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ABSTRACT. We study the I'-limits of sequences of free discontinuity functionals with
linear growth, assuming that the surface energy density is bounded. We determine the
relevant properties of the I'-limit, which lead to an integral representation result by
means of integrands obtained by solving some auxiliary minimum problems on small
cubes.
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1. INTRODUCTION

The purpose of this paper is to study the I'-limits of sequences of integral functionals of
the form

1,9 N 0o dDu c d—1

E79(u, A) := / f(z, Vu)dz —I—/ (@, =) d|Dul +/ g(m, [u], vy )dH ™, (1.1)

A A d|Deul AN,

defined for all bounded open subsets A of R, d > 1, and for all functions « in a suitable
function space contained in the space GBV (A) of generalized functions with bounded vari-
ation on A, for which we refer to [1, 2]. More precisely, we shall assume that « belongs
to the space GBV,(A) introduced in [8]. Hereafter Vu is the approximate gradient of u,
D¢uy is the Cantor part of the distributional gradient Du of « when u € BV(A), and a
suitable measure that extends this notion when v € GBV,(A), |Du| is the variation of the
measure D¢u, j‘gizg‘ is the Radon-Nykodim derivative of D®u with respect to |Dul, J,
is the jump set of w, [u] denotes the amplitude of the jump, v, is the approximate unit
normal to J,,, and H% ! is the Hausdorff measure of dimension d — 1.

We assume that f(z, ) has linear growth with respect to ¢ (see Definition 3.6) and that
f°° is its recession function with respect to £ (see Definition 3.8). As for the function g,
we assume that it is bounded and satisfies the inequalities ¢|¢| < g(x, (,v) < C|¢| when ||
is small, for suitable constants 0 < ¢ < C' (see Definition 3.7). These hypotheses on g are
natural in cohesive models in fracture mechanics, as for instance the Dugdale model [10],
(see also [5]) where g(¢) = min{¢|(|,x}.

The boundedness of ¢ is the main difference with respect to the paper [6], where the
inequalities ¢|¢| < g(z,(,v) < C|(| are assumed to hold for every ¢ € R. Thanks to this
hypothesis, in [6] the problem is studied in the space BV (A). On the contrary, when g is
bounded the functional E¥9(u, A) does not control the norm of u in BV (A), because there
is no control on the amplitude of the jump. As a consequence, the I'-limit of a sequence
of functionals of the form (1.1) can be finite also out of BV (A). This forces us to study
the problem in GBV,(A) and to consider the topology of convergence in measure as the
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underlying topology for I'-convergence, since a bound on E¥9(u, A) provides compactness
only in this topology.

We introduce a class F of volume integrands f (see Definition 3.6) and a class G of
bounded surface integrands g (see Definition 3.7), and study the properties of I'-limits of
sequences Efr9% with fi, € F and g, € G. In particular, we prove that if Efs9% (. A)
I'-converges to E(-, A) for every bounded open set A, then the natural extension of E to
Borel sets satisfies the following property (see Theorem 3.16 and Remark 4.2): for every
bounded open set A and every u € GBV,(A) the set function B — E(u, B) is a measure
on the Borel subsets of A, that can be decomposed as sum of three measures:

E(u, B) = E*(u, B) + E°(u, B) + E’(u, B) ,

where E?(u,-) is absolutely continuous with respect to the Lebesgue measure £¢, E¢(u,-)
is absolutely continuous with respect to |Du|, and E7(u,-) is absolutely continuous with
respect to the restriction to J, of the Hausdorff measure H?~!. Moreover, (see Theorems
3.16 and 6.3) we prove that there exist a function f € F and a function g € G such that
for every bounded open set A we have

E*(u,B) = / f(z,Vu)de and E’(u,B)= / g(z, [u], vy )dH? (1.2)
B BNJ,
for every u € GBV,(A) and every Borel subset B of A. As for the Cantor part, we have
the integral representation
. B o dDu .
E¢(u,B) = /Bf (z, d|DCu|)d|D ul
under an additional continuity assumption of F with respect to translations (see Theo-
rem 6.7).

Since the I'-convergence considered in this paper refers to the topology of convergence in
measure, it is convenient to extend the functionals introduced in (1.1) to functionals, still
denoted by E/9 (see Definition 3.10), defined for every measurable function u: R? — R
and for every Borel set B C R? in such a way that for every u the set function E9(u,-) is
a measure on the Borel o-algebra of R?, and E/9(u, A) = +o0 if A is a bounded open set
in R? and u|a ¢ GBV,(A).

To prove the results of our paper we introduce (see Definition 3.1) a class € of functionals,
defined for every measurable function v on R? and every Borel set B C R¢, which contains
all functionals E/9 with f € F and g € G. All functionals E € ¢ are local, i.e., if A is a
bounded open set and u = v L%-a.e. on A, then E(u, A) = E(v, A). Moreover, for every u
the set function E(u,-) is a Borel measure on the Borel o-algebra of R?.

We prove the following compactness result (see Theorem 3.16): if Ej is a sequence in &,
then there exists a subsequence, not relabelled, and a functional E € & such that Eg(-, A)
I'-converges to E(-, A) for every bounded open set A C R?.

Since, by definition, u € GBV,(A) if and only if the truncations of u belong to BV (A)
and satisfy suitable estimates, in order to reduce our problem to BV (A) it is crucial that
the definition of & implies that for every E € & we have careful estimates on the differ-
ence between the values of E on u and on its truncations (see (g) in Definition 3.1 and
Remark 3.4).

The main difficulty in the proof of the compactness result is to show that for the limit
functional E the set function E(u,-) is a Borel measure for every «. Thanks to the estimates
mentioned above this is done first for bounded BV functions and then extended to arbitrary
functions. Finally, the decomposition E(u, B) = E%(u, B) + E¢(u, B) + E/(u, B) for E € &
follows from the upper bounds in the definition of €&.

A second result of our paper concerns the integral representation of functionals in &
(see Theorem 6.3). We prove that if F € ¢ and for every bounded open set A C R the
functional E(-, A) is lower semicontinuous with respect to convergence in measure, then
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there exist two functions, f € F and g € G, such that (1.2) holds. Moreover, we show
that for every x € R? we can determine f(z,¢) and g(x,(,v) by considering the minimum
values of E on small cubes centered at x, with suitable boundary conditions depending on
¢, ¢, and v, and taking the limits, after suitable rescalings, as the size of the cubes tends
to 0 (see Definition 4.12 and Theorem 6.3).

These compactness and integral representation results, together with the characterisation
of f and g, will be applied in a future work to the study of stochastic homogenisation
problems for this class of free discontinuity functionals.

The integral representation result (1.2) is well-known in BV (A), under the additional
assumption that there exist two positive constants ¢ and C' such that

| Dul(A) < E(u, A) < C(LY(A) + | Dul(A))

for every bounded open set A C R? and every u € BV (A), see [4]. Since the functions g € G
are bounded, the functional E/9 cannot satisfy this estimate, and hence our definition of
the class € cannot imply such a condition. To obtain the integral representation result for
E € & we first introduce for every € > 0 the functional E. defined by

E.(u,A) = E(u, A) + €| Du|(A)

for every bounded open set A and every u € BV (A). From the results in [4] we deduce
that for every bounded open set A we have

E¢(u,B) = / fe(z,Vu)de and E’(u,B)= / ge(z, [u], v, )dHI!
B BNJ,
for every u € BV (A) and every Borel subset B of A (see Theorem 6.1). Taking the limit
as € — 0+ we get (1.2) for every u € BV (A). The extension to GBV,(A) can be obtained
using the estimates on the difference between the values of F on u and on its truncations.

Thanks to the characterisation of f. and g. given in [4], the integrands f and g can be
obtained as limits of rescaled minimum values of E. on small cubes, as the size of the cubes
and the parameter ¢ tend to zero. To prove that f and g can be obtained directly as limits
of rescaled minimum values of E on small cubes we use a technical result (see Lemma 4.16),
which allows us to estimate of the L°°-norm of suitable quasi-minimisers of the minimum
problems for F.

The characterisation of the pointwise values of f and g by means of minimum problems
on small cubes is also used to prove that f and g satisfy the inequalities that define F and
G, respectively (see Theorem 5.1).

The result for the Cantor part, under the additional assumption of continuity with respect
to translations, is obtained using the same line of proof (see Theorem 6.7).

In the last part the paper we fix a bounded open set @ € R? and we study the convergence
of minimum values and of quasi-minimisers of some minimum problems in 2 for functionals
in &, under the assumption of I'-convergence. The first one concerns

min (Ef’g(u,ﬂ) —l—/ﬂzﬁ(:v,u)dx),

u€GBV,(Q)
where f € F, g€ G, and ¥: Q) x R — R is a Carathéodory function satisfying
ay|s|P — ag < P(x,s) < asls|P +ay  for L%a.e. in Q and every s € R (1.3)

for some p > 1, a3 >0, as >0, a3 > 0, and ag > 0. We prove (see Theorem 7.1) that
the I'-convergence of E7#9% (-, Q) to E/9(-,Q) implies the convergence of the corresponding
minimum values and, up to a subsequence, the convergence in LP(2) of the quasi-minimisers
to a minimiser of the limit problem.

When Q has a Lipschitz boundary and fr € F and g € G are two given sequences,
we also consider the following weak formulation of the minimum problems with Dirichlet
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boundary condition :

min (Ef’“’g’c (1, Q) + a/ ltrau — @] A 1de*1> , (1.4)
uEGBV,(Q) Fle)

where ¢ is a positive constant and ¢ € L1(992). To determine the limit problem we introduce
the functionals Fj defined by

B (u, A) = Ef’g(u,AﬂQ)—i—E(/ |Vu|dx+|DCu|(A\Q)—|—/
A\Q (

]l A 1dH)
ANJ)\Q

and we assume that there exists £ € € such that Ej(-, A) T-converge to E(-, A). By the
integral representation results previously mentioned, there exists § € G such that for every
bounded open set A C R¢

9 (u, B) = / 3, [u], v )M
BNoNJT,

for every u € GBV,(A) and every Borel subset B of A. Under an additional assumption
on gi (see (7.43)), which is always satisfied when gj is even with respect to ¢, we prove
that the limit problem of (1.4) is

i E(u,Q §(z, 0 — dHo? 1.5
e (B + [ g~ wau )i~ (15)

where vq is the outer unit normal to 2. More precisely (see Corollary 7.15), we prove
that the minimum values of (1.4) converge to the minimum value of (1.5) and that, up to
a subsequence, we can construct a sequence of quasi-minimisers of (1.4) which converges in
measure to a minimiser of (1.5).

2. NOTATION AND PRELIMINARIES

We begin by introducing some notation.
(a) Throughout this paper d > 1 is fixed integer. The Euclidean norm in R¢ is denoted

by |-]. Weset St = {v e R?: || =1} and ST ' := {v € S* 1 : L1, > 0},
where i(v) is the largest i € {1,...,d} such that v; # 0. Note that S¢! =
Sd—l U Sd—l

il o

(b) Given an open set A C R?, let A(A) be the collection of all open subsets of A and
let A.(A) :={A" € A(A): A’ CcC A}, where A’ CC A means that A’ is relatively
compact in A. Given a Borel set B C R?, B(B) denotes the o-algebra of all Borel
measurable subsets of B.

(c) Forevery x € RY and p > 0 let Q(z, p) := {y € R? : |(y—x)-e;| < p/2, for every i =
1,...,d}, where (e;)i=1. .4 is the canonical basis in R?, and - denotes the scalar
product.

(d) For every v € S¥! we fix a rotation R,: RY — R? such that R,(eq) = v. We
assume that R., is the identity, that the restrictions of the function v — R, to the
sets S41 are continuous, and that R, (Q(0,p)) = R_,(Q(0, p)) for every v € S41
and every p > 0.

(e) Forevery A >0, v € S¥ ! 2 € R? and p > 0 let Q)(z, p) be the rectangle defined
by

QXw,p) 1= o+ Ry (=22, )11 x (=2,2)). (2.1)

(f) For every z € RY, ¢ € RY, ¢ € R, v € S we define the functions £¢: RY — R

and ugz ¢, R = R by
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moreover, we set IIV = {y € R?: (y —z) -v = 0}. B B

(g) Given A € A(R?) and an L£%-measurable function u: A — R, we say that a € R
is the approximate limit of u as y — x € A if for every neighbourhood U of a we
have

LYy e AnQ(z,p) : uly) ¢ U})

lim )

p—0+ P

the same definition is meaningful also if © € 9A provided lim,_, o4+ w >0;

moreover, the set of points x € A where the approximate limit @(z) exists and is

finite is a Borel subset of A, and the function 2 — @(x) is a Borel function defined
on it; we say that ¢ € R? is the approximate gradient of u at z if the approximate

W as y — x is equal to 0.

(h) Given A € A(R?) and an £%-measurable function u: A — R, the jump set J,, is the
set of all points = € A for which there exist u*(z),u™(z) € R, with u™(z) # v~ (),
and v,(x) € S?! such that u®(z) is the approximate limit as y — z of the
restriction of u to the set {y € A : £(y — z) - v, (x) > 0}. It is easy to see that
the triple (u™(z),u™(z), vy (z)) is uniquely defined up to a swap of the first two
terms and a change of sign in the third one. For every z € J, we set [u](x) =
ut(z) —u™(z). Tt can be proved that J, is a Borel set and that, if we choose v,
so that v, (z) € Sff__l for every x € J,,, then the functions u*,u~,[u]: J, — R and
vy Ju — S are Borel functions.

(i) For every A € A(RY) and u € BV(A) let Du be the distributional gradient of u,

which can be decomposed as the sum of three R?-valued measures:

Du = D% + D°u+ D,

limit of

where D% is absolutely continuous with respect to the Lebesgue measure £¢, Du
is singular with respect to the Lebesgue measure and vanishes on all B € B(A)
with H?"1(B) < +oc0, and DJu is concentrated on the jump set .J, of u. The
approximate gradient of u at z exists for £%-a.e. z € A and is denoted by Vu(z);
it is known that the function Vu coincides £%-a.e. in A with the density of D%
with respect to £¢. Moreover, it is known that Diu = [u|v, H4 1L J,, where for
every measure p the measure pl E is defined by pL E(B) := pu(E N B). For these
and related fine properties of BV functions we refer to [2].

Given B € B(R?), u: B — R =RU {400, —00}, and m > 0 the truncation u(™ of u is
defined as
u™ (z) := (u(z) Am) V (—m),
where aAb and a Vb denote the minimum and the maximum between a and b, respectively.
Let us now recall the definition of GBV,(A) introduced in [8, Definition 3.1].

Definition 2.1. Given A € A.(R?), the space GBV,(A) is defined as the space of functions
u: A — R such that u(™ € BV(A) for every m > 0 and

sup (/ (Vu(™|dz + | D™ (A) +/ [u™]] A ld’Hd*l) < +o00.
A J

m>0

u(m)

It follows immediately from the definition that GBV,(A)NL*(A) C BV(A) C GBV,(A)
C GBV (A), where the last space is defined in [2, Definition 4.26]. For the reader’s conve-
nience in the following theorem we summarize the main properties of GBV, functions.

Theorem 2.2. Let A € A.(R?) and u € GBV,(A). Then the following properties hold:

(a) the approzimate limit @(x) of u as y — x is finite for H¥ '-ae. x € A\ Jy;
moreover, ut(x) and u™(x) are finite for H¥ 1 -a.e. x € J,;
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(b) there exists a function Vu € L'(A;R?) such that for L% -a.e. x € A the vector
Vu(z) is the approzimate gradient of w at x; moreover Vu(x) = Vul™ (z) for
every m >0 and L%-a.e. x € {|u| <m};

(c) there exists a unique R? -valued Radon measure on A, denoted by D, such that
for every m > 0 D°u(B) = D°u™(B) for every Borel set B C {x € A\ J, :
a(z) exists and |a(x)] < m} and Du(B) = 0 for every Borel set B such that
HIY(B\ J,) = 0; moreover, for every B € B(A) we have

Du™) (B) — D°u(B) as m — 400, (2.2)
lim [D°u™|(B) = sup [D°ut™|(B) = |Dul(B);
m—>+00 m>0

finally, Du is singular with respect to the Lebesque measure £ and D°u(B) = 0
for every B € B(A) with H¥"1(B) < +o0;

(d) for every m > 0 we have Jywm) C Ju up to a set of HI~'-measure zero and
™) < |[u]] HE-a.e. on Jyomy N Ju; moreover, for H¥ '-a.e. x € J,, there
exists my € N such that © € Jyom) for every m € N with m > mg and [u™)](x) —
[u](z) as m — +oo with m € N; finally, H¥~ J, is o-finite;

(e) if, in addition, A has Lipschitz boundary, then for H%'-a.e. x € DA the approwi-
mate limit of u at x exists and is finite; its value is denoted by (trau)(xz) and the
function trau, HY ' -a.e. defined on OA, is called the trace of u on OA.

Proof. Property (a) is proved in [8, Theorem 3.8]. The properties in (b) are proved in [8,
Proposition 2.6 (b) and Proposition 3.3]. The properties in (¢) can be found in [8, Theorem
2.7 and Proposition 2.9], except for the last one, which follows from (2.2), (2.3), and the
analogous property for BV functions. The properties in (d) are proved in [8, Proposition
2.6 (c)] except for the last one, which is a consequence of the previous properties and the
corresponding property for BV functions.

To prove (e) we fix A’ € A.(R?) with A CC A’ and consider the function v: A" — R
defined by v(z) = u(z), if z € A, and v(x) =0, if x € A\ A. Let 9"A denote the set of
such points & € A where the outer unit normal vector v4(z) is well-defined. This is the
unique unit vector satisfying

LYAN{y € B,(z) : (y—x)-va(z) > 0})

i — 0 (2.4)
Li({y € B,(x) : (y ;f) valn) <A (2.5)

as p — 0+. Since A has Lipschitz boundary, we have H?~1(9A4\0"A) = 0. To conclude the
proof it is enough to prove that for H% -a.e. x € "AN.J, and for H¢ '-ae. 2 € 9"A\ J,
the approximate limit of u at = exists.

By (a) for H% l-ae. x € 9"ANJ, there exist vT(z), v~ (z) in R, with v (x) # v~ (),
and v,(z) € ST such that v*(z) are the approximate limits of v as y — 2 in {y €
A" £(y — z) - vy(x) > 0}. This implies that v,(z) = tva(z). Indeed, otherwise there
would exist two open cones C* and C~ with vertex z such that AN (C* N B,(x)) = O
for p > 0 small enough, and C* C {y € R? : £(y — z) - v,(z) > 0}. Since v = 0 on
CE*NB,(z) C A" for p > 0 small enough, we deduce that v*(x) = 0, which contradicts the
fact that vt (z) # v~ (z). Hence we may assume that v,(x) = —va(z). Since, by (2.4) and
(2.5), the symmetric difference between A and {y € A’ : (y — z) - v,(x) > 0} has density
zero at z, we have that v (z) is the approximate limit at z of the restriction of v to A,
which shows that v*(z) is the approximate limit of u at z.

By (a) for H% t-a.e. x € 9" A\ J, there exist the approximate limit of v at x. Since u
is a restriction of v this implies the existence of the approximate limit of u at z. O
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We now present some properties of the function space GBV,(A), which will be used in
the sequel.

Theorem 2.3. Let A€ A.(R?). Then the following properties hold:
(a) GBV,(A) is a vector space;
(b) GBV,(A) is a lattice, i.e., u,v € GBV,(A) implies uV v,u Av € GBV,(A);
(¢c) if ue GBV,(A), we€ BV(A), and m >0, then (uV (w—m)) A (w+m) belongs
to BV (A).

Proof. Property (a) is proved in [8, Theorem 3.9].
To prove (b) we fix u and v € GBV,(A). For every m > 0 we have (uV v)™ =
u(™ v (™) We claim that this implies

ID((u v 0)™)|(B) < [Du™|(B) + [Dv™|(B) (2.6)

for every B € B(A). It is enough to prove (2.6) when B is open. In this case the inequality is
trivial if «(™ and v(™ belong to W!(A) and follows by approximation in the general case.
We conclude that (2.6) holds for every B € B(A). This implies that |D((uV v)™)|(B) <
|Du™)|(B) 4 |D*(™)|(B) and |D¢((uVv)™)|(B) < |Du™|(B)+|D™|(B) for every
B € B(A). Hence |V(uV v)™| < |[Vul™| + |Vol™| L%ae. in A. Moreover, since
laVb—cVd| < |a—c|+|b—d| for every a,b,c,d € R, we have |[(uVv)™)]| < |[ul™]]|+|[v™)]].
These inequalities imply that

/ IV (uV0)™|dz 4 |D(u Vv v)™|(A) +/ [(u V)™ A 1dHE?
A J
(u\/v)(m)

< / |Vu'™|dz + | D°ul™|(A) + / [[u™]| A 1dH41
A J

w(m)

+/ |Vo™|dz 4 | D (™| (A) +/ [[™)] A 1dH !
A Tym)
for every m > 0. The conclusion u Vv € GBV,(A) follows now from Definition 2.1. The
same arguments hold for u A v.

To prove (c) it is enough to observe that (uV (w—m)) A (w+m) = w+ (u—w)™ . The
conclusion now follows from (a) and from the definition of GBV,(A). O

If u,v € GBV,(A) coincide on an open set U C A, then their approximate gradients and
the measures D°u and D coincide on U. The following lemma can be considered as an
extension of this property to arbitrary Borel subsets of A.

Lemma 2.4. Let A € A.(RY), let u,v € GBV,(A), and let E € B(A) with EN (J, U
J,) = @. Suppose that & = © H% '-a.e. in E. Then Vu = Vv L%-ae in E and
Deu(B) = Dv(B) for every Borel set B C E.

Proof. Let w := u —v. By [8, Theorem 3.9] we have that w € GBV,(A), ENJ, = O,
and @ = 0 H? '-ae. in E. For every m > 0 we have that w(™ € BV(A) and since
wm) = oM (see, e.g., [8, (2.2)]), we conclude that w(m) = 0 H% '-ae. in E. By [8,
Lemma 2.3] we obtain Vw(™ =0 L%-ae. in E and D™ (B) = 0 for every Borel set
B C E. Passing to the limit as m — 400 and using (b) and (c¢) in Theorem 2.2 we
obtain that Vw = 0 L%-a.e. in £ and D°w(B) = 0 for every Borel set B C E. Using
[8, Proposition 3.10] we conclude that Vu = Vv L%-a.e. in E and D°u(B) = D°(B) for
every Borel set B C E. O

In the following definition we introduce a functional that will play an important role in
this paper.
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Definition 2.5. The functional V: LY(R%) x B(R?) — [0, +o0] is defined in the following
way. For every A € A.(R?) we set

V(u, A) ::/A|Vu|dm+|Dcu\(A)+/A [l A 1dHE i ula € GBVL(A),  (27)

NJa
and V(u, A) := +00 otherwise; the definition is then extended to A(R?) by setting

V(u, A) :=sup{V(u, A") : A" € A.(RY) N A(A)} for A€ AR?), (2.8)
and to B(RY) by setting
V(u, B) :=inf{V(u,A) : A€ AR?), BC A} for B € B(R?Y). (2.9)

Remark 2.6. It follows immediately from the definition that if A € A(RY) and u|s4 €
BV (A) then V(u,B) < |Du|(B) for every B € B(A).

In the following remark we reformulate the definition of GBV,(A) in terms of the be-
haviour of V' on the truncations u("™) .

Remark 2.7. Let u € L°(R?) and A € A.(RY). Then uls € GBV,(A) if and only if
SUP,,so V(ul™, A) < +oo. In this case Theorem 2.2 gives V(u, A) = sup,,-o V (u(™, A).

The following proposition shows that the set function V'(u,-) is inner regular in A(R?).

Proposition 2.8. Let u € LO(RY) and A € A(R?). Then

V(u,A)= sup V(u,A). (2.10)
ATEA(A)
Proof. By (2.8) it suffices to prove (2.10) when A € A.(R%). By monotonicity it is enough
to prove that

V(u,A) < sup V(u,A) (2.11)
A€ AL (A)

when the right-hand side S of (2.11) is finite. For every m > 0 and A’ € A.(4), by
Remark 2.7 we have

WWWM+W%WM“+/ ™) ALdHT = V(™ A) < S, (212)
A’ A’ﬁJu(m)

hence u(™ € BV(A’). This implies that u(™) € BVj,.(A). To prove that u(™ € BV (A)
we have to estimate the jump part. Let J!.,, = {z € J,om : [[ut™](z)] > 1}. Then for
every A" € A.(A)

/ |MWMW*:/ mwwwH+/ ™) dpe!
A/ﬁJu“.,L) A’ﬁJi A’ﬁ(]u(m,) \Jl )

(m) w(m)

< 2 M (A A T ) + / I[ut™]| A 1aHe

A/ﬁ(Ju(m) \Ji(m) )

< (2m+1) / ™) A1dHI < (2m +1)8,
AN (m)
where in the last inequality we used (2.12). Taking into account the other terms in (2.12)
we obtain |Du(™|(A") < (2m +2)S.
Passing to the supremum for A’ € A.(A) we deduce that |Du(™|(A) < (2m+2)S, hence
u(™ € BV(A) and

V(™ A) :/ V'™ |dz + | Du™|(A) +/ [[u™]|A1dHI < S
A AﬁJ“(m)

Since m > 0 is arbitrary, by Remark 2.7 we obtain that v € GBV,(A) and that (2.11)
holds. O
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Remark 2.9. For every A € A(R?) the functional u +— V (u, A) is lower semicontinuous in
LO(R9). This is an immediate conseguence of [3, Theorem 2.1], see also [8, Theorem 6.1].

3. A T'-COMPACT CLASS OF LOCAL FUNCTIONALS RELATED TO GBYV,

Throughout the paper we fix five constants ci,...,c5 > 0 and a bounded continuous
function o: [0,+00) — [0, +00), such that

0<c1 <1<c3<c5, (31)

0(0)=0 and o(t) >c3(t A1) foreveryt>0. (3.2)

In the following definition we introduce the class of functionals we are interested in.
Definition 3.1. Let & denote the class of functionals E: LO(R?) x B(R?) — [0, 4+oc0c] that
satisfy the following properties:

(a) E is local on A(R?), ie., E(u,A) = E(v,A) if A € AR?), u,v € L°(R?), and
u=uv L%ae in A;
(b) for every u € L°(R?) the function E(u,-): B(R?) — [0, +0c0] is a nonnegative Borel
measure and
E(u, B) = inf{E(u, A) : A € A(RY), B C A} (3.3)

for every B € B(RY);
(c1) for every u € L°(R?) and B € B(RY) we have

a1V (u, B) — c2L%(B) < E(u, B) ; (3.4)
(c2) for every u € L°(RY) and B € B(R?) we have
E(u, B) < 3V (u, B) + c4LY(B) ; (3.5)
(d) for every u € L°(R?), B € B(R?), and a € R we have
E(u+a,B) = E(u,B); (3.6)
(e) for every u € L°(R?), B € B(RY), and ¢ € R? we have
E(u+lg, B) < E(u, B) + ¢5|¢|L%(B) ; (3.7)
(f) for every u € L°(RY), B € B(R?), z € R?, ( € R, and v € S%~! we have
B+t B) < E(u, B) + o([C)H (B NI (3.5)

(g) for every u € LO(RY), B € B(R?), and wy,wq € Wllo’cl(Rd)7 with w; < wy L%-a.e.
in R%, we have

E((uVwy) ANws,B) < E(u,B) + 03/ V|V |Vwg|dz + ¢4 L4 BY,) (3.9)
Biy

where By = {z € B : u(x) ¢ [wi(x),ws(z)]}.

The following remarks highlight some properties of functionals in € that will be used in
the sequel.

Remark 3.2. Let E € ¢, u,v € L°(R?), A€ ARY), and B € B(A). If u=v L%-a.e. in
A, then E(u,B) = E(v, B). Indeed,
E(u,B)= inf E,A)= inf E{,A)=Ev,B)
A'e AR?) Ale AR
BCA'CA BCA'CA
where the first and the last equalities follow from (3.3), while the second one follows from
the locality property (a).

Remark 3.3. Let F € &, A€ A(R?), and u € L°(A). For every B € B(A) we can define
E(u, B) by extending u to a function v € L°(R?) and setting E(u, B) := E(v,B). The
value E(u, B) does not depend on the extension thanks to Remark 3.2.
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Remark 3.4. If m > 0 is a constant, by choosing w; := —m and wsy := m, it follows from
(g) that for every u € L°(R?), B € B(R?), and every m > 0 we have
E(™),B) < E(u, B) + c4.L4(B 0 {|u| > m}). (3.10)

Remark 3.5. By (cl), (c2), and the definition of V it follows that for every u € L°(R%)
and A € A.(R?) we have

E(u,A) < +c0 <= ula € GBV,(4).

Let us now provide a typical example of integral functionals that belong to . To this
end we introduce two classes of functions.

Definition 3.6. Let F be the set of functions
f:RTxRY = [0, +00)
that satisfy the following conditions:

(f1) f is Borel measurable;

(f2) c1|é] — co < f(x,€) for every z € R? and every ¢ € RY;

(f3) f(x,€) < c3/€| + ¢4 for every x € R? and every ¢ € RY;

(f4) |f(x, &) — f(z,£)] < c5lé1 — &) for every o € R? and every 1,6 € RY.
Definition 3.7. Let G be the set of functions

g: REx R x ST — [0, +00)

that satisfy the following conditions:

(gl) g is Borel measurable;

(22) a1(|¢| A1) < g(z,¢v) foreveryz e R?, CeR, veSit;

(g3) g(x,(,v) < cd(|§| A1) foreveryz €RY, C€R, v eSS
(g4) l9(x,¢i,v) = g(a,Go,v)| < o(|Gr = Gf)  forevery 2 € RY, (1, €R, v e ST
(g5) g(x, —C,—V)—g(a: ¢v) foreveryzeRY, (eR, vesSit
(g6) for every x € R? and v € S9! the function ¢ — g(z,¢,v) is non-decreasing on

[0,4+00) and non-increasing on (—oo,0].

‘We recall the definition of the recession function.

Definition 3.8. For every f: R? x R? — [0, +00) the recession function f>:R? x R? —
[0,4+00] (with respect to &) is defined by

t
f(x, &) :=limsup G} (3.11)
t—4oco t
for every = € R? and every ¢ € R?.
Remark 3.9. For every = € R? the function & — f>(z,&) is positively homogeneous of

degree 1. Moreover, if £ — f(z,£) is convex on R?, then the upper limit in (3.11) is a limit
(see, e.g., [18, Theorem 8.5]). If f satisfies (f2) and (f3), then

a)é] < f(x,8) < e3lé|  for every € € R?, (3.12)
while if f satisfies (f4), then
|f(2,&) — [P (2, &)] < csé — &|  for every &5,& € RY. (3.13)

We are now in a position to introduce the integral functionals associated with the inte-
grands f € F and g €G.

Definition 3.10. Given f € F and g € G we define the functional E/9: LO(R?) x B(R?) —
[0, +00] in the following way: if A € A.(R?) and u|s € GBV,(A) we set

dDu
Ef9(u, A) ::/Af(x,Vu)dx+/Af°° " diDu |)d|Dc |+/Aﬂj gz, [u],v)dHL, (3.14)



INTEGRAL REPRESENTATION OF LIMITS OF FREE DISCONTINUITY FUNCTIONALS 11

while we set E/9(u, A) := 400 if ula ¢ GBV,(A). The definition is then extended to
A(R?) by setting

EF9(u, A) := sup{E/9(u, A') : A’ € A(A)} for A e AR?), (3.15)
and to B(RY) by setting
E?9(u, B) := inf{E/9(u, A) : A€ AR?), BC A} for B € B(R?). (3.16)

In the following proposition we show that the functionals Ef9 belong to €.

Proposition 3.11. Let f € F and g € G. Then the functional E/9: L°(RY) x B(R?) —
[0, +00] belongs to the class €. Moreover, if A € A.(R?Y) and u € GBV,(A), then
dD¢
Ef9(u, B) ::/ f(x,Vu)dx+/ foo(w,iu)d|Dcu|+/ gz, [u], v, )dHEE (3.17)
B B d| Deul

BNJy
for every B € B(A), where Ef9(u, B) is defined according to Remark 3.5.

Proof. By construction E/9 satisfies condition (a). To prove that it satisfies condition (b)
we fix u € L°(R?) and observe that the set function E/9(u,-) is increasing, subadditive,
superadditive, and inner regular on A(R?). Therefore, by the De Giorgi-Letta criterion [9]
(see also [7, Theorem 14.23]), the extension of E79(u,-) to B(R?) given by (3.16) is a Borel
measure.

To prove (3.17) let us fix A € A.(RY) and u € GBV,(A), and consider an arbitrary
extension v € LY(R?) of u. Then by (f3), (g3), and (3.12) we have E/9(v,A) < +oo0.
For every B € B(A) let u(B) be given by the right-hand side of (3.17). Then g and
Ef9(v,-) are bounded nonnegative measures defined on B(A), which coincide on A(A) by
the definition of Ef9. We conclude that they coincide on B(A), which shows that (3.17)
holds for every B € B(A).

By (f2), (3), (2), (g3), and (3.12) for every u € L°(R?) and A € A.(RY) we have that

aV(u,A) — 2L A) < BH9(u, A), (3.18)
E19(u, A) < 3V (u, A) + caLUA). (3.19)

These inequalities are extended to Borel sets by (2.8), (2.9), (3.15), and (3.16), hence E/9
satisfies (c1) and (c2). Condition (d) can be easily checked. Moreover, (e) and (f) follow
from (f4) and (g4), respectively.

To prove condition (g) we fix v € L°(R?) and wy,ws € Wlloc1 (RY) with w; < wp L%-ace.
in R?. By property (b) it is enough to prove (3.9) when B is a bounded open set. Let us
fix A € A.(RY) such that E/9(u, A) < +00. By definition we have that u|4 € GBV,(A).

We set v := (uV wy) A we. By Proposition 2.3 we have that v|4 € GBV,(A). We
observe that Vv = Vu L%-a.e. in {z € A: wi(v) < u(z) < ws(x)}, Vo =Vw, L4-ae. in
{z € A:u(z) <wi(z)}, and Vv = Vws L%-a.e. in {x € A: u(x) > wa(x)}. Therefore, by
(f3) we have that

/ f(z, Vo)dx < / f(x,Vu)d:CJng),/ |V |V [Vws|de + ca LY(AY,), (3.20)
A A I

12
where A}, :={z € A :u(x) ¢ [wi(x),ws(z)]}.
Since w1, ws € I/Vllocl (R%), the approximate limits

w1 (z), Wo(z) exist at HY '-ae. point x € RY, (3.21)
see, e.g., [11, Theorem 1 in Chapter 4.8 and Theorem 3 in Section ?.6.3]. Let B := {z €
A ¢ a(x), wi(z), wa(z) exist and are finite} and N = (A \ J,) \ B. By (g) and (h) at
the beginning of Section 2, B an~d N are Borel sets and by Theorem 2.2 (a) we have
HIL(N) = 0. Let E := {z € B : i(x) € [ (), w2(z)]} and let yz be its indicator
function defined by xg(z) =1 if z € F and xg(z) =0 if € R\ E.
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Let us prove that
D = xgD as measures on B(A). (3.22)

Since & = (@ V W) Ay in B, we have & = @ in E. Therefore, Lemma 2.4 gives that
D¢v(B) = D°u(B) for every B € B(FE).

Let By = {z € B:a(z) < wi(x)} and Ey := {z € B : a(zx) > wy(x)}. Since o = i,
on Ep, by Lemma 2.4 we have D(B) = D°w;(B) = 0 for every B € B(E;). Similarly
we have D (B) = 0 for every B € B(E3). By Theorem 2.2 (¢) D°(B) = 0 for every
B C J, UN, and thus the proof of (3.22) is concluded.

Since foo(x 0) =0 we deduce from (3.22) that

dDv dDu
°° ch °O d|D¢ul . 2
R O LR A O = R (323)

We consider now the surface integral in E/9. If 2 € B from the equality 0 = (aV) A
we deduce that o(z) exists, hence z ¢ .J,. Therefore J, N A C A\ B, and by (3 21) and
Theorem 2.2 (a) this implies that for H9 !-a.e. x € J, the approximate limits ; (z) and
wa(x) exist, x € J,, and we can choose v, () = v, (2); this leads to v = (u +\/U}1)/\’J}2 and

v™ = (u” Viy) Alg He 1-a.e. in J,. Therefore [v] has the same sign as [u] and [[v]]| < |[u]|
H? 1 a.e. in J,. By the monotonicity property (g6), we obtain g(z, [v],v,) < g(z, [u], v4)
H4=1_a.e. in J, hence
/ g(z, [v], vp)dHI < / g(z, [u], v )dHE. (3.24)
ANJ. ANy

By (3.20), (3.23), and (3.24) we obtain

EF9(v, A) < B59(u, A) + 03/ (V| V |Vws|dz + cs L4YAY,) .

This concludes the proof. O

Since I'-limits are lower semicontinuous, it is natural to introduce the class of functionals
in € that satisfy this property, which also plays a crucial role in the integral representation.

Definition 3.12. Let &, denote the class of functionals in & which satisfy the following
property: for every A € A(R) the functional E(-, A) is lower semicontinuous in L°(R?).

Remark 3.13. If F € ¢ and E(-, A) is lower semicontinuous in L°(R?) for every A €
A:(R9), then E € €&,,.. Indeed, for every A € A(R?) we have E(u, A) = SUp 4rc 4, (4B (u; A')
by property (b) in Definition 3.1.

Remark 3.14. Let E € &, and A € A(R?). Thanks to Remark 3.3 we can define
E(u, A) for every u € BV(A) and the functional E(-,A): BV(A) — [0,+00) is L'(A)-
lower semicontinuous.

Remark 3.15. Taking f(x,¢) :=|¢| and g(z,¢,v) :=|¢| A1 and recalling (3.1) and (3.2),

we obtain from Proposition 3.11 that the functional V : LO(R?) x B(R%) — [0, +o0] belongs
to the class €. By Remark 2.9 it follows that V € &,..

We now state the main result of this section.

Theorem 3.16. Let Ej be a sequence in €. Then there exist a subsequence, not relabelled,
and a functional E € €. such that for every A € A.(R?) the sequence E(-, A) T -converges
to E(-, A) with respect to the topology of L°(R%).

Proof. For every A € A(R?) let

E'(-,A):=T- likminf Ex(-,A) and E"(-,A):=TI-limsup Ex(-, A), (3.25)
—00 k—o00
E' (,A):= sup FE(,A) and E”(-,A):= sup PE"(-,4), (3.26)

A€ A-(A) A’eA.(A)
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where T'-liminf and T-limsup are considered with respect to the topology of L°(R%). Tt
is clear from the definition that for every u € LO(RY) the set functions E'(u,-), E"(u,-),
E' (u,-), and E” (u,-) are increasing with respect to set inclusion. By [7, Theorem 8.5] there
exists a subsequence, not relabelled, such that E’ (u, A) = E” (u, A) for every u € L°(R?)
and every A € A(R?). We define E: L°(R%) x B(R?) — [0, 4+oc] by

E(u,A) = E' (u, A) = E" (u, A) if A€ AR?), (3.27)
E(u,B) := inf{E(u, A) : A€ AR?),BC A} if B B(R?). (3.28)

We want to prove that E € &, and that E(u,A) = E'(u,A) = E"(u, A) for every
u € LO(R?Y) and A € A.(RY).

By [7, Proposition 16.15] the functional E is local (property (a)). The most difficult
point in the proof is to obtain that E satisfies the measure property (b). To this end
we will use a characterization of measures introduced by De Giorgi and Letta [9] (see also
[7, Theorem 14.23]), which requires subadditivity, superadditivity, and inner regularity. In
our case superadditivity follows from [7, Proposition 16.12] and property (b) for Fj, while

inner regularity is obvious from the definition. The subadditivity will be obtained through
a sequence of technical lemmas. O

We begin with a weak form of subadditivity for E” for the truncated function u(™ .

Lemma 3.17. Let Ej be a sequence in &, let E" be defined by (3.25), let u € LO(RY),
and let m > 0. Let A’, A, B € A.(R?) with A’ CC A. Then

E"(u'™ A'UB) < E"(u™,A) + E"(u™, B). (3.29)
To prove the lemma we need the following results.

Lemma 3.18. Let Ey be a sequence in €, let u € L®(R?), let m > |[ul|poo(ray, let uy be

a sequence in LO(R?) converging to u in L°(RY), and let A € A.(R?). Then there exists a
sequence € — 0 such that

Ey(u™, A) < By(ug, A) + e .
Proof. By (g) and Remark 3.4 we have

Ep(ul™, A) < Ej(ug, A) + 5 (3.30)
with e = c4LA N {Jug| > m}). Since up — u in LORY) and [Jullpeoge) < m, we

conclude that ¢, — 0.

We also need the following version of the fundamental estimate commonly used to obtain
subadditivity.

Lemma 3.19. Let E}, be a sequence in €, let A', A", A, B € A.(R?) with A’ cCc A” cC A,
let w € Li, (RY), and let vy, wy, € L}, (R?), converging to u in L} (RY) as k — oo and
such that vi|a € BV(A) and wg|p € BV (B) for every k. Then for every n > 0 there
ezists a sequence py, € C°(RY), with 0 < ¢, <1 in R, suppyr C A”, and pr, =1 in a

neighbourhood of A', such that, setting
ug = prvk + (1 — @r)wi,
we have that u, — u in L}, (RY), ui|aup € BV(A'UB),

loc

up = v L%ae. in A and up = wy L%a.e. in B\ A", (3.31)

lim sup Ex (ug, AU B) < (1+ n) limsup (Ek(vk,A) + By (wg, B)) +1. (3.32)
k—o0

k—o0
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Proof. Given n € N we fix a finite family of open sets A cc AV cc ... cc An cc A"
and for i = 1,...,n we fix a cut-off function ¢° between A*~! and A’ i.e., ¢ € C(RY)
with 0 < ¢ < 1, suppy’ C A%, and ¢* =1 in a neighbourhood of Ai~1. For i =1,...,n
and k € N we set

uy, = @'vk + (1 — " wy, . (3.33)
Note that v, € BV(A) and (1 — o )w, € BV(B). Actually, ¢lv, € BV(Rd)i, since
supp ¢’ C A", and (1 — ¢*)wy, € BV (A’ U B), since ¢* =1 in a neighbourhood of A’. We
conclude that ui € BV (A’ U B).

Using properties (a) and (b) for Ej we obtain

Ey(ul,, A" U B) < Ey(v, A) + Ex(wg, B\ A') + Ex(u},, S;) (3.34)
where S; := (A"\ Ai=1) N B. By (¢2) we have
Ej(uj,, Si) < 3V (uj, Si) + caL(S))
_ 03/5 (Vi |da + | Do |(S)) + 03/ I[ii]| A TaHE + e (S;)

SinJ 4

up,

< 03/ (|Vor| + |Vwe| + |V | |wp — vi|)dx + c3| Dy |(S;) + e3| D wi|(S5)

i

s / ol A 1dHA + ¢ / il A TAHE + s £4(S;)
SiﬁJuk Simek

= c3V(vg, Si) + 3V (wg, S;) + 03/ V! | |wy — vi|do + cal(S;) (3.35)
S

where in the last inequality we used the fact that |¢'[vg] + (1 — ¢*)[w]| < |[vk]] + [[we]] -
From (cl) and the previous inequality it follows that

. C C
Bu(ujs $) < 2Bu(or, 8) + LBifwr, 5) + Mn/ lwp, — vxldz + CLYS,), (3.36)
S
where
M, :=c3 max Vo'l poo(ray and C :=cq + 2cac3/cy .
Let S := (A" \ A’) N B. Since the sets S; are pairwise disjoint, from (3.36) we get
(E—SEk(vk, S;) + %”Ek(wk, ;) + CLYUS,)) < E—SEk(vk, S) + ?Ek(wk, S) +CLA(s),
— a 1 1 1
hence there exists i, € {1,...,n} such that
C3 C3 d C3 C3 C d
il . i ) ) < 2 il = )
o Ek(vk,SZk) + 1 Ek(wk,Slk) + Cﬁ (Szk) = ey Ek(vk, S) + ey Ek(wk, S) + TLE (S)
Given 1 > 0 we choose n such that % <7 and %Ed(S) < n. For every k let ¢ = ¢
and uy, ;= u}*. Then (3.31) holds. By (3.36) and the previous inequalities we have

Ey(ug, Si,) < nEx(vg, S) + nEg(wy, S) + Mn/ |wy, — vgldz + 1, (3.37)
s
which, together with (3.34), gives
Ek(uk, AU B) < (1 + n) (Ek(vk, A) + Ek(wk, B)) + Mn/ |wk — vk|dx +1n.
s

Since vk, wp — w in L}OC(Rd), the integral term in the previous inequality tends to 0 and
taking the limsup as k — oo we obtain (3.32). O
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Proof of Lemma 3.17. Tt is not restrictive to assume that E”(u(™), A) and E”(u™), B) are
finite. By the definition of I'-limsup there exist two sequences vy, wy € L°(R?) converging
to u(™ in L°(RY) such that

E"(u™, A) = limsup Ey(vx, A) and E”(u'™, B) = limsup Ey(wy, B) .

k—o0 k—o0

By Lemma 3.18
lim sup Ek(v,(fm),A) <E"(u'™,A) and limsup Ek(w,(fm),B) < E"(u™ B). (3.38)

k—o0 k—o0

By Remark 3.5 we have v,fm)\A € BV(A) and w,(fm)|3 € BV(B). Since v,(fm) and w,gm)

converge to u(™ in L} (RY), by Lemma 3.19 for every 7 > 0 there exists uy € L}, (R%)
with ug|aup € BV(A' U B), such that u, — u(™ in L} (R?%) and

loc

lim sup Ej(ug, A’ U B) < (1 + n) limsup(Ex (0°™, A) + Ep(w®™ B)) +n.  (3.39)

k—o0 k— o0

By the definition of I'-limsup, (3.38), and (3.39) we obtain
E"(u™ A'UB) < (1+n)(E"(w'™,A) +E"(u"™,B)) +n,
Taking the limit as n — 0+ we obtain (3.29). O
To obtain the same result without truncations we use the following lemma.

Lemma 3.20. Let Ej be a sequence in &, let E” be defined by (3.25), let u € L°(RY), let
w1y, We € Wllo’cl(Rd) with wi < wy L%-a.e. in R, and let A € A(R?). Then

E"((u Awy) Vwg, A) < E"(u, A) + 03/ |Vw: | V |Vws|de + e, LY AY,) (3.40)
12

where AYy :={zx € A: u(z) ¢ [w1(z), w2(x)]}.

Proof. Tt is not restrictive to assume that E”(u, A) < +o0, otherwise inequality (3.40) is
trivial. By the definition of I'-limsup there exists a sequence wuy, in L°(R?) with uz — u in
LO(RY) such that

lim sup Ex(ug, A) < E”(u, A) . (3.41)

k—o0
Passing to a subsequence, not relabelled, we may assume that u, — u L£%-a.e. in R?. Let
v € LY(R?) be defined by v = (up A wy) V ws. By property (g) for Ej we have

Ey(vk, A) < Eg(ug, A) + 03/ |[Vw: |V |[Vws|de + 04£d(A7f§), (3.42)
Ak

12

where A5 = {z € A:u(z) & [wi(z),w2(z)]}. Since uj, — u L%-a.e. in R? we have that

. d - d
lim sup Xavs <xay, L%ae inR?.
k—o0

By the Fatou Lemma this implies

lim sup (c;),/AuJle\\/\Vw2|dx+c4ﬁd(A7f§)> <cs . |Vwi |V [Vws|dz + e LYAY,) . (3.43)
12 12

k—o0

On the other hand, since vy — (u A w;) V wy in LO(RY) we obtain

E"((u Awy) Vws, A) < limsup Ey(vg, A). (3.44)

k—o0
By (3.41)-(3.44) we obtain (3.40). O
Remark 3.21. If m > 0 is a constant, by choosing w; := —m and ws := m, it follows

from Lemma 3.20 that for every u € L°(R?), and A € A.(R?) we have
E"(u™ A) < E"(u, A) + c4LYA N {|u| > m}). (3.45)
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The following lemma allows us to pass to the limit when the truncation parameter m
tends to +oo.

Lemma 3.22. Let Ey be a sequence in &, let E" be defined by (3.25), let u € L°(R),
and let A € A.(R?). Then for every m > 0 we have

lim E"(u™ A) = E"(u,A). (3.46)

m——+00
Proof. By Remark 3.21 we have
E"(u™, A) < E"(u, A) + e4£(AN {Ju] > m})

for every m > 0. Hence
limsup E” (u(™, A) < E"(u, A).

m——+00
The inequality
lim inf E”(u(m),A) > E"(u, A)

m——00

follows from the lower semicontinuity of E”(-, A), since u(™ — v in L°(R?) as m — +oo0.
O

We are now able to prove a weak form of subadditivity for the functional E” on an
arbitrary function u € L°(R%).

Lemma 3.23. Let Ey be a sequence in &, let E” be defined by (3.25), let u € L°(RY),
and let A, A, B € A.(R?) with A’ CC A. Then

E"(u, A’UB) < E"(u, A) + E" (u, B) . (3.47)
Proof. The conclusion follows from Lemmas 3.17 and 3.22. O

We are now in a position to obtain the subadditivity of E.

Lemma 3.24. Let Ej, be a sequence in €, let E be defined by (3.27) and (3.28), let
u € LO°(R?), and let A, B € A(R?). Then

E(u, AUB) < E(u, A) + E(u, B). (3.48)

Proof. Thanks to the previous lemma the result can be obtained arguing as in the proof of
[7, Lemma 18.4]. O

The following lemma proves property (cl) for E.

Lemma 3.25. Let Ej be a sequence in €, let E be defined by (3.27) and (3.28), let
u € LO(RY), and let B € B(R?). Then

c1V(u, B) — co£%(B) < E(u, B) . (3.49)

Proof. By (2.9), (2.10), (3.27), and (3.28) it is enough to prove (3.49) for relatively compact
open sets. Let us fix A € A.(R?) with E(u, A) < +o0c0. By (3.27) for every A’ € A.(A) we
have E(u,A’) < E(u,A) < +o00. By (cl) for Ej and the lower semicontinuity of V' (see
Lemma 2.9) we have that ¢,V (u, A')—coLY(A") < E'(u, A’). Taking the limit as A’ * A, by
(2.10) and (3.27) we obtain ¢,V (u, A) — coL¥(A) < E(u, A), which concludes the proof. [

The following lemma shows that for every A € A.(R?) the sequence Fjy (-, A) T'-converges
to E(-, A) with respect to the topology of L°(R%).

Lemma 3.26. Let E}, be a sequence in €, let E', E”, and E be defined by (3.25), (3.27),
and (3.28), let uw € L°(R?), and let A € A.(RY). Then E(u,A) = E'(u, A) = E"(u, A).
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Proof. Since E(u,A) < E'(u, A) < E"(u, A), it remains to prove that E"(u, A) < E(u, A).
This inequality is trivial if E(u, A) = 400, therefore we assume FE(u, A) < +oo, which
implies u|4 € GBV,(A) by Lemma 3.25 and the definition of V. Given € > 0 we fix a
compact set K C A such that

esV(u, A\ K) + csLYA\K) < ¢. (3.50)

Since the I'-limsup is smaller than the pointwise limsup (see [7, Proposition 5.1}), from
(¢2) for Ej we obtain

E"(u, A\ K) < c3V(u, A\ K) + c4,LY A\ K) < €. (3.51)

We now fix A’, A” € A.(R?) such that K ¢ A’ cC A” cC A and apply Lemma 3.23
with B= A\ K, so that A’U B = A. We obtain

E"(u,A) < E"(u, A”) + E"(u, A\ K) < E(u, A) + ¢,

where in the second inequality we used (3.27) and (3.51). As € — 0+ we obtain the desired
inequality. O

Proof of Theorem 3.16 (continuation). By Lemma 3.26 we have that

B(A) = B'( A) = B"(-,A) = I- lim Ey(-, A) (3.52)

for every A € A.(R%).

We already proved that E is local (property (a)). To prove (b) we fix u € L°(R9)
and apply the De Giorgi-Letta criterion, see [7, Theorem 14.23]. By (3.28), to prove that
E(u,-) is a measure on B(RY) it is enough to show that E(u, ) is subadditive, superadditive
and inner regular on A(R?). Subadditivity is proved in Lemma 3.24, while superadditivity
follows from [7, Proposition 16.12] and property (b) for Ej. Since we already observed that
E(u,-) is inner regular, the proof of (b) is complete.

Property (c1) is proved in Lemma 3.25. Since the I'-lim sup is smaller than the pointwise
limsup (see [7, Proposition 5.1]), from (c2) for Ej we obtain

E(u,A) = E"(u, A) < 3V (u, A) + c4 LY (A), (3.53)

for every A € A.(R%). By inner regularity the inequality holds for every A € A(R?), and
by (2.9) and (3.28) the inequality continues to hold for every B € B(R?), thus concluding
the proof of (c2).

The invariance property (d) and the estimates (e) and (f) for E follow from the same
properties for Ej, using the definition of I'-limit. Finally, property (g) on A.(R9) follows
from Lemma 3.20 and (3.52) and can be extended to B(R?) as in the proof of (c2). This
concludes the proof of the fact that F € €.

From general properties of I'-limits it follows that for every A € A.(R?) the functional
E(-, A) is lower semicontinuous in L°(R?) (see, e.g., [7, Proposition 6.8]). By Remark 3.13
this proves that F € &,.. O

The case of integral functionals is considered in the following corollary.

Corollary 3.27. For every k € N let f € F, gx € G, and E*9 as in (3.14)-(3.16).
Then there exists a subsequence, not relabelled, and a functional E € €,. such that for every
A€ A (RY) the sequence Efe:9% (-, A) T -converges to E(-, A) with respect to the topology of
LO(RY).

Proof. Tt is enough to apply Proposition 3.11 and Theorem 3.16. O
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4. TOWARDS THE INTEGRAL REPRESENTATION

In this section we investigate some properties of the functionals in € that are instrumental
in the proof of the integral representation results that will be obtained in Section 6.

Definition 4.1. Let E: L°(R?) x B(R?) — [0,+0oc] be a functional satisfying properties
(b) and (c2) in Definition 3.1. Let u € L°(R%) and A € A.(R?) with u|4 € GBV,(A). We
define the measures E*(u,-), E*(u,-), E°(u,-), and E7(u,-) on B(A) in the following way:
E%(u,-) is the absolutely continuous part of E(u,-) with respect to £¢,  (4.1)
FE*(u,-) is the singular part of E(u,-) with respect to £¢, (4.2)
E¢(u, B) := E°(u, B\ Jy) for every B € B(A), (4.3)
E?(u,B) := E*(u, BN J,) = E(u, BN J,) for every B € B(A). (4.4)

Remark 4.2. The following properties hold:
E(u,-) = E*(u,") + E°(u,") + E’(u,-) in B(A), (4.5)
E€(u,-) is the absolutely continuous part of E(u,-) with respect to |Dul, (4.6
FEJ(u,-) is the absolutely continuous part of E(u,-) with respect to H¥ 1L J,. (4.7)

Property (4.5) follows immediately from the definition.

Since the measures E*(u,-) and |D®| are singular with respect to £, there exists
N € B(A) with £4(N) = 0 such that E*(u, A\ N) = |D|(A\ N) = 0. Therefore, if
B € B(A) and |Du|(B) = 0 we have that

E(u, B) = E*(u, B\ J,) = E(u,BAN\ J,) < esV(u, BAN\ J,) = 0
hence E°(u,-) is absolutely continuous with respect to |Dul.

On the other hand, by Theorem 2.2(c) we have |Du|(J,) = 0, hence |D is con-
centrated on N \ J,. Since E%(u,N \ J,) = 0 and E’(u,N \ J,) = 0, the measure
E%(u,-) + E%(u,-) is singular with respect to |D®u|. We conclude that E¢(u,-) is the
absolutely continuous part of E(u,-) with respect to |D°u|.

Finally, by (c2) in Definition 3.1 for every B € B(A) we have

Ei(u,B)=E(u,BNJ,) < csV(u,BNJ,) = C3/ (]| A 1dHOT,
BNJ.,
hence F7(u,-) is absolutely continuous with respect to H?" 'L J,. Observing that the
measure E%(u,-)+ E(u,-) is singular with respect to H?~'L.J,,, we conclude that E7(u, -)
is the absolutely continuous part of E(u,-) with respect to HI™ 1L J,.

Our proofs of the integral representation theorems considered in the next sections rely on
the results of [4] about functions u € BV (A). Since we want to extend them to GBV,(4),
it is important to approximate the values of a functional on a function v € GBV,(A) with
the corresponding values on its truncations «(™ . This is done in the following proposition.

Proposition 4.3. Assume that E: L°(RY)xB(RY) — [0, +00] satisfies (3.10) and properties
(b) and (c2) in Definition 3.1. Suppose also that E(-, A) is lower semicontinuous in L°(R)
for every A € A.(R?). Let u € L°(R?) and A € A.(R?) with u|la € GBV,(A). Then

Jim E(™),B) = E(u,B), (4.8)
Jim E*(u(™ B) = E%(u, B), (4.9)
Jim E*(u™, B) = E*(u, B), (4.10)
i E¢(u'™, B) = E°(u, B), (4.11)

lim E/(u'™,B) = E’(u, B), (4.12)

m——+0o0
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for every B € B(A).
Proof. By (3.10) we have that
limsupE(u(m),B) < E(u, B)

m——+00

for every B € B(A). By lower semicontinuity we have also

liminf E(u™,U) > E(u,U)

m—)Jlroo
for every U € A(A). Hence
lim Ew'™,U) = E(u,U)

m——+0o0

for every U € A(A).
Equality (4.8) follows from Lemma 4.4 below, while (4.9) and (4.10) follow from Lemma
4.5 below. As for (4.12) we observe that

E'(u'™ B) = E*(u™, BN Jym) and E’(u,B) = E*(u,BN.J,).

By Theorem 2.2(d) there exists a sequence N,, € B(A) such that H4 (N, Adym) = 0
and N,,, 7 J,. By (c2) we have E/(u(™ B) = E*(u™ BN N,,). Let us fix k € N. For
every m > k we have

E*(w'™ BN N,) < E*(u'™,BNN,,) < E*(w™,BnJ,).
By (4.10) we have
E*(u, BN Ng) < liminf E*(u™ BN N,,) < limsup E*(u(™, BN N,,) < E*(u, BN J,).

m—>+00 m——+o0o
Passing to the limit as k — oo we obtain (4.12). Equality (4.11) follows by difference. [
To conclude the proof of Proposition 4.3 it remains to prove the following lemmas.

Lemma 4.4. Let A € A(R?) and for every k € N let py,pu: B(A) — [0,+00) be finite-
valued Borel measures. Assume that

klim ur(U) = p(U)  for every U € A(A). (4.13)
Then
klim ur(B) = u(B)  for every B € B(A). (4.14)

Proof. Let us fix B € B(A). For every € > 0 there exists U € A(A) with U D B such
that p(U) < u(B) + €. By (4.13) we have limsupy, pr(B) < limg pr(U) < p(B) + €. Since
g > 0 is arbitrary we conclude that limsup;, ux(B) < p(B). The same property for A\ B
gives lim sup, i (A\ B) < u(A\ B). Since lmy (i (B) + (A \ B)) = u(B) + u(A\ B),
we conclude that (4.14) holds. O

Lemma 4.5. Let A € AR?), for every k € N let py,, p: B(A) — [0,+00) be finite-valued
Borel measures, let pg, u® be their absolutely continuous parts with respect to L4, and let
pi, p® be their singular parts with respect to L4, Assume that

klim wuk(B) = w(B)  for every B € B(A).
—00

Then
lim pg(B) = p*(B) and  lim p5(B) = p*(B)

k—o0 k—o0

for every B € B(A).
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Proof. Let N € B(A) with £4(N) =0 be such that u® and uf are concentrated on N for
every k. Then for every B € B(A) we have

lim 4 (B) = lim ju(B\N) = u(B\ N) = u(B).
k—o0 k—o0
The property for 7 and p® is obtained by difference. O

One of the difficulties in the proof of the integral representation is that the functional
E(-, B), in general, does not decrease under truncations. However, the following proposition
shows, in particular, that the singular part E*(-, B) is always decreasing under truncations.

Proposition 4.6. Assume that E: L°(R?) x B(RY) — [0, +o0] satisfies properties (b), (c2),
and (g) in Definition 3.1. Let u € L°(RY), A € A.(RY), with u|la € GBV,(A), and let
wy, Wg € Wllo’l(]Rd), with wy < wy L%-a.e. in RE. Then

E*((uVwy) ANws, B) < E*(u, B) (4.15)
for every B € B(A).

Proof. Let N € B(A) be a set with £¢(N) = 0 such that F*((uV w;) Aws,-) and E*(u,-)
are concentrated on N. Then

E*((uVwy) ANwa, B) = E((uV wy) Awe, BN N)
< E(u,BNN)+ 03/ |Vw |V [Vws|de + ca LY (BN N) = E*(u, B),
BNN
thus concluding the proof. O

The results in [4] cannot be applied directly to the restriction of the functional E to
BV (A) since they require a lower bound of the form F(u, A) > c¢|Du|(A) for some constant
¢ > 0, which does not hold under our hypotheses. For this reason we consider the functionals
introduced in the following definition.

Definition 4.7. Let £ € ¢ and A € A.(RY). For every € > 0 we define the functional
E.: BV(A) x B(A) — [0, +00) by setting

E.(u,B) := E(u, B) + ¢|Dul|(B) (4.16)
for every uw € BV(A) and every B € B(A), where E(u, B) is defined thanks to Remark 3.3.
Remark 4.8. By (cl) we have

e|Du|(A) — c2LY(A) < E.(u, A), (4.17)
while by (c2) and Remark 2.6 we have
E.(u,A) < (c3 + )| Dul(A) + c4L4(A) . (4.18)

Finally, note that E. satisfies the analogue of properties (a), (b), and (d) in A.

Definition 4.9. Let £ € ¢, A € A.(R?), and ¢ > 0. Given u € BV(A) we de-
fine E2(u,-), E2(u,-), ES(u,-), EI(u,-): B(A) — [0,4+oc) as in Definition 4.1 starting from
E (u,-).

The integrands appearing in the integral representation results in [4] are constructed using
the minimum problems considered in the following definition.

Definition 4.10. Let A € A.(R%) with Lipschitz boundary and w € BV (A). Given an
arbitrary functional E(-, A): BV (A) — [0, +0o0], we define (see [4])

mP(w, A) := inf{E(u, A) : u € BV(A), trau = trpw H? t-a.e. on dA}, (4.19)
where trqv denotes the trace on 0A of a function v € BV (A).

The following lemma compares the values of m? on different sets.
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Lemma 4.11. Let A', A € A.(R%) with Lipschitz boundaries and A’ CC A, let w €
BV(A), and let E: BV(A) x B(A) — [0,+00] be a functional such that
(a) E islocal in A(A), i.e., E(u,U) = E(v,U) for every U € A(A) and u,v € BV (A)
with w=v L%-a.e. in U;
(b) for every u € BV (A) the set function E(u,-) is additive on B(A);
(c) there exist ¢4 >0 and ¢y > 0 such that E(u,B) < c4|Du|(B) + ¢4 L% (B) for every
u € BV(A) and B € B(A).
Then
E E / / ! ! rd /
m~(w, A) <m”(w, A") + 4| Dw|(A\ A") + c, LY(A\ AT). (4.20)
Proof. Let us fix n > 0. By the definition of m® (w, A’) there exists u € BV (A’) such that
trau=trpw H4 -ae. on 9A’ and
E(u, A') <mP(w, A + 1. (4.21)
Let v: A — R be defined by v = v in A’ and v = w in A\ A’. Since trqv =
traw Hé 1-ae. on 9A, we have m¥(w, A) < E(v, A). By (b) E(v,A) = E(v,A")+ E(v, A\
A’). Moreover, by (a) E(v,A") = E(u,A’) and by (¢) E(v,A\ A") < c¢4|Dv|(A\ A') +
| Dv|(0A") + LY (A\A') = | Dw|(A\A ) +cy [ou |[V]|dHI ™ +c) L7 (A\A'). Since trav =
trau=traw H'-ae on OA', while v =w in A\ A’, we obtain that [, ,, |[v]|[dH*"! =
Sy [w]dH = | Duwl(94').
Combining these inequalities and (4.21) we obtain
m®(w, A) <m®(w, A') + 1+ 5| Dw|(A\ A') + 4 LA\ A),
which gives (4.20) by the arbitrariness of n > 0. O

We now define the integrands that will be used in Section 6 in the integral representation
results for functionals in €&, .

Definition 4.12. Given E € ¢ we define the integrands f: R? x R? — [0, 4+00), and
g: RYx R x S¥1 — [0, +00) by setting

f(@,8) = liprgf)lip o ; (4.22)
, m” (ug, v, Qu(z, p))
g(z,(,v) = h;g%ip x’i’)d_l . (4.23)

To obtain the integral representation result for E% and E’ we shall first prove, for every
e > 0, an integral representation for the functionals E¢ and E7 introduced in Definition 4.9
using the integrands given in the following definition.

Definition 4.13. Let £ € ¢ and let ¢ > 0. We define the integrands f.: R? x R¢ —
[0,4+00), and g.: RY x R x S¥~1 — [0, 4+00) by setting

m®= (e, Q(x, p))
d

fe(x,8) = liﬂiip 5 ) (4.24)
g-(z,¢,v) := limsup M (g, Qu (2, ) . (4.25)

1
p—0+ p?

Remark 4.14. It follows immediately from the definitions that ¢ — f.(z,£) and & —
ge(x,{,v) are non-decreasing and that

f(@,8) < fe(z,§) and  g(z,(,v) < g-(2, (V) (4.26)
for every ¢ >0, z € R?, ¢ € R¢, ( €R, and v € S 1.



22 GIANNI DAL MASO AND RODICA TOADER

The following proposition shows that, under an additional assumption, f and f°° are
the limit of f. and f2° as ¢ — 0+. In Theorem 6.2 we shall see that this assumption is
satisfied by all functionals in the class &,..

Proposition 4.15. Let E'€ € and let f and f. be defined by (4.22) and (4.24). Suppose
that there exists a function f € F such that

E*(u, A) :/ f(x, Vu) da (4.27)
A
for every A € A.(R?) and every u € BV (A). Then for L%-a.e. x € R?
F,€) = lim fo(w,€) for cvery € € RY, (428)
F2(,€) = Jim f(2,6) for every € € RY. (4.29)

If, in addition, f is continuous on R? x RY, then (4.28) and (4.29) hold for every x € R%.

To prove the proposition we need the following lemma, which contains a more general
result for the rectangles Q) (z, p) defined by (2.1). For every ¢ € R? we set

02+C4+1d1/2

e = + |€|dM2. (4.30)

C1

Lemma 4.16. Let E € &. Suppose that there exists a function f € F such that (4.27)
holds for every A € A.(R?) and every u € BV(A). Then there exists N € B(RY), with
LYN) = 0, such that for every x € RI\ N, A > 1, v € S¥ ! and n > 0 there exists
p{},n(m) > 0 with the following property: for every 0 < p < pﬁ’n(aﬁ) and every € € R? there
exists u € BV (Q)(z, p))NL>(Q)(x, p)) satisfying |[u—Lel| Lo (3 (2.p)) < A5 113 (2,8 =
tTQA (,p) U HI L a.e. on 0Q)(x,p), and

E(u, Q) (z,p)) < m”(Le, Q) (z, p)) + A p?. (4.31)

If, in addition, f is continuous in R? x R, then N = Q. Finally, if f does not depend
on x, then p), () = +o0.

Proof. Let us fix 0 < < 1. We claim that there exists a Borel function ,,: R? — R? such
that

f(@, v (2) < f(z,€) +n/3 for every z € R and ¢ € R?. (4.32)

To prove this, let p: R? — [0, 4+00) be the Borel function defined by
= inf f(z,&) = inf f(z,&) fi e R?, 4.33
(o) i= Jnf f(2.€) = i f(2.€) for every o (4.33)

let (&) be an enumeration of Q?, and let (B;) be the sequence of Borel sets defined induc-
tively by
By :={z €R?: f(x,&) < p(z) +1n/3},
Bi:={x € R\ (ByU---UB;_1): f(x,&) < p(x) +n/3} fori>1.
Observing that (B;) is a partition of R?, we obtain that the function Yy R? — R defined

by ¢y(x) =&, for x € B; is Borel measurable and satisfies (4.32).
By (f2) and (£3) in Definition 3.6 we have

1
|ty (z)| < % for every x € R, (4.34)
1

By the Lebesgue Differentiation Theorem for £%-a.e. z € R? we have

mnAQLf/' [n(y) — Yol@)ldy = 0
Q) (z,p)

p—0+ Ad—lpd
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for every A > 1 and every v € S¢~1. By (f4)

lm / 1F (0 @) — Fly 10y ())]dy =0,
Q) (z,p)

p—0+ )\d—lpd

therefore, for £%-a.e. x € R? there exists p}, (x) > 0 such that
L W) = iy < nx'= /3 (1.35)
v \Z,p

for every 0 < p < p}, (z). This implies that there exists N € B(R?), with £L4(N) = 0, such
that (4.35) holds for every z € RI\N, A > 1, v € S¥ 1 € Qn(0,1),and 0 < p < p,))m(x).

Let us fix =, \,v,1,p as above and let ¢ € R?. By the definition of m® there exists
v € BV(Q)(x,p)) such that trga (s )0 = trgai »le H '-a.e. on 9Q)(x, p), and

E(v,Q(x, p)) <mP(le, Q) (x, p)) + 1A' p?/3. (4.36)

Let my ==& -2 — ceAp/2 and mg := & - + ceAp/2, where ¢¢ is defined in (4.30). For
every y € R? we set wy(y) := ¢, (2) - (y — ) + my and wa(y) := ¥y, (z) - (y — ) + ma. Note
that ws — wy = mg —my = ceAp.

Moreover, for every y € Q) (x, p) we set

u(y) = (v(y) Vwi(y)) Awa(y). (4.37)

Then u € BV(Q)(z,p)) N L¥(Q)(x, p)). For every y € Q) (x,p) we have wi(y) < u(y) <
wa(y) and wi(y) < Le(y) < wa(y), hence [[u — Le|lpoo(Qr(a,p)) < ceAp and trox (g yu =
trQA (2,p) e Hi1ae. on 9Q)(z,p).

Let B:={y € Q)(z,p):w; <v <wsy}. Since, by a well-known property of approximate
gradients we have Vo(y) = Vu(y) L%-a.e. in B and Vu(y) = Vwi(y) = Vws(y) = ¢, (z)
L3-a.e. in Q)(z,p)\ B, by (4.27) we have

2@ = [ fovuiy= [ fu ey [ f @)

Q) (z,p) Mz,p)NB z,p)\B
< / F(y, Vo)) dy + / F 0 (9))dy + / (i) — Flys b))y
Q) (z,p)NB Q) (z,p)\B Q) (z,p)\B
< fly, Vo(y))dy + 20\ p? /3 = B* (v, Q) (x, p)) + 2nA* 1 p?/3, (4.38)
Q) (x,p)

where in the last inequality we used (4.32) and (4.35).
By Proposition 4.6 (using also Remark 3.3) we have

E*(u, Q) (w,p)) < E*(0, Q) (x,p)) (4.39)

which together with (4.36) and (4.38) gives E(u, Q) (x, p)) < E(v, Q) (x, p))+2nA1~1pd/3 <
m¥(w, Q) (z,p)) + nA?~1p?, thus concluding the proof of (4.31).

If, in addition, f is continuous on R? x R?, we fix an arbitrary z € R%. By (f2) and (f4)
the function & — f(x,£) has a minimum point ¥ (z) € R%. By (£3) we have

fla, (@) < f(2,0) < e, (4.40)
hence (f2) gives
()] < @Cﬁ (4.41)
1

Let us fix 7 > 0. Since f is continuous, for every A > 1 there exists p;}(x) > 0 such that

1f(y.€) = fz,€)] <n/3 (4.42)
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for every y € Q{}(m,pf‘](x)) for some v € S¥7!, and every ¢ € RY, with [¢] < (e +¢4)/c1-
Given v € S !, we claim that

Fly. (@) < fly.€) +20/3 (4.43)

for every y € Q,’)(;U,p%(w)) and every & € R%. To prove this, let us fix y € Ql’}(%p;‘(x)) If
|€] < (c2 + ca)/c1, the minimality of ¢(z), together with (4.41) and (4.42), gives

Fly,d(x)) < fz,(x) +n/3 < fla, &) +n/3 < fy,€) +2n/3.

If, instead, |£] > (c2 4 c4)/c1, by (f2) we have f(y,&) > ¢4, which, together with (4.40),
(4.41), and (4.42), yields

fy,v(@) < fla, (@) +n/3 <ca+n1/3 < f(y,§) +n/3.

In both cases we have (4.43).

Given A\>1,veS% ! and 0<p< p;\l(x), we consider the functions v and u satisfying
(4.36) and (4.37), with ¢, (z) replaced by ¢ (z) in the definition of w; and wy. Arguing as
in the proof of (4.38), by (4.27) we obtain

po.Q@ | fovue= e e

>(x,p) x,p)NB Q2 (z,p)\B

< / Fly, Voly))dy + 20081903 = B0, QN z, p)) + 203113, (4.44)
Q) (z,p)

where in the last inequality we used (4.43). Inequality (4.31) follows now from the previous
inequality, using (4.36) and (4.39).

Finally, if f does not depend on z we repeat the previous arguments taking ¥ (x) indepen-
dent of z. Then (4.42) and (4.43) clearly hold with n = 0 and pg (x) = 4+00. Consequently
E%(u, Q) (x,p)) < E%(v,Q)(z, p)) for every p >0 and the conclusion follows. O

Proof of Proposition 4.15. Let N € B(RY) be the set with £4(N) = 0 introduced in
Lemma 4.16. By (4.26), to prove (4.28) and (4.29) we have only to show that for every
r €RY\ N (or z € R? if f is continuous) and every & € R? we have

inf f.(2,€) < f(2,6), (4.45)
inf f2*(x,§) < f*(2,€). (4.46)
e>0
Let us fix n > 0, x € R?\ N (or an arbitrary = € R? if f is continuous), ¢ € R¢, and
t > 1. Let ¢, be the constant introduced in (4.30) corresponding to t£. By the definition

of f (see (4.22)) there exists ry,(z,t§) > 0, with cery(z,t€) < 1/2, such that for every
0 < p < ry(z,t€) we have

mE(Etgt,ﬁ(:v,p)) f(xt,tﬁ) . (4.47)

We apply Lemma 4.16 with t£ instead of £ and we find a constant p,,(x, t§) € (0, r,(z,t£))
such that for every p € (0, p,(x,t§)) there exists u € BV (Q(z,p)) N L=(Q(z,p)), with
o, p) U = troeeplie HO ' -ae. on 0Q(z, p) and [Ju — lig|| Lo (Q(a,p)) < Crep < 1/2, such
that

IN

E(u, Q(z,p)) < m® (L, Q(x, p)) +np.
Together with (4.47) this inequality gives

E(u, Q(x, p)) < f(z,t8)

m. 4.48
1 T2 (4.48)
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Since |lu — lie|| Lo (Q(z,p)) < 1/2 we have |[u]| <1 H?'-ae. on J,,. Therefore, recalling
the definition of E. (see (4.16)), for every £ > 0 we have

Ec(u, Q(z,p)) < E(u, Q(z, p)) + 5/@( )lVU\dir +e[ DUl (Q(x, p)) + € JH“” ALdH!
Z,p u
602 d

< (L ) B, QG p) + =" (4.49)

where in the last inequality we used (cl) in Definition 3.1. Let us fix €, > 0 such that
en/c1 < m and eyca/cy < 1. Therefore, the previous chain of inequalities together with
(4.48) yields
Ee(u, Q(, p))
tp

for every 0 < p < py(z,t§) and every 0 < e < e,.

Since u € BV(Q(x,p)) and trg(y,,)u = trQa, p)lte H4 1 a.e. on dQ(z,p), recalling the
definition of m®P= | from the previous inequality we deduce that

<a +n)(f(w£t§)

+2n)+77

mEs (£t§7Q(‘xap)) f(.]?,tf)
D < ) (S )
for every 0 < p < p,(z,t§) and every 0 < € < &,,. Taking the limsup as p — 04+ we obtain
t. &
M <1 —1-77)(@ + 277) +n for L%-ae. e R? (4.50)
and for every £ € R, t>1,and 0 < e < €y . In particular, for ¢ = 1 we have
fe(@,8) < (L+n)(f(z,€) +2n) +n for L%ae. zeR? (4.51)

and for every £ € RY and 0 < € < ¢,,. Passing to the limsup in (4.50) as ¢t — 400 we
obtain

F(,8) < (L+m)(f>(2,) +2n) +n  for L%ae € R? (4.52)
and for every £ € R? and 0 < € < ¢,,. To obtain (4.45) and (4.46) it is enough to take the
infimum in (4.51) and (4.52) for € € (0,¢,), and then the limit as n — 0+. O

We now prove the same result for the function g defined in (4.23).
Proposition 4.17. Let E € &, and let g and g. be defined by (4.23) and (4.25). Then
9(z,¢,v) = lim ge(z,¢,v) (4.53)

for every x € R?, ¢ € R, and v € S 1.

Proof. Let us fix z, ¢, and v as in the statement and let §(x,(,v) be the right-hand side
of (4.53). By (4.26) we have only to prove that

9(z,¢v) < g(z,(v). (4.54)
Let us fix > 0. By the definition of g there exists r,(x) > 0 such that
mE<uw,C,ua Qu(xvp))
o1

for every 0 < p < r,(z). By the definition of m¥, for every 0 < p < r,(z) there exists
u € BV(Qu(x,p)), with trg, (2 U = trq, (2, p) U,y H ' -ae. on 0Q,(z,p), such that

E(u, Qu(z,p))

pd—l

<g(@.¢v)+n (4.55)

<g(x,¢v)+2n. (4.56)
Let us fix m > [¢|V 3. By (3.10) we have
Ew™ Q. (x,p)) < E(u,Q,(x,p)) + cap®. (4.57)
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Together with (4.56) this inequality gives
E(™,Qy(z,p))

pd—1
Let J! :={x € J, : |[u)(z)] > 1}. By (4.16) and (4.57) for every € > 0 we have

< gz, V) +2n+cap. (4.58)

E.(u™,Q, (x, p)) < E(u™,Qu(x.p)) + ¢ / Vu™)| dz
QI/(IQP)

e DU (Q, () + € / [u]] A (2m)dH
Jquu($7p)

< B(uQulep) +ew' +e [ [Vulda+elDul(Quw.p)
Qu(z,p)

Le2mHIN (T O Qs p)) + / ][
(Ju\INQ (z,p)

< BE(u,Qu(@,p) + cap + / Vul dz + £l D°ul(Qu (x. p))
QV(CU;P)

2
teom )| A 1dHO < (14 e =) E(u, Qu(x, p)) + (ca + €
JuNQ. (z,p) C1 C1

2mea | 4

e,

where in the last inequality we used (c1) in Definition 3.1. We can find €, > 0 such that
57726—71” < n and 57727:—162 < n. Therefore, the previous chain of inequalities together with
(4.56) yields
E u(nl)7QV Z,p
AL LAR I < (1 gt Gov) o+ 20)+ e+
for every 0 < p < rp(z) and every 0 < e <¢g,.
Since u(™ € BV(Q,(z,p)) and trg, (z ) u™ = trq, (z p)lscy HE -ae. on 0Q,(z, p),

recalling the definition of m®=, from the previous inequality we deduce that

mEs (um,c,uv Ql/(z7 P))
pd—l

< (X +n)(9(x, ¢, v) +2n) + (ca +n)p

for every 0 < p < ry(x) and every 0 < € < g,. Taking the limsup as p — 0+ and using
the definition of g. (see (4.25)) we obtain

9e(, G, v) < (1+n)(g(x, (,v) + 2n)
for every n > 0 and every 0 < ¢ < g,. Taking the limit, first as ¢ — 0+ and then as
17 — 0+, we obtain (4.54). O
5. PROPERTIES OF THE INTEGRANDS f AND g

In this section we shall prove the following result.

Theorem 5.1. Let E € €, let f and g be defined by (4.22) and (4.23), and let f:RIXRY —
[0, +00) be defined by

f(@,€) = inf f.(2.6) = lim f(v,€) for every v € R and R, (5.1)

where f. is introduced in (4.24). Then f € F, feF,and geg.

The proof of the theorem relies on several technical lemmas, in which we tacitly assume
that £ € €, ¢ >0, and f, g, fe, and g. are defined by (4.22), (4.23), (4.24), and (4.25).
To obtain the Borel measurability of these functions we use the following lemma, which
provides general conditions under which we can restrict a limsup to a countable set.
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Lemma 5.2. Let k1 >0, ky >0, let ¢: (0,1) — (0,400) be a function such that
P(p) < Y(r)+ k(1 — (%)dil) + ko(l — (%)d) forevery0<r<p<1, (5.2)
and let D be a dense subset of (0,1). Then
lim sup t(p) = limsup (p) . (5.3)
p:e(g p—0+

Proof. 1t is enough to prove that

lim sup ¢(p) < limsup ¢(p) . (5.4)

p—0+ p—0+

peD
Let A be the right-hand side of (5.4) and let € > 0. Then there exists 0 < § < 1 such that
P(r) < A+e for every r € DN (0,9). (5.5)

We claim that 1(p) < A+e¢ for every p € (0,0). Indeed, given p € (0,d), by (5.2) and (5.5)
we have

Vo) SAte+ri(l=(5)") +ra(l - (5))

for every 0 < r < p with r € D. Passing to the limit as » — p— we obtain ¥(p) < A+ ¢
for every p € (0,9), which implies that

limsup¢(p) < A+e.
p—0+

By the arbitrariness of € > 0 this implies (5.4). O

We are now ready to begin the proof of property (f1).
Lemma 5.3. Let £ € RY. Then x v f(z,€) and x — f.(x,&) are Borel functions on RY.

Proof. For every x € R% and for every p > 0 let

p(x,p) = m"(le, Q(x, p)) .- (5.6)
By Lemma 4.11 we have
o, p2) = (c3lé] + ca)ps < p(, p1) — (eslé] + ca)pf (5.7)
for every 0 < p; < p2. This shows that the function
P, p
L)
p
satisfies (5.2) with k1 =0 and kg = c3|¢| + ¢4. By Lemma 5.2 this implies that
f(z,&) = limsup <P($;p) . (5.8)
p—0+ P

pPeQ
Moreover, by (5.7) the function p — ¢(x,p) has locally bounded variation in (0,+4o00)
for every € R?. This implies that for every € R? and r > 0 there exists
= i .
pla,r+) = lim o(z,p)
Using (5.7) we see that
p(x,p) < p(z,r+) + (cslé] + ca) (p* = %) (5.9)

for every 0 < r < p. Moreover, it is obvious that

plz,r+) p(z,r)
sup ——_-— = sup .
0<r<sé r o<r<s T
reQ reQ
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Together with (5.8) this implies that

f(z,&) =limsup <p(x,7d7’+) . (5.10)
7‘~>((J@+ T
re

Let us fix r > 0. We claim that the function x — ¢(x,r+) is lower semicontinuous. Let
xp — x. Let us fix ps > p; > r. For k large enough we have Q(zx,p1) CC Q(z,p2). By
Lemma 4.11 we have

o(x, p2) < p(xK, p1) + (c3|€] + C4)(p§l - pil) _
By (5.9) we obtain

o(x,p2) < o, r+) + (c3lé] + ca) (p§ — %),
Hence

oz, p2) < likrggfgo(xk,r—i—) + (eslé] + ex)(pd — %),
and taking the limit as py — r+ we obtain
o(z, r+) < liminf p(zg, r+),
k—o0

which proves the lower semicontinuity of x — ¢(x,r+). By (5.10) we conclude that z —
f(x,€) is a Borel function. The same proof holds for f.. O

In the next result we show that f satisfies property (f4) and f. satisfies the same property
with a different constant.

Lemma 5.4. Let x € RY and &1,& € RY. Then

If(z,61) = f(2, &) < e5lé1 — &a| and  [fo(w,&1) — fo(2,82)] < (c5 +€)[61 — &2 . (5.11)

Proof. Let us fix p > 0. By the definition of m¥ there exists u; € BV (Q(z,p)) with
Q) U1 = trQ(,p)le, HY ' -a.e. on 8Q(z, p) such that

E(ula Q(xa P)) < mE(efla Q(xa P)) + pd+1 .

Let ug :=uy — le, + le, . Since trgq, )tz = trg,ple, H t-a.e. on 9Q(x,p), by (3.7) we
have

m” (le,, Q(x, p)) < E(uz, Q(x, p)) < E(u1, Q(x, p)) + c5/&1 — &lp”
< mE(gﬁuQ(xap)) + pd+1 + C5|£1 - §2|pd-

Dividing by p? and taking the limsup as p — 04 we obtain

f(x, &) — f(x,&) < cs5lér — ol

Exchanging the roles of & and & we obtain the first inequality in (5.11). The proof for f.
is similar. O

Corollary 5.5. The functions f and f. are Borel measurable on R* x R®.
Proof. The result follows from Lemmas 5.3 and 5.4 O
The following lemma provides the lower estimate (f2) for f and f..
Lemma 5.6. Let x € R? and ¢ € R?. Then
fe(@,8) = f(2,8) Z c1l¢] — ca. (5.12)

To prove the lemma we use the following result about one-dimensional problems.
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Lemma 5.7. Let I = (a,b) be a bounded open interval in R, let s,t € R, and let
U: BV(I) — [0,400) be defined by

/|Vu|dx+|DCu| + ) [[ul(z)| AL = [Dul( + ) [[ul(z)| AL, (5.13)
T€Jy, rE€EJy
Then
inf v >|t—s|A1. 5.14
et (u) = [t — s (5.14)

u(a)=s,u(b)=t
Proof. For every u € BV (I) we have
[Du(D)| A1 < [Dul(I) AL < [Dul(T\ o) + D (|[u)(x)] A 1).
€ Jy,
If, in addition, u(a) = s, and u(b) = ¢, then Du(I) = t — s, and the previous chain of
inequalities gives (5.14). O
To prove Lemma 5.6 we use a slicing argument. Given A € A.(RY), u € BV(A),
v €S and y € 114, we define
Ay ={teR:y+tve A} (5.15)
and uy: Ay — R by
uy (t) :=u(y +tv) for every t € Ay . (5.16)

Proof of Lemma 5.6. Since the first inequality in (5.12) is given by (4.26), we only have to
prove the second one. Let p > 0. By the definition of m”(f,Q(z,p)) there exists u €
BV(Q(z,p)), with trg pu = trge,,le H¥ ' -a.e. on dQ(z,p), such that E(u,Q(z,p)) <

mP (e, Q(x, p)) + p**1.
Let v := £/|¢]. By the results on slicing for BV functions (see [2, Theorem 3.108]) we
have that

Ve z [ wepen ),
V(@0
where C,(x,p) is the orthogonal projection of the cube Q(z,p) onto IIj, and Wy is the
functional defined by (5.13) with I := Q(x, p)y -

Since trg(e,pu = troe,,le M -ae. on aQ(x p), we have trQ(y,p)vtly = trQ(s,p)y (le)y
in 0(Q(w, p)y), therefore, by Lemma 5.7 we obtain that Wy (uy) > |§|L‘1( Q(x, p)y) for p >0
small enough. Hence integrating over C,(x, p), by Fubini’s Theorem we obtain

V(u,Q(x, p)) = [€]p?.
By (c1) in Definition 3.1 and by the choice of u, this shows that m¥(¢¢, Q(z, p)) + p?+1 >
c1]€]p? — cap?. Dividing by p? and taking the limsup as p — 0+ we obtain (5.12). O

We now prove the upper estimate (£3) for f and a corresponding estimate for f..

Lemma 5.8. Let x € R? and ¢ € R%. Then
f(@,8) <cslél+es and  fe(z,§) < (cs+e)l€] +ca. (5.17)
Proof. For every p > 0, by (c2) in Definition 3.1 we have

m¥ (e, Q(z, p)) < E(le, Q(,p)) < c3lé|p® + cap®.

Hence, dividing by p? and taking the limsup as p — 0+ we obtain the first inequality in
(5.17). The inequality for f. is proved in the same way. d

In the next lemmas we shall establish the required properties of the function ¢ defined
by (4.23). To prove the Borel measurability we use the following lemma, which gives an
estimate of the dependence of m® (uy ¢ ., Q. (z,p)) on =, v, and p.
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Lemma 5.9. There exists a continuous function w: [0,400) x [0,+00) — [0,+00) with
w(0,0) = 0 such that for every x1,70 € RY, ( € R, vy, € ST1 and 0 < p; < po the
inclusion Q,, (x1, p1) CC Qu,(z2, p2) tmplies

mE(U’ﬂJz;Csz’QVz (xZaPQ)) < mE(uﬂll,CWNQVl (-’1517/)1)) + C3‘C|(pgil - ptliil)

tealpd — ) + caldl w222l oy — ) (5.18)
The same inequality holds for m¥= | with c3 replaced by c3 + €.

Proof. Let x1,20 € R, ( € R, vy, € S¥ 1, and 0 < p; < pp be as in the state-
ment. Given 7 > 0 by the definition of m% there exists u; € BV(Q,,(z1,p1)), with
t1Q,, (21.00)U1 = tTQ, (21,p1)Uz1,C1n He¥1-a.e. on 0Q,, (x1,p1), such that

E(“'l? QVI (£C1, pl)) < mE(uILC,lﬁ ) QV1 (3717 Pl)) +1. (5'19)
Let uz € BV (Qy, (22, p2)) be the function defined by

_ Ju(y) ify € Qu,(z1,p1)
ualy) = {um,c,my) iy € Quy (72, p2) \ Qs (1, p1) - (5.20)

Since trQu2 (z2,p2)U2 = trQuQ (w2,p2) Uz2,(,v2 H?!-a.c. on aQuz (3527[)2)7 we have
mE(uwg,C,Vz 5 Quz (x2; 1)2)) S E(UQ, ng (-1727 02))

= E(ula Qm (951,/)1)) + E(’LL27 QV2 (!L‘Q, P2) \ QV1 (-’1317[)1)) ’ (521)

where for the equality we used the locality and the measure property of E (see (a) and (b)
in Definition 3.1). By (c2) in the same definition we have

E(uz, Qu, (22, p2) \ Qu, (21, p1)) < €3] Duia|(Quy (w2, p2) \ Quy (21, p1)) + ca(pl — pf) . (5.22)
Let
Y2 (p1) == {y € 0Qu, (w1, p1) : sign((y — x1) - v1) # sign((y — @2) - v2)} . (5.23)

Since t1Q,, (z1,0)U1 = t1Q,, (21,01) U1 can H™'-ace. on 9Qy, (21, p1), by (5.20) we have
J’U,Q n BQVI (SUl?pl) = EVl,VQ (pl)? henCe

e
|Dus|(Qu, (22, p2) \ Qu, (21, 1)) = |Dua|(Qu, (x2, p2) \ Q,, (21, p1)) + [Dua|(Z442 (p1))
-/ ~ fuzllar [ gl
(Quy (2,p2)\Q,, (#1,01))NTuy o2 (p1)
<[Cl(ps ™" = HH@,, (wa, p1) NIT2) + HAETH (S22 (p1))) - (5.24)
For ¢ >0 and b > 0 we set
w(a,b) == lmr?z}l(ga?-ld’l(E;ll:’fg(l)). (5.25)
vr —va| <b

By continuity the maximum exists, w is a continuous function on [0, +00) X [0, +o0), and
w(0,0) = 0. By rescaling we obtain that

HITL(S2 (01) < w222y — ) 1 (5.26)

T1,T2

Let 7! be the orthogonal projection of R? onto IT7t . We claim that

’/T:I;i (Egll’,l;i (pl) U (Qul (xla pl) N HZi)) = Qul (xla pl) n Hgll .
To prove the claim let us fix y € Q,, (w1, p1) NIIX . If there exists t € [—p1/2, p1/2] such
that y+ ¢y € 1122, then y € 722 (Q,, (x1, p1) N1IZ2). If, instead, for every t € [—p1/2, p1/2]
we have y +tvy ¢ 112, then sign((y 4 tv1 — x2) - 1) is constant on [—p1/2, p1/2]. On the
other hand sign((y & p1v1/2 — x1) - v1) = £1. By the definition of X¥'¥2 (p;) this implies

Z1,T2
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that either y + p111/2 or y — p1v1/2 belong to X2 (py) and hence y € w4t (X472 (py)).

T1,T2 1 T1,T2
This concludes the proof of the claim, which implies that
HEHQ,, (w1, p1) NTIZ) > pi =1 = HAL(S222 (1)) (5.27)

Therefore (5.19), (5.21), (5.22), and (5.24), (5.26), and (5.27) give

mE(uwg,C,uza Qllg (56’2, ,02)) < mE(uasl,C,u17Qu1 (xla Pl)) + CB‘CKPgil - ptliil)

+ea(pd — pf) + 2csl¢ w22l oy — wy]) pf =1 4.
Taking the limit as n — 0 we obtain (5.18) with w therein replaced by 2w. O
The following lemma provides the Borel measurability of g and g. for a fixed (.

Lemma 5.10. Let ( € R. Then the functions (z,v) — g(z,(,v) and (x,v) — g.(x,(,v)
are Borel measurable on R x S41

Proof. For every p > 0 we set

o(x,v,p) = mE(“m,C,w Qu(z,p)). (5.28)
By Lemma 4.11 we have
p(z,v,p2) — cap " — capl < plw,v,p1) — capi ™t — capf. (5.29)
Hence the function
p(@,v,p)
e
pa—1
satisfies (5.2) with k1 = ¢3 and ko = ¢4. By Lemma 5.2 this implies that
g(x,(,v) = limsup W . (5.30)
p—0+ P
pEQ

Moreover, by (5.29), for every x € R? and v € S%! the function p — o(z,v,p) has
bounded variation in (0,4o00). This implies that for every = € R, v eS*! and r >0
there exists

= i .
pla,v,rt) = lim (v, p)
Using (5.29) we see that
o(x,v,p) < o(z,v,r74) + cs(p?™t — 171 4 ey (p? — rd) (5.31)
for every 0 < r < p. Moreover, it is obvious that

o(z,v,m+) o(z,v,7)
sup ——_—— = Sup —_——
0<r<sé r o<r<s T
reQ reQ

for every § > 0. By (5.30) this implies that

g(z,¢,v) = limsup 790(%;:17"—'—) . (5.32)
r—04 r
reQ
Let us fix 9 € R?, vy € ST!, and r > 0. We claim that the function (x,v) — ¢(z, v, r+)
is lower semicontinuous in R? x S‘fl at (xo,v0). Let zp — xo in R% and v, — 1 in Sﬁfl.
Let us fix r < p; < pa. For k large enough we have Q,, (xg, p1) CC Qu, (20, p2) (see (d)
and (e) at the beginning of Section 2).
By (5.18)

@(x0, 10, p2) < P(Th, Vi, p1) + c3(ps = ph)

+ea(p — pf) + esw(EZ2El g — wy) pf (5.33)
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By (5.31) applied to = =z, v = v, and p = p1, we obtain
(20,10, p2) < @i, v, 7+) + e3(pf =171 + ea(pf = 1)
tes(pd =) +ea(pf — ) + ez w2 —wi ) pf
Hence
(0,0, p2) < Hmmint (g, v, v ) e (o~ 1 hea(pf—r) s () e (g1 )
and taking the limit as p1, po — 7+ we obtain
o(zo, vo,r+) < linl}gfga(xk, Vi, T+),
which proves the lower semicontinuity of (z,v) — ¢(z,v,7+) in R? x ST, By (5.32) we
deduce that (z,v) — g(z,¢,v) is a Borel function in R? x S27'. The same argument holds
for R% x S~1 and this leads to the result for g. The proof for g. is similar. O
The following lemma provides the uniform continuity of g and g. with respect to .
Lemma 5.11. Let z € R?, (1, € R, and v € S*1. Then
l9(@, C1,v) — g(z, G2, v)| < o(|C = Cal) (5.34)
|9(%, C1,v) — ge(@, G, V)| < o (|G — G2f) + el — G2 - (5.35)
Proof. Let us fix p > 0. By the definition of m” there exists u; € BV (Q,(x,p)), with
trQ, (2,p)U1 = tTQ, (2,p)Ua,crv HI ' -ae. on 0Q,(z, p), such that
B(u1,Qu(x,p)) < mP(ugc,u, Qul, p) + p.

Let up := w1 — Ug¢y 0 + Uz cpp = UL + Up oy, Since trQ, (o) U2 = rQ, (2,0)Uz,Corv
He1-ae. on 9Q,(x,p), by (3.8) we have

m® (s o, Qu(@, p)) < Eluz, Qu(x,p)) < Blur, Qu(x, p)) + o (¢ — C2)p™ !
< (a0, Qul@, p)) + 0% + 0 (1G = Gl
Dividing by p?~! and taking the limsup as p — 04 we obtain (5.34). The proof of (5.35)
is similar. O
We are now in a position to obtain the measurability of g and g..
Corollary 5.12. The functions g and g. are Borel measurable on R x R x S4~1.
Proof. The result follows from Lemmas 5.10 and 5.11. O
The following lemma provides the lower estimate for g.
Lemma 5.13. Let z € R?, ( €R, and v € S~ '. Then
g(z,¢,v) > (¢ AT). (5.36)
Proof. Let p > 0 and let 9,Q,(x,p) be the union of the two faces of @, (x,p) that are
orthogonal to v. Then, by (cl) of Definition 3.1,

E : d
m- Uz ¢, v T, > inf aV u, (T, — C . 5.37
(U ¢.vs Qulz, p)) wenvid ) G (u, Qu(z,p)) — c2p (5.37)
YTQu (,p) U= Qy (.p) U C v
H4 1 a.e. on 0,Q.(z,p)
Using the notation introduced in (5.15) and (5.16), by [2, Theorem 3.108] for every u €

B[/ (Qu(ﬂj,p)) we have
5 Ql/ s P > \I/ ZU d; t[d 1 y

where C,(z,p) is the orthogonal projection onto IT§ of the cube Q,(z,p) and ¥ is the
functional defined by (5.13) with a := z-v — p/2 and b := z - v — p/2. If, in addition,
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trQ, (2.0 U = tTQ, (2,p) Uz, H1-ae. on 9,Q,(z,p), we have also uy(a) =0 and uy(b) = ¢
(in the sense of traces in dimension 1) for H4 '-a.e. y € C,(x, p). Therefore, by Lemma 5.7
we obtain that W(u¥) > [¢|A1. Together with (5.37) this shows that m” (us ¢ ., Qu(x,p)) >

c1(|¢|A1)p?~t —egp?. Dividing by p?~! and taking the limsup as p — 0+ we obtain (5.36).

O
We now prove the upper estimate for g and g..
Lemma 5.14. Let x ¢ R?, ( € R, and v € S~ '. Then
9(@,¢v) < es(ICA1)  and  ge(z,(,v) < es(IC A1) +elC]. (5.38)

Proof. For every p > 0, by (c2) of Definition 3.1 we have

M (Up ¢, Qu(@, p)) < E(ts ., Qu(,p)) < c3(|¢] AD)p™ T + cap?.

Dividing by p?~! and taking the limsup as p — 0+ we obtain the first inequality in (5.38).

The inequality for g. is obtained in a similar way. (]

The following lemma proves the symmetry property of g.

Lemma 5.15. Let x €¢ R?, ( € R, and v € S~ 1. Then

g((E,—C,—IJ) :g($,C7V). (539)
Proof. Since Q,(z,p) = Q_,(x,p) and ¢ + ugy _¢ —» = Uy, the conclusion follows from
(3.6) and from the definition of g. O

The following result shows the monotonicity of g with respect to (.

Lemma 5.16. Let x € RY, (1,(, € R, and v € S 1. Assume that 0 < {; < (3 or that
C2<( <0. Then

g(xaCMV) §9($7<2ay)- (540)

Proof. We prove the result when 0 < (; < (5, the other case being analogous. Let us fix
p > 0. By the definition of m® there exists uy € BV(Qy(x,p)) such that trg, (, yu2 =

trQ, (2,p)Ua,coy HE t-ae. on 0Q,(x,p) and E(uz, Qu(w,p)) < m¥ (uscy0, Qu(z, p)) + p.

Let uy := uggl). Since trQ, (2,0 U1 = tTQ, (z,p)Uz,¢1,v Hi 1 a.e. on 0Q,(z,p), by (3.10) we
have

ME (g s Qu(, ) < E(ur, Qu(@,p)) < E(uz, Qu(x, p)) + cap”
< mE(’U’ﬂCaCz,m Qu(xap)) + (04 + 1)pd .

Dividing by p91

and taking the limsup as p — 0+ we obtain (5.40). O
We conclude this section by showing that the previous lemmas prove all properties men-
tioned in Theorem 5.1.

Proof of Theorem 5.1. Property (f1) for f and f. is proved in Corollary 5.5. Properties
(f2), (£3), and (f4), for f and the analogous properties for f. are proved in Lemmas 5.6,
5.8, and 5.4, respectively. Hence f € F and taking the limit as € — 0+ we obtain also that
fer.

Property (gl) for g and g. is proved in Corollary 5.12. Properties (g2), (g3), (g4), (g5),
and (g6) for g are proved in Lemmas 5.13, 5.14, 5.11, 5.15, and 5.16, respectively. O
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6. INTEGRAL REPRESENTATION

In this section we shall prove first an integral representation on GBYV, of the functionals
E® and E’ defined in (4.1) and (4.4). The full integral representation for E requires an
additional hypothesis (see (6.16) below) and will be obtained at the end of the section. We
begin with an integral representation on BV for the functionals E¢ and E! introduced in
Definition 4.9.

Theorem 6.1. Let E € €., let A€ A.(R?), and let ¢ > 0. Let E¢, EJ: BV (A)xB(A) —
[0,+00) be the functionals introduced in Definition 4.9 and let f. and g. be the integrands
introduced in Definition 4.13. Then

E¢(u, B) :/Bfa(x,Vu)dx, (6.1)
Eg'(u,B):/Bm g (2, [u], v ) AHY | (6.2)

for every uw € BV (A) and every B € B(A).

Proof. By (a), (b), and (¢2) in Definition 3.1 and by Remarks 3.14 and 4.8 the functional
E. satisfies all hypotheses of [4, Theorem 3.7]. In the proof of that theorem, recalling also
[4, Remark 3.8(1)], it is shown that for every u € BV (A)

dE.(u,-)

Tﬁ(x) = fo(z,Vu(z)) for L%-ae. z € R?, (6.3)
where
dEs(uz') o EE(U,Q(I,,O)) d d
W(m) = plgggr — for L%-a.e. z €R

and f. is obtained using (4.24). By the differentiation theory for Radon measures dEdET(’;")

is the density of E%(u,-) with respect to £¢. Therefore, by integration (6.3) gives (6.1).
Moreover, in the proof of [4, Theorem 3.7] it is shown also that for every u € BV (A)
with HI1(J,) < +o0

dE.(u,- _
d}ld_%(a:) = go(z, [u](x),v,(z)) for H¥ tae z e J,, (6.4)
where
: EE ) WUy (T ) —
dB(u, ) (z) := lim W Qv (. 9)) for H¥ ' ae. z € J, (6.5)

dHI-1L J, p—0+ pi—1
and g is obtained using (4.25). To prove (6.2) let us fix n > 0 and consider J! := {z €
Ju : |[u](z)| > n}. Then, from [2, (3.90)] it follows easily that HI~(J7) < +oo. Since J7
is also (H9~!,d — 1)-countably rectifiable (see [2, Theorem 3.78]), we infer that

lim Hdil(‘]g N Qu(w) (1’7 p))
p—0+ pd_l
(see [12, Theorem 3.2.19]). From (6.4)-(6.6) we get

EE (U, Quu(z) (:Ca p))
lim
p=0+ HI"LL T Q. ()

=1 for H  tae x € J" (6.6)

= ge(, [u](x), vu(z)) for HI 1 -ae. e J0.

We observe that the absolutely continuous part of E.(u,-) with respect to H4~tL J7
coincides on J! with the measure FJ(u,-) introduced in Definition 4.9. Therefore, by a
general version of the differentiation theory for Radon measures based on Morse’s covering
theorem (see [17] and [13, Sections 1.2.1-1.2.2]) we obtain that g.(z,[u],v,) is the density
of EJ(u,-) on J7. Integrating, we obtain (6.2) for every Borel set B C J7. The case of a
general B can be obtained passing to the limit as n — 0+. O
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Let f: R? x RY — [0,400) be defined by (5.1). By Theorem 5.1 f € F. We now prove
an integral representation result for E¢ and E7 on BV (A).

Theorem 6.2. Let E € &, let A € A.(R?), and let f and g be defined by (5.1) and
(4.23), respectively. Then

E%(u, B) = /Bf(x, Vu)de (6.7)

Ei(u, B) = /B gl [l (6.8)

for every uw € BV(A) and every B € B(A).

Proof. To prove (6.7) we observe that EZ(u,B) = E®(u,B) + ¢ [5|Vuldz for every u €
BV (A) and every B € B(A), hence

a _ 3 a P a
E*(u,B) = 61_1>1(1)1+ E¢(u,B) = En>1g E¢(u, B).
Therefore (6.7) follows from (5.1) and (6.1), recalling the upper bound (5.17) for f..
Notice also that EJ(u, B) = E'(u,B) +¢ meJu |[u]|dHI~1, hence
J - 1 J =i J
E (u,B) = 51_1)%1+ El(u,B) = ;I;%EE(U,B) .
Therefore (6.8) follows from (4.53) and (6.2), recalling the upper bound (5.38) for g.. O

We are now in a position to provide an integral representation result for E* and E’ on
GBV,(A).

Theorem 6.3. Let E € €., let f and g be defined by (4.22) and (4.23), respectively, and
let Ae A(R?). Then

Eo(u, B) = /B Fz, Vu)dz, (6.9)

Fi(u, B) = /B gl (6.10)

for every uw € GBV,(A) and every B € B(A).

Proof. Let us fix u € GBV,(A) and B € B(A). For every m > 0 we have u(™ € BV (A).
By Theorem 6.2 we can apply Proposition 4.15 and we obtain that the function f defined
by (5.1) coincides with the function f defined by (4.22). Therefore, Theorem 6.2 gives

E(u™ B) = / f(x, Vu™)da (6.11)
B

EV(u™ B) = / gz, [u™), vy oy )dHE? (6.12)
Bﬂ]yu(m,)

We pass to the limit in the left-hand side of (6.11) as m — +oo thanks to (4.9). As for the
right-hand side, by Theorem 2.2(b) we have

() g —
/Bf(:mVu )dx /Bm{u|§m} f(x,Vu)dm—&—/Bn{ubm} f(m,O)dx%/Bf(x,Vu)dx,

where we used the fact that « has finite values and f satisfies (£3).
In (6.12) we pass to the limit in the left-hand side by (4.12). To deal with the right-hand
side we note that by Theorem 2.2(d) and (g4) we have

gz, [ul™)], Va1 (0 = 9(, [u], v,) M l-ae. in J,
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and from (g3) we obtain g(x, [u(™)], v m) < e3(|[u™]| A1) < es(|[u]| A1) HE 1 -ae. in
Ju. Since u € GBV,(A), we have ¢3 [, |[u]| A 1dH?"" < 400. Hence we can apply the
Lebesgue Dominated Convergence Theorem and we obtain

/ 9, [u™], v o )M — o, [u], v )M

Bﬁ,]u(m) BNJ,

This shows that the right-hand side of (6.12) converges to the the right-hand side of (6.10)
and concludes the proof. O

As a consequence of the integral representation of E® we obtain the convexity of f with
respect to £.

Corollary 6.4. Under the assumptions of Theorem 6.3 for L%-a.e. x € R? the function
€ f(x,€) is conver on R?.

Proof. Since E € &,., for every A € A.(R?) the functional u + E(u, A) is lower semicon-
tinuous in GBV, (A) with respect to convergence in L°(R¢), hence it is lower semicontinuous
in WH1(A) with respect to the weak convergence of W' 1(A). The integral representation
(6.9) implies that for every A € A.(R?) the functional u — [, f(z, Vu)dz is lower semi-
continuous in W11 (A) with respect to the weak convergence of W11(A). The convexity of
& f(x,&) for L3-ae. € A follows from a well known property of the integrands of lower
semicontinuous functionals on W11(A) (see, e.g., [16]). The arbitrariness of A € A.(R?)
allows us to conclude the proof. O

We consider now the problem of a full integral representation for E', which includes its
Cantor part E€. To this end we assume that the functional E € €, satisfies an additional
property which is clearly satisfied whenever E is invariant under translations.

Definition 6.5 (Translation operators). For every z € R? we set
.0 :=x+z forevery x € R?, (6.13)
.B:==B+z={r+z:x€ B} forevery B € B(R?). (6.14)
Given v € L°(RY) we define 7.v € L°(R?) by
T0(z) == v(z — 2) for every x € R?. (6.15)
Note that if u € GBV,(A) for some A € A.(R?), then T,u € GBV,(1,A).
The following proposition shows that the functions f and g defined by (4.22) and (4.23)

are continuous with respect to x when E € €, satisfies a continuity estimate with respect
to translations.

Proposition 6.6. Let E € &,.. Assume that there exists a modulus of continuity w such
that

|E(Tou, 7. A) — E(u, A)| < w(|2))(E(rou, . A) + E(u, A) + £LI(A)) (6.16)
for every A € A.(R?), u € GBV,(A), and z € RY. Let f and g be defined by (4.22)
and (4.23), respectively. Then f is continuous on R? x R? and & — f(x,€) is convex on
R? for every x € R, while (x,¢) — g(x,(,v) is continuous on R x R for every v € ST1.
Moreover the recession function f> defined by (3.11) is continuous on R? x R? and

l9(z, ¢, v) = g(y, (V)| < w(lz —yD(g(z, ¢ v) +9(y, ¢, v)) (6.18)
|foo($?£) - foo(y’gﬂ < w(|$ - y|)(foo(m’€) + foo(yvg)) ) (619)

for every z,y € R*, ¢ € RY, ¢ € R and v € S¥ 1. Finally, for every € > 0 all these
properties are satisfied by the functions f. and g. defined by (4.24) and (4.25).
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Proof. Exchanging the roles of z and y we see that (6.17) and (6.18) are equivalent to

f@.8) < f(y, &) +w(lz —yD(f(@,&) + f(y.§) + 1),
9(1'7 Ca V) < g(yv Cv V) + (JJ(|{E - y|)(g($, Cv V) + g(yv Ca V)) )
which follow immediately from (6.16) and the definitions of f and g.

By Corollary 6.4 for £%-a.e. x € R? the function & +— f(z,€) is convex. From (6.17) we
deduce that this property holds for every z € R%. Since f satisfies (f4) and g satisfies (g4) by
Theorem 5.1, the continuity of f follows from (6.17) and the continuity of (x, () — g(z, ¢, v)
follows from (6.18). Inequality (6.19) is an elementary consequence of (3.11) and (6.17).

The properties of f. and g. are proved in the same way. O

We are now in a position to state the main result of this section: the integral representation
of E(u,A) for ue GBV,(A).

Theorem 6.7. Let E € €. and let f, f°, and g be defined by (4.22), (3.11), and (4.23),
respectively. Assume that E satisfies property (6.16). Then E = Ef9. In particular, for
every A € A.(R?) we have

dD¢
E(u, B) / f(z,Vu dw+/ <l d|TCZ|)d|Dcu| +/ g(x, [u], v, )dHE (6.20)
BNJ,

for every uw € GBV,(A) and every B € B(A).

Proof. By Definitions 3.1 and 3.10 it is enough to prove (6.20). Let us fix A € A.(R9).
Since, by Remark 4.2 and Theorem 6.3, we have

E(u, B) = / o, Vu)da + E°(u, B) + / o, [u], v )dHA (6.21)
B BNJ,
in order to complete the proof it remains to show that
dDu
E¢(u,B) = “lx, ——— )d|D° .22
wB) = [ 1 (st dlDul (6.2

for every u € GBV,(A) and every B € B(A).
Let us first consider € > 0 and E. and f. defined by (4.16) and (4.24). We now prove
that the Cantor part ES of E, satisfies
dDu
ES(u, B) = °°( ,7)dDC 2
“.B) = [ 5o g )aDd (6.23)

for every w € BV(A) and B € B(A).

To this end, let z € R%. By Definitions 4.7 and 6.5, for every & > 0 we have E. (1 u, 7, A)—
E.(u,A) = E(tyu,7,A) — E(u, A), hence E. satisfies (6.16). By (a), (b), and (c2)in Def-
inition 3.1 and by Remarks 3.14 and 4.8 the functional E. defined by (4.16) satisfies the
hypotheses of [4, Theorem 3.12]. Therefore the integral representation formula (6.23) holds.

By (4.3) and Definition 4.9 for every u € BV (A) and every B € B(A) we have

E¢(u,B) = Elir61+ Ef(u,B). (6.24)

By (4.29) for L%-a.e. z € A we have
[z, €) = lim f(x,€) for every € € RY. (6.25)
e—0+

By Proposition 6.6 this property holds for every z € A. By (5.17) we have
0 < f2(x,6) < (c3+e)|¢| for every 2 € RY. (6.26)

Equality (6.22) for v € BV(A) and B € B(A) is obtained by passing to the limit as
e — 0+ in (6.23), using (6.24) for the left-hand side and using (6.25) for the right-hand
side, observing that we can apply the Dominated Convergence Theorem by (6.26).
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Let us fix w € GBV,(A) and B € B(A). For every m > 0 by the previous step we have

dD%u (m)
m) oo c, (m)
,B) / 7= 3pee (m)‘)d\D u™]. (6.27)
By Theorem 2.2(c) the measures D°u(™) and D¢u coincide on all Borel subsets of {|&| <
m}, while by Lemma 2.4 the measure |D°u(™)| vanishes on all Borel subsets of A that do
not intersect {|a| < m}. This implies that the integral on the right-hand side of (6.27)

coincides with iDe
/ foc(m77u)d|Dcu\
BN{|d|<m} d|Deul

Oo dD%y .
/f . e )0

since @ is finite |Du|-a.e. in A by Theorem 2.2(a).
Thanks to (4.11) we can pass to the limit also in the left-hand side of (6.27) and this
gives (6.22) for u € GBV,(A) and B € B(A4). O

which converges to

7. CONVERGENCE OF MINIMA

We conclude the paper with two results concerning the convergence of minimum values
of some minimum problems related to the functional Ef9.

7.1. Convergence of absolute minimisers. In this subsection we fix Q € A.(R%) and a
Carathéodory function :  x R — R. We assume that there exist p > 1, a; > 0, ay >0,
az > 0, and a4 > 0 such that

ay|slP —as < P(z,8) < ag\s\p +ay4 for L%a.e. x € Q and every s € R, (7.1)

and we define ¥: LP(Q) — R by ¥ = [ ¥(x,u)dzx for every u € LP(9).
The following theorem shows the convergence of minima of E(-, Q)+ ¥ for a I'-convergent
sequence Fj in €.

Theorem 7.1. Let Ej be a sequence in € and let E € €. Assume that Fr(-,Q) T'-
converges to E(-,§) with respect to the topology of L°(Y). Then

(a) the minimum problem

i E(v,Q)+ ¥ 2
UEGBVEI(%I)IHLP(Q) (B, ) +¥(v)) (7:2)
has a solution;
(b) we have
E(w,Q)+ T = i inf E Q)+ v ; .

vEGBVADNLA() (B, Q) +¥(v)) K5 vEGBYVA (@)L (@) (B0, ) +¥(v)); - (73)

(¢) if ug is a sequence in GBV,(Q) N LP(Q) such that
E Q)+ v < inf E )+ v 7.4
e, Y + ¥ k) < veGBV*l(%)nLP(Q)( (0 0) + () + e, 74

for some sequence € — 0, then there exist a subsequence of uy, not relabelled, that
converges in LP(Q) to a minimum point u of (7.2).

To prove the theorem we use the following result.

Lemma 7.2. Under the assumptions of Theorem 7.1, for every z € GBV,(Q)NLP(Q) there
exists a sequence z € BV () N L>®(Q) such that

z =z in LP(Q), (7.5)

limsup Ey (2, Q) < E(z,0). (7.6)

k—oco
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Proof. Let us fix z € GBV,(Q) N LP(Q?). By I'-convergence and by Lemma 3.18 for every
m € N there exists a sequence z;' € BV ()N L>(Q) with ||z || () < m+ 1, converging
to 2™ in L°(Q) such that
lim sup Ey (2", Q) < E(2™, Q).
k—o0

Therefore, for every m € N there exists k,,, € N such that for every k > k,, we have

Ep(z, Q) < E(z'™,Q) + L < B(2,Q) + caL({]2| > m}) + L,

27" = 2™ e () < o

where we used also Remark 3.4. It is not restrictive to assume that k,, is strictly increasing
with respect to m. Therefore, setting z, := z;* for k,, <k < kp,q1 we have

Biy(21, Q) < B(2,9) + caL({]z] = m}) + 11,
12k = 2llzo () < 1127 = 2llri) + &
for k > ky,. Since 2™ — z in L?(Q), we conclude that (7.5) and (7.6) hold. O

Proof of Theorem 7.1. Let v, be a minimizing sequence of (7.2). By (c2) in Definition 3.1
and (7.1), the sequence vy, is bounded in LP(£2) and V (v, §2) is bounded. By the compact-
ness theorem in GBYV,, proved in [8, Theorem 3.11], there exist a subsequence, not relabelled,
and a function vg € GBV,(Q) such that vy, — vy in L%(Q). The boundedness of vy, in LP()
implies that vy € LP(Q2). Since E(-,Q) is a I'-limit, it is lower semicontinuous with respect
to the topology of L°(Q) (see [7, Proposition 6.8]), hence E(vg,Q) < liminfy_, oo E(vg, ).
By the Fatou Lemma we have also ¥(vg) < liminfy_, o, ¥(vg). These inequalities lead to
E Q)+ v < I E Q)+ v = inf E(v,Q)+ ¥ .
(vo, 2) + W (o) < P ( (vr, €2) + (Uk)) vEGBV*l(rfll)ﬂLP(Q) ( (v, ) + (v))
This proves that vy is a minimiser of E(-,Q) + ¥(-) and concludes the proof of (a).
Let us prove that
min (E(v, Q)+ ¥(v)) > limsup inf
vEG BV, (Q)NLP(Q) koo VEGBV,(Q)NLP(Q)
Let z € GBV,(Q) N LP(£2) be a minimiser of (7.2). By Lemma 7.2 there exists a sequence
z € BV(Q) N L>®(£2) such that zp — z in LP(Q) and
E(z,9) > limsup Fg(z, Q).

k—o00

(Ee(v,Q) + ¥ (v)). (7.7)

The continuity of ¥ on LP() gives
E(z,Q) + V(2) > limsup (Ex (2, Q) + ¥(z)) .

k—oc0
Since the left-hand side of the previous equality coincides with the left-hand side of (7.7),
while the right-hand side of the previous equality is greater than or equal to the right-hand
side of (7.7), we conclude that (7.7) holds.
To complete the proof of (7.3) it remains to show that
i E(w,Q)+ U < liminf inf Ep(v,Q)+ ¥ . 7.8
veam I ey (E@ D) +2() < it ol (B Q)+ 2(@). - (78)
Passing to a subsequence, not relabelled, we may assume that the liminf in the right-hand
side is a limit, which is finite by (7.7).
Let ug be a sequence in GBV,(Q2) N LP() satisfying (7.4). Then
li E JA) + U =1 inf Ep(v, Q)+ ¥ . 7.9
Jim (B (ur, A) + ¥ (uy)) A v ) (Er(v,Q) + ¥ (v)) (7.9)
By (c2) in Definition 3.1 and (7.1), the sequence uy, is bounded in LP(Q2) and V (ux, Q) is
bounded. By the compactness theorem in GBV,, proved in [8, Theorem 3.11], there exist a
subsequence, not relabelled, and a function u € GBV, () such that uy — u in L°(Q). Since



40 GIANNI DAL MASO AND RODICA TOADER

uy is bounded in LP(§2) we deduce that u € LP(Q2). By I'-convergence we have E(u,Q) <
liminfy_ oo Ex(ug, Q). By the Fatou Lemma we have also ¥(u) < liminfg_ o, ¥U(ug), hence
E(u, Q)+ v < ki E Q)+ v = i E(wv, Q)+ ¥ .
(0. +¥(w) < m (Br(un, )+ () = o min - (E©0,Q) + ¥ ()

This inequality together with (7.9) proves (7.8), and concludes the proof of (b). Moreover,
it shows that w is a minimiser of E(-,Q) 4+ ¥(-).

To complete the proof of (c¢) it remains to show that ux — v in LP(€2). We observe that
the minimum property of u, together with (7.3) and (7.4), implies that

E(u,Q)+¥(u) = klir{:O (Br(ur, Q) + U(uy)) .

Since E(u, ) < liminfy o0 Ek(ug, ) and ¥(u) < liminfy_, o U(ug) we deduce that
T(u) = lim W(ug). (7.10)
k—o0

Since |uy, —ulP < 2P~ Hug|P + 2P~ HulP < (2P~ ay) (Y (2, ug) +az) + 2P~ ulP and (z,up) —

¥(x,u) in measure, by (7.10) we can apply the generalized version of the Dominated Con-

vergence Theorem and we obtain u; —u — 0 in LP(€2), which concludes the proof of (c).
O

7.2. Dirichlet boundary condition. In this subsection we fix Q € A.(R%) with Lipschitz
boundary and a function ¢ € L'(9Q). Given a functional E € &, the naive formulation of
the minimum problem with Dirichlet boundary condition is

min E(v,Q),

vEGBV,(Q)
trou=p H? l-a.e. on 9Q

where trqu is the trace on 0 defined in Theorem 2.2(e). It is known that, since the
functional E(-,2) has linear growth, this problem has in general no solution, even if F € €,,.
Simple examples of nonexistence are known for the functional V', even when ¢ is smooth.
The usual way to overcome this difficulty is to replace the condition trqv = ¢ H? '-a.e. on
0f) by a penalization term. The most common one leads to the following minimum problem

min (E(v, Q) + E/ [trov — | A 1d7—[d_1) , (7.11)
vEGBV,(Q) 850

where ¢ is a positive constant. ~ ~ ~
To study this problem we fix a set 2 € A.(R?) with Q CC 2, and a function w € Wh1(€Q)
such that ¢ is the trace of w on 92, whose existence is granted by Gagliardo’s Theorem
[15]. Problem (7.11) is equivalent to
min E(v,Q), (7.12)
vEGBV, ()
v=w L%a.e. in Q\Q

where E is given by the following definition.

Definition 7.3. Given a constant ¢ > 0 and a functional E € &, let E: LO(R%) x B(R?) —
[0, 4+00] be the functional defined by
E(u,B) = E(u,BNQ) +V(u, B\ Q).
In the rest of the paper we fix a constant ¢ with ¢; < ¢ < ¢3, so that E € ¢ as we shall
see in Proposition 7.5 below.

Remark 7.4. Problems (7.11) and (7.12) are equivalent in the following sense: the quasi-
minimisers are the same, i.e., for every € > 0 a function u € GBV, () with u =w L%-a.e.
in Q\ Q satisfies

E(u, ) < inf _ E(,Q)+¢
vEGBV, ()
v=w L%a.e. in Q\Q
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if and only if the restriction of u to Q belongs to GBV, () and

E(u,Q)+é trou— | A1dHY ™ < inf EQ~/t—A1dd—1 .
(u, )—i—c/‘m|mu 7 H _veGlélV*(Q)( (v,Q)+¢ aQ|mv ¥ H )+E

Moreover, the infima of the two problems differ by the constant &V (w,Q\ Q).

In this section we consider a sequence of functionals in & of the form Ef+9 introduced
in Definition 3.10, with fi € F and g; € G, and we study the asymptotic behaviour of the
minimum problems

min _ ETe95 (y,Q) . (7.13)
vEGBV,(Q)
v=w L%ae. in Q\Q

Applying the Compactness Theorem 3.16 to the sequence E/*9% | we can find a subsequence,
not relabelled, and a functional £ € €,. such that for every A € A:(R?) the sequence
ETe9% (. A) T-converges to E(-, A) with respect to the topology of LO(R%). Under an
additional assumption on g, which is always satisfied when g, is even with respect to (,
we shall prove in Theorem 7.14 that the minimum problem

min _ E(v,Q). (7.14)
vEGBV, (Q)
v=w L%a.e. in Q\Q

has a solution, that the sequence of infima in (7.13) converge to the minimum value of (7.14),
and that there exists a suitable subsequence of quasi-minimisers of (7.13) that converges in
L°(Q) to a minimiser of (7.14).

We now prepare the technical tools that are used to obtain these results.

Proposition 7.5. If E € &, then E € €.

Proof. Since V' € € the locality property (a) in Definition 3.1 follows from Remark 3.2.
Recalling (3.1), (3.2), and the inequalities ¢; < é < ¢3, the other properties in Definition 3.1
are trivial, except (3.3). It is enough to prove it when E(u, B) < +oc. In this case, by (3.3)
for E and V, for every ¢ > 0 there exist A;, A € A(RY) with BNQ C A; and B\Q C As,
such that

E(u,A1) <Ew,BNQ)+e< 400 and V(u,A2) <V(u,B\Q)+e<+o0.

It is not restrictive to assume that A; C Q. Since V(u, A2 N Q) < +oo, there exists a
compact set K C Ay N such that

V(u,(A2N)\K) <e.
Let A:= A; U(Ay\ K). Then A € AR?Y), BC A, and
E(u, A) = E(u, Ay U (A2 \ K) N Q)) + &V (u, A5\ Q)
< E(u, A1) + esV(u, (A2 NQ)\ K) + ¢V (u, Az)
<Ew,BNQ)+ec+cse+éV(u, B\ Q) +ée
= E(u,B) 4+ (1 4¢3 + &)e . (7.15)
By the arbitrariness of ¢ we obtain (3.3) for E. O

Remark 7.6. If f € F, g € G, and E = E/9 (see Definition 3.10), then Ef9 = EF9,
where

o [fwe) tren R,
Jlene) = {5I€| if z e RI\Q, € e R, (7.16)
a _ g(x»C,V) ifervceR,l/GSdil7
e = {5(|<| A1) ifzeRI\Q, (R, veSiT, (7.17)
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Remark 7.7. Let Ej be a sequence in €. Then, by Pr0p0§ition 7.5 and Theorem 3.16
there exist a subsequence, not relabelled, and a fur}ctional E € €&,. such that for every
A € A.(R?) the sequence Ej(-, A) I'-converges to E(-, A) with respect to the topology of
L°(R9). By the integral representation result in Theorem 6.3 there exists § € G such that,
recalling that ¢ is the trace of w on 02, we have
E(u, AN Q) = E’ (u, AN N) = / gz, o — trqu, v )dH ! (7.18)
ANOQ
for every u € GBV,(A) with u =w L%-a.e.in A\ Q, where vq is the outer normal to Q.
Therefore, since E(u,Q) = E(u, Q)+ E(u, Q)+ E(w, Q\Q) and E(w, Q\Q) = &V (w, Q\Q),
we obtain
min E(v,Q)
veGBV, ()
v=w L%a.e. in Q\Q

= ' ; . _ -1\ =~ S5O
= vecnélvri(ﬂ) (E(v7 0) + /69 g(x,p — trqu,vo)dH ) +cV(w, 2\ Q). (7.19)

Theorem 7.8. Let E}, be a sequence in €. Assume that there exists E € &, such that for
every A € A.(RY) the sequence Ex(-,A) T -converges to E(-, A) with respect to the topology

of LO(R‘f), Let w € BV(Q) with u=w L -a.e. in Q\ Q. Then there exists a sequence vy,
in BV(Q), with vy = w L%-a.e. in Q\ Q, such that v, — u in L' () and

E(u,Q) = Jim Ei(vy, Q). (7.20)

The following example shows that in general E can not be written as E for some E € €.

Example 7.9. Assume that d =1, Q = (—-1,1), Q@ = (-2,2), c1 < & < ¢3. Let us fix ¢
with ¢; < é < ¢, and let fi(z,§) :=|¢], and gr(z,(,v) = ax(z)(|¢| A1), with
a ifze(l,1+4),
ap(z):=<¢ ifze(l-4,1],
c3 otherwise.

Then for every A € A.(R?) the sequence E/*9% (., A) T'-converges to E/9(-, A) with respect
to the topology of L(R?), where f(z,¢) := [¢| and g(z,¢,v) = a(x)(|¢| A 1), with

ifex=1
a(x) = {01 ne ’

c3 otherwise,

while EF9k (., A) T-converges to E9(-, A) with respect to the topology of L°(R%), where
9(z,¢,v) = a(z)(|¢[ A1), with
% ifz=1
i(z) = {c if oz =1,

c3 otherwise.

Since E(u,{1}) = é&(|[u](1)] A1) we deduce that E can not be of the form E for some
Ece.

In the proof of Theorem 7.8 we shall use the following one-dimensional result.

Lemma 7.10. Let I = (a,b)~ and I = (d,g) be bounded open intervals in R with I cC I,
let s,t € R, and let ¥: BV (I) — [0,400) be defined by

U (u) ::/I|Vu|d:c+|DCu|(I)+ z [[u] ()| A1 = |Du|(I\Ju)+ Z [[u](z)|AL, (7.21)

zeJ,Na,b] z€JyN[a,b]
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for every u € BV (I). Then

inf Uv) > |t—s|A1, (7.22)
veBV (I)
v(a—)=s,v(b+)=t

1 a 1 b+p
where v(a—) := lim f/ v(z)dx and v(b+) := lim f/ v(x)dx.
a b

Proof. Tt is enough to adapt the proof of Lemma 5.7. O

Proof of Theorem 7.8. We claim that there exists a sequence uy in BV(Q) converging to
w in L'(Q) such that
lim sup By (ug, Q) < E(u, Q). (7.23)
k—o0
Indeed, by the definition of I'-limit there exists a sequence zj, in L°(R?) converging to

u in L°(R?) and such that

E(u, Q) = lim Bz, Q). (7.24)
By Remark 3.5 it is not restrictive to assume that z, € GBV, () for every k € N. For every
m >0 let u™ :=w+ (u—w)™ = (uV(w—m))A(w+m) and 2" := w + (21, — w)™ =
(zi V (w —m)) A (w+m). Since GBV,(Q) is a vector space, we have z, —w € GBV,(Q),
hence (z; — w)(™ € BV(Q), which gives zJ* € BV(Q). Moreover 2* — u™ in LY(Q) as
k — 0o0. By (g) in Definition 3.1 we have that

Bl Q) < Bz, Q) + C3/ Vwlde + caL({|2x — w] > m}).

{lzk —wlzm}

Using (7.24) and Fatou Lemma to estimate the last two terms, for every m > 0 we obtain

lim sup B (2", Q) < E(u, Q) + &, (7.25)
k—oo
where
Em 1= 03/ |Vwl|dz + ca L9{Ju —w| >m}) = 0 asm — +oo. (7.26)
{lu—w|>m}

Inequality (7.25) implies that for every m € N there exists k,, € N such that for every
k = km we have [lz;" — u™| 1) < L and Ep(z,Q) < BE(u, Q) + e + LIt is not
restrictive to assume that k,, < kp41 for every m. For every k > ki we set uy := 2;* for
km <k < Ky Then [ug—ull 1) < m+[[™—ul 1) and Ey(uk, Q) < E(u, Q)+em+ 4
for kpy < k < kpy1. Since u™ — w in L'(Q) as m — +oo, it follows that u, — u in
LY(Q) as k — oo, and since &,, — 0 we also have limsup,,_, . Ex(ux, Q) < E(u,Q), which
concludes the proof of (7.23

).
We now define v, € BV (Q2) by

in 2
I (7.27)
w  in Q\Q,
and observe that vy — u in L'(Q). By the definition of T'-limit
E(u, Q) < liminf Ej(vg, Q) ,
k— o0
hence in order to prove (7.20) we have only to show that

lim sup Ey (v, Q) < E(u, Q). (7.28)

k—o0

Recalling (7.23), this will be done by estimating Ek(vk, Q) in terms of E), (ug, Q).
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Given 0 < n < 1 we fix an open set € with C* boundary such that Q cc Q; cc Q
and

V(w, 01\ Q) <. (7.29)
By the definition of E} we have
By (vg, Q) = Ep(up, Q) + EV (v, 09) + &V (w, 4 \ Q) + &V (w, Q\ Q). (7.30)
By the lower semicontinuity of V(-,Q\ )
V(w, Q\ ) < V(ug, Q\ Q) + 6, (7.31)
for a suitable sequence 0 — 0+. We observe that (7.29)-(7.31) give
E(vg, Q) < Ep(up, QU (Q\ Q1)) + &V (g, Q) + 0 + 1. (7.32)

Therefore it remains to estimate &V (vy, dQ) in terms of Ej(uy, Q1 \ Q). We proceed first

with the case d = 1, and then we shall use a slicing argument to obtain the general case.
Case d =1. Since Q has Lipschitz boundary it is enough to prove the result when

Q= (a,b) and Q = (@,b). Given n > 0 we choose a; € (@,a) and by € (b,b) such that

a b1
/ |Vwldr <7, / [Vwlde <n, |uk(ar) —w(ar)|] <er, |ug(br) —w(by)| < ex,
al b

with e — 04. It is not restrictive to assume that uj is continuous at a; and b;. We
observe that
V(vk,{a}) = |ur(at) —w(a)| A 1
and by Lemma 7.10 we have also
lug(a+) — uk(ar)| AL < V(ug,la1,al).
Combining these inequalities we obtain
Vv, {a}) < V(ug, a1, a) + [uk(ar) — w(ar)| + [w(a1) — w(a)|
< V(uk7[a13a])+€k+n' (733)
Similarly we prove that
V(vk7{b}) § V(uk, [babl]) + &g +77 (734)
Therefore, by (7.32)-(7.34)
Eg(vx, (@,b)) < Ey(ur, (a,b)) + &(2ex + 30 + 6x) -
Passing to the limsup as & — oo we obtain
lim sup Ey,(vg, (@, b)) < lim sup Ey(ug, (@, b)) + 3¢n, (7.35)
k—o0 k—ro0

and (7.28) follows from (7.23) and the arbitrariness of n, thus concluding the proof in the
case d =1. g

To deal with the case d > 1 we need the following lemma, which provides some useful
properties of sets with Lipschitz boundary. We observe that these properties are obvious
when the boundary is C'. For every B C 9Q, v € S !, and ¢ > 0 we set

CY(B)={z+tv:zeB, 0<t<ce}

Let 7 denote the orthogonal projection from R? into the hyperplane IT¥ introduced in (f)
at the beginning of Section 2.
Lemma 7.11. Let Q; be an open subset of R% with Q CC Qy and let n > 0. Then there
exist € > 0, a finite family K;, i =1,...,n, of compact subsets of 00, and a finite family
v, i=1,...,n, in S* 1 such that

(a) HITHOQ\ UL, Ki) <,

(b) wvi: RY =TIy is injective on K;,
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(c) lva—wi| <n HI=1q.e. in K;, where vq denotes the unit outer normal to Q,
(d) the sets CYi(K;) are pairwise disjoint and contained in €,
(e) Cri(K;)NQ=0.
When the boundary is not of class C', the proof of this result involves a lot of technical

arguments and is given in the Appendix.

Proof of Theorem 7.8 (continuation). Case d > 1. We recall that 0 < n < 1 and Q; have
been introduced in (7.29). By property (a) of Lemma 7.11 the function vy introduced in
(7.27) satisfies

V(vg, 0Q) < Z/ ltro (ur) — w| A 1dHIL + 1. (7.36)
i=17 K

On each K; we proceed by slicing in the direction v;. By property (b) in Lemma 7.11 for
every y € H; := n¥i(K;) there exists a unique a;(y) € R such that y + a;(y)v; € K;. We

observe that, using the notation introduced in (5.15) we have (CY*(K;))y = [a:i(y), ai(y)+e].

By [2, Theorem 3.108] we have tro(ux)(y + ai(y)vi) = (ux)y(ai(y)—), while w(y +
ai(y)vi) = (w)y (ai(y)) for Hil-ae. y € H;. Then by the area formula (see, e.g., [11,
Section 3.3])

/K(|trﬂ(uk)(x) —w(@)| A Dy - vo(z)dH T (2)

= [l (ast)-) - (i sl A 10 ).
Since by (c) in Lemma 7.11 we have 1 —n < v; - vg(x), we obtain
[ o) —wl arant < [ )y b)) - (@) (@) AL ) (7.37)
K; nJH;

On the other hand, for H% !-a.e. y € H; and for L'-a.e. o € (0,¢) by the triangle
inequality we can write
|(uk)y (ai(y)—) — wy (ai(y))| AL < [(ur)y (ai(y)—) — (ur)y (ai(y) + o) A1
+l(ur)y (ai(y) + o) —wy(ai(y) + o) + [wy (ai(y) + o) —wy (ai(y))| . (7.38)
By Lemma 7.10, for H% !-a.e. y € H; and for L'-a.e. o € (0,¢) we have
[(uk)y (ai(y)—) — (ur)y (ai(y) + o) | AL < UF((ur)y') < Wy ((uk)y)

where W7 is the function introduced in (7.21) corresponding to (a,b) = (ai(y),ai(y) + o).
Hence for L£'-a.e. o € (0,¢) integrating on H; we obtain

/ \(uzc)Z"(ai(y)—)—(Uk)Z"(ai(y)+0)|A1d7{d_1S/ W5 (up )y )dH

< V(uk, CF(K3)), (7.39)

where in the last inequality we used a general result on slicing (see [2, Theorem 3.108]).
Moreover, for H? 1-a.e. y € H; and for L!-a.e. o € (0,¢), since w € WhH1(Q),

£
lwy (ai(y) + o) —wy(ai(y))| < /0 |(Vw)y (as(y) + t)|dt .
Integrating (7.38) on H; and using Fubini Theorem we obtain that for £L!-a.e. o € (0,¢)

/ [(un)y (ai(y) =) = (w)y(ai(y))] A AR (y) <V (up, O (K3))

i

+ / () (as(y) + ) — 0" (aily) + o)|dH + / Vuldz.
H; CZi(Ki)
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Integrating with respect to o on (0,¢) and dividing by & we obtain

/ [(wr)y (ai(y) =) — (w)y (ai(y)] A LdH ™ (y) <V (up, CL(K7))

i

1
+7/ |uk—w|da:—|—/ |Vw|dzx ,
& Joli(Ky) CZH(Ky)

where in the second term we used Fubini Theorem.

Since the sets CYi(K;) are pairwise disjoint and contained in €; \ © by (d) and (e)
in Lemma 7.11, summing for ¢ = 1,...,n and using (7.29), (7.36), (7.37), and the last
inequality, we obtain

V(vg, 00) < L(V(uk,ﬂl\ﬂ)—&-l/ |uk—w|dx+77) +17.
1-n € Ja\a

Recalling (7.32) this implies

- - 1 - ~ ¢ /1
B (v, Q) < —— Ep(ug, Q) + 7/ ur —w|dr +n) + ¢(2n 4+ o) - 7.40
(00 < T Beluns D+ 7= (2 [ = wlda ) 820 +8). - (740)

Passing to the limsup as kK — oo we obtain

. - 1 . ~ &
lim sup Ej(vg, Q) < 1 lim sup Ey(ug, Q) + li + 2én.
-n

k—o0 — 1N ks

Recalling (7.23), by the arbitrariness of 7 we obtain (7.28), which concludes the proof of
the theorem. (]

We now prove an inequality concerning the minimum values of (7.13) and (7.14).

Proposition 7.12. Let Ej be a sequence in &. Assume that there exists E € &, such
that for every A € A.(R?) the sequence Ex(-,A) T -converges to E(-, A) with respect to the
topology of L°(RY). Then

inf  E(v,Q) > limsup inf  Ep(v,Q). (7.41)
veGBV, () k—oo  vEGBV, ()
v=w L%a.e. in Q\Q v=w L%a.e. in Q\Q

Proof. Given > 0 there exists u € GBV,(Q), with u = w L%a.e. in Q\ Q, such that

E(u,Q) < inf  E(v,Q)+71.
vEGBV, ()
v=w L%a.e. in Q\Q

We proceed as at the beginning of the proof of Theorem 7.8. Let m € N be such that &, <7,
where &, is introduced in (7.26), and let u™ := w 4 (u — w)™ . Then v™ € BV(Q) and
u™ =w L%a.e in O\ Q. By (g) in Definition 3.1 we have that E(u,,, ) < E(u,Q) + 7,
hence

Eum, Q) < inf  E(v,Q)+29. (7.42)
vEGBV,(Q)
v=w L%a.e. in Q\Q

By ~Theorem 7.8 applied to u™ there~ exists a sequence vy € BV(Q)7 with v, = w L%-a.e.
in 2\ Q, such that vy, — u™ in LY(Q) as k — oo and

E@™, Q) = lim Ej(vk, Q) > limsup inf En(v,Q).
k—o0 k—o0 vEGBV, (Q)
v=w L%a.e. in Q\Q

This inequality together with (7.42) gives (7.41) by the arbitrariness of 7. O
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To prove an inequality for the liminf we need the following compactness result for
bounded sequences uy in GBV,. Note that in this setting we have to modify the se-
quence uy, because the bound (7.44) below does not provide a control on [, |[u]|dH* ™

U

and consequently we cannot obtain a control of the L!'-norms of u,. We show that this
modification does not increase the values of the energies E7+9 for f € F and g € G, provided
that ¢ satisfies the following condition: there exists x > 1 such that

kG <Gl = g(z,G,v) < gz, G, v) for every z € R? and v € 71, (7.43)
Note that by (g6) this condition is satisfied with x =1 if g is even with respect to (.
Theorem 7.13. Let (uy) C GBV,(Q) be a sequence such that up = w L% -a.e. in Q\ Q
and

Vi(ug, Q) < M (7.44)
for some constant M > 0 independent of k, and let e, — 0 with e, > 0 for every k. Then
there exist a subsequence of uy , not relabelled and a sequence y, i GBV,(Q) such that

(1) ype=w L -a.e.in Q\Q,

(2) for every f € F and every g € G satisfying (7.43) we have

Ef’g(yk,Q) < Ef’g(uk7Q) + e,

where EN9 is defined by (3.14), . .
(3) the sequence yx converges in LO(Q) to some function y € GBV,(Q) with y = w
L -a.e. in Q\Q.

Proof. The proof is obtained by adapting the arguments of [8, Section 5], which is based on
the results of [14] for a different function space. More precisely, in [8, Theorems 5.3, 5.5, and
Corollary 5.4] we replace the functional ggO by the functional E79 and then we apply the

compactness result for GBV,(Q) [8, Theorem 3.11]. The only change in the proofs regards
the inequalities (5.26) and (5. 27) in the proof of [8, Theorem 5.3], which are replaced by

OO < dD‘u
gl < [5G gpant. (7.45)

/ gz, [v], v, )dHI < / glx, [u], v )dH + 0Chya> (7.46)
T J

u

where in this step of the proof u is a suitable function in GBV,(Q) and v € BV (Q)NL>(Q)

satisfies
J
Z IXP;

for a suitable choice of the constants t; and of the pairwise disjoint sets P; of finite perimeter.
To prove (7.45) we set m := ||v|| Lo (q) + 225 [t5], so that [u] < m L%-a.e. in Pj. Then

v = ijl(u(m) — tj)xpj, hence, by [8, Lemma 2.4] we have D = Z;]:l Dcu(m)xp_(1>,
where P;l) is the set of points of Lebesgue density one for P;. Since |u| < m HI 1 ae.
in P;l) \ Ju, we have D°u = D°u(™ as measures in Pj(l) by [8, Definition 2.8]. Therefore
D¢y = ijl DCuXPQ) , which implies that

dDv dDu dDu
oc dlD| = oo d DCu oo dl D¢
JRACY = LR Z/mf . pen)dDtl < [ f<(e ZraDt.

concluding the proof of (7.45).
Inequality (7.46) can be obtained arguing as in the proof of (20) in [14, Theorem 3.2].
Note that these arguments require also property (7.43). O
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We are now in a position to prove the main result concerning the convergence of the min-
imum values of (7.13) to the minimum value of (7.14) and the convergence of a subsequence
of the corresponding quasi-minimisers.

Theorem 7.14. Let fi be a sequence in F and let gi be a sequence in G such that (7.43)
holds for g with a constant k independent of k. Assume that there exists E € €, such
that for every A € A.(R?) the sequence ET+9% (.. A) T -converges to E(, A) with respect to
the topology of L°(RY). Then

(a) the minimum problem

min _ E(v,Q) (7.47)
vEGBV,(Q)
v=w L%a.c. in Q\Q

has a solution;

(b) we have
min _~ E(v,Q) = lim inf B9 (y,Q). (7.48)
veGBV, () k—oo  »eGBV,(Q)
v=w L%a.e. in Q\Q v=w L%a.e. in Q\Q

(c) given a sequence € — 0 with €, > 0 for every kj there exist a subsequence of
ETe:9% ot relabelled, and a sequence uy in GBV, () such that
(1) up =w L%-a.e. in Q\Q,
(2) we have
EFe9r (1, Q) < inf ETede (v Q) + ey,

o vEGBV, (Q)
v=w L%a.e. in Q\Q

(3) ug converge in LO(Q) to a minimum point u of (7.47).

Proof. Tt is obvious that there exists vy € GBV,(Q), with vy = w L%a.e. in Q\ Q, such
that

Ffko9% (Uk7Q) < inf Efk’gk(v,ﬂ) + €k - (7-49)
vEGBV, ()
v=w L%a.e. in Q\Q

We fix a subsequence vy, of vy such that

lim inf B/59% (v, Q) = lim E%0% (v, Q). (7.50)

k—o0 j—o0
By (7.41) and (7.49) it follows that the sequence E7%i*9%; (vk; Q) is bounded, hence by (c1)
in Definition 3.1, inequality (7.44) holds for the subsequence vg;. By Theorem 7.13 there
exist a further subsequence, not relabelled, and a sequence u; in GBV*(Q) such that u; = w
L4-a.e. in Q\Q,

Bt 0y, 0) < B (g, )ty < b BP0, 8) 4 oe, (T51)
vEGBV, (Q)
v=w L%a.e. in Q\Q
and u; converge in L°(Q) to a function u € GBV, (). By I'-convergence, using (7.50) and
(7.51) we obtain
E(u, Q) < liminf E/%9%; (u;, Q) < lim inf inf ETeax (. Q) .
Jj—oo k—o0 vEGBV,(Q)
v=w L%a.e. in Q\Q

Combining this inequality and (7.41) with the obvious inequality
E(u,Q) > inf  E,Q)
vEGBV, ()
v=w L%ae. in Q\Q

we obtain (a)-(c) in the statement. O
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The following corollary reformulates Theorem 7.14 in terms of minimum problems of the
form (7.11) and (7.19).

Corollary 7.15. Under the hypotheses of Theorem 7.14 let g € G be the function such that
(7.18) holds. Then

(a) the minimum problem

. E Q ~ —t d d—l) . 2
B R .

has a solution;

(b) we have

in  (BEwQ i(2, 0 — trav, d?—[d‘1> 7.53
vecnélvri(g)< (v )+/aﬂg(m ¥~ trv, vo) (7.53)
= i inf Elegr(y, Q) + ¢ — trqu| A 1dH) . 7.54
kLH;oveGIBPV*(Q)( (v, )—i—c/m\go rQu| H ) ( )

(c) given a sequence e — 0 with g, > 0 for every k, there exist a subsequence of
Efw9% not relabelled, and a sequence uy, in GBV,(Q) such that

(1) Efm9% (uy, Q) + 6/ lo — troug| A 1dHI!
[5}9]

< inf (Ef’“g’“ (v,Q) + 6/

< o — trou| A 1de—1) +en, (7.55)
vEGBV,(Q) o0

(2) wup converge in L°(Q) to a minimum point u of (7.52).

Proof. The result follows from the previous theorem taking into account Remarks 7.4 and 7.7.
O

8. APPENDIX

We now provide the detailed proof of Lemma 7.11 in the general case of a bounded open
set Q C R? with Lipschitz boundary.

Proof of Lemma 7.11. Given ¢ € S% 1, BC 11§, and I C R, we set
Bx¢l:i={y+t&:yeB, tecl}={zecR:7%(x)€B, x-£ €I}
Since Q has Lipschitz boundary, for every xo € 9§ there exist & € S?"!, a relatively open
set U C Hg containing 7¢(z0), an open interval I C R containing zo - &, and a Lipschitz
function ¢: U — I such that
(Uxe)NoQ={y+py):yecU}, (8.1)
Uxe)NQ={y+t&:yelU tel, t<o(y)}. (8.2)
Given B C U and a function ¢: U — R, the graph and the subgraph of ¥ over B are
denoted by

Ffp(B) ={y+¢)¢:ye B}, and Si(B,I) ={y+té:yeB, tel, t<y(y)}.

If ¢ is differentiable at y € U, its gradient Vi (y) is an element of Hg C RY.
Note that € S5(U, 1) if and only if - £ € I and x- £ < (n*(x)). Therefore, by (8.2)
for x € U x¢ I we have
r€Q = z-£<prt(2)). (8.3)
If # € 90N (U x¢ I) and ¢ is differentiable at 7¢(z) then the outer unit normal to 99
at z is given by
— Vo(rs(x
(o = £Vl a@)
V1+[Ve(né())?

(8.4)
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Moreover, if v € S9! and v - vg(z) > 0, then for || small we have
r+tre < t<0. (8.5)
Indeed, for |¢| small we have = +tv € U x¢ I, and by (8.3) we have
Tt €Q = x-E+tv-€<o(nt(x) +trt(v)). (8.6)
Since ¢ is differentiable at 7¢(z) and p(7¢(z)) = z-& by (8.1), from the previous equivalence
we obtain that
Tty €Q = tv-£ <tVo(n(z))mc(v) +o(t);
from (8.4) it follows that
r+itreQ < tv-vg(x) <olt),
and since v - vo(x) > 0 for [¢| small this can happen if and only if ¢t < 0.
By a direct consequence of Whitney’s Extension Theorem (see, e.g., [11, Section 6.6.1])
given o > 0 there exist a compact set H C U C Hg and a C! function ¢: U — I such that

HITHUN\H) <o, ¥(y) =¢(y), and Vi(y) = Vo(y) for every y € H,  (8.7)

meaning, in particular, that ¢ is differentiable at every y € H. Hence Ffo(H) = I‘i(H),
and Sff,(H, I = Sfb(H’ I). Moreover, for every x € FE,(H) we have

__E-Vely) . E-VY()
VQ('T) - D) - P )
VIHIVeWP  VI+[Vi(y)l
where y = 7é(x) € H and V(y) = Vip(y) € I15.
Let z € Ffp(H) = Ffb(H) Then = = y + ¥(y)¢, with y = 7¢(z). Let v € S4~1 with
lv — va(z)| < n. We claim that « +tv ¢ Q for ¢ > 0 sufficiently small.
We observe that

HIHTG(U)\ TS (H)) = HTHTEU\ H)) < (1+ L) 0, (8.9)

where L is the Lipschitz constant of ¢.
Since Ffz)(U ) is a C! manifold of dimension d — 1, for every x € I‘fp(U) we can represent

(8.8)

Ffb(U) in a neighbourhood of  as the graph of a C! function defined on the tangent space

; — & — _§-VY() ; 13
at . More precisely, let y = 75(z) and let v := e be the unit normal to Fw(U)

at x pointing towards the exterior of Si(U, I). There exist a relatively open set V' C IIj
containing %, an open interval J C R containing z - v, and a C! function w: V — J with
Vw(y) =0 such that V x, J CU x¢ I,

TS(U)N(V x, J) =T5(V) and S5U, NNV x, J) =S5V, J). (8.10)

For every 2/ € Y (V) and s > 0 small enough we have 2’ +sv € (V x, J)\ SL(V,J) =
(V x, J)\ Sfb(U, I). Recalling (8.2), this shows that, if ' € T¥(V) and 7¢(z’' + sv) € H,
then 2’ + sv ¢ Q for s > 0 sufficiently small.

Let us note that, by taking V' and J small, we can guarantee the smallness of Vw and
of the oscillation of Vi) on the projection of Fi(U) N(V x,J) onto TI§. Therefore, by (8.8)
we can choose V and J so that

[Vw(y')| <1 foreveryy' €V, (8.11)
lva(z) — va(a')| <n for every z,a’ € TL(H) N (V %, J). (8.12)

By compactness there exists a finite family (x;);=1,... m in 99Q such that the corresponding

U;, I;, &, and p; satisfy (8.1), (8.2), and

o0 = 6 s (Us). (8.13)

i=1
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Let By :=T% (Uy), By :=T% (U2)\B1, ..., By :=T%" (U) \U";' B;. Then each B
is a Borel set, the sets B; are pairwise disjoint, and o) = Uz=1 B;. Therefore there exist

compact sets F; C B; such that

HH o\ | F) <
i=1
There exists a family of pairwise disjoint relatively open subsets V; of 9Q such that F; C
V! C T%.(U;). Let U] := n%V/. Then U] are relatively open subsets of 1§, Ul c U,
% (U]) =V are pairwise disjoint, and
HH O\ (TS () <. (8.14)
i=1
We then apply the argument involving Whitney’s Extension Theorem to U] and we find
compact sets H; and C' functions 1;: U, — I; that satisfy (8.7) with U = U/, and ¢ = ¢;,
and o = n(1 4 L?)~'/2/m, where L is the largest Lipschitz constant of the functions ¢;.
In particular,

; is differentiable at every point of H;, (8.15)
HIWUIN\ Hy) <1+ L)YV /m. (8.16)
Let K; :=T% (H;). Using also (8.9) and (8.14) we obtain
HH 00\ | Ki) < 21. (8.17)
i=1
Let us fix i € {1,...,m}. By compactness there exists a finite family of points (27);=1..

in K; = I‘%‘i (H;) such that, setting v} := vg(xz?), there exist relatively open set V} C Ho ,
open intervals Jf, and C' functlons wh: Vi — J7 such that (8.10) hold with & = &,
=1, U=U!, V VZ, v=uvi, J= JZ andwfwj,and
nj y’i'
KclJriw
]:1 J

Arguing as before we can construct pairwise disjoint compact sets FJ’ such that

Fl C F (Vl) NK, CoQ, (8.18)
d=1(7- 5 iy
H (K, \Jyl Fl) < —. (8.19)

Let us fix € > 0 such that for every i,h=1,...,m, j=1,...,n;,and k=1,...,ny,

2¢ is smaller than the distance between F ; and F}, (8.20)
CY(F) C V) s Ji C UL xe, I (8.21)

This implies, in particular, that

reF;andte (0,e] = w+tv;¢gF;. (8.22)

Moreover, the sets C2? ( ) are pairwise disjoint, and

(0Q\ F))n oK ( ) TS (U, U Fi = (TS (U] \ H) U F). (8.23)
k=1
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To obtain property (e) we have to reduce the sets F. Since the compact sets CY(F j’) are
pairwise disjoint, they can be separated by pairwise disjoint open sets. Since H™1(9Q) <
+00, we can choose a family A%, j = 1,...,n; of pairwise disjoint open sets in R? such

that OQ N A% D (9Q\ F) N C (F}), and

1 (000 A\ (09 E)n CF () ) < (8.24)

mn;
We set ‘
B} :=n"(0Q N A%) D % ((0Q\ F}) N CZ (F)))
and observe that B; is a Borel set, since 890A; can be written as the union of an increasing

sequence of compact sets. Since the sets (9 F}) N CEV; (F}) are pairwise disjoint, by (8.23)
and (8.24) we have Y%, H™Y(BY) < HO DY (U\Hy))+HTH(K\UJL, Ff)+ L. Using
(8.9) with o = n(1 4+ L?)~*2/m and (8.16) for the first term in the right-hand side and
(8.19) for the second one we obtain

™ d-1 Bi 31 9
> HY P< (8.25)

j=1

For every j € {1,...,n;} let H; be a compact set contained in i (F) \ B with
HA (2% (F) \ Bi) \ H) < k-, and let
. v .
K = FWJ;(HD C Fj.
We now check that the family K, v} satisfies properties (a)-(e) in the statement. Tt follows
immediately from the definition that 7 is injective on K}, which proves property (b).
Since by (8.11) the Lipschitz constants of wé are smaller than 1, we have

HIHE\ K5) < HN (0 (F) \ H)) < —— 401N (BY),

7

hence, by (8.25)
THFI\ K < . .
Z?—L (F\KG) < — (8.26)
J=1
Since the sets C? (F}) are pairwise disjoint, so are the sets ce (K%), and this proves the
first part of property (d). The second part is obvious when & > 0 is smaller than the distance
between  and RY\ ;. _
We now want to prove that C.’ (KJ’) NQ = @. We argue by contradiction. Assume there

exists z € OO (K3)N Q. Then z = 2’ 4+ tv] with 2’ € K and 0 < ¢ < e. We recall that
by (8.15) and (8.18) the function ¢; is differentiable at y' := néiz’ and by (8.12) we have
vo(z') - v; > 0. Hence, by (8.5) it follows that 2’ + sv; ¢ Q if s > 0 is small. Therefore

there exists to € (0,¢) such that =’ +tov} € (9Q\ F}) N e (F}).

Since Vi (' + tov) € Bl, and mvi(z) € H}, the equality iz + tovh) = i (z)
contradicts the fact that B; n HJ’ = () by construction. This proves (e).

To prove (a) we write

m n; m m

oo U U K < - 00 [ K+ S w0 | K.

i=1j=1 i=1
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We have

By

HTUEN | E) <HTHEN | F)) + Y HTHF\K))
j=1 j=1

j=1
(8.17), (8.19), and (8.26) we conclude that

m o n;

n-toea\ | U K) <m,

i=1j=1

which proves (a). By (8.12) property (c) also holds. O
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