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Abstract. Consider an m-dimensional area minimizing mod(2Q) current T , with Q ∈ N,

inside a sufficiently regular Riemannian manifold of dimension m+ 1. We show that the set

of singular density-Q points with a flat tangent cone is (m−2)-rectifiable. This complements
the thorough structural analysis of the singularities of area-minimizing hypersurfaces modulo

p that has been completed in the series of works of De Lellis-Hirsch-Marchese-Stuvard and

De Lellis-Hirsch-Marchese-Stuvard-Spolaor, and the work of Minter-Wickramasekera.
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1. Introduction and main results

Suppose that T is an m-dimensional integer rectifiable current supported in a complete
(m+ n̄)-dimensional C1 Riemannian submanifold Σ ⊂ Rm+n without boundary (for which we
use the notation T ∈ Rm(Σ)), and let p ≥ 2 be a given integer.

Given an open set Ω ⊂ Rm+n we say that T is area-minimizing mod(p) in Σ ∩ Ω if it has
minimal m-dimensional mass in its mod(p) homology class within Ω ∩ Σ, namely

M(T ) ≤M(T + S) for each S ∈ Rm(Ω ∩ Σ) with [S] = ∂p[R] for some R ∈ Rm(Ω ∩ Σ),

where [S] ∈ Rm(Ω ∩K)/ ∼p, for the equivalence relation ∼p given by T ∼p S if T = S mod
p. Equivalently, this can be written as

Mp([T ]) ≤Mp([T ] + ∂p[R]) for every R ∈ Rm(Ω ∩ Σ),

where Mp([T ]) is the mass mod(p) for the class [T ], defined by

Mp([T ]) := inf
{
t ≥ 0 :

∀ ε > 0 ∃ compact K ⊂ Σ, S ∈ Rm(Σ)
with FpK(T, S) < ε, M(S) ≤ t+ ε

}
.

Given S ∈ Rm(Rm+n) (not necessarily a representative mod(p)), we let ‖S‖p denote the
mod(p) mass measure associated with [S] when identifying [S] with a vector-valued Radon
measure. Note that if S is a representative mod(p), then ‖S‖p agrees with the classical m-
dimensional mass measure ‖S‖ associated to S, induced by the vector-valued Radon measure
~T‖T‖ identified with T . We will henceforth make the following underlying assumption:

Assumption 1.1. T ∈ Rm(Rm+n) is an m-dimensional representative mod(p) in a C3,α0

(m+n̄)-dimensional Riemannian submanifold Σ ⊂ Rm+n with α0 ∈ (0, 1). T is area-minimizing
mod(p) in Σ ∩ B7

√
m for some open set B7

√
m ⊂ Rm+n containing 0 and ∂p[T ] B7

√
m =

0 mod(p). Note that Θ(T, x) ∈
[
1, p2

]
for ‖T‖-almost every x.

We may assume that Σ∩B7
√
m is the graph of a C3,α0 function Ψp : TpΣ∩B7

√
m → TpΣ

⊥

for every p ∈ Σ ∩B7
√
m. We may further assume that

c(Σ,B7
√
m) := sup

p∈Σ∩B7
√
m

‖DΨp‖C2,α0 ≤ ε̄,

where ε̄ will be determined later. This in particular gives us the following uniform control on
the second fundamental form AΣ of Σ:

AΣ := ‖AΣ‖C0(Σ∩B7
√
m) ≤ C0c(Σ,B7

√
m) ≤ C0ε̄.
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2 A. SKOROBOGATOVA

Given T satisfying Assumption 1.1, a point p ∈ sptT is called an (interior) regular point
if there is a ball Br(p) in which sptT is an embedded submanifold of Σ without boundary in
Br(p). Its complement in sptT \spt(∂T ) is called the (interior) singular set and will henceforth
be denoted by Sing(T ).

Understanding the size and the structure of the singularities of T in this setting was a
problem first studied by Federer [18] in the case p = 2, namely, unoriented surfaces. There, it
was shown that the Hausdorff dimension of the singular set is at most m− 2, while in [24,25],
Simon subsequently improved this to (m − 2)-rectifiability and local finiteness of (m − 2)-
dimensional Hausdorff measure. Furthermore, J. Taylor [27] handled the case when m = 2 and
p = 3 in three-dimensional ambient Euclidean space, achieving a groundbreaking structural
result demonstrating that the only singularities models are superpositions of three half-planes
meeting along an axis at angles of 2π

3 , and the singularities are locally a C1,α perturbation of
this.

In light of a stratification of the singular set based of the maximal number of directions of
translation-invariance of any tangent cone, the biggest obstruction to understanding the size
and structure of the singularities is due to the presence of singular points with flat tangent
cones (of multiplicity at least two).

When p is odd, in the work [5] of De Lellis, Hirsch, Marchese and Stuvard, the authors
demonstrate that the singular set of T is (m−1)-rectifiable. The key is that in higher codimen-
sion, singularities at which T admits a flat tangent cone can arise, but the result [5, Theorem
1.7] implies that they will necessarily have (positive integer) density strictly smaller than p

2 .
Thus, such flat singularities can be dealt with inductively on the density Q, and we need not
consider them; we only handle the highest density singular points with Q = p

2 .
When the codimension n̄ = 1, the work of White [28] tells us that any point x ∈ sptT with

a flat tangent cone kJπK with integer multiplicity k ∈
(
−p2 ,

p
2

)
is necessarily regular. When p

is odd, this tells us that in codimension one, there are no flat singular points. Making crucial
use of this result, Taylor’s structure theorem was successfully generalized in codimension one
by De Lellis, Hirsch, Marchese, Spolaor and Stuvard in [6], where it was demonstrated that
when p is odd, outside of an (m − 2)-rectifiable set, the singular set of T is locally a C1,α

(m − 1)-dimensional submanifold, with a singularity model consiting of a superposition of
m-dimensional half-spaces meeting in an (m− 1)-dimensional axis.

However, when p is even, one cannot rule out the appearance of singular points of density
Q = p

2 with a flat tangent cone (which we will henceforth refer to as flat singular Q-points,
and denote by FQ(T )). A prototypical example is as follows.

Example 1.2 (cf. Figure 1 below). Let f : R2 → R be the map f ≡ 0 and let g : R2 → R be
a (non-trivial) solution of the minimal surface equation

div

(
∇g√

1 + |∇g|2

)
= 0,

with g(0) = ∇g(0) = 0. Let T be the two-dimensional area-minimizing current mod(4) given
by

T := Jgraph(f) ∪ graph(g)K,
with alternating orientations in the regions between the intersections of the two graphs, to
ensure that ∂4[T ] B1 = 0.

The origin is an isolated flat singular point of density 2 here, meanwhile the curve segments
(graph(f) ∩ graph(g)) \ {0} consist of singular points of density 2, at each of which there is a
(unique) “open book” blowup that is the union of 4 half-planes meeting in a line, with all of
the orientations directed towards this line, to ensure that it is counted with multiplicity 4, and
thus does not create a boundary mod(4).

In the recent works [7] and [20], it was shown that at under the assumption that n̄ = 1
(namely, in codimension one) and with p = 2Q for Q ∈ N, at all flat singular Q-points of T the
flat tangent cone is unique and there is a polynomial decay rate of T towards this flat tangent
cone. In [20], the authors also establish Q-valued C1,α-graphicality (in a suitable sense) of T
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Figure 1. The graphs of f and g in Example 1.2.

locally around such points. In [7], it is additionally shown that the Hausdorff dimension of
FQ(T ) is at most m − 2, and up to a set of Hausdorff dimension at most m − 2, the singular
set of T is locally a C1,α (m − 1)-dimensional submanifold (cf. the above discussion in the
case when p is odd). Note that these results heavily rely on the codimension one assumption,
which allows one to classify the possible degrees of homogeneity of solutions to the linearized
problem (see [7, Proposition 2.9]). Unlike in the case when p is odd, however, the authors
in [7] were unable to easily establish (m− 2) rectifiability of the lower-dimensional part of the
singular set, due to the presence of flat singularities.

In this article, we adapt the techniques developed in [9, 11] in the context of higher codi-
mension area-minimizing surfaces, in order to indeed demonstrate the (m−2)-rectifiability and
local finiteness of (m − 2)-dimensional Hausdorff measure for the flat singular set of T when
n̄ = 1 and p is even:

Theorem 1.3. Let T satisfy Assumption 1.1 (c.f. [5, Assumptions 17.5]) with n̄ = 1 and
p = 2Q for some Q ∈ N. If the parameters in [5, Assumption 17.11] are chosen appropriately,
then FQ(T ) is (m− 2)-rectifiable.

This, in particular, implies that when n̄ = 1 and p = 2Q, up to an (m − 2)-rectifiable set,
the singular set of T is locally a C1,α (m− 1)-dimensional submanifold.

1.1. Connection with stable minimal hypersurfaces. Any T satisfying Assumption 1.1
induces a stable integral varifold. Moreover, the existing known regularity theory for stable
integral varifolds of codimension one (n̄ = 1) appears to be consistent with the known regularity
theory for area-minimizing mod(p) hypersurfaces; see the works [29] and [20]. In the more
general framework of codimension one m-dimensional stable integral varifolds, the work [19]
of Krummel and Wickramasekera demonstrates that locally in the regions where there are no
points of density 3 or higher, the interior flat singular set is (m − 2)-rectifiable. However,
to the knowledge of the author, such a result is still open for higher multiplicities, in such a
framework.

Acknowledgments

The author is indebted to Professor Camillo De Lellis for introducing her to this problem,
taking the time to explain important background results to her, and reading a preliminary
draft of the article. The author would also like to further thank both Camillo De Lellis and



4 A. SKOROBOGATOVA

Vikram Giri for partaking in many fruitful discussions with her. She would also like to thank
Paul Minter for pointing out some known results in the literature that she was not aware of.

The author acknowledges the support of the National Science Foundation through the grant
FRG-1854147.

2. Notation and preliminaries

We begin this section by providing a list of notation, consistent with [4,5,17], which will be
frequently used throughout this article.

FpK(S, T ) the flat distance modulo p between the m-dimensional integral flat chains S, T

with compact support in K (see, for example [17, Section 4.2.26] or [5]);

∂p[T ] the boundary modulo p of [T ], defined by ∂p[T ] := [∂T ];

sptp(T ) the support mod p of T ∈ Rm, defined by sptp(T ) :=
⋂

S=T mod(p)

sptS;

AQ(Rk) the space of Q-tuples of vectors in Rk (see [12] for more details);

AQ(Rk) the quotient space AQ(Rk)× {−1, 1}/ ∼, where ∼ is the equivalence relation

given by (S,−1) ∼ (T, 1) ⇐⇒ ∃q ∈ Rk with S = QJqK = T , and

(S,±1) ∼ (T,±1) ⇐⇒ S = T ;

Br(p) the (m+ n)-dimensional Euclidean ball of radius r centered at p;

Br(z) the geodesic ball of radius r centered at z on a given center manifold (see [15]

for more details);

Hs the s-dimensional Hausdorff measure, s ≥ 0;

dH the Hausdorff distance, defined on the space of compact subsets of Rm+n;

W k,s(Ω;AQ) the space of Q-valued s-integrable Sobolev maps with s-integrable

distributional derivatives up to order k ∈ N on Ω;

Br(z, π) the m-dimensional Euclidean ball of radius r and center z in the

m-dimensional plane π. If it is clear from context, we will just write Br(z);

E⊥ The orthogonal complement to the set E with respect to the standard

Euclidean inner product;

Cr(z, π) the infinite (m+ n)-dimensional Euclidean cylinder Br(z, π) + π⊥ with center

z, radius r in direction π⊥;

ιz,r the scaling map w 7→ w − z
r

around the center z;

τz the translation map w 7→ w + z;

f] the push-forward under the map f ;

Ez,r the blow-up (ιz,r)]E of the set E;

TpN the tangent plane to the manifold N at the point p ∈ N ;

TF the current
∑
i∈N

Q∑
j=1

(f ji )]JMiK induced by the push-forward of a

Q-valued map F : M → AQ(Rm+n) on a Borel set M ⊂ Rm with

decomposition F |Mi
=

Q∑
j=1

Jf ji K, M = tiMi as in [13, Lemma 1.1]

(see [13, Section 1.1] for a more detailed definition);

Θ(T, p) the m-dimensional Hausdorff density of T at a given point p;
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pπ the orthogonal projection to the m-plane π ⊂ Rm+n;

Tx,r the pushforward (ιx,r)]T of T under the rescaling map ιx,r.

We are now in a position to introduce some key notions that will be pivotal in this article.
In order to study the behaviour of T around flat singularities, one needs Almgren’s celebrated
center manifold construction (see [1,15]) and the linear theory of special Q-valued maps in this
setting. We refer the reader to [4, 5] for the relevant background theory and notation in the
mod(p) framework. We recall here the definition of the non-oriented excess of T with respect
to flat planes here, for the convenience of the reader.

Definition 2.1. For T as in Assumption 1.1, we define the non-oriented excess Eno(T,Cr(x), π)
of T in Cr(x) = Br(x, π)× π⊥ by

Eno(T,Cr(x)) :=
1

2ωmrm

ˆ
Cr(x)

|~T − ~π|2no d‖T‖,

where
|~T − ~π|no := min{|~T − ~π|, |~T + ~π|}.

The non-oriented excess Eno(T,Br(x), π) of T in Br(x) with respect to the m-dimensional
plane π is defined analogously. The non-oriented excess Eno(T,Br(x)) of T in Br(x) is then
defined as

Eno(T,Br(x)) := min
m-planes π

Eno(T,Br(x), π).

We define the mod(p) excess E(T,Cr(x)) of T in Cr(x) = Br(x, π)× π⊥ in analogous manner
to the classical oriented excess for integral currents:

E(T,Cr(x)) :=
1

2ωmrm

ˆ
Cr(x)

|~T − ~π|2 d‖T‖ =
‖T‖(Cr(x))− ‖p]T‖p(Cr(x))

ωmrm
.

Note that although ‖T‖ = ‖T‖p since T is a representative mod(p), this is no longer necessarily
the case for ‖p]T‖ and ‖p]T‖p, since p]T need not be a representative mod(p). The mod(p)
excess E(T,Br(x), π) of T in Br(x) with respect to the m-dimensional plane π and the mod(p)
excess E(T,Br(x)) are defined analogously.

2.1. Reduction to a single center manifold. Following [5, Section 25] we introduce ap-
propriate disjoint intervals ]sj , tj ] ⊂]0, 1], called intervals of flattening, the union of which
identifies those radii r such that the non-oriented excess Eno(T,B6

√
mr) falls below a positive

fixed threshold ε2
3. Arguing as in [5, Section 25] for each rescaled current T0,tj and rescaled

ambient manifold Σ0,tj we produce a center manifoldMj and an appropriate multivalued map
Nj :Mj → AQ(Rm+n). The latter takes values in the normal bundle of M and gives an effi-
cient approximation of the current T0,tj in B3 \Bsj/tj . We recall the following (non-oriented)
tilt excess decay from [7]:

Proposition 2.2 ([7, Proposition 2.3]). Let δ2 > 0 be fixed as in [5, Assumption 17.10]. There
exists ε1 = ε1(δ2,m,Q) and a positive constant C = C(δ2,m,Q) such that the following holds.
Suppose that T satisfies Assumption 1.1 with n̄ = 1 and p = 2Q. Assume that q ∈ FQ(T ) and
that

(1) Eno(T,Bρ(q), πq) + (ρA)2 < ε1, Cρ/4(q, πq) ∩ sptpT ⊂ Bρ/2(q).

Then for every r ≤ ρ
32 , we have

Eno(T,Br(q)) ≤ C
(
r

ρ

)2−2δ2 (
Eno(T,Bρ(q), πq) + (ρA)2

)
.(2)

Moreover, by an obvious adaptation of the proof of [7, Proposition 2.4], we have the following.

Proposition 2.3 (cf. [7, Proposition 2.4]). For every c̄s > 0, there is a constant τ0 =
τ0(m,Q, c̄s) > 0 with the following property. Let T satisfy Assumption 1.1 with n̄ = 1, p = 2Q
and let δ2 > 0 be fixed as in [5, Assumption 17.10]. Then there exists a choice of parameters
in [5, Assumption 17.11] with this choice of δ2, such that if the assumptions [5, Assumption
17.5] hold and (1) holds with ρ = 6

√
m, then
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(a) The decay (2) holds for every r ≤ τ0;
(b) FQ(T ) ∩Bτ0 is a subset of Φ(Γ) ⊂M0;
(c) for each q = (xq, yq) ∈ FQ(T ) ∩Bτ0 , where xq ∈ π0, yq ∈ π⊥0 , we have

L ∈ W =⇒ `(L) < c̄s dist(xq, L).

Indeed, notice that in the statement [7, Proposition 2.4], one may replace 1
64
√
m

with a

choice of c̄s > 0 arbitrarily small, at the price of allowing the scale τ0 to additionally depend
on c̄s. We do not include the details here, and refer the reader to the proof therein.

Now fix c̄s > 0 (to be determined in Theorem 2.4 below) and let us decompose FQ(T ) into
a countable union of (nested) sets as follows:

Sj :=
{
q ∈ FQ(T ) : the assumptions of Proposition 2.3 hold with c̄s for Tq, 1

6
√
mj

}
.

Now given any point q ∈ Sj , we may apply Proposition 2.3 with this choice of c̄s to Tq, 1
6
√
mj

to reduce Theorem 1.3 to the following theorem, the first three conclusions of which are an
immediate consequence of the above discussion (without any constraint on ε4 or η). Note that
here we use a slightly different definition of m0 to that in [5], but the arguments therein remain
unchanged under such a replacement (up to possibly decreasing the parameter ε2 therein).

Theorem 2.4. There exists ε4 = ε4(Q,m) > 0, η = η(Q,m) > 0 such that for some c̄s =
c̄s(m, η) > 0, the following holds. Let T satisfy Assumption 1.1 with n̄ = 1, p = 2Q and let
δ2 > 0 be fixed as in [5, Assumption 17.10]. Then for any j ∈ N and any q ∈ Sj, letting
r0 := τ0

6
√
mj

for τ as in Proposition 2.3 and m0 := Eno(Tq,r0 ,B6
√
m) + (6

√
mA)2 < ε2

4, there

exists a choice of parameters in [5, Assumption 17.11] with this choice of δ2, such that the
following properties hold:

(i) Tp,r0 satisfies the assumptions of the relevant statements in [5] (in place of T ), where
the center manifold M0 is constructed using δ2 and m0 as defined above;

(ii) the decay (2) holds for Tq,r0 for all scales r ≤ 1;

(iii) the rescaling ιq,r0(Sj) ∩B6
√
m, and thus also its closure S (for which we omit depen-

dency on j), is contained in M0;
(iv) for every x ∈M0 ∩B6

√
m and for every r ∈]ηd(x,S), 1] (where d(x,S) = min{d(x, y) :

y ∈ S}), every cube L which intersects Br(q, π0) satisfies `(L) ≤ csr, where cs = 1
64
√
m

is as in [5, (25.5)].
(v) S has finite upper (m− 2)-dimensional Minkowski content and it is (m− 2)-rectifiable.

Proof of Theorem 2.4(iv). For any point x ∈ S, the conclusion follows immediately from con-
clusion (c) of Proposition 2.3 with c̄s = η. It remains to verify the conclusion at points
outside of S. Taking r ∈]ηd(x,S), 1] and cs as in the statement of the theorem, observe that
any cube L ∈ C with L ∩ Br(q, π0) 6= ∅ and `(L) > csr > c̄sηd(x,S) would in turn satisfy
L ∩ Bd(x,S)+r(q̃, π0) 6= ∅ for some S 3 x̃ = pπ0

(q̃), contradicting conclusion (c) of Proposition
2.3 for the choice c̄s = cs

1+ 1
η

. �

The remainder of this article will thus be dedicated to proving the conclusion (v) of Theorem
2.4, from which the conclusion of Theorem 1.3 follows immediately by an elementary covering
argument. The conclusion of 2.4(v) will be given in Section 7.1, at the very end of the article.

Translating by q and rescaling so that r0 is taken to be unit scale, and henceforth denoting
M0 by simply M, we may thus make the following assumptions from now on.

Assumption 2.5. For some fixed (yet arbitrary) positive constants ε4 and η, the following
holds.

(i) T satisfies Assumption 1.1 with n̄ = 1, p = 2Q and 0 ∈ FQ(T ).
(ii) There is one interval of flattening ]0, 1] around 0 with corresponding m0,0 ≡ m0 :=

Eno(T,B6
√
m) + (6

√
mA)2 ≤ ε2

4.
(iii) If M is the corresponding center manifold with normal approximation N , then S :=

FQ(T )∩B1 is contained in the contact set Φ(Γ) ofM and the excess decay of Propo-
sition 2.2 holds at each q ∈ S, for all scales r ∈]0, 1] and QJTqMK B1 is the unique
flat tangent cone of T at any such q.
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(iv) For every x ∈ B1 ∩M, the conclusion (iv) of Theorem 2.4 is valid for all radii r ∈
]η d(x,S), 1] (and hence for all radii r ∈]0, 1] when x ∈ S).

3. Frequency function and radial variations

Let us begin by introducing the (regularized) frequency function for theM-normal approx-
imation N of T as in Assumption 2.5. Let φ : [0,∞[→ R be defined by

φ(t) =

 1 for 0 ≤ t ≤ 1
2

2− 2t for 1
2 ≤ t ≤ 1

0 otherwise .

Let d :M×M→ [0,∞[ denote the geodesic distance onM. We recall the following properties
of d, which are consequences of the C3,κ-estimates on the center manifold M (we refer the
reader to [15] and [3] for the details):

(i) d(x, y) = |x− y|+O
(
m

1
2
0 |x− y|2

)
,

(ii) |∇yd| = 1 +O
(
m

1
2
0 d
)
,

(iii) ∇2
y(d2) = g + O(m0d), where g is the metric induced on M by the Euclidean ambient

metric.

We now define the following quantities:

D(x, r) :=

ˆ
M
|DN |2φ

(
d(y, x)

r

)
dy ,

H(x, r) := −
ˆ
M

|∇yd(y, x)|2

d(y, x)
|N |2φ′

(
d(y, x)

r

)
dy

I(x, r) :=
rD(x, r)

H(x, r)
.

We often omit the dependency on N of these quantities, since we are considering one single
fixed center manifoldM and associated normal approximation N throughout. However, when
it becomes necessary to highlight such dependence (e.g. in compactness arguments), we will
write IN , DN and HN . We refer the reader to [16] or [3] for more details on the above quantities
and their basic properties. Moreover, since in practically all the computations the derivative
of d is taken in the variable which is the same as the intergration variable, in all such cases we
will write instead ∇d.

We will also need to use the above quantities for Dir-minimizing maps u : Rm ⊃ Ω → AQ.
For such a map u we define

Du(x, r) :=

ˆ
Ω

|Du|2φ
(
|y − x|
r

)
dy ,

Hu(x, r) := −
ˆ

Ω

1

|y − x|
|u|2φ′

(
|y − x|
r

)
dy

Iu(x, r) :=
rDu(x, r)

Hu(x, r)
.

In addition, we define the scale invariant quantities

H̄(x, r) := r−(m−1)H(x, r), D̄(x, r) := r−(m−2)D(x, r)

and

E(x, r) := −1

r

ˆ
M
φ′
(
d(x, y)

r

)∑
i

Ni(y) ·DNi(y)∇d(x, y) dy ,

G(x, r) := − 1

r2

ˆ
M
φ′
(
d(x, y)

r

)
d(x, y)

|∇d(x, y)|2
∑
i

|DNi(y) · ∇d(x, y)|2 dy ,

Σ(x, r) :=

ˆ
M
φ

(
d(x, y)

r

)
|N(y)|2 dy .



8 A. SKOROBOGATOVA

We will require the following important lemma, which verifies that the variational identities
required for the almost monotonicity of the frequency function r 7→ I(x, r) hold indeed for
every x ∈M∩B1 and for every r ∈]0, 1].

Lemma 3.1. There exists γ4(m,Q) > 0 sufficiently small and a constant C(m,Q) > 0 such
that the following holds. Suppose that T , M, N are as in Assumption 2.5. Then for any
x ∈M∩B1 and any r ∈]ηd(x,S), 1], we have the following identities

∂rD(x, r) = −
ˆ
M
ϕ′
(
d(x, y)

r

)
d(x, y)

r2
|DN(y)|2 dy

∂rH̄(x, r) = O(m0)H̄(x, r) + 2r−(m−1)E(x, r).

|D(x, r)−E(x, r)| ≤
5∑
j=1

|Erroj | ≤ Cm
γ4
0 D(x, r)1+γ4 + Cm0Σ(x, r),

∣∣∣∂rD̄(x, r)− 2r−(m−2)G(x, r)
∣∣∣ ≤ 2r−(m−2)

5∑
j=1

|Errij |+ Cm0D̄(x, r)

≤ Cr−1mγ4
0 D̄(x, r) + Cr−(m−2)+γ4mγ4

0 D(x, r)γ4∂rD(x, r) + Cm0D̄(x, r),

where Erroj and Errij are as in [3, Proposition 9.8, Proposition 9.9].

A simple consequence is the following quantitative almost-monotonicity for the frequency
(cf. [7, Proposition 2.7]).

Corollary 3.2. Let T , M, N and γ4 be as in Lemma 3.1. Then there exists C = C(m,Q) > 0
such that for any x ∈M∩B1 and any r ∈]ηd(x,S), 1] we have

∂r [1 + log I(x, r)] ≥ −Cmγ4
0 .

We omit the proof of Lemma 3.1 here, since it involves a mere repetition of the arguments in
the proofs of [5, Proposition 26.4] (see also [16, Proposition 3.5] and [3, Proposition 9.5, Propo-
sition 9.10] for the analogous arguments in the integral currents framework), combined with
the following observations:

(1) one may ensure that the constants therein are optimized to depend on appropriate
powers of m0, resulting in the more explicit estimates given above;

(2) the validity of the estimates in the lemma at given scale r and a given point x ∈M∩B1

merely uses the validity of conclusion (iv) of Theorem 2.4 at this scale.

Meanwhile, for the proof of Corollary 3.2, we refer the reader to [10, Corollary 3.5] for the
analogous argument in the setting of integral currents, combined with the observation that the
proof remains unchanged in the current framework, in light of Lemma 3.1.

The bound of Corollary 3.2 in turn gives a uniform bound for the frequency I(x, 4) for each x
in B1∩M. In particular, given the validity of the monotonicity of I, we can infer the following
upper bound

(3) I(x, r) ≤ Λ ∀x ∈M∩B1 ,∀r ∈]η d(x,S), 4],

for a suitable constant Λ > 0 which depends on T . Before we proceed, let us first simplify the
variational errors in Lemma 3.1 and record some other useful estimates that will be useful in
later sections.

Lemma 3.3. For any fixed η > 0 and Λ > 0 as in (3), if ε4 is chosen sufficiently small, then
there exists a constant C = C(m,Q,Λ, η) > 0 (independent of ε4), the following holds for any
T as in Assumption 2.5, every x ∈M∩B1 and any ρ, r ∈]ηd(x,S), 4].

C−1 ≤I(x, r) ≤ Λ(4)

Λ−1rD(x, r) ≤H(x, r) ≤ CrD(x, r)(5)

Σ(x, r) ≤ Cr2D(x, r)(6)

E(x, r) ≤ CD(x, r)(7)
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H̄(x, ρ) = H̄(x, r) exp

(
−C
ˆ r

ρ

I(x, s)
ds

s
−O(m0)(r − ρ)

)
(8)

H(x, r) ≤ CH(x, r4 )(9)

H(x, r) ≤ Crm+3−2δ2(10)

G(x, r) ≤ Cr−1D(x, r)(11)

|∂rD(x, r)| ≤ Cr−1D(x, r)(12)

|∂rH(x, r)| ≤ CD(x, r) ,(13)

Moreover, we have the estimates

|D(x, r)−E(x, r)| ≤ Cmγ4
0 r

γ4D(x, r)(14)

|∂rD(x, r)− (m− 2)r−1D(x, r)− 2G(x, r)| ≤ Cmγ4
0 r

γ4−1D(x, r)(15)

∂rI(x, r) ≥ −Cmγ4
0 r

γ4−1 .(16)

The majority of the estimates in Lemma 3.3 follow directly from those in (3), Lemma 3.1
and Corollary 3.2, with the exception of the lower frequency bound in (4). For the proof of
this, we direct the reader to [11, Lemma 4.1] (with the obvious difference that the limiting
Dir-minimizer takes values in AQ, not AQ in the compactness procedure).

Before we go any further, we need to address the following. As well as knowing that
S ⊂ Φ(Γ), we will need to know that the frequency I(x, 0) is sufficiently large (namely, above
the threshold 2−δ2) for every x ∈ S. Indeed, this is the case; by studying the linearized problem
that arises from a compactness procedure and ruling out the possibility that I(x, 0) = 1 (since
x is a flat singular point of T ), one can show that I(x, 0) is always a positive integer strictly
larger than 1 for each x ∈ S.

Proposition 3.4 ([7, Proposition 2.8]). Let T , M, N and γ4 be as in Lemma 3.1. For every
x ∈ S and any sequence of scales rk ↓ 0, the following properties hold (up to subsequence):

(i) N̄x,rk := N(e(x,rk·))
D̄(x,rk)1/2

converges strongly in W 1,2
loc to an I(x, 0)-homogeneous Dir-minimizer

u : π∞ ⊃ B1 → AQ(R) with η ◦ u = 0 and u(0) = QJ0K;
(ii) the frequency I(x, 0) is a positive integer strictly larger than 1.

However, the above proposition does not guarantee that there are no points y ∈ Φ(Γ) with
I(y, 0) = 1 nearby to points x ∈ S (in fact, we expect any x ∈ S to be an accumulation of such
points y). With this information in mind, we let

∆QN := {x ∈M : N(x) = QJ0K } , ∆2−δ
Q N := {x ∈M : N(x) = QJ0K, I(x, 0) ≥ 2− δ } .

We will use the same notation for Dir-minimizers u : Rm ⊃ Ω → AQ(Rn). Thus, Proposition

3.4 enables us to say that for T , M, N as in Assumption 2.5, we have S ⊂ ∆2−δ
Q N .

4. Spatial frequency variations

Here, we control how much N deviates from being homogeneous on average locally around
a point x between two scales, in terms of the radial frequency variation at x between those
scales. It is convenient to introduce the following terminology.

Definition 4.1. Suppose that T , M and N are as in Assumption 2.5. For x ∈ B1 ∩M and
any η d(x,S) < ρ ≤ r ≤ 1, define the frequency pinching W r

ρ (x) between ρ and r by

W r
ρ (x) := |I(x, r)− I(x, ρ)|.

Proposition 4.2. Suppose that T , M, N are as in Assumption 2.5, let γ4 be as in Lemma 3.1
and let Λ > 0 be as in (3). There exists C = C(m,n,Q,Λ) > 0 and β = β(m,Q,Λ) > 0
such that the following estimate holds for every x ∈ B1 ∩ M and for every pair ρ, r with
4η d(x,S) < ρ ≤ r < 1. If we define

A2r
ρ
4

(x) :=
(
B2r(x) \B ρ

4
(x)
)
∩M



10 A. SKOROBOGATOVA

then ˆ
A2r
ρ
4

(x)

∑
i

∣∣∣∣DNi(y)
d(x, y)∇d(x, y)

|∇d(x, y)|
− I(x, d(x, y))Ni(y)|∇d(x, y)|

∣∣∣∣2 dy

d(x, y)

≤ CH(x, 2r)

(
W 2r

ρ
4

(x) +mγ4
0 r

γ4 log

(
4r

ρ

))
.

We refer the reader to [11, Proposition 5.2] for the proof of Proposition 4.2. Since we
just require the estimates in Lemma 3.3 to prove this proposition (in place of the estimates
[11, Lemma 4.1]), the proof remains completely unchanged in this setting. We will also require
the following control on variations of the frequency in terms of frequency pinching.

Lemma 4.3. Suppose that T , M and N be as in Assumption 2.5, let γ4 be as in Lemma 3.1
and let Λ > 0 be as in (3). Let x1, x2 ∈ B1 ∩M with d(x1, x2) ≤ r

8 , where r is such that
8η max{d(x1,S), d(x2,S)} < r ≤ 1. Then there exists a constant C = C(m,Q,Λ) > 0 such
that for any z, y ∈ [x1, x2], we have

|I(y, r)− I(z, r)| ≤ C
[(
W 4r

r
8

(x1)
) 1

2

+
(
W 4r

r
8

(x2)
) 1

2

+m
γ4
2

0 r
γ4
2

]
d(z, y)

r
.

The proof of Lemma 4.3 relies on the following additional variation estimates and identities.

Lemma 4.4. Let T , M and N be as in Assumption 2.5 and let x ∈ B1 ∩M. Let η d(x,S) <
ρ < r ≤ 1, and suppose that v is a vector field on M. Then the following identities hold:

∂vD(x, r) =
2

r

ˆ
φ′
(
d(x, y)

r

)∑
i

∂νxNi(y) · ∂vNi(y) dy +O (mγ4
0 ) rγ4−1D(x, r)

∂vH(x, r) = −2
∑
i

ˆ
M

|∇d(x, y)|2

d(x, y)
φ′
(
d(x, y)

r

)
〈∂vNi(y), Ni(y)〉 dy .

Proof of Lemma 4.4. The proof of these estimates is entirely analogous to those in [11, Lemma
5.5], so we omit many of the details. Indeed, notice that the identity [11, (29)] still holds here, by
decomposing the domain of the integral in D(x, r) into the disjoint components of Br(x)∩M+

and Br(x) ∩M− as defined in [5], each of which is a relatively open set by [4, Corollary 2.8]
(which also holds for a submanifold domain with C3,κ-regularity). Note that the set Br(x)∩M0

where N = QJ0K as defined in [5] (not to be confused with our former terminology of this form)
has Hm-measure zero.

Now we test [16, (3.25)] with the vector field Xi(q) = Y (p(q)) for

Y (y) := φ

(
d(x, y)

r

)
v,

which satisfies the differential identities [11, (32), (33)], and exploit the excess decay of Propo-

sition 2.2 to establish the same estimates on the inner variational errors Ẽrr
i

j therein (see
[5, (26.9), (26.16), (26.17), (26.18)]) for this vector field here.

The identity for ∂vH(x, r) is once again a simple computation, identical to that in the proof
of [9, Proposition 3.1], again combined with the domain decomposition intoM+ andM−. �

Having established the validity of Lemma 4.4, the proof of Lemma 4.3 follows in exactly
the same way as that of [11, Lemma 5.4], yet again decomposing the domains of integration in
D(x, r), H(x, r) into M+ and M− when taking spatial derivatives of I(x, r), and noting that
the estimates remain unchanged.

5. Quantitative spine splitting

We will now demonstrate that under the assumption of approximate homogeneity around
a collection of points spanning a given subspace, one achieves the existence of an approximate
spine in that subspace, in a quantitative manner. We will be considering affine subspaces
spanned by families of linearly independent vectors, so we introduce the following notation.
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Given an ordered set of points X = {x0, x1, . . . , xk} we denote by V (X) the affine subspace
spanned by the vectors {x1 − x0, x2 − x0, . . . , xk − x0} and centered at x0:

(17) V (X) = x0 + span({(x1 − x0), (x2 − x0), . . . , (xk − x0)}) .

We recall the following definitions of quantitative linear independence and spanning from
[11], where they are introduced in the integral currents framework.

Definition 5.1 ([11, Definition 6.1]). We say that a set X = {x0, x1, . . . , xk} ⊂ Br(x) is
ρr-linearly independent if

d(xi, V ({x0, . . . , xi−1})) ≥ ρr for all i = 1, . . . , k

We say that a set F ⊂ Br(x) ρr-spans a k-dimensional affine subspace V if there is a ρr-linearly
independent set of points X = {xi}ki=0 ⊂ F such that V = V (X).

5.1. Compactness and homogeneity. Before we proceed, we require the following invari-
ance and unique continuation results, which are analogous to their counterparts in [9] in the
framework of AQ-valued Dir-minimizers, but we must verify that the presence of codimension
one zeros in this setting does not pose an obstruction to their validity.

Lemma 5.2. Let Ω ⊂ Rm be a connected open set and let u : Ω → AQ(Rn) be a continuous
map that is homogeneous about two points x1 and x2, with respective homogeneities α1 and α2.

Then α1 = α2 and u is invariant along the direction x2 − x1. Moreover, we have x1 +
span{x2 − x1} ⊂ ∆Qu.

Lemma 5.3. Let δ ∈ (0, 1), let Ω ⊂ Rm be a connected open set and suppose that u1, u2 : Ω→
AQ(Rn) are two homogeneous maps such that

(a) both u1 and u2 locally minimize the Dirichlet energy;

(b) there exists a non-empty open set U ⊂ Ω such that u1 ≡ u2 on U ;

(c) for j = 1, 2 we have ∆Quj ≡ ∆2−δ
Q uj.

Then u1 ≡ u2 on Ω.

Proof of Lemma 5.2. The proof of this follows by a very similar reasoning to the proof of
[9, Lemma 6.8], which is the analogous result for classical Q-valued Dir-minimizers. However,
one has to check that the argument is unchanged by the presence of the regions Ω±, separated
by the points x ∈ ∆Qu with Iu(x) = 1.

The homogeneity of u tells us that

u±(x) =
∑
i

s
|x− x`|α`ui

(
x− x`
|x− x`|

+ x`

){
, x ∈ Ω± t Ω0 respectively, ` = 1, 2.

Recall that that each of u+ and u− is a classical AQ(Rn)-valued Dir-minimizer. We may thus
extend each of these to Rm by homogeneity, and apply [9, Lemma 6.8] to each one individually.
The conclusion follows immediately. �

Proof of Lemma 5.3. Observe that condition (c) tells us that for j = 1, 2, it holds that Ω\∆Quj
is a affine subspace of dimension at most m− 2, in light of the homogeneity assumption, com-
bined with the knowledge that all one-dimensional AQ(Rn)-valued Dir-minimizers are locally
superpositions of linear functions. Thus, u1 and u2 can be identified with classical (homoge-
neous) Q-valued Dir-minimizers that take values in AQ. This means that [9, Lemma 6.9] can
be applied directly. �

The following lemma gives a quantitative notion of the existence of an approximate spine
in S, provided that N is (quantitatively) almost-homogeneous about an (m − 2)-dimensional
submanifold of the center manifold. It is entirely analogous to [11, Lemma 6.2], only posed in
the mod(p) setting.
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Lemma 5.4. Suppose that T , M, N are as in Assumption 2.5, let x ∈ S and let ρ, ρ̃, ρ̄ ∈]0, 1]
be given. There exists ε = ε5.4(m,Q,Λ, ρ, ρ̃, ρ̄) ∈]0, ε2

4] such that the following holds. Suppose
that for some r > 0,

Eno(T,B2r(x)) + (2rA)2 ≤ ε.
Suppose that X = {xi}m−2

i=0 ⊂ Br(x) ∩ S is a ρr-linearly independent set of points with

W 2r
ρ̃r (xi) < ε for each i.

Then S ∩ (Br \Bρ̄r(V (X))) = ∅.

Proof. We prove this by contradiction. We may without any loss of generality assume that
x = 0. Now, suppose that the statement of the lemma is false. Then we may find sequences
εk ↓ 0, rk ↓ 0 and corresponding sequences of center manifolds Mk and normalized normal
approximations N̄k with HN̄k(0, 1) = 1 for T0,rk . Letting Sk := S(T0,rk), we in addition have
a sequence of (m− 1)-tuples of points Xk := {xk,0, xk,1, . . . , xk,m−2} ⊂ B1 ∩ Sk such that

(i) Xk is ρ-linearly independent for some ρ ∈]0, 1];
(ii) W 2

ρ̃ (N̄k, xk,i) ≤ εk → 0 as k →∞ for some ρ̃ ∈]0, 1];

(iii) there exists a point yk ∈ Sk ∩ (B1 \Bρ̄(V (Xk))).

We can thus proceed to use a compactness argument as in Proposition 3.4 (see, also [5,
Section 28] or [11, Section 2.2] in the integral currents framework) in order to deduce that

(1) Mk −→ π∞ in C3,κ;
(2) there exists a Dir-minimizer u : π∞ ⊃ B1 → AQ(R) with η ◦u ≡ 0 such that N̄k ◦ek −→ u

in L2 and in W 1,2
loc ;

(3) The sequence Xk converges pointwise to X∞ = {x0, . . . , xm−2};
(4) The points yk converge pointwise to y ∈ B̄1 \Bρ̄(V (X∞)) ⊂ π∞ with u(y) = QJ0K.
By [7, Theorem 3.6, Theorem 3.7] and a standard stratification argument, we know that

dimH(∆2−δ
Q u) ≤ m− 2, since Hu(0, 1) = 1 and η ◦ u = 0, so u cannot be a classical harmonic

map with multiplicity Q. Moreover, Hu(y, τ) > 0 for every τ ∈ (0, 1), since otherwise we would

contradict the dimension estimate on ∆2−δ
Q u. This, in combination with (ii) tells us that

Iu(xi, ρ̃) = Iu(xi, 2) ≥ 2− δ for i = 0, . . . ,m− 2.

The monotonicity of the regularized frequency as defined in Section 2 for AQ-valued Dir-
minimizers then tells us that u is αi-homogeneous about xi within the annulus B2(xi)\Bρ̃(xi) ⊂
π∞, for some αi ≥ 2. Firstly, we may immediately deduce that αi = α for some fixed α ≥ 2−δ
by iteratively applying Lemma 5.2, and also that ∆Qu = ∆2−δ

Q u. We may then extend u to an

α-homogeneous function v about the (m − 2)-dimensional affine subspace V (X∞), in light of
Lemma 5.3.

Since y /∈ V (X∞) and u(y) = QJ0K, but u is α-homogeneous about V (X∞), this implies
that u ≡ QJ0K on L := x0 + span{xm−2 − x0, . . . , x1 − x0, y − x0}, and Iu(·, 0) ≡ α ≥ 2 on

the (m− 1)-dimensional plane L. This however contradicts the dimension estimate on ∆2−δ
Q u,

thus allowing us to conclude. �

The following lemma, which is the mod(p) analogue of [11, Lemma 6.3], tells us that it is
enough to establish approximate homogeneity on a linearly independent set of points, in order
to achieve approximate homogeneity in the affine subspace spanned by these points.

Lemma 5.5. Suppose that T , M and N are as in Assumption 2.5, let x ∈ S and let ρ, ρ̃, ρ̄ ∈
]0, 1] be given. Then for any δ > 0, there exists ε = ε5.5 > 0, dependent on m,Q,Λ, ρ, ρ̃, ρ̄, δ
for which the following property holds. Suppose that for some r > 0 we have

Eno(T,B2r(x)) + (2rA)2 ≤ ε.
In addition, suppose that X = {xi}m−2

i=0 ⊂ Br(x) ∩ S is a ρr-linearly independent set of points
with

W 2r
ρ̃r (xi) < ε for every i = 0, . . . ,m− 2.

Then for every y1, y2 ∈ Br(x) ∩Bεr(V (X)) ∩ S and for every r1, r2 ∈ [ρ̄r, r] we have

|I(y1, r1)− I(y2, r2)| ≤ δ .
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Proof. We will once again proceed to argue by contradiction. We again assume that x = 0
without loss of generality. If the statement of the lemma is false, we may find sequences
εk ↓ 0, rk ↓ 0 and corresponding sequences of center manifolds Mk and normalized normal
approximations N̄k with HN̄k(0, 1) = 1 for T0,rk , with a sequence of (m − 1)-tuples of points
Xk := {xk,0, xk,1, . . . , xk,m−2} ⊂ B1 ∩ Sk = B1 ∩ S(T0,rk) such that

(i) The set Xk is ρ-linearly independent for some ρ > 0;
(ii) W 2

ρ̃ (N̄k, xk,i) ≤ εk → 0 as k →∞ for some ρ̃ > 0;

(iii) there exist points yk,1, yk,2 ∈ B1∩Bεk(V (Xk))∩Sk and corresponding scales rk,i ∈ [ρ̄, 1]
with

|Ik(yk,1, rk,1)− Ik(yk,2, rk,2)| ≥ δ > 0,

where Ik := IN̄k .

We may now use an analogous compactness argument to that in the proof of Lemma 5.4 to
conclude that, up to subsequence, we have

(1) Mk −→ π∞ in C3,κ;

(2) N̄k ◦ ek −→ u in L2 and in W 1,2
loc , where u is an AQ-valued Dir-minimizer with η ◦ u ≡ 0;

(3) the collections of points Xk converge pointwise to X∞ = {x0, . . . , xm−2};
(4) the points yk,i converge pointwise to yi and the respective scales rk,i converge to ri ∈ [ρ̄, 1]

for i = 1, 2.

Proceeding as in the proof of Lemma 5.4, we arrive at the conclusion u ≡ QJ0K on x0 +
span{xm−2 − x0, . . . , x1 − x0} = V (X∞) with the additional property that

Iu(xi, ρ̃) = Iu(xi, 2) ≥ 2− δ for i = 0, . . . ,m− 2.

Thus, Iu(y, τ) ≡ α ≥ 2 − δ for any y ∈ V (X∞) and any τ > 0. On the other hand, since
rk,i ∈ [ρ̄, 1] and ρ̄ > ηmin{d(y1,S), ηd(y2,S)}, we additionally have Ik(yk,i, rk,i) → Iu(yi, ri)
for i = 1, 2, so the property (iii) is in contradiction with the homogeneity of u about V (X∞). �

6. Jones’ β2 coefficient control

This section is dedicated to controlling the “mean flatness” in a ball for a given Radon
measure µ supported in S, in terms of an (m − 2)-dimensional µ-weighted average of the
frequency pinching, up to a lower order error term. We hence recall here the definition of Jones’
β2 coefficient (here we only consider the latter associated to (m−2)-dimensional planes), which
is frequently used in many contexts when controlling the flatness (in an averaged L2 sense) of
a given set. It will enable us to measure the mean flatness of µ at a given scale around a given
point.

Definition 6.1 ([11, Definition 7.1]). Given a Radon measure µ in Rm+n, we define the
(m− 2)-dimensional Jones’ β2 coefficient of µ as

βm−2
2,µ (x, r) := inf

affine (m− 2)-planes L

[
r−(m−2)

ˆ
Br(x)

(
dist(y, L)

r

)2

dµ(y)

]1/2

.

The main result of this section is the following, which yields the desired control on the β2

coefficient of a measure supported in S.

Proposition 6.2. There exist thresholds η = η6.2(m) > 0, ε = ε6.2(Λ,m,Q, η), α0 =
α0(Λ,m,Q) > 0 and C(Λ,m,Q) > 0 such that the following holds. Suppose that T , M and
N satisfy Assumption 2.5 with parameters ε4 ≤ ε6.2 and η ≤ η6.2. Suppose that µ is a finite
non-negative Radon measure with spt(µ) ⊂ S. Then for all r ∈]0, 1] and every x0 ∈ Br/8 ∩ S
we have

[βm−2
2,µ (x0, r/8)]2 ≤ C

rm−2

ˆ
Br/8(x0)

W 4r
r/8(x) dµ(x) + Cmα0

0 r−(m−2−α0)µ(Br/8(x0)).

The proof of Proposition 6.2 requires the following preliminary lemma regarding a charac-
terization of AQ-valued Dir-minimizers that are (m− 1)-invariant.
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Lemma 6.3. Let Ar,R(z̄) := BR(z̄) \ B̄r(z̄) ⊂ Rm and suppose that u : BR(z̄) → AQ(Rn)
is a non-trivial Dir-minimizer. Assume there is a ball B ⊂ Ω and a system of coordinates
x1, . . . , xm such that u

∣∣
Ar,R(z̄)

is a function of x1 only. Then u is a function of only x1 on all

of BR(z̄).
Moreover, one of the following two alternatives holds:

(i) ∆Qu = ∅;
(ii) there is a one-homogeneous Dir-minimizer v : R → AQ(Rn) such that u(x) = v(x1) for

x ∈ Ω.

Remark 6.4. Note that in case (ii) in Lemma 6.3, ∆Qu = {x1 = c} for some c ∈ R and
Iu(x, τ) = 1 for every x ∈ ∆Qu and every τ > 0.

Proof of Lemma 6.3. Fix a point x ∈ Reg u ∩ Ar,R(z̄), with coordinates x1, . . . , xm. Then,
by definition (see [4, Definition 10.1]) there must be a neighbourhood U 3 x and a sign
ε ∈ {+1,−1} such that

u(y) =

(
Q∑
i=1

Jui(y)K, ε

)
for y ∈ U.

More precisely, this is because ∆Qu is a relatively closed set of Hausdorff dimension at most
m− 1.

This in particular implies that we may identify u
∣∣
U

with a classicalAQ-valued Dir-minimizer.

Moreover, the invariance of u in Ar,R(z̄) implies that ui(y) = (y1 − ci)vi for some ci ∈ R,
vi ∈ Rn, since one-dimensional classical AQ-valued Dir-minimizers necessarily have affine de-
compositions. In addition, for any i 6= j, either ui(x) 6= uj(x) or ui ≡ uj on U .

We may thus rewrite u in terms of distinct representatives as

u(y) =

 Q′∑
i=1

kiJui(y)K, ε

 for y ∈ U,

where ki ∈ N, N 3 Q′ ≤ Q and ui(x) 6= uj(x) for every i 6= j.
Now define

M(x) := sup { y1 > x1 : ui(y) = uj(y) for some i 6= j } ,
with the convention that M(x) = +∞ if this set is empty.

We will proceed to show that

(18) u(y) =

 Q′∑
i=1

kiJui(y)K, ε

 for y ∈ {x1 < y1 < M(x)} ∩BR(z̄).

Let W be the maximal open set in {x1 < y1 < M(x)} ∩ BR(z̄) in which (18) holds. Note
that W ⊃ U . If W 6= {x1 < y1 < M(x)} ∩ BR(z̄), we can choose a point ξ ∈ {x1 < y1 <
M(x)} ∩ BR(z̄) ∩ ∂W . Since ξ1 < M(x), we must have ui(ξ) 6= uj(ξ) for every i 6= j. This
means that we may apply the unique continuation for each single-valued Dir-minimizer ui, to
conclude that there is a neighbourhood V 3 ξ on which (18) holds. This, however, contradicts
the maximality of W , so indeed (18) holds on the entirety of {x1 < y1 < M(x)} ∩BR(z̄).

Now, notice that if M(x) < sup { y1 : y ∈ BR(z̄) }, then

{y1 = M(x)} ∩BR(z̄) ⊂ {u = QJ0K}.
This is due to the fact thatHm−1 ({y1 = M(x)} ∩BR(z̄)) > 0, while dimH ((BR(z̄))± ∩∆Qu) ≤
m− 2.

Similarly, let
L(x) := inf { y1 < x1 : ui(y) = uj(y) for some i 6= j } ,

with the convention that L(x) = −∞ if this set is empty.
Proceeding in exactly the same way as above, we conclude that

(19) u(y) =

 Q′∑
i=1

kiJui(y)K, ε

 for y ∈ {L(x) ≤ y1 ≤M(x)} ∩BR(z̄),
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and

{y1 = L(x)} ∩BR(z̄) ⊂ {u = QJ0K}.
Moreover, notice that if M(x) < +∞, then L(x) = −∞, and if L(x) > −∞ then M(x) = +∞.
This is due to the fact that u is non-trivial, and each ui is affine on {L(x) < y1 < M(x)}.

Now there are two possibilities; either one of L(x),M(x) lies in [z̄1 −R, z̄1 +R], or not. In
the latter case, Br(z̄) ⊂ {L(x) ≤ y1 ≤ M(x)} and so it is immediate that the representation
formula (19) holds in BR(z̄). In the former case, suppose without loss of generality that
L(x) ∈ [z̄1 − R, z̄1 + R]. However, since on Ar,R(z̄) ∩ {y1 < L(x)}, u remains a function of
x1 only, we may again exploit the affine structure of AQ-valued Dir-minimizers to conclude
that the representation formula (19) holds in the entirety of BR(z̄). The dichotomy (i) or (ii)
follows immediately in both cases. �

Remark 6.5. In fact, the proof of Lemma 6.3 demonstrates that the conclusion of the lemma
holds true in any open, connected domain Ω ⊂ Rm in place of BR(x0), if u is a function of x1

only on an open subset Ω′ ⊂ Ω that contains a point x with u(x) = QJ0K. The author suspects
that this more general version result may remain true even without the requirement that Ω′

contains a point x with u(x) = QJ0K. However, since such a more general version of the result
is not required here, we do not pursue this here.

Proof of Proposition 6.2. We may assume that µ(Br/8) > 0, since the desired estimate is
otherwise trivial. The majority of this proof follows exactly as that of [11, Proposition 7.2].
Indeed, letting A2r

r/4(x0) := (B2r(x0) \ Br/4(x0)) ∩ M and proceeding in exactly the same

manner as the proof therein, we arrive at the estimate

[βm−2
2,µ (x0, r/8)]2

ˆ
A2r
r/4

(x0)

m−1∑
j=1

|DN(z) · `z(vj)|2 dz

≤ Cr−(m−1)H(x0, 2r)

(ˆ
Br/8(x0)

W 4r
r/8(x) dµ(x) +mα0

0 rα0µ(Br/8(x0))

)
,

for α0 > 0 sufficiently small, where `z : Tx0M→ TzM is the linear map that corresponds to
the differential dex0

|ζ of the exponential map ex0
at the point ζ = e−1

x0
(z).

It thus remains to check that

(20)

ˆ
A2r
r/4

(x0)

m−1∑
j=1

|DN(z) · `z(vj)|2 dz ≥ c(Λ)
H(x0, 2r)

r
,

for some C(Λ) > 0. We prove this via a contradiction and compactness argument, as usual. By
scaling and translation invariance of the claimed bound, we may assume that r = 1 and x0 = 0.

If (20) fails, then we can extract a sequence of currents Tk with m
(k)
0 ≤ ε2

k → 0, corresponding
center manifoldsMk in B1, normalized normal approximations N̄k with

´
B2\B̄1∩Mk

|N̄k|2 = 1

and
´
B1∩Mk

|DN̄k|2 ≤ CΛ, such that

• Mk → π∞,
• η ◦ N̄k → 0,
• N̄k(yk) = QJ0K for some yk ∈ B1/8 ∩Mk (since µTk(Br/8) > 0),

but with ˆ
B2\B1/4∩Mk

m−1∑
j=1

|DN̄k(z) · `kz(vkj )|2 −→ 0,

for some choice of orthonormal vectors {vk1 , . . . , vkm−1}. Up to subsequence, we can extract a
limiting Dir-minimizer u : π∞ ⊃ B2 → AQ(R) with

•
´
B2\B̄1

|u|2 = 1,

•
´
B1
|Du|2 ≤ CΛ,

• η ◦ u ≡ 0,
• u(y) = QJ0K for some y ∈ B1/8,
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but for which ˆ
B2\B̄1

m−1∑
j=1

|Du(z) · vj |2 = 0

for orthonormal directions vj which are the (pointwise) limit of the directions vkj . Thus, arguing
as in the proof of [9, Proposition 5.3], we conclude that u is a function of only one variable
on B2 \ B̄1/4, and so Lemma 6.3 tells us that it is a function of only one variable the whole
of B2. Since u(y) = QJ0K, we have dimH(∆Qu) ≥ m− 1, which contradicts the fact that u is
non-trivial. �

7. Coverings, Minkowski bound and rectifiability

Now that we have the desired bounds on the β2 coefficients as in Proposition 6.2, we are in
a position to conclude the result of Theorem 1.3. The conclusion is achieved via an iterative
covering procedure, originally appearing in [21]. It has since then further been used in [9] in
the context of classical multiple-valued Dirichlet-minimizing functions, followed by [11] for a
fixed normal approximation for an area-minimizing integral current of high codimension.

The proofs of the results in this section are completely identical to those in [11, Section 8],
relying only on the preceding results, which have now been established in this context, in the
previous sections of this article. Thus, the proofs are omitted here, and we instead refer the
reader to [11].

We begin with the following covering lemma, which is the analogue of [11, Lemma 8.1]

Lemma 7.1. Let ρ ≤ 1
100 , let σ < τ < 1

8 and let η = η6.2 > 0. There exists ε4 =
ε4(Λ,m,Q, α0) > 0 sufficiently small such that the following holds. Suppose that T is as
in Assumption 2.5 for these choices of η and ε4. Let x ∈ S ∩B1/8, let D ⊂ S ∩Bτ (x) and let
U := supy∈D I(y, τ).

Then there exists δ = δ7.1(m,Q,Λ, ρ) > 0, a dimensional constant CR = CR(m) > 0 and a
finite cover of D by balls Bri(xi) such that

(a) ri ≥ 10ρσ;
(b)

∑
i r
m−2
i ≤ CRτm−2;

(c) For every i, either ri ≤ σ or

Fi := D ∩Bri(xi) ∩ { y : I(y, ρri) ∈ (U − δ, U + δ) } ⊂ Bρri(Vi),

for some (m− 3)-dimensional subspace Vi ⊂ Rm+n.

Remark 7.2 (Heirarchy of parameters). The parameters ε4 and η of Assumption 2.5 are
initially taken to be small enough so that we can apply Proposition 6.2. Then, ε4 is further
decreased if necessary, to ensure that mα0

0 falls below a desired small dimensional constant, in
order to absorb a suitable error term (see the proof of [11, Proposition 7.2]). Lemma 7.1 will
then be used to prove the following additional efficient covering result, entirely analogous to
[11, Proposition 8.2], where the parameter ρ will be chosen smaller than a geometric constant
depending only on m.

Proposition 7.3. Let η = η6.2 > 0 and let ε4 > 0 be as in Lemma 7.1. There exist δ =
δ7.3(m,Q,Λ), a scale τ = τ(m,Q,Λ, δ) < 1

8 and a dimensional constant CV = CV (m) ≥ 1
such that the following holds.

Assume that T is as in Assumption 2.5 for these choices of η and ε4. Suppose that x ∈
S∩B1/8 and let D ⊂ S∩Bτ (x) and U := supy∈D I(y, τ). Then, for every s ∈]0, τ [, there exists
a finite cover of D by balls Bri(xi) with ri ≥ s and a decomposition of D into sets Ai ⊂ D
such that

(a) Ai ⊂ D ∩Bri(xi);
(b)

∑
i

rm−2
i ≤ CV τm−2;

(c) For every i we have either ri = s or

sup
y∈Ai

I(y, ri) ≤ U − δ.



RECTIFIABILITY OF FLAT SINGULARITIES MOD(2Q) 17

7.1. Conclusion of Theorem 2.4(v). The conclusion of Theorem 2.4(v) now follows from
Proposition 7.3 by exactly the same reasoning as that in [11, Section 8.3]. We therefore do not
include the details here, and refer the reader to the argument therein.
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