3.3]. The properties in (c) can be found in [8, Theorem
2.7 and Proposition 2.9], except for the last one, which follows from (2.2), (2.3), and the
analogous property for BV functions. The properties in (d) are proved in [8, Proposition
2.6 (c)] except for the last one, which is a consequence of the previous properties and the
corresponding property for BV functions.

To prove (e) we fix A′ ∈ Ac(Rd) with A ⊂⊂ A′ and consider the function v : A′ → R
defined by v(x) = u(x), if x ∈ A , and v(x) = 0, if x ∈ A′ \ A . Let ∂rA denote the set of
such points x ∈ ∂A where the outer unit normal vector νA(x) is well-defined. This is the
unique unit vector satisfying

Ld(A ∩ {y ∈ Bρ(x) : (y − x) · νA(x) > 0})
ρd

→ 0 (2.4)

Ld({y ∈ Bρ(x) : (y − x) · νA(x) < 0} \A)

ρd
→ 0 (2.5)

as ρ→ 0+. Since A has Lipschitz boundary, we have Hd−1(∂A\∂rA) = 0. To conclude the
proof it is enough to prove that for Hd−1 -a.e. x ∈ ∂rA∩Jv and for Hd−1 -a.e. x ∈ ∂rA \Jv
the approximate limit of u at x exists.

By (a) for Hd−1 -a.e. x ∈ ∂rA∩ Jv there exist v+(x), v−(x) in R , with v+(x) 6= v−(x),
and νv(x) ∈ Sd−1 such that v±(x) are the approximate limits of v as y → x in {y ∈
A′ : ±(y − x) · νv(x) > 0} . This implies that νv(x) = ±νA(x). Indeed, otherwise there
would exist two open cones C+ and C− with vertex x such that A ∩ (C± ∩ Bρ(x)) = Ø
for ρ > 0 small enough, and C± ⊂ {y ∈ Rd : ±(y − x) · νv(x) > 0} . Since v = 0 on
C± ∩Bρ(x) ⊂ A′ for ρ > 0 small enough, we deduce that v±(x) = 0, which contradicts the
fact that v+(x) 6= v−(x). Hence we may assume that νv(x) = −νA(x). Since, by (2.4) and
(2.5), the symmetric difference between A and {y ∈ A′ : (y − x) · νv(x) > 0} has density
zero at x , we have that v+(x) is the approximate limit at x of the restriction of v to A ,
which shows that v+(x) is the approximate limit of u at x .

By (a) for Hd−1 -a.e. x ∈ ∂rA \ Jv there exist the approximate limit of v at x . Since u
is a restriction of v this implies the existence of the approximate limit of u at x . �
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We now present some properties of the function space GBV?(A), which will be used in
the sequel.

Theorem 2.3. Let A ∈ Ac(Rd) . Then the following properties hold:

(a) GBV?(A) is a vector space;
(b) GBV?(A) is a lattice, i.e., u, v ∈ GBV?(A) implies u ∨ v, u ∧ v ∈ GBV?(A) ;
(c) if u ∈ GBV?(A) , w ∈ BV (A) , and m > 0 , then (u ∨ (w −m)) ∧ (w + m) belongs

to BV (A) .

Proof. Property (a) is proved in [8, Theorem 3.9].
To prove (b) we fix u and v ∈ GBV?(A). For every m > 0 we have (u ∨ v)(m) =

u(m) ∨ v(m) . We claim that this implies

|D((u ∨ v)(m))|(B) ≤ |Du(m)|(B) + |Dv(m)|(B) (2.6)

for every B ∈ B(A). It is enough to prove (2.6) when B is open. In this case the inequality is
trivial if u(m) and v(m) belong to W 1,1(A) and follows by approximation in the general case.
We conclude that (2.6) holds for every B ∈ B(A). This implies that |Da((u ∨ v)(m))|(B) ≤
|Dau(m)|(B)+ |Dav(m)|(B) and |Dc((u∨v)(m))|(B) ≤ |Dcu(m)|(B)+ |Dcv(m)|(B) for every
B ∈ B(A). Hence |∇(u ∨ v)(m)| ≤ |∇u(m)| + |∇v(m)| Ld -a.e. in A . Moreover, since
|a∨b−c∨d| ≤ |a−c|+|b−d| for every a, b, c, d ∈ R , we have |[(u∨v)(m)]| ≤ |[u(m)]|+|[v(m)]| .
These inequalities imply that∫

A

|∇(u ∨ v)(m)|dx+ |Dc(u ∨ v)(m)|(A) +

∫
J

(u∨v)(m)

|[(u ∨ v)(m)]| ∧ 1dHd−1

≤
∫
A

|∇u(m)|dx+ |Dcu(m)|(A) +

∫
J
u(m)

|[u(m)]| ∧ 1dHd−1

+

∫
A

|∇v(m)|dx+ |Dcv(m)|(A) +

∫
J
v(m)

|[v(m)]| ∧ 1dHd−1

for every m > 0. The conclusion u ∨ v ∈ GBV?(A) follows now from Definition 2.1. The
same arguments hold for u ∧ v .

To prove (c) it is enough to observe that (u∨ (w−m))∧ (w+m) = w+ (u−w)(m) . The
conclusion now follows from (a) and from the definition of GBV?(A). �

If u, v ∈ GBV?(A) coincide on an open set U ⊂ A , then their approximate gradients and
the measures Dcu and Dcv coincide on U . The following lemma can be considered as an
extension of this property to arbitrary Borel subsets of A .

Lemma 2.4. Let A ∈ Ac(Rd) , let u, v ∈ GBV?(A) , and let E ∈ B(A) with E ∩ (Ju ∪
Jv) = Ø . Suppose that ũ = ṽ Hd−1 -a.e. in E . Then ∇u = ∇v Ld -a.e. in E and
Dcu(B) = Dcv(B) for every Borel set B ⊂ E .

Proof. Let w := u − v . By [8, Theorem 3.9] we have that w ∈ GBV?(A), E ∩ Jw = Ø,
and w̃ = 0 Hd−1 -a.e. in E . For every m > 0 we have that w(m) ∈ BV (A) and since

w̃(m) = w̃(m) (see, e.g., [8, (2.2)]), we conclude that w̃(m) = 0 Hd−1 -a.e. in E . By [8,
Lemma 2.3] we obtain ∇w(m) = 0 Ld -a.e. in E and Dcw(m)(B) = 0 for every Borel set
B ⊂ E . Passing to the limit as m → +∞ and using (b) and (c) in Theorem 2.2 we
obtain that ∇w = 0 Ld -a.e. in E and Dcw(B) = 0 for every Borel set B ⊂ E . Using
[8, Proposition 3.10] we conclude that ∇u = ∇v Ld -a.e. in E and Dcu(B) = Dcv(B) for
every Borel set B ⊂ E . �

In the following definition we introduce a functional that will play an important role in
this paper.
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Definition 2.5. The functional V : L0(Rd) × B(Rd) → [0,+∞] is defined in the following
way. For every A ∈ Ac(Rd) we set

V (u,A) :=

∫
A

|∇u|dx+ |Dcu|(A) +

∫
A∩Ju

|[u]| ∧ 1dHd−1 if u|A ∈ GBV?(A) , (2.7)

and V (u,A) := +∞ otherwise; the definition is then extended to A(Rd) by setting

V (u,A) := sup{V (u,A′) : A′ ∈ Ac(Rd) ∩ A(A)} for A ∈ A(Rd) , (2.8)

and to B(Rd) by setting

V (u,B) := inf{V (u,A) : A ∈ A(Rd), B ⊂ A} for B ∈ B(Rd) . (2.9)

Remark 2.6. It follows immediately from the definition that if A ∈ A(Rd) and u|A ∈
BV (A) then V (u,B) ≤ |Du|(B) for every B ∈ B(A).

In the following remark we reformulate the definition of GBV?(A) in terms of the be-
haviour of V on the truncations u(m) .

Remark 2.7. Let u ∈ L0(Rd) and A ∈ Ac(Rd). Then u|A ∈ GBV?(A) if and only if
supm>0 V (u(m), A) < +∞ . In this case Theorem 2.2 gives V (u,A) = supm>0 V (u(m), A).

The following proposition shows that the set function V (u, ·) is inner regular in A(Rd).

Proposition 2.8. Let u ∈ L0(Rd) and A ∈ A(Rd) . Then

V (u,A) = sup
A′∈Ac(A)

V (u,A′) . (2.10)

Proof. By (2.8) it suffices to prove (2.10) when A ∈ Ac(Rd). By monotonicity it is enough
to prove that

V (u,A) ≤ sup
A′∈Ac(A)

V (u,A′) (2.11)

when the right-hand side S of (2.11) is finite. For every m > 0 and A′ ∈ Ac(A), by
Remark 2.7 we have∫

A′
|∇u(m)|dx+ |Dcu(m)|(A′) +

∫
A′∩J

u(m)

|[u(m)]| ∧ 1dHd−1 = V (u(m), A′) ≤ S , (2.12)

hence u(m) ∈ BV (A′). This implies that u(m) ∈ BVloc(A). To prove that u(m) ∈ BV (A)
we have to estimate the jump part. Let J1

u(m) := {x ∈ Ju(m) : |[u(m)](x)| ≥ 1} . Then for
every A′ ∈ Ac(A)∫

A′∩J
u(m)

|[u(m)]|dHd−1 =

∫
A′∩J1

u(m)

|[u(m)]|dHd−1 +

∫
A′∩(J

u(m)\J1

u(m)
)

|[u(m)]|dHd−1

≤ 2mHd−1(A′ ∩ J1
u(m)) +

∫
A′∩(J

u(m)\J1

u(m)
)

|[u(m)]| ∧ 1dHd−1

≤ (2m+ 1)

∫
A′∩J

u(m)

|[u(m)]| ∧ 1dHd−1 ≤ (2m+ 1)S ,

where in the last inequality we used (2.12). Taking into account the other terms in (2.12)
we obtain |Du(m)|(A′) ≤ (2m+ 2)S .

Passing to the supremum for A′ ∈ Ac(A) we deduce that |Du(m)|(A) ≤ (2m+2)S , hence
u(m) ∈ BV (A) and

V (u(m), A) =

∫
A

|∇u(m)|dx+ |Dcu(m)|(A) +

∫
A∩J

u(m)

|[u(m)]| ∧ 1dHd−1 ≤ S .

Since m > 0 is arbitrary, by Remark 2.7 we obtain that u ∈ GBV?(A) and that (2.11)
holds. �
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Remark 2.9. For every A ∈ A(Rd) the functional u 7→ V (u,A) is lower semicontinuous in
L0(Rd). This is an immediate conseguence of [3, Theorem 2.1], see also [8, Theorem 6.1].

3. A Γ-compact class of local functionals related to GBV?

Throughout the paper we fix five constants c1, . . . , c5 ≥ 0 and a bounded continuous
function σ : [0,+∞)→ [0,+∞), such that

0 < c1 ≤ 1 ≤ c3 ≤ c5 , (3.1)

σ(0) = 0 and σ(t) ≥ c3(t ∧ 1) for every t ≥ 0 . (3.2)

In the following definition we introduce the class of functionals we are interested in.

Definition 3.1. Let E denote the class of functionals E : L0(Rd)× B(Rd)→ [0,+∞] that
satisfy the following properties:

(a) E is local on A(Rd), i.e., E(u,A) = E(v,A) if A ∈ A(Rd), u, v ∈ L0(Rd), and
u = v Ld -a.e. in A ;

(b) for every u ∈ L0(Rd) the function E(u, ·) : B(Rd)→ [0,+∞] is a nonnegative Borel
measure and

E(u,B) = inf{E(u,A) : A ∈ A(Rd), B ⊂ A} (3.3)

for every B ∈ B(Rd);
(c1) for every u ∈ L0(Rd) and B ∈ B(Rd) we have

c1V (u,B)− c2Ld(B) ≤ E(u,B) ; (3.4)

(c2) for every u ∈ L0(Rd) and B ∈ B(Rd) we have

E(u,B) ≤ c3V (u,B) + c4Ld(B) ; (3.5)

(d) for every u ∈ L0(Rd), B ∈ B(Rd), and a ∈ R we have

E(u+ a,B) = E(u,B) ; (3.6)

(e) for every u ∈ L0(Rd), B ∈ B(Rd), and ξ ∈ Rd we have

E(u+ `ξ, B) ≤ E(u,B) + c5|ξ|Ld(B) ; (3.7)

(f) for every u ∈ L0(Rd), B ∈ B(Rd), x ∈ Rd , ζ ∈ R , and ν ∈ Sd−1 we have

E(u+ ux,ζ,ν , B) ≤ E(u,B) + σ(|ζ|)Hd−1(B ∩Πν
x) ; (3.8)

(g) for every u ∈ L0(Rd), B ∈ B(Rd), and w1, w2 ∈ W 1,1
loc (Rd), with w1 ≤ w2 Ld -a.e.

in Rd , we have

E((u ∨ w1) ∧ w2, B) ≤ E(u,B) + c3

∫
Bu12

|∇w1| ∨ |∇w2|dx+ c4Ld(Bu12) , (3.9)

where Bu12 = {x ∈ B : u(x) /∈ [w1(x), w2(x)]} .

The following remarks highlight some properties of functionals in E that will be used in
the sequel.

Remark 3.2. Let E ∈ E , u, v ∈ L0(Rd), A ∈ A(Rd), and B ∈ B(A). If u = v Ld -a.e. in
A , then E(u,B) = E(v,B). Indeed,

E(u,B) = inf
A′∈A(Rd)
B⊂A′⊂A

E(u,A′) = inf
A′∈A(Rd)
B⊂A′⊂A

E(v,A′) = E(v,B)

where the first and the last equalities follow from (3.3), while the second one follows from
the locality property (a).

Remark 3.3. Let E ∈ E , A ∈ A(Rd), and u ∈ L0(A). For every B ∈ B(A) we can define
E(u,B) by extending u to a function v ∈ L0(Rd) and setting E(u,B) := E(v,B). The
value E(u,B) does not depend on the extension thanks to Remark 3.2.
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Remark 3.4. If m > 0 is a constant, by choosing w1 := −m and w2 := m , it follows from
(g) that for every u ∈ L0(Rd), B ∈ B(Rd), and every m > 0 we have

E(u(m), B) ≤ E(u,B) + c4Ld(B ∩ {|u| > m}) . (3.10)

Remark 3.5. By (c1), (c2), and the definition of V it follows that for every u ∈ L0(Rd)
and A ∈ Ac(Rd) we have

E(u,A) < +∞ ⇐⇒ u|A ∈ GBV?(A) .

Let us now provide a typical example of integral functionals that belong to E . To this
end we introduce two classes of functions.

Definition 3.6. Let F be the set of functions

f : Rd × Rd → [0,+∞)

that satisfy the following conditions:

(f1) f is Borel measurable;
(f2) c1|ξ| − c2 ≤ f(x, ξ) for every x ∈ Rd and every ξ ∈ Rd ;
(f3) f(x, ξ) ≤ c3|ξ|+ c4 for every x ∈ Rd and every ξ ∈ Rd ;
(f4) |f(x, ξ1)− f(x, ξ2)| ≤ c5|ξ1 − ξ2| for every x ∈ Rd and every ξ1, ξ2 ∈ Rd .

Definition 3.7. Let G be the set of functions

g : Rd × R× Sd−1 → [0,+∞)

that satisfy the following conditions:

(g1) g is Borel measurable;
(g2) c1(|ζ| ∧ 1) ≤ g(x, ζ, ν) for every x ∈ Rd , ζ ∈ R , ν ∈ Sd−1 ;
(g3) g(x, ζ, ν) ≤ c3(|ζ| ∧ 1) for every x ∈ Rd , ζ ∈ R , ν ∈ Sd−1 ;
(g4) |g(x, ζ1, ν)− g(x, ζ2, ν)| ≤ σ(|ζ1 − ζ2|) for every x ∈ Rd , ζ1, ζ2 ∈ R , ν ∈ Sd−1 ;
(g5) g(x,−ζ,−ν) = g(x, ζ, ν) for every x ∈ Rd , ζ ∈ R , ν ∈ Sd−1 ;
(g6) for every x ∈ Rd and ν ∈ Sd−1 the function ζ 7→ g(x, ζ, ν) is non-decreasing on

[0,+∞) and non-increasing on (−∞, 0].

We recall the definition of the recession function.

Definition 3.8. For every f : Rd × Rd → [0,+∞) the recession function f∞ : Rd × Rd →
[0,+∞] (with respect to ξ ) is defined by

f∞(x, ξ) := lim sup
t→+∞

f(x, tξ)

t
(3.11)

for every x ∈ Rd and every ξ ∈ Rd .

Remark 3.9. For every x ∈ Rd the function ξ 7→ f∞(x, ξ) is positively homogeneous of
degree 1. Moreover, if ξ 7→ f(x, ξ) is convex on Rd , then the upper limit in (3.11) is a limit
(see, e.g., [18, Theorem 8.5]). If f satisfies (f2) and (f3), then

c1|ξ| ≤ f∞(x, ξ) ≤ c3|ξ| for every ξ ∈ Rd , (3.12)

while if f satisfies (f4), then

|f∞(x, ξ1)− f∞(x, ξ2)| ≤ c5|ξ1 − ξ2| for every ξ1, ξ2 ∈ Rd . (3.13)

We are now in a position to introduce the integral functionals associated with the inte-
grands f ∈ F and g ∈ G .

Definition 3.10. Given f ∈ F and g ∈ G we define the functional Ef,g : L0(Rd)×B(Rd)→
[0,+∞] in the following way: if A ∈ Ac(Rd) and u|A ∈ GBV?(A) we set

Ef,g(u,A) :=

∫
A

f(x,∇u)dx+

∫
A

f∞
(
x,

dDcu

d|Dcu|
)
d|Dcu|+

∫
A∩Ju

g(x, [u], νu)dHd−1, (3.14)
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while we set Ef,g(u,A) := +∞ if u|A /∈ GBV?(A). The definition is then extended to
A(Rd) by setting

Ef,g(u,A) := sup{Ef,g(u,A′) : A′ ∈ Ac(A)} for A ∈ A(Rd) , (3.15)

and to B(Rd) by setting

Ef,g(u,B) := inf{Ef,g(u,A) : A ∈ A(Rd), B ⊂ A} for B ∈ B(Rd) . (3.16)

In the following proposition we show that the functionals Ef,g belong to E .

Proposition 3.11. Let f ∈ F and g ∈ G . Then the functional Ef,g : L0(Rd) × B(Rd) →
[0,+∞] belongs to the class E . Moreover, if A ∈ Ac(Rd) and u ∈ GBV?(A) , then

Ef,g(u,B) :=

∫
B

f(x,∇u)dx+

∫
B

f∞
(
x,

dDcu

d|Dcu|
)
d|Dcu|+

∫
B∩Ju

g(x, [u], νu)dHd−1 (3.17)

for every B ∈ B(A) , where Ef,g(u,B) is defined according to Remark 3.3.

Proof. By construction Ef,g satisfies condition (a). To prove that it satisfies condition (b)
we fix u ∈ L0(Rd) and observe that the set function Ef,g(u, ·) is increasing, subadditive,
superadditive, and inner regular on A(Rd). Therefore, by the De Giorgi-Letta criterion [9]
(see also [7, Theorem 14.23]), the extension of Ef,g(u, ·) to B(Rd) given by (3.16) is a Borel
measure.

To prove (3.17) let us fix A ∈ Ac(Rd) and u ∈ GBV?(A), and consider an arbitrary
extension v ∈ L0(Rd) of u . Then by (f3), (g3), and (3.12) we have Ef,g(v,A) < +∞ .
For every B ∈ B(A) let µ(B) be given by the right-hand side of (3.17). Then µ and
Ef,g(v, ·) are bounded nonnegative measures defined on B(A), which coincide on A(A) by
the definition of Ef,g . We conclude that they coincide on B(A), which shows that (3.17)
holds for every B ∈ B(A).

By (f2), (f3), (g2), (g3), and (3.12) for every u ∈ L0(Rd) and A ∈ Ac(Rd) we have that

c1V (u,A)− c2Ld(A) ≤ Ef,g(u,A) , (3.18)

Ef,g(u,A) ≤ c3V (u,A) + c4Ld(A) . (3.19)

These inequalities are extended to Borel sets by (2.8), (2.9), (3.15), and (3.16), hence Ef,g

satisfies (c1) and (c2). Condition (d) can be easily checked. Moreover, (e) and (f) follow
from (f4) and (g4), respectively.

To prove condition (g) we fix u ∈ L0(Rd) and w1, w2 ∈W 1,1
loc (Rd) with w1 ≤ w2 Ld -a.e.

in Rd . By property (b) it is enough to prove (3.9) when B is a bounded open set. Let us
fix A ∈ Ac(Rd) such that Ef,g(u,A) < +∞ . By definition we have that u|A ∈ GBV?(A).

We set v := (u ∨ w1) ∧ w2 . By Proposition 2.3 we have that v|A ∈ GBV?(A). We
observe that ∇v = ∇u Ld -a.e. in {x ∈ A : w1(x) ≤ u(x) ≤ w2(x)} , ∇v = ∇w1 Ld -a.e. in
{x ∈ A : u(x) < w1(x)} , and ∇v = ∇w2 Ld -a.e. in {x ∈ A : u(x) > w2(x)} . Therefore, by
(f3) we have that∫

A

f(x,∇v)dx ≤
∫
A

f(x,∇u)dx+ c3

∫
Au12

|∇w1| ∨ |∇w2|dx+ c4Ld(Au12) , (3.20)

where Au12 := {x ∈ A : u(x) /∈ [w1(x), w2(x)]} .

Since w1, w2 ∈W 1,1
loc (Rd), the approximate limits

w̃1(x) , w̃2(x) exist at Hd−1 -a.e. point x ∈ Rd , (3.21)

see, e.g., [11, Theorem 1 in Chapter 4.8 and Theorem 3 in Section 5.6.3]. Let B̃ := {x ∈
A : ũ(x), w̃1(x), w̃2(x) exist and are finite} and N = (A \ Ju) \ B̃ . By (g) and (h) at

the beginning of Section 2, B̃ and N are Borel sets and by Theorem 2.2 (a) we have

Hd−1(N) = 0. Let E := {x ∈ B̃ : ũ(x) ∈ [w̃1(x), w̃2(x)]} and let χE be its indicator
function defined by χE(x) = 1 if x ∈ E and χE(x) = 0 if x ∈ Rd \ E .
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Let us prove that
Dcv = χED

cu as measures on B(A) . (3.22)

Since ṽ = (ũ ∨ w̃1) ∧ w̃2 in B̃ , we have ṽ = ũ in E . Therefore, Lemma 2.4 gives that
Dcv(B) = Dcu(B) for every B ∈ B(E).

Let E1 := {x ∈ B̃ : ũ(x) < w̃1(x)} and E2 := {x ∈ B̃ : ũ(x) > w̃2(x)} . Since ṽ = w̃1

on E1 , by Lemma 2.4 we have Dcv(B) = Dcw1(B) = 0 for every B ∈ B(E1). Similarly
we have Dcv(B) = 0 for every B ∈ B(E2). By Theorem 2.2 (c) Dcv(B) = 0 for every
B ⊂ Ju ∪N , and thus the proof of (3.22) is concluded.

Since f∞(x, 0) = 0 we deduce from (3.22) that∫
A

f∞
(
x,

dDcv

d|Dcv|

)
d|Dcv| ≤

∫
A

f∞
(
x,

dDcu

d|Dcu|

)
d|Dcu| . (3.23)

We consider now the surface integral in Ef,g . If x ∈ B̃ from the equality ṽ = (ũ∨w̃1)∧w̃2

we deduce that ṽ(x) exists, hence x /∈ Jv . Therefore Jv ∩ A ⊂ A \ B̃ , and by (3.21) and
Theorem 2.2 (a) this implies that for Hd−1 -a.e. x ∈ Jv the approximate limits w̃1(x) and
w̃2(x) exist, x ∈ Ju , and we can choose νv(x) = νu(x); this leads to v+ = (u+∨w̃1)∧w̃2 and
v− = (u−∨w̃1)∧w̃2 Hd−1 -a.e. in Jv . Therefore [v] has the same sign as [u] and |[v]| ≤ |[u]|
Hd−1 -a.e. in Jv . By the monotonicity property (g6), we obtain g(x, [v], νv) ≤ g(x, [u], νu)
Hd−1 -a.e. in Jv hence∫

A∩Jv
g(x, [v], νv)dHd−1 ≤

∫
A∩Ju

g(x, [u], νu)dHd−1 . (3.24)

By (3.20), (3.23), and (3.24) we obtain

Ef,g(v,A) ≤ Ef,g(u,A) + c3

∫
Au12

|∇w1| ∨ |∇w2|dx+ c4Ld(Au12) .

This concludes the proof. �

Since Γ-limits are lower semicontinuous, it is natural to introduce the class of functionals
in E that satisfy this property, which also plays a crucial role in the integral representation.

Definition 3.12. Let Esc denote the class of functionals in E which satisfy the following
property: for every A ∈ A(Rd) the functional E(·, A) is lower semicontinuous in L0(Rd).

Remark 3.13. If E ∈ E and E(·, A) is lower semicontinuous in L0(Rd) for every A ∈
Ac(Rd), then E ∈ Esc . Indeed, for every A ∈ A(Rd) we have E(u,A) = supA′∈Ac(A)E(u,A′)

by property (b) in Definition 3.1.

Remark 3.14. Let E ∈ Esc and A ∈ A(Rd). Thanks to Remark 3.3 we can define
E(u,A) for every u ∈ BV (A) and the functional E(·, A) : BV (A) → [0,+∞) is L1(A)-
lower semicontinuous.

Remark 3.15. Taking f(x, ξ) := |ξ| and g(x, ζ, ν) := |ζ| ∧ 1 and recalling (3.1) and (3.2),
we obtain from Proposition 3.11 that the functional V : L0(Rd)×B(Rd)→ [0,+∞] belongs
to the class E . By Remark 2.9 it follows that V ∈ Esc .

We now state the main result of this section.

Theorem 3.16. Let Ek be a sequence in E . Then there exist a subsequence, not relabelled,
and a functional E ∈ Esc such that for every A ∈ Ac(Rd) the sequence Ek(·, A) Γ-converges
to E(·, A) with respect to the topology of L0(Rd) .

Proof. For every A ∈ A(Rd) let

E′(·, A) := Γ- lim inf
k→∞

Ek(·, A) and E′′(·, A) := Γ- lim sup
k→∞

Ek(·, A) , (3.25)

E′−(·, A) := sup
A′∈Ac(A)

E′(·, A′) and E′′−(·, A) := sup
A′∈Ac(A)

E′′(·, A′) , (3.26)
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where Γ-liminf and Γ-limsup are considered with respect to the topology of L0(Rd). It
is clear from the definition that for every u ∈ L0(Rd) the set functions E′(u, ·), E′′(u, ·),
E′−(u, ·), and E′′−(u, ·) are increasing with respect to set inclusion. By [7, Theorem 8.5] there

exists a subsequence, not relabelled, such that E′−(u,A) = E′′−(u,A) for every u ∈ L0(Rd)
and every A ∈ A(Rd). We define E : L0(Rd)× B(Rd)→ [0,+∞] by

E(u,A) = E′−(u,A) = E′′−(u,A) if A ∈ A(Rd) , (3.27)

E(u,B) := inf{E(u,A) : A ∈ A(Rd), B ⊂ A} if B ∈ B(Rd) . (3.28)

We want to prove that E ∈ Esc and that E(u,A) = E′(u,A) = E′′(u,A) for every
u ∈ L0(Rd) and A ∈ Ac(Rd).

By [7, Proposition 16.15] the functional E is local (property (a)). The most difficult
point in the proof is to obtain that E satisfies the measure property (b). To this end
we will use a characterization of measures introduced by De Giorgi and Letta [9] (see also
[7, Theorem 14.23]), which requires subadditivity, superadditivity, and inner regularity. In
our case superadditivity follows from [7, Proposition 16.12] and property (b) for Ek , while
inner regularity is obvious from the definition. The subadditivity will be obtained through
a sequence of technical lemmas. �

We begin with a weak form of subadditivity for E′′ for the truncated function u(m) .

Lemma 3.17. Let Ek be a sequence in E , let E′′ be defined by (3.25), let u ∈ L0(Rd) ,
and let m > 0 . Let A′, A,B ∈ Ac(Rd) with A′ ⊂⊂ A . Then

E′′(u(m), A′ ∪B) ≤ E′′(u(m), A) + E′′(u(m), B) . (3.29)

To prove the lemma we need the following results.

Lemma 3.18. Let Ek be a sequence in E , let u ∈ L∞(Rd) , let m > ‖u‖L∞(Rd) , let uk be

a sequence in L0(Rd) converging to u in L0(Rd) , and let A ∈ Ac(Rd) . Then there exists a
sequence εk → 0 such that

Ek(u
(m)
k , A) ≤ Ek(uk, A) + εk .

Proof. By (g) and Remark 3.4 we have

Ek(u
(m)
k , A) ≤ Ek(uk, A) + εk (3.30)

with εk := c4Ld(A ∩ {|uk| > m}). Since uk → u in L0(Rd) and ‖u‖L∞(Rd) < m , we
conclude that εk → 0. �

We also need the following version of the fundamental estimate commonly used to obtain
subadditivity.

Lemma 3.19. Let Ek be a sequence in E , let A′, A′′, A,B ∈ Ac(Rd) with A′ ⊂⊂ A′′ ⊂⊂ A ,
let u ∈ L1

loc(Rd) , and let vk, wk ∈ L1
loc(Rd) , converging to u in L1

loc(Rd) as k → ∞ and
such that vk|A ∈ BV (A) and wk|B ∈ BV (B) for every k . Then for every η > 0 there
exists a sequence ϕk ∈ C∞c (Rd) , with 0 ≤ ϕk ≤ 1 in Rd , suppϕk ⊂ A′′ , and ϕk = 1 in a
neighbourhood of A′ , such that, setting

uk := ϕkvk + (1− ϕk)wk ,

we have that uk → u in L1
loc(Rd) , uk|A′∪B ∈ BV (A′ ∪B) ,

uk = vk Ld-a.e. in A′ and uk = wk Ld-a.e. in B \A′′ , (3.31)

lim sup
k→∞

Ek(uk, A
′ ∪B) ≤ (1 + η) lim sup

k→∞

(
Ek(vk, A) + Ek(wk, B)

)
+ η . (3.32)
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Proof. Given n ∈ N we fix a finite family of open sets A′ ⊂⊂ A0 ⊂⊂ · · · ⊂⊂ An ⊂⊂ A′′

and for i = 1, . . . , n we fix a cut-off function ϕi between Ai−1 and Ai , i.e., ϕi ∈ C∞c (Rd)
with 0 ≤ ϕ ≤ 1, suppϕi ⊂ Ai , and ϕi = 1 in a neighbourhood of Ai−1 . For i = 1, . . . , n
and k ∈ N we set

uik := ϕivk + (1− ϕi)wk . (3.33)

Note that ϕivk ∈ BV (A) and (1 − ϕi)wk ∈ BV (B). Actually, ϕivk ∈ BV (Rd), since
suppϕi ⊂ A′′ , and (1− ϕi)wk ∈ BV (A′ ∪B), since ϕi = 1 in a neighbourhood of A′ . We
conclude that uik ∈ BV (A′ ∪B).

Using properties (a) and (b) for Ek we obtain

Ek(uik, A
′ ∪B) ≤ Ek(vk, A) + Ek(wk, B \A′) + Ek(uik, Si) , (3.34)

where Si := (Ai \Ai−1) ∩B . By (c2) we have

Ek(uik, Si) ≤ c3V (uik, Si) + c4Ld(Si)

= c3

∫
Si

|∇uik|dx+ c3|Dcuik|(Si) + c3

∫
Si∩Jui

k

|[uik]| ∧ 1dHd−1 + c4Ld(Si)

≤ c3
∫
Si

(|∇vk|+ |∇wk|+ |∇ϕi| |wk − vk|)dx+ c3|Dcvk|(Si) + c3|Dcwk|(Si)

+c3

∫
Si∩Jvk

|[vk]| ∧ 1dHd−1 + c3

∫
Si∩Jwk

|[wk]| ∧ 1dHd−1 + c4Ld(Si)

= c3V (vk, Si) + c3V (wk, Si) + c3

∫
Si

|∇ϕi| |wk − vk|dx+ c4Ld(Si) , (3.35)

where in the last inequality we used the fact that |ϕi[vk] + (1− ϕi)[wk]| ≤ |[vk]|+ |[wk]| .
From (c1) and the previous inequality it follows that

Ek(uik, Si) ≤
c3
c1
Ek(vk, Si) +

c3
c1
Ek(wk, Si) +Mn

∫
Si

|wk − vk|dx+ CLd(Si) , (3.36)

where

Mn := c3 max
1≤i≤n

‖∇ϕi‖L∞(Rd) and C := c4 + 2c2c3/c1 .

Let S := (A′′ \A′) ∩B . Since the sets Si are pairwise disjoint, from (3.36) we get

n∑
i=1

(c3
c1
Ek(vk, Si) +

c3
c1
Ek(wk, Si) + CLd(Si)

)
≤ c3
c1
Ek(vk, S) +

c3
c1
Ek(wk, S) + CLd(S) ,

hence there exists ik ∈ {1, . . . , n} such that

c3
c1
Ek(vk, Sik) +

c3
c1
Ek(wk, Sik) + CLd(Sik) ≤ c3

nc1
Ek(vk, S) +

c3
nc1

Ek(wk, S) +
C

n
Ld(S) .

Given η > 0 we choose n such that c3
nc1

< η and C
nL

d(S) < η . For every k let ϕk = ϕik

and uk := uikk . Then (3.31) holds. By (3.36) and the previous inequalities we have

Ek(uk, Sik) ≤ ηEk(vk, S) + ηEk(wk, S) +Mn

∫
S

|wk − vk|dx+ η , (3.37)

which, together with (3.34), gives

Ek(uk, A
′ ∪B) ≤ (1 + η)

(
Ek(vk, A) + Ek(wk, B)

)
+Mn

∫
S

|wk − vk|dx+ η .

Since vk, wk → u in L1
loc(Rd), the integral term in the previous inequality tends to 0 and

taking the lim sup as k →∞ we obtain (3.32). �
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Proof of Lemma 3.17. It is not restrictive to assume that E′′(u(m), A) and E′′(u(m), B) are
finite. By the definition of Γ- lim sup there exist two sequences vk, wk ∈ L0(Rd) converging
to u(m) in L0(Rd) such that

E′′(u(m), A) = lim sup
k→∞

Ek(vk, A) and E′′(u(m), B) = lim sup
k→∞

Ek(wk, B) .

By Lemma 3.18

lim sup
k→∞

Ek(v
(2m)
k , A) ≤ E′′(u(m), A) and lim sup

k→∞
Ek(w

(2m)
k , B) ≤ E′′(u(m), B) . (3.38)

By Remark 3.5 we have v
(2m)
k |A ∈ BV (A) and w

(2m)
k |B ∈ BV (B). Since v

(2m)
k and w

(2m)
k

converge to u(m) in L1
loc(Rd), by Lemma 3.19 for every η > 0 there exists uk ∈ L1

loc(Rd)
with uk|A′∪B ∈ BV (A′ ∪B), such that uk → u(m) in L1

loc(Rd) and

lim sup
k→∞

Ek(uk, A
′ ∪B) ≤ (1 + η) lim sup

k→∞
(Ek(v

(2m)
k , A) + Ek(w

(2m)
k , B)) + η . (3.39)

By the definition of Γ- lim sup, (3.38), and (3.39) we obtain

E′′(u(m), A′ ∪B) ≤ (1 + η)
(
E′′(u(m), A) + E′′(u(m), B)

)
+ η ,

Taking the limit as η → 0+ we obtain (3.29). �

To obtain the same result without truncations we use the following lemma.

Lemma 3.20. Let Ek be a sequence in E , let E′′ be defined by (3.25), let u ∈ L0(Rd) , let

w1, w2 ∈W 1,1
loc (Rd) with w1 ≤ w2 Ld -a.e. in Rd , and let A ∈ Ac(Rd) . Then

E′′((u ∧ w1) ∨ w2, A) ≤ E′′(u,A) + c3

∫
Au12

|∇w1| ∨ |∇w2|dx+ c4Ld(Au12) , (3.40)

where Au12 := {x ∈ A : u(x) /∈ [w1(x), w2(x)]} .

Proof. It is not restrictive to assume that E′′(u,A) < +∞ , otherwise inequality (3.40) is
trivial. By the definition of Γ-limsup there exists a sequence uk in L0(Rd) with uk → u in
L0(Rd) such that

lim sup
k→∞

Ek(uk, A) ≤ E′′(u,A) . (3.41)

Passing to a subsequence, not relabelled, we may assume that uk → u Ld -a.e. in Rd . Let
vk ∈ L0(Rd) be defined by vk = (uk ∧ w1) ∨ w2 . By property (g) for Ek we have

Ek(vk, A) ≤ Ek(uk, A) + c3

∫
A
uk
12

|∇w1| ∨ |∇w2|dx+ c4Ld(Auk12 ) , (3.42)

where Auk12 := {x ∈ A : uk(x) /∈ [w1(x), w2(x)]} . Since uk → u Ld -a.e. in Rd we have that

lim sup
k→∞

χAuk12
≤ χAu12

Ld-a.e. in Rd .

By the Fatou Lemma this implies

lim sup
k→∞

(
c3

∫
A
uk
12

|∇w1|∨ |∇w2|dx+c4Ld(Auk12 )
)
≤ c3

∫
Au12

|∇w1|∨ |∇w2|dx+c4Ld(Au12) . (3.43)

On the other hand, since vk → (u ∧ w1) ∨ w2 in L0(Rd) we obtain

E′′((u ∧ w1) ∨ w2, A) ≤ lim sup
k→∞

Ek(vk, A) . (3.44)

By (3.41)-(3.44) we obtain (3.40). �

Remark 3.21. If m > 0 is a constant, by choosing w1 := −m and w2 := m , it follows
from Lemma 3.20 that for every u ∈ L0(Rd), and A ∈ Ac(Rd) we have

E′′(u(m), A) ≤ E′′(u,A) + c4Ld(A ∩ {|u| > m}) . (3.45)
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The following lemma allows us to pass to the limit when the truncation parameter m
tends to +∞ .

Lemma 3.22. Let Ek be a sequence in E , let E′′ be defined by (3.25), let u ∈ L0(Rd) ,
and let A ∈ Ac(Rd) . Then for every m > 0 we have

lim
m→+∞

E′′(u(m), A) = E′′(u,A) . (3.46)

Proof. By Remark 3.21 we have

E′′(u(m), A) ≤ E′′(u,A) + c4Ld(A ∩ {|u| > m})

for every m > 0. Hence

lim sup
m→+∞

E′′(u(m), A) ≤ E′′(u,A) .

The inequality

lim inf
m→+∞

E′′(u(m), A) ≥ E′′(u,A)

follows from the lower semicontinuity of E′′(·, A), since u(m) → u in L0(Rd) as m→ +∞ .
�

We are now able to prove a weak form of subadditivity for the functional E′′ on an
arbitrary function u ∈ L0(Rd).

Lemma 3.23. Let Ek be a sequence in E , let E′′ be defined by (3.25), let u ∈ L0(Rd) ,
and let A′, A,B ∈ Ac(Rd) with A′ ⊂⊂ A . Then

E′′(u,A′ ∪B) ≤ E′′(u,A) + E′′(u,B) . (3.47)

Proof. The conclusion follows from Lemmas 3.17 and 3.22. �

We are now in a position to obtain the subadditivity of E .

Lemma 3.24. Let Ek be a sequence in E , let E be defined by (3.27) and (3.28), let
u ∈ L0(Rd) , and let A,B ∈ A(Rd) . Then

E(u,A ∪B) ≤ E(u,A) + E(u,B) . (3.48)

Proof. Thanks to the previous lemma the result can be obtained arguing as in the proof of
[7, Lemma 18.4]. �

The following lemma proves property (c1) for E .

Lemma 3.25. Let Ek be a sequence in E , let E be defined by (3.27) and (3.28), let
u ∈ L0(Rd) , and let B ∈ B(Rd) . Then

c1V (u,B)− c2Ld(B) ≤ E(u,B) . (3.49)

Proof. By (2.9), (2.10), (3.27), and (3.28) it is enough to prove (3.49) for relatively compact
open sets. Let us fix A ∈ Ac(Rd) with E(u,A) < +∞ . By (3.27) for every A′ ∈ Ac(A) we
have E(u,A′) ≤ E(u,A) < +∞ . By (c1) for Ek and the lower semicontinuity of V (see
Lemma 2.9) we have that c1V (u,A′)−c2Ld(A′) ≤ E′(u,A′). Taking the limit as A′ ↗ A , by
(2.10) and (3.27) we obtain c1V (u,A)− c2Ld(A) ≤ E(u,A), which concludes the proof. �

The following lemma shows that for every A ∈ Ac(Rd) the sequence Ek(·, A) Γ-converges
to E(·, A) with respect to the topology of L0(Rd).

Lemma 3.26. Let Ek be a sequence in E , let E′ , E′′ , and E be defined by (3.25), (3.27),
and (3.28), let u ∈ L0(Rd) , and let A ∈ Ac(Rd) . Then E(u,A) = E′(u,A) = E′′(u,A) .
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Proof. Since E(u,A) ≤ E′(u,A) ≤ E′′(u,A), it remains to prove that E′′(u,A) ≤ E(u,A).
This inequality is trivial if E(u,A) = +∞ , therefore we assume E(u,A) < +∞ , which
implies u|A ∈ GBV?(A) by Lemma 3.25 and the definition of V . Given ε > 0 we fix a
compact set K ⊂ A such that

c3V (u,A \K) + c4Ld(A \K) < ε . (3.50)

Since the Γ- lim sup is smaller than the pointwise lim sup (see [7, Proposition 5.1]), from
(c2) for Ek we obtain

E′′(u,A \K) ≤ c3V (u,A \K) + c4Ld(A \K) < ε . (3.51)

We now fix A′, A′′ ∈ Ac(Rd) such that K ⊂ A′ ⊂⊂ A′′ ⊂⊂ A and apply Lemma 3.23
with B = A \K , so that A′ ∪B = A . We obtain

E′′(u,A) ≤ E′′(u,A′′) + E′′(u,A \K) ≤ E(u,A) + ε ,

where in the second inequality we used (3.27) and (3.51). As ε→ 0+ we obtain the desired
inequality. �

Proof of Theorem 3.16 (continuation). By Lemma 3.26 we have that

E(·, A) = E′(·, A) = E′′(·, A) = Γ- lim
k→∞

Ek(·, A) (3.52)

for every A ∈ Ac(Rd).
We already proved that E is local (property (a)). To prove (b) we fix u ∈ L0(Rd)

and apply the De Giorgi-Letta criterion, see [7, Theorem 14.23]. By (3.28), to prove that
E(u, ·) is a measure on B(Rd) it is enough to show that E(u, ·) is subadditive, superadditive
and inner regular on A(Rd). Subadditivity is proved in Lemma 3.24, while superadditivity
follows from [7, Proposition 16.12] and property (b) for Ek . Since we already observed that
E(u, ·) is inner regular, the proof of (b) is complete.

Property (c1) is proved in Lemma 3.25. Since the Γ- lim sup is smaller than the pointwise
lim sup (see [7, Proposition 5.1]), from (c2) for Ek we obtain

E(u,A) = E′′(u,A) ≤ c3V (u,A) + c4Ld(A) , (3.53)

for every A ∈ Ac(Rd). By inner regularity the inequality holds for every A ∈ A(Rd), and
by (2.9) and (3.28) the inequality continues to hold for every B ∈ B(Rd), thus concluding
the proof of (c2).

The invariance property (d) and the estimates (e) and (f) for E follow from the same
properties for Ek , using the definition of Γ-limit. Finally, property (g) on Ac(Rd) follows
from Lemma 3.20 and (3.52) and can be extended to B(Rd) as in the proof of (c2). This
concludes the proof of the fact that E ∈ E .

From general properties of Γ-limits it follows that for every A ∈ Ac(Rd) the functional
E(·, A) is lower semicontinuous in L0(Rd) (see, e.g., [7, Proposition 6.8]). By Remark 3.13
this proves that E ∈ Esc . �

The case of integral functionals is considered in the following corollary.

Corollary 3.27. For every k ∈ N let fk ∈ F , gk ∈ G , and Efk,gk as in (3.14)-(3.16).
Then there exists a subsequence, not relabelled, and a functional E ∈ Esc such that for every
A ∈ Ac(Rd) the sequence Efk,gk(·, A) Γ-converges to E(·, A) with respect to the topology of
L0(Rd) .

Proof. It is enough to apply Proposition 3.11 and Theorem 3.16. �
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4. Towards the integral representation

In this section we investigate some properties of the functionals in E that are instrumental
in the proof of the integral representation results that will be obtained in Section 6.

Definition 4.1. Let E : L0(Rd) × B(Rd) → [0,+∞] be a functional satisfying properties
(b) and (c2) in Definition 3.1. Let u ∈ L0(Rd) and A ∈ Ac(Rd) with u|A ∈ GBV?(A). We
define the measures Ea(u, ·), Es(u, ·), Ec(u, ·), and Ej(u, ·) on B(A) in the following way:

Ea(u, ·) is the absolutely continuous part of E(u, ·) with respect to Ld , (4.1)

Es(u, ·) is the singular part of E(u, ·) with respect to Ld , (4.2)

Ec(u,B) := Es(u,B \ Ju) for every B ∈ B(A) , (4.3)

Ej(u,B) := Es(u,B ∩ Ju) = E(u,B ∩ Ju) for every B ∈ B(A) . (4.4)

Remark 4.2. The following properties hold:

E(u, ·) = Ea(u, ·) + Ec(u, ·) + Ej(u, ·) in B(A) , (4.5)

Ec(u, ·) is the absolutely continuous part of E(u, ·) with respect to |Dcu| , (4.6)

Ej(u, ·) is the absolutely continuous part of E(u, ·) with respect to Hd−1 Ju. (4.7)

Property (4.5) follows immediately from the definition.
Since the measures Es(u, ·) and |Dcu| are singular with respect to Ld , there exists

N ∈ B(A) with Ld(N) = 0 such that Es(u,A \ N) = |Dcu|(A \ N) = 0. Therefore, if
B ∈ B(A) and |Dcu|(B) = 0 we have that

Ec(u,B) = Es(u,B \ Ju) = E(u,B ∩N \ Ju) ≤ c3V (u,B ∩N \ Ju) = 0 ,

hence Ec(u, ·) is absolutely continuous with respect to |Dcu| .
On the other hand, by Theorem 2.2(c) we have |Dcu|(Ju) = 0, hence |Dcu| is con-

centrated on N \ Ju . Since Ea(u,N \ Ju) = 0 and Ej(u,N \ Ju) = 0, the measure
Ea(u, ·) + Ej(u, ·) is singular with respect to |Dcu| . We conclude that Ec(u, ·) is the
absolutely continuous part of E(u, ·) with respect to |Dcu| .

Finally, by (c2) in Definition 3.1 for every B ∈ B(A) we have

Ej(u,B) = E(u,B ∩ Ju) ≤ c3V (u,B ∩ Ju) = c3

∫
B∩Ju

|[u]| ∧ 1dHd−1 ,

hence Ej(u, ·) is absolutely continuous with respect to Hd−1 Ju . Observing that the
measure Ea(u, ·) +Ec(u, ·) is singular with respect to Hd−1 Ju , we conclude that Ej(u, ·)
is the absolutely continuous part of E(u, ·) with respect to Hd−1 Ju .

Our proofs of the integral representation theorems considered in the next sections rely on
the results of [4] about functions u ∈ BV (A). Since we want to extend them to GBV?(A),
it is important to approximate the values of a functional on a function u ∈ GBV?(A) with
the corresponding values on its truncations u(m) . This is done in the following proposition.

Proposition 4.3. Assume that E : L0(Rd)×B(Rd)→ [0,+∞] satisfies (3.10) and properties
(b) and (c2) in Definition 3.1. Suppose also that E(·, A) is lower semicontinuous in L0(Rd)
for every A ∈ Ac(Rd) . Let u ∈ L0(Rd) and A ∈ Ac(Rd) with u|A ∈ GBV?(A) . Then

lim
m→+∞

E(u(m), B) = E(u,B) , (4.8)

lim
m→+∞

Ea(u(m), B) = Ea(u,B) , (4.9)

lim
m→+∞

Es(u(m), B) = Es(u,B) , (4.10)

lim
m→+∞

Ec(u(m), B) = Ec(u,B) , (4.11)

lim
m→+∞

Ej(u(m), B) = Ej(u,B) , (4.12)
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for every B ∈ B(A) .

Proof. By (3.10) we have that

lim sup
m→+∞

E(u(m), B) ≤ E(u,B)

for every B ∈ B(A). By lower semicontinuity we have also

lim inf
m→+∞

E(u(m), U) ≥ E(u, U)

for every U ∈ A(A). Hence

lim
m→+∞

E(u(m), U) = E(u, U)

for every U ∈ A(A).
Equality (4.8) follows from Lemma 4.4 below, while (4.9) and (4.10) follow from Lemma

4.5 below. As for (4.12) we observe that

Ej(u(m), B) = Es(u(m), B ∩ Ju(m)) and Ej(u,B) = Es(u,B ∩ Ju) .

By Theorem 2.2(d) there exists a sequence Nm ∈ B(A) such that Hd−1(Nm∆Ju(m)) = 0
and Nm ↗ Ju . By (c2) we have Ej(u(m), B) = Es(u(m), B ∩Nm). Let us fix k ∈ N . For
every m ≥ k we have

Es(u(m), B ∩Nk) ≤ Es(u(m), B ∩Nm) ≤ Es(u(m), B ∩ Ju) .

By (4.10) we have

Es(u,B ∩Nk) ≤ lim inf
m→+∞

Es(u(m), B ∩Nm) ≤ lim sup
m→+∞

Es(u(m), B ∩Nm) ≤ Es(u,B ∩ Ju) .

Passing to the limit as k →∞ we obtain (4.12). Equality (4.11) follows by difference. �

To conclude the proof of Proposition 4.3 it remains to prove the following lemmas.

Lemma 4.4. Let A ∈ A(Rd) and for every k ∈ N let µk, µ : B(A) → [0,+∞) be finite-
valued Borel measures. Assume that

lim
k→∞

µk(U) = µ(U) for every U ∈ A(A) . (4.13)

Then

lim
k→∞

µk(B) = µ(B) for every B ∈ B(A) . (4.14)

Proof. Let us fix B ∈ B(A). For every ε > 0 there exists U ∈ A(A) with U ⊃ B such
that µ(U) ≤ µ(B) + ε . By (4.13) we have lim supk µk(B) ≤ limk µk(U) ≤ µ(B) + ε . Since
ε > 0 is arbitrary we conclude that lim supk µk(B) ≤ µ(B). The same property for A \ B
gives lim supk µk(A \ B) ≤ µ(A \ B). Since limk(µk(B) + µk(A \ B)) = µ(B) + µ(A \ B),
we conclude that (4.14) holds. �

Lemma 4.5. Let A ∈ A(Rd) , for every k ∈ N let µk, µ : B(A) → [0,+∞) be finite-valued
Borel measures, let µak, µ

a be their absolutely continuous parts with respect to Ld , and let
µsk, µ

s be their singular parts with respect to Ld . Assume that

lim
k→∞

µk(B) = µ(B) for every B ∈ B(A) .

Then

lim
k→∞

µak(B) = µa(B) and lim
k→∞

µsk(B) = µs(B)

for every B ∈ B(A) .
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Proof. Let N ∈ B(A) with Ld(N) = 0 be such that µs and µsk are concentrated on N for
every k . Then for every B ∈ B(A) we have

lim
k→∞

µak(B) = lim
k→∞

µk(B \N) = µ(B \N) = µa(B) .

The property for µsk and µs is obtained by difference. �

One of the difficulties in the proof of the integral representation is that the functional
E(·, B), in general, does not decrease under truncations. However, the following proposition
shows, in particular, that the singular part Es(·, B) is always decreasing under truncations.

Proposition 4.6. Assume that E : L0(Rd)×B(Rd)→ [0,+∞] satisfies properties (b), (c2),
and (g) in Definition 3.1. Let u ∈ L0(Rd) , A ∈ Ac(Rd) , with u|A ∈ GBV?(A) , and let

w1, w2 ∈W 1,1
loc (Rd) , with w1 ≤ w2 Ld -a.e. in Rd . Then

Es((u ∨ w1) ∧ w2, B) ≤ Es(u,B) (4.15)

for every B ∈ B(A) .

Proof. Let N ∈ B(A) be a set with Ld(N) = 0 such that Es((u ∨w1) ∧w2, ·) and Es(u, ·)
are concentrated on N . Then

Es((u ∨ w1) ∧ w2, B) = E((u ∨ w1) ∧ w2, B ∩N)

≤ E(u,B ∩N) + c3

∫
B∩N

|∇w1| ∨ |∇w2|dx+ c4Ld(B ∩N) = Es(u,B) ,

thus concluding the proof. �

The results in [4] cannot be applied directly to the restriction of the functional E to
BV (A) since they require a lower bound of the form E(u,A) ≥ c|Du|(A) for some constant
c > 0, which does not hold under our hypotheses. For this reason we consider the functionals
introduced in the following definition.

Definition 4.7. Let E ∈ E and A ∈ Ac(Rd). For every ε > 0 we define the functional
Eε : BV (A)× B(A)→ [0,+∞) by setting

Eε(u,B) := E(u,B) + ε|Du|(B) (4.16)

for every u ∈ BV (A) and every B ∈ B(A), where E(u,B) is defined thanks to Remark 3.3.

Remark 4.8. By (c1) we have

ε|Du|(A)− c2Ld(A) ≤ Eε(u,A) , (4.17)

while by (c2) and Remark 2.6 we have

Eε(u,A) ≤ (c3 + ε)|Du|(A) + c4Ld(A) . (4.18)

Finally, note that Eε satisfies the analogue of properties (a), (b), and (d) in A .

Definition 4.9. Let E ∈ E , A ∈ Ac(Rd), and ε > 0. Given u ∈ BV (A) we de-
fine Eaε (u, ·), Esε(u, ·), Ecε(u, ·), Ejε(u, ·) : B(A) → [0,+∞) as in Definition 4.1 starting from
Eε(u, ·).

The integrands appearing in the integral representation results in [4] are constructed using
the minimum problems considered in the following definition.

Definition 4.10. Let A ∈ Ac(Rd) with Lipschitz boundary and w ∈ BV (A). Given an
arbitrary functional E(·, A) : BV (A)→ [0,+∞] , we define (see [4])

mE(w,A) := inf{E(u,A) : u ∈ BV (A) , trAu = trAw Hd−1-a.e. on ∂A} , (4.19)

where trAv denotes the trace on ∂A of a function v ∈ BV (A).

The following lemma compares the values of mE on different sets.
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Lemma 4.11. Let A′, A ∈ Ac(Rd) with Lipschitz boundaries and A′ ⊂⊂ A , let w ∈
BV (A) , and let E : BV (A)× B(A)→ [0,+∞] be a functional such that

(a) E is local in A(A) , i.e., E(u, U) = E(v, U) for every U ∈ A(A) and u, v ∈ BV (A)
with u = v Ld -a.e. in U ;

(b) for every u ∈ BV (A) the set function E(u, ·) is additive on B(A) ;
(c) there exist c′3 > 0 and c′4 ≥ 0 such that E(u,B) ≤ c′3|Du|(B) + c′4Ld(B) for every

u ∈ BV (A) and B ∈ B(A) .

Then

mE(w,A) ≤ mE(w,A′) + c′3|Dw|(A \A′) + c′4Ld(A \A′) . (4.20)

Proof. Let us fix η > 0. By the definition of mE(w,A′) there exists u ∈ BV (A′) such that
trA′u = trA′w Hd−1-a.e. on ∂A′ and

E(u,A′) ≤ mE(w,A′) + η . (4.21)

Let v : A → R be defined by v = u in A′ and v = w in A \ A′ . Since trAv =
trAw Hd−1-a.e. on ∂A , we have mE(w,A) ≤ E(v,A). By (b) E(v,A) = E(v,A′)+E(v,A\
A′). Moreover, by (a) E(v,A′) = E(u,A′) and by (c) E(v,A \ A′) ≤ c′3|Dv|(A \ A′) +
c′3|Dv|(∂A′)+c′4Ld(A\A′) = c′3|Dw|(A\A′)+c′3

∫
∂A′
|[v]|dHd−1+c′4Ld(A\A′). Since trA′v =

trA′u = trA′w Hd−1 -a.e. on ∂A′ , while v = w in A \A′ , we obtain that
∫
∂A′
|[v]|dHd−1 =∫

∂A′
|[w]|dHd−1 = |Dw|(∂A′).

Combining these inequalities and (4.21) we obtain

mE(w,A) ≤ mE(w,A′) + η + c′3|Dw|(A \A′) + c′4Ld(A \A′) ,

which gives (4.20) by the arbitrariness of η > 0. �

We now define the integrands that will be used in Section 6 in the integral representation
results for functionals in Esc .

Definition 4.12. Given E ∈ E we define the integrands f : Rd × Rd → [0,+∞), and
g : Rd × R× Sd−1 → [0,+∞) by setting

f(x, ξ) := lim sup
ρ→0+

mE(`ξ, Q(x, ρ))

ρd
, (4.22)

g(x, ζ, ν) := lim sup
ρ→0+

mE(ux,ζ,ν , Qν(x, ρ))

ρd−1
. (4.23)

To obtain the integral representation result for Ea and Ej we shall first prove, for every
ε > 0, an integral representation for the functionals Eaε and Ejε introduced in Definition 4.9
using the integrands given in the following definition.

Definition 4.13. Let E ∈ E and let ε > 0. We define the integrands fε : Rd × Rd →
[0,+∞), and gε : Rd × R× Sd−1 → [0,+∞) by setting

fε(x, ξ) := lim sup
ρ→0+

mEε(`ξ, Q(x, ρ))

ρd
, (4.24)

gε(x, ζ, ν) := lim sup
ρ→0+

mEε(ux,ζ,ν , Qν(x, ρ))

ρd−1
. (4.25)

Remark 4.14. It follows immediately from the definitions that ε 7→ fε(x, ξ) and ε 7→
gε(x, ζ, ν) are non-decreasing and that

f(x, ξ) ≤ fε(x, ξ) and g(x, ζ, ν) ≤ gε(x, ζ, ν) (4.26)

for every ε > 0, x ∈ Rd , ξ ∈ Rd , ζ ∈ R , and ν ∈ Sd−1 .
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The following proposition shows that, under an additional assumption, f and f∞ are
the limit of fε and f∞ε as ε → 0+. In Theorem 6.2 we shall see that this assumption is
satisfied by all functionals in the class Esc .

Proposition 4.15. Let E ∈ E and let f and fε be defined by (4.22) and (4.24). Suppose
that there exists a function f̌ ∈ F such that

Ea(u,A) =

∫
A

f̌(x,∇u) dx (4.27)

for every A ∈ Ac(Rd) and every u ∈ BV (A) . Then for Ld -a.e. x ∈ Rd

f(x, ξ) = lim
ε→0+

fε(x, ξ) for every ξ ∈ Rd , (4.28)

f∞(x, ξ) = lim
ε→0+

f∞ε (x, ξ) for every ξ ∈ Rd . (4.29)

If, in addition, f̌ is continuous on Rd ×Rd , then (4.28) and (4.29) hold for every x ∈ Rd .

To prove the proposition we need the following lemma, which contains a more general
result for the rectangles Qλν (x, ρ) defined by (2.1). For every ξ ∈ Rd we set

cξ :=
c2 + c4 + 1

c1
d1/2 + |ξ|d1/2 . (4.30)

Lemma 4.16. Let E ∈ E . Suppose that there exists a function f̌ ∈ F such that (4.27)
holds for every A ∈ Ac(Rd) and every u ∈ BV (A) . Then there exists N ∈ B(Rd) , with
Ld(N) = 0 , such that for every x ∈ Rd \ N , λ ≥ 1 , ν ∈ Sd−1 , and η > 0 there exists
ρλν,η(x) > 0 with the following property: for every 0 < ρ < ρλν,η(x) and every ξ ∈ Rd there

exists u ∈ BV (Qλν (x, ρ))∩L∞(Qλν (x, ρ)) satisfying ‖u−`ξ‖L∞(Qλν (x,ρ)) ≤ cξλρ , trQλν (x,ρ)u =

trQλν (x,ρ)`ξ Hd−1 -a.e. on ∂Qλν (x, ρ) , and

E(u,Qλν (x, ρ)) ≤ mE(`ξ, Q
λ
ν (x, ρ)) + ηλd−1ρd . (4.31)

If, in addition, f̌ is continuous in Rd ×Rd , then N = Ø . Finally, if f̌ does not depend
on x , then ρλν,η(x) = +∞ .

Proof. Let us fix 0 < η < 1. We claim that there exists a Borel function ψη : Rd → Rd such
that

f̌(x, ψη(x)) ≤ f̌(x, ξ) + η/3 for every x ∈ Rd and ξ ∈ Rd . (4.32)

To prove this, let µ : Rd → [0,+∞) be the Borel function defined by

µ(x) := inf
ξ∈Qd

f̌(x, ξ) = inf
ξ∈Rd

f̌(x, ξ) for every x ∈ Rd , (4.33)

let (ξi) be an enumeration of Qd , and let (Bi) be the sequence of Borel sets defined induc-
tively by

B1 := {x ∈ Rd : f̌(x, ξ1) ≤ µ(x) + η/3} ,
Bi := {x ∈ Rd \ (B1 ∪ · · · ∪Bi−1) : f̌(x, ξi) ≤ µ(x) + η/3} for i > 1 .

Observing that (Bi) is a partition of Rd , we obtain that the function ψη : Rd → Rd defined
by ψη(x) = ξi for x ∈ Bi is Borel measurable and satisfies (4.32).

By (f2) and (f3) in Definition 3.6 we have

|ψη(x)| ≤ c2 + c4 + 1

c1
for every x ∈ Rd . (4.34)

By the Lebesgue Differentiation Theorem for Ld -a.e. x ∈ Rd we have

lim
ρ→0+

1

λd−1ρd

∫
Qλν (x,ρ)

|ψη(y)− ψη(x)|dy = 0
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for every λ ≥ 1 and every ν ∈ Sd−1 . By (f4)

lim
ρ→0+

1

λd−1ρd

∫
Qλν (x,ρ)

|f̌(y, ψη(y))− f̌(y, ψη(x))|dy = 0 ,

therefore, for Ld -a.e. x ∈ Rd there exists ρλν,η(x) > 0 such that∫
Qλν (x,ρ)

|f̌(y, ψη(y))− f̌(y, ψη(x))|dy ≤ ηλd−1ρd/3 (4.35)

for every 0 < ρ < ρλν,η(x). This implies that there exists N ∈ B(Rd), with Ld(N) = 0, such

that (4.35) holds for every x ∈ Rd\N , λ ≥ 1, ν ∈ Sd−1 , η ∈ Q∩(0, 1), and 0 < ρ < ρλν,η(x).

Let us fix x, λ, ν, η, ρ as above and let ξ ∈ Rd . By the definition of mE there exists
v ∈ BV (Qλν (x, ρ)) such that trQλν (x,ρ)v = trQλν (x,ρ)`ξ Hd−1 -a.e. on ∂Qλν (x, ρ), and

E(v,Qλν (x, ρ)) ≤ mE(`ξ, Q
λ
ν (x, ρ)) + ηλd−1ρd/3 . (4.36)

Let m1 := ξ · x − cξλρ/2 and m2 := ξ · x + cξλρ/2, where cξ is defined in (4.30). For
every y ∈ Rd we set w1(y) := ψη(x) · (y− x) +m1 and w2(y) := ψη(x) · (y− x) +m2 . Note
that w2 − w1 = m2 −m1 = cξλρ .

Moreover, for every y ∈ Qλν (x, ρ) we set

u(y) := (v(y) ∨ w1(y)) ∧ w2(y) . (4.37)

Then u ∈ BV (Qλν (x, ρ)) ∩ L∞(Qλν (x, ρ)). For every y ∈ Qλν (x, ρ) we have w1(y) ≤ u(y) ≤
w2(y) and w1(y) ≤ `ξ(y) ≤ w2(y), hence ‖u − `ξ‖L∞(Qλν (x,ρ)) ≤ cξλρ and trQλν (x,ρ)u =

trQλν (x,ρ)`ξ Hd−1 -a.e. on ∂Qλν (x, ρ).

Let B := {y ∈ Qλν (x, ρ) : w1 ≤ v ≤ w2} . Since, by a well-known property of approximate
gradients we have ∇v(y) = ∇u(y) Ld -a.e. in B and ∇u(y) = ∇w1(y) = ∇w2(y) = ψη(x)
Ld -a.e. in Qλν (x, ρ) \B , by (4.27) we have

Ea(u,Qλν (x, ρ)) =

∫
Qλν (x,ρ)

f̌(y,∇u(y))dy =

∫
Qλν (x,ρ)∩B

f̌(y,∇v(y))dy +

∫
Qλν (x,ρ)\B

f̌(y, ψη(x))dy

≤
∫
Qλν (x,ρ)∩B

f̌(y,∇v(y))dy +

∫
Qλν (x,ρ)\B

f̌(y, ψη(y))dy +

∫
Qλν (x,ρ)\B

(f̌(y, ψη(x))− f̌(y, ψη(y)))dy

≤
∫
Qλν (x,ρ)

f̌(y,∇v(y))dy + 2ηλd−1ρd/3 = Ea(v,Qλν (x, ρ)) + 2ηλd−1ρd/3 , (4.38)

where in the last inequality we used (4.32) and (4.35).
By Proposition 4.6 (using also Remark 3.3) we have

Es(u,Qλν (x, ρ)) ≤ Es(v,Qλν (x, ρ)) , (4.39)

which together with (4.36) and (4.38) gives E(u,Qλν (x, ρ)) ≤ E(v,Qλν (x, ρ))+2ηλd−1ρd/3 ≤
mE(w,Qλν (x, ρ)) + ηλd−1ρd , thus concluding the proof of (4.31).

If, in addition, f̌ is continuous on Rd×Rd , we fix an arbitrary x ∈ Rd . By (f2) and (f4)
the function ξ 7→ f̌(x, ξ) has a minimum point ψ(x) ∈ Rd . By (f3) we have

f̌(x, ψ(x)) ≤ f̌(x, 0) ≤ c4 , (4.40)

hence (f2) gives

|ψ(x)| ≤ c2 + c4
c1

. (4.41)

Let us fix η > 0. Since f̌ is continuous, for every λ ≥ 1 there exists ρλη(x) > 0 such that

|f̌(y, ξ)− f̌(x, ξ)| ≤ η/3 (4.42)
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for every y ∈ Qλν (x, ρλη(x)) for some ν ∈ Sd−1 , and every ξ ∈ Rd , with |ξ| ≤ (c2 + c4)/c1 .

Given ν ∈ Sd−1 , we claim that

f̌(y, ψ(x)) ≤ f̌(y, ξ) + 2η/3 (4.43)

for every y ∈ Qλν (x, ρλη(x)) and every ξ ∈ Rd . To prove this, let us fix y ∈ Qλν (x, ρλη(x)). If
|ξ| ≤ (c2 + c4)/c1 , the minimality of ψ(x), together with (4.41) and (4.42), gives

f̌(y, ψ(x)) ≤ f̌(x, ψ(x)) + η/3 ≤ f̌(x, ξ) + η/3 ≤ f̌(y, ξ) + 2η/3 .

If, instead, |ξ| ≥ (c2 + c4)/c1 , by (f2) we have f̌(y, ξ) ≥ c4 , which, together with (4.40),
(4.41), and (4.42), yields

f̌(y, ψ(x)) ≤ f̌(x, ψ(x)) + η/3 ≤ c4 + η/3 ≤ f̌(y, ξ) + η/3 .

In both cases we have (4.43).
Given λ ≥ 1, ν ∈ Sd−1 , and 0 < ρ < ρλη(x), we consider the functions v and u satisfying

(4.36) and (4.37), with ψη(x) replaced by ψ(x) in the definition of w1 and w2 . Arguing as
in the proof of (4.38), by (4.27) we obtain

Ea(u,Qλν (x, ρ)) =

∫
Qλν (x,ρ)

f̌(y,∇u(y))dy =

∫
Qλν (x,ρ)∩B

f̌(y,∇v(y))dy +

∫
Qλν (x,ρ)\B

f̌(y, ψ(x))dy

≤
∫
Qλν (x,ρ)

f̌(y,∇v(y))dy + 2ηλd−1ρd/3 = Ea(v,Qλν (x, ρ)) + 2ηλd−1ρd/3 , (4.44)

where in the last inequality we used (4.43). Inequality (4.31) follows now from the previous
inequality, using (4.36) and (4.39).

Finally, if f̌ does not depend on x we repeat the previous arguments taking ψ(x) indepen-
dent of x . Then (4.42) and (4.43) clearly hold with η = 0 and ρλη(x) = +∞ . Consequently

Ea(u,Qλν (x, ρ)) ≤ Ea(v,Qλν (x, ρ)) for every ρ > 0 and the conclusion follows. �

Proof of Proposition 4.15. Let N ∈ B(Rd) be the set with Ld(N) = 0 introduced in
Lemma 4.16. By (4.26), to prove (4.28) and (4.29) we have only to show that for every
x ∈ Rd \N (or x ∈ Rd if f̌ is continuous) and every ξ ∈ Rd we have

inf
ε>0

fε(x, ξ) ≤ f(x, ξ) , (4.45)

inf
ε>0

f∞ε (x, ξ) ≤ f∞(x, ξ) . (4.46)

Let us fix η > 0, x ∈ Rd \N (or an arbitrary x ∈ Rd if f̌ is continuous), ξ ∈ Rd , and
t ≥ 1. Let ctξ be the constant introduced in (4.30) corresponding to tξ . By the definition
of f (see (4.22)) there exists rη(x, tξ) > 0, with ctξrη(x, tξ) < 1/2, such that for every
0 < ρ < rη(x, tξ) we have

mE(`tξ, Q(x, ρ))

tρd
≤ f(x, tξ)

t
+ η . (4.47)

We apply Lemma 4.16 with tξ instead of ξ and we find a constant ρη(x, tξ) ∈ (0, rη(x, tξ))
such that for every ρ ∈ (0, ρη(x, tξ)) there exists u ∈ BV (Q(x, ρ)) ∩ L∞(Q(x, ρ)), with
trQ(x,ρ)u = trQ(x,ρ)`tξ Hd−1 -a.e. on ∂Q(x, ρ) and ‖u − `tξ‖L∞(Q(x,ρ)) ≤ ctξρ < 1/2, such
that

E(u,Q(x, ρ)) ≤ mE(`tξ, Q(x, ρ)) + ηρd .

Together with (4.47) this inequality gives

E(u,Q(x, ρ))

tρd
≤ f(x, tξ)

t
+ 2η . (4.48)
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Since ‖u − `tξ‖L∞(Q(x,ρ)) < 1/2 we have |[u]| < 1 Hd−1 -a.e. on Juρ . Therefore, recalling
the definition of Eε (see (4.16)), for every ε > 0 we have

Eε(u,Q(x, ρ)) ≤ E(u,Q(x, ρ)) + ε

∫
Q(x,ρ)

|∇u|dx+ ε|Dcu|(Q(x, ρ)) + ε

∫
Ju

|[u]| ∧ 1dHd−1

≤
(
1 +

ε

c1

)
E(u,Q(x, ρ)) +

εc2
c1
ρd , (4.49)

where in the last inequality we used (c1) in Definition 3.1. Let us fix εη > 0 such that
εη/c1 < η and εηc2/c1 < η . Therefore, the previous chain of inequalities together with
(4.48) yields

Eε(u,Q(x, ρ))

tρd
< (1 + η)

(f(x, tξ)

t
+ 2η

)
+ η

for every 0 < ρ < ρη(x, tξ) and every 0 < ε < εη .
Since u ∈ BV (Q(x, ρ)) and trQ(x,ρ)u = trQ(x,ρ)`tξ Hd−1 -a.e. on ∂Q(x, ρ), recalling the

definition of mEε , from the previous inequality we deduce that

mEε(`tξ, Q(x, ρ))

tρd
< (1 + η)

(f(x, tξ)

t
+ 2η

)
+ η

for every 0 < ρ < ρη(x, tξ) and every 0 < ε < εη . Taking the limsup as ρ→ 0+ we obtain

fε(x, tξ)

t
≤ (1 + η)

(f(x, tξ)

t
+ 2η

)
+ η for Ld -a.e. x ∈ Rd (4.50)

and for every ξ ∈ Rd , t ≥ 1, and 0 < ε < εη . In particular, for t = 1 we have

fε(x, ξ) ≤ (1 + η)(f(x, ξ) + 2η) + η for Ld -a.e. x ∈ Rd (4.51)

and for every ξ ∈ Rd and 0 < ε < εη . Passing to the lim sup in (4.50) as t → +∞ we
obtain

f∞ε (x, ξ) ≤ (1 + η)(f∞(x, ξ) + 2η) + η for Ld -a.e. x ∈ Rd (4.52)

and for every ξ ∈ Rd and 0 < ε < εη . To obtain (4.45) and (4.46) it is enough to take the
infimum in (4.51) and (4.52) for ε ∈ (0, εη), and then the limit as η → 0+. �

We now prove the same result for the function g defined in (4.23).

Proposition 4.17. Let E ∈ E , and let g and gε be defined by (4.23) and (4.25). Then

g(x, ζ, ν) = lim
ε→0+

gε(x, ζ, ν) (4.53)

for every x ∈ Rd , ζ ∈ R , and ν ∈ Sd−1 .

Proof. Let us fix x , ζ , and ν as in the statement and let ĝ(x, ζ, ν) be the right-hand side
of (4.53). By (4.26) we have only to prove that

ĝ(x, ζ, ν) ≤ g(x, ζ, ν) . (4.54)

Let us fix η > 0. By the definition of g there exists rη(x) > 0 such that

mE(ux,ζ,ν , Qν(x, ρ))

ρd−1
≤ g(x, ζ, ν) + η (4.55)

for every 0 < ρ < rη(x). By the definition of mE , for every 0 < ρ < rη(x) there exists
u ∈ BV (Qν(x, ρ)), with trQν(x,ρ)u = trQν(x,ρ)ux,ζ,ν Hd−1 -a.e. on ∂Qν(x, ρ), such that

E(u,Qν(x, ρ))

ρd−1
≤ g(x, ζ, ν) + 2η . (4.56)

Let us fix m > |ζ| ∨ 1
2 . By (3.10) we have

E(u(m), Qν(x, ρ)) ≤ E(u,Qν(x, ρ)) + c4ρ
d . (4.57)
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Together with (4.56) this inequality gives

E(u(m), Qν(x, ρ))

ρd−1
≤ g(x, ζ, ν) + 2η + c4ρ . (4.58)

Let J1
u := {x ∈ Ju : |[u](x)| ≥ 1} . By (4.16) and (4.57) for every ε > 0 we have

Eε(u
(m), Qν(x, ρ)) ≤ E(u(m), Qν(x, ρ)) + ε

∫
Qν(x,ρ)

|∇u(m)| dx

+ε|Dcu(m)|(Qν(x, ρ)) + ε

∫
Ju∩Qν(x,ρ)

|[u]| ∧ (2m)dHd−1

≤ E(u,Qν(x, ρ)) + c4ρ
d + ε

∫
Qν(x,ρ)

|∇u| dx+ ε|Dcu|(Qν(x, ρ))

+ε2mHd−1(J1
u ∩Qν(x, ρ)) + ε

∫
(Ju\J1

u)∩Qν(x,ρ)

|[u]|dHd−1

≤ E(u,Qν(x, ρ)) + c4ρ
d + ε

∫
Qν(x,ρ)

|∇u| dx+ ε|Dcu|(Qν(x, ρ))

+ε2m

∫
Ju∩Qν(x,ρ)

|[u]| ∧ 1dHd−1 ≤
(
1 + ε

2m

c1

)
E(u,Qν(x, ρ)) + (c4 + ε

2mc2
c1

)ρd ,

where in the last inequality we used (c1) in Definition 3.1. We can find εη > 0 such that
εη

2m
c1

< η and εη
2mc2
c1

< η . Therefore, the previous chain of inequalities together with

(4.56) yields

Eε(u
(m), Qν(x, ρ))

ρd−1
≤ (1 + η)(g(x, ζ, ν) + 2η) + (c4 + η)ρ

for every 0 < ρ < rη(x) and every 0 < ε < εη .

Since u(m) ∈ BV (Qν(x, ρ)) and trQν(x,ρ)u
(m) = trQν(x,ρ)ux,ζ,ν Hd−1 -a.e. on ∂Qν(x, ρ),

recalling the definition of mEε , from the previous inequality we deduce that

mEε(ux,ζ,ν , Qν(x, ρ))

ρd−1
≤ (1 + η)(g(x, ζ, ν) + 2η) + (c4 + η)ρ

for every 0 < ρ < rη(x) and every 0 < ε < εη . Taking the lim sup as ρ → 0+ and using
the definition of gε (see (4.25)) we obtain

gε(x, ζ, ν) ≤ (1 + η)(g(x, ζ, ν) + 2η)

for every η > 0 and every 0 < ε < εη . Taking the limit, first as ε → 0+ and then as
η → 0+, we obtain (4.54). �

5. Properties of the integrands f and g

In this section we shall prove the following result.

Theorem 5.1. Let E ∈ E , let f and g be defined by (4.22) and (4.23), and let f̂ : Rd×Rd →
[0,+∞) be defined by

f̂(x, ξ) = inf
ε>0

fε(x, ξ) = lim
ε→0+

fε(x, ξ) for every x ∈ Rd and ξ ∈ Rd , (5.1)

where fε is introduced in (4.24). Then f ∈ F , f̂ ∈ F , and g ∈ G .

The proof of the theorem relies on several technical lemmas, in which we tacitly assume
that E ∈ E , ε > 0, and f , g , fε , and gε are defined by (4.22), (4.23), (4.24), and (4.25).
To obtain the Borel measurability of these functions we use the following lemma, which
provides general conditions under which we can restrict a lim sup to a countable set.
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Lemma 5.2. Let κ1 ≥ 0 , κ2 ≥ 0 , let ψ : (0, 1)→ (0,+∞) be a function such that

ψ(ρ) ≤ ψ(r) + κ1(1− ( rρ )d−1) + κ2(1− ( rρ )d) for every 0 < r < ρ < 1 , (5.2)

and let D be a dense subset of (0, 1) . Then

lim sup
ρ→0+
ρ∈D

ψ(ρ) = lim sup
ρ→0+

ψ(ρ) . (5.3)

Proof. It is enough to prove that

lim sup
ρ→0+

ψ(ρ) ≤ lim sup
ρ→0+
ρ∈D

ψ(ρ) . (5.4)

Let λ be the right-hand side of (5.4) and let ε > 0. Then there exists 0 < δ < 1 such that

ψ(r) ≤ λ+ ε for every r ∈ D ∩ (0, δ) . (5.5)

We claim that ψ(ρ) ≤ λ+ ε for every ρ ∈ (0, δ). Indeed, given ρ ∈ (0, δ), by (5.2) and (5.5)
we have

ψ(ρ) ≤ λ+ ε+ κ1(1− ( rρ )d−1) + κ2(1− ( rρ )d)

for every 0 < r < ρ with r ∈ D . Passing to the limit as r → ρ− we obtain ψ(ρ) ≤ λ + ε
for every ρ ∈ (0, δ), which implies that

lim sup
ρ→0+

ψ(ρ) ≤ λ+ ε .

By the arbitrariness of ε > 0 this implies (5.4). �

We are now ready to begin the proof of property (f1).

Lemma 5.3. Let ξ ∈ Rd . Then x 7→ f(x, ξ) and x 7→ fε(x, ξ) are Borel functions on Rd .

Proof. For every x ∈ Rd and for every ρ > 0 let

ϕ(x, ρ) := mE(`ξ, Q(x, ρ)) . (5.6)

By Lemma 4.11 we have

ϕ(x, ρ2)− (c3|ξ|+ c4)ρd2 ≤ ϕ(x, ρ1)− (c3|ξ|+ c4)ρd1 (5.7)

for every 0 < ρ1 < ρ2 . This shows that the function

ρ 7→ ϕ(x, ρ)

ρd

satisfies (5.2) with κ1 = 0 and κ2 = c3|ξ|+ c4 . By Lemma 5.2 this implies that

f(x, ξ) = lim sup
ρ→0+
ρ∈Q

ϕ(x, ρ)

ρd
. (5.8)

Moreover, by (5.7) the function ρ 7→ ϕ(x, ρ) has locally bounded variation in (0,+∞)
for every x ∈ Rd . This implies that for every x ∈ Rd and r > 0 there exists

ϕ(x, r+) := lim
ρ→r+

ϕ(x, ρ) .

Using (5.7) we see that

ϕ(x, ρ) ≤ ϕ(x, r+) + (c3|ξ|+ c4)(ρd − rd) (5.9)

for every 0 < r < ρ . Moreover, it is obvious that

sup
0<r<δ
r∈Q

ϕ(x, r+)

rd
= sup

0<r<δ
r∈Q

ϕ(x, r)

rd
.



28 GIANNI DAL MASO AND RODICA TOADER

Together with (5.8) this implies that

f(x, ξ) = lim sup
r→0+
r∈Q

ϕ(x, r+)

rd
. (5.10)

Let us fix r > 0. We claim that the function x 7→ ϕ(x, r+) is lower semicontinuous. Let
xk → x . Let us fix ρ2 > ρ1 > r . For k large enough we have Q(xk, ρ1) ⊂⊂ Q(x, ρ2). By
Lemma 4.11 we have

ϕ(x, ρ2) ≤ ϕ(xk, ρ1) + (c3|ξ|+ c4)(ρd2 − ρd1) .

By (5.9) we obtain

ϕ(x, ρ2) ≤ ϕ(xk, r+) + (c3|ξ|+ c4)(ρd2 − rd) ,
Hence

ϕ(x, ρ2) ≤ lim inf
k→∞

ϕ(xk, r+) + (c3|ξ|+ c4)(ρd2 − rd) ,

and taking the limit as ρ2 → r+ we obtain

ϕ(x, r+) ≤ lim inf
k→∞

ϕ(xk, r+) ,

which proves the lower semicontinuity of x 7→ ϕ(x, r+). By (5.10) we conclude that x 7→
f(x, ξ) is a Borel function. The same proof holds for fε . �

In the next result we show that f satisfies property (f4) and fε satisfies the same property
with a different constant.

Lemma 5.4. Let x ∈ Rd and ξ1, ξ2 ∈ Rd . Then

|f(x, ξ1)− f(x, ξ2)| ≤ c5|ξ1 − ξ2| and |fε(x, ξ1)− fε(x, ξ2)| ≤ (c5 + ε)|ξ1 − ξ2| . (5.11)

Proof. Let us fix ρ > 0. By the definition of mE there exists u1 ∈ BV (Q(x, ρ)) with
trQ(x,ρ)u1 = trQ(x,ρ)`ξ1 Hd−1 -a.e. on ∂Q(x, ρ) such that

E(u1, Q(x, ρ)) ≤ mE(`ξ1 , Q(x, ρ)) + ρd+1 .

Let u2 := u1 − `ξ1 + `ξ2 . Since trQ(x,ρ)u2 = trQ(x,ρ)`ξ2 Hd−1 -a.e. on ∂Q(x, ρ), by (3.7) we
have

mE(`ξ2 , Q(x, ρ)) ≤ E(u2, Q(x, ρ)) ≤ E(u1, Q(x, ρ)) + c5|ξ1 − ξ2|ρd

≤ mE(`ξ1 , Q(x, ρ)) + ρd+1 + c5|ξ1 − ξ2|ρd .

Dividing by ρd and taking the lim sup as ρ→ 0+ we obtain

f(x, ξ2)− f(x, ξ1) ≤ c5|ξ1 − ξ2| .

Exchanging the roles of ξ1 and ξ2 we obtain the first inequality in (5.11). The proof for fε
is similar. �

Corollary 5.5. The functions f and fε are Borel measurable on Rd × Rd .

Proof. The result follows from Lemmas 5.3 and 5.4 �

The following lemma provides the lower estimate (f2) for f and fε .

Lemma 5.6. Let x ∈ Rd and ξ ∈ Rd . Then

fε(x, ξ) ≥ f(x, ξ) ≥ c1|ξ| − c2 . (5.12)

To prove the lemma we use the following result about one-dimensional problems.
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Lemma 5.7. Let I = (a, b) be a bounded open interval in R , let s, t ∈ R , and let
Ψ: BV (I)→ [0,+∞) be defined by

Ψ(u) :=

∫
I

|∇u|dx+ |Dcu|(I) +
∑
x∈Ju

|[u](x)| ∧ 1 = |Du|(I \ Ju) +
∑
x∈Ju

|[u](x)| ∧ 1 . (5.13)

Then
inf

u∈BV (I)
u(a)=s, u(b)=t

Ψ(u) ≥ |t− s| ∧ 1 . (5.14)

Proof. For every u ∈ BV (I) we have

|Du(I)| ∧ 1 ≤ |Du|(I) ∧ 1 ≤ |Du|(I \ Ju) +
∑
x∈Ju

(|[u](x)| ∧ 1) .

If, in addition, u(a) = s , and u(b) = t , then Du(I) = t − s , and the previous chain of
inequalities gives (5.14). �

To prove Lemma 5.6 we use a slicing argument. Given A ∈ Ac(Rd), u ∈ BV (A),
ν ∈ Sd−1 , and y ∈ Πν

0 , we define

Aνy := {t ∈ R : y + tν ∈ A} (5.15)

and uνy : Aνy → R by

uνy(t) := u(y + tν) for every t ∈ Aνy . (5.16)

Proof of Lemma 5.6. Since the first inequality in (5.12) is given by (4.26), we only have to
prove the second one. Let ρ > 0. By the definition of mE(`ξ, Q(x, ρ)) there exists u ∈
BV (Q(x, ρ)), with trQ(x,ρ)u = trQ(x,ρ)`ξ Hd−1 -a.e. on ∂Q(x, ρ), such that E(u,Q(x, ρ)) ≤
mE(`ξ, Q(x, ρ)) + ρd+1 .

Let ν := ξ/|ξ| . By the results on slicing for BV functions (see [2, Theorem 3.108]) we
have that

V (u,Q(x, ρ)) ≥
∫
Cν(x,ρ)

Ψν
y(uνy)dHd−1(y) ,

where Cν(x, ρ) is the orthogonal projection of the cube Q(x, ρ) onto Πν
0 , and Ψν

y is the
functional defined by (5.13) with I := Q(x, ρ)νy .

Since trQ(x,ρ)u = trQ(x,ρ)`ξ Hd−1 -a.e. on ∂Q(x, ρ), we have trQ(x,ρ)νy
uνy = trQ(x,ρ)νy

(`ξ)
ν
y

in ∂(Q(x, ρ)νy), therefore, by Lemma 5.7 we obtain that Ψν
y(uνy) ≥ |ξ|L1(Q(x, ρ)νy) for ρ > 0

small enough. Hence integrating over Cν(x, ρ), by Fubini’s Theorem we obtain

V (u,Q(x, ρ)) ≥ |ξ|ρd .
By (c1) in Definition 3.1 and by the choice of u , this shows that mE(`ξ, Q(x, ρ)) + ρd+1 ≥
c1|ξ|ρd − c2ρd . Dividing by ρd and taking the lim sup as ρ→ 0+ we obtain (5.12). �

We now prove the upper estimate (f3) for f and a corresponding estimate for fε .

Lemma 5.8. Let x ∈ Rd and ξ ∈ Rd . Then

f(x, ξ) ≤ c3|ξ|+ c4 and fε(x, ξ) ≤ (c3 + ε)|ξ|+ c4 . (5.17)

Proof. For every ρ > 0, by (c2) in Definition 3.1 we have

mE(`ξ, Q(x, ρ)) ≤ E(`ξ, Q(x, ρ)) ≤ c3|ξ|ρd + c4ρ
d .

Hence, dividing by ρd and taking the lim sup as ρ → 0+ we obtain the first inequality in
(5.17). The inequality for fε is proved in the same way. �

In the next lemmas we shall establish the required properties of the function g defined
by (4.23). To prove the Borel measurability we use the following lemma, which gives an
estimate of the dependence of mE(ux,ζ,ν , Qν(x, ρ)) on x , ν , and ρ .
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Lemma 5.9. There exists a continuous function ω : [0,+∞) × [0,+∞) → [0,+∞) with
ω(0, 0) = 0 such that for every x1, x2 ∈ Rd , ζ ∈ R , ν1, ν2 ∈ Sd−1 , and 0 < ρ1 < ρ2 the
inclusion Qν1(x1, ρ1) ⊂⊂ Qν2(x2, ρ2) implies

mE(ux2,ζ,ν2
, Qν2

(x2, ρ2)) ≤ mE(ux1,ζ,ν1
, Qν1

(x1, ρ1)) + c3|ζ|(ρd−1
2 − ρd−1

1 )

+c4(ρd2 − ρd1) + c3|ζ|ω( |x1−x2|
ρ1

, |ν1 − ν2|) ρd−1
1 . (5.18)

The same inequality holds for mEε , with c3 replaced by c3 + ε .

Proof. Let x1, x2 ∈ Rd , ζ ∈ R , ν1, ν2 ∈ Sd−1 , and 0 < ρ1 < ρ2 be as in the state-
ment. Given η > 0 by the definition of mE there exists u1 ∈ BV (Qν1

(x1, ρ1)), with
trQν1 (x1,ρ1)u1 = trQν1 (x1,ρ1)ux1,ζ,ν1

Hd−1 -a.e. on ∂Qν1
(x1, ρ1), such that

E(u1, Qν1
(x1, ρ1)) ≤ mE(ux1,ζ,ν1

, Qν1
(x1, ρ1)) + η . (5.19)

Let u2 ∈ BV (Qν2
(x2, ρ2)) be the function defined by

u2(y) :=

{
u1(y) if y ∈ Qν1(x1, ρ1)

ux2,ζ,ν2(y) if y ∈ Qν2(x2, ρ2) \Qν1(x1, ρ1) .
(5.20)

Since trQν2 (x2,ρ2)u2 = trQν2 (x2,ρ2)ux2,ζ,ν2
Hd−1 -a.e. on ∂Qν2

(x2, ρ2), we have

mE(ux2,ζ,ν2
, Qν2

(x2, ρ2)) ≤ E(u2, Qν2
(x2, ρ2))

= E(u1, Qν1
(x1, ρ1)) + E(u2, Qν2

(x2, ρ2) \Qν1
(x1, ρ1)) , (5.21)

where for the equality we used the locality and the measure property of E (see (a) and (b)
in Definition 3.1). By (c2) in the same definition we have

E(u2, Qν2
(x2, ρ2) \Qν1

(x1, ρ1)) ≤ c3|Du2|(Qν2
(x2, ρ2) \Qν1

(x1, ρ1)) + c4(ρd2 − ρd1) . (5.22)

Let

Σν1,ν2
x1,x2

(ρ1) := {y ∈ ∂Qν1
(x1, ρ1) : sign((y − x1) · ν1) 6= sign((y − x2) · ν2)} . (5.23)

Since trQν1 (x1,ρ1)u1 = trQν1 (x1,ρ1)ux1,ζ,ν1 Hd−1 -a.e. on ∂Qν1(x1, ρ1), by (5.20) we have

Ju2 ∩ ∂Qν1(x1, ρ1) = Σν1,ν2
x1,x2

(ρ1), hence

|Du2|(Qν2
(x2, ρ2) \Qν1

(x1, ρ1)) = |Du2|(Qν2
(x2, ρ2) \Qν1

(x1, ρ1)) + |Du2|(Σν1,ν2
x1,x2

(ρ1))

=

∫
(Qν2 (x2,ρ2)\Qν1 (x1,ρ1))∩Ju2

|[u2]|dHd−1 +

∫
Σ
ν1,ν2
x1,x2

(ρ1)

|[u2]|dHd−1

≤ |ζ|(ρd−1
2 −Hd−1(Qν1

(x1, ρ1) ∩Πν2
x2

) +Hd−1(Σν1,ν2
x1,x2

(ρ1))) . (5.24)

For a ≥ 0 and b ≥ 0 we set

ω(a, b) := max
|x1−x2|≤a
|ν1−ν2|≤b

Hd−1(Σν1,ν2
x1,x2

(1)) . (5.25)

By continuity the maximum exists, ω is a continuous function on [0,+∞) × [0,+∞), and
ω(0, 0) = 0. By rescaling we obtain that

Hd−1(Σν1,ν2
x1,x2

(ρ1)) ≤ ω( |x1−x2|
ρ1

, |ν1 − ν2|) ρd−1
1 . (5.26)

Let πν1
x1

be the orthogonal projection of Rd onto Πν1
x1

. We claim that

πν1
x1

(Σν1,ν2
x1,x2

(ρ1) ∪ (Qν1
(x1, ρ1) ∩Πν2

x2
)) = Qν1

(x1, ρ1) ∩Πν1
x1
.

To prove the claim let us fix y ∈ Qν1
(x1, ρ1) ∩ Πν1

x1
. If there exists t ∈ [−ρ1/2, ρ1/2] such

that y+ tν1 ∈ Πν2
x2

, then y ∈ πν1
x1

(Qν1
(x1, ρ1)∩Πν2

x2
). If, instead, for every t ∈ [−ρ1/2, ρ1/2]

we have y + tν1 /∈ Πν2
x2

, then sign((y + tν1 − x2) · ν2) is constant on [−ρ1/2, ρ1/2]. On the
other hand sign((y ± ρ1ν1/2 − x1) · ν1) = ±1. By the definition of Σν1,ν2

x1,x2
(ρ1) this implies
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that either y + ρ1ν1/2 or y − ρ1ν1/2 belong to Σν1,ν2
x1,x2

(ρ1) and hence y ∈ πν1
x1

(Σν1,ν2
x1,x2

(ρ1)).
This concludes the proof of the claim, which implies that

Hd−1(Qν1
(x1, ρ1) ∩Πν2

x2
) ≥ ρd−1

1 −Hd−1(Σν1,ν2
x1,x2

(ρ1)) . (5.27)

Therefore (5.19), (5.21), (5.22), and (5.24), (5.26), and (5.27) give

mE(ux2,ζ,ν2
, Qν2

(x2, ρ2)) ≤ mE(ux1,ζ,ν1
, Qν1

(x1, ρ1)) + c3|ζ|(ρd−1
2 − ρd−1

1 )

+c4(ρd2 − ρd1) + 2c3|ζ|ω( |x1−x2|
ρ1

, |ν1 − ν2|) ρd−1
1 + η .

Taking the limit as η → 0 we obtain (5.18) with ω therein replaced by 2ω . �

The following lemma provides the Borel measurability of g and gε for a fixed ζ .

Lemma 5.10. Let ζ ∈ R . Then the functions (x, ν) 7→ g(x, ζ, ν) and (x, ν) 7→ gε(x, ζ, ν)
are Borel measurable on Rd × Sd−1 .

Proof. For every ρ > 0 we set

ϕ(x, ν, ρ) := mE(ux,ζ,ν , Qν(x, ρ)) . (5.28)

By Lemma 4.11 we have

ϕ(x, ν, ρ2)− c3ρd−1
2 − c4ρd2 ≤ ϕ(x, ν, ρ1)− c3ρd−1

1 − c4ρd1 . (5.29)

Hence the function

ρ 7→ ϕ(x, ν, ρ)

ρd−1

satisfies (5.2) with κ1 = c3 and κ2 = c4 . By Lemma 5.2 this implies that

g(x, ζ, ν) = lim sup
ρ→0+
ρ∈Q

ϕ(x, ν, ρ)

ρd−1
. (5.30)

Moreover, by (5.29), for every x ∈ Rd and ν ∈ Sd−1 the function ρ 7→ ϕ(x, ν, ρ) has
bounded variation in (0,+∞). This implies that for every x ∈ Rd , ν ∈ Sd−1 , and r > 0
there exists

ϕ(x, ν, r+) := lim
ρ→r+

ϕ(x, ν, ρ) .

Using (5.29) we see that

ϕ(x, ν, ρ) ≤ ϕ(x, ν, r+) + c3(ρd−1 − rd−1) + c4(ρd − rd) (5.31)

for every 0 < r < ρ . Moreover, it is obvious that

sup
0<r<δ
r∈Q

ϕ(x, ν, r+)

rd−1
= sup

0<r<δ
r∈Q

ϕ(x, ν, r)

rd−1

for every δ > 0. By (5.30) this implies that

g(x, ζ, ν) = lim sup
r→0+
r∈Q

ϕ(x, ν, r+)

rd−1
. (5.32)

Let us fix x0 ∈ Rd , ν0 ∈ Sd−1
+ , and r > 0. We claim that the function (x, ν) 7→ ϕ(x, ν, r+)

is lower semicontinuous in Rd×Sd−1
+ at (x0, ν0). Let xk → x0 in Rd and νk → ν0 in Sd−1

+ .
Let us fix r < ρ1 < ρ2 . For k large enough we have Qνk(xk, ρ1) ⊂⊂ Qν0(x0, ρ2) (see (d)
and (e) at the beginning of Section 2).

By (5.18)

ϕ(x0, ν0, ρ2) ≤ ϕ(xk, νk, ρ1) + c3(ρd−1
2 − ρd−1

1 )

+c4(ρd2 − ρd1) + c3ω( |x0−xk|
ρ1

, |ν0 − νk|) ρd−1
1 . (5.33)
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By (5.31) applied to x = xk , ν = νk , and ρ = ρ1 , we obtain

ϕ(x0, ν0, ρ2) ≤ ϕ(xk, νk, r+) + c3(ρd−1
1 − rd−1) + c4(ρd1 − rd)

+c3(ρd−1
2 − rd−1) + c4(ρd2 − rd) + c3 ω( |x−xk|ρ1

, |ν − νk|) ρd−1
1 .

Hence

ϕ(x0, ν0, ρ2) ≤ lim inf
k→∞

ϕ(xk, νk, r+)+c3(ρd−1
1 −rd−1)+c4(ρd1−rd)+c3(ρd−1

2 −rd−1)+c4(ρd2−rd)

and taking the limit as ρ1, ρ2 → r+ we obtain

ϕ(x0, ν0, r+) ≤ lim inf
k→∞

ϕ(xk, νk, r+) ,

which proves the lower semicontinuity of (x, ν) 7→ ϕ(x, ν, r+) in Rd × Sd−1
+ . By (5.32) we

deduce that (x, ν) 7→ g(x, ζ, ν) is a Borel function in Rd × Sd−1
+ . The same argument holds

for Rd × Sd−1
− and this leads to the result for g . The proof for gε is similar. �

The following lemma provides the uniform continuity of g and gε with respect to ζ .

Lemma 5.11. Let x ∈ Rd , ζ1, ζ2 ∈ R , and ν ∈ Sd−1 . Then

|g(x, ζ1, ν)− g(x, ζ2, ν)| ≤ σ(|ζ1 − ζ2|) (5.34)

|gε(x, ζ1, ν)− gε(x, ζ2, ν)| ≤ σ(|ζ1 − ζ2|) + ε|ζ1 − ζ2| . (5.35)

Proof. Let us fix ρ > 0. By the definition of mE there exists u1 ∈ BV (Qν(x, ρ)), with
trQν(x,ρ)u1 = trQν(x,ρ)ux,ζ1,ν Hd−1 -a.e. on ∂Qν(x, ρ), such that

E(u1, Qν(x, ρ)) ≤ mE(ux,ζ1,ν , Qν(x, ρ)) + ρd .

Let u2 := u1 − ux,ζ1,ν + ux,ζ2,ν = u1 + ux,ζ2−ζ1,ν . Since trQν(x,ρ)u2 = trQν(x,ρ)ux,ζ2,ν
Hd−1 -a.e. on ∂Qν(x, ρ), by (3.8) we have

mE(ux,ζ2,ν , Qν(x, ρ)) ≤ E(u2, Qν(x, ρ)) ≤ E(u1, Qν(x, ρ)) + σ(|ζ1 − ζ2|)ρd−1

≤ mE(ux,ζ1,ν , Qν(x, ρ)) + ρd + σ(|ζ1 − ζ2|)ρd−1 .

Dividing by ρd−1 and taking the lim sup as ρ→ 0+ we obtain (5.34). The proof of (5.35)
is similar. �

We are now in a position to obtain the measurability of g and gε .

Corollary 5.12. The functions g and gε are Borel measurable on Rd × R× Sd−1 .

Proof. The result follows from Lemmas 5.10 and 5.11. �

The following lemma provides the lower estimate for g .

Lemma 5.13. Let x ∈ Rd , ζ ∈ R , and ν ∈ Sd−1 . Then

g(x, ζ, ν) ≥ c1(|ζ| ∧ 1) . (5.36)

Proof. Let ρ > 0 and let ∂νQν(x, ρ) be the union of the two faces of Qν(x, ρ) that are
orthogonal to ν . Then, by (c1) of Definition 3.1,

mE(ux,ζ,ν , Qν(x, ρ)) ≥ inf
u∈BV (Qν(x,ρ))

trQν (x,ρ)u=trQν (x,ρ)ux,ζ,ν

Hd−1-a.e. on ∂νQν(x,ρ)

c1V (u,Qν(x, ρ))− c2ρd . (5.37)

Using the notation introduced in (5.15) and (5.16), by [2, Theorem 3.108] for every u ∈
BV (Qν(x, ρ)) we have

V (u,Qν(x, ρ)) ≥
∫
Cν(x,ρ)

Ψ(uνy)dHd−1(y) ,

where Cν(x, ρ) is the orthogonal projection onto Πν
0 of the cube Qν(x, ρ) and Ψ is the

functional defined by (5.13) with a := x · ν − ρ/2 and b := x · ν − ρ/2. If, in addition,
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trQν(x,ρ)u = trQν(x,ρ)ux,ζ,ν Hd−1 -a.e. on ∂νQν(x, ρ), we have also uνy(a) = 0 and uνy(b) = ζ

(in the sense of traces in dimension 1) for Hd−1 -a.e. y ∈ Cν(x, ρ). Therefore, by Lemma 5.7
we obtain that Ψ(uνy) ≥ |ζ|∧1. Together with (5.37) this shows that mE(ux,ζ,ν , Qν(x, ρ)) ≥
c1(|ζ|∧1)ρd−1−c2ρd . Dividing by ρd−1 and taking the lim sup as ρ→ 0+ we obtain (5.36).

�

We now prove the upper estimate for g and gε .

Lemma 5.14. Let x ∈ Rd , ζ ∈ R , and ν ∈ Sd−1 . Then

g(x, ζ, ν) ≤ c3(|ζ| ∧ 1) and gε(x, ζ, ν) ≤ c3(|ζ| ∧ 1) + ε|ζ| . (5.38)

Proof. For every ρ > 0, by (c2) of Definition 3.1 we have

mE(ux,ζ,ν , Qν(x, ρ)) ≤ E(ux,ζ,ν , Qν(x, ρ)) ≤ c3(|ζ| ∧ 1)ρd−1 + c4ρ
d .

Dividing by ρd−1 and taking the lim sup as ρ→ 0+ we obtain the first inequality in (5.38).
The inequality for gε is obtained in a similar way. �

The following lemma proves the symmetry property of g .

Lemma 5.15. Let x ∈ Rd , ζ ∈ R , and ν ∈ Sd−1 . Then

g(x,−ζ,−ν) = g(x, ζ, ν) . (5.39)

Proof. Since Qν(x, ρ) = Q−ν(x, ρ) and ζ + ux,−ζ,−ν = ux,ζ,ν , the conclusion follows from
(3.6) and from the definition of g . �

The following result shows the monotonicity of g with respect to ζ .

Lemma 5.16. Let x ∈ Rd , ζ1, ζ2 ∈ R , and ν ∈ Sd−1 . Assume that 0 ≤ ζ1 ≤ ζ2 or that
ζ2 ≤ ζ1 ≤ 0 . Then

g(x, ζ1, ν) ≤ g(x, ζ2, ν) . (5.40)

Proof. We prove the result when 0 ≤ ζ1 ≤ ζ2 , the other case being analogous. Let us fix
ρ > 0. By the definition of mE there exists u2 ∈ BV (Qν(x, ρ)) such that trQν(x,ρ)u2 =

trQν(x,ρ)ux,ζ2,ν Hd−1 -a.e. on ∂Qν(x, ρ) and E(u2, Qν(x, ρ)) ≤ mE(ux,ζ2,ν , Qν(x, ρ)) + ρd .

Let u1 := u
(ζ1)
2 . Since trQν(x,ρ)u1 = trQν(x,ρ)ux,ζ1,ν Hd−1 -a.e. on ∂Qν(x, ρ), by (3.10) we

have

mE(ux,ζ1,ν , Qν(x, ρ)) ≤ E(u1, Qν(x, ρ)) ≤ E(u2, Qν(x, ρ)) + c4ρ
d

≤ mE(ux,ζ2,ν , Qν(x, ρ)) + (c4 + 1)ρd .

Dividing by ρd−1 and taking the limsup as ρ→ 0+ we obtain (5.40). �

We conclude this section by showing that the previous lemmas prove all properties men-
tioned in Theorem 5.1.

Proof of Theorem 5.1. Property (f1) for f and fε is proved in Corollary 5.5. Properties
(f2), (f3), and (f4), for f and the analogous properties for fε are proved in Lemmas 5.6,
5.8, and 5.4, respectively. Hence f ∈ F and taking the limit as ε→ 0+ we obtain also that

f̂ ∈ F .
Property (g1) for g and gε is proved in Corollary 5.12. Properties (g2), (g3), (g4), (g5),

and (g6) for g are proved in Lemmas 5.13, 5.14, 5.11, 5.15, and 5.16, respectively. �
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6. Integral representation

In this section we shall prove first an integral representation on GBV? of the functionals
Ea and Ej defined in (4.1) and (4.4). The full integral representation for E requires an
additional hypothesis (see (6.16) below) and will be obtained at the end of the section. We
begin with an integral representation on BV for the functionals Eaε and Ejε introduced in
Definition 4.9.

Theorem 6.1. Let E ∈ Esc , let A ∈ Ac(Rd) , and let ε > 0 . Let Eaε , E
j
ε : BV (A)×B(A)→

[0,+∞) be the functionals introduced in Definition 4.9 and let fε and gε be the integrands
introduced in Definition 4.13. Then

Eaε (u,B) =

∫
B

fε(x,∇u)dx , (6.1)

Ejε(u,B) =

∫
B∩Ju

gε(x, [u], νu)dHd−1 , (6.2)

for every u ∈ BV (A) and every B ∈ B(A) .

Proof. By (a), (b), and (c2) in Definition 3.1 and by Remarks 3.14 and 4.8 the functional
Eε satisfies all hypotheses of [4, Theorem 3.7]. In the proof of that theorem, recalling also
[4, Remark 3.8(1)], it is shown that for every u ∈ BV (A)

dEε(u, ·)
dLd

(x) = fε(x,∇u(x)) for Ld -a.e. x ∈ Rd , (6.3)

where
dEε(u, ·)
dLd

(x) := lim
ρ→0+

Eε(u,Q(x, ρ))

ρd
for Ld -a.e. x ∈ Rd

and fε is obtained using (4.24). By the differentiation theory for Radon measures dEε(u,·)
dLd

is the density of Eaε (u, ·) with respect to Ld . Therefore, by integration (6.3) gives (6.1).
Moreover, in the proof of [4, Theorem 3.7] it is shown also that for every u ∈ BV (A)

with Hd−1(Ju) < +∞
dEε(u, ·)
dHd−1 Ju

(x) = gε(x, [u](x), νu(x)) for Hd−1 -a.e. x ∈ Ju , (6.4)

where
dEε(u, ·)
dHd−1 Ju

(x) := lim
ρ→0+

Eε(u,Qνu(x)(x, ρ))

ρd−1
for Hd−1 -a.e. x ∈ Ju (6.5)

and gε is obtained using (4.25). To prove (6.2) let us fix η > 0 and consider Jηu := {x ∈
Ju : |[u](x)| ≥ η} . Then, from [2, (3.90)] it follows easily that Hd−1(Jηu) < +∞ . Since Jηu
is also (Hd−1, d− 1)-countably rectifiable (see [2, Theorem 3.78]), we infer that

lim
ρ→0+

Hd−1(Jηu ∩Qν(x)(x, ρ))

ρd−1
= 1 for Hd−1 -a.e. x ∈ Jηu (6.6)

(see [12, Theorem 3.2.19]). From (6.4)-(6.6) we get

lim
ρ→0+

Eε(u,Qνu(x)(x, ρ))

Hd−1 Jηu(Qνu(x))
= gε(x, [u](x), νu(x)) for Hd−1 -a.e. x ∈ Jηu .

We observe that the absolutely continuous part of Eε(u, ·) with respect to Hd−1 Jηu
coincides on Jηu with the measure Ejε(u, ·) introduced in Definition 4.9. Therefore, by a
general version of the differentiation theory for Radon measures based on Morse’s covering
theorem (see [17] and [13, Sections 1.2.1-1.2.2]) we obtain that gε(x, [u], νu) is the density
of Ejε(u, ·) on Jηu . Integrating, we obtain (6.2) for every Borel set B ⊂ Jηu . The case of a
general B can be obtained passing to the limit as η → 0+. �
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Let f̂ : Rd × Rd → [0,+∞) be defined by (5.1). By Theorem 5.1 f̂ ∈ F . We now prove
an integral representation result for Ea and Ej on BV (A).

Theorem 6.2. Let E ∈ Esc , let A ∈ Ac(Rd) , and let f̂ and g be defined by (5.1) and
(4.23), respectively. Then

Ea(u,B) =

∫
B

f̂(x,∇u)dx , (6.7)

Ej(u,B) =

∫
B∩Ju

g(x, [u], νu)dHd−1 , (6.8)

for every u ∈ BV (A) and every B ∈ B(A) .

Proof. To prove (6.7) we observe that Eaε (u,B) = Ea(u,B) + ε
∫
B
|∇u|dx for every u ∈

BV (A) and every B ∈ B(A), hence

Ea(u,B) = lim
ε→0+

Eaε (u,B) = inf
ε>0

Eaε (u,B) .

Therefore (6.7) follows from (5.1) and (6.1), recalling the upper bound (5.17) for fε .
Notice also that Ejε(u,B) = Ej(u,B) + ε

∫
B∩Ju |[u]|dHd−1 , hence

Ej(u,B) = lim
ε→0+

Ejε(u,B) = inf
ε>0

Ejε(u,B) .

Therefore (6.8) follows from (4.53) and (6.2), recalling the upper bound (5.38) for gε . �

We are now in a position to provide an integral representation result for Ea and Ej on
GBV?(A).

Theorem 6.3. Let E ∈ Esc , let f and g be defined by (4.22) and (4.23), respectively, and
let A ∈ Ac(Rd) . Then

Ea(u,B) =

∫
B

f(x,∇u)dx , (6.9)

Ej(u,B) =

∫
B∩Ju

g(x, [u], νu)dHd−1 , (6.10)

for every u ∈ GBV?(A) and every B ∈ B(A) .

Proof. Let us fix u ∈ GBV?(A) and B ∈ B(A). For every m > 0 we have u(m) ∈ BV (A).

By Theorem 6.2 we can apply Proposition 4.15 and we obtain that the function f̂ defined
by (5.1) coincides with the function f defined by (4.22). Therefore, Theorem 6.2 gives

Ea(u(m), B) =

∫
B

f(x,∇u(m))dx (6.11)

Ej(u(m), B) =

∫
B∩J

u(m)

g(x, [u[m]], νu(m))dHd−1 (6.12)

We pass to the limit in the left-hand side of (6.11) as m→ +∞ thanks to (4.9). As for the
right-hand side, by Theorem 2.2(b) we have∫

B

f(x,∇u(m))dx =

∫
B∩{|u|≤m}

f(x,∇u)dx+

∫
B∩{|u|>m}

f(x, 0)dx→
∫
B

f(x,∇u)dx ,

where we used the fact that u has finite values and f satisfies (f3).
In (6.12) we pass to the limit in the left-hand side by (4.12). To deal with the right-hand

side we note that by Theorem 2.2(d) and (g4) we have

g(x, [u(m)], νu(m))1J
u(m)

→ g(x, [u], νu) Hd−1-a.e. in Ju
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and from (g3) we obtain g(x, [u(m)], νu(m)) ≤ c3(|[u(m)]| ∧ 1) ≤ c3(|[u]| ∧ 1) Hd−1 -a.e. in
Ju . Since u ∈ GBV?(A), we have c3

∫
Ju
|[u]| ∧ 1dHd−1 < +∞ . Hence we can apply the

Lebesgue Dominated Convergence Theorem and we obtain∫
B∩J

u(m)

g(x, [u(m)], νu(m))dHd−1 →
∫
B∩Ju

g(x, [u], νu)dHd−1 .

This shows that the right-hand side of (6.12) converges to the the right-hand side of (6.10)
and concludes the proof. �

As a consequence of the integral representation of Ea we obtain the convexity of f with
respect to ξ .

Corollary 6.4. Under the assumptions of Theorem 6.3 for Ld -a.e. x ∈ Rd the function
ξ 7→ f(x, ξ) is convex on Rd .

Proof. Since E ∈ Esc , for every A ∈ Ac(Rd) the functional u 7→ E(u,A) is lower semicon-
tinuous in GBV?(A) with respect to convergence in L0(Rd), hence it is lower semicontinuous
in W 1,1(A) with respect to the weak convergence of W 1,1(A). The integral representation
(6.9) implies that for every A ∈ Ac(Rd) the functional u 7→

∫
A
f(x,∇u)dx is lower semi-

continuous in W 1,1(A) with respect to the weak convergence of W 1,1(A). The convexity of
ξ 7→ f(x, ξ) for Ld -a.e. x ∈ A follows from a well known property of the integrands of lower
semicontinuous functionals on W 1,1(A) (see, e.g., [16]). The arbitrariness of A ∈ Ac(Rd)
allows us to conclude the proof. �

We consider now the problem of a full integral representation for E , which includes its
Cantor part Ec . To this end we assume that the functional E ∈ Esc satisfies an additional
property which is clearly satisfied whenever E is invariant under translations.

Definition 6.5 (Translation operators). For every z ∈ Rd we set

τzx := x+ z for every x ∈ Rd , (6.13)

τzB := B + z = {x+ z : x ∈ B} for every B ∈ B(Rd) . (6.14)

Given v ∈ L0(Rd) we define τzv ∈ L0(Rd) by

τzv(x) := v(x− z) for every x ∈ Rd . (6.15)

Note that if u ∈ GBV?(A) for some A ∈ Ac(Rd), then τzu ∈ GBV?(τzA).

The following proposition shows that the functions f and g defined by (4.22) and (4.23)
are continuous with respect to x when E ∈ Esc satisfies a continuity estimate with respect
to translations.

Proposition 6.6. Let E ∈ Esc . Assume that there exists a modulus of continuity ω such
that

|E(τzu, τzA)− E(u,A)| ≤ ω(|z|)(E(τzu, τzA) + E(u,A) + Ld(A)) (6.16)

for every A ∈ Ac(Rd) , u ∈ GBV?(A) , and z ∈ Rd . Let f and g be defined by (4.22)
and (4.23), respectively. Then f is continuous on Rd × Rd and ξ 7→ f(x, ξ) is convex on
Rd for every x ∈ Rd , while (x, ζ) 7→ g(x, ζ, ν) is continuous on Rd×R for every ν ∈ Sd−1 .
Moreover the recession function f∞ defined by (3.11) is continuous on Rd × Rd and

|f(x, ξ)− f(y, ξ)| ≤ ω(|x− y|)(f(x, ξ) + f(y, ξ) + 1) (6.17)

|g(x, ζ, ν)− g(y, ζ, ν)| ≤ ω(|x− y|)(g(x, ζ, ν) + g(y, ζ, ν)) (6.18)

|f∞(x, ξ)− f∞(y, ξ)| ≤ ω(|x− y|)(f∞(x, ξ) + f∞(y, ξ)) , (6.19)

for every x, y ∈ Rd , ξ ∈ Rd , ζ ∈ R and ν ∈ Sd−1 . Finally, for every ε > 0 all these
properties are satisfied by the functions fε and gε defined by (4.24) and (4.25).
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Proof. Exchanging the roles of x and y we see that (6.17) and (6.18) are equivalent to

f(x, ξ) ≤ f(y, ξ) + ω(|x− y|)(f(x, ξ) + f(y, ξ) + 1) ,

g(x, ζ, ν) ≤ g(y, ζ, ν) + ω(|x− y|)(g(x, ζ, ν) + g(y, ζ, ν)) ,

which follow immediately from (6.16) and the definitions of f and g .
By Corollary 6.4 for Ld -a.e. x ∈ Rd the function ξ 7→ f(x, ξ) is convex. From (6.17) we

deduce that this property holds for every x ∈ Rd . Since f satisfies (f4) and g satisfies (g4) by
Theorem 5.1, the continuity of f follows from (6.17) and the continuity of (x, ζ) 7→ g(x, ζ, ν)
follows from (6.18). Inequality (6.19) is an elementary consequence of (3.11) and (6.17).

The properties of fε and gε are proved in the same way. �

We are now in a position to state the main result of this section: the integral representation
of E(u,A) for u ∈ GBV?(A).

Theorem 6.7. Let E ∈ Esc and let f , f∞ , and g be defined by (4.22), (3.11), and (4.23),
respectively. Assume that E satisfies property (6.16). Then E = Ef,g . In particular, for
every A ∈ Ac(Rd) we have

E(u,B) =

∫
B

f(x,∇u)dx+

∫
B

f∞
(
x,

dDcu

d|Dcu|

)
d|Dcu|+

∫
B∩Ju

g(x, [u], νu)dHd−1 (6.20)

for every u ∈ GBV?(A) and every B ∈ B(A) .

Proof. By Definitions 3.1 and 3.10 it is enough to prove (6.20). Let us fix A ∈ Ac(Rd).
Since, by Remark 4.2 and Theorem 6.3, we have

E(u,B) =

∫
B

f(x,∇u)dx+ Ec(u,B) +

∫
B∩Ju

g(x, [u], νu)dHd−1 , (6.21)

in order to complete the proof it remains to show that

Ec(u,B) =

∫
B

f∞
(
x,

dDcu

d|Dcu|

)
d|Dcu| (6.22)

for every u ∈ GBV?(A) and every B ∈ B(A).
Let us first consider ε > 0 and Eε and fε defined by (4.16) and (4.24). We now prove

that the Cantor part Ecε of Eε satisfies

Ecε(u,B) =

∫
B

f∞ε

(
x,

dDcu

d|Dcu|

)
d|Dcu| (6.23)

for every u ∈ BV (A) and B ∈ B(A).
To this end, let z ∈ Rd . By Definitions 4.7 and 6.5, for every ε > 0 we have Eε(τzu, τzA)−

Eε(u,A) = E(τzu, τzA) − E(u,A), hence Eε satisfies (6.16). By (a), (b), and (c2)in Def-
inition 3.1 and by Remarks 3.14 and 4.8 the functional Eε defined by (4.16) satisfies the
hypotheses of [4, Theorem 3.12]. Therefore the integral representation formula (6.23) holds.

By (4.3) and Definition 4.9 for every u ∈ BV (A) and every B ∈ B(A) we have

Ec(u,B) = lim
ε→0+

Ecε(u,B) . (6.24)

By (4.29) for Ld -a.e. x ∈ A we have

f∞(x, ξ) = lim
ε→0+

f∞ε (x, ξ) for every ξ ∈ Rd . (6.25)

By Proposition 6.6 this property holds for every x ∈ A . By (5.17) we have

0 ≤ f∞ε (x, ξ) ≤ (c3 + ε)|ξ| for every x ∈ Rd . (6.26)

Equality (6.22) for u ∈ BV (A) and B ∈ B(A) is obtained by passing to the limit as
ε → 0+ in (6.23), using (6.24) for the left-hand side and using (6.25) for the right-hand
side, observing that we can apply the Dominated Convergence Theorem by (6.26).
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Let us fix u ∈ GBV?(A) and B ∈ B(A). For every m > 0 by the previous step we have

Ec(u(m), B) =

∫
B

f∞
(
x,

dDcu(m)

d|Dcu(m)|

)
d|Dcu(m)| . (6.27)

By Theorem 2.2(c) the measures Dcu(m) and Dcu coincide on all Borel subsets of {|ũ| ≤
m} , while by Lemma 2.4 the measure |Dcu(m)| vanishes on all Borel subsets of A that do
not intersect {|ũ| ≤ m} . This implies that the integral on the right-hand side of (6.27)
coincides with ∫

B∩{|ũ|≤m}
f∞
(
x,

dDcu

d|Dcu|

)
d|Dcu|

which converges to ∫
B

f∞
(
x,

dDcu

d|Dcu|

)
d|Dcu|

since ũ is finite |Dcu|-a.e. in A by Theorem 2.2(a).
Thanks to (4.11) we can pass to the limit also in the left-hand side of (6.27) and this

gives (6.22) for u ∈ GBV?(A) and B ∈ B(A). �

7. Convergence of minima

We conclude the paper with two results concerning the convergence of minimum values
of some minimum problems related to the functional Ef,g .

7.1. Convergence of absolute minimisers. In this subsection we fix Ω ∈ Ac(Rd) and a
Carathéodory function ψ : Ω× R→ R . We assume that there exist p ≥ 1, a1 > 0, a2 ≥ 0,
a3 > 0, and a4 ≥ 0 such that

a1|s|p − a2 ≤ ψ(x, s) ≤ a3|s|p + a4 for Ld-a.e. x ∈ Ω and every s ∈ R , (7.1)

and we define Ψ: Lp(Ω)→ R by Ψ(u) :=
∫

Ω
ψ(x, u)dx for every u ∈ Lp(Ω).

The following theorem shows the convergence of minima of Ek(·,Ω)+Ψ for a Γ-convergent
sequence Ek in E .

Theorem 7.1. Let Ek be a sequence in E and let E ∈ E . Assume that Ek(·,Ω) Γ-
converges to E(·,Ω) with respect to the topology of L0(Ω) . Then

(a) the minimum problem

min
v∈GBV?(Ω)∩Lp(Ω)

(
E(v,Ω) + Ψ(v)

)
(7.2)

has a solution;
(b) we have

min
v∈GBV?(Ω)∩Lp(Ω)

(
E(v,Ω) + Ψ(v)

)
= lim

k→∞
inf

v∈GBV?(Ω)∩Lp(Ω)

(
Ek(v,Ω) + Ψ(v)

)
; (7.3)

(c) if uk is a sequence in GBV?(Ω) ∩ Lp(Ω) such that

Ek(uk,Ω) + Ψ(uk) ≤ inf
v∈GBV?(Ω)∩Lp(Ω)

(
Ek(v,Ω) + Ψ(v)

)
+ εk, (7.4)

for some sequence εk → 0 , then there exist a subsequence of uk , not relabelled, that
converges in Lp(Ω) to a minimum point u of (7.2).

To prove the theorem we use the following result.

Lemma 7.2. Under the assumptions of Theorem 7.1, for every z ∈ GBV?(Ω)∩Lp(Ω) there
exists a sequence zk ∈ BV (Ω) ∩ L∞(Ω) such that

zk → z in Lp(Ω) , (7.5)

lim sup
k→∞

Ek(zk,Ω) ≤ E(z,Ω) . (7.6)
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Proof. Let us fix z ∈ GBV?(Ω) ∩ Lp(Ω). By Γ-convergence and by Lemma 3.18 for every
m ∈ N there exists a sequence zmk ∈ BV (Ω)∩L∞(Ω) with ‖zmk ‖L∞(Ω) ≤ m+ 1, converging

to z(m) in L0(Ω) such that

lim sup
k→∞

Ek(zmk ,Ω) ≤ E(z(m),Ω) .

Therefore, for every m ∈ N there exists km ∈ N such that for every k ≥ km we have

Ek(zmk ,Ω) ≤ E(z(m),Ω) + 1
m ≤ E(z,Ω) + c4Ld({|z| ≥ m}) + 1

m ,

‖zmk − z(m)‖Lp(Ω) ≤ 1
m ,

where we used also Remark 3.4. It is not restrictive to assume that km is strictly increasing
with respect to m . Therefore, setting zk := zmk for km ≤ k < km+1 we have

Ek(zk,Ω) ≤ E(z,Ω) + c4Ld({|z| ≥ m}) + 1
m ,

‖zk − z‖Lp(Ω) ≤ ‖z(m) − z‖Lp(Ω) + 1
m ,

for k ≥ km . Since z(m) → z in Lp(Ω), we conclude that (7.5) and (7.6) hold. �

Proof of Theorem 7.1. Let vk be a minimizing sequence of (7.2). By (c2) in Definition 3.1
and (7.1), the sequence vk is bounded in Lp(Ω) and V (vk,Ω) is bounded. By the compact-
ness theorem in GBV? , proved in [8, Theorem 3.11], there exist a subsequence, not relabelled,
and a function v0 ∈ GBV?(Ω) such that vk → v0 in L0(Ω). The boundedness of vk in Lp(Ω)
implies that v0 ∈ Lp(Ω). Since E(·,Ω) is a Γ-limit, it is lower semicontinuous with respect
to the topology of L0(Ω) (see [7, Proposition 6.8]), hence E(v0,Ω) ≤ lim infk→∞E(vk,Ω).
By the Fatou Lemma we have also Ψ(v0) ≤ lim infk→∞Ψ(vk). These inequalities lead to

E(v0,Ω) + Ψ(v0) ≤ lim
k→∞

(
E(vk,Ω) + Ψ(vk)

)
= inf
v∈GBV?(Ω)∩Lp(Ω)

(
E(v,Ω) + Ψ(v)

)
.

This proves that v0 is a minimiser of E(·,Ω) + Ψ(·) and concludes the proof of (a).
Let us prove that

min
v∈GBV?(Ω)∩Lp(Ω)

(
E(v,Ω) + Ψ(v)

)
≥ lim sup

k→∞
inf

v∈GBV?(Ω)∩Lp(Ω)

(
Ek(v,Ω) + Ψ(v)

)
. (7.7)

Let z ∈ GBV?(Ω) ∩ Lp(Ω) be a minimiser of (7.2). By Lemma 7.2 there exists a sequence
zk ∈ BV (Ω) ∩ L∞(Ω) such that zk → z in Lp(Ω) and

E(z,Ω) ≥ lim sup
k→∞

Ek(zk,Ω) .

The continuity of Ψ on Lp(Ω) gives

E(z,Ω) + Ψ(z) ≥ lim sup
k→∞

(
Ek(zk,Ω) + Ψ(zk)

)
.

Since the left-hand side of the previous equality coincides with the left-hand side of (7.7),
while the right-hand side of the previous equality is greater than or equal to the right-hand
side of (7.7), we conclude that (7.7) holds.

To complete the proof of (7.3) it remains to show that

min
v∈GBV?(Ω)∩Lp(Ω)

(
E(v,Ω) + Ψ(v)

)
≤ lim inf

k→∞
inf

v∈GBV?(Ω)∩Lp(Ω)

(
Ek(v,Ω) + Ψ(v)

)
. (7.8)

Passing to a subsequence, not relabelled, we may assume that the lim inf in the right-hand
side is a limit, which is finite by (7.7).

Let uk be a sequence in GBV?(Ω) ∩ Lp(Ω) satisfying (7.4). Then

lim
k→∞

(
Ek(uk, A) + Ψ(uk)

)
= lim
k→∞

inf
v∈GBV?(Ω)∩Lp(Ω)

(
Ek(v,Ω) + Ψ(v)

)
. (7.9)

By (c2) in Definition 3.1 and (7.1), the sequence uk is bounded in Lp(Ω) and V (uk,Ω) is
bounded. By the compactness theorem in GBV? , proved in [8, Theorem 3.11], there exist a
subsequence, not relabelled, and a function u ∈ GBV?(Ω) such that uk → u in L0(Ω). Since
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uk is bounded in Lp(Ω) we deduce that u ∈ Lp(Ω). By Γ-convergence we have E(u,Ω) ≤
lim infk→∞Ek(uk,Ω). By the Fatou Lemma we have also Ψ(u) ≤ lim infk→∞Ψ(uk), hence

E(u,Ω) + Ψ(u) ≤ lim
k→∞

(
Ek(uk,Ω) + Ψ(uk)

)
= min
v∈GBV?(Ω)∩Lp(Ω)

(
E(v,Ω) + Ψ(v)

)
.

This inequality together with (7.9) proves (7.8), and concludes the proof of (b). Moreover,
it shows that u is a minimiser of E(·,Ω) + Ψ(·).

To complete the proof of (c) it remains to show that uk → u in Lp(Ω). We observe that
the minimum property of u , together with (7.3) and (7.4), implies that

E(u,Ω) + Ψ(u) = lim
k→∞

(
Ek(uk,Ω) + Ψ(uk)

)
.

Since E(u,Ω) ≤ lim infk→∞Ek(uk,Ω) and Ψ(u) ≤ lim infk→∞Ψ(uk) we deduce that

Ψ(u) = lim
k→∞

Ψ(uk) . (7.10)

Since |uk−u|p ≤ 2p−1|uk|p+2p−1|u|p ≤ (2p−1/a1)(ψ(x, uk)+a2)+2p−1|u|p and ψ(x, uk)→
ψ(x, u) in measure, by (7.10) we can apply the generalized version of the Dominated Con-
vergence Theorem and we obtain uk − u→ 0 in Lp(Ω), which concludes the proof of (c).

�

7.2. Dirichlet boundary condition. In this subsection we fix Ω ∈ Ac(Rd) with Lipschitz
boundary and a function ϕ ∈ L1(∂Ω). Given a functional E ∈ E , the naive formulation of
the minimum problem with Dirichlet boundary condition is

min
v∈GBV?(Ω)

trΩv=ϕ Hd−1-a.e. on ∂Ω

E(v,Ω) ,

where trΩv is the trace on ∂Ω defined in Theorem 2.2(e). It is known that, since the
functional E(·,Ω) has linear growth, this problem has in general no solution, even if E ∈ Esc .
Simple examples of nonexistence are known for the functional V , even when ϕ is smooth.
The usual way to overcome this difficulty is to replace the condition trΩv = ϕ Hd−1 -a.e. on
∂Ω by a penalization term. The most common one leads to the following minimum problem

min
v∈GBV?(Ω)

(
E(v,Ω) + c̃

∫
∂Ω

|trΩv − ϕ| ∧ 1dHd−1
)
, (7.11)

where c̃ is a positive constant.
To study this problem we fix a set Ω̃ ∈ Ac(Rd) with Ω ⊂⊂ Ω̃ , and a function w ∈W 1,1(Ω̃)

such that ϕ is the trace of w on ∂Ω, whose existence is granted by Gagliardo’s Theorem
[15]. Problem (7.11) is equivalent to

min
v∈GBV?(Ω̃)

v=w Ld-a.e. in Ω̃\Ω

Ẽ(v, Ω̃) , (7.12)

where Ẽ is given by the following definition.

Definition 7.3. Given a constant c̃ > 0 and a functional E ∈ E , let Ẽ : L0(Rd)×B(Rd)→
[0,+∞] be the functional defined by

Ẽ(u,B) = E(u,B ∩ Ω) + c̃ V (u,B \ Ω) .

In the rest of the paper we fix a constant c̃ with c1 ≤ c̃ ≤ c3 , so that Ẽ ∈ E as we shall
see in Proposition 7.5 below.

Remark 7.4. Problems (7.11) and (7.12) are equivalent in the following sense: the quasi-

minimisers are the same, i.e., for every ε > 0 a function u ∈ GBV?(Ω̃) with u = w Ld -a.e.

in Ω̃ \ Ω satisfies

Ẽ(u, Ω̃) ≤ inf
v∈GBV?(Ω̃)

v=w Ld-a.e. in Ω̃\Ω

Ẽ(v, Ω̃) + ε
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if and only if the restriction of u to Ω belongs to GBV?(Ω) and

E(u,Ω) + c̃

∫
∂Ω

|trΩu−ϕ| ∧ 1dHd−1 ≤ inf
v∈GBV?(Ω)

(
E(v,Ω) + c̃

∫
∂Ω

|trΩv−ϕ| ∧ 1dHd−1
)

+ ε .

Moreover, the infima of the two problems differ by the constant c̃V (w, Ω̃ \ Ω).

In this section we consider a sequence of functionals in E of the form Efk,gk introduced
in Definition 3.10, with fk ∈ F and gk ∈ G , and we study the asymptotic behaviour of the
minimum problems

min
v∈GBV?(Ω̃)

v=w Ld-a.e. in Ω̃\Ω

Ẽfk,gk(v, Ω̃) . (7.13)

Applying the Compactness Theorem 3.16 to the sequence Ẽfk,gk , we can find a subsequence,
not relabelled, and a functional Ê ∈ Esc such that for every A ∈ Ac(Rd) the sequence

Ẽfk,gk(·, A) Γ-converges to Ê(·, A) with respect to the topology of L0(Rd). Under an
additional assumption on gk , which is always satisfied when gk is even with respect to ζ ,
we shall prove in Theorem 7.14 that the minimum problem

min
v∈GBV?(Ω̃)

v=w Ld-a.e. in Ω̃\Ω

Ê(v, Ω̃) . (7.14)

has a solution, that the sequence of infima in (7.13) converge to the minimum value of (7.14),
and that there exists a suitable subsequence of quasi-minimisers of (7.13) that converges in

L0(Ω̃) to a minimiser of (7.14).
We now prepare the technical tools that are used to obtain these results.

Proposition 7.5. If E ∈ E , then Ẽ ∈ E .

Proof. Since V ∈ E the locality property (a) in Definition 3.1 follows from Remark 3.2.
Recalling (3.1), (3.2), and the inequalities c1 ≤ c̃ ≤ c3 , the other properties in Definition 3.1

are trivial, except (3.3). It is enough to prove it when Ẽ(u,B) < +∞ . In this case, by (3.3)
for E and V , for every ε > 0 there exist A1, A2 ∈ A(Rd) with B∩Ω ⊂ A1 and B\Ω ⊂ A2 ,
such that

E(u,A1) ≤ E(u,B ∩ Ω) + ε < +∞ and V (u,A2) ≤ V (u,B \ Ω) + ε < +∞ .

It is not restrictive to assume that A1 ⊂ Ω. Since V (u,A2 ∩ Ω) < +∞ , there exists a
compact set K ⊂ A2 ∩ Ω such that

V (u, (A2 ∩ Ω) \K) < ε .

Let A := A1 ∪ (A2 \K). Then A ∈ A(Rd), B ⊂ A , and

Ẽ(u,A) = E(u,A1 ∪ ((A2 \K) ∩ Ω)) + c̃V (u,A2 \ Ω)

≤ E(u,A1) + c3V (u, (A2 ∩ Ω) \K) + c̃V (u,A2)

≤ E(u,B ∩ Ω) + ε+ c3ε+ c̃V (u,B \ Ω) + c̃ε

= Ẽ(u,B) + (1 + c3 + c̃)ε . (7.15)

By the arbitrariness of ε we obtain (3.3) for Ẽ . �

Remark 7.6. If f ∈ F , g ∈ G , and E = Ef,g (see Definition 3.10), then Ẽf,g = Ef̃ ,g̃ ,
where

f̃(x, ξ) =

{
f(x, ξ) if x ∈ Ω, ξ ∈ Rd ,
c̃|ξ| if x ∈ Rd \ Ω, ξ ∈ Rd ,

(7.16)

g̃(x, ζ, ν) =

{
g(x, ζ, ν) if x ∈ Ω, ζ ∈ R, ν ∈ Sd−1 ,

c̃(|ζ| ∧ 1) if x ∈ Rd \ Ω, ζ ∈ R, ν ∈ Sd−1 .
(7.17)
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Remark 7.7. Let Ek be a sequence in E . Then, by Proposition 7.5 and Theorem 3.16
there exist a subsequence, not relabelled, and a functional Ê ∈ Esc such that for every
A ∈ Ac(Rd) the sequence Ẽk(·, A) Γ-converges to Ê(·, A) with respect to the topology of
L0(Rd). By the integral representation result in Theorem 6.3 there exists ĝ ∈ G such that,
recalling that ϕ is the trace of w on ∂Ω, we have

Ê(u,A ∩ ∂Ω) = Êj(u,A ∩ ∂Ω) =

∫
A∩∂Ω

ĝ(x, ϕ− trΩu, νΩ)dHd−1 (7.18)

for every u ∈ GBV?(A) with u = w Ld -a.e. in A \ Ω, where νΩ is the outer normal to Ω.

Therefore, since Ê(u, Ω̃) = Ê(u,Ω)+Ê(u, ∂Ω)+Ê(w, Ω̃\Ω) and Ê(w, Ω̃\Ω) = c̃V (w, Ω̃\Ω),
we obtain

min
v∈GBV?(Ω̃)

v=w Ld-a.e. in Ω̃\Ω

Ê(v, Ω̃)

= min
v∈GBV?(Ω)

(
Ê(v,Ω) +

∫
∂Ω

ĝ(x, ϕ− trΩv, νΩ)dHd−1
)

+ c̃V (w, Ω̃ \ Ω) . (7.19)

Theorem 7.8. Let Ek be a sequence in E . Assume that there exists Ê ∈ Esc such that for
every A ∈ Ac(Rd) the sequence Ẽk(·, A) Γ-converges to Ê(·, A) with respect to the topology

of L0(Rd) . Let u ∈ BV (Ω̃) with u = w Ld -a.e. in Ω̃ \Ω . Then there exists a sequence vk
in BV (Ω̃) , with vk = w Ld -a.e. in Ω̃ \ Ω , such that vk → u in L1(Ω̃) and

Ê(u, Ω̃) = lim
k→∞

Ẽk(vk, Ω̃) . (7.20)

The following example shows that in general Ê can not be written as Ẽ for some E ∈ E .

Example 7.9. Assume that d = 1, Ω = (−1, 1), Ω̃ = (−2, 2), c1 < c̃ ≤ c3 . Let us fix ĉ
with c1 < ĉ < c̃ , and let fk(x, ξ) := |ξ| , and gk(x, ζ, ν) = ak(x)(|ζ| ∧ 1), with

ak(x) :=


c1 if x ∈ (1, 1 + 1

k ),

ĉ if x ∈ (1− 1
k , 1],

c3 otherwise.

Then for every A ∈ Ac(Rd) the sequence Efk,gk(·, A) Γ-converges to Ef,g(·, A) with respect
to the topology of L0(Rd), where f(x, ξ) := |ξ| and g(x, ζ, ν) = a(x)(|ζ| ∧ 1), with

a(x) :=

{
c1 if x = 1,

c3 otherwise,

while Ef̃k,g̃k(·, A) Γ-converges to Ef,ĝ(·, A) with respect to the topology of L0(Rd), where
ĝ(x, ζ, ν) = â(x)(|ζ| ∧ 1), with

â(x) :=

{
ĉ if x = 1,

c3 otherwise.

Since Ẽ(u, {1}) = c̃(|[u](1)| ∧ 1) we deduce that Ê can not be of the form Ẽ for some
E ∈ E .

In the proof of Theorem 7.8 we shall use the following one-dimensional result.

Lemma 7.10. Let I = (a, b) and Ĩ = (ã, b̃) be bounded open intervals in R with I ⊂⊂ Ĩ ,

let s, t ∈ R , and let Ψ: BV (Ĩ)→ [0,+∞) be defined by

Ψ(u) :=

∫
I

|∇u|dx+ |Dcu|(I)+
∑

x∈Ju∩[a,b]

|[u](x)|∧1 = |Du|(I \Ju)+
∑

x∈Ju∩[a,b]

|[u](x)|∧1 , (7.21)
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for every u ∈ BV (Ĩ) . Then

inf
v∈BV (Ĩ)

v(a−)=s, v(b+)=t

Ψ(v) ≥ |t− s| ∧ 1 , (7.22)

where v(a−) := lim
ρ→0+

1

ρ

∫ a

a−ρ
v(x)dx and v(b+) := lim

ρ→0+

1

ρ

∫ b+ρ

b

v(x)dx .

Proof. It is enough to adapt the proof of Lemma 5.7. �

Proof of Theorem 7.8. We claim that there exists a sequence uk in BV (Ω̃) converging to

u in L1(Ω̃) such that

lim sup
k→∞

Ẽk(uk, Ω̃) ≤ Ê(u, Ω̃) . (7.23)

Indeed, by the definition of Γ-limit there exists a sequence zk in L0(Rd) converging to
u in L0(Rd) and such that

Ê(u, Ω̃) = lim
k→∞

Ẽk(zk, Ω̃) . (7.24)

By Remark 3.5 it is not restrictive to assume that zk ∈ GBV?(Ω̃) for every k ∈ N . For every
m > 0 let um := w + (u− w)(m) = (u ∨ (w −m)) ∧ (w +m) and zmk := w + (zk − w)(m) =

(zk ∨ (w −m)) ∧ (w +m). Since GBV?(Ω̃) is a vector space, we have zk − w ∈ GBV?(Ω̃) ,

hence (zk − w)(m) ∈ BV (Ω̃) , which gives zmk ∈ BV (Ω̃) . Moreover zmk → um in L1(Ω̃) as
k →∞ . By (g) in Definition 3.1 we have that

Ẽk(zmk , Ω̃) ≤ Ẽ(zk, Ω̃) + c3

∫
{|zk−w|≥m}

|∇w|dx+ c4Ld({|zk − w| ≥ m}) .

Using (7.24) and Fatou Lemma to estimate the last two terms, for every m > 0 we obtain

lim sup
k→∞

Ẽk(zmk , Ω̃) ≤ Ê(u, Ω̃) + εm , (7.25)

where

εm := c3

∫
{|u−w|>m}

|∇w|dx+ c4Ld({|u− w| > m})→ 0 as m→ +∞. (7.26)

Inequality (7.25) implies that for every m ∈ N there exists km ∈ N such that for every

k ≥ km we have ‖zmk − um‖L1(Ω̃) ≤
1
m and Ẽk(zmk , Ω̃) ≤ Ê(u, Ω̃) + εm + 1

m . It is not

restrictive to assume that km < km+1 for every m . For every k ≥ k1 we set uk := zmk for

km ≤ k < km+1 . Then ‖uk−u‖L1(Ω̃) ≤
1
m+‖um−u‖L1(Ω̃) and Ẽk(uk, Ω̃) ≤ Ê(u, Ω̃)+εm+ 1

m

for km ≤ k < km+1 . Since um → u in L1(Ω̃) as m → +∞ , it follows that uk → u in

L1(Ω̃) as k →∞ , and since εm → 0 we also have lim supk→∞ Ẽk(uk, Ω̃) ≤ Ê(u, Ω̃) , which
concludes the proof of (7.23).

We now define vk ∈ BV (Ω̃) by

vk =

{
uk in Ω ,

w in Ω̃ \ Ω ,
(7.27)

and observe that vk → u in L1(Ω̃) . By the definition of Γ-limit

Ê(u, Ω̃) ≤ lim inf
k→∞

Ẽk(vk, Ω̃) ,

hence in order to prove (7.20) we have only to show that

lim sup
k→∞

Ẽk(vk, Ω̃) ≤ Ê(u, Ω̃) . (7.28)

Recalling (7.23), this will be done by estimating Ẽk(vk, Ω̃) in terms of Ẽk(uk, Ω̃) .
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Given 0 < η < 1 we fix an open set Ω1 with C1 boundary such that Ω ⊂⊂ Ω1 ⊂⊂ Ω̃
and

V (w,Ω1 \ Ω) < η . (7.29)

By the definition of Ẽk we have

Ẽk(vk, Ω̃) = Ek(uk,Ω) + c̃ V (vk, ∂Ω) + c̃ V (w,Ω1 \ Ω) + c̃ V (w, Ω̃ \ Ω1) . (7.30)

By the lower semicontinuity of V (·, Ω̃ \ Ω1)

V (w, Ω̃ \ Ω1) ≤ V (uk, Ω̃ \ Ω1) + δk , (7.31)

for a suitable sequence δk → 0+. We observe that (7.29)-(7.31) give

Ẽk(vk, Ω̃) ≤ Ẽk(uk,Ω ∪ (Ω̃ \ Ω1)) + c̃ V (vk, ∂Ω) + c̃δk + c̃η . (7.32)

Therefore it remains to estimate c̃ V (vk, ∂Ω) in terms of Ẽk(uk,Ω1 \ Ω). We proceed first
with the case d = 1, and then we shall use a slicing argument to obtain the general case.

Case d = 1. Since Ω has Lipschitz boundary it is enough to prove the result when
Ω = (a, b) and Ω̃ = (ã, b̃). Given η > 0 we choose a1 ∈ (ã, a) and b1 ∈ (b, b̃) such that∫ a

a1

|∇w|dx < η ,

∫ b1

b

|∇w|dx < η , |uk(a1)− w(a1)| < εk , |uk(b1)− w(b1)| < εk ,

with εk → 0+. It is not restrictive to assume that uk is continuous at a1 and b1 . We
observe that

V (vk, {a}) = |uk(a+)− w(a)| ∧ 1

and by Lemma 7.10 we have also

|uk(a+)− uk(a1)| ∧ 1 ≤ V (uk, [a1, a]) .

Combining these inequalities we obtain

V (vk, {a}) ≤ V (uk, [a1, a]) + |uk(a1)− w(a1)|+ |w(a1)− w(a)|
≤ V (uk, [a1, a]) + εk + η . (7.33)

Similarly we prove that

V (vk, {b}) ≤ V (uk, [b, b1]) + εk + η . (7.34)

Therefore, by (7.32)-(7.34)

Ẽk(vk, (ã, b̃)) ≤ Ẽk(uk, (ã, b̃)) + c̃(2εk + 3η + δk) .

Passing to the limsup as k →∞ we obtain

lim sup
k→∞

Ẽk(vk, (ã, b̃)) ≤ lim sup
k→∞

Ẽk(uk, (ã, b̃)) + 3c̃η , (7.35)

and (7.28) follows from (7.23) and the arbitrariness of η , thus concluding the proof in the
case d = 1. �

To deal with the case d > 1 we need the following lemma, which provides some useful
properties of sets with Lipschitz boundary. We observe that these properties are obvious
when the boundary is C1 . For every B ⊂ ∂Ω, ν ∈ Sd−1 , and ε > 0 we set

Cνε (B) := {x+ tν : x ∈ B, 0 ≤ t ≤ ε}.
Let πν denote the orthogonal projection from Rd into the hyperplane Πν

0 introduced in (f)
at the beginning of Section 2.

Lemma 7.11. Let Ω1 be an open subset of Rd with Ω ⊂⊂ Ω1 and let η > 0 . Then there
exist ε > 0 , a finite family Ki , i = 1, . . . , n , of compact subsets of ∂Ω , and a finite family
νi , i = 1, . . . , n , in Sd−1 such that

(a) Hd−1(∂Ω \
⋃n
i=1Ki) < η ,

(b) πνi : Rd → Πνi
0 is injective on Ki ,
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(c) |νΩ − νi| < η Hd−1 -a.e. in Ki , where νΩ denotes the unit outer normal to Ω ,
(d) the sets Cνiε (Ki) are pairwise disjoint and contained in Ω1 ,
(e) Cνiε (Ki) ∩ Ω = Ø .

When the boundary is not of class C1 , the proof of this result involves a lot of technical
arguments and is given in the Appendix.

Proof of Theorem 7.8 (continuation). Case d > 1. We recall that 0 < η < 1 and Ω1 have
been introduced in (7.29). By property (a) of Lemma 7.11 the function vk introduced in
(7.27) satisfies

V (vk, ∂Ω) ≤
n∑
i=1

∫
Ki

|trΩ(uk)− w| ∧ 1dHd−1 + η . (7.36)

On each Ki we proceed by slicing in the direction νi . By property (b) in Lemma 7.11 for
every y ∈ Hi := πνi(Ki) there exists a unique ai(y) ∈ R such that y + ai(y)νi ∈ Ki . We
observe that, using the notation introduced in (5.15) we have (Cνiε (Ki))

νi
y = [ai(y), ai(y)+ε] .

By [2, Theorem 3.108] we have trΩ(uk)(y + ai(y)νi) = (uk)νiy (ai(y)−), while w(y +

ai(y)νi) = (w)νiy (ai(y)) for Hd−1 -a.e. y ∈ Hi . Then by the area formula (see, e.g., [11,
Section 3.3]) ∫

Ki

(|trΩ(uk)(x)− w(x)| ∧ 1)νi · νΩ(x)dHd−1(x)

=

∫
Hi

|(uk)νiy (ai(y)−)− (w)νiy (ai(y))| ∧ 1dHd−1(y) .

Since by (c) in Lemma 7.11 we have 1− η ≤ νi · νΩ(x), we obtain∫
Ki

|trΩ(uk)−w| ∧1dHd−1 ≤ 1

1− η

∫
Hi

|(uk)νiy (ai(y)−)− (w)νiy (ai(y))| ∧1dHd−1(y) (7.37)

On the other hand, for Hd−1 -a.e. y ∈ Hi and for L1 -a.e. σ ∈ (0, ε) by the triangle
inequality we can write

|(uk)νiy (ai(y)−)− wνiy (ai(y))| ∧ 1 ≤ |(uk)νiy (ai(y)−)− (uk)νiy (ai(y) + σ)| ∧ 1

+|(uk)νiy (ai(y) + σ)− wνiy (ai(y) + σ)|+ |wνiy (ai(y) + σ)− wνiy (ai(y))| . (7.38)

By Lemma 7.10, for Hd−1 -a.e. y ∈ Hi and for L1 -a.e. σ ∈ (0, ε) we have

|(uk)νiy (ai(y)−)− (uk)νiy (ai(y) + σ)| ∧ 1 ≤ Ψσ
y ((uk)νiy ) ≤ Ψε

y((uk)νiy ) ,

where Ψσ
y is the function introduced in (7.21) corresponding to (a, b) = (ai(y), ai(y) + σ).

Hence for L1 -a.e. σ ∈ (0, ε) integrating on Hi we obtain∫
Hi

|(uk)νiy (ai(y)−)− (uk)νiy (ai(y) + σ)| ∧ 1dHd−1 ≤
∫
Hi

Ψε
y((uk)νiy )dHd−1

≤ V (uk, C
νi
ε (Ki)) , (7.39)

where in the last inequality we used a general result on slicing (see [2, Theorem 3.108]).

Moreover, for Hd−1 -a.e. y ∈ Hi and for L1 -a.e. σ ∈ (0, ε), since w ∈W 1,1(Ω̃) ,

|wνiy (ai(y) + σ)− wνiy (ai(y))| ≤
∫ ε

0

|(∇w)νiy (ai(y) + t)|dt .

Integrating (7.38) on Hi and using Fubini Theorem we obtain that for L1 -a.e. σ ∈ (0, ε)∫
Hi

[(uk)νiy (ai(y)−)− (w)νiy (ai(y))] ∧ 1dHd−1(y) ≤ V (uk, C
νi
ε (Ki))

+

∫
Hi

|(uk)νiy (ai(y) + σ)− wνiy (ai(y) + σ)|dHd−1 +

∫
C
νi
ε (Ki)

|∇w|dx .
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Integrating with respect to σ on (0, ε) and dividing by ε we obtain∫
Hi

[(uk)νiy (ai(y)−)− (w)νiy (ai(y))] ∧ 1dHd−1(y) ≤ V (uk, C
νi
ε (Ki))

+
1

ε

∫
C
νi
ε (Ki)

|uk − w|dx+

∫
C
νi
ε (Ki)

|∇w|dx ,

where in the second term we used Fubini Theorem.
Since the sets Cνiε (Ki) are pairwise disjoint and contained in Ω1 \ Ω by (d) and (e)

in Lemma 7.11, summing for i = 1, . . . , n and using (7.29), (7.36), (7.37), and the last
inequality, we obtain

V (vk, ∂Ω) ≤ 1

1− η

(
V (uk,Ω1 \ Ω) +

1

ε

∫
Ω1\Ω

|uk − w|dx+ η
)

+ η .

Recalling (7.32) this implies

Ẽk(vk, Ω̃) ≤ 1

1− η
Ẽk(uk, Ω̃) +

c̃

1− η

(1

ε

∫
Ω1\Ω

|uk − w|dx+ η
)

+ c̃(2η + δk) . (7.40)

Passing to the limsup as k →∞ we obtain

lim sup
k→∞

Ẽk(vk, Ω̃) ≤ 1

1− η
lim sup
k→∞

Ẽk(uk, Ω̃) +
c̃η

1− η
+ 2c̃η .

Recalling (7.23), by the arbitrariness of η we obtain (7.28), which concludes the proof of
the theorem. �

We now prove an inequality concerning the minimum values of (7.13) and (7.14).

Proposition 7.12. Let Ek be a sequence in E . Assume that there exists Ê ∈ Esc such
that for every A ∈ Ac(Rd) the sequence Ẽk(·, A) Γ-converges to Ê(·, A) with respect to the
topology of L0(Rd) . Then

inf
v∈GBV?(Ω̃)

v=w Ld-a.e. in Ω̃\Ω

Ê(v, Ω̃) ≥ lim sup
k→∞

inf
v∈GBV?(Ω̃)

v=w Ld-a.e. in Ω̃\Ω

Ẽk(v, Ω̃) . (7.41)

Proof. Given η > 0 there exists u ∈ GBV?(Ω̃) , with u = w Ld -a.e. in Ω̃ \ Ω, such that

Ê(u, Ω̃) ≤ inf
v∈GBV?(Ω̃)

v=w Ld-a.e. in Ω̃\Ω

Ê(v, Ω̃) + η .

We proceed as at the beginning of the proof of Theorem 7.8. Let m ∈ N be such that εm < η ,
where εm is introduced in (7.26), and let um := w + (u − w)(m) . Then um ∈ BV (Ω̃) and

um = w Ld -a.e. in Ω̃ \ Ω. By (g) in Definition 3.1 we have that Ê(um, Ω̃) ≤ Ê(u, Ω̃) + η ,
hence

Ê(um, Ω̃) ≤ inf
v∈GBV?(Ω̃)

v=w Ld-a.e. in Ω̃\Ω

Ê(v, Ω̃) + 2η . (7.42)

By Theorem 7.8 applied to um there exists a sequence vk ∈ BV (Ω̃) , with vk = w Ld -a.e.

in Ω̃ \ Ω, such that vk → um in L1(Ω̃) as k →∞ and

Ê(um, Ω̃) = lim
k→∞

Ẽk(vk, Ω̃) ≥ lim sup
k→∞

inf
v∈GBV?(Ω̃)

v=w Ld-a.e. in Ω̃\Ω

Ẽk(v, Ω̃) .

This inequality together with (7.42) gives (7.41) by the arbitrariness of η . �
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To prove an inequality for the lim inf we need the following compactness result for
bounded sequences uk in GBV? . Note that in this setting we have to modify the se-
quence uk , because the bound (7.44) below does not provide a control on

∫
Juk
|[uk]|dHd−1

and consequently we cannot obtain a control of the L1 -norms of uk . We show that this
modification does not increase the values of the energies Ef,g for f ∈ F and g ∈ G , provided
that g satisfies the following condition: there exists κ ≥ 1 such that

κ|ζ1| ≤ |ζ2| =⇒ g(x, ζ1, ν) ≤ g(x, ζ2, ν) for every x ∈ Rd and ν ∈ Sd−1 . (7.43)

Note that by (g6) this condition is satisfied with κ = 1 if g is even with respect to ζ .

Theorem 7.13. Let (uk) ⊂ GBV?(Ω̃) be a sequence such that uk = w Ld -a.e. in Ω̃ \ Ω
and

V (uk, Ω̃) ≤M (7.44)

for some constant M > 0 independent of k , and let εk → 0 with εk > 0 for every k . Then
there exist a subsequence of uk , not relabelled, and a sequence yk in GBV?(Ω̃) such that

(1) yk = w Ld -a.e. in Ω̃ \ Ω ,
(2) for every f ∈ F and every g ∈ G satisfying (7.43) we have

Ef,g(yk, Ω̃) ≤ Ef,g(uk, Ω̃) + εk ,

where Ef,g is defined by (3.14),

(3) the sequence yk converges in L0(Ω̃) to some function y ∈ GBV?(Ω̃) with y = w

Ld -a.e. in Ω̃ \ Ω .

Proof. The proof is obtained by adapting the arguments of [8, Section 5], which is based on
the results of [14] for a different function space. More precisely, in [8, Theorems 5.3, 5.5, and
Corollary 5.4] we replace the functional GgΓ0

by the functional Ef,g and then we apply the

compactness result for GBV?(Ω̃) [8, Theorem 3.11]. The only change in the proofs regards
the inequalities (5.26) and (5.27) in the proof of [8, Theorem 5.3], which are replaced by∫

Ω̃

f∞
(
x,

dDcv

d|Dcv|
)
d|Dcv| ≤

∫
Ω̃

f∞
(
x,

dDcu

d|Dcu|
)
d|Dcu| , (7.45)∫

Jv

g(x, [v], νv)dHd−1 ≤
∫
Ju

g(x, [u], νu)dHd−1 + θCM,Ω̃ , (7.46)

where in this step of the proof u is a suitable function in GBV?(Ω̃) and v ∈ BV (Ω̃)∩L∞(Ω̃)
satisfies

v :=

J∑
j=1

(u− tj)χPj

for a suitable choice of the constants tj and of the pairwise disjoint sets Pj of finite perimeter.
To prove (7.45) we set m := ‖v‖L∞(Ω̃) +

∑
j |tj | , so that |u| ≤ m Ld -a.e. in Pj . Then

v =
∑J
j=1(u(m) − tj)χPj , hence, by [8, Lemma 2.4] we have Dcv =

∑J
j=1D

cu(m)χ
P

(1)
j

,

where P
(1)
j is the set of points of Lebesgue density one for Pj . Since |ũ| ≤ m Hd−1 -a.e.

in P
(1)
j \ Ju , we have Dcu = Dcu(m) as measures in P

(1)
j by [8, Definition 2.8]. Therefore

Dcv =
∑J
j=1D

cuχ
P

(1)
j

, which implies that∫
Ω̃

f∞
(
x,

dDcv

d|Dcv|
)
d|Dcv| =

J∑
j=1

∫
P

(1)
j

f∞
(
x,

dDcu

d|Dcu|
)
d|Dcu| ≤

∫
Ω̃

f∞
(
x,

dDcu

d|Dcu|
)
d|Dcu| ,

concluding the proof of (7.45).
Inequality (7.46) can be obtained arguing as in the proof of (20) in [14, Theorem 3.2].

Note that these arguments require also property (7.43). �
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We are now in a position to prove the main result concerning the convergence of the min-
imum values of (7.13) to the minimum value of (7.14) and the convergence of a subsequence
of the corresponding quasi-minimisers.

Theorem 7.14. Let fk be a sequence in F and let gk be a sequence in G such that (7.43)

holds for gk with a constant κ independent of k . Assume that there exists Ê ∈ Esc such
that for every A ∈ Ac(Rd) the sequence Ẽfk,gk(·, A) Γ-converges to Ê(·, A) with respect to
the topology of L0(Rd) . Then

(a) the minimum problem

min
v∈GBV?(Ω̃)

v=w Ld-a.e. in Ω̃\Ω

Ê(v, Ω̃) (7.47)

has a solution;
(b) we have

min
v∈GBV?(Ω̃)

v=w Ld-a.e. in Ω̃\Ω

Ê(v, Ω̃) = lim
k→∞

inf
v∈GBV?(Ω̃)

v=w Ld-a.e. in Ω̃\Ω

Ẽfk,gk(v, Ω̃) . (7.48)

(c) given a sequence εk → 0 with εk > 0 for every k , there exist a subsequence of

Ẽfk,gk , not relabelled, and a sequence uk in GBV?(Ω̃) such that

(1) uk = w Ld -a.e. in Ω̃ \ Ω ,
(2) we have

Ẽfk,gk(uk, Ω̃) ≤ inf
v∈GBV?(Ω̃)

v=w Ld-a.e. in Ω̃\Ω

Ẽfk,gk(v, Ω̃) + εk ,

(3) uk converge in L0(Ω̃) to a minimum point u of (7.47).

Proof. It is obvious that there exists vk ∈ GBV?(Ω̃) , with vk = w Ld -a.e. in Ω̃ \ Ω, such
that

Ẽfk,gk(vk, Ω̃) ≤ inf
v∈GBV?(Ω̃)

v=w Ld-a.e. in Ω̃\Ω

Ẽfk,gk(v, Ω̃) + εk . (7.49)

We fix a subsequence vkj of vk such that

lim inf
k→∞

Ẽfk,gk(vk, Ω̃) = lim
j→∞

Ẽfkj ,gkj (vkj , Ω̃) . (7.50)

By (7.41) and (7.49) it follows that the sequence Ẽfkj ,gkj (vkj , Ω̃) is bounded, hence by (c1)
in Definition 3.1, inequality (7.44) holds for the subsequence vkj . By Theorem 7.13 there

exist a further subsequence, not relabelled, and a sequence uj in GBV?(Ω̃) such that uj = w

Ld -a.e. in Ω̃ \ Ω,

Ẽfkj ,gkj (uj , Ω̃) ≤ Ẽfkj ,gkj (vkj , Ω̃) + εkj ≤ inf
v∈GBV?(Ω̃)

v=w Ld-a.e. in Ω̃\Ω

Ẽfkj ,gkj (v, Ω̃) + 2εkj , (7.51)

and uj converge in L0(Ω̃) to a function u ∈ GBV?(Ω̃) . By Γ-convergence, using (7.50) and
(7.51) we obtain

Ê(u, Ω̃) ≤ lim inf
j→∞

Ẽfkj ,gkj (uj , Ω̃) ≤ lim inf
k→∞

inf
v∈GBV?(Ω̃)

v=w Ld-a.e. in Ω̃\Ω

Ẽfk,gk(v, Ω̃) .

Combining this inequality and (7.41) with the obvious inequality

Ê(u, Ω̃) ≥ inf
v∈GBV?(Ω̃)

v=w Ld-a.e. in Ω̃\Ω

Ê(v, Ω̃)

we obtain (a)-(c) in the statement. �
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The following corollary reformulates Theorem 7.14 in terms of minimum problems of the
form (7.11) and (7.19).

Corollary 7.15. Under the hypotheses of Theorem 7.14 let ĝ ∈ G be the function such that
(7.18) holds. Then

(a) the minimum problem

min
v∈GBV?(Ω)

(
Ê(v,Ω) +

∫
∂Ω

ĝ(x, ϕ− trΩv, νΩ)dHd−1
)

(7.52)

has a solution;
(b) we have

min
v∈GBV?(Ω)

(
Ê(v,Ω) +

∫
∂Ω

ĝ(x, ϕ− trΩv, νΩ)dHd−1
)

(7.53)

= lim
k→∞

inf
v∈GBV?(Ω)

(
Efk,gk(v,Ω) + c̃

∫
∂Ω

|ϕ− trΩv| ∧ 1dHd−1
)
. (7.54)

(c) given a sequence εk → 0 with εk > 0 for every k , there exist a subsequence of

Ẽfk,gk , not relabelled, and a sequence uk in GBV?(Ω) such that

(1) Efk,gk(uk,Ω) + c̃

∫
∂Ω

|ϕ− trΩuk| ∧ 1dHd−1

≤ inf
v∈GBV?(Ω)

(
Efk,gk(v,Ω) + c̃

∫
∂Ω

|ϕ− trΩv| ∧ 1dHd−1
)

+ εk , (7.55)

(2) uk converge in L0(Ω) to a minimum point u of (7.52).

Proof. The result follows from the previous theorem taking into account Remarks 7.4 and 7.7.
�

8. Appendix

We now provide the detailed proof of Lemma 7.11 in the general case of a bounded open
set Ω ⊂ Rd with Lipschitz boundary.

Proof of Lemma 7.11. Given ξ ∈ Sd−1 , B ⊂ Πξ
0 , and I ⊂ R , we set

B ×ξ I := {y + tξ : y ∈ B , t ∈ I} = {x ∈ Rd : πξ(x) ∈ B, x · ξ ∈ I}.

Since Ω has Lipschitz boundary, for every x0 ∈ ∂Ω there exist ξ ∈ Sd−1 , a relatively open

set U ⊂ Πξ
0 containing πξ(x0), an open interval I ⊂ R containing x0 · ξ , and a Lipschitz

function ϕ : U → I such that

(U ×ξ I) ∩ ∂Ω = {y + ϕ(y)ξ : y ∈ U} , (8.1)

(U ×ξ I) ∩ Ω = {y + tξ : y ∈ U, t ∈ I, t < ϕ(y)} . (8.2)

Given B ⊂ U and a function ψ : U → R , the graph and the subgraph of ψ over B are
denoted by

Γξψ(B) := {y + ψ(y)ξ : y ∈ B} , and Sξψ(B, I) := {y + tξ : y ∈ B, t ∈ I, t < ψ(y)} .

If ψ is differentiable at y ∈ U , its gradient ∇ψ(y) is an element of Πξ
0 ⊂ Rd .

Note that x ∈ Sξϕ(U, I) if and only if x · ξ ∈ I and x · ξ < ϕ(πξ(x)). Therefore, by (8.2)
for x ∈ U ×ξ I we have

x ∈ Ω ⇐⇒ x · ξ < ϕ(πξ(x)) . (8.3)

If x ∈ ∂Ω ∩ (U ×ξ I) and ϕ is differentiable at πξ(x) then the outer unit normal to ∂Ω
at x is given by

νΩ(x) =
ξ −∇ϕ(πξ(x))√
1 + |∇ϕ(πξ(x))|2

. (8.4)
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Moreover, if ν ∈ Sd−1 and ν · νΩ(x) > 0, then for |t| small we have

x+ tν ∈ Ω ⇐⇒ t < 0 . (8.5)

Indeed, for |t| small we have x+ tν ∈ U ×ξ I , and by (8.3) we have

x+ tν ∈ Ω ⇐⇒ x · ξ + tν · ξ < ϕ(πξ(x) + tπξ(ν)) . (8.6)

Since ϕ is differentiable at πξ(x) and ϕ(πξ(x)) = x·ξ by (8.1), from the previous equivalence
we obtain that

x+ tν ∈ Ω ⇐⇒ tν · ξ < t∇ϕ(πξ(x))πξ(ν) + o(t) ;

from (8.4) it follows that

x+ tν ∈ Ω ⇐⇒ tν · νΩ(x) < o(t) ,

and since ν · νΩ(x) > 0 for |t| small this can happen if and only if t < 0.
By a direct consequence of Whitney’s Extension Theorem (see, e.g., [11, Section 6.6.1])

given σ > 0 there exist a compact set H ⊂ U ⊂ Πξ
0 and a C1 function ψ : U → I such that

Hd−1(U \H) < σ , ψ(y) = ϕ(y) , and ∇ψ(y) = ∇ϕ(y) for every y ∈ H , (8.7)

meaning, in particular, that ϕ is differentiable at every y ∈ H . Hence Γξϕ(H) = Γξψ(H),

and Sξϕ(H, I) = Sξψ(H, I). Moreover, for every x ∈ Γξϕ(H) we have

νΩ(x) =
ξ −∇ϕ(y)√
1 + |∇ϕ(y)|2

=
ξ −∇ψ(y)√
1 + |∇ψ(y)|2

, (8.8)

where y = πξ(x) ∈ H and ∇ϕ(y) = ∇ψ(y) ∈ Πξ
0 .

Let x ∈ Γξϕ(H) = Γξψ(H). Then x = y + ψ(y)ξ , with y = πξ(x). Let ν ∈ Sd−1 with

|ν − νΩ(x)| < η . We claim that x+ tν /∈ Ω for t > 0 sufficiently small.
We observe that

Hd−1(Γξϕ(U) \ Γξψ(H)) = Hd−1(Γξϕ(U \H)) ≤ (1 + L2)1/2σ , (8.9)

where L is the Lipschitz constant of ϕ .

Since Γξψ(U) is a C1 manifold of dimension d− 1, for every x ∈ Γξψ(U) we can represent

Γξψ(U) in a neighbourhood of x as the graph of a C1 function defined on the tangent space

at x . More precisely, let y = πξ(x) and let ν := ξ−∇ψ(y)√
1+|∇ψ(y)|2

be the unit normal to Γξψ(U)

at x pointing towards the exterior of Sξψ(U, I). There exist a relatively open set V ⊂ Πν
0

containing y , an open interval J ⊂ R containing x · ν , and a C1 function ω : V → J with
∇ω(y) = 0 such that V ×ν J ⊂ U ×ξ I ,

Γξψ(U) ∩ (V ×ν J) = Γνω(V ) and Sξψ(U, I) ∩ (V ×ν J) = Sνω(V, J) . (8.10)

For every x′ ∈ Γνω(V ) and s > 0 small enough we have x′ + sν ∈ (V ×ν J) \ Sνω(V, J) =

(V ×ν J) \ Sξψ(U, I). Recalling (8.2), this shows that, if x′ ∈ Γνω(V ) and πξ(x′ + sν) ∈ H ,

then x′ + sν /∈ Ω for s > 0 sufficiently small.
Let us note that, by taking V and J small, we can guarantee the smallness of ∇ω and

of the oscillation of ∇ψ on the projection of Γξψ(U)∩ (V ×ν J) onto Πξ
0 . Therefore, by (8.8)

we can choose V and J so that

|∇ω(y′)| < 1 for every y′ ∈ V , (8.11)

|νΩ(x)− νΩ(x′)| < η for every x, x′ ∈ Γξϕ(H) ∩ (V ×ν J) . (8.12)

By compactness there exists a finite family (xi)i=1,...,m in ∂Ω such that the corresponding
Ui , Ii , ξi , and ϕi satisfy (8.1), (8.2), and

∂Ω =

m⋃
i=1

Γξiϕi(Ui) . (8.13)
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Let B1 := Γξ1ϕ1
(U1), B2 := Γξ2ϕ2

(U2)\B1 , . . . , Bm := Γξmϕm(Um)\
⋃m−1
i=1 Bi . Then each Bi

is a Borel set, the sets Bi are pairwise disjoint, and ∂Ω =
⋃m
i=1Bi . Therefore there exist

compact sets Fi ⊂ Bi such that

Hd−1(∂Ω \
m⋃
i=1

Fi) < η .

There exists a family of pairwise disjoint relatively open subsets V ′i of ∂Ω such that Fi ⊂
V ′i ⊂ Γξiϕi(Ui). Let U ′i := πξiV ′i . Then U ′i are relatively open subsets of Πξi

0 , U ′i ⊂ Ui ,

Γξiϕi(U
′
i) = V ′i are pairwise disjoint, and

Hd−1(∂Ω \
m⋃
i=1

Γξiϕi(U
′
i)) < η . (8.14)

We then apply the argument involving Whitney’s Extension Theorem to U ′i and we find
compact sets Hi and C1 functions ψi : U

′
i → Ii that satisfy (8.7) with U = U ′i , and ϕ = ϕi ,

and σ = η(1 + L2)−1/2/m , where L is the largest Lipschitz constant of the functions ϕi .
In particular,

ϕi is differentiable at every point of Hi , (8.15)

Hd−1(U ′i \Hi) < η(1 + L2)−1/2/m . (8.16)

Let Ki := Γξiψi(Hi). Using also (8.9) and (8.14) we obtain

Hd−1(∂Ω \
m⋃
i=1

Ki) < 2η . (8.17)

Let us fix i ∈ {1, . . . ,m} . By compactness there exists a finite family of points (xij)j=1,...,ni

in Ki = Γξiϕi(Hi) such that, setting νij := νΩ(xij), there exist relatively open set V ij ⊂ Π
νij
0 ,

open intervals J ij , and C1 functions ωij : V ij → J ij such that (8.10) hold with ξ = ξi ,

ψ = ψi , U = U ′i , V = V ij , ν = νij , J = J ij , and ω = ωij , and

Ki ⊂
nj⋃
j=1

Γ
νij
ωij

(V ij).

Arguing as before we can construct pairwise disjoint compact sets F ij such that

F ij ⊂ Γ
νij
ωij

(V ij) ∩Ki ⊂ ∂Ω , (8.18)

Hd−1
(
Ki \

ni⋃
j=1

F ij
)
<

η

m
. (8.19)

Let us fix ε > 0 such that for every i, h = 1, . . . ,m , j = 1, . . . , ni , and k = 1, . . . , nh ,

2ε is smaller than the distance between F ij and Fhk , (8.20)

C
νij
ε (F ij ) ⊂ V ij ×νij J

i
j ⊂ U ′i ×ξi Ii . (8.21)

This implies, in particular, that

x ∈ F ij and t ∈ (0, ε] =⇒ x+ tνij /∈ F ij . (8.22)

Moreover, the sets C
νij
ε (F ij ) are pairwise disjoint, and

(∂Ω \ F ij ) ∩ C
νij
ε (F ij ) ⊂ Γξiϕi(U

′
i) \

ni⋃
k=1

F ik =
(
Γξiϕi(U

′
i \Hi)

)
∪
(
Ki \

ni⋃
k=1

F ik
)
. (8.23)



52 GIANNI DAL MASO AND RODICA TOADER

To obtain property (e) we have to reduce the sets F ij . Since the compact sets C
νij
ε (F ij ) are

pairwise disjoint, they can be separated by pairwise disjoint open sets. Since Hd−1(∂Ω) <
+∞ , we can choose a family Aij , j = 1, . . . , ni of pairwise disjoint open sets in Rd such

that ∂Ω ∩Aij ⊃ (∂Ω \ F ij ) ∩ C
νij
ε (F ij ), and

Hd−1
(

(∂Ω ∩Aij) \
(
(∂Ω \ F ij ) ∩ C

νij
ε (F ij )

))
<

η

mni
. (8.24)

We set

Bij := πν
i
j (∂Ω ∩Aij) ⊃ πν

i
j
(
(∂Ω \ F ij ) ∩ C

νij
ε (F ij )

)
and observe that Bij is a Borel set, since ∂Ω∩Aij can be written as the union of an increasing

sequence of compact sets. Since the sets (∂Ω\F ij )∩C
νij
ε (F ij ) are pairwise disjoint, by (8.23)

and (8.24) we have
∑ni
j=1Hd−1(Bij) ≤ Hd−1(Γξiϕi(U

′
i \Hi))+Hd−1

(
Ki\

⋃ni
j=1 F

i
j

)
+ η
m . Using

(8.9) with σ = η(1 + L2)−1/2/m and (8.16) for the first term in the right-hand side and
(8.19) for the second one we obtain

ni∑
j=1

Hd−1(Bij) <
3η

m
. (8.25)

For every j ∈ {1, . . . , ni} let Hi
j be a compact set contained in πν

i
j (F ij ) \ Bij with

Hd−1((πν
i
j (F ij ) \Bij) \Hi

j) <
η

mni
, and let

Ki
j := Γ

νij
ωij

(Hi
j) ⊂ F ij .

We now check that the family Ki
j , νij satisfies properties (a)-(e) in the statement. It follows

immediately from the definition that πν
i
j is injective on Ki

j , which proves property (b).

Since by (8.11) the Lipschitz constants of ωij are smaller than 1, we have

Hd−1(F ij \Ki
j) ≤ Hd−1((πν

i
j (F ij ) \Hi

j) ≤
η

mni
+Hd−1(Bij) ,

hence, by (8.25)
ni∑
j=1

Hd−1(F ij \Ki
j) ≤

4η

m
. (8.26)

Since the sets C
νij
ε (F ij ) are pairwise disjoint, so are the sets C

νij
ε (Ki

j), and this proves the
first part of property (d). The second part is obvious when ε > 0 is smaller than the distance
between Ω and Rd \ Ω1 .

We now want to prove that C
νij
ε (Ki

j)∩Ω = Ø. We argue by contradiction. Assume there

exists x ∈ Cν
i
j
ε (Ki

j) ∩ Ω. Then x = x′ + tνij with x′ ∈ Ki
j and 0 < t ≤ ε . We recall that

by (8.15) and (8.18) the function ϕi is differentiable at y′ := πξix′ and by (8.12) we have
νΩ(x′) · νij > 0. Hence, by (8.5) it follows that x′ + sνij /∈ Ω if s > 0 is small. Therefore

there exists t0 ∈ (0, t) such that x′ + t0ν
i
j ∈ (∂Ω \ F ij ) ∩ C

νij
ε (F ij ).

Since πν
i
j (x′ + t0ν

i
j) ∈ Bij , and πν

i
j (x) ∈ Hi

j , the equality πν
i
j (x′ + t0ν

i
j) = πν

i
j (x)

contradicts the fact that Bij ∩Hi
j = Ø by construction. This proves (e).

To prove (a) we write

Hd−1(∂Ω \
m⋃
i=1

ni⋃
j=1

Ki
j) ≤ Hd−1(∂Ω \

m⋃
i=1

Ki) +

m∑
i=1

Hd−1(Ki \
ni⋃
j=1

Ki
j) .
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We have

Hd−1(Ki \
ni⋃
j=1

Ki
j) ≤ Hd−1

(
Ki \

ni⋃
j=1

F ij
)

+

ni∑
j=1

Hd−1
(
F ij \Ki

j)

By (8.17), (8.19), and (8.26) we conclude that

Hd−1(∂Ω \
m⋃
i=1

ni⋃
j=1

Ki
j) < 7η ,

which proves (a). By (8.12) property (c) also holds. �
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