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Abstract. We consider scalar-valued variational models for pattern formation in helimagnetic compounds and

in shape memory alloys. Precisely, we consider a non-convex multi-well bulk energy term on the unit square,
which favors four gradients (±α,±β), regularized by a singular perturbation in terms of the total variation of

the second derivative. We derive scaling laws for the minimal energy in the case of incompatible affine boundary

conditions in terms of the singular perturbation parameter as well as the ratio α/β and the incompatibility of the
boundary condition. We discuss how well-studied models for martensitic microstructures in shape-memory alloys

arise as a limiting case, and relations between the different models in terms of scaling laws. In particular, we show

that scaling regimes arise in which an interpolation between the rather different branching-type constructions
in the spirit of [29] and [23], respectively, occurs. A particular technical difficulty in the lower bounds arises

from the fact that the energy scalings involve various logarithmic terms that we capture in matching upper and

lower scaling bounds.

1. Introduction

We explore relations between certain scalar-valued variational models for microstructures in shape-memory
alloys and in helimagnetic compounds, respectively. In these models, the formation of microstructures is induced
by a lack of convexity. More precisely, the energy functionals favor functions whose gradients lie in discrete
sets consisting of two (for martensites) or four (for helimagnets) vectors, respectively. To introduce a length
scale to the problem, these non-convex terms are typically complemented by a higher-order regularization
term which is interpreted as a surface energy term and in particular penalizes changes between regions of
preferred gradients (see e.g. [2]). There are only very few special cases in which minimizers for the resulting
variational problems are known (see [24] and the references given there), or qualitative properties of them are
proven (see [12, 14] and the references given there). Therefore, starting with the work by Kohn and Müller on
martensitic microstructures (see [28,29] and also below for a more detailed description), it has often proven useful
to understand the scaling behaviour of the minimal energy in terms of the problem parameters in order to explain
pattern formation in materials. More precisely, such results often indicate that in certain parameter regimes,
optimal configurations are rather uniform while in other regimes, complex branching patterns are predicted.
Similar results have been obtained for a variety of models for very different phenomena, including among many
others, various models for the classes of materials considered here, that is, martensitic microstructures (see
e.g. [3, 4, 5, 6, 15, 25, 27, 28, 29, 31, 32, 33, 34] and the references therein) and microstructures in micromagnetics
(see e.g. [7, 8, 9, 19,20,23,26,30,35] and the references therein).

1.1. The model and related results. Throughout the text, we consider a generic square domain (0, 1)2.
Pattern formation in helimagnets is often described in terms of (discrete) frustrated spin systems (see e.g. [21]).
We continue here a study of two-dimensional J1 − J3−type models on a square lattices. It has been found
(see [10, 11, 22]) that zooming into the helimagnetic/ferromagentic transition point and simultaneously taking
the continuum limit as the lattice spacing vanishes, such discrete models from statistical mechanics (if properly
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rescaled) converge in the sense of Γ−convergence to singularly perturbed continuum functionals. More precisely,
the latter are closely related to functionals of the form

(1.1) J(u) :=

ˆ
(0,1)2

dist2(∇u,Pα,β) dx+ σ | D2u | (Ω),

see [10,11,22] for precise results and [23] for a discussion of the simplifications we make here. In (1.1), Ω ⊂ R2

denotes the domain occupied by the magnetic body, and the set of preferred gradients Pα,β ⊂ R2 contains
four vectors. The latter can be seen as order parameters and correspond to chiralities of the discrete spin
fields. More precisely, it has been found that in the parameter regime we consider here, optimal spin field
configurations correspond to helical spins field, where the spin vectors rotate between nearest neighbors by a
fixed angle (clockwise or counterclockwise) horizontally and by a fixed angle vertically. The preferred gradients
Pα,β = {(±α,±β)} with α, β > 0 correspond to appropriately rescaled versions of these optimal rotation angles,
horizontally (α) and vertically (β). The actual angles are determined by the parameters of the J1 − J3−model
(see [10,11]). We note that in [10,23] the case α = β = 1 has been considered. The more general case considered
here corresponds to the additional freedom in the discrete spin systems that the ratio between nearest neighbor
and next to nearest neighbor interactions may be different (details will be discussed in [22]).
We consider the case of incompatible affine Dirichlet boundary conditions, i.e.,

(1.2) u(0, y) = (1− 2θ)βy

with a parameter θ ∈ (0, 1/2) that measures the incompatibility between the rigid field on the boundary and
the preferred gradients inside the sample: If θ = 0, the boundary condition is compatible with the preferred
gradients in Ω and the minimal energy vanishes, but the larger θ ∈ (0, 1/2) gets, the more incompatible are the
boundary conditions, and we expect a larger minimal energy.
Let us briefly explain the relation to variational problems from the literature: The case α = β = 1 has been
studied in [23]. The main result there is a scaling law for the minimal energy which takes the form

(1.3) min J(u) ∼ min

{
θ2, σ

( | log σ|
| log θ| + 1

)}
.

Here and in the following, we use the notation G ∼ H for functions G,H depending on the problem parameters,
to indicate that there are constants c, C > 0 such that for all admissible choices of the problem parameters
there holds cH ≤ G ≤ CH. The first scaling in (1.3) is achieved by an affine function, while the second scaling
corresponds to a branching-type construction, which (up to an interpolation layer close to the interface {x = 0})
uses only the preferred gradients in Pα,β .
On the other hand, if we set α = 0 and β = 1, then the functional given in (1.1) reduces to a variant of the
Kohn-Müller model for martensitic microstructures. It is well-known that the scaling law for the minimal energy
in this case reads (see e.g. [13, 36])

min J(u) ∼ min
{
θ2, σ2/3θ2/3

}
.

Again, the first regime corresponds to an affine function, while minimizers in the second regime are expected to
show almost self-similar behaviour (see [12,14] for rigorous results for a simplified model). However, in contrast
to the situation above, (almost) minimizers in this regime only satisfy (up to an interpolation layer) ∂2u ∈ {±β}
but not ∂1u ∈ {±α}.

1.2. Main results. We shall prove scaling laws for the minimal energies (1.1) under the boundary conditions
(1.2). As discussed above, this can be seen as generalizations of results on Kohn-Müller-type models (see
e.g. [13, 18, 29, 36]) and of the analysis in [23]. In particular, we show how this ”transition” from two-gradient
models to four-gradient models takes place in terms of ”interpolating” scaling regimes of the minimal energy.
A particular technical difficulty in the analysis lies in the fact that the scaling law contains various logarithmic
terms that we capture precisely in the upper and lower bounds.
We restrict ourselves to a generic domain (0, 1)2 to keep notation simple, but we expect that more general
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rectangles can be treated along the lines of [23, Section 4.4]. We treat the cases α ≤ β and α ≥ β separately
in Sections 2 and 3, respectively. As the absolute values α and β can be adjusted by the rescaling chosen for
the spin model (see [10, 22]), we set the larger of the two values to one and call the smaller one γ ∈ (0, 1], see
Remarks 2 und 3 for details. Our main results concern the complete characterization of the scaling laws of
the minimal energies, which we will outline in the sequel. We treat the cases of small preferred y- und small
preferred x-derivatives separately.

1.2.1. The case of small y-derivative. For σ > 0, θ ∈ (0, 1/2], and γ ∈ (0, 1] we set

Aθ,γ :=
{
u ∈ W 1,2((0, 1)2) : ∇u ∈ BV ((0, 1)2), u(0, y) = (1− 2θ)γy

}
.

We note that any function in Aθ,γ has a continuous representative up to the boundary (see e.g. [17, Lemma 9]).
In the following, we always refer to this representative without further mentioning. We consider the functional
Eσ,γ,θ : Aθ,γ → [0,∞) defined by

Eσ,γ,θ(u) :=

ˆ
(0,1)2

dist2(∇u,Kγ) dx+ σ | D2u | (Ω)

where

Kγ := {(±1,±γ)} .
While for γ → 1, we end up with the four-gradient problem studied in [23], we shall also exploit the above-

mentioned relation to two-gradient problems for martensitic microstructure formation. Precisely, we make use
of the following relation.

Remark 1. For u ∈ Aθ,γ consider v(x, y) := u(x,y)−x
γ . Then

Eσ,γ,θ(u) ≤
ˆ
(0,1)2

|∂1u− 1|2 +min {|∂2u− γ|, |∂2u+ γ|}2 dxdy + σ|D2u|((0, 1)2)

= γ2

(ˆ
(0,1)2

|∂1v|2 +min {|∂2v − 1|, |∂2v + 1|}2 dxdy + σγ−1|D2v|((0, 1)2)
)
.

In this way, the upper bound for the Kohn-Müller-type functional (see (1.4)) immediately yield bounds for our
problem which in some parameter regimes turn out to be sharp, in others not. This will be explored more
specifically in the proof of Proposition 2.1.

It turns out that the scaling law for the minimal energy Eσ,γ,θ shows a transition between the scaling
behaviour of the Kohn-Müller-type two-gradient energies and the ones derived in [23] for the four preferred
gradients (±1,±1). Precisely, compared to the setting of [23], besides uniform phases and branching-type
structures involving all four preferred gradients, also a Kohn-Müller type branching construction is relevant for
the scaling behaviour of the minimal energy. We note that in the Kohn-Müller model there are only two preferred
gradients, and the construction uses (up to a boundary layer) only the preferred values for the y−derivative.
However, in contrast to the branching-type construction using four gradients, the refinement is done in an
anisotropic way so that the x-derivatives become very large (and therefore get far away from the preferred
value) after only a few refinement steps. Our main result is the following scaling law of the minimal energy.

Theorem 1.1. There are constants c, C > 0 such that for all θ ∈ (0, 1/2], all γ ∈ (0, 1], and all σ > 0, there
holds

cmin

{
γ2θ2, σ2/3γ4/3θ2/3, σ

( | log σ|
| log(γ2θ)| + 1

)}
≤ min

Aθ,γ

Eσ,γ,θ ≤ Cmin

{
γ2θ2, σ2/3γ4/3θ2/3, σ

( | log σ|
| log(γ2θ)| + 1

)}
.

Proof. The upper bound is proven in Proposition 2.1, the lower bound in Proposition 2.2. □
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Remark 2. The case of arbitrary preferred gradients (±α,±β) with 0 < β ≤ α can be reduced to the
setting considered here by rescaling. Precisely, for a function u ∈ Aθ,β/α, the function uα := αu satisfies
uα(0, y) = α(1− 2θ)y, andˆ

(0,1)2
dist2 (∇uα,Pα,β) dx dy + σ

∣∣D2uα

∣∣ ((0, 1)2) = α2Eσ/α,β/α,θ(u).

1.2.2. The case of small x-derivative. For σ > 0, θ ∈ (0, 1/2], and γ ∈ (0, 1] we also consider on

Bθ :=
{
u ∈ W 1,2((0, 1)2) : ∇u ∈ BV ((0, 1)2), u(0, y) = (1− 2θ)y

}

the functional

Fσ,γ,θ(u) =

ˆ
(0,1)2

dist2(∇u,Mγ) dx+ σ | D2u | (Ω)

where

Mγ := {(±γ,±1)} .
Also in this case, we consider for any function in Bθ always its continuous representative (see e.g. [17, Lemma
9]). Again, for γ → 1, the problem turns into the four-gradient problem studied in [23], while for γ → 0, this
problem turns into a Kohn-Müller-type model. Our main result is the following scaling law for the minimal
energy.

Theorem 1.2. There are constants ci, Ci > 0, i = 1, 2, 3 such that for all θ ∈ (0, 1/2], all γ ∈ (0, 1], and all
σ > 0, the following statements hold:

(1) If 0 < γ ≤ θ/8 then

c1 min

{
θ2, σ2/3θ2/3,

σθ

γ

(∣∣∣∣log
σθ

γ3

∣∣∣∣+ 1

)}
≤ min

Bθ

Fσ,γ,θ ≤ C1 min

{
θ2, σ2/3θ2/3,

σθ

γ

(∣∣∣∣log
σθ

γ3

∣∣∣∣+ 1

)}
.

(2) If 0 < γ2/2 ≤ θ/8 < γ then

c2 min

{
θ2, σγ +

θ3

γ
,
σθ

γ

(∣∣∣log σ

θ2

∣∣∣+ 1
)}

≤ min
Bθ

Fσ,γ,θ ≤ C2 min

{
θ2, σγ +

θ3

γ
,
σθ

γ

(∣∣∣log σ

θ2

∣∣∣+ 1
)}

.

(3) If 0 < θ/8 < γ2/2 then

c3 min

{
θ2, σγ +

θ3

γ
, σγ

( | log σγ2/θ3|
| log γ2/θ| + 1

)}
≤ min

Bθ

Fσ,γ,θ ≤ C3 min

{
θ2, σγ +

θ3

γ
, σγ

( | log σγ2/θ3|
| log γ2/θ| + 1

)}
.

Proof. The upper bounds follow from Corollary 3.1.1, the lower bounds from Proposition 3.2. □

Remark 3. By rescaling, one can obtain similar results also for the case of general preferred gradients of the
form (±α,±β) with 0 < α ≤ β. For a function u ∈ Bθ consider uβ := βu. Then uβ(0, y) = β(1− 2θ)y andˆ

(0,1)2
dist2(∇uβ ,Pα,β) dx dy + σ

∣∣D2uβ

∣∣ ((0, 1)2) = β2Fσ/β,θ,α/β(u).

Let us briefly discuss how the above mentioned relations to the well-known scaling laws are reflected in this
result.

Remark 4. Suppose that σ > 0 and θ ∈ (0, 1/2] are fixed.

(1) If γ → 0 for θ > 0 fixed, we are in case (1) and we recover the well-known scaling law for Kohn-Müller
type models (see (1.4)).
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(2) Consider now the case γ → 1. Note that then we are necessarily in case (3) since for (2) there holds
γ2/2 ≤ θ/8 ≤ 1/16. If we are in case (3) then we have

min
Bθ

Fσ,γ,θ ∼ min

{
θ2, σ + θ3, σ

( | log σ/θ3|
| log θ| + 1

)}
∼ min

{
θ2, σ + θ3, σ

( | log σ|
| log θ| + 1

)}

∼ min

{
θ2, σ

( | log σ|
| log θ| + 1

)}
,

which is the scaling law from [23, Theorem 1] (see (1.3)).

Throughout the text, we denote by c and C generic constants that may change from expression to expression
and do not depend on the problem parameters. For B ⊆ R2 open and u ∈ W 1,2(B) with ∇u ∈ BV (B), we use
the notation Eσ,γ,θ(u;B) and Fσ,γ,θ(u;B) for the energy on B, i.e.,

Eσ,γ,θ(u;B) :=

ˆ
B

dist2(∇u,Kγ) dx+ σ|D2u|(B) and Fσ,γ,θ(u;B) :=

ˆ
B

dist2(∇u,Mγ) dx+ σ|D2u|(B).

In addition for x ∈ (0, 1) and I ⊆ (0, 1), we write for u ∈ Aθ,γ

Eσ,γ,θ(u; {x} × I) :=

ˆ
I

dist2(∇u(x, y),Kγ) dy + |∂1∇u(x, ·)|(I).

Note that since ∇u ∈ BV ((0, 1)2) this formula makes sense for almost every x ∈ (0, 1) in the sense of slicing of
BV -functions, see [1]. Similarly, we write for y ∈ (0, 1) and u ∈ Aθ,γ

Eσ,γ,θ(u; I × {y}) :=
ˆ
I

dist2(∇u(x, y),Kγ) dx+ |∂2∇u(·, y)|(I).

We use analogous notation for Fσ,γ,θ.

2. Proof of Theorem 1.1

2.1. Upper bound. We start with the proof of the upper bound in Theorem 1.1. Before we present the
precise constructions, let us start with a brief heuristic explanation. Essentially, the boundary conditions can
be met in two ways, namely the y-derivative being approximately (1− 2θ)γ and fast oscillations close to x = 0
between y-derivatives +γ and −γ with volume fraction 1 − θ and θ, respectively. The first case is penalized
by the first term in Eσ,γ,θ, whereas the second case introduces a certain energy through the second term of
Eσ,γ,θ. If σ > 0 is large, uniform structures should be energetically favorable. For small σ > 0, we present two
constructions in which oscillations in the y-derivative refine in a self-similar way towards x = 0. If γ > 0 is

rather small then the set Kγ =

{(
1
±γ

)}
∪
{(

−1
±γ

)}
is the disjoint union of two rather far apart sets of two

preferred gradients with a small distance. Hence, it is energetically favorable to use only two of the four vectors
in Kγ , i.e. we restrict ourselves to the setting of only two preferred gradients. By a simple change of variables,
in this scenario the construction from [29] can be invoked. The second construction uses all four preferred
gradients and isotropically rescaled building blocks, cf. Figure 2 and [23]. Assuming that ∇u ∈ Kγ , we find
that |u(x, y)− (1− 2θ)γy| ≤ x. It then follows, again assuming that ∇u ∈ Kγ , that the number of jumps of the

y-derivative is of order θγ
x . The presented construction realizes this as the number of jumps of the y-derivatives

grows from approximately (θγ2)−i to approximately (θγ2)−i−1 between xi ≈ θγ(θγ2)i and xi+1 ≈ θγ(θγ2)i+1.
Moreover, |∂2∂2u|((xi+1, xi) × (0, 1)) ≈ γ(xi − xi+1)(θγ

2)−i ≈ 1 which balances the energy contributions from
|∂1∂1u| per refinement step. The lower bound indicates that this is necessary.

Precisely, we have the following result.

Proposition 2.1. There is a constant C > 0 such that for all θ ∈ (0, 1/2], all γ ∈ (0, 1] and all σ > 0, there is
a function u ∈ Aθ,γ with

Eσ,γ,θ(u) ≤ Cmin

{
γ2θ2, σ2/3γ4/3θ2/3, σ

( | log σ|
| log(γ2θ)| + 1

)}
.
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αα2α3

≈ σ1/3γ−1/3θ−2/3

Figure 1. Sketch of the Kohn-Müller-type branching construction. The areas of ∂2u = 1 and
∂2u = −1 are colored in green and red, respectively. The parameter α can be chosen in the
interval (1/4, 1/2).

Proof. The first two scaling regimes arise from the scaling regimes of the Kohn-Müller-type models (see Remark
1, with constructions along the lines of [13,18,29,36]).
1. Uniform configuration. The first scaling, γ2θ2, corresponds to a uniform test function u1(x, y) =
(1− 2θ)γy + x, which has energy E(u1) = 4γ2θ2.
2. Kohn-Müller-type branching. The second energy scaling, σ2/3γ4/3θ2/3, can be achieved by a Kohn-
Müller type branching construction, which involves only two of the four preferred gradients, see Fig. 1. A
similar construction is also given in detail in Proposition 3.1 (b) below, cf. also the upper bound constructions
in [16, 36]. Precisely, it is shown in [36] that there is a constant C > 0 such that for all ε ∈ (0,∞) and all
θ ∈ (0, 1/2] with ε ≤ θ2, there is a function v := vε,θ : (0, 1)2 → R with v(0, y) = 0 for all y ∈ (0, 1) such that

ˆ
(0,1)2

(∂1v)
2
+min

{
(∂2v + 1− θ)

2
, (∂2v − θ)

2
}

dxdy + ε|D2v|((0, 1)2) ≤ Cε2/3θ2/3.

Suppose now σ ≤ γθ2 (otherwise γ2θ2 ≤ σ2/3γ4/3θ2/3, and the second energy scaling is not relevant). We then
set ε := σγ−1 ≤ θ2, and define u2 : (0, 1)2 → R by

u2(x, y) := γ (2v(x, y) + (1− 2θ)y) + x.

This yields u2 ∈ Aθ,γ , and by (1.4)

Eσ,γ,θ(u2) ≤
ˆ
(0,1)2

|∂1u2 − 1|2 +min{|∂2u2 − γ|, |∂2u2 + γ|}2 dxdy + σ|D2u2|((0, 1)2)

= γ2

(ˆ
(0,1)2

4|∂1v|2 + 4min{|∂2v − θ|, |∂2v + 1− θ|}2 dxdy + 2σγ−1|D2v|((0, 1)2)
)

≤ 4Cγ2ε2/3θ2/3 = 4Cσ2/3γ4/3θ2/3.

3. Four-gradient branching. We now turn to the third and last scaling regime, σ
(

| log σ|
| log(γ2θ)| + 1

)
. We may

assume that σ ≤ γ4θ2 (otherwise σ ≥ σ2/3γ4/3θ2/3, and the last energy scaling is not relevant). Here, we use a
branching-type construction (see Fig. 2), which is a variant of the construction that has been introduced in [23]
for the special case γ = 1. We introduce some auxiliary notation and set

m :=

⌈
1

θ

⌈
1

γ2

⌉⌉
, δ :=

1

m
, and n :=

⌊
θ

δ

⌋
,
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where ⌊x⌋ := max{ℓ ∈ N : ℓ ≤ x} and ⌈x⌉ := min{ℓ ∈ N : ℓ ≥ x}. Then

m <
1

θ

⌈
1

γ2

⌉
+ 1,

θ

θ +
⌈

1
γ2

⌉ < δ ≤ γ2θ ≤ 1

2
, n ≥ 1, and

m

n
≥ mδ

θ
≥ 2.

Step 1: Construction of the building block.
The building block is sketched in Fig. 2, left panel. We define V : [γθ2, γθ]× R → R2 as the function which is
1-periodic in y-direction and satisfies the following:

(i) If (x, y) ∈ [γθ2, γθ]× [1− lδ, 1− (l − 1)δ) for 1 ≤ l ≤ n then

V (x, y) =





(1,−γ) if x ≤ γθ − δγ(1− θ)(n− ℓ+ 1) and

y ≥ 1− (ℓ− 1)δ − θδ,

(1, γ) if y ≤ min{1− (ℓ− 1)δ − θδ, 1− lδ − γ−1(x− γθ − γδ(1− θ)(n− ℓ))} and

x ≤ γθ − δγ(1− θ)(n− ℓ),

(−1,−γ) else.

(ii) If (x, y) ∈ [γθ2, γθ]× [1− (n+ 1)δ, 1− nδ) then

V (x, y) =





(1,−γ) if y ≥ max{1− (n+ θ)δ, 1− θ + γ−1(x− γθ)},
(1, γ) if y ≤ 1− (n+ θ)δ and x ≤ 2γθ − (n+ θ)γδ,

(−1, γ) else.

(iii) If (x, y) ∈ [γ2θ, γθ]× [1− ℓδ, 1− (ℓ− 1)δ) for n+ 1 < ℓ ≤ m then

V (x, y) =





(1,−γ) if y ≥ max{1− ℓδ + (1− θ)δ, 1− (ℓ− 1)δ + γ−1(x− 2γθ + (n+ θ)γδ + (ℓ− n− 2)θγδ)},
(1, γ) if y ≤ 1− ℓδ + (1− θ)δ and x ≤ 2γθ − (n+ θ)γδ − (ℓ− n− 3)γθδ,

(−1, γ) else,

It can be seen that V is curl-free as it is piecewise constant and ν ∥ (V − − V +) on its jump set JV , where ν
is the measure-theoretic normal to JV . Consequently, V is a gradient field on (γ2θ, γθ) × R, and additionally,
V (x, y) ∈ K for almost all (x, y), and

| DV | ((γ2θ, γθ)× (0, 1)) ≤ C(δγ(1− γ)γm+ 1) ≤ C.

We will use in the next step that for the second component V2 of V , we have

V2(θγ, y) = V2(θ
2γ, δy) for all y ∈ R.(2.2)

Additionally, consider the function Vbd : (0, γθ(1 − θ)) × R → R2 which is 1-periodic in the y-component and
for (x, y) ∈ (0, γθ(1− θ))× (0, 1) defined as (see Fig. 2)

Vbd(x, y) =





(−1,−γ) if y ≥ 1− 1
γ(1−θ)x,

(−1, γ) if y ≤ x
γθ

(1, γ(1− 2θ)) else.

Again, we note that also Vbd is curl-free and |D2Vbd|((0, θγ(1− θ))× (0, 1)) ≤ C.

Step 2: Branching construction.
The branching-type construction is sketched in Fig. 2, right panel.
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θ

1− θ

γθ(1− θ)

δ

θ

1− θ

γθ(1− θ)

(
−1
γ

)

(
−1
−γ

)

(
1

(1 − 2θ)γ

)

θ

1− θ

γθ(1− θ)

Figure 2. Left: Sketch of the building block. Middle: Sketch of the function Vbd. Right:
Sketch of the branching construction for small y-derivatives.

We now set VN : (0, 1)2 → R2 for fixed N ∈ N as

VN (x, y) =





(1,−γ) if x ≥ γθ 1−θ
1−δ and y ≥ 1− θ,

(1, γ) if x ≥ γθ 1−θ
1−δ and y ≤ 1− θ,

V (δ−k+1x+ θ−δ
1−δ , δ

−k+1y) if x ∈ [δkγθ 1−θ
1−δ , δ

k−1γθ 1−θ
1−δ ) for some 1 ≤ k ≤ N,

Vbd(δ
−N (x− δN+1γθ 1−θ

1−δ ), δ
−Ny) if x ∈ (δN+1γθ 1−θ

1−δ , δ
Nγθ 1−θ

1−δ ),

(1, (1− 2θ)γ) if x ∈ (0, δN+1γθ 1−θ
1−δ ).

We note that VN is curl-free as ν ∥ (V −
N − V +

N ) on JVN
, where ν is the measure theoretic normal to JVN

, see

also (2.2). Moreover, VN (x, y) ∈ Kγ for almost all (x, y) ∈ (γθ(1−θ)
1−δ δN , 1)× (0, 1), and

| DVN |
(
(0, 1)2

)
≤ CN + 2γ ≤ CN.(2.3)

Let uN : (γθ(1−θ)
1−δ δN , 1)× (0, 1) → R be a corresponding primitive, i.e., ∇uN = VN , such that uN (0, 0) = 0.

Step 3: Estimate for the energy.
We have ˆ

(0,1)2
dist(∇uN ,Kγ)

2 dxdy ≤ 4γ2θ2γθ
1− θ

1− δ
δN ≤ C(γ2θ)N .(2.4)

Moreover, by (2.3)

| D2uN | ((0, 1)2) ≤ CN.(2.5)

Now fix

N :=

⌈
log σ

log(γ2θ)

⌉
.
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Combining (2.4) and (2.5), we obtain

Eσ,γ,θ(uN ) ≤ C(γ2θ)N + CσN ≤ Cσ

(
1 +

log σ

log(γ2θ)

)
= Cσ

( | log σ|
| log(γ2θ)| + 1

)
.

□

2.2. Lower bound. We now turn to the proof of the lower bound in Theorem 1.1. Precisely, we show the
following result.

Proposition 2.2. There is a constant c > 0 such that for all θ ∈ (0, 1/2], all γ ∈ (0, 1], and all σ > 0, there
holds

min
Aθ,γ

Eσ,γ,θ ≥ cmin

{
γ2θ2, σ2/3γ4/3θ2/3, σ

( | log σ|
| log(γ2θ)| + 1

)}
.

Proof. The proof is structured in a similar way as the proof of [23, Theorem 1] and is split in several parts that
we prove as separate lemmas below. We briefly outline the main steps and how they yield the claimed lower
bound.
First, in Lemma 2.2.1, we prove a (weaker) lower bound without the logarithmic term in the third regime, i.e.,

min
Aθ,γ

Eσ,γ,θ ≥ cmin{γ2θ2, σ2/3γ4/3θ2/3, σ}.

This concludes the proof of the lower bound in the first two regimes, in particular if σ ≥ γ4θ2 (since in this
case, γ4/3σ2/3θ2/3 ≤ σ, and the last regime is not relevant).
Let us now consider the remaining case σ ≤ γ4θ2.

• If (γ2θ)34 ≤ σ ≤ (γ2θ)2 then | log σ|/| log(γ2θ)| ∼ 1, and the lower bound is also concluded by Lemma
2.2.1 described above.

• If σ ≤ (γ2θ)34 and α0 ≤ γ2θ with some fixed constant α ∈ (0, 1), we have | log(γ2θ)| ∼ 1 (recall that
always γ2θ ≤ 1/2), and we prove in Lemma 2.2.3 below that

min
Aθ,γ

Eσ,γ,θ ≥ cσ(| log σ|+ 1),

which concludes the proof of the lower bound in this case.
• Finally, consider the case σ < (γ2θ)34 and γ2θ ≤ α0 with some fixed constant α0 ∈ (0, 1). Then there

exists some k ≥ 32 such that γ4θ2(γ2θ)k+1 ≤ σ < γ4θ2(γ2θ)k, and we prove in Lemma 2.2.2 below that

min
Aθ,γ

Eσ,γ,θ ≥ ckσ ≥ cσ
| log σ|

| log(γ2θ)| ≥ cσ

( | log σ|
| log(γ2θ)| + 1

)

where in the last estimate we used that σ < (γ2θ)2. This concludes the proof of the lower bound in this
parameter regime.

□

We first prove a weaker lower bound without the logarithmic term.

Lemma 2.2.1. There exists c > 0 such that for all u ∈ Aθ,γ there holds

Eσ,γ,θ(u) ≥ cmin{γ2θ2, σ2/3γ4/3θ2/3, σ}.

Proof. Assume that there exists u ∈ Aθ,γ such that Eσ,γ,θ(u) ≤ 1
322 min{γ2θ2, σ1/2γ3/2θ, σ}. We define

N := 8





1 if γ2θ2 = min{γ2θ2, σ2/3γ4/3θ2/3, σ},
σ−1/3γ1/3θ2/3 if σ2/3γ4/3θ2/3 = min{γ2θ2, σ2/3γ4/3θ2/3, σ},
γ−1 if σ = min{γ2θ2, σ2/3γ4/3θ2/3, σ}.
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Note that N ≥ 8. First find ȳ ∈ (0, 1− 2
N ) such that

Eσ,γ,θ

(
u; (0, 1)× (ȳ, ȳ +

2

N
)

)
≤ 4

N
Eσ,γ,θ(u).

Then by a Fubini-type argument find x̄ ∈ (0, 1) such that

Eσ,γ,θ

(
u; {x̄} × (ȳ, ȳ +

2

N
)

)
≤ 4

N
Eσ,γ,θ(u).

Lastly, again by a Fubini-type argument, we find y1, y2 ∈ (ȳ, ȳ + 2
N ) such that y2 − y1 = 1

N and

Eσ,γ,θ (u; (0, 1)× {y1}) + Eσ,γ,θ (u; (0, 1)× {y2}) ≤ 4Eσ,γ,θ(u).

First note that
´ 1
0
min{|∂1u(x, y1)− 1|, |∂1u(x, y1) + 1|}2 dx ≤ 4

322 γ
2θ2. Hence, there exists t ∈ (0, 1) such that

min{|∂1u(t, y1)−1|, |∂1u(t, y1)+1|} ≤ 1
16γθ < 1

2 . Without loss of generality we assume that |∂1u(t, y1)−1| < 1
2 ,

i.e. ∂1u(t, y1) ≥ 1
2 . Moreover, it holds that

|∂1∇u(·, y1)|((0, 1)) + |∂1∇u(·, y2)|((0, 1)) + |∂2∇u|({x̄} × (y1, y2)) ≤ σ−18Eσ,γ,θ(u) ≤
8

322
<

1

2
.

Hence, ∂1u(s, yi) ≥ 0 for i = 1, 2 and almost all s ∈ (0, 1), i.e.,

|∂1u(s, yi)− 1| = min {|∂1u(s, yi)− 1|, |∂1u(s, yi) + 1|} .
Then we estimate

|u(x̄, y2)− u(x̄, y1)− (1− 2θ)γ(y2 − y1)| =
∣∣∣∣
ˆ x̄

0

∂1u(t, y2)− 1− ∂1u(t, y1) + 1 dt

∣∣∣∣

≤x̄
1
2

(
E(u; (0, 1)× {y1})1/2) + Eσ,γ,θ(u; (0, 1)× {y2})1/2

)

≤1

8
min{γθ, σ1/3γ2/3θ1/3, σ1/2}

≤γθ
1

N
= γθ(y2 − y1).(2.6)

Here, we used that σ ≤ γ4θ2 if σ = min{γ2θ2, σ2/3γ4/3θ2/3, σ}. Next, we note that

|∂2∂2u(x̄, ·)|((y1, y2)) ≤ σ−1 4

322N
min{γ2θ2, γ4/3σ2/3θ2/3, σ} ≤ 1

2 · 322 γ < γ/2.

By a similar argument as before, we may assume that it holds for almost all y ∈ (y1, y2) that |∂2u(x̄, y)− γ| =
min{|∂2u(x̄, y)− γ|, |∂2u(x̄, y)− γ|}. Then we estimate

∣∣∣∣
ˆ y2

y1

(∂2u(x̄, y)− γ) dy

∣∣∣∣
2

≤ (y2 − y1)

ˆ y2

y1

|∂2u(x̄, y)− γ|2 dy

≤(y2 − y1)Eσ,γ,θ(u; {x̄} × (y1, y2)) ≤
4

N2
Eσ,γ,θ(u).(2.7)

On the other hand, we have by (2.6)
∣∣∣∣
ˆ y2

y1

(∂2u(x̄, y)− γ) dy

∣∣∣∣
2

= |u(x̄, y2)− u(x̄, y1)− γ(y2 − y1)|2

≥
∣∣2θγ(y2 − y1)− |u(x̄, y2)− u(x̄, y1)− (1− 2θ)γ(y2 − y1)|

∣∣2 ≥ γ2θ2(y2 − y1)
2 = γ2θ2

1

N2
.(2.8)

Combining (2.7) and (2.8) yields

Eσ,γ,θ(u) ≥
1

4
γ2θ2 ≥ 1

4
min{γ2θ2, σ2/3γ4/3θ2/3, σ}.

This concludes the proof. □
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γθ(γ2θ)iγθ(γ2θ)i+1

xixi+1

{xi} × (y, y + t)

(xi+1, xi)× {s}

γθ0

Figure 3. Sketch of the important quantities in the proof of Lemma 2.2.2

The next lemma is along the lines of [23, Lemma 6] and its proof, with the necessary careful amendments to
deal with the additional parameter γ.

Lemma 2.2.2. There exist α0 > 0 and c > 0 such that for all k ≥ k0 = 32, all γ ∈ (0, 1], all θ ∈ (0, α0/γ
2],

and all
σ ∈

[
γ4θ2(γ2θ)k+1, γ4θ2(γ2θ)k

)

there holds

Eσ,γ,θ(u) ≥ ckσ.

Proof. Set k0 := 32 and 0 < α0 < 1/(63)2 such that 2 · 64 · 212kαk/4
0 ≤ 1 for all k ≥ k0. Let k ≥ k0, γ, θ and σ

be as in the lemma and assume that Eσ,γ,θ(u) ≤ kσ.
For i = 1, . . . , k, there are by a Fubini-type argument xi ∈

(
γθ(γ2θ)i, 3

2γθ(γ
2θ)i

)
such that (cf. Fig. 3)

Eσ,γ,θ(u; {xi} × (0, 1)) ≤ 2(γθ)−1(γ2θ)−iEσ,γ,θ

(
u;

(
γθ(γ2θ)i,

3

2
γθ(γ2θ)i

)
× (0, 1)

)
.

Claim: There exists a constant c > 0 such that for all i ≤ k/2 it holds

γθ(γ2θ)iEσ,γ,θ(u, {xi} × (0, 1)) + Eσ,γ,θ(u; (xi+1, xi)× (0, 1)) ≥ cσ.

Note that once we prove the claim, the lower bound (2.9) follows via

2Eσ,γ,θ(u) ≥
⌊k/2⌋∑

i=1

[
Eσ,γ,θ

(
u;

(
γθ(γ2θ)i,

3

2
γθ(γ2θ)i

)
× (0, 1)

)
+ Eσ,γ,θ(u; (xi+1, xi)× (0, 1))

]

≥ 1

2

⌊k/2⌋∑

i=1

[
γθ(γ2θ)iEσ,γ,θ(u; {xi} × (0, 1)) + Eσ,γ,θ(u; (xi+1, xi)× (0, 1))

]

≥ ⌊k/2⌋ cσ ≥ ck

4
σ.

Hence, it remains to prove the claim. From now on fix i ≤ k/2. We define the set

Ni = {s ∈ (0, 1) : |∂2u(xi, s) + γ| ≤ 3 |∂2u(xi, s)− γ|}
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and claim that L1(Ni) ≤ 2/3, where we denote by L1 the 1-dimensional Lebesgue-measure. For a contradiction,
assume that L1(Ni) > 2/3. There are y1, y2 ∈ (0, 1) such that y2 − y1 ≥ 1− 1

12 and
ˆ 1

0

min{| ∂1u(x, yj)− 1 |, | ∂1u(x, yj) + 1 |}2 dx ≤ 24Eσ,γ,θ(u) for j = 1, 2.

This yields for j = 1, 2

|u(xi, yj)− (1− 2θ)γyj | ≤ xi + x
1/2
i (24Eσ,γ,θ(u))

1/2 ≤ 2xi,

and hence

u(xi, y2)− u(xi, y1) ≥ (1− 2θ)γ(y2 − y1)− 4xi.

This leads toˆ
(y1,y2)∩{∂2u(xi,·)≥γ/2}

∂2u(xi, s) ds = u(xi, y2)− u(xi, y1)−
ˆ
(y1,y2)∩{∂2u(xi,·)<γ/2}

∂2u(xi, s) + γ − γ ds

≥ (1− 2θ)γ(1− 1

12
)− 4xi + (2/3− 1/12)γ − 3Eσ,γ,θ(u; {xi} × (0, 1))1/2

≥ 1

2
γ,(2.10)

where we used that 4xi ≤ 6γθ(γ2θ) ≤ 1
24γ and Eσ,γ,θ(u; {xi} × (0, 1)) ≤ 2γ−1θ−1(γ2θ)−ikσ ≤ γ2

9·242 .
On the other hand, we estimateˆ

(y1,y2)∩{∂2u(xi,·)≥γ/2}
∂2u(xi, s) ds ≤

1

3
γ + Eσ,γ,θ({xi} × (0, 1))1/2 <

1

2
γ.

This contradicts (2.10). Hence, it holds L1(Ni) ≤ 2/3.
Now, let t := 120(θγ2)i+1. Then there is a point y ∈ (0, 1) such that the interval (y, y + t) ⊆ (0, 1) is not

completely contained in Ni,

Eσ,γ,θ(u; (0, 1)× (y, y + t)) ≤ 48tEσ,γ,θ(u),

Eσ,γ,θ(u : (xi+1, xi)× (y, y + t)) ≤ 48tEσ,γ,θ(u; (xi+1, xi)× (0, 1)),

Eσ,γ,θ(u; {xi} × (y, y + t)) ≤ 48tEσ,γ,θ(u; {xi} × (0, 1)), and

Eσ,γ,θ(u; {xi+1} × (y, y + t)) ≤ 48tEσ,γ,θ(u; {xi+1} × (0, 1)).

Then one of the following statements (1), (2), or (3) holds in {xi} × (y, y + t), where

(1) |∂2∂2u(xi, ·)|((y, y + t)) ≥ 1
2γ,

(2) |∂2u(xi, ·)− γ| ≤ 3|∂2u(xi, ·) + γ|, or
(3) |∂2u(xi, ·) + γ| ≤ 3|∂2u(xi, ·)− γ|.

As the interval (y, y + t) is not a subset of Ni, assertion (3) cannot be true. Hence, it suffices to consider the
cases (1) and (2).

Suppose that estimate (1) holds: Then

σ

2
=

σγ

2γ
≤ γ−1Eσ,γ,θ(u; {xi}×(y, y+t)) ≤ 48tγ−1Eσ,γ,θ(u; {xi}×(0, 1)) = 48·120(γ2θ)iγθEσ,γ,θ(u; {xi}×(0, 1))

and thus the claim follows.

Suppose that estimate (2) holds: Note that by the triangle inequality

1

2
γθt2 ≤ ∥u(xi, s+ t/2)− u(xi, s)− γt/2∥L1(y,y+t/2) + ∥u(xi, s+ t/2)− u(xi, s)− (1− 2θ)γt/2∥L1(y,y+t/2).
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Next, we use that Eσ,γ,θ(u; {xi} × (0, 1)) ≤ 2γ−1θ−1(γ2θ)−ikσ ≤ 1
212·64γ

2θ2 and estimate

∣∣∣∣∣

ˆ y+t/2

y

u(xi, s+ t/2)− u(xi, s)− γt/2 ds

∣∣∣∣∣ ≤
ˆ y+t/2

y

ˆ s+t/2

s

|∂2u(xi, r)− γ| dr ds

≤ t1/2
ˆ y+t/2

y

(ˆ y+t

y

|∂2u(xi, r)− γ|2 dr
)1/2

ds

≤ 21t2Eσ,γ,θ(u; {xi} × (0, 1))1/2

≤ 1

8
t2γθ.

Then, by (2) and Poincaré ’s inequality we have with a := 2
t

´ y+t/2

y
(u(xi, s+ t/2)− u(xi, s)− γt/2) ds

∥u(xi, s+ t/2)− u(xi, s)− γt/2− a∥L1(y,y+t/2) ≤ t∥∂2u(xi, s+ t/2)− ∂2u(xi, s)∥L1(y,y+t/2)

≤ t∥∂2u(xi, s)− γ∥L1(y,y+t)

≤ 3t3/2Eσ,γ,θ(u; {xi} × (y, y + t))1/2

≤ 21t2Eσ,γ,θ(u; {xi} × (0, 1))1/2.

Consequently, if ∥u(xi + t/2, s)− u(xi, s)− γt/2∥L1(y,y+t/2) ≥ 1
4γθt

2 it follows that

(2.11) 212t4Eσ,γ,θ(u; {xi} × (0, 1)) ≥
(
1

4
θγt2 − t

2
|a|
)2

≥ t4

64
γ2θ2 ≥ t4

64
γ3θ(γ2θ)k−i ≥ t4

64

σ

γθ(γ2θ)i
,

which yields the claim.
Hence, from now on we will assume that ∥u(xi, s)− u(xi, s+ t/2)− (1− 2θ)γt/2∥L1(y,y+t/2) ≥ 1

4γθt
2 . First,

observe that it holds for all s ∈ (y, y + t/2)

(2.12) |u(xi, s+ t/2)− u(xi, s)− (1− 2θ)γt/2| ≤ γθt+ 21tEσ,γ,θ(u; {xi} × (0, 1))1/2 ≤ 2γθt.

Moreover, define

Ai =

{
s ∈ (y, y + t) : Eσ,γ,θ(u; (0, 1)× {s}) ≤ 80

θt
Eσ,γ,θ(u; (0, 1)× (y, y + t))

}
,

and note that L1(Ai) ≥
(
1− θ

80

)
t. For s ∈ Ai we estimate

|u(xi+1, s)− (1− 2θ)γs| ≤ xi+1 + x
1/2
i+1Eσ,γ,θ(u; (0, 1)× {s})1/2

≤ xi+1 + x
1/2
i+1

(
80

θt
Eσ,γ,θ(u; (0, 1)× (y, y + t))

)1/2

≤ xi+1 + 63 · x1/2
i+1θ

−1/2Eσ,γ,θ(u)
1/2

≤ 2xi+1

≤ 1

40
γθt,

where for the second to last inequality we used that for i small enough versus k (recall that i ≤ k/2) we have
kσ ≤ kγ4θ2(γ2θ)k ≤ γθ(γ2θ)i+3 ≤ 1

632 θxi+1. For s ∈ (y, y + t) we find s̄ ∈ Ai such that |s− s̄| ≤ θ
80 t. Then we
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obtain

|u(xi+1, s)− (1− 2θ)γs|
≤|u(xi+1, s)− u(xi+1, s̄)|+ |u(xi+1, s̄)− (1− 2θ)γs̄|+ γ|s− s̄|

≤2γ|s− s̄|+ |s− s̄|1/2Eσ,γ,θ(u; {xi+1} × (y, y + t))1/2 +
1

40
γθt

≤ 1

16
γθt,

where we used similarly to above that for i ≤ k/2 it holds Eσ,γ,θ(u; {xi+1}× (y, y+ t)} ≤ 1
80γ

2θt. In particular,
using (2.12) we obtain for almost all s ∈ (y, y + t/2) that

|u(xi, s)− u(xi, s+ t/2)− u(xi+1, s) + u(xi+1, s+ t/2)|

≤|u(xi, s)− u(xi, s+ t/2)− (1− 2θ)γt/2|+ |u(xi+1, s)− (1− 2θ)γs|+ |u(xi+1, s+ t/2)− (1− 2θ)γ(s+ t/2)|

≤3γθt.
(2.13)

On the other hand, it holds by our assumption that

∥u(xi, s)− u(xi, s+ t/2)− u(xi+1, s) + u(xi+1, s+ t/2)∥L1(y,y+t/2)

≥∥u(xi, s)− u(xi, s+ t/2)− (1− 2θ)γt/2∥L1(y,y+t/2) − ∥u(xi+1, s)− (1− 2θ)γs∥L1(y,y+t/2)

− ∥u(xi+1, s+ t/2)− (1− 2θ)γ∥L1(y,y+t/2)

≥1

4
γθt2 − 1

8
γθt2

=
1

8
γθt2.(2.14)

Now, consider the set

S :=

{
s ∈ (y, y + t/2) :

1

8
γθt ≤ |u(xi, s)− u(xi, s+ t/2)− u(xi+1, s) + u(xi+1, s+ t/2)| ≤ 3γθt

}
.

We denote by L1(S) its 1− dimensional Lebesgue measure, and find with (2.13) and (2.14)

1

8
γθt2 ≤ L1(S) · 3γθt+ L1((y, y + t/2) \ S) · 1

8
γθt ≤ L1(S) · 3γθt+ t

2
· 1
8
γθt,

which implies

L1 (S) ≥ t

48
.

Using that 1
4γθ(γ

2θ)i ≤ xi − xi+1 ≤ 3
2γθ(γ

2θ)i this means that for a subset (y, y + t/2) of size at least t
48 it

holds

10 γ2θ ≤
∣∣∣∣
u(xi, s)− u(xi+1, s)

xi − xi+1
− u(xi, s+ t/2)− u(xi+1, s+ t/2)

xi − xi+1

∣∣∣∣ ≤ 12 · 120 γ2θ.

Therefore there exists a universal constant c > 0 such that it holds for all s from a subset of (y, y + t) whose
measure is at least t

48 that ∣∣∣∣
∣∣∣∣
u(xi, s)− u(xi+1, s)

xi − xi+1

∣∣∣∣− 1

∣∣∣∣ ≥ cγ2θ.

Now one can argue as in Step 4 of the proof of [23, Lemma 6] to conclude. We recall the argument in our setting
for the convenience of the reader. We assume that for a point s as above there holds |∂11u(·, s)|((xi+1, xi)) <

1
2 .

Without loss of generality, this implies for almost all t ∈ (xi+1, xi),

|∂1u(t, s)− 1| ≤ 3min {|∂1u(t, s)− 1|, |∂1u(t, s) + 1|} .
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Then

ˆ xi

xi+1

min {|∂1u(t, s)− 1|, |∂1u(t, s) + 1|}2 dt ≥ 1

9

ˆ xi

xi+1

|∂1u(t, s)− 1|2 dt

≥ 1

9(xi − xi+1)

(ˆ xi

xi+1

(∂1u(t, s)− 1)dt

)2

=
1

9
(xi − xi+1)

(
u(xi, s)− u(xi+1, s)

xi − xi+1
− 1

)2

≥ 1

9
· 1
4
γθ(γ2θ)i · c2γ4θ2 ≥ c2

36
(γ2θ)i+3 ≥ c2

36
σ

since i+ 3 < k and σ < γ4θ2(γ2θ)k.

Hence, it follows Eσ,γ,θ(u; (xi+1, xi)× (y, y+ t)) ≥ t
48 min{ c2

36 ,
1
2}σ, which implies the claim. This concludes the

proof of Lemma 2.2.2. □

Finally, we consider the parameter regime, in which branching is expected but | log(γ2θ)| is of order 1 and
does therefore not appear in the energy scaling, c.f. [23, Lemma 4].

Lemma 2.2.3. Let α0 ∈ (0, 1). Then there exists c > 0 such that for all γ2θ ≥ α0 and σ ≤ (γ2θ)14 it holds

Eσ,γ,θ(u) ≥ cσ (| log σ|+ 1) .

Proof. Assume that Eσ,γ,θ(u) ≤ 1
2σ (| log σ|+ 1) (otherwise there is nothing to show). Let x ∈ (0, γθ/4) and

t := 4x
γθ ≤ 1. Let It ⊆ (0, 1) be an interval of length t such that Eσ,γ,θ(u; {x} × It) ≤ CtEσ,γ,θ(u; {x} × (0, 1))

and Eσ,γ,θ(u; (0, 1)× It) ≤ CtEσ,γ,θ(u). Then one of the following statements is true on It:

(a) |∂2∇u(x, ·)|(It) ≥ γ/2,
(b) min{|∂2u(x, y)− γ|2, |∂2u(x, y) + γ|2} ≥ γ2/4 for almost every y ∈ It,
(c) |∂2u(x, y)− γ| ≤ |∂2u(x, y) + γ| for almost every y ∈ It, or
(d) |∂2u(x, y) + γ| ≤ |∂2u(x, y)− γ| for almost every y ∈ It.

If (a) or (b) is true then Eσ,γ,θ(u; {x} × (0, 1)) ≥ cmin{σγ/t, γ2θ2}. Assume now that (c) is true. Then it
follows from the triangle inequality that

1

2
γθt2 ≤ min

a∈R
∥u(x, y)− γy − a∥L1(It) + ∥u(x, y)− (1− 2θ)γy∥L1(It)

≤ t∥∂2u(x, ·)− γ∥L1(It) + ∥u(x, ·)− u(0, ·)∥L1(It)

≤ t3/2Eσ,γ,θ(u; {x} × It)
1/2 + tx+ ∥min{|∂1u− 1|, |∂1u+ 1|}∥L1((0,x)×It)

≤ Ct2Eσ,γ,θ(u; {x} × (0, 1))1/2 + tx+ tx1/2Eσ,γ,θ(u)
1/2.

Hence,

1

4
γθt2 =

1

2
γθt2 − tx ≤ Ct2Eσ,γ,θ(u; {x} × (0, 1))1/2 + tx1/2Eσ,γ,θ(u)

1/2.

If 1
4γθt

2 ≤ 2Ct2Eσ,γ,θ(u; {x} × (0, 1))1/2 then Eσ,γ,θ(u; {x} × (0, 1)) ≥ cγ2θ2. On the other hand, if 1
4γθt

2 ≤
2tx1/2Eσ,γ,θ(u)

1/2 then x ≤ 4Eσ,γ,θ(u) ≤ 2σ(| log σ|+ 1).

Hence, we have for all x ∈ (2σ(| log σ|+1), γθ
4 ) that Eσ,γ,θ(u; {x}×(0, 1)) ≥ cmin{σγ2θ/(4x), γ2θ2}. Next, we

note that σγ2θ/(4x) ≤ γ2θ2 if and only if x ≥ σ/(4θ). Moreover, observe that 2σ (| log σ|+ 1) ≤ σ
θ (| log σ|+ 1).
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Thus,

Eσ,γ,θ(u) ≥ c

ˆ γθ/4

σ
θ (| log σ|+1)

σγ2θ

4x
dx

≥ c

ˆ γθ/4

σ
θ (| log σ|+1)

σ

x
dx

≥ cσ

(
− log(

4σ

γθ2
(| log σ|+ 1)

)
.

Note that by assumption we have θ ≤ 1/2 and σ ≤ σ1/2(γ2θ)7 ≤ σ1/2(γθ)2 1
32 . Thus,

4σ

γθ2
(| log σ|+ 1) ≤ σ1/2

8
(4| log σ1/4|+ 1) ≤ σ1/2

8
(4σ−1/4 + 1) ≤ σ1/4.

Consequently,

Eσ,γ,θ(u) ≥
c

4
σ| log σ| ≥ c

8
σ(| log σ|+ 1),

since | log σ| ≥ 14 · | log θ| ≥ 14 · log 2 ≥ 1. This concludes the proof of Lemma 2.2.3. □

3. Proof of Theorem 1.2

We now turn to the case of small x-derivatives and prove the scaling laws in Theorem 1.2.

3.1. Upper bound. To prove the upper bound, we first present all constructions used in the proof and show
afterwards in Remark 3.1.1 how this result implies the upper bound stated in Theorem 1.2. Some test functions
show similarities in structure with those used in [15,23,29,36].
Before we present the precise statement, let us briefly discuss the heuristics for the upper bound constructions.
As in the heuristics in the setting of a small y-derivative, the main ways to meet the boundary conditions
are y-derivative (1 − 2θ) or quick oscillations of y-derivative +1 and −1 with volume fractions 1 − θ and θ,
respectively, close to x = 0. Again, the first option is penalized by the first term of the energy Fσ,γ,θ, whereas
the second term penalizes oscillations of the y-derivative. Hence, again for σ > 0 relatively large uniform
structures such as u(x, y) = γx+(1−2θ)y are energetically favorable, see construction (a) below. Moreover, if θ

is much smaller than γ the gradient

(
γ

1− 2θ

)
is rank-1 connected to the gradient

(
−γ
1

)
∈ Mγ over an almost

vertical interface, see Fig. 7 and construction (d) below, giving rise to another competitor with y-derivative
1− 2θ close to x = 0 which turns out to be energetically favorable for moderate values of σ > 0. The remaining
constructions will exploit oscillations close to x = 0 and yield low energies for small values of σ > 0. Formally,
as γ approaches 0, the set Mγ of four preferred gradients collapses to a set with only two preferred gradients.
Consequently, it is to be expected that a version of the optimal (in the sense of scaling) constructions for two
preferred gradients from [29, 36] play a role in a regime where γ > 0 is small, see Fig. 4. This construction
uses anisotropic rescalings of the building block sketched in Fig. 5 to increase the number of oscillations of the
y-derivative towards x = 0. In this construction it does not hold ∇u ∈ Mγ , essentially balancing the two terms
in Fσ,γ,θ. On the other hand, isotropic rescalings of the building block lead to ∇u ∈ Mγ and hence lower the
energy contribution from the first term in Fσ,γ,θ while increasing the contribution from the second term of Fσ,γ,θ

per refinement step. The construction (c) below exploits that in the way that it starts with refinements through
isotropic rescaling of the building block and switches to the anistropic rescaling of the building block when this
is energetically preferable, cf. the energy estimates (3.4) and (3.5) and the comment below. A sketch of this
construction can be found in Fig. 6. In particular, depending on the parameters this construction transitions
either into the Kohn-Müller like construction in (b) or into a construction which mainly uses ∇u ∈ Mγ , which
is closer to the construction from [23]. In parameter regimes where γ > 0 is larger than θ > 0 it turns out
that the anisotropic rescaling of the building block will not play a role leading to branching constructions which
essentially satisfy ∇u ∈ Mγ . Similarly to the heuristics for a small y-derivative it follows that the number of
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α

= σ1/3θ−2/3

Figure 4. Sketch of the Kohn-Müller like branching construction used in (b).

jumps of the y-derivative should be of order θ
γx . This will be satisfied at the end of the construction steps in

constructions (e) and (f). The main difference between the remaining constructions (e) and (f) is the following:
Glueing different construction steps leads to a contribution from the term |∂1∂1u| of order γ, cf. Figure 8 (left).
On the other hand, the energy contribution of |∂2∂2u| is of order θ

γ , cf. Fig. 5. Hence, as long as θ ≥ γ2 the

energy contribution from |∂2∂2u| necessarily dominates. This leads to construction (e). If θ ≤ γ2, we modify
the building block in order to balance the energy contributions from |∂1∂1u| and |∂2∂2u| to obtain contruction
(f), see Fig. 8 (right). Again, the proof of the lower bound suggests that this is necessary.

Proposition 3.1. Let c0 > 0. Then there is a constant C > 0 with the following property: For all θ ∈ (0, 1/2],
γ ∈ (0, 1], and σ > 0 the following holds:

(a) There is a function ua ∈ Bθ such that Fσ,γ,θ(ua) ≤ Cθ2.

(b) If σ ≤ θ2 and γ ≤ c0(σθ)
1/3 then there is a function uKM ∈ Bθ such that Fσ,γ,θ(uKM) ≤ Cσ2/3θ2/3.

(c) If σθ ≤ γ3 ≤ θ3 then there is a function uIB ∈ Bθ such that Fσ,γ,θ(uIB) ≤ C σθ
γ

(
log γ3

σθ + 1
)
.

(d) If θ ≤ γ then there is a function uRI ∈ Bθ such that Fσ,γ,θ(uRI) ≤ C
(
σγ + θ3

γ

)
.

(e) If σ ≤ θ2 and γ ≤ θ
γ then there is a function uBR ∈ Bθ such that Fσ,γ,θ(uBR) ≤ C σθ

γ

(
log θ2

σ + 1
)
.

(f) If θ ≤ γ2/2 and σ ≤ 2θ3/γ2 then there is a function u ∈ Bθ such that F (u) ≤ Cσγ
(

| log(σγ2/θ3)|
| log(γ2/θ)| + 1

)
.

Proof. (a) Affine function. Define ua : (0, 1)2 → R as ua(x, y) = (1− 2θ)y + γx. Then ua ∈ Bθ and

Fσ,γ,θ(ua) ≤ 4θ2.

(b) Kohn-Müller-type branching.

We assume σ ≤ θ2. Let δ = σ1/3θ−2/3, α = 2−3/2 and N =
⌈
log(θ1/3σ−2/3)

log 2

⌉
≥ 1. Note that 2θ1/3σ−2/3 ≥

2N ≥ θ1/3σ−2/3 since θ1/3σ−2/3 ≥ θ−1 ≥ 2. Consider the function W := (W1,W2)
T : (α, 1] × R → R2 defined
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as

W (x, y) =





(
− δθ

2(1−α)

1

)
if 0 ≤ y ≤ δ

2 + (x− 1) δθ
2(1−α)

(
δθ

2(1−α)

−1

)
if δ

2 + (x− 1) δθ
2(1−α) ≤ y ≤ δ

2

(
δθ

2(1−α)

1

)
if δ

2 ≤ y ≤ δ(1− θ)− (x− 1) δθ
2(1−α)

(
− δθ

2(1−α)

−1

)
if δ(1− θ)− (x− 1) δθ

2(1−α) ≤ y ≤ δ,

and extended periodically to R in the y-component. Then W2(α, y) = W2(1, 2y) for all y ∈ R. We define
U : (αN , 1)× (0, 1) → R2 as

U(x, y) =

(
2−kα−kW1(α

−kx, 2ky)
W2(α

−kx, 2ky)

)
if x ∈ (αk+1, αk].

Then U is a gradient field, and we and denote by ũ : (αN , 1) × (0, 1) → R the corresponding primitive with
ũ(αN , 0) = 0. Eventually define uKM : (0, 1)2 → R as

uKM(x, y) =

{
ũ(x, y) if x ≥ αN ,(
x− αN

)
α−N (1− 2θ)y − xα−N ũ

(
αN , y

)
else.

We remark that it holds |ũ(αN , y)− (1− 2θ)y| ≤ θδ2−N . Consequently, we find for x ≤ αN

(3.1) |∂1uKM(x, y)| ≤ θδ

2NαN
≤ 2N/2θδ ≤ 2θ1/6σ−1/3θδ = 2θ1/2.

Additionally, we estimate for 1 ≤ k ≤ N , using (2α)k = 2−k/2 and γ ≤ c0(σθ)
1/3

ˆ αk−1

αk

ˆ 1

0

dist2(∇uKM,Mγ) dxdy + σ|D2uKM|([αk, αk−1]× (0, 1))

≤
ˆ αk−1

αk

ˆ 1

0

dist2(∇uKM,Mγ) dxdy + Cσ (|∂12uKM|+ |∂11uKM|+ |∂22uKM|) ([αk, αk−1]× (0, 1))

≤
ˆ αk−1

αk

ˆ 1

0

|U1(x, y)± γ|2 dxdy + Cσ
(
θ + 2k/2δθ + (1− α)αk−12kδ−1

)

≤(1− α)αk−1γ2

(
2k/2

δθ

2γ
(1− α)− 1

)2

+ Cσ
(
θ + 2k/2σ1/3θ1/3 + 2−k/2σ−1/3θ2/3

)

≤C
(
2−k/2σ2/3θ2/3 + 2k/2σ4/3θ1/3 + σθ

)

≤C2−k/2σ2/3θ2/3,

where we used in the last step that by the definition of N , we have 2k/2 ≤ 2−k/22N ≤ 2 · 2−k/2θ1/3σ−2/3, and
2−k/2σ2/3θ2/3 ≥ 2−N/2σ2/3θ2/3 ≥ σθ1/2/2 ≥ σθ/2. Hence, we obtain, using the definitions of N , α and δ, as



ENERGY SCALING LAWS FOR MICROSTRUCTURES: FROM HELIMAGNETS TO MARTENSITES 19

(
−γ
1

)

(
γ
−1

)

(
γ
1

)

(
−γ
−1

)

θ

1− θ

θ/2

(1− θ)/2

θ/(2γ)

Figure 5. Sketch of the building block in construction (c) an (e).

well as the estimates γ ≤ c0(σθ)
1/3 ≤ c0θ ≤ c0θ

1/2 and σ ≤ θ2, and (3.1)

Eσ,γ,θ(uKM) ≤ C

N∑

k=1

2−k/2σ2/3θ2/3 +

ˆ 1

0

ˆ αN

0

dist(∇uKM,Mγ)
2 dxdy + σ|D2uKM|((0, αN ]× (0, 1))

≤ C

N∑

k=1

2−k/2σ2/3θ2/3 + 2

ˆ 1

0

ˆ αN

0

|∂1uKM|2 + γ2 +min
{
|∂2uKM ± 1|2

}
dx dy + σ|D2uKM|((0, αN ]× (0, 1))

≤ Cσ2/3θ2/3 + CαNθ + CαNγ2 + CαNθ2 + CαNθ + Cσ
(
1 + 2N/2δθ + αN2N + CαNθ1/2

)

≤ Cσ2/3θ2/3 + Cθ(2N )−3/2 + Cσ

≤ Cσ2/3θ2/3.

(c) Intermediate Branching.
We assume now that σθ ≤ γ3 ≤ θ3, and define a branching construction as follows.

Step 1: Definition of the building block

Consider the function V : [ θ
2γ ,

θ
γ ]× R → R2 defined for (x, y) ∈ [ θ

2γ ,
θ
γ ]× (0, 1) as (see Fig. 5)

(3.2) V (x, y) =





(
−γ

−1

)
if y ≥ 1− θ/2− γ(x− θ

2γ ),

(
γ

1

)
if 1− θ/2− γ(x− θ

2γ ) ≥ y ≥ 1/2,

(
γ

−1

)
if 1/2 ≥ y ≥ 1/2− θ/2 + γ(x− θ

2γ ),

(
−γ

1

)
if y ≤ 1/2− θ/2 + γ(x− θ

2γ ).
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2−N0

αN0−N12−N0

= γ/θ

2−N0

αN0−N12−N0

= γ/θ

Figure 6. Left: Sketch of the branching construction in the intermediate regime: The regions
of the four preferred gradients in the isotropically rescaled building blocks are colored in blue,
pink, yellow and beige. In the anisotropically rescaled building blocks, ∂1u ̸= ±γ but ∂2u = 1
(dark red) or ∂2u = −1 (light green).
Right: Same construction: ∂2u = 1 (dark red) and ∂2u = −1 (light green).

and extended periodically in the y-component. Then V is a gradient field and it holds for the second component
V2 that V2(θ/(2γ), y) = V2(θ/γ, 2y) for all y ∈ R.

Step 2: Definition branching gradient Let N0 =

⌈
log

(
γ3

σθ

)

log 2

⌉
≥ 1 and N1 =

⌈(
log( θ

γ2

)

log 2

⌉
+N0 ≥ N0 + 1. Note

that γ3

σθ ≤ 2N0 ≤ 2 γ3

σθ and θ
γ2 ≤ 2N1−N0 ≤ 2 θ

γ2 . In addition, set α = 2−3/2 as in (b). Then we define the

function U :
(
αN1−N02−N0 , 1

)
× R → R2 as follows, see Fig. 6. If x ∈ (2−N0 , 1) we set

U(x, y) = V (2Nθγ−1x, 2Nθγ−1y) if x ∈ (2−N−1, 2−N ].

Moreover, for N1 > N ≥ N0 we define

U(x, y) =


α−N+N02−N+N0V1

(
α−N+N02N0 θ

γx, 2
N−N0 θ

γ y
)

V2

(
αN−N02N0 θ

γx, 2
N−N0 θ

γ y
)


 if x ∈

(
2−N0αN−N0+1, 2−N0αN−N0

)
.

Note that for 2−N0αN−N0+1 ≤ x ≤ 2−N0αN−N0 we have

(3.3) U1(x, y) = ±2
N−N0

2 γ.

In addition we always have that U2(x, y) ∈ {±1}. Moreover, note that U is a gradient.

Step 3: Definition of the branching:

Let ũ :
(
2−N0αN1−N0 , 1

)
× (0, 1) → R be a corresponding primitive such that ũ(2−N0αN1−N0 , 0) = 0. Note

that 2−N0αN1−N0 ≳ σ/(25/2θ1/2) ≥ σ/8. Eventually, we define uIB : (0, 1)2 → R as

uIB(x, y) =

{
ũ(x, y) if x ≥ 2−N0αN1−N0 ,

(x− σ) 1
σ (1− 2θ)y − x

σ ũ
(
2−N0αN1−N0 , y

)
if x ≤ 2−N0αN1−N0 .
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Step 4: Energy estimates:

For N0 ≥ N , we note that ∇uIB ∈ Kγ a.e. in [2−N , 2−N+1]× (0, 1), and thus

ˆ 2−N+1

2−N

ˆ 1

0

dist(∇uIB,Mγ)
2 dydx+ σ|D2uIB|([2−N , 2−N+1]× (0, 1))

≤C (|∂11uIB|+ |∂12uIB|+ |∂22uIB|) ([2−N , 2−N+1]× (0, 1))

≤Cσ

(
γ + θ +

θ

γ

)

≤C
σθ

γ
.(3.4)

For N0 < N ≤ N1 we compute using (3.3) and γ ≤ θ

ˆ 2−N0αN−N0−1

2−N0αN−N0

ˆ 1

0

dist(∇uIB,Mγ)
2 dydx+ σ|D2uIB|

([
2−N0αN−N0 , 2−N0αN−N0−1

]
× (0, 1)

)

≤ 2−N0αN−N0(1− α)2N−N0γ2 + Cσ

(
(2α)−N+N0γ + θ + 2−N0αN−N0(1− α)2N

θ

γ

)

≤ C(2α)N−N0
σθ

γ
+ Cσθ,(3.5)

where we used that (2α)−N+N0γ ≤ (2α)−N1+N0γ ≤ C γ2

θ1/2 ≤ θ. Comparing (3.4) and (3.5) we note that for
N > N0 the anisotropic rescaling of the building block yields a smaller ernergy per refinement step than the
isotropic rescaling.

Next, note that |uIB(2
−N0αN1−N0 , y)−(1−2θ)y| ≤ 2·2−N1 γ

θ θ. Consequently, we have for x ∈ (0, 2−N0αN1−N0)
the bounds

|∂1uIB(x, y)| ≤
2 · 2−N1γ

2−N0αN1−N0
= 2 · (2α)N0−N1γ.

Hence, since 2 · (2α)N0−N1γ ≥ γ,

ˆ 2−N0αN1−N0

0

ˆ 1

0

dist(∇uIB,Mγ)
2 dy dx+ σ|D2uIB|((0, 2−N0αN1−N0))

≤
(
(2 · (2α)N0−N1γ)2 + 4θ2(1− θ) + 2θ

)
(2−N0αN1−N0) + Cσ

(
θ + 2−N0αN1−N02N1

θ

γ

)

≤Cσθ1/2 ≤ C
σθ

γ
.

Combining the various estimates we obtain

Fσ,γ,θ(uIB) ≤ C

(
N0

σθ

γ
+

σθ

γ

N1∑

N=N0+1

2(−N+N0)/2 + (N1 −N0)σθ

)
≤ C

σθ

γ

(
log

γ3

σθ
+ 1

)
,

where we used that N1 −N0 ≤ C2(N1−N0)/2 ≤ C θ1/2

γ ≤ C/γ.

(d): Rotated interface. We assume θ ≤ γ, and use the construction sketched in Fig. 7. Precisely, we set

uRI(x, y) =

{
γx+ (1− 2θ)y if θy ≥ γx,

−γx+ y if θy ≤ γx.
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= θ/γ

(
−γ
1

)

(
γ

1− 2θ

)

Figure 7. Sketch of the construction with a rotated interface used in (d).

Then

Fσ,γ,θ(uRI) ≤ 2
θ3

γ
+ Cσ

(
γ + θ +

θ2

γ

)
≤ C

(
θ3

γ
+ σγ

)
,

where we used that θ ≤ γ.

(e): Branching without linear interpolation. We assume that σ ≤ θ2. We use a branching construction
and a variant of the construction in (d) instead of interpolation, see Fig. 8. Precisely, we consider the functions
V : ( θ

2γ ,
θ
γ )× R → R2 as defined in (3.2). Additionally, consider W : (0, θ

γ )× R → R2 defined as

(3.6) W (x, y) =





(
−γ

−1

)
if y ≥ 1− γx,

(
−γ

1

)
if y ≤ (1− θ)γxθ ,

(
(1− 2θ)γ

1− 2θ

)
else,

and extend U periodically to R in the y-variable. Note that W is a gradient field.
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θ/γθ/(2γ)

θ

1− θ

θ(1− θ)/γ = θ/γ − θ2/γ

δ

Figure 8. Sketch of the branching construction as described in (e) and sketch of the building
block as described in (f).

For N ∈ N define UN : (0, 1)2 → R2 as

UN (x, y) =





W (2Nx, 2Ny) if x ≤ 2−N θ
γ

V (2kx, 2ky) if x ∈
(
2−k−1 θ

γ , 2
−k θ

γ

)
, 0 ≤ k ≤ N − 1(

γ

−1

)
if x ≥ θ

γ , y ≥ 1− θ + γ
(
x− θ

γ

)
,

(
−γ

1

)
if x ≥ θ

γ , y ≤ 1− θ + γ
(
x− θ

γ

)
.

Note that also UN is a gradient field. Let uBR : (0, 1)2 → R be a corresponding primitive such that uBR(0, 0) = 0.
Then uBR ∈ Bθ and, using γ ≤ θ,

Fσ,γ,θ(uBR) ≤ C2−N

(
θ3

γ
+

γ2θ3

γ

)
+ CσN

(
γ + θ +

θ

γ

)
≤ C

(
2−N θ3

γ
+

σθ

γ
N

)
.

Choosing N =

⌈
log θ2

σ

log 2

⌉
leads to Fσ,γ,θ(uBR) ≤ C σθ

γ

(
log θ2

σ + 1
)
.

(f) Variant of branching. We assume that θ ≤ γ2/2 and σ ≤ θ3/(2γ2). Let δ = (⌈γ2

θ ⌉)−1. Similarly

to the branching construction in Proposition 2.1, one can construct a function V : (θ2/γ, θ/γ) × R → R2 such
that (see Figure 8)

(1) V is 1-periodic in the second variable,
(2) V is curl-free;
(3) V (x, y) ∈ Kγ for a.e. (x, y) ∈ (θ2/γ, θ/γ)× R;
(4) |D2V |((θ2/γ, θ/γ)× (0, 1)) ≤ Cγ;
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(5) V ( θγ , y) = 1{0≤y≤1−θ}(y)− 1{1−θ≤y≤1}(y) for y ∈ (0, 1),

(6) V2(θ
2/γ, y) = V2(θ/γ, δ

−1y) for all y ∈ R.
Then we define for N ∈ N the function VN : (0, 1)2 → R2 as

VN (x, y) =





(γ,−1) if x ≥ θ(1−θ)
γ(1−δ) and y ≥ 1− θ,

(γ, 1) if x ≥ θ(1−θ)
γ(1−δ) and y ≤ 1− θ,

V (δ−k+1x− θ
γ

δ−θ
1−δ , δ

−k+1y) if x ∈
(
δk θ(1−θ)

γ(1−δ) , δ
k−1 θ(1−θ)

γ(1−δ)

)
for 1 ≤ k ≤ N,

W (δ−Nx− θ
γ

δ−θ
1−δ , δ

−Ny) if x ∈ (δN θ
γ

δ−θ
1−δ , δ

N θ(1−θ)
γ(1−δ)) ,(

(1− 2θ)γ

1− 2θ

)
if x ∈ (0, δN θ

γ
δ−θ
1−δ ),

where the function W is defined in (3.6). As before note that VN is a gradient field. Then let uN : (0, 1)2 → R
be a corresponding primitive with uN (0, 0) = 0. Note that uN ∈ Bθ. Moreover, we estimate the corresponding
energy

Fσ,γ,θ(u) ≤ Cθ2δN
θ(1− θ)

γ(1− δ)
+ Cσ

(
γN +

θ

γ
+ θ

)
≤ C

(
θ3

γ
δN + γσN

)
.

Choosing N = ⌈ | log σγ2/θ3|
| log γ2/θ| ⌉ yields the estimate

Fσ,γ,θ(u) ≤ Cγσ

( | log σγ2/θ3|
| log γ2/θ| + 1

)
.

□

We are now in the position to prove the upper bound in Theorem 1.2.

Corollary 3.1.1. There is a constant C > 0 such that the following assertions hold:

(1) If γ ≤ θ/8 then

min
Bθ

Fσ,γ,θ ≤ Cmin

{
θ2, σ2/3θ2/3,

σθ

γ

(∣∣∣∣log
σθ

γ3

∣∣∣∣+ 1

)}
.

(2) If 0 < γ2/2 ≤ θ/8 ≤ γ then

min
Bθ

Fσ,γ,θ ≤ Cmin

{
θ2, σγ +

θ3

γ
,
σθ

γ

(∣∣∣log σ

θ2

∣∣∣+ 1
)}

.

(3) If 0 < θ/8 ≤ γ2/2 then

min
Bθ

Fσ,γ,θ ≤ Cmin

{
θ2, σγ +

θ3

γ
, σγ

( | log σγ2/θ3|
| log γ2/θ| + 1

)}
.

Proof. (1) Consider γ ≤ θ/8.

• If min
{
θ2, σ2/3θ2/3, σθ

γ

(∣∣∣log σθ
γ3

∣∣∣+ 1
)}

= θ2, then the assertion follows from Proposition 3.1(a).

• If min
{
θ2, σ2/3θ2/3, σθ

γ

(∣∣∣log σθ
γ3

∣∣∣+ 1
)}

= σ2/3θ2/3 then σ ≤ θ2 (since σ2/3θ2/3 ≤ θ2) and γ3 ≤ σθ

(since σ2/3θ2/3 ≤ σθ
γ

(
| log σθ

γ3 |+ 1
)

implies that σθ
γ3

(
| log σθ

γ3 |+ 1
)3

≥ 1). Hence, the assertion

follows from Proposition 3.1(b).

• If min
{
θ2, σ2/3θ2/3, σθ

γ

(∣∣∣log σθ
γ3

∣∣∣+ 1
)}

= σθ
γ

(
| log σθ

γ3 |+ 1
)
then σθ ≤ γ3 (since σθ

γ

(
| log σθ

γ3 |+ 1
)
≤

σ2/3θ2/3) and γ ≤ θ/8 ≤ θ, and hence the assertion follows from Proposition 3.1(c).
(2) Consider γ2/2 < θ/8 ≤ γ.

• If min
{
θ2, σγ + θ3

γ , σθ
γ

(∣∣log σ
θ2

∣∣+ 1
)}

= θ2, the assertion follows from Proposition 3.1(a).
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• If min
{
θ2, σγ + θ3

γ , σθ
γ

(∣∣log σ
θ2

∣∣+ 1
)}

= σγ+θ3/γ then θ ≤ γ (since θ3/γ ≤ θ2), and the assertion

follows from Proposition 3.1(d).

• If min
{
θ2, σγ + θ3

γ , σθ
γ

(∣∣log σ
θ2

∣∣+ 1
)}

= σθ
γ

(∣∣log σ
θ2

∣∣+ 1
)
then σ ≤ 2θ2 (since σθ

γ

(∣∣log σ
θ2

∣∣+ 1
)
≤

σγ + θ3/γ implies that 1
2
σθ
γ ≤ θ3/γ). If σ ≤ θ2 then the assertion follows from Proposition 3.1(e).

If θ2 ≤ σ ≤ 2θ2 and θ ≤ γ then the assertion follows from Proposition 3.1(d) since σγ + θ3

γ ≤ 2σθ
γ .

Eventually, if θ2 ≤ σ ≤ 2θ2 and γ ≤ θ then the assertion follows from 3.1(a) since θ2 ≤ σθ
γ .

(3) Consider θ/8 < γ2/2.

• If min
{
θ2, σγ + θ3

γ , σγ
(

| log σγ2/θ3|
| log γ2/θ| + 1

)}
= θ2 then the assertion follows from Proposition 3.1(a).

• If min
{
θ2, σγ + θ3

γ , σγ
(

| log σγ2/θ3|
| log γ2/θ| + 1

)}
= σγ+ θ3

γ then θ ≤ γ (since θ3/γ ≤ θ2) and the assertion

follows from Proposition 3.1(d).

• If min
{
θ2, σγ + θ3

γ , σγ
(

| log σγ2/θ3|
| log γ2/θ| + 1

)}
= σγ

(
| log σγ2/θ3|
| log γ2/θ| + 1

)
then σ ≤ θ3/γ2 (since σγ ≤

θ3/γ). If σ ≤ θ3/(2γ2) and θ ≤ γ2/2 then the assertion follows from Proposition 3.1(f). Note that
the assumption θ ≤ 4γ2 always implies that θ ≤ γ (if 4γ2 ≥ γ then γ ≥ 1/2 ≥ θ). Therefore, if
θ3/(2γ2) ≤ σ ≤ θ3/γ2 then the assertion follows from Proposition 3.1(d).

□

3.2. Lower bound. The proof of the lower bound is again split in several steps. In the following proposition,
we outline how they imply the assertion in all parameter regimes.

Proposition 3.2. There is a constant c > 0 such that for all σ ∈ (0,∞), all γ ∈ (0, 1), and θ ∈ (0, 1/2], the
following statements hold:

(1) If γ ≤ θ/8, then

min
Bθ

Fσ,γ,θ ≥ cmin

{
θ2, σ2/3θ2/3,

σθ

γ

(∣∣∣∣log
σθ

γ3

∣∣∣∣+ 1

)}
.

(2) If γ2/2 ≤ θ/8 < γ, then

min
Bθ

Fσ,γ,θ ≥ cmin

{
θ2, σγ +

θ3

γ
,
σθ

γ

(∣∣∣log σ

θ2

∣∣∣+ 1
)}

.

(3) If θ/8 < γ2/2, then

min
Bθ

Fσ,γ,θ ≥ cmin

{
θ2, σγ +

θ3

γ
, σγ

(∣∣log(σγ2/θ3)
∣∣

|log(γ2/θ)| + 1

)}
.

Proof. (1) The first statement is proven in Lemma 3.2.2(1).
(2) For the second statement, we consider the cases σ ≤ θ2/γ and σ > θ2/γ separately. If σ ≤ θ2/γ then

σγ + θ3/γ ≤ 9θ2, and the assertion follows from the estimate proven in Lemma 3.2.2(2), namely

min
Bθ

Fσ,γ,θ ≥ cmin

{
σγ +

θ3

γ
,
σθ

γ

(∣∣∣log σ

θ2

∣∣∣+ 1
)}

.

If σ ≥ θ2/γ, then θ2 ≤ σγ ≤ σγ + θ3/γ, and σθ/γ ≥ θ2

γ
θ
γ ≥ (γθ) θγ = θ2. Hence, the assertion follows

from the lower bound in Lemma 3.2.1, namely

min
Bθ

Fσ,γ,θ ≥ cmin
{
θ2, σγ

}
= cθ2.

(3) For the third statement, we consider three cases separately, depending on the size of σ.
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• If σ < (θ3/γ2)(θ/γ2)32 then there exists k ∈ N, k ≥ k0 = 32 such that

σ ∈
[
θ3

γ2

(
θ

γ2

)k+1

,
θ3

γ2

(
θ

γ2

)k
)
.

By Lemma 3.2.3, we obtain the lower bound minBθ
Fσ,γ,θ ≥ ckσγ, which yields the claimed lower

bound, observing that 2k > k + 2 ≥ log(σγ2/θ3)/ log(θ/γ2) + 1.
• If (θ3/γ2)(θ/γ2)32 ≤ σ < θ3/γ2 then we have by Lemma 3.2.1 the lower bound minBθ

Fσ,γ,θ ≥
cmin

{
θ2, σγ

}
= cσγ. This concludes the proof in this case since

min

{
θ2, σγ +

θ3

γ
, σγ

(∣∣log(σγ2/θ3)
∣∣

|log(γ2/θ)| + 1

)}
≤ σγ

(∣∣log(σγ2/θ3)
∣∣

|log(γ2/θ)| + 1

)

≤ σγ

(
32| log(γ2/θ)|)
| log(γ2/θ)| + 1

)
≤ 33σγ.

• Consider finally the case θ3/γ2 ≤ σ. If σγ ≥ θ2 then the assertion follows from 3.2.1, using that
minBθ

≥ cmin{θ2, σγ} = cθ2. On the other hand, if σγ < θ2 then we obtain by Lemma 3.2.1 that
minBθ

Fσ,γ,θ ≥ cmin{σγ, θ2} = cσγ which concludes the proof since

min

{
θ2, σγ +

θ3

γ
, σγ

(∣∣log(σγ2/θ3)
∣∣

|log(γ2/θ)| + 1

)}
≤ σγ + θ3/γ ≤ 2σγ.

□

Similarly to Section 2, we start with a rough lower bound without the logarithmic terms. The following can
be seen as an analogue to Lemma 2.2.1.

Lemma 3.2.1. There exists a constant c > 0 such that for all γ ≥ θ/8 it holds

minFσ,γ,θ(u) ≥ cmin{θ2, σγ}.

Proof. Let u ∈ Bθ and assume that Fσ,γ,θ(u) ≤ 1
256 min{θ2, σγ}. Then there exist y1, y2 ∈ (0, 1) such that

y2−y1 ≥ 1
2 and Fσ,γ,θ(u; (0, 1)×{yi}) ≤ 4Fσ,γ,θ(u). Additionally, there exists x̄ ∈ (0, 1) such that Fσ,γ,θ(u; {x̄}×

(0, 1)) ≤ Fσ,γ,θ(u). Then there exists ȳ ∈ (0, 1) such that dist2(∇u(x̄, ȳ),Mγ) ≤ 1
256θ

2. In particular, there

exists M ∈ Mγ with |∇u(x̄, ȳ)−M |2 ≤ 1
256θ

2. Then we obtain for almost every y ∈ (0, 1)

|∇u(x̄, y)−M | ≤ |∇u(x̄, ȳ)−M |+ |∇u(x̄, ȳ)−∇u(x̄, y)| ≤ 1

16
θ + |∂2∇u(x̄, ·)|((0, 1))

≤ 1

16
θ +

1

256
γ ≤ γ

2
+

1

64
γ

for almost all y ∈ (0, 1), and hence |∇u(x, yi)−M | ≤ 1
2γ+

1
256γ+

4
256γ ≤ γ for almost all x ∈ (0, 1) and i = 1, 2.

Since the points in Mγ have a distance of at least 2γ, we obtain

|u(x̄, y2)− u(x̄, y1)−M2(y2 − y1)|2 ≤
ˆ y2

y1

|∂2u(x̄, y)−M2|2 dy

≤
ˆ y2

y1

dist(∇u(x̄, y),Mγ)
2 dy

≤Fσ,γ,θ(u; {x̄} × (0, 1)) ≤ Fσ,γ,θ(u).
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On the other hand, we estimate

|u(x̄, y2)− u(x̄, y1)−M2(y2 − y1)| ≥ |(1− 2θ −M2)(y2 − y1)| − |u(x̄, y2)− u(x̄, y1)− (1− 2θ)(y2 − y1)|

≥ θ −
2∑

i=1

ˆ x̄

0

|∂1u(x, yi)−M1| dx

= θ −
2∑

i=1

ˆ x̄

0

dist(∇u(x, yi),Mγ) dx

≥ θ −
2∑

i=1

(ˆ x̄

0

dist(∇u(x, yi),Mγ)
2 dx

)1/2

≥ θ − 4Fσ,γ,θ(u)
1/2 ≥ 1

2
θ.

Hence, combining the two estimates, we obtain

Fσ,γ,θ(u) ≥
1

4
θ2.

□

We now turn to the treatment of the remaining logarithmic terms.

Lemma 3.2.2. There exists c > 0 such that the following lower bounds hold:

(1) If γ ≤ θ/8 then

minFσ,γ,θ ≥ cmin

{
θ2, σ2/3θ2/3,

σθ

γ

(
| log σθ

γ3
|+ 1

)}
.

(2) If γ ≥ θ/8 and θ2/γ ≥ σ then

minFσ,γ,θ ≥ cmin

{
σγ +

θ3

γ
,
σθ

γ

(
| log σ

θ2
|+ 1

)}
.

Proof. We first introduce a slicing argument that is close to the argument in the proof of Lemma 2.2.3 which is
needed for both statements.
Step 1. Preparations.
Let x̄ ∈ (0, 1). Let t ∈ (0, 1) and consider the intervals Il = (lt, (l + 1)t) for l = 0, . . . , ⌊1/t⌋.

Choose an interval Il such that

Fσ,γ,θ(u; (0, 1)× Il) ≤ 4|Il|Fσ,γ,θ(u) and Fσ,γ,θ(u; {x̄} × Il) ≤ 4|Il|Fσ,γ,θ(u; {x̄} × (0, 1)).

Then one of the following statements is true on Il:

(a) |∂2∂2u(x̄, ·)|(Il) ≥ 1
2 ,

(b) min{|∂2u(x̄, y) + 1|, |∂2u(x̄, y)− 1|}2 ≥ 1
4 for almost all y ∈ Il,

(c) |∂2u(x̄, y)− 1| ≤ |∂2u(x̄, y) + 1| for almost all y ∈ Il,
(d) |∂2u(x̄, y) + 1| ≤ |∂2u(x̄, y)− 1| for almost all y ∈ Il.

We consider the cases separately.
If (a) is true then Fσ,γ,θ(u; {x̄} × (0, 1)) ≥ 1

8tσ.

If (b) is true then Fσ,γ,θ(u; {x̄} × (0, 1)) ≥ 1
16 .
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If (c) is true then by the triangle inequality

1

2
θt2 ≤ min

a∈R
∥u(x̄, y)− y − a∥L1(Il) + ∥u(x̄, y)− (1− 2θ)y∥L1(Il)

≤ t∥∂2u(x̄, ·)− 1∥L1(Il) + ∥u(x̄, ·)− u(0, ·)∥L1(Il)

≤ t3/2Fσ,γ,θ(u; {x̄} × Il) + γx̄t+ t1/2x̄1/2Fσ,γ,θ(u; (0, 1)× Il)
1/2

≤ 2t2Fσ,γ,θ(u; {x̄} × (0, 1))1/2 + γx̄t+ 2tx̄
1
2Fσ,γ,θ(u)

1/2

Hence, it follows 64Fσ,γ,θ(u; {x̄} × (0, 1)) ≥ θ2 or 1
4 tθ − γx̄ ≤ 2x̄1/2Fσ,γ,θ(u)

1/2.
If (d) is true the same conclusion follows from the stronger estimate

1

2
t2 ≤ min

a∈R
∥u(x̄, y) + y − a∥L1(Il) + ∥u(x̄, y)− (1− 2θ)y∥L1(Il).

Consequently, we obtain from (a) - (d) that

(3.7) Fσ,γ,θ(u; {x̄} × (0, 1)) ≥ cmin{σ/t, θ2} or
1

4
tθ − γx̄ ≤ 2x̄1/2Fσ,γ,θ(u)

1/2.

Step 2. Proof of (1): The regime: γ ≤ 1
8θ.

Kohn-Müller regime: Let us first assume that γ ≤ θ
8 and γ ≤ 1

8σ
1/3θ1/3. Then σθ/γ ≥ 8σ2/3θ2/3. In this case

we choose t := min{1, σ−1/3θ2/3}. If t = 1 then 1
4 tθ − γ ≥ 1

8 tθ. If t = θ2/3σ−1/3 then σ ≤ θ2. It follows that

1

4
tθ − γx̄ ≥ 1

4
σ−1/3θ5/3 − 1

8
σ1/3θ1/3 ≥ 1

8
σ−1/3θ5/3 =

1

8
tθ.

Hence, we conclude from (3.7) that

Fσ,γ,θ(u) ≥ c

ˆ 1

1/2

min{σ/t, θ2} dx =
c

2
min{σ/t, θ2} or

t2

64
θ2 ≤ 4Fσ,γ,θ(u).

In the first case, we obtain Fσ,γ,θ(u) ≥ c
2 min{σ2/3θ2/3, θ2}. In the latter case, there are two possibilities: If

t = 1 then Fσ,γ,θ(u) ≥ cθ2, and if t = σ−1/3θ2/3 (i.e., if σ ≤ θ2) then Fσ,γ,θ(u) ≥ cσ−2/3θ10/3 ≥ cσ2/3θ2/3.
Putting things together, we obtain

minFσ,γ,θ ≥ cmin
{
θ2, σ2/3θ2/3

}
,

which concludes the proof in this case.

Intermediate regime: Let us now assume that γ ≤ θ
8 and γ ≥ 1

8σ
1/3θ1/3. In addition, we may assume that

Fσ,γ,θ(u) ≤ c1
σθ
γ

(
| log σθ

γ3 |+ 1
)
for c1 > 0 to be chosen later. Choose x̄ ∈ (0, 1/16) and t := 8γx̄

θ . Then

1

4
tθ − γx̄ = 2γx̄− γx̄ = γx̄.

Hence, we obtain from (3.7) that

Fσ,γ,θ(u; {x̄} × (0, 1)) ≥ cmin

{
σθ

γx̄
, θ2
}

or x̄ ≤ 4

γ2
Fσ,γ,θ(u) ≤ 4c1

σθ

γ3

(∣∣∣∣log
σθ

γ3

∣∣∣∣+ 1

)
.

In particular, we have

Fσ,γ,θ(u) ≥ c

ˆ 1/16

c1
σθ
γ3

(
| log σθ

γ3 |+1
) min

{
σθ

γx
, θ2
}

dx.
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Note that c1
σθ
γx ≤ θ2 if x ≥ c1

σ
θγ . Since γ ≤ θ it holds c1

σ
θγ ≤ c1

σθ
γ3 ≤ c1

σθ
γ3

(∣∣∣log σθ
γ3

∣∣∣+ 1
)
. Hence,

Fσ,γ,θ(u) ≥ cc1

ˆ 1/16

c1
σθ
γ3

(
| log σθ

γ3 |+1
)
σθ

γx
dx = cc1

σθ

γ

(
log 1/16− log

σθ

γ3
− log

(∣∣∣∣log
σθ

γ3

∣∣∣∣+ 1

)
− log c1

)

≥ cc1
σθ

γ

(∣∣∣∣log
σθ

γ3

∣∣∣∣+ 1

)

if the universal constant c1 > 0 is chosen small enough. This concludes the proof of the lower bound in this
case, and hence the proof of (1).

Step 3. Proof of (2): The regime: γ > 1
8θ and σ ≤ θ2/γ. Let x̄ ∈ (0, θ

16γ ) and t := 4γx̄
θ . Then

1

2
tθ − γx̄ = γx̄ =

1

4
tθ.

Hence we obtain again from (3.7) that

Fσ,γ,θ(u; {x̄} × (0, 1)) ≥ cmin

{
σθ

γx̄
, θ2
}

or x̄ ≤ 4

γ2
Fσ,γ,θ(u).

In particular,

Fσ,γ,θ(u) ≥ c

ˆ θ/(16γ)

4
γ2 Fσ,γ,θ(u)

min

{
σθ

γx
, θ2
}

dx.

We consider the two possibilities σ ≤ θ2 and σ > θ2 separately.

• Consider first the case σ ≤ θ2. We assume that Fσ,γ,θ(u) ≤ c2
σθ
γ

(
| log σ

θ2 |+ 1
)
for some c2 > 0

fixed below (otherwise we are done.). We observe that c2
σ
θγ

(
| log σ/θ2|+ 1

)
≥ c2

σθ
64γ3

(
| log σ/θ2|+ 1

)
.

Additionally, we note that c2
σθ
γx̄ ≤ θ2 if and only if x̄ ≥ c2

σ
θγ and c2

σ
θγ

(
| log σ/θ2|+ 1

)
≤ c2

θ
γ ≤ θ/(16γ)

if c2 ≤ 1/16. Consequently,

Fσ,γ,θ(u) ≥ cc2

ˆ θ/(16γ)

c2
σ
θγ (| log σ/θ2|+1)

σθ

γx
dx = cc2

σθ

γ

(
log θ/γ − log 16− log σ/(γθ)− log c2 − log

(
| log σ/θ2|+ 1

))

= cc2
σθ

γ

(
log θ2/σ − log 16c2 − log

(
| log σ/θ2|+ 1

))

≥ cc2
σθ

γ

(
| log σ/θ2|+ 1

)

for c2 > 0 small enough. This shows the lower bound in this case.

• Consider now the case σ > θ2. We assume that Fσ,γ,θ(u) ≤ c3

(
θ3

γ + γσ
)
for c3 = 1/256 (otherwise

we are done.). Note that by Lemma 3.2.1 we already know that Fσ,γ,θ(u) ≥ cmin{θ2, σγ} = cσγ. In

particular, if σ ≤ θ3/γ2 then Fσ,γ,θ(u) ≥ c
2 (σγ + θ3

γ ), and we are done. Hence, we may assume σ ≤ θ3

γ2 .

Since we consider the regime σ < θ2, we have σ
θγ ≥ θ

γ , which implies that min
{

σθ
γx , θ

2
}

= θ2 for all

x ≤ θ
16γ . Consequently, we obtain

Fσ,γ,θ(u) ≥ c

ˆ θ/(16γ)

c3(γσ+θ3/γ)

θ2 dx = cθ3/(16γ)− c3c(θ
5/γ3 + σθ2/γ) ≥ c

16

(
θ3

γ
− θ3

4γ
− 1

4
σγ

)

≥ cθ3

32γ
≥ c

64

(
θ3

γ
+ σγ

)
.
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This concludes the proof in the regime γ ≥ θ/8 and σ ≤ θ2/γ. □

We finally turn to the parameter regime in which the logarithmic terms in the third regime occur. We proceed
similarly to Lemma 2.2.2.

Lemma 3.2.3. There exist α0 > 0 and c > 0 such that for all k ≥ k0 = 32, all γ ∈ (0, 1), all θ ∈ (0, α0γ
2] and

all

σ ∈
[
θ3

γ2

(
θ

γ2

)k+1

,
θ3

γ2

(
θ

γ2

)k
)

there holds

Fσ,γ,θ(u) ≥ ckσγ.

Proof. Similarly to the proof of Lemma 2.2.2 we set k0 := 32, 0 < α0 < 1/(63)2 such that 2 · 64 · 212kαk/4
0 ≤ 1

for all k ≥ k0. We assume Fσ,γ,θ(u) ≤ kσ and that k ≥ k0.

Let σ ∈
(

θ3

γ2

(
θ
γ2

)k+1

, θ3

γ2

(
θ
γ2

)k)
. Then find xi ∈

(
1
2
θ
γ

(
θ
γ2

)i
, 3
2
θ
γ

(
θ
γ2

)i)
such that

Fσ,γ,θ(u; {xi} × (0, 1)) ≤ γ

θ

(
γ2

θ

)i

Fσ,γ,θ

(
u;

(
1

2

θ

γ

(
θ

γ2

)i

,
3

2

θ

γ

(
θ

γ2

)i
)

× (0, 1)

)
.

for i = 1, . . . , k.

Claim: There exists a constant c > 0 such that for all i = 1, . . . , ⌊k/2⌋ it holds

θ

γ

(
θ

γ2

)i

Fσ,γ,θ(u, {xi} × (0, 1)) + Fσ,γ,θ(u; (xi+1, xi)× (0, 1)) ≥ cσγ.

We first show how to derive the lower bound from the claim. We have

2Fσ,γ,θ(u) ≥
⌊k/2⌋∑

i=1

Fσ,γ,θ

(
u;

(
1

2

θ

γ

(
θ

γ2

)i

,
3

2

θ

γ

(
θ

γ2

)i
)

× (0, 1)

)
+ Fσ,γ,θ(u; (xi+1, xi)× (0, 1))

≥
⌊k/2⌋∑

i=1

θ

γ

(
θ

γ2

)i

Fσ,γ,θ(u; {xi} × (0, 1)) + Fσ,γ,θ(u; (xi+1, xi)× (0, 1))

≥ c
k

4
γσ.

Proof of claim: The claim can be obtained following the arguments in the proof of Proposition 2.2.2. We sketch
it here for the sake of completeness.

First, define Ni := {s ∈ (0, 1) : |∂2u(xi, s) + 1| ≤ 3|∂2u(xi, s)− 1|} and assume for a contradiction that
L1(Ni) > 2/3. Then one can show with the analogous definitions of y1, y2 ∈ (0, 1) along the lines of the
proof of Lemma 2.2.2 thatˆ

(y1,y2)∩{∂2u≥1/2}
∂2u(xi, s) ds ≤

1

3
+ Fσ,γ,θ(u; {xi} × (0, 1))1/2 < 1/2

and ˆ
(y1,y2)∩{∂2u≥1/2}

∂2u(xi, s) ds ≥ (1− 2θ)(y2 − y1)− 4γxi − 3Fσ,γ,θ(u; {xi} × (0, 1))1/2 +
2

3
− 1

12

≥ 1

2
.

This shows that L1(Ni) ≤ 2/3.
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Next, let t = 120
(

θ
γ2

)i+1

. Again, we find (y, y + t) ⊆ (0, 1) such that (y, y + t) ∩N c
i ̸= ∅ and

Fσ,γ,θ(u; (0, 1)× (y, y + t)) ≤ 48t Fσ,γ,θ(u),

Fσ,γ,θ(u; (xi+1, xi)× (y, y + t)) ≤ 48t Fσ,γ,θ(u; (xi+1, xi)× (0, 1)),

Fσ,γ,θ(u; {xi} × (y, y + t)) ≤ 48t Fσ,γ,θ(u; {xi} × (0, 1)),

Fσ,γ,θ(u; {xi+1} × (y, y + t)) ≤ 48t Fσ,γ,θ(u; {xi+1} × (0, 1)).

Moreover, we observe that on (y, y + t) one of the following three assertions has to hold

(1) |∂2∂2u(xi, ·)|(y, y + t) ≥ 1/2,
(2) |∂2u(xi, s)− 1| ≤ |∂2u(xi, s) + 1| for almost all s ∈ (y, y + t),
(3) |∂2u(xi, s) + 1| ≤ 3|∂2u(xi, s)− 1| for almost all s ∈ (y, y + t).

If (1) is true then the estimate follows immediately. Moreover, (3) cannot be true by our choice of (y, y + t).
Hence, from now on, we assume that (2) is true. By the triangle inequality, it holds

1

2
θt2 ≤ ∥u(xi, ·+ t/2)− u(xi, ·)− t/2∥L1(y,y+t/2) + ∥u(xi, ·+ t/2)− u(xi, ·)− (1− 2θ)t/2∥L1(y,y+t/2).

First we assume that 1
4θt

2 ≤ ∥u(xi, · + t/2) − u(xi, ·) − t/2∥L1(y,y+t/2) and define a =
´ y+t/2

y
(u(xi, s + t/s) −

u(xi, s)− t/2) ds. Then one shows as in the proof of Lemma 2.2.2 that

|a| ≤ 21t2Fσ,γ,θ(u; {xi} × (0, 1))1/2 ≤ 1

8
t2θ,

where we used that θ
γ

(
γ2

θ

)i
kσ ≤ θ2k

(
θ
γ2

)k−i

≤ 1
212·64θ

2. Then it follows similarly to (2.11)

21t4Fσ,γ,θ(u; {xi} × (0, 1)) ≥
(
1

4
θt2 − t

2
|a|
)2

≥ t4

64
θ2 ≥ t4

64
γ
θ3

γ2

(
θ

γ2

)k
γ

θ

(
γ2

θ

)i

≥ t4

64
σγ

γ

θ

(
γ2

θ

)i

,

which yields the claim.

Next, assume that 1
4θt

2 ≤ ∥u(xi, ·+ t/2)−u(xi, ·)− (1−2θ)t/2∥L1(y,y+t). Along the lines of the proof of Lemma
2.2.2 one shows for

S :=

{
s ∈ (y, y + t/2) :

1

8
θt ≤ |u(xi, s)− u(xi, s+ t/2)− u(xi+1, s) + u(xi+1, s+ t/2)| ≤ 3θt

}

that L1(S) ≥ t
48 . Since

1
4
θ
γ

(
θ
γ2

)i
≤ xi − xi+1 ≤ 3

2
θ
γ

(
θ
γ2

)i
, we find for s ∈ S

10
θ

γ
≤
∣∣∣∣
u(xi, s)− u(xi, s+ t/2)− u(xi+1, s) + u(xi+1, s+ t/2)

xi − xi+ 1

∣∣∣∣ ≤ 12 · 120 θ
γ
,

which implies since θ
γ ≤ α0γ ≤ (12 · 120)−1γ that there exists a subset of (y, y+ t) whose measure is at least t

48

such that ∣∣∣∣
∣∣∣∣
u(xi, s)− u(xi+1, s)

xi − xi+1

∣∣∣∣− γ

∣∣∣∣ ≥ c
θ

γ
.

Fix s ∈ (y, y + t) with the above property and assume that |∂1∂1u(·, s)|((xi+1, xi)) < γ/2. Moreover, we may
assume without loss of generality that |∂1u(t, s) − γ| ≤ 3|∂1u(t, s) + γ| for almost all t ∈ (xi+1, xi). Then it
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follows similarly to the proof of Lemma 2.2.2 that
ˆ xi

xi+1

min {|∂1u(t, s) + γ|, |∂1u(t, s)− γ|}2 dt ≥ 1

9
(xi − xi+1)

(
u(xi, s)− u(xi+1, s)

xi − xi+1
− γ

)2

≥ 1

36

θ

γ

(
θ

γ2

)i

c2
θ2

γ2

≥ c2

36
γ
θ3

γ2

(
θ

γ2

)i+1

≥ c2

36
γσ.

Consequently, we find

48t Fσ,γ,θ(u; (xi+1, xi)× (0, 1)) ≥ Fσ,γ,θ(u; (xi+1, xi)× (y, y + t)) ≥ min

{
1

2
,
c2

36

}
t

48
γσ.

Dividing by t on both sides of the inequality, this concludes the proof. □
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