
ON THE FORMATION OF MICROSTRUCTURE FOR SINGULARLY PERTURBED

PROBLEMS WITH 2, 3 OR 4 PREFERRED GRADIENTS

JANUSZ GINSTER

Abstract. In this manuscript, singularly perturbed energies with 2, 3 or 4 preferred gradients subject to

incompatible Dirichlet boundary conditions are studied. This extends results on models for martensitic mi-

crostructures in shape-memory alloys (N = 2), a continuum approximation for the J1 − J3-model for discrete
spin systems (N = 4), and models for crystalline surfaces with N different facets (general N). On a unit square,

scaling laws are proven with respect to two parameters, one measuring the transition cost between different

preferred gradients, the other measuring the incompatibility of the set of preferred gradients and the boundary
conditions. By a change of coordinates, the latter can also be understood as as an incompatibility of a variable

domain with a fixed set of preferred gradients. Moreover, it is shown how simple building blocks and covering
arguments lead to upper bounds on the energy and solutions to the differential inclusion problem on general

Lipschitz-domains.

1. Introduction

We consider a singularly perturbed energy for 2, 3 or 4 preferred gradients and study the formation of
microstructure for incompatible boundary conditions in terms of scaling laws for the minimal energy. More
precisely, we consider the energy

(1.1) Eσ,γ,N (u) =

ˆ
(0,1)2

dist(∇u,Kγ,N )2 dx+ σ|D2u|((0, 1)2),

where σ > 0, N ∈ {2, 3, 4} and the set of preferred gradients is defined byKγ,N =
{
eiγ+2iπ k

N : k = 0, . . . , N − 1
}

for γ ∈ (−π, π]. Our main result concerns a scaling law for the minimal energy subject to incompatible boundary
conditions with respect to σ and γ.

Proving scaling laws for the minimal energy has been proven useful to explain the formation of patterns in
a variety of problems in which the energy is non-quasiconvex and identifying the minimizers by analytical or
numerical methods is not possible, c.f. [34]. Often the formation of patterns is related to the competition of a
part of the energy that favors rather uniform structures and a non-quasiconvex part of the energy that favors
oscillations on fine scales. Constructions of good competitors for the upper bound often involve branching
construction that refine in a self-similar manner. A non-exhaustive list of references where this technique
has been successfully applied includes [2, 6, 7, 10, 16, 17, 20, 25, 32, 37, 44] for martensitic microstructure, [36,
38] for compliance minimization, [12, 13, 26, 27, 28, 33, 40, 41, 46] for micromagnetism, [11, 14, 24] for type-I-
superconductors, [3, 4, 5, 19] for compressed thin elastic films, [23, 25] for dislocation patterns and [30, 31] for
helimagnets.

Energies of the form (1.1) appear in different contexts. For N = 2 and γ = π/2 the energy (1.1) reads asˆ
(0,1)2

|∂1u|2 +min{|∂2 + 1|, |∂2u− 1|}2 dx+ σ|D2u|((0, 1)2),
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which is a variant of the energy studied by Kohn and Müller in [35] for pattern formation in shape-memory
alloys, see also [17,49]. In particular, in [49] it is shown that

(1.2) min
u(0,·)=0

Eσ,π/2,2(u) ∼ min{1, σ2/3}.

Here, the term of order 1 corresponds to very uniform configurations such as u = 0, whereas the bound of order
σ2/3 can be shown by a self-similarly refining branching construction.

For N = 4 and γ = π/4 the energy (1.1) is a variant of the energy that appears in certain parameter regimes
(after appropriate rescaling) as the continuum approximation of the discrete J1 − J3-model

Fε,α(φ) = −α
∑

i,j∈εZ2∩(0,1)2:|i−j|=ε

φ(i) · φ(j) +
∑

i,j∈εZ2∩(0,1)2:|i−j|=2ε

φ(i) · φ(j)

associated to a spin field φ : εZ2 ∩ (0, 1)2 → S1, see [15, 30] for the heuristic argument and [29] for a rigorous
derivation via Γ-convergence. A corresponding scaling law is studied in [30] which reads as

(1.3) min
u(0,·)=0

Eσ,π/4,4 ∼ min{1, σ(| log σ|+ 1)}.

Again, the term of order 1 is associated to rather uniform structures such as u = 0, whereas the bound
σ(| log σ| + 1) corresponds again to a self-similarly refining branching construction. However, the scales of the
construction are very different from the one for N = 2. In particular, in contrast to N = 2, for N = 4 it is
possible to construct branching configurations such that (up to an interpolation region of order σ) ∇u ∈ Kπ/4,N .

For general N the energy functional (1.1) is very closely related to the (small slope approximation of the)
free energy of a faceted crystalline surface in R3 with N different facets parameterized by z = u(x, y)

Fσ[u] =

ˆ
W (∇u) +

σ2

2
|∆u|2 dxdy,

where W has N distinct minima in S1, see, for example, [48] and the references therein. Typically, replacing the
term σ|D2u|((0, 1)2) by σ2

´
(0,1)2

|D2u|2 dxdy does no qualitatively change corresponding scaling law results,

see [49] and [45]. Hence, up to replacing the Laplacian by a full Hessian it is to be expected that the scaling
law results presented in this paper are also valid for Fσ above (c.f. also the discussion in [30]). A study of the
dynamics of Fσ, coarsening rates and simulations can, for example, be found in [47,48].

For general γ ∈ (−π, π], the energy (1.1) can by a simple change of variables alternatively be written asˆ
Qγ0−γ

dist(∇u,Kγ0,N )2 + σ|D2u|(Qγ),

where Qγ0−γ evolves from (0, 1)2 by a counterclockwise rotation with angle γ0 − γ. Hence, our studies can
be understood as a generalization of the scaling laws (1.2) and (1.3) (cf. [35, 49] and [30]) either to different
domains or to a different set of preferred gradients.

Our main result is the following scaling law

min
u(0,·)=0

Eσ,γ,N (u) ∼
{
min{| sin(γ)|2, | sin(γ)|3 + σ, σ2/3| sin(γ)|} if N = 2,

min
{
| sin(γ)|2, σ

(
| log σ|

| log | sin(γ)I|

)}
if N = 3, 4,

where the range of γ is by symmetry considerations restricted to the interval around 0 such that | sin(γ)| ≤
| sin(γ + 2πk

N )|, 0 ≤ k ≤ N − 1. The first term | sin(γ)|2 corresponds for all N to a uniform structure, i.e.,
u(x, y) = x. The second term for N = 2 still corresponds to a rather uniform structure, where the function u
behaves as u(x, y) = x close to x = 0 and has one transition to u(x, y) = − cos(γ)x− sin(γ)y shortly after, see
Figure 1. For the last term, branching structures play a role. The corresponding upper bounds can be proven
using variants of the self-similar constructions for γ = π/2 (N = 2) and γ = π/4 (N = 4), for a sketch see
Figure 3 for N = 2 and Figure 6, 8 and 7 for N = 3, 4. Similarly to before, there are significant differences
between the constructions for N = 2 and N = 3, 4, mainly stemming from the fact that for N > 2 it is possible
to construct self-similarly refining competitors such that (up to a small interpolation region) ∇u ∈ Kγ,N . For
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N = 2, this is not possible as ∇u ∈ Kγ,N implies that u is constant in direction eiγ+iπ/2. This is also reflected
in the different scaling laws for N = 2 and N = 3, 4. It is to be expected that a similar behavior a for N = 3, 4
is also true for N > 4. It would then be interesting to understand the scaling behavior with respect to the
number of preferred gradients N .

Additionally, for N = 3, 4 we discuss how upper bounds can be constructed using simple building blocks and
covering arguments. More precisely, the structures of Kγ,N allow us to construct functions u : T → R (where
T is a (rotated) square if N = 4 or a particular triangle for N = 3) such that u = 0 on ∂T , ∇u ∈ Kγ,N a.e.
and |D2u|(T ) ≤ C (see Figure 9), c.f. also [8, 9, 18, 22, 39, 42, 43] and the references therein for constructions
in the significantly more complicated vectorial setting. Then simple covering arguments allow us to construct
upper bounds on more general domains and give rise to solutions of the differential inclusion u = 0 on ∂Ω and
∇u ∈ Kγ,N . Similarly to [43] (c.f. also [30]), by interpolation inequalities regularity of these solutions can be
established in certain fractional Sobolev spaces.

In the following, we will fix notation and state the precise model under consideration. In Section 3 we will
present our main results and discuss the organization of the proofs.

2. Notation and setting of the problem

We will write C or c for generic constants that may change from line to line but do not depend on the problem
parameters. We write log to denote the natural logarithm. We write A ∼ B for A,B ∈ R if there exists a
universal constant C > 0 such that 1

CA ≤ B ≤ CA. For the ease of notation, we always identify vectors with

their transposes. Moreover, we will identify C with R2 and denote by e1 and e2 the two canonical basis vectors
for R2.
For a measurable set B ⊆ Rn with n = 1, 2, we use the notation | B | or Ln(B) to denote its n-dimensional
Lebesgue measure. In addition, for B ⊆ R2 we write conv(B) ⊆ R2 for its convex hull and int(B) for its interior.
For γ ∈ [−π, π] and N ∈ {2, 3, 4} we set

Kγ,N =
{
eiγ+2iπ l

N : 0 ≤ l ≤ N − 1
}
⊆ R2.

The set of admissible functions is defined as

A :=
{
u ∈ W 1,2((0, 1)2) : ∇u ∈ BV ((0, 1)2), u(0, ·) = 0

}

For σ > 0, N ∈ {2, 3, 4} and γ ∈ [−π, π] we consider the functional Eσ,γ,N : A → [0,∞) by

Eσ,γ,N (u) =

ˆ
(0,1)2

dist2(∇u,Kγ,N ) dx+ σ | D2u | (Ω).

The expression |D2u|(Ω) in the second term of the functional Eσ,γ,N denotes the total variation of the vector
measure D2u. By symmetry considerations it will be enough to consider the angles γ ∈ [−π/2, π/2] such
that |eiγ · e2| = | sin(γ)| is minimal within the set Kγ,N i.e., γ ∈ ΓN , where ΓN = [−π/2, π/2] for N = 2 ,
ΓN = [−π/6, π/6] for N = 3, and ΓN = [−π/4, π/4] for N = 4.

Note that u ∈ A in particular implies that u ∈ W 1,1((0, 1)2) and ∇u ∈ BV . Hence, u has a continuous
representative on the closed square [0, 1]2, see e.g. [23, Lemma 9]. We will always identify such functions with
their continuous representatives.
For an open set B ⊆ R2 and u ∈ W 1,2(B) with ∇u ∈ BV (B), we use the notation Eσ,γ,N (u;B) for the energy
on B, i.e.,

Eσ,γ,N (u;B) =

ˆ
B

dist2(∇u,Kγ,N ) dx+ σ|D2u|(B).

In addition for x ∈ (0, 1), I ⊆ (0, 1) and u ∈ A

Eσ,γ,N (u; {x} × I) =

ˆ
I

dist2(∇u(x, y),Kγ,N ) dy + σ|∂2∇u(x, ·)|(I).
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Note that since ∇u ∈ BV ((0, 1)2) this formula makes sense for almost every x ∈ (0, 1) in the sense of slicing of
BV -functions, see [1]. Similarly, we write for y ∈ (0, 1) and u ∈ A

Eσ,γ,N (u; I × {y}) =
ˆ
I

dist2(∇u(x, y),Kγ,N ) dx+ σ|∂1∇u(·, y)|(I).

Eventually, we define for B ⊆ (0, 1)2 open with Lipschitz boundary the set

A0(B) :=
{
u ∈ W 1,2(B) : ∇u ∈ BV (B), u = 0 on ∂B

}
.

3. Main result

Our main result is the following scaling law for the minimal energy.

Theorem 3.1. There exists constants C, c > 0 such that for all σ > 0 and γ ∈ ΓN it holds:

(1) If N = 2 then

cmin
{
σ2/3| sin(γ)|+ σ, σ + | sin(γ)|3, | sin(γ)|2

}
≤ min

u∈A
Eσ,γ,N (u)

≤Cmin
{
σ2/3| sin(γ)|+ σ, σ + | sin(γ)|3, | sin(γ)|2

}
.

(2) If N = 3 or N = 4 then

cmin

{
σ

( | log σ |
| log | sin(γ)| | + 1

)
, | sin(γ)|2

}
≤ min

u∈A
Eσ,γ,N (u)

≤Cmin

{
σ

( | log σ |
| log | sin(γ)| | + 1

)
, | sin(γ)|2

}
.

The proof of the theorem is split into different sections. Bounds that are valid for all N ∈ {2, 3, 4} are
collected in Secion 4. Specific upper and lower bounds for N = 2 are proven in Section 5. The lower bound for
N = 3, 4 can be found in Proposition 6.3 in Section 6. The corresponding upper bound is shown in Proposition
6.4 in Section 6.

Below, we identify the different regimes that appear in the bounds in Theorem 3.1.

Remark 1. (1) We note that it holds for γ ∈ Γ2

• if σ ≥ | sin(γ)|2 then

min
{
σ2/3| sin(γ)|+ σ, σ + | sin(γ)|3, | sin(γ)|2

}
= | sin(γ)|2;

• if | sin(γ)|3 ≤ σ ≤ | sin(γ)|2 then

1

2
(σ + | sin(γ)|3) ≤ σ ≤min

{
σ2/3| sin(γ)|+ σ, σ + | sin(γ)|3, | sin(γ)|2

}

≤σ + | sin(γ)|3;
• if σ ≤ | sin(γ)|3 then

1

2
(σ2/3| sin(γ)|+ σ) ≤ σ2/3| sin(γ)| ≤min

{
σ2/3| sin(γ)|+ σ, σ + | sin(γ)|3, | sin(γ)|2

}

≤σ2/3| sin(γ)|+ σ.

Hence, we find that

min
{
σ2/3| sin(γ)|+ σ, σ + | sin(γ)|3, | sin(γ)|2

}
∼





| sin(γ)|2 if σ ≥ | sin(γ)|2,
σ if | sin(γ)|2 ≥ σ ≥ | sin(γ)|3,
| sin(γ)|σ2/3 if | sin(γ)|3 ≥ σ.

(2) For N = 3, 4 and γ ∈ ΓN it holds
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• if σ ≥ | sin(γ)|2 then

| sin(γ)|2 = min

{
σ

( | log σ |
| log | sin(γ)| | + 1

)
, | sin(γ)|2

}
.

• if σ ≤ | sin(γ)|2 then

| log σ |
| log | sin(γ)| | − 3 ≤ | log σ/| sin(γ)|3 |

| log | sin(γ)| | ≤ | sin(γ)|3
σ | log | sin(γ)| |

≤| sin(π/4)| | sin(γ)|2
σ | log | sin(π/4)| | =

√
2
| sin(γ)|2
σ log 2

,

since the mapping t → t
| log(t)| is increasing for t ∈ (0, 1). Hence, it follows

1

10
σ

( | log σ |
| log | sin(γ)| | + 1

)
≤ 1

5
σ

( | sin(γ)|2
σ

+ 4

)
≤ | sin(γ)|2

5
+

4

5
σ ≤ | sin(γ)|2

and consequently,

min

{
σ

( | log σ |
| log | sin(γ)| | + 1

)
, | sin(γ)|2

}
≥ 1

10
σ

( | log σ |
| log | sin(γ)| | + 1

)
.

In particular, we have

min

{
σ

( | log σ |
| log | sin(γ)| | + 1

)
, | sin(γ)|2

}
∼
{
| sin(γ)|2 if σ ≥ | sin(γ)|2,
σ
(

|log σ|
|log | sin(γ)|| + 1

)
if σ ≤ | sin(γ)|2.

Additionally, we also consider for N = 3, 4 the minimization problem subject to u = 0 on ∂(0, 1)2. In this
situation the scaling laws for N = 3 or N = 4 differ due to different incompatibilities of Kγ,N with respect to
the full boundary of (0, 1)2.

Theorem 3.2. There exists constants C, c > 0 such that it holds for all γ ∈ Γ4

cmin

{
1, σ

( | log σ|
| log | sin(γ)| | + 1

)}
≤ min

u∈A0((0,1)2)
Eσ,γ,4(u) ≤ Cmin

{
1, σ

( | log σ|
| log | sin(γ)| | + 1

)}
.

Moreover, it holds for all γ ∈ Γ3

cmin {1, σ (| log σ|+ 1)} ≤ min
u∈A0

Eσ,γ,3(u) ≤ Cmin {1, σ (| log σ|+ 1)} .

Upper bounds can be shown by means of optimal coverings with suitable building blocks. The same arguments
lead to upper bounds and solutions to the differential inclusion problem on general Lipschitz domains.

Proposition 3.3. Let N = 3, 4 and Ω ⊆ R2 a Lipschitz domain. Then the following hold:

(1) There exists a constant CΩ > 0 such that

min
u∈A0(Ω)

Eσ,γ,N (u; Ω) ≤ CΩσ (| log σ|+ 1) .

(2) There exists u ∈ W 1,∞
0 (Ω) such that ∇u ∈ BVloc(Ω;Kγ,N ) and ∇u ∈ W s,q for all 0 < s < 1, q ∈ (0,∞)

satisfying 1
q > s.

The proofs are discussed in Section 7.
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4. Preliminaries

We first show the energy bounds that are true for all N ∈ {2, 3, 4}. The argument in the lower bound are
closely related to the ones in [30, Lemma 5] (c.f. also [31]).

Proposition 4.1. There exists cA > 0 such that for all γ ∈ ΓN , N ∈ {2, 3, 4}, it holds

cA min{| sin(γ)|2, σ} ≤ min
u∈A

Eσ,γ,N (u) ≤ | sin(γ)|2.

Proof. Step 1: Upper bound. Consider u : (0, 1)2 → R defined by u(x, y) = cos(γ)x. Then

Eσ,γ,N (u1) ≤ | cos(γ)e1 − eiγ |2 = | sin(γ)|2.

Step 2: Lower bounds. Let u ∈ A. Without loss of generality, we may assume that it holds Eσ,γ,N (u) ≤
1
48 min{| sin(γ)|2, σ} (otherwise there is nothing to show). By a standard slicing and Fubini-type argument, we
find x̄, y1, y2 ∈ (0, 1) such that y2 − y1 ≥ 1/2,

ˆ 1

0

dist(∇u(s, yi),Kγ,N )2 ds+ σ|∂1∇u|((0, 1)× {yi}),≤ 4Eσ,γ,N (u)

and

ˆ 1

0

dist(∇u(x̄, t),Kγ,N )2 dt+ σ|∂2∇u|({x̄} × (0, 1)) ≤ Eσ,γ,N (u).

In particular, there exists t ∈ (0, 1) and ξ ∈ Kγ,N such that |∇u(t, y1)− ξ| ≤ 2√
48
| sin(γ)|. Additionally, it holds

|∂1∇u|((0, 1)× {y1}), |∂1∇u|((0, 1)× {y2}), |∂2∇u|({x̄} × (0, 1)) ≤ 4
σEσ,γ,N (u) ≤ 1

12 . Consequently, it holds for
almost all s ∈ (0, 1)

|∇u(s, y1)− ξ|, |∇u(s, y2)− ξ|, |∇u(x̄, s)− ξ| ≤ 1√
12

| sin(γ)|+ 1

4
≤ 7

12
≤ 1√

2
.

Since the distance between different points in Kγ,N is at least
√
2, it follows for almost all s ∈ (0, 1) that

|∇u(s, y1)− ξ| = dist(∇u(s, y1),Kγ,N ),

|∇u(s, y2)− ξ| = dist(∇u(s, y2),Kγ,N ),

and |∇u(x̄, s)− ξ| = dist(∇u(x̄, s),Kγ,N ).

Then we estimate using u(0, ·) = 0

|u(x̄, y2)− u(x̄, y1)| ≤
ˆ x̄

0

|∂1u(s, y2)− ξ1|+ |∂1u(s, y1)− ξ1| ds

≤
ˆ 1

0

dist(∇u(s, y2),Kγ,N ) + dist(∇u(s, y1),Kγ,N ) ds

≤
(ˆ 1

0

dist(∇u(s, y2),Kγ,N )2 ds

)1/2

+

(ˆ 1

0

dist(∇u(s, y1),Kγ,N )2 ds

)1/2

≤ 4
√
Eσ,γ,N (u).
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(
− cos(γ)
− sin(γ)

)

(
1
0

)

| sin(γ)|/(1 + cos(γ))

Figure 1. Sketch of the construction with an energy of order | sin(γ)|3 + σ for γ ≤ 0.

On the other hand,

|u(x̄, y2)− u(x̄, y1)| =
∣∣∣∣
ˆ y2

y1

∂2u(x̄, s)− ξ2 + ξ2 ds

∣∣∣∣

≥ 1

2
|ξ2| −

ˆ 1

0

dist(∇u(x̄, s),Kγ,N ) ds

≥ 1

2
| sin(γ)| −

(ˆ 1

0

dist(∇u(x̄, s),Kγ,N )2 ds

)1/2

≥ 1

2
| sin(γ)| − 1√

48
| sin(γ)| ≥ 1

4
| sin(γ)|,

where we used the definition of ΓN for the second inequality. Consequently, we find

Eσ,γ,N (u) ≥ 1

162
| sin(γ)|2 ≥ 1

162
min{σ, | sin(γ)|2}.

□

5. The 2-Gradient Problem

In this section we prove the scaling law for N = 2 claimed in Theorem 3.1. The additional upper in the
regime σ ≤ | sin(γ)|3 is proven using a variant of the celebrated Kohn-Müller branching construction developed
in [35], c.f. also [21,49]. The lower bound uses a variant of the argument from [17], c.f. also [21,49].

Proof of Theorem 3.1 for N = 2. Step 1: Upper bounds.
First assume γ ∈ [−π/2, 0] (γ ∈ (0, π/2] can be treated analogously) and consider the function u : Ω → R

defined by (see also Fig. 1)

u(x, y) =

{
x if (x, y) · v ≤ 0,

eiγ+iπ · (x, y) if (x, y) · v ≥ 0,
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θ 1

(
0
1

)

(
0
−1

)

(
− sin(γ)

2(1−θ)

−1

)

(
− sin(γ)

2(1−θ)

1

)

0

− sin(γ)

(
sin(γ)
cos(γ)

1

)

(
0
−1

)

(
− cos(γ)
sin(γ)

)

Figure 2. Left: Sketch of the building block for the branching construction on Sγ for N = 2.
Right: Sketch of the gradient of the function u∂ used to moderate between the sawtooth
functions (in vertical direction) achieved by the branching construction and the boundary
condition u = 0 on the line conv{(− cos(γ), sin(γ)), (0, 0)}. This construction is used if 0 ≤
γ ≤ π/4 is relatively small. The red and green regions indicate that the y-derivative is ±1,
respectively.

where v = (− sin(γ), 1 + cos(γ)). Then

Eσ,γ,2(u) ≤ L2
({

(x, y) ∈ (0, 1)2 : (x, y) · v ≤ 0
})

|e1 − eiγ |2 + 2σH1
({

(x, y) ∈ (0, 1)2 : (x, y) · v = 0
})

≤ C(| sin(γ)|3 + σ).

For the second inequality, note that |e1 − eiγ |2 = |1 − cos(γ)|2 + | sin(γ)|2 ≤ C|γ|4 + | sin(γ)|2 ≤ C| sin(γ)|2.
Moreover, note that L2

({
(x, y) ∈ (0, 1)2 : (x, y) · v ≤ 0

})
≤ | sin(γ)|

1+cos(γ) ≤ | sin(γ)|.
By Remark 1 and the upper bound in Proposition 4.1, it remains to show that there exists u : (0, 1)2 → R such
that Eσ,γ,2(u) ≤ C| sin(γ)|σ2/3 if σ ≤ | sin(γ)|3. In the following, we will assume 0 ≤ γ ≤ π

2 (γ < 0 can be
treated similarly). We first present a modified version of the self-similar Kohn-Müller branching construction,
see [21,35,49], on the domain (see Figure 3 for a sketch)

Sγ = conv

{(
− cos(γ)
sin(γ)

)
,

(
1

sin(γ)

)
,

(
1
0

)
,

(
0
0

)}
,

i.e., we will construct a function u : Sγ → R such that u = 0 on the line conv

{(
− cos(γ)
sin(γ)

)
,

(
0
0

)}
and

Eσ,π/2,2(u;Sγ) ≤ C| sin(γ)|σ2/3. We will need two slightly different constructions for 0 ≤ γ ≤ π
4 and π

4 ≤ γ ≤ π
2 ,

respectively, see Figure 3. As in the original construction, we fix for the proof some θ ∈ ( 14 ,
1
2 ).

Step 1a: Branching on Sγ for γ ∈ (0, π/4]:
Consider the building block for the branching construction ubb : (θ, 1) × R → R defined for (x, y) ∈ (θ, 1) ×
(0, sin(γ)) as (see Figure 3)

ubb(x, y) =





y if 0 ≤ y ≤ sin(γ)
4 + sin(γ) x−θ

4(1−θ) ,

−y + sin(γ) x−θ
2(1−θ) +

sin(γ)
2 if sin(γ)

4 + sin(γ) x−θ
4(1−θ) ≤ y ≤ sin(γ)

2 ,

y + sin(γ) x−θ
2(1−θ) −

sin(γ)
2 if sin(γ)

2 ≤ y ≤ 3 sin(γ)
4 − sin(γ) x−θ

4(1−θ) ,

−y + sin(γ) if 3 sin(γ)
4 − sin(γ) x−θ

4(1−θ) ≤ y ≤ sin(γ).

and extended sin(γ)-periodically in y. Note that u(θ, y) = 1
2u(1, 2y) and u(·, 0) = u(·, sin(γ)) = 0.
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Additionally, define the function u∂ : conv

{(
0
0

)
,

(
− cos(γ)
sin(γ)

)
,

(
0

sin(γ)

)}
=: ∆γ → R as (see Figure 2)

u∂(x, y) =

{
sin(γ)
cos(γ)x+ y if y ≤ sin(γ)− sin(γ)

2 cos(γ) (x+ cos(γ)),

−y + sin(γ) if y ≥ sin(γ)− sin(γ)
2 cos(γ) (x+ cos(γ)).

Now, let K,M ∈ N be fixed. Then we define the function uK : Sγ → R as follows (see Figure 2):

(1) Let 0 ≤ m ≤ M − 1. Then define for (x, y) ∈ (1− m
M cos(γ), 1)× (m sin(γ)

M , (m+1) sin(γ)
M )

uK(x, y) =
1

M
ubb(1,My).

(2) Let 0 ≤ k ≤ K, 0 ≤ m ≤ M − 1, a ∈ {0, 1}k and

(x, y) ∈
(
θk+1 − m

M
cos(γ)−

k∑

k′=1

ak′2−k′ cos(γ)

M
, θk − m

M
cos(γ)−

k∑

k′=1

ak′2−k′ cos(γ)

M

)

×
(

m

M
sin(γ) +

k∑

k′=1

ak′2−k′ sin(γ)

M
,
m

M
sin(γ) +

k∑

k′=1

ak′2−k′ sin(γ)

M
+ 2−k sin(γ)

M

)
.

Then define

uK(x, y) =
1

M
2−kubb

(
θ−k

(
x+

m

M
cos(γ) +

k∑

k′=1

ak′2−k′ cos(γ)

M

)
, 2kMy

)
.

(3) Let 0 ≤ k ≤ K, 0 ≤ m ≤ M − 1, a ∈ {0, 1}k and

(x, y) ∈
(
θk+1 − m

M
cos(γ)−

k∑

k′=1

ak′2−k′ cos(γ)

M
− 2−k−1 cos(γ)

M
, θk+1 − m

M
cos(γ)−

k∑

k′=1

ak′2−k′ cos(γ)

M

)

×
(

m

M
sin(γ) +

k∑

k′=1

ak′2−k′ sin(γ)

M
+ 2−k−1 sin(γ)

M
,
m

M
sin(γ) +

k∑

k′=1

ak′2−k′ sin(γ)

M
+ 2−k sin(γ)

M

)
.

Then define uK constant in x-direction as

uK(x, y) =
1

M
2−kubb(θ, 2

kMy).

(4) Let a ∈ {0, 1}K+1, 0 ≤ m ≤ M − 1 and

(x, y) ∈
(
−m

M
cos(γ)−

K+1∑

k′=1

ak′2−k′ cos(γ)

M
, θK+1 − m

M
cos(γ)−

K+1∑

k′=1

ak′2−k′ cos(γ)

M

)

×
(

m

M
sin(γ) +

K+1∑

k′=1

ak′2−k′ sin(γ)

M
,
m

M
sin(γ) +

K+1∑

k′=1

ak′2−k′ sin(γ)

M
+ 2−K−1 sin(γ)

M

)
.

Then define uK constant in x-direction as

uK(x, y) =
1

M
2−Kubb(θ, 2

KMy).

(5) Let ℓ ∈ {0, . . . , 2K+1M − 1} and

(x, y) ∈ conv

{
ℓ

2K+1M

(
− cos(γ)
sin(γ)

)
,

ℓ+ 1

2K+1M

(
− cos(γ)
sin(γ)

)
,

ℓ

2K+1M

(
− cos(γ)
sin(γ)

)
+

1

2K+1M

(
0

sin(γ)

)}
.

Then we define

uK(x, y) =
1

M
2−K−1u∂

(
2K+1M

(
x+

ℓ

2K+1M
cos(γ)

)
, 2K+1M

(
y − ℓ

2K+1M
sin(γ)

))
.
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Figure 3. Sketch of the Kohn-Müller type branching constructions. Top: Sketch of the regions
appearing in the definition of uK in (1) (brown), (2) (blue), (3) (beige), (4) (pink), and (5)
(orange) on the domain Sγ . In the regions (1) and (3) the function is constant in x-direction.
Middle: Sketch for small γ. The interpolation between the boundary values and the branching
construction uses an extension to region (4) which is constant in x and the function u∂ as a
building block in region (5). The regions with ∂2uK = 1 is colored in red, the region with
∂2uK = −1 is colored in green. Bottom: Sketch for large γ. In region (4) a linear interpolation
in x to uK = 0 is used. Then uK is the extended by 0 into region (5). The regions with
∂2uK = 1 is colored in red, the region with ∂2uK = −1 is colored in green.
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We note that by definition we have uK(·, 0) = uK(·, sin(γ)) = 0 and uK(−t cos(γ), t sin(γ)) = 0 for all t ∈ (0, 1).
Moreover, we estimate using that cos(γ) ≥ cos(π/4) > 0, ∂1u = 0 a.e. in regions (1), (3) and (4), and ∂2uK ∈
{±1} a.e.

ˆ
Sγ

(∂1uK)2 +min{|∂2uK − 1|, |∂2uK + 1|}2 dxdy(5.1)

≤
K∑

k=0

1

M2
(4θ)−k

ˆ 1

θ

ˆ sin(γ)

0

(∂1ubb(x, y))
2 dxdy +

1

M
2−K−1

ˆ
∆γ

(∂1u∂(x, y))
2 dxdy

≤C

(
1

M2
sin(γ)3 +

1

M
2−K−1 sin(γ)3

)

and

|D2uK |(Sγ) ≤ |∂2∂2uK |(Sγ) + 2|∂2∂1uK |(Sγ)|+ |∂1∂1uK |(Sγ)(5.2)

≤ C

(
K+1∑

k=0

M2kθk +K + 1 + sin(γ)K +

K+1∑

k=0

2−kθ−k sin(γ)

)

≤ C
(
M +K + 2−Kθ−K sin(γ)

)

≤ C
(
M +K + 2K sin(γ)

)
.

Eventually, choose M = ⌈σ−1/3 sin(γ)⌉ ≤ 2σ−1/3 sin(γ) and K such that K = ⌈ log(σ−1/3 sin(γ))
log(2) ⌉ ≤ 2σ−1/3 sin(γ)

log(2)

(recall that σ ≤ sin(γ)3). It then follows from (5.1) and (5.2)

Eσ,π/2,2(uK ;Sγ) =

ˆ
Sγ

(∂1uK)2 +min{|∂2uK − 1|, |∂2uK + 1|}2 dxdy + σ|D2uK |(Sγ)

≤C
(
σ2/3 sin(γ) + σ1/32−K sin(γ)2 + σK + σ2K sin(γ)

)

≤Cσ2/3 sin(γ).

Step 1b: Branching on Sγ for γ ∈ (π/4, π/2]:
Next, consider π

4 < γ ≤ π
2 . Again, fix K,M ∈ N. In the regions (1), (2), (3) we define the function uK : Sγ → R

as before. Precisely (see Figure 2),

(1) Let 0 ≤ m ≤ M − 1. Then define for (x, y) ∈ (1− m
M cos(γ), 1)× (m sin(γ)

M , (m+1) sin(γ)
M )

uK(x, y) =
1

M
ubb(1,My).

(2) Let 0 ≤ k ≤ K, 0 ≤ m ≤ M − 1, a ∈ {0, 1}k and

(x, y) ∈
(
θk+1 − m

M
cos(γ)−

k∑

k′=1

ak′2−k′ cos(γ)

M
, θk − m

M
cos(γ)−

k∑

k′=1

ak′2−k′ cos(γ)

M

)

×
(

m

M
sin(γ) +

k∑

k′=1

ak′2−k′ sin(γ)

M
,
m

M
sin(γ) +

k∑

k′=1

ak′2−k′ sin(γ)

M
+ 2−k sin(γ)

M

)
.

Then define

uK(x, y) =
1

M
2−kubb

(
θ−k

(
x+

m

M
cos(γ) +

k∑

k′=1

ak′2−k′ cos(γ)

M

)
, 2kMy

)
.
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(3) Let 0 ≤ k ≤ K, 0 ≤ m ≤ M − 1, a ∈ {0, 1}k and

(x, y) ∈
(
θk+1 − m

M
cos(γ)−

k∑

k′=1

ak′2−k′ cos(γ)

M
− 2−k−1 cos(γ)

M
, θk+1 − m

M
cos(γ)−

k∑

k′=1

ak′2−k′ cos(γ)

M

)

×
(

m

M
sin(γ) +

k∑

k′=1

ak′2−k′ sin(γ)

M
+ 2−k−1 sin(γ)

M
,
m

M
sin(γ) +

k∑

k′=1

ak′2−k′ sin(γ)

M
+ 2−k sin(γ)

M

)
.

Then define

uK(x, y) =
1

M
2−kubb(θ, 2

kMy).

However, in this case we simply use linear interpolation in x to a vertical interface in region (4) and then extend
uK by 0 in region (5). Precisely:

(4) Let a ∈ {0, 1}K+1, 0 ≤ m ≤ M − 1 and

(x, y) ∈
(
−m

M
cos(γ)−

K+1∑

k′=1

ak′2−k′ cos(γ)

M
, θK+1 − m

M
cos(γ)−

K+1∑

k′=1

ak′2−k′ cos(γ)

M

)

×
(

m

M
sin(γ) +

K+1∑

k′=1

ak′2−k′ sin(γ)

M
,
m

M
sin(γ) +

K+1∑

k′=1

ak′2−k′ sin(γ)

M
+ 2−K−1 sin(γ)

M

)
.

Then define

uK(x, y) = θ−K−1

(
x+

m

M
cos(γ) +

K+1∑

k′=1

ak′2−k′ cos(γ)

M

)
1

M
2−Kubb(θ, 2

KMy).

(5) Let ℓ ∈ {0, . . . , 2K+1M − 1} and

(x, y) ∈ conv

{
ℓ

2K+1M

(
− cos(γ)
sin(γ)

)
,

ℓ+ 1

2K+1M

(
− cos(γ)
sin(γ)

)
,

ℓ

2K+1M

(
− cos(γ)
sin(γ)

)
+

1

2K+1M

(
0

sin(γ)

)}
.

Then we define

uK(x, y) = 0.

We only compute the energy contributions from the regions (4) and (5). The contribution in (4) for the term
σ|D2uK | can be estimated by a term of the form Cσ(M2KθK + 1), whereas the other term can be estimated
by C((4θ)−KM−2 sin(γ)3+ θK sin(γ)) since the building block ubb is bounded by sin(γ). Additionally, in region
(5) we obtain an energy less than 2−K 1

M . Hence, we findˆ
Sγ

(∂1uK)2 +min{|∂2uK − 1|, |∂2uK + 1|}2 dxdy + σ|D2uK |(Sγ)

≤C

(
1

M2
+ 2−K 1

M
+ θK

)
+ Cσ(M +K + 2K)

≤C

(
1

M2
+ 2−K 1

M
+ σ(M + 2K)

)
.

Then choose M = ⌈σ−1/3⌉ and K = log σ−1/3

log(2) ≤ 2σ−1/3

log(2) . It follows that

Eσ,π/2,2(uK ;Sγ) =

ˆ
Sγ

(∂1uN )2 +min{|∂2uN − 1|, |∂2uN + 1|}2 dxdy + σ|D2uN |(Sγ)

≤ Cσ2/3 ≤ Cσ2/3 sin(γ),

since π/4 ≤ γ ≤ π/2.



FORMATION OF MICROSTRUCTURE FOR 2, 3 OR 4 PREFERRED GRADIENTS 13

(
cos(γ)
sin(γ)

)
eiγ

eiγ+iπ/2

Figure 4. Sketch of the construction of the test function u in Step 1c. The purple area extends
Tγ and is a rotated version of Sγ . In this region, we use a rotated version of the branching
constructions from Step 1a and 1b in the proof of the upper bound of Theorem 3.1 for N = 2,
Step 1 in the proof of Proposition 6.4 (N = 4) and Step 2 in the proof of Proposition 6.4
(N = 3).

Step 1c: Branching on (0, 1)2:
Define the set

Tγ =
{
(x, y) ∈ (0, 1)2 : (x, y − 1) · eiγ ≤ 0

}
.

Let w : Sγ → R be the function from step 1a or 1b according to the case γ ∈ (π/4, π/2] or γ ∈ (0, π/4],
respectively. Note that w(x, sin(γ)) = 0 for all x ∈ (− cos(γ), 1). Then we define (see Figure 4)

u(x, y) =

{
eiγ · (x, y − 1) if (x, y) /∈ Tγ ,

w(Rγ(x, y − 1)) if (x, y) ∈ Tγ ,

where Rγ is the rotation by the angle π/2− γ. Using step 1, we obtain that

Eσ,γ,2(u) ≤ Eσ,π/2,2(w;Sγ) + 4σ ≤ C| sin(γ)|σ2/3 + 4σ ≤ C| sin(γ)|σ2/3,

where we used that σ1/3 ≤ | sin(γ)|.

Step 2: Lower bound:
Let u ∈ A and assume for simplicity −π/2 ≤ γ ≤ 0. Again, note that for σ ≥ | sin(γ)|3 the lower bound

was already shown in Proposition 4.1, c.f. Remark 1. Hence, we assume that σ ≤ | sin(γ)|3. Now, let t :=
1
4σ

1/3| sin(γ)|−1 ≤ 1/4, ξ := eiγ and ξ⊥ := eiγ+iπ/2. Then find a ∈ (t, 1
2 ) such that (see Figure 5)

Eσ,γ,2

(
u; (0, 1)2 ∩ {(0, y) + rξ⊥ : y ∈ (a− t, a), r ∈ (0, 1)}

)
≤ 4t Eσ,γ,2(u).

Let us write S := (0, 1)2 ∩ {(0, y) + rξ⊥ : y ∈ (a− t, a), r ∈ (0, 1)}. Now, we write for r ∈ (0, 1/2)

Lr =
{
a+ rξ⊥ + sξ : s ∈ (0, | sin(γ)|t)

}
⊆ S.
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Lr

S

| sin(γ)|t

t

ξ⊥

ξ

Figure 5. Sketch of the choices made in the proof of the lower bound in Theorem 3.1 for
N = 2.

Then find by a slicing and Fubini-type argument r ∈ (0, 1/2) such thatˆ
Lr

dist(∇u,Kγ,N )2 dH1 + σ|∂ξ∇u|(Lr) ≤ 2Eσ,γ,2(u;S) ≤ (8t)Eσ,γ,2(u).(5.3)

Now one of the following options holds true:

(1) dist(∇u,Kγ,N ) = |∇u− ξ| almost everywhere on Lr,
(2) dist(∇u,Kγ,N ) = |∇u+ ξ| almost everywhere on Lr,
(3) |∂ξ∇u|(Lr) ≥ 1/4,
(4) dist(∇u,Kγ,N ) ≥ 1/4 almost everywhere on Lr.

If (3) or (4) hold true, we obtain from (5.3)

(5.4) min{σ/4, | sin(γ)|t/16} ≤ 8tEσ,γ,2(u).

Let us now assume that (1) holds true (case (2) can be treated similarly). By the triangle inequality we obtain

1

4
(| sin(γ|t)2 =

1

4
H1(Lr)

2 ≤ min
c∈R

∥u− ξ · (x, y)− c∥L1(Lr) + ∥u∥L1(Lr).

On the other hand, we estimate using Poincaré’s inequality

min
c∈R

∥u(x, y)− ξ · (x, y)− c∥L1(Lr) ≤ (| sin(γ)|t)∥∂ξu(x, y)− 1∥L1(Lr)

≤ (| sin(γ)|t)3/2∥∇u(x, y)− ξ∥L2(Lr) ≤
√
8(| sin(γ)|t)3/2t1/2Eσ,γ,2(u)

1/2

and

∥u∥L1(Lr) ≤ ∥∂ξ⊥u∥L1(S) ≤ (| sin(γ)|t)1/2∥dist(∇u,Kγ,N )∥L2(S) ≤ 2(| sin(γ)|t)1/2t1/2Eσ,γ,2(u)
1/2.

Consequently, we obtain

Eσ,γ,2(u) ≥
1

128
min{| sin(γ)|, | sin(γ)|3t2}.
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Together with (5.4) this yields

Eσ,γ,N (u) ≥ 1

128
min{σt−1, | sin(γ)|, | sin(γ)|3t2}} ≥ 1

2048
σ2/3| sin(γ)|,

since | sin(γ)| ≥ | sin(γ)|3 ≥ | sin(γ)|σ2/3. □

6. The 3- and 4-Gradient Problem

6.1. The lower bound. We split the proof of the lower bound into different steps depending on the size of
| sin(γ)|. The general strategy is similar to the one used in [30], c.f. also [31].

We start with proving the lower bound for all relatively large (in absolute value) angles γ ∈ ΓN . Here, the
term | log | sin(γ)|| in the denominator of the lower bound will not play a role as it is uniformly bounded.

Proposition 6.1. Let N = 3, 4 and γ0 ∈ ΓN with γ0 > 0. Then there exists a constant cB > 0 such that for
all γ ∈ Γ0 with |γ| ≥ γ0 it holds

min
u∈A

Eσ,γ,N (u) ≥ cB min{σ(| log σ|+ 1), 1}.

Proof. Let u ∈ A. We fix α0 = min{sin(γ0), cos(π/4), 1/16} and c1 =
α2

0

256 ≤ 1. We assume that Eσ,γ,N (u) ≤
c
1/2
1

16 min{σ(| log σ|+ 1), 1}. Otherwise there is nothing to show.
Let 0 < s ≤ c1. Then find an interval I ⊆ (0, 1) of length s

c1
such that

Eσ,γ,N (u; (0, 1)× I) ≤ 8s

c1
Eσ,γ,N (u)

and

ˆ
I

dist(∇u(s, t),Kγ,N )2 dt+ σ|∂2∇u(s, ·)|(I) ≤ 8s

c1

(ˆ 1

0

dist(∇u(s, t),Kγ,N )2 dt+ σ|∂2∇u(s, ·)|(0, 1)
)
.

Then one of the following three conditions has to hold on I:

(1) |∂2∇u(s, ·)|(I) ≥ 1
4 ,

(2) ∃ξ ∈ Kγ,N such that |∇u(s, t)− ξ| ≤ 1
2 for almost all t ∈ I,

(3)
´
I
dist(∇u(s, t),Kγ,N )2 dt ≥ 1

16 |I|.
If (1) or (3) is true, we obtainˆ

I

dist(∇u(s, t),Kγ,N )2 dt+ σ|∂2∇u(s, ·)|(I) ≥ min{σ/4, |I|/16}.

Lastly, we assume that (2) is true. By the triangle inequality, we observe (recall that |ξ2| ≥ sin(γ0) by definition
of ΓN )

α0

4
|I|2 ≤ min

c∈R
∥ξ2y − c∥L1(I) ≤ ∥u(s, ·)∥L1(I) +min

c∈R
∥u(s, y)− ξ2y − c∥L1(I).

Let us first assume that α0

8 |I|2 ≤ ∥u(s, ·)∥L1(I). We estimate

α0

8
|I|2 ≤

ˆ
I

|u(s, t)| dt ≤
ˆ s

0

ˆ
I

dist(∇u(s, t),Kγ,N ) dtds+ s|I|

≤ Eσ,γ,N (u; (0, 1)× I)1/2s1/2|I|1/2 + s|I|.
By the definition of c1 it follows s ≤ α0

16 |I|. Consequently, we obtain

α0

16
|I|2 ≤ Eσ,γ,N (u)1/2(8|I|)1/2

(α0

16

)1/2
|I|,

which in turn yields

1

8c
1/2
1

s ≤ α0

128
|I| ≤ Eσ,γ,N (u) ≤ c

1/2
1

16
min{1, σ(| log σ|+ 1)},

i.e., s ≤ c1
2 min{1, σ(| log σ|+ 1)}.
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On the other hand, if α0

8 |I|2 ≤ minc∈R ∥u(s, y) − ξ2y − c∥L1(I) we estimate using Poincaré’s and Hölder’s
inequality

α0

8
|I|2 ≤ min

c∈R
∥u(s, y)− ξ2y − c∥L1(I)

≤ |I| ∥∂2u(s, y)− ξ2∥L1(I)

≤ |I|3/2
(ˆ

I

dist(∇u(s, y),Kγ,N )2 dy

)1/2

.

Here, we used that (2) implies that |∇u(s, t)− ξ| = dist(∇u(s, t),Kγ,N ) for a.e. t ∈ I. It follows that

α2
0

64
|I| ≤

ˆ
I

dist(∇u(s, y),Kγ,N )2 dy.

Combining the cases (1), (2) and (3) we obtain for all c1
2 min{1, σ(| log σ|+ 1)} ≤ s ≤ c1

8|I|
(ˆ 1

0

dist(∇u(s, y),Kγ,N )2 dy + σ|∂2∇u(s, ·)|(0, 1)
)

≥
ˆ
I

dist(∇u(s, y),Kγ,N )2 dy + σ|∂2∇u(s, ·)|(I)

≥ min

{
σ

4
,
α2
0

64
|I|
}
.

Consequently, we find

Eσ,γ,N (u) ≥
ˆ c1

c1
2 min{1,σ(| log σ|+1)}

(ˆ 1

0

dist(∇u(s, y),Kγ,N )2 dy + σ|∂2∇u(s, ·)|(0, 1)
)

ds

≥
ˆ c1

c1
2 min{1,σ(| log σ|+1)}

min

{
c1σ

32s
,
α2
0

512

}
ds.(6.1)

Let us first assume σ ≤ σ0 for some fixed 0 < σ0 ≤ 1. In addition, note that
α2

0

512 ≥ α2
0

32
c1σ
32s for all s ≥ c1

2 σ.
Consequently, (6.1) implies that

Eσ,γ,N (u) ≥α2
0

32

ˆ c1

c1
2 σ(| log σ|+1)

c1σ

32s
ds

=
c1α

2
0

1024
σ (| log σ|+ log(2)− log(| log σ|+ 1))

≥c1α
2
0 log(2)

2048
σ (| log σ|+ 1)

if σ0 is small enough.
On the other hand, assume σ > σ0. Then we it follows from (6.1)

Eσ,γ,N (u) ≥
ˆ c1

c1/2

min{σ0

32
,
α2
0

512
} dt = c1

2
min{σ0

32
,
α2
0

512
}.

Hence, setting cB = min{
c1σ0
64 ,c1α

2
0 log(2)

2048 } the assertion follows.
□

Next, we prove the lower bound for all small (in absolute value) angles and small σ. The proof is similar to
the proof of [30, Lemma 6], see also [31].

Proposition 6.2. Let N = 3, 4. There exists π/4 > γ0 > 0, K ∈ N and a constant cD > 0 such that for all
γ ∈ ΓN with |γ| ≤ γ0 and σ ≤ | sin(γ)|K it holds

min
u∈A

Eσ,γ,N (u) ≥ cDσ

( | log σ|
| log | sin(γ)|| + 1

)
.
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Proof. Step 1: Preliminaries. Fix K = 32. Moreover, let γ0 > 0 be such that k sin(γ0)
k/4 ≤ 1

3·256·9·48·120 for all

k ≥ K. Let u ∈ A. Let k > K and assume that σ ∈ (| sin(γ)|k, | sin(γ)|k−1). Then | log σ|
| log | sin(γ)|| +1 ≤ k+1 ≤ 2k.

Hence, it suffices to prove that Eσ,γ,N (u) ≥ ckσ for a universal constant c > 0. In particular, we may assume
that Eσ,γ,N (u) ≤ kσ.

Next, note that by the choice of γ0 it follows for all |γ| ≤ γ0 that | sin(γ)| ≤ 1
4 which implies 1

2 | sin(γ)|i −
3
2 | sin(γ)|i+1 ≥ 1

8 | sin(γ)|i. Then find for i ≤ ⌊k/4⌋ a point xi ∈
(
1
2 | sin(γ)|i, 3

2 | sin(γ)|i
)
such that ∇u(xi, ·) ∈

BV ((0, 1);R2) and

Eσ,γ,N (u; {xi} × (0, 1)) ≤ | sin(γ)|−iEσ,γ,N

(
u;

(
1

2
| sin(γ)|i, 3

2
| sin(γ)|i

)
× (0, 1)

)
.

Claim: For all i ≤ ⌊k/4⌋ there exists a constant c > 0 such that it holds

| sin(γ)|iEσ,γ,N (u, {xi} × (0, 1)) + Eσ,γ,N (u; (xi+1, xi)× (0, 1)) ≥ cσ.

Before we prove the claim, we briefly show that it implies the desired lower bound. Indeed, we have

Eσ,γ,N (u) ≥ 1

2

⌊k/4⌋∑

i=1

Eσ,γ,N

(
u, (

1

2
| sin(γ)|i, 3

2
| sin(γ)|i)× (0, 1)

)
+ Eσ,γ,N (u; (xi+1, xi)× (0, 1))

≥ 1

2

⌊k/4⌋∑

i=1

| sin(γ)|iEσ,γ,N (u, {xi} × (0, 1)) + Eσ,γ,N (u; (xi+1, xi)× (0, 1)) ≥ c

16
kσ.

Hence, it only remains to show the claim.

Step 2: Estimates on vertical slices. Let t = 120| sin(γ)|i. Then find y ∈ (0, 1) with (y, y + t) ⊆ (0, 1) such
that

Eσ,γ,N (u; (0, 1)× (y, y + t)) ≤ 48tEσ,γ,N (u),

Eσ,γ,N (u; (xi+1, xi)× (y, y + t)) ≤ 48tEσ,γ,N (u; (xi+1, xi)× (0, 1))

Eσ,γ,N (u; {xi} × (y, y + t)) ≤ 48tEσ,γ,N (u; {xi} × (0, 1))

and Eσ,γ,N (u; {xi+1} × (y, y + t)) ≤ 48tEσ,γ,N (u; {xi+1} × (0, 1)).

Then one of the following holds in (y, y + t) (recall that the minimal distance between two points in Kγ,N is√
2)

(1) |∂2∇u(xi, ·)|(y, y + t) ≥ 1
4 ,

(2) ∃ξ ∈ Kγ,N such that dist(∇u(xi, ·),Kγ,N ) ≤ 3|∇u(xi, ·)− ξ|.

Suppose first that (1) holds. Then
σ

4
≤ Eσ,γ,N (u; {xi} × (y, y + t)) ≤ 48t Eσ,γ,N (u; {xi} × (0, 1)) = 48 · 120 | sin(γ)|iEσ,γ,N (u; {xi} × (0, 1))

and thus the claim follows in this case.

For the rest of the proof we will now assume that (2) holds. First, recall that by the definition of ΓN we have
|ξ2| ≥ | sin(γ)|. By the triangle inequality we obtain

1

4
|ξ2|t2 ≤ ∥u(xi, s+ t/2)− u(xi, s)− ξ2t/2∥L1(y,y+t/2) + ∥u(xi, s+ t/2)− u(xi, s)∥L1(y,y+t/2).

Hence, it holds one of the following:

(a) 1
8 |ξ2|t2 ≤ ∥u(xi, s+ t/2)− u(xi, s)− ξ2t/2∥L1(y,y+t/2),

(b) 1
8 |ξ2|t2 ≤ ∥u(xi, s+ t/2)− u(xi, s)∥L1(y,y+t/2).
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Let us first assume that (a) holds. We estimate
∣∣∣∣∣

ˆ y+t/2

y

u(xi, s+ t/2)− u(xi, s)− ξ2t/2 ds

∣∣∣∣∣ ≤
ˆ y+t/2

y

ˆ s+t/2

s

|∂2u(xi, r)− ξ2| dr ds(6.2)

≤ t1/2
ˆ y+t/2

y

(ˆ y+t

y

|∂2u(xi, r)− ξ2|2 dr
)1/2

ds

≤
√
9 · 48t2 Eσ,γ,N (u; {xi} × (0, 1))1/2

≤ 1

16
t2| sin(γ)| ≤ 1

16
|ξ2|t2.

For the third estimate we used that by the choice of xi and γ0 it holds Eσ,γ,N (u; {xi}× (0, 1)) ≤ | sin(γ)|−ikσ ≤
k| sin(γ)|k−i−2| sin(γ)|2 ≤ 1

9·48·256 | sin(γ)|2. Next, observe that it holds by (2) and Poincaré’s inequality for

a = 2
t

´ y+t/2

y
u(xi, s+ t/2)− u(xi, s)− ξ2t/2 ds

∥u(xi, s+ t/2)− u(xi, s)− ξ2t/2− a∥L1(y,y+t/2) ≤ t∥∂2u(xi, s+ t/2)− ∂2u(xi, s)∥L1(y,y+t/2)(6.3)

≤ t∥∂yu(xi, s)− ξ2∥L1(y,y+t)

≤ 3t3/2Eσ,γ,N (u; {xi} × (y, y + t))1/2

≤
√
9 · 48t2Eσ,γ,N (u; {xi} × (0, 1))1/2.

Consequently, since ∥u(xi + t/2, s)− u(xi, s)− ξ2t/2∥L1(y,y+t/2) ≥ 1
8 |ξ2|t2 it follows from (6.2) and (6.3) that

432 · t4Eσ,γ,N (u; {xi} × (0, 1)) ≥
(
1

8
|ξ2|t2 − |a|t/2

)2

≥ t4

256
|ξ2|2 ≥ t4

256
| sin(γ)|2 ≥ t4

256
| sin(γ)|−iσ,

which yields the claim if (2) and (a) hold.
Hence, from now on we will assume that (b) holds i.e., ∥u(xi, s)− u(xi, s+ t/2)∥L1(y,y+t/2) ≥ 1

8 |ξ2|t2 .

Step 3: An estimate for horizontal difference quotients. First, observe that it holds for all s ∈ (y, y + t/2)

|u(xi, s+ t/2)− u(xi, s)| ≤|ξ2|t/2 + 3t1/2Eσ,γ,N (u; {xi} × (0, 1))1/2

≤|ξ2|t/2 + 3t1/2
(
| sin(γ)|−ikσ

)1/2 ≤ |ξ2|t,

where we used that | sin(γ)|−ikσ ≤ | sin(γ)|k−i−1k ≤ 1
9·4 | sin(γ)|2 ≤ 1

9·4 |ξ2|2. Next, define

Ai =

{
s ∈ (y, y + t) : Eσ,γ,N (u; (0, 1)× {s}) ≤ 80

t
Eσ,γ,N (u; (0, 1)× (y, y + t))

}

Then L1(Ai) ≥ 79
80 t. For s ∈ Ai we estimate

|u(xi+1, s)| ≤ xi+1 + x
1/2
i+1Eσ,γ,N (u; (0, 1)× {s})1/2

≤ xi+1 + x
1/2
i+1

(
80

t
Eσ,γ,N (u; (0, 1)× (y, y + t))

)1/2

≤ xi+1 +
√
80 · 48 · x1/2

i+1Eσ,γ,N (u)1/2

≤ 2xi+1

≤ 1

40
| sin(γ)| t ≤ 1

40
|ξ2| t.
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For the fourth inequality we used that we have kσ ≤ k| sin(γ)|k−1−(i+1)| sin(γ)|i+1 ≤ 1
2·48·80 | sin(γ)|i+1 ≤

1
48·80xi+1. Next, find for s ∈ (y, y + t) a value s̄ ∈ Ai such that |s− s̄| ≤ 1

80 t. Then we obtain

|u(xi+1, s)| ≤|u(xi+1, s)− u(xi+1, s̄)|+ |u(xi+1, s̄)|

≤|ξ2| |s− s̄|+ 3|s− s̄|1/2Eσ,γ,N (u; {xi+1} × (y, y + t))1/2 +
1

40
|ξ2| t

≤ 1

20
|ξ2|t,(6.4)

where we used similarly to above that it holds Eσ,γ,N (u; {xi+1} × (y, y + t)) ≤ 1
9·80 | sin(γ)|2t. In particular, we

obtain for almost all s ∈ (y, y + t/2) that

|u(xi, s)− u(xi, s+ t/2)− u(xi+1, s) + u(xi+1, s+ t/2)|
≤|u(xi, s)− u(xi, s+ t/2)|+ |u(xi+1, s)|+ |u(xi+1, s+ t/2)|
≤2|ξ2|t.(6.5)

On the other hand, it holds by (b) and (6.4) that

∥u(xi, s)− u(xi, s+ t/2)− u(xi+1, s) + u(xi+1, s+ t/2)∥L1(y,y+t/2)

≥∥u(xi, s)− u(xi, s+ t/2)∥L1(y,y+t/2) − ∥u(xi+1, s)∥L1(y,y+t/2) − ∥u(xi+1, s+ t/2)∥L1(y,y+t/2)

≥1

8
|ξ2|t2 −

1

20
|ξ2|t2

≥ 1

16
|ξ2|t2.(6.6)

We define

S :=

{
s ∈ (y, y + t/2) :

1

16
|ξ2|t ≤ |u(xi, s)− u(xi, s+ t/2)− u(xi+1, s) + u(xi+1, s+ t/2)| ≤ 2|ξ2|t

}
.

Combining (6.5) and (6.6) yields

1

16
|ξ2|t2 ≤

(
t

2
− L1(S)

)
1

16
|ξ2|t+ L1(S)2|ξ2|t ≤

1

32
|ξ2|t2 + 2L1(S)|ξ2|t,

which implies L1(S) ≥ t
64 . Next, note that xi − xi+1 ≤ 3

2 | sin(γ)|i. Hence, for a subset (y, y + t/2) of size at

least t
64 it holds

5|ξ2| ≤
∣∣∣∣
u(xi, s)− u(xi+1, s)

xi − xi+1
− u(xi, s+ t/2)− u(xi+1, s+ t/2)

xi − xi+1

∣∣∣∣ .

It follows for a subset of (y, y + t) whose measure is at least t
64 that

∣∣∣∣
u(xi, s)− u(xi+1, s)

xi − xi+1
− ξ1

∣∣∣∣ ≥
5

2
| sin(γ)|.(6.7)

Step 4: Lower bound for Eσ,γ,N (u; (xi+1, xi) × (0, 1). Let us now fix such an s ∈ (y, y + t) for which (6.7)
holds. Moreover, let us assume that |∂1∇u(·, s)|(xi+1, xi) ≤ 1/10. By (2) it follows that |∇u(x, s) − ξ| ≤
6 dist(∇u(x, s),Kγ,N ) for a.e. x ∈ (xi+1, xi). Recalling that xi − xi+1 ≥ 1

2 | sin(γ)|i − 3
2 | sin(γ)|i+1 ≥ 1

8 | sin(γ)|i
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it follows that ˆ xi

xi+1

dist(∇u(x, s),Kγ,N )2 dx

≥ 1

36

ˆ xi

xi+1

|∂1u(x, s)− ξ1|2 ds

≥ 1

36(xi − xi+1)

(ˆ xi

xi+1

∂1u(x, s)− ξ1 ds

)2

=
1

36
(xi − xi+1)

(
u(xi, s)− u(xi+1, s)

xi − xi+1
− ξ1

)2

≥ 25

32 · 36 | sin(γ)|
i+2 ≥ 25

32 · 36σ.

Consequently, we obtain

48tEσ,γ,N (u; (xi+1, xi)× (0, 1)) ≥
ˆ y+t

y

ˆ xi

xi+1

dist(∇u(x, s),Kγ,N )2 dx+ σ|∂1∇u(·, s)|(xi+1, xi)

≥ t

64
σmin

{
25

32 · 36 ,
1

10

}
,

which shows the claim if (2) and (b) hold. This finishes the proof of the claim. □

Eventually, we can now prove the lower bound stated in Theorem 3.1 for N = 3, 4.

Proposition 6.3. Let N = 3, 4. Then there exists a constant c > 0 such that for all γ ∈ ΓN it holds

min
u∈A

Eσ,γ,N (u) ≥ cmin

{
| sin(γ)|2, σ

( | log σ|
| log | sin(γ)|| + 1

)}
.

Proof. Let us first assume that σ ≥ | sin(γ)|2. By Proposition 4.1 it follows

min
u∈A

Eσ,γ,N (u) ≥ cA min{σ, | sin(γ)|2} = cA| sin(γ)|2.

Next, assume that σ ≤ | sin(γ)|2 and let γ0 > 0 and K ≥ 2 be as in Proposition 6.2. Then by Proposition 6.1
there exists cB > 0 such that for all γ ∈ ΓN with |γ| ≥ γ0,

Eσ,γ,N (u) ≥ cB min{σ(| log σ|+ 1), 1} ≥ cB min{| log | sin(γ0)||, 1} min

{
σ

( | log σ|
| log | sin(γ)|| + 1

)
, | sin(γ)|2

}
.

For γ ∈ ΓN with |γ| ≤ γ0 and σ ≤ | sin(γ)|K it holds by Proposition 6.2

Eσ,γ,N (u) ≥ cDσ

( | log σ|
| log | sin(γ) | + 1

)
.

Eventually, we notice that for | sin(γ)|2 ≥ σ ≥ | sin(γ)|K it holds by Proposition 4.1

min
u∈A

Eσ,γ,N (u) ≥ cA min{σ, | sin(γ)|2} =
cA

K + 1

( | log σ|
| log | sin(γ)| | + 1

)
.

This concludes by Remark 1 the proof of the lower bound for c = min
{

cA
K+1 , cB min{1, | log | sin(γ0)||}, cD

}
. □
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6.2. The upper bound. In this section we prove the upper bound stated in Theorem 3.1 for N = 3, 4. By
Remark 1 it remains to consider the case σ ≤ | sin(γ)|3.

Proposition 6.4. Let N = 3, 4. Then there exists C > 0 such that for all σ > 0 and γ ∈ ΓN it holds

min
u∈A

Eσ,γ,N (u) ≤ Cmin

{
| sin(γ)|2, σ

( | log σ |
| log | sin(γ)| | + 1

)}
.

Proof. By Proposition 4.1 we find for σ ≥ | sin(γ)|2

min
u∈A

Eσ,γ,N (u) ≤ CA| sin(γ)|2 ≤ CA min

{
| sin(γ)|2, σ

( | log σ|
| log | sin(γ)| | + 1

)}
.

Hence, it remains to consider the case | sin(γ)|2 ≥ σ. Additionally, we will only treat the case γ ≥ 0. As for
N = 2, we define the set

Sγ = conv

{(
− cos(γ)
− sin(γ)

)
,

(
1

− sin(γ)

)
,

(
1
0

)
,

(
0
0

)}
.

Again, we will first use a self-similar branching construction to define a function on Sγ . However, in this setting
the constructed competitor will have gradients in Kπ/2,N in a large part of the domain (c.f. the branching

constructions in [30]). Then - up to a rotation - we will use this function on the set {(x, y) ∈ (0, 1)2 : (x, y− 1) ·
eiγ ≤ 0} and glue it to a function with constant gradient eiγ on the rest of (0, 1)2.

Step 1: Branching Construction on Sγ for N = 4 and γ ∈ (0, π/4) ⊆ Γ4.

Step 1a : Building block for Sγ . Let m = ⌈| sin(γ)|−1⌉ and define the set

B(4)
γ =

m⋃

k=1

(
sin(γ)

m
− k − 1

m
cos(γ), sin(γ)

)
×
(
k − 1

m
sin(γ),

k

m
sin(γ)

)
.

Then there exists a function V (4) : B
(4)
γ → R2 such that (see Figure 6)

(a) V (4)(x, y) ∈ Kπ/2,4 for a.e. (x, y) ∈ B
(4)
γ ,

(b) |D2V (4)| ≤ C(m sin(γ) + 1) ≤ C,

(c) For the second component of V (4) it holds V
(4)
2 ( sin(γ)m − k−1

m cos(γ), y) = V
(4)
2 (1,my− (k− 1) sin(γ)) for

all y ∈
(
k−1
m sin(γ), k

m sin(γ)
)
,

(d) V (4) is curl-free,

(e) V
(4)
1 (x, y) = 0 for all (x, y) ∈ ∂Bγ such that e1 is tangent to ∂Bγ at (x, y),

(f) It holds V
(4)
2 (sin(γ), ·) = −1(0,sin(γ)/2) + 1(sin(γ)/2,sin(γ)).

Step 1b : Interpolation to boundary conditions. We define V∂ : conv

{(
− cos(γ)
sin(γ)

)
,

(
0
0

)
,

(
0

sin(γ)

)}
→ R2 as

(c.f. Figure 2 on the right)

V∂(x, y) =





(
0

1

)
if y ≥ sin(γ)− sin(γ)

2 cos(γ) (x+ cos(γ))

(
− sin(γ)

cos(γ)

−1

)
if y ≤ sin(γ)− sin(γ)

2 cos(γ) (x+ cos(γ)).

Step 1c : Branching construction. For K ∈ N we define the following function VK : Sγ → R2 as follows (see
Figure 7)
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sin(γ)/m sin(γ)

sin(γ)/2

sin(γ)

sin(γ)/m
sin(γ)/(2m)

sin(γ)/m+ sin(γ)/2

(
0
−1

)

(
0
1

)

(
−1
0

)

| sin(γ)|/m | sin(γ)|

| sin(γ)|/2

| sin(γ)|

| sin(γ)|/m
sin(γ)|/(2m)

| sin(γ)|/m+ | sin(γ)|/2cos(γ)/m

(
0
−1

)

(
0
1

)

(
−1
0

)

Figure 6. Sketch for the construction of the building block forN = 4 andm = 8. The different
appearing gradients are color-coded. Left: A version of the construction of the building block
for a rectangle of height sin(γ). It is immediate that |D2V (3)| ≤ C(sin(γ)m + 1). Right:
Construction of the building block for Sγ , N = 4 and m = 8. The essential difference to the
construction on the left is that after each branching of the construction an extra horizontal
gap of length cos(γ)/m has to be bridged by horizontal interfaces creating an extra interface of

length cos(γ)/m in horizontal direction and at most
√
2 sin(γ) in diagonal direction. Hence, the

total surfaces created in the construction can be estimated up to a constant by | sin(γ)|m+ 1.

0 1

sin(γ)

Figure 7. Sketch of the branching construction for N ∈ {3, 4}, K = 1 and m = 4. The

different regions of in the definition of V
(N)
k are colored in brown (1), blue (2) (darkblue for

k = 0, lightblue for k = 1), pink (3) and orange (4).

(1) For x ∈ (sin(γ), 1), we define

V
(4)
K (x, y) =





(
0

1

)
if y ≥ 1/2,

(
0

−1

)
if y ≤ 1/2.
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(2) Let 0 ≤ k ≤ K and l ∈ {0, . . . ,mk − 1}. Then we define for

(x, y) ∈
(
− l

mk cos(γ)
l

mk sin(γ)

)
+

1

mk
B(4)

γ

the function V
(4)
K as

V
(4)
K (x, y) = V

(
mk(x+

l

mk
cos(γ)),mk(y − l

mk
sin(γ))

)
.

(3) Let l ∈ {0, . . . ,mK+1 − 1}. We define for

(x, y) ∈
(
− l

mK+1
cos(γ),− l

mK+1
cos(γ) +

sin(γ)

mK+1

)
×
(

l

mK+1
sin(γ),

l + 1

mK+1
sin(γ)

)

the constant extension

V
(4)
K (x, y) =





(
0

1

)
if y ≥ l+1/2

mK+1 sin(γ),

(
0

−1

)
if y ≤ l+1/2

mK+1 sin(γ).

.

(4) Let l ∈ {0, . . . ,mK+1 − 1}. We define for

(x, y) ∈ conv

{(
− l

mK+1 cos(γ)
l

mK+1 sin(γ)

)
,

(
− l

mK+1 cos(γ)
l+1

mK+1 sin(γ)

)
,

(
− l+1

mK+1 cos(γ)
l+1

mK+1 sin(γ)

)}

the function V
(4)
K as

V
(4)
K (x, y) = V∂

(
mK+1(x+

l

mK+1
cos(γ)),mK+1(y − l

mK+1
sin(γ))

)
.

We observe that V
(4)
K is curl-free as V

(4)
K is curl-free and ν ∥ ((V

(4)
K )− − (V

(4)
K )+) on its jump set J

V
(4)
K

, where ν

is the measure-theoretic normal to J
V

(4)
K

, due to (c), (e) and (f). Let uK : Sγ → R be a corresponding primitive

with uK(0, 0) = 0. It holds by construction that u(−t cos(γ), t sin(γ)) = 0 for all t ∈ (0, 1) and u(t, sin(γ)) = 0
for all t ∈ (− cos(γ), 1) (c.f. (e)). Next, we estimate using (a), (b) and cos(γ) ≥ cos(π/4) > 0ˆ

Sγ

dist
(
∇uK ,Kπ/2,4

)2
dx+ σ|D2uK |(Sγ) ≤ C

| sin(γ)|3
cos(γ)mK+1

+ Cσ (K + | sin(γ)|+ 1)

≤ C
(
| sin(γ)|K + σK

)
.

Choosing K =
⌈

| log σ|
| log sin(γ)|

⌉
yields the estimate

Eσ,π/2,4(u;Sγ) =

ˆ
Sγ

dist
(
∇uK ,Kπ/2,N

)2
dx+ σ|D2uK |(Sγ) ≤ Cσ

( | log σ|
| log sin(γ)| |+ 1

)
.

Step 2: Branching construction on Sγ for N = 3 and γ ∈ (0, π/6) ⊆ Γ3.
The construction for N = 3 is very similar to the one for N = 4 but needs a different building block.

Step 2a : Building block for Sγ . Let m = ⌈| sin(γ)|−1⌉ and define the set

B(3)
γ =

m⋃

k=1

(
2 sin(γ)√

3m
− k − 1

m
cos(γ),

2 sin(γ)√
3

)
×
(
k − 1

m
sin(γ),

k

m
sin(γ)

)
.

Then there exists a function V (3) : B
(3)
γ → R2 such that (see Figure 8
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2 sin(γ)√
3

(k − 1)
sin(γ)
m

2 sin(γ)√
3m

sin(γ)

sin(γ)
3m

sin(γ)√
3m

+
sin(γ)

2
√

3
m−k
m

sin(γ)
6 (1 + 5k

m − 4
m )

sin(γ)
6

(5 + k
m
)

sin(γ)√
3

(1 + 1
m
)

(
0
1

)

(√
3
2

− 1
2

)(
−

√
3
2

− 1
2

)

2 sin(γ)√
3

sin(γ)√
3m

− (k − 1)
cos(γ)
m

(k − 1)
sin(γ)
m

2 sin(γ)√
3m

sin(γ)

sin(γ)
3m

sin(γ)√
3m

+
sin(γ)

2
√
3
m−k
m

− (k − 1)
cos(γ)
m

sin(γ)
6 (1 + 5k

m − 4
m )

sin(γ)
6

(5 + k
m
)

cos(γ)
m

sin(γ)√
3

(1 + 1
m
)

(
0
1

)

(√
3
2

− 1
2

)(
−

√
3
2

− 1
2

)

Figure 8. Sketch for the construction of the building block forN = 3 andm = 4. The different
appearing gradients are color-coded, the appearing diagonals have slope ± 1√

3
. Left: A version

of the construction of the building block for a rectangle of height sin(γ). It is immediate that
|D2V (3)| ≤ C sin(γ)(m + 1). Right: Construction of the building block for Sγ , N = 3 and
m = 4. The essential difference to the construction on the left is that after each branching
of the construction an extra horizontal gap of length cos(γ)/m has to be bridged by sawtooth
patterns. In each of those bridging steps the number of sawteeth can be chosen proportional

to the quotient cos(γ)
m /

(
sin(γ)

6 (1 + 5k
m − 4

m )− (k − 1) sin(γ)m

)
≤ C m

(m−k+2) sin(γ) (in this way V (3)

stays

(
0
1

)
on the horizontal parts of the boundary of B

(3)
γ ). The corresponding height of each of

those vertical interfaces is sin(γ) 2(m−k+1)
3m . Hence, the total surfaces created in the construction

can be estimated by C(sin(γ)m+ 1).

(a’) V (3)(x, y) ∈ Kπ/2,3 for a.e. (x, y) ∈ B
(3)
γ ,

(b’) |D2V (3)| ≤ C(m| sin(γ)|+ 1) ≤ C,

(c’) For the second component of V (3) it holds V
(3)
2 ( 2 sin(γ)√

3m
− k−1

m cos(γ), y) = V
(3)
2 ( 2 sin(γ)√

3
,my−(k−1) sin(γ))

for all y ∈
(
k−1
m sin(γ), k

m sin(γ)
)
,

(d’) V (3) is curl-free,

(e’) For the first component of V (3) it holds V
(3)
1 (x, y) = 0 for all (x, y) ∈ ∂Bγ such that e1 is tangent to

∂Bγ at (x, y),

(f’) It holds V
(3)
2 ( 2 sin(γ)√

3
, ·) = 1(0,sin(γ)/3) − 1

21(sin(γ)/3,sin(γ)).

Step 2b : Interpolation to boundary conditions. We define V
(3)
∂ : conv

{(
− cos(γ)
sin(γ)

)
,

(
0
0

)
,

(
0

sin(γ)

)}
→ R2 as

V∂(x, y) =





(
sin(γ)
cos(γ)

1

)
if y ≤ sin(γ)− 2 sin(γ)

3 cos(γ) (x+ cos(γ))

(
0

− 1
2

)
if y ≥ sin(γ)− 2 sin(γ)

3 cos(γ) (x+ cos(γ)).

Step 2c : Branching construction. For K ∈ N we define the function V
(3)
K : Sγ → R2 as follows (see Figure 7)
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(1) Let x ∈ ( 2 sin(γ)√
3

, 1). Then we define

V
(3)
K (x, y) =





(√
3
2

− 1
2

)
if sin(γ)

3 + 1√
3
(x− 2 sin(γ)√

3
) ≤ y,

(
0

1

)
else.

(2) Let 0 ≤ k ≤ K and l ∈ {0, . . . ,mk − 1}. Then we define for

(x, y) ∈
(
− l

mk
cos(γ),

l

mk
sin(γ)

)
+

1

mk
B(3)

γ

the function V
(3)
K as

V
(3)
K (x, y) = V (3)

(
mk(x+

l

mk
cos(γ)),mk(y − l

mk
sin(γ))

)
.

(3) Let l ∈ {0, . . . ,mK+1 − 1}. We define for

(x, y) ∈
(
− l

mK+1
cos(γ),− l

mK+1
cos(γ) +

2 sin(γ)√
3mK+1

)
×
(

l

mK+1
sin(γ),

l + 1

mK+1
sin(γ)

)

the function V
(3)
K as

V
(3)
K (x, y) =





(√
3
2

− 1
2

)
if y ≥ l

mK+1 sin(γ) +
1√
3
(x+ l

mK+1 cos(γ)− sin(γ)√
3mK+1

)

and y ≤ l+2/3
mK+1 sin(γ) +

1√
3
(x+ l

mK+1 cos(γ)− sin(γ)√
3mK+1

)

and x ≥ − l
mK+1 cos(γ) +

sin(γ)√
3mK+1

,(
−
√
3

2

− 1
2

)
if y ≥ l+1/3

mK+1 sin(γ)− 1√
3
(x+ l

mK+1 cos(γ))

and y ≤ l+1
mK+1 sin(γ)− 1√

3
(x+ l

mK cos(γ))

and x ≤ − l
mK+1 cos(γ) +

sin(γ)√
3mK+1

,(
0

1

)
else.

.

(4) Let l ∈ {0, . . . ,mK+1 − 1}. We define for

(x, y) ∈ conv

{(
− l

mK+1 cos(γ)
l

mK+1 sin(γ)

)
,

(
− l

mK+1 cos(γ)
l+1

mK+1 sin(γ)

)
,

(
− l+1

mK+1 cos(γ)
l+1

mK+1 sin(γ)

)}

the function V
(3)
K as

V
(3)
K (x, y) = V

(3)
∂

(
mK+1(x+

l

mK+1
cos(γ)),mK+1(y − l

mK+1
sin(γ))

)
.

As in the case N = 4 we observe that V
(3)
K is curl-free. Let u

(3)
K : Sγ → R be a corresponding primitive with

u
(3)
K (0, 0) = 0. As for N = 4, it holds by construction that uK(−t cos(γ), t sin(γ)) = 0 for all t ∈ (0, 1) and

uK(t, sin(γ)) = 0 for all t ∈ (− cos(γ), 1). Next, we estimate similarly to beforeˆ
Sγ

dist
(
∇u

(3)
K ,Kπ/2,3

)2
dx+ σ|D2u

(3)
K |(Sγ) ≤ C

1

mK
+ Cσ (K + sin(γ) + 1)

≤ C
(
sin(γ)K + σK

)
.
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(
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0
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0
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(−1/2√
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( −1/2

−
√

3/2
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(
1
0

)

(−1/2√
3/2
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−
√

3/2

)

(
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0

)

Figure 9. Sketch of the functions constructed in Lemma 7.0.1 for Q0 (left), T
(1)
0 (middle) and

T
(2)
0 (right).

Again, choosing K =
⌈

| log σ|
| log sin(γ)|

⌉
yields the estimate

Eσ,π/2,3(uK ;Sγ) =

ˆ
Sγ

dist
(
∇u

(3)
K ,Kπ/2,3

)2
dx+ σ|D2u

(3)
K |(Sγ) ≤ Cσ

( | log σ|
| log sin(γ)| + 1

)
.

Step 3: Branching construction on (0, 1)2 for N = 3, 4. We define u : (0, 1)2 → R as (c.f. also Figure 4)

u(x, y) =

{
eiγ · (x, y − 1) if eiγ · (x, y − 1) ≥ 0,

u(N)(e−i(γ−π/2)(x, y)) if eiγ · (x, y − 1) ≤ 0,

where u(N) is the function constructed in Step 1 and Step 2 for N = 3 or N = 4, respectively. Then we conclude
by Step 1c and 2c, respectively, that

Eσ,γ,N (u) ≤ Eσ,π/2,N (u(N)) + Cσ ≤ Cσ

( | log σ|
| log sin(γ) | + 1

)
+ Cσ ≤ Cσ

( | log σ|
| log sin(γ) | + 1

)
.

□

7. An upper Bound by covering and solutions to the differential inclusion

In this section, we discuss how upper bounds for the energy Eσ,γ,N (·,Ω) for N = 3, 4 and a bounded
Lipschitz-domain Ω ⊆ R2 can be shown using a good covering of Ω with specific building blocks that allow for
simple functions which only use the preferred gradients and satisfy zero boundary conditions. Iterating this
construction leads to solutions of the differential inclusion ∇u ∈ Kγ,N and u = 0 on ∂Ω whose regularity can
be controlled through interpolation. We start by constructing the building blocks.

Lemma 7.0.1. (1) Let Qγ = eiγ(−1/2, 1/2)2 be the unit cube centered at 0 and with two sides parallel to

eiγ . Then there exists a function u ∈ W 1,∞
0 (Qγ) such that ∇u ∈ BV (Qγ ;Kγ,4) and |D2u|(Qγ) ≤ 4.

(2) Let T
(1)
γ = conv

{
eiγ , eiγ+i 2π

3 , eiγ+i 4π
3

}
and T

(2)
γ = conv

{
−eiγ ,−eiγ+i 2π

3 ,−eiγ+i 4π
3

}
. Then there exist

functions u(i) ∈ W 1,∞
0 (T

(i)
γ ) such that ∇u(i) ∈ BV (T

(i)
γ ,Kγ,N ) and |D2u(i)| = 3

√
3.

Proof. For a visualization of the constructions for γ = 0, see Figure 9.
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For (1), note that by a change of coordinates it is enough to construct a function for γ = 0 and Q0 =
(−1/2, 1/2)2. Then define u : (−1/2, 1/2)2 → R as

u(x, y) =





x− 1
2 , if x ≥ 0,−x ≤ y ≤ x,

−x− 1
2 , if x ≤ 0, x ≤ y ≤ −x,

y − 1
2 , if y ≥ 0,−y ≤ x ≤ y,

−y − 1
2 , if y ≤ 0, y ≤ x ≤ −y.

The claimed properties follow directly.

For (2) it suffices again to consider the case γ = 0. Then we define

u(1)(x, y) =





x+ 1
2 if (x, y) ∈ conv

{(
0

0

)
,

(
− 1

2√
3
2

)
,

(
− 1

2

−
√
3
2

)}
,

− 1
2x−

√
3
2 y + 1

2 if (x, y) ∈ conv

{(
0

0

)
,

(
1

0

)
,

(
− 1

2√
3
2

)}
,

− 1
2x+

√
3
2 y + 1

2 if (x, y) ∈ conv

{(
0

0

)
,

(
1

0

)
,

(
− 1

2

−
√
3
2

)}

and
u(2)(x, y) = −u(1)(−x, y).

All claimed properties can be immediately verified. □

Next, we discuss a way of covering Ω ⊆ R2 that will allow for simple construction of test functions using the
functions from the previous lemma.

Definition 7.1. Let Ω ⊆ R2, N = 3, 4, γ ∈ (−π, π) and θ ∈ (0, 1). We say that a sequence of families
FK ⊆ P(Ω) is a (N, γ, θ)-covering of Ω if there exists CN,γ,θ > 0 such that the following properties are satisfied:

(1) the family FK consists of pairwise disjoint sets;
(2) FK ⊆ FK+1 for every K ∈ N;
(3) (a) If N = 3: if S ∈ FK then S = a+ λT

(i)
γ ⊆ Ω for some i = 1, 2, a ∈ R2 and λ > 0;

(b) If N = 4: if S ∈ FK then S = a+ λQγ ⊆ Ω for some a ∈ R2 and λ > 0;
(4) for every K ∈ N it holds L2(Ω \⋃S∈FK

S) ≤ CN,γ,θθ
K ;

(5) for every K ∈ N it holds
∑

a+λS∈FK
λ ≤ CN,γ,θK.

If a domain Ω allows for a covering of the above type this leads to good competitors for the energy Eσ,γ,N (·; Ω)
and solutions to the differential inclusion.

Proposition 7.1. Let Ω ⊆ R2 be open, N = 3, 4. Let γ ∈ ΓN and θ ∈ (0, 1) such that Ω possesses a
(N, γ, θ)-cover.

(1) Then it holds

min
u∈A0(Ω)

Eσ,γ,N (u; Ω) ≤ CCN,γ,θ σ

( | log σ|
| log θ| + 1

)
,

where C > 0 is a universal constant independent from θ and γ.
(2) Then there exists a function u ∈ W 1,∞

0 (Ω) such that ∇u ∈ Kγ,N a.e. and ∇u ∈ W s,q(Ω) for all
0 < s < 1, q ∈ (0,∞) such that 1

q > s.

Proof. Let (FK)K be a (N, γ, θ)-cover for Ω. Let K ∈ N. If N = 3 then define the function u
(3)
K : (0, 1)2 → R as

u
(3)
K (x, y) =

{
λu(i)

(
(x,y)−a

λ

)
if (x, y) ∈ a+ λT

(i)
γ for i ∈ {1, 2}, a+ λT

(i)
γ ∈ FK ,

0 if (x, y) ∈ (0, 1)2 \⋃S∈FK
S,
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Figure 10. Sketch of the lattices L(3) and L(4) for γ = 0.

where u(i) : T
(i)
γ → R are the functions from Lemma 7.0.1 (2). IfN = 4 then define the function u

(4)
K : (0, 1)2 → R

as

u
(4)
K (x, y) =

{
λu
(

(x,y)−a
λ

)
if (x, y) ∈ a+ λQγ for a+ λQγ ∈ FK ,

0 if (x, y) ∈ (0, 1)2 \⋃S∈FK
S,

where u : Qγ → R is the function from lemma 7.0.1 (1).

Then u
(N)
K ∈ A0. Moreover, it holds by the properties of FK and u (cf. Lemma 7.0.1) for N = 4 that

Eσ,γ,N (u
(4)
K ) ≤ L2

(
Ω \

⋃

S∈FK

S

)
+ σ

∑

a+λ·Qγ∈FK

(
λ|D2u|(Qγ) + 2λH1(∂Qγ)

)
≤ CC4,γ,θ

(
θK + σK

)
.

Then choose K = ⌈ | log σ|
|log θ| ⌉ ∈ [ | log σ|

|log θ| ,
| log σ|
|log θ| + 1] which yields the desired upper bound. A similar calculation

shows the upper bound for N = 3. This shows (1). For (2) we note that as in [30, Proposition 12], we can use an

interpolation argument (c.f. also [43, Corollary 2.1]) to show that the sequence of functions u
(N)
K as constructed

above has a limit uN ∈ W 1,∞
0 (Ω) with the claimed properties. □

Next, we show that every Lipschitz domain allows for a (N, γ, 1
2 )-cover for N = 3, 4 and γ ∈ (−π, π).

Lemma 7.1.1. Let N = 3, 4, γ ∈ (−π, π) and Ω ⊆ R2 an open, bounded set with Lipschitz boundary. Then
there exists a (N, γ, 1

2 )-cover of Ω. Moreover, the constants CN,γ,1/2 are uniformly bounded.

Proof. Consider the lattices L(3) =
{
l1e

iγ+iπ/2 + l2e
iγ+iπ/6 : l1, l2 ∈ Z

}
and L(4) = {l1eiγ + l2e

iγ+iπ/2 : l1, l2 ∈
Z}, see Figure 10. We define the families F (N)

K inductively. Let

F (3)
1 =

{
int(conv{i, j, k}) : i, j, k ∈ L(3), |i− j| = |i− k| = |j − k| = 1 and int(conv{i, j, k}) ⊆ Ω

}
,

F (4)
1 =

{
int(conv{h, i, j, k}) : h, i, j, k ∈ L(4), |i− j| = |j − k| = |k − h| = |h− i| = 1 and conv{h, i, j, k} ⊆ Ω

}
.
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Assume that F (3)
K and F (4)

K are already defined then define

F (3)
K+1 = F (3)

K ∪ { int(conv{i, j, k}) : i, j, k ∈ 2−KL(3), |i− j| = |i− k| = |j − k| = 2−K ,

int(conv{i, j, k}) ⊆ Ω and int(conv{i, j, k}) ∩ T = ∅ for all T ∈ F (3)
K }

and

F (4)
K+1 = F (4)

K ∪ { int(conv{h, i, j, k}) : h, i, j, k ∈ 2−K , |i− j| = |j − k| = |k − h| = |h− i| = 2−K ,

int(conv{h, i, j, k}) ⊆ Ω and int(conv{i, j, k})∩ = ∅ for all T ∈ F (3)
K }

Then, by definition, these families only consist of scaled and translated versions of the triangles T
(i)
γ for N = 3

and the rotated square Qγ for N = 4, respectively. It follows for (x, y) /∈ ⋃
S∈F(N)

K

S that (x, y) ∈ BC2−K (∂Ω)

and therefore by the regularity of ∂Ω that

(7.1) L2(Ω \
⋃

S∈F(N)
K

S) ≤ C2−K .

This implies also that #F (N)
K+1 \ F

(N)
K ≤ C2K . In particular,

(7.2)
∑

a+λS∈F(N)
K

λ ≤ C#F (N)
1 + C

K−1∑

k=1

#F (N)
k+1 \ F

(N)
k · 2−k ≤ CK.

Note that the constant C > 0 in (7.1) and (7.2) can be chosen independently from γ. □

As a direct consequence of the Lemma 7.1.1 and Proposition 7.1 we find the following corollary.

Corollary 7.1.1. Let N = 3, 4 and Ω ⊆ R2 be an open bounded set with Lipschitz boundary. Then the
following hold:

(1) There exists a constant C > 0 (depending on Ω) such that

min
u∈A0(Ω)

Eσ,γ,N (u; Ω) ≤ Cσ (| log σ|+ 1) .

(2) There exists u ∈ W 1,∞
0 (Ω) such that ∇u ∈ BVloc(Ω;Kγ,N ) and ∇u ∈ W s,q for all 0 < s < 1, q ∈ (0,∞)

satisfying 1
q > s.

Proof. The only property that does not follow directly from Lemma 7.1.1 and Proposition 7.1 is the fact that
it holds for the solution u ∈ W 1,∞

0 (Ω) of the differential inclusion constructed in Proposition 7.1 based on the
covering from Lemma 7.1.1 that ∇u ∈ BVloc(Ω). However, in the proof of Lemma 7.1.1 it can be seen that
for all U ⊂⊂ Ω there exists K ∈ N such that U ⊆ ⋃

S∈FK
S. In particular, it follows from the associated

construction in the proof of Proposition 7.1 that |∇u|(U) ≤ CCN,γ,1/2K i.e., ∇u ∈ BVloc(Ω). □

However, clearly the result above is not optimal in terms of the minimal scaling with respect to the angle
γ. Next, we show that for N = 4 the unit square allows for a much better covering. Precisely, (0, 1)2 has a
(4, γ, | sin(γ)|)-cover with uniformly bounded constants.

Lemma 7.1.2. For every γ ∈ (−π/4, π/4) the square (0, 1)2 possesses a (4, γ, | sin(γ)|)-cover. Moreover, the
constant C4,γ,| sin γ| can be uniformly bounded.
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Figure 11. Sketch of the covering of (0, 1)2 described in Lemma 7.1.2. Left: the set F1 (blue).

Middle: the set F̃1 (lightblue). Right: the set F̃2 (red).

Proof. Let us assume that γ > 0. For a visualization of the construction, see Figure 11. For ℓ ∈ N, let

rℓ =
sin(γ)

cos(γ)+sin(γ)
cos(γ)

1+sin(γ) cos(γ)

(
cos(γ) sin(γ)

1+cos(γ) sin(γ)

)ℓ
. Then define the families

F (1)
1 =

{(
rℓ
2 (cos(γ) + sin(γ))

1− rℓ
2 (cos(γ) + sin(γ))

)
+ rℓQγ : ℓ ∈ N

}
,

F (2)
1 =

{(
1− rℓ

2 (cos(γ) + sin(γ))
1− rℓ

2 (cos(γ) + sin(γ))

)
+ rℓQγ : ℓ ∈ N

}
,

F (3)
1 =

{(
1− rℓ

2 (cos(γ) + sin(γ))
rℓ
2 (cos(γ) + sin(γ))

)
+ rℓQγ : ℓ ∈ N

}
,

F (4)
1 =

{(
rℓ
2 (cos(γ) + sin(γ))
rℓ
2 (cos(γ) + sin(γ))

)
+ rℓQγ : ℓ ∈ N

}
.

Eventually, we set

F1 =

4⋃

i=1

F (i)
1 ∪

((
1
2
1
2

)
+

1

cos(γ) + sin(γ)
Qγ

)
.

Note that F1 consists of pairwise disjoint sets. Then one computes

L2((0, 1)2 \
⋃

Q∈F1

Q) = 1− 1

(cos(γ) + sin(γ))2
− 4

∞∑

ℓ=0

r2ℓ =
2 sin(γ) cos(γ)

1 + 2 sin(γ) cos(γ)
− 4

sin(γ)2 cos(γ)2

(1 + 2 sin(γ) cos(γ))2

=
2 sin(γ) cos(γ)

(1 + 2 sin(γ) cos(γ))2
≤ 2 sin(γ)

and
∑

a+λQ∈F1

λ =
1

cos(γ) + sin(γ)
+ 4

∞∑

ℓ=0

rℓ =
1 + 4 sin(γ) cos(γ)

cos(γ) + sin(γ)
≤ C.

This shows all the needed properties of F1. To construct FK , we notice that (0, 1)2 \⋃Q∈F1
Q can be written

as the disjoint union
⋃

k∈N Tk where Tk is a rotated (by multiples of π
2 ), dilated and translated version of the

triangle T = conv

{(
0
0

)
,

(
0
1

)
, sin(γ)

(
cos(γ)
sin(γ)

)}
such that

∑
k∈N H1(∂Tk) ≤ C, see Figure 11. In order to

construct the families FK for K ≥ 2 inductively, it is then enough to show that there exists a disjoint family F
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of dilated and translated versions of Qγ such that T \⋃a+λQγ∈F a+ λQγ can be written as the disjoint union

of translated and dilated versions of T such that (see Figure 11)
∑

a+λQγ∈F
λ ≤ 1 and L2(T \

⋃

a+λQγ∈F
a+ λQγ) ≤ sin(γ)L2(T ).

Then one can inductively define families F̃K for T such that (cf. Figure 11)

F̃K ⊆ F̃K−1,
∑

a+λQγ∈F̃K

λ ≤ K and L2(T \
⋃

a+λQγ∈F̃K

a+ λQγ) ≤ sin(γ)KL2(T ).

Eventually, the families FK are simply given by F1 together with the corresponding families F̃K−1 for the
triangles Tk.

Hence, it remains to show the existence of the family F . For ℓ ∈ N, we define r̃ℓ = sin(γ) cos(γ)
sin(γ)+cos(γ)

(
cos(γ)

sin(γ)+cos(γ)

)ℓ

and δℓ =
(

cos(γ)
sin(γ)+cos(γ)

)ℓ
. Then set (cf. Figure 11)

F =

{(
r̃ℓ
2 (cos(γ) + sin(γ))

r̃ℓ
2 (cos(γ) + sin(γ)) + r̃ℓ

sin(γ)2

cos(γ) +
∑ℓ−1

k=0
sin(γ)

sin(γ)+cos(γ)δk

)
+ r̃ℓQγ : ℓ ∈ N

}
.

It follows that F is a pairwise disjoint family. Moreover, we compute (recall that cos(γ) ≥ cos(π/4) ≥ 1/2)

L2(T \
⋃

Q∈F
Q) =

sin(γ) cos(γ)

2
−

∞∑

k=0

r̃2ℓ =
sin(γ) cos(γ)

2

(
1− 2

sin(γ) cos(γ)

sin(γ)2 + 2 sin(γ) cos(γ)

)

≤ L2(T )
sin(γ)

2 cos(γ)
≤ sin(γ)L2(T )

and

∑

a+λQγ∈F
λ =

∞∑

ℓ=0

r̃ℓ = cos(γ) ≤ 1.

□

Remark 2. Similarly, it can be shown that there are families FK consisting of dilated and translated versions

of the building blocks T
(1)
γ and T

(2)
γ satisfying (1) - (3) when (0, 1)2 is replaced by, for example, T

(1)
0 or T

(2)
0 .

Combining the previous result and Lemma 7.1.2 allows us to prove a scaling law for minu∈A0((0,1)2) Eσ,γ,4(u),
Theorem 3.2.

Proof of Thm. 3.2. Step 1: Upper bounds. Clearly, u = 0 satisfies u ∈ A0 and Eσ,γ,N (u) = 1. The other upper
bounds follow directly from Corollary 7.1.1 for N = 3 and from Proposition 7.1 and Lemma 7.1.2 for N = 4.

Step 2: Lower bounds. Let us first consider N = 3. First, note that for γ ∈ Γ3 with |γ| ≥ π/12 the lower
bound follows from Proposition 6.1. On the other hand, for |γ| ≤ π/12 the lower bound follows from a similar
argument and the fact that u(·, 0) = 0 and for γ ∈ Γ3 it holds for ξ ∈ Kγ,3 that |ξ1| ≥ min{cos(γ), | cos(γ +
2π/3)|, | cos(γ + 4π/3)|} ≥ | cos(7π/12))| > 0.

Next, let N = 4. First we claim that

(7.3) min
u∈A0

Eσ,γ,4(u) ≥
1

6
min{1, σ}.
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Let u ∈ A0. We may assume that Eσ,γ,4(u) ≤ 1
6 min{1, σ} (otherwise there is nothing to show). Now, find

x̄ ∈ (0, 1) and ȳ ∈ (0, 1) such thatˆ 1

0

dist(∇u(x, ȳ),Kγ,4)
2 dx+ σ|∂1∇u(·, ȳ)|(0, 1) ≤ Eσ,γ,4(u)(7.4)

and

ˆ 1

0

dist(∇u(x̄, y),Kγ,4)
2 dy + σ|∂2∇u(x̄, ·)|(0, 1) ≤ Eσ,γ,4(u).

As ∇u ∈ BV ((0, 1)2;R2) and u = 0 on ∂(0, 1)2, we have in the sense of traces ∂2u(0, y) = 0 and ∂1u(x, 0) = 0.
Using (7.4) we obtain the estimate |∇u(x, ȳ)| ≤ 3/6 = 1/2 for a.e. x ∈ (0, 1). Hence, it follows that

1

4
≤
ˆ 1

0

dist(∇u(x, ȳ),Kγ,N )2 dx ≤ Eσ,γ,N (u).

This shows claim (7.3). Then the lower bound for σ ≥ 1 follows immediately. Next, fix K ∈ N from Proposition
6.2 and notice that for 1 ≥ σ ≥ | sin(γ)|K it holds

| log σ|
| log | sin(γ)| | + 1 ≤ K + 1.

Consequently it follows from estimate (7.3)

min
u∈A0

Eσ,γ,4(u) ≥
1

6
min{1, σ} ≥ 1

6(K + 1)
min

{
1, σ

( | log σ|
| log | sin(γ)| | + 1

)}
.

Eventually, we note that the lower bound for σ ≤ | sin(γ)|K follows from Proposition 6.2. This finishes the proof
for N = 4.

□

Remark 3. One can argue similarly to show that there exist C, c > 0 such that for i = 1, 2 and γ ∈ Γ3, c.f.
Remark 2,

cmin

{
1, σ

( | log σ|
| log | sin(γ)| | + 1

)}
≤ min

u∈A0

Eσ,γ,3(u;T
(i)
0 ) ≤ Cmin

{
1, σ

( | log σ|
| log | sin(γ)| | + 1

)}
.
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