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Abstract. In the context of Sobolev spaces with variable exponent, Poincaré–Wirtinger inequal-

ities are possible as soon as Luxemburg norms are considered. Modular versions in the classical

form ∫
Ω

|f(x) − ⟨f⟩Ω|p(x) dx ⩽ C

∫
Ω

|∇f(x)|p(x)dx,

on the other hand, are known to be false, cf. [16]. As a result, all available modular versions of

Poincaré–Wirtinger inequality in the variable-exponent setting contain an extra term preventing

such inequalities to reduce to the classical ones in the constant exponent case, and this is regarded

as an unavoidable anomaly.

Our contribution is threefold. First, we establish that a modular Poincaré–Wirtinger inequality

particularizing to the classical one in the constant exponent case is indeed conceivable. We show

that if Ω ⊂ Rn is a bounded Lipschitz domain, and if p ∈ L∞(Ω), p ⩾ 1, then for every f ∈ C∞(Ω̄)

the following generalized Poincaré–Wirtinger inequality holds∫
Ω

|f(x) − ⟨f⟩Ω|p(x) dx ⩽ C

∫
Ω

∫
Ω

|∇f(z)|p(x)

|z − x|n−1 dzdx,

where ⟨f⟩Ω denotes the mean of f over Ω, and C > 0 is a positive constant depending only on Ω and

∥p∥L∞(Ω). Second, our argument is concise and constructive and does not rely on compactness

results. Third, we additionally provide geometric information on the best Poincaré–Wirtinger

constant on Lipschitz domains.

1. Introduction

On the one hand, the Poincaré–Wirtinger inequality is a fundamental result in mathematical
analysis, for it estimates the deviation of a function from its mean value over a given bounded
domain (namely, an open and connected subset) of Rn. In its classical form, the Poincaré–Wirtinger
inequality assures, in particular, that if Ω is a bounded Lipschitz domain of Rn, n ⩾ 1, and p ∈ [1, ∞),
then there exists a positive constant C > 0, depending only on Ω (and hence on n) and p, such that(∫

Ω
|f(x) − ⟨f⟩Ω|p dx

)1/p

⩽ C

(∫
Ω

|∇f(z)|p dz

)1/p

∀f ∈ C∞(Ω̄). (1.1)

Here, and in what follows, for open and bounded Ω ⊂ Rn with Lebesgue measure |Ω| and f ∈ L1(Ω)
we denote by

⟨f⟩Ω := 1
|Ω|

∫
Ω

f(x) dx (1.2)

the mean value of f in Ω.
When switching from classical Sobolev spaces to Sobolev spaces with variable exponent, on the

other hand, inequalities of the form∫
Ω

|f(x) − ⟨f⟩Ω|p(x) dx ⩽ C

∫
Ω

|∇f(x)|p(x)dx, (1.3)

are known to be false (cf. [16], the discussion in [11], and Example 2.1 below). Additionally, modular
Poincaré–Wirtinger inequalities are generally regarded as only achievable by adding further terms
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to the right-hand side of (1.3) which do not disappear when the exponent p(x) reduces to a constant
function (see, e.g., [15, Theorem 8.2.8 (b), p.257] and [7, 22]). In other words, there is currently
no variant of (1.1) in the setting of Sobolev spaces with variable exponents only involving modular
norms and reducing to (1.1) for p(x) ≡ p ∈ [1, ∞).

In this paper, we show that such a generalization of (1.1) in the setting of Sobolev spaces with
variable exponents is indeed possible. Our main result is the following.

Theorem 1.1 (Poincaré–Wirtinger-type inequality on Lipschitz domains). Let Ω ⊂ Rn be a bounded

Lipschitz domain (open and connected). Let further the variable exponent

p : Ω → [1, ∞)

be in L∞(Ω). Then for all f ∈ C∞(Ω) there holds∫
Ω

∣∣f(x) − ⟨f⟩Ω
∣∣p(x) dx ⩽ C

∫
Ω

∫
Ω

|∇f(z)|p(x)

|z − x|n−1 dzdx (1.4)

for some constant C > 0 depending only on Ω and p+ := ∥p∥L∞(Ω) (see (3.36)).

In Proposition 2.4 (see also Appendix A) we recall that any bounded Lipschitz domain can be
written as the union of a finite chain of domains that are starshaped with respect to balls all having
the same radius. Precisely, it is always possible to express Ω under the form Ω = ∪N

i=1Di for some
N ∈ N, where any Di is a bounded domain that is starshaped with respect to some ball with radius
R > 0 included in Di and Di+1 ∩ (∪i

j=1Dj) ̸= ∅ for all i = 1, ..., N − 1. The constant C in (1.4) can
be taken as

C := λ(Ω)
ωnRn

·
(

1 + 2(p++1) κ(Ω)
λ(Ω)

)N

· (max{diam(Ω), 1})n+p+−1

n|Ω|
, (1.5)

with
κ(Ω) := (n + 1)ωn diam(Ω)n, λ(Ω) := inf

1⩽i⩽N−1
|Di+1 ∩ (∪i

j=1Dj)|. (1.6)

Note that in (1.5) and (1.6), n denotes the dimension of the ambient space Rn, while N denotes the
number of starshaped domains in which the bounded Lipschitz domain Ω can be decomposed. We
used the notation ωn to indicate the measure of the unit ball in Rn.

As a corollary, we deduce the well-known Poincaré–Wirtinger inequality in classical Sobolev spaces
(compare, e.g., with [20, Remark 13.28, p.433], [6, Comment 3 on Chapter 9, p.312], [21, Thm 8.11,
p.218], [14, Proposition 10.2, p.437, for the convex case], [2, Corollary 5.4.1, p.173], and [18, (7.45),
p.157]):

Corollary 1.2. For Ω ⊂ Rn a bounded Lipschitz domain (open and connected), 1 ⩽ p < ∞ and

f ∈ C∞(Ω), there holds ∫
Ω

∣∣f(x) − ⟨f⟩Ω
∣∣p dx ⩽ C̃

∫
Ω

|∇f(z)|p dz. (1.7)

for some constant C̃ > 0 depending only on Ω and p.

Note that the constant C̃ in (1.7) can be taken as C̃ := C(n+1)ω1− 1
n

n |Ω| 1
n , with C given by (1.5).

Corollary 1.2 above follows immediately from Theorem 1.1. If the exponent is constant, we apply
Fubini’s theorem to the right-hand side of (1.4) to get∫

Ω

∣∣f(x) − ⟨f⟩Ω
∣∣p dx ⩽ C

∫
Ω

∫
Ω

|∇f(z)|p

|z − x|n−1 dzdx

= C

∫
Ω

|∇f(z)|p
∫

Ω

1
|z − x|n−1 dx dz,

with C given by (1.5). The inner integral is now uniformly bounded because Ω has finite measure.
Applying Lemma A.4 in the appendix, we infer that∫

Ω

∣∣f(x) − ⟨f⟩Ω
∣∣p dx ⩽ C(n + 1)ω1− 1

n
n |Ω| 1

n

∫
Ω

|∇f(z)|p dz,
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from which the result follows with C̃ := C(n + 1)ω1− 1
n

n |Ω| 1
n .

Inequality (1.1) has wide-ranging applications in various fields of mathematics, including partial
differential equations, harmonic analysis, probability theory, and geometric measure theory. Its
significance stems from its ability to provide powerful estimates about the regularity of functions,
making it a key tool for studying a broad variety of mathematical problems. Furthermore, the
knowledge of sharp constants in such functional inequalities, or even upper bounds emphasizing the
dependence of optimal constants on the domain geometry has remarkable uses in the Analysis of
PDEs, Numerical Analysis, and Materials Science (see, e.g., [1,3, 10, 12, 13, 19,24,26,28]).

The Poincaré–Wirtinger inequality has been extensively studied over the years, and numerous
extended and refined variants that span various functional settings have been derived. The literature
on the constant-exponent case has grown so large that a thorough review would exceed the scope of
this article. Instead, we focus on the works which are most relevant to our variable-exponent setting
and refer the reader to [6, 18,27], as well as to the comprehensive presentation in [29, Chap. 4], for
more details on Poincaré-type inequalities in the constant-exponent case.

The modern argument to derive (1.1) proceeds by contradiction and is based on Rellich–Kondrachov
compactness theorem. While the approach is both elegant and simple, it cannot be used to derive
modular Poincaré–Wirtinger inequalities in Sobolev spaces with variable exponent because of a
lack of compactness [9, 15]. From [15, Section 8.2] we know that in the variable exponent case,
one can state norm Poincaré–Wirtinger inequalities (see, e.g., [15, Theorem 8.2.4(b), p.255], [15,
Lemma 8.2.14, p.260], [15, Theorem 8.2.17, p.262]; see also [7]), but modular versions have always
some price to be paid (see, e.g., [15, Theorem 8.2.8 (b), p.257] and [7, 22]). This phenomenon ap-
pears typically when working with inequalities in the framework of variable exponents. See, e.g., [8]
and [9, Section 3.5, p.107]. We also refer to [11] for a unified treatment of zero-trace Poincaré
inequality on bounded open subsets and weighted Hardy–Poincaré inequalities on unbounded do-
mains.

When dealing with variable exponents, a common technique used to compensate for the lack of
a modular Poincaré–Wirtinger inequality is to lower-bound the variable exponent with its infimum
in some part of the domain and apply the constant version (see, e.g., [25]), or to upper-bound the
variable exponent with its supremum (see, e.g., [4,5]), with a consequent loss of information.

For the reasons described above, such strategies were not feasible to prove Theorem 1.1 and we
had to resort to a different, more classical approach. The proof of Theorem 1.1 hinges upon two main
basic ingredients. First, the fact that on domains which are starshaped with respect to an open
subset (see Definition 2.2 below) Poincaré–Wirtinger inequalities, even in the setting of Sobolev
spaces with variable exponents, can be deduced by a direct, albeit quite delicate, application of the
Fundamental Theorem of Calculus. Second, the fact that all Lipschitz domains can be written as
finite union of pairwise domains being stricly starshaped with respect to open balls having the same
radii. As a byproduct, all proof arguments are coincise and constructive, yielding explicit estimates
on the Poincaré–Wirtinger constants. While writing the proof we have kept track of such constants
and their dependence on the geometry of the domain because we believe this will be useful for future
possible generalizations.

The paper is organized as follows. Below, in Theorem 1.1, we state our variable exponent modular
Poincaré–Wirtinger inequality; in Corollary 1.2 we show how to retrieve the classical Poincaré–
Wirtinger inequality (1.1) from it. In Section 2, we introduce some notation and results about
starshaped and Lipschitz domains. These results are well-known, but we couldn’t locate a single
reference collecting all of them. Therefore, in Appendix A, we recall their proofs using our notational
setting. The proof of Theorem 1.1 is detailed in Section 3.

2. Preliminary definitions and results

Throughout this paper, we say that a subset D ⊂ Rn is a domain if it is open and connected.
We begin this section with an explicit counterexample to (1.3)
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Example 2.1. For completeness, we show that (1.3) cannot hold. The example mimics the one

given in [16] (see the proof of Theorem 3.1 therein). Let Ω be an open set and, to easy notation,

assume that Ω contains the ball centered at the origin of Rn and of radius 1+α, with 0 < α < 1. Let

η ∈ C∞
c (Ω), 0 ⩽ η ⩽ 1, be such that suppΩη ⊆ B1+α, η ≡ 1 in B1, and assume the variable exponent

function p ∈ L∞(Ω), p ⩾ 1, is radially symmetric and strictly increasing, i.e., that p(x) = p(|x|) for

some strictly increasing function p : [0, +∞) → [1, +∞).
For every 0 < λ < 1, we set fλ := λη, and we compute the corresponding Rayleigh quotient:∫

Ω |∇fλ(x)|p(x)dx∫
Ω |fλ(x) − ⟨fλ⟩Ω|p(x)dx

=

∫
B1+α\B1

λp(x)|∇η(x)|p(x)dx∫
Ω λp(x)|η(x) − ⟨η⟩Ω|p(x)dx

⩽

∫
B1+α\B1

λp(x)|∇η(x)|p(x)dx∫
B1−α

λp(x)|η(x) − ⟨η⟩Ω|p(x)dx
.

But on B1 one has 0 < |η(x) − ⟨η⟩Ω| = |1 − ⟨η⟩Ω| < 1 and, therefore continuing estimating from

where we left off, we find that∫
Ω |∇fλ(x)|p(x)dx∫

Ω |fλ(x) − ⟨fλ⟩Ω|p(x)dx
⩽

(1 + ∥∇η∥L∞(Ω))p(1+α)

|1 − ⟨η⟩Ω|p(1−α) ·

∫
B1+α\B1

λp(x)dx∫
B1−α

λp(x)dx

⩽
(1 + ∥∇η∥L∞(Ω))p(1+α)

|1 − ⟨η⟩Ω|p(1−α) · |B1+α \ B1|
|B1−α|

· λp(1)

λp(1−α) .

Since p(1) > p(1 − α), passing to the limit for λ → 0, we conclude that for the chosen open set

Ω and radially symmetric and strictly decreasing variable exponent functions, the Rayleigh quotient

associated with fλ converges to zero. This implies that the Poincaré–Wirtinger inequality in the

form (1.3) cannot hold.

One main ingredient for our Poincaré–Wirtinger-type inequality for bounded Lipschitz domains
(cf. Theorem 1.1) will make use of the notion of starshaped domains D ⊂ Rn with respect to some
subset S ⊂ D. Therefore, in this section we properly introduce them and give some comments on
an alternative definition which is, however, equivalent in the setting we will be concerned with.

Definition 2.2 (Starshaped domains with respect to a subset). A domain D ⊂ Rn is called star-
shaped with respect to a nonempty subset S ⊂ D if the following condition holds:

[x, y] ⊂ D ∀x ∈ S, ∀y ∈ D, (A)

where [x, y] is the line segment with endpoints x and y.

We point out that this definition is quite general, since it could be given in any arbitrary vector
space and in particular doesn’t require any notion of topology. Nevertheless, in the literature also
the subsequent definition can be found (we refer to [23, Def. 2, p.20]).

Definition 2.3. A domain D ⊂ Rn is called starshaped with respect to a nonempty subset S ⊂ D
if any ray with origin in S has a unique common point with ∂D.

We did not use a different name to refer to starshaped domains in the sense of Definitions 2.2
and 2.3 because it turns out that for the scope of this work we can use both definitions equivalently.
In fact, Definition 2.3 always implies property (A) and, therefore, a starshaped domain in the sense
of Definition 2.3 is also starshaped according to Definition 2.2. Viceversa, in the special case that
the subset S ⊂ D is open, then a starshaped domain in the sense of Definition 2.2 is also starshaped
according to Definition 2.3. However, this does not apply in general, making Definition 2.3 the
strongest one. We cover this discussion in detail in Appendix A (compare Lemma A.1 and Lemma
A.2) along with some simple counterexamples in the general case.

Hereafter, following the above comments, whenever we use the notion of starshaped sets with
respect to a subset, we always refer to Definition 2.2. This is also convenient because condition (A)
will prove as the natural assumption for our direct approach.
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Next, we turn to an interesting observation concerning the special geometry of Lipschitz domains.
The statement can be found for example in [23, Lemma 1, p.22] but with a different notation. For
convenience of the reader, we also prove the next result in the appendix A.

Proposition 2.4. Any bounded Lipschitz domain Ω ⊂ Rn is the union of a finite number of domains

that are all starshaped with respect to an open ball of the same radius.

Given a bounded Lipschitz domain Ω, Proposition 2.4 enables us to prove the Poincaré-Wirtinger-
type inequality on each of the starshaped-with-respect-to-a-ball sets forming Ω and then piece to-
gether these inequalities. The whole argument is detailed in Section 3.

3. Proof of Theorem 1.1

This section is dedicated to the proof of our main theorem. We split it into three steps.
Although for some of the intermediate results we prove it is sufficient to assume that the variable

exponent p : Ω → [1, ∞] is just a measurable function, in what follows we always assume that
p ∈ L∞(Ω), and we set p+ := ∥p∥L∞(Ω).

The constant ωn will always denote the measure of the unit ball in Rn. We will write Br for the
open ball with radius r > 0 that is centred at 0 and Br(z) for the one centred at z ∈ Rn. Also, we
will use Greek letters α, β, κ to keep track of the constants that appear along the way.

3.1. Step 1. The following lemma provides the crucial estimate, a Morrey-type inequality, for
bounded domains which are starshaped with respect to a subset.

Lemma 3.1. Let D ⊂ Rn be a bounded domain starshaped with respect to an open subset S ⊂ D,

and let f ∈ C∞(D).

(i) For every x ∈ S there holds∫
D

|f(x) − f(y)|p(x) dy ⩽
diam(D)n+p(x)−1

n + p(x) − 1

∫
D

|∇f(z)|p(x)

|z − x|n−1 dz. (3.1)

(ii) For every x ∈ D\S there holds∫
S

|f(x) − f(y)|p(x) dy ⩽
diam(D)n+p(x)−1

n + p(x) − 1

∫
D

|∇f(z)|p(x)

|z − x|n−1 dz. (3.2)

Remark 3.2. Note that although we have the same upper bounds in (3.1) and (3.2), they hold for
different ranges of the variable x. Also, note that the domains of integration on the left-hand sides
of (3.1) and (3.2) are different.

Proof of Lemma 3.1. (i). Let x ∈ S and y ∈ D. We start by noting that for any f ∈ C∞(D) by the
fundamental theorem of calculus there holds

f(x) − f(y) = −
∫ 1

0
∇f(x + t(y − x)) · (y − x) dt.

Therefore, with the notation w(z) = z
|z| and by Jensen’s inequality, it follows

|f(x) − f(y)|p(x) ⩽

(∫ 1

0
|∇f(x + t(y − x))||y − x| dt

)p(x)

⩽ |y − x|p(x)
∫ 1

0
|∇f(x + t(y − x))|p(x) dt

= |y − x|p(x)−1
∫ |y−x|

0
|∇f(x + tw(y − x))|p(x) dt.
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Integrating the previous relation over y ∈ D, which is allowed since by assumption D is starshaped
with respect to S, we infer that∫

D

|f(x) − f(y)|p(x) dy ⩽
∫

D

|y − x|p(x)−1
∫ |y−x|

0
|∇f(x + tw(y − x))|p(x) dtdy

=
∫
Rn

|y − x|p(x)−1χD(y)
∫ |y−x|

0
|∇f(x + tw(y − x))|p(x) dtdy

=
∫
Rn

|y|p(x)−1χD(x + y)
∫ |y|

0
|∇f(x + tw(y))|p(x) dtdy,

(3.3)

where χD is the characteristic function associated with D that equals 1 everywhere inside of D and
vanishes outside of it. Next, we recall that for any function u ∈ L1(Rn), the formula for integration
in spherical coordinates yields∫

Rn

u(z) dz =
∫ ∞

0
rn−1

∫
Sn−1

u(rσ) dσdr. (3.4)

Combining (3.3) and (3.4) we obtain the estimate∫
D

|f(x) − f(y)|p(x) dy ⩽
∫ ∞

0
rn+p(x)−2

∫
Sn−1

χD(x + rσ)
∫ r

0
|∇f(x + tσ)|p(x) dtdσdr. (3.5)

Since D is starshaped with respect to S and x ∈ S, we have that for every r > 0 the following
implication holds

x + rσ ∈ D =⇒ x + tσ ∈ D ∀t ∈ [0, r], ∀σ ∈ Sn−1 .

The previous relation, in terms of characteristic functions, reads as

χD(x + rσ) ⩽ χD(x + tσ) ∀t ∈ [0, r], ∀σ ∈ Sn−1. (3.6)

Hence, it follows from (3.5) that∫
D

|f(x) − f(y)|p(x) dy ⩽
∫ ∞

0
rn+p(x)−2

∫
Sn−1

∫ r

0
χD(x + tσ)|∇f(x + tσ)|p(x) dtdσdr

=
∫ ∞

0
rn+p(x)−2

∫ r

0
tn−1

∫
Sn−1

χD(x + tσ) |∇f(x + tσ)|p(x)

|tσ|n−1 dσdtdr

=
∫ ∞

0
rn+p(x)−2

∫
Br

χD(x + z) |∇f(x + z)|p(x)

|z|n−1 dzdr

=
∫ ∞

0
rn+p(x)−2

∫
Br(x)∩D

|∇f(z)|p(x)

|z − x|n−1 dzdr.

Since x ∈ D, the latter term is bounded by∫ ∞

0
rn+p(x)−2

∫
Br(x)∩D

|∇f(z)|p(x)

|z − x|n−1 dzdr ⩽

(∫ diam(D)

0
rn+p(x)−2 dr

)∫
D

|∇f(z)|p(x)

|z − x|n−1 dz.

Explicitly computing the first integral on the right-hand side completes the proof of (i).
(ii). Since the set D is starshaped with respect to S we have that

[x, y] ∈ D ∀x ∈ D\S, ∀y ∈ S.

Thus, arguing as in the proof of 3.5, we infer that for every x ∈ D\S the following inequality holds∫
S

|f(x) − f(y)|p(x) dy ⩽
∫ ∞

0
rn−1rp(x)−1

∫
Sn−1

χS(x + rσ)
∫ r

0
|∇f(x + tσ)|p(x) dtdσdr. (3.7)

Now, again, for every r > 0 we have

x + rσ ∈ S =⇒ x + tσ ∈ D ∀t ∈ [0, r], ∀σ ∈ Sn−1.

The previous relation, in terms of characteristic functions, reads as

χS(x + rσ) ⩽ χD(x + tσ) ∀t ∈ [0, r], ∀σ ∈ Sn−1. (3.8)



A MODULAR POINCARÉ–WIRTINGER INEQUALITY IN VARIABLE SOBOLEV SPACES 7

We can therewith further estimate (3.7) by∫
S

|f(x) − f(y)|p(x) dy ⩽
∫ ∞

0
rn+p(x)−2

∫
Sn−1

∫ r

0
tn−1χD(x + tσ) |∇f(x + tσ)|p(x)

|tσ|n−1 dtdσdr ,

and the claimed inequality follows arguing as in the proof of (3.1). □

Observing that any convex domain is starshaped with respect to itself, we can already prove a
modular Poincaré–Wirtinger-type inequality for variable exponents and bounded convex domains.

Corollary 3.3. Let Ω ⊂ Rn be a convex, bounded domain. Then for any f ∈ C∞(Ω) there holds∫
Ω

∣∣f(x) − ⟨f⟩Ω
∣∣p(x) dx ⩽

1
|Ω|

∫
Ω

diam(Ω)n+p(x)−1

n + p(x) − 1

∫
Ω

|∇f(z)|p(x)

|z − x|n−1 dzdx. (3.9)

Proof. Let Ω ⊂ Rn be a convex domain. Then, by definition, for any two points x, y ∈ Ω the
line segment [x, y] is contained in Ω. Following Definition 2.2 this immediately yields that Ω is
starshaped with respect to itself. Jensen’s inequality (recalling that p ≥ 1 by assumption) and the
previous Lemma 3.1 allow us to infer that∫

Ω

∣∣f(x) − ⟨f⟩Ω
∣∣p(x) dx =

∫
Ω

∣∣∣∣ 1
|Ω|

∫
Ω

f(x) − f(y) dy

∣∣∣∣p(x)

dx

⩽
1

|Ω|

∫
Ω

∫
Ω

∣∣f(x) − f(y)
∣∣p(x) dxdy

⩽
1

|Ω|

∫
Ω

(∫ diam(Ω)

0
rn+p(x)−2 dr

)∫
Ω

|∇f(z)|p(x)

|z − x|n−1 dzdx.

This completes the proof. □

If the domain is not convex but still starshaped with respect to some subset, we can deduce a
similar estimate.

Lemma 3.4. Let D ⊂ Rn open and bounded. If D is starshaped with respect to an open subset

S ⊂ D, then for any f ∈ C∞(D) the following inequality holds∫
D

∫
D

|f(x) − f(y)|p(x) dydx ⩽ α

∫
D

diam(D)n+p(x)−1

n + p(x) − 1

∫
D

|∇f(z)|p(x)

|z − x|n−1 dzdx, (3.10)

where the constant α > 0 depends only on p̃+ := ∥p∥L∞(D) and on the sets S and D. The constant

α can be taken as (compare with (3.21))

α(p̃+, S, D) := 2p̃+
κ(D)
|S|

. (3.11)

with κ(D) := (n + 1)ωn diam(D)n.

Proof. By Definition 2.2, for any x, y ∈ D and any z ∈ S the line segments [x, z] and [z, y] are
completely contained in D. This motivates the following steps. Through the convexity inequality
(a + b)p ⩽ 2p−1(ap + bp), valid for any a, b ⩾ 0 and p ⩾ 1, we estimate the left-hand side of (3.10)
observing that for any z ∈ Rn there holds∫

D

∫
D

|f(x) − f(y)|p(x) dydx

⩽
∫

D

∫
D

2p(x)−1|f(x) − f(z)|p(x) dydx +
∫

D

∫
D

2p(x)−1|f(z) − f(y)|p(x) dydx

⩽ |D|
∫

D

2p(x)−1|f(x) − f(z)|p(x) dx +
∫

D

2p(x)−1
∫

D

|f(z) − f(y)|p(x) dydx.
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Integrating over z ∈ S and pulling out the constant M(p̃+) := 2p̃+−1, yields

|S|
∫

D

∫
D

|f(x) − f(y)|p(x) dxdy

⩽ M(p̃+)
[
|D|
∫

D

∫
S

|f(x) − f(z)|p(x) dzdx +
∫

D

∫
S

∫
D

|f(z) − f(y)|p(x) dydzdx

]
.

(3.12)

We further split the first integral on the right-hand side into the two parts∫
D

∫
S

|f(x) − f(z)|p(x) dzdx

=
∫

S

∫
S

|f(x) − f(z)|p(x) dzdx +
∫

D\S

∫
S

|f(x) − f(z)|p(x) dzdx.
(3.13)

Since the set S is starshaped with respect to itself, it is in particular convex, so that by Lemma 3.1
(i) we bound the first contribution in (3.13) as∫

S

∫
S

|f(x) − f(z)|p(x) dzdx ⩽
∫

S

diam(D)n+p(x)−1

n + p(x) − 1

∫
S

|∇f(z)|p(x)

|z − x|n−1 dz

⩽
∫

D

diam(D)n+p(x)−1

n + p(x) − 1

∫
D

|∇f(z)|p(x)

|z − x|n−1 dz.

(3.14)

The second contribution of (3.13), in turn, is estimated with the help of Lemma 3.1 (ii) to similarly
get ∫

D\S

∫
S

|f(x) − f(z)|p(x) dzdx ⩽
∫

D\S

diam(D)n+p(x)−1

n + p(x) − 1

∫
D

|∇f(w)|p(x)

|w − x|n−1 dwdx

⩽
∫

D

diam(D)n+p(x)−1

n + p(x) − 1

∫
D

|∇f(w)|p(x)

|w − x|n−1 dwdx.

(3.15)

We now turn to the second integral in (3.12). We again invoke Lemma 3.1 (i) to get the estimate∫
D

∫
S

∫
D

|f(z) − f(y)|p(x) dydzdx ⩽
∫

D

diam(D)n+p(x)−1

n + p(x) − 1

∫
S

∫
D

|∇f(w)|p(x)

|w − z|n−1 dwdzdx

⩽
∫

D

diam(D)n+p(x)−1

n + p(x) − 1

∫
D

∫
D

|∇f(w)|p(x)

|w − z|n−1 dwdzdx.

(3.16)

We underline the correct use of Lemma 3.1 (i): in fact, the double integral in dydz on the left-
hand side of (3.16) is like the left-hand side of (3.1) provided that one considers p(x) in (3.16) as a
constant function of the variable z.

From the fact that D is bounded we infer∫
D

∫
D

|∇f(w)|p(x)

|w − z|n−1 dwdz =
∫

D

|w − x|n−1 |∇f(w)|p(x)

|w − x|n−1

∫
D

1
|w − z|n−1 dzdw

⩽ diam(D)n−1
[

sup
w∈D

∫
D

1
|w − z|n−1 dz

] ∫
D

|∇f(w)|p(x)

|w − x|n−1 dw.

(3.17)

In view of Lemma A.4 and the estimate |D| ⩽ |Bdiam(D)| = ωn diam(D)n we obtain the upper bound

diam(D)n−1
[

sup
w∈D

∫
D

1
|w − z|n−1 dz

]
⩽ (n + 1) diam(D)n−1ω

1− 1
n

n |D| 1
n

⩽ (n + 1)ωn diam(D)n.

Hence, with the definition
κ(D) := (n + 1)ωn diam(D)n, (3.18)

we get from (3.17) the estimate∫
S

∫
D

|∇f(w)|p(x)

|w − z|n−1 dwdz ⩽ κ(D)
∫

D

|∇f(w)|p(x)

|w − x|n−1 dw. (3.19)
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Plugging this into (3.16) yields∫
D

∫
S

∫
D

|f(z) − f(y)|p(x) dydzdx

⩽ κ(D)
∫

D

diam(D)n+p(x)−1

n + p(x) − 1

∫
D

|∇f(w)|p(x)

|w − x|n−1 dwdx.

(3.20)

Finally, by combining (3.12) with (3.14), (3.15) and (3.20) we conclude that∫
D

∫
D

|f(x) − f(y)|p(x) dydx

⩽
M(p̃+)

|S|
(|D| + κ(D))

∫
D

diam(D)n+p(x)−1

n + p(x) − 1

∫
D

|∇f(z)|p(x)

|z − x|n−1 dzdx

⩽ α(p̃+, S, D)
∫

D

diam(D)n+p(x)−1

n + p(x) − 1

∫
D

|∇f(z)|p(x)

|z − x|n−1 dzdx,

with

α(p̃+, S, D) := 2p̃+
κ(D)
|S|

. (3.21)

In writing the previous estimate we observed that |D| ⩽ κ(D). □

3.2. Step 2. The following auxiliary result will be used to lift inequality (3.10) to finite unions
of bounded domains which are all starshaped with respect to some subsets and have non-empty
intersections.

Lemma 3.5. Let Ω ⊂ Rn be a bounded domain. Let D1, D2 ⊂ Ω be two bounded domains that are

starshaped with respect to the open subsets Si ⊂ Di, i = 1, 2. We further assume that D1 ∩ D2 ̸= ∅.

Then, for every f ∈ C∞(Ω) there holds:

(i) ∫
D1×D2

∣∣f(x) − f(y)
∣∣p(x) dydx ⩽ β

∫
Ω

diam(Ω)n+p(x)−1

n + p(x) − 1

∫
Ω

|∇f(z)|p(x)

|z − x|n−1 dzdx,

(ii) ∫
(D1∪D2)×(D1∪D2)

∣∣f(x) − f(y)
∣∣p(x) dydx ⩽ β′

∫
Ω

diam(Ω)n+p(x)−1

n + p(x) − 1

∫
Ω

|∇f(z)|p(x)

|z − x|n−1 dzdx,

for constants β, β′ > 0 depending on p+ := ∥p∥L∞(Ω), the sets Si, Di, i = 1, 2, and Ω.

Remark 3.6. The proof provides upper bounds for the optimal constants β and β′ (compare (3.28)
and (3.29)). With κ(Ω) := (n + 1)ωn diam(Ω)n as in (3.18), the constants β and β′ take the form

β := 2p+−1 κ(Ω)
|D1 ∩ D2|

(αΩ,1 + αΩ,2), β′ :=
(

2p+
κ(Ω)

|D1 ∩ D2|
+ 1
)

(αΩ,1 + αΩ,2) (3.22)

where the constants αΩ,i are given by αΩ,i := 2p+κ(Ω)/|Si|.

Proof of Lemma 3.5. Within this proof we will refer to the constants αi := α(p+, Si, Di), i = 1, 2,
defined in (3.21). Following the estimate p̃+ ⩽ p+, we replaced p̃+ by p+. Note that we always have
the inequalities

αi ⩽ αΩ,i := α(p+, Si, Ω) = 2p+

|Si|
κ(Ω) for i = 1, 2. (3.23)
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We will prove (ii) and will obtain (i) as an intermediate result. We split up the integral in (ii) as∫
(D1∪D2)×(D1∪D2)

∣∣f(x) − f(y)
∣∣p(x) dydx

=
∫

D1×D1

∣∣f(x) − f(y)
∣∣p(x) dydx +

∫
D2×D2

∣∣f(x) − f(y)
∣∣p(x) dydx

+
∫

D1×D2

∣∣f(x) − f(y)
∣∣p(x) dydx +

∫
D2×D1

∣∣f(x) − f(y)
∣∣p(x) dydx

=:I1 + I2 + I3 + I4.

We first treat the mixed terms I3 and I4. Since D1 and D2 are open with non-empty intersection,
for any z ∈ B := D1 ∩ D2 there holds

I3 =
∫

D1

∫
D2

∣∣f(x) − f(y)
∣∣p(x) dydx

⩽
∫

D1

∫
D2

2p(x)−1∣∣f(x) − f(z)
∣∣p(x) dydx +

∫
D1

∫
D2

2p(x)−1∣∣f(z) − f(y)
∣∣p(x) dydx

⩽ M(p+)
[
|D2|

∫
D1

∣∣f(x) − f(z)
∣∣p(x) dx +

∫
D1

∫
D2

∣∣f(z) − f(y)
∣∣p(x) dydx

]
,

where M(p+) := 2p+−1. By integrating both sides over B we find

|B|
∫

D1

∫
D2

∣∣f(x) − f(y)
∣∣p(x) dxdy

⩽ M(p+)
[
|D2|

∫
B

∫
D1

∣∣f(x) − f(z)
∣∣p(x) dxdz +

∫
D1

∫
B

∫
D2

∣∣f(z) − f(y)
∣∣p(x) dydzdx

]
.

(3.24)

We estimate the first integral on the right-hand side of the previous relation using Lemma 3.4. We
get∫

B

∫
D1

∣∣f(x) − f(z)
∣∣p(x) dxdz ⩽

∫
D1×D1

∣∣f(x) − f(z)
∣∣p(x) dxdz

⩽ α1

∫
D1

(∫ diam(D1)

0
rn+p(x)−2 dr

)∫
D1

|∇f(w)|p(x)

|w − x|n−1 dwdx

⩽ αΩ,1

∫
Ω

(∫ diam(Ω)

0
rn+p(x)−2 dr

)∫
Ω

|∇f(w)|p(x)

|w − x|n−1 dwdx.

(3.25)

where, we recall, diam(Ω) ⩾ diam(D1). Further, we observe that Lemma 3.4 applies in particular
for a constant exponent. Hence, for the second integral on the right-hand side of (3.24) we get∫

D1

∫
B

∫
D2

∣∣f(z) − f(y)
∣∣p(x) dydzdx

⩽
∫

Ω

∫
D2×D2

∣∣f(z) − f(y)
∣∣p(x) dydzdx

⩽ α2

∫
Ω

∫
D2

(∫ diam(D2)

0
rn+p(x)−2 dr

)∫
D2

|∇f(u)|p(x)

|u − z|n−1 dudzdx

= α2

∫
Ω

(∫ diam(D2)

0
rn+p(x)−2 dr

)∫
D2

∫
D2

|∇f(u)|p(x)

|u − z|n−1 dudzdx.
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With the help of a similar computation to the one already employed in (3.17) it follows that∫
D1

∫
B

∫
D2

∣∣f(z) − f(y)
∣∣p(x) dydzdx

⩽ α2κ(D2)
∫

Ω

(∫ diam(D2)

0
rn+p(x)−2 dr

)∫
D2

|∇f(u)|p(x)

|u − x|n−1 dudx

⩽ αΩ,2κ(Ω)
∫

Ω

(∫ diam(Ω)

0
rn+p(x)−2 dr

)∫
Ω

|∇f(u)|p(x)

|u − x|n−1 dudx,

(3.26)

with κ(D2), κ(Ω) given by (3.18). Using (3.25) and (3.26) to estimate (3.24), and given that
|Ω| ⩽ κ(Ω), we obtain

I3 ⩽
M(p+)

|B|
κ(Ω)(αΩ,1 + αΩ,2)

∫
Ω

(∫ diam(Ω)

0
rn+p(x)−2 dr

)∫
Ω

|∇f(w)|p(x)

|w − x|n−1 dwdx. (3.27)

This proves (i) with

β := 2p+−1

|D1 ∩ D2|
κ(Ω)(αΩ,1 + αΩ,2). (3.28)

Note that, by symmetry, the same bound holds for I4 with the same constant β, because the only
difference is in the fact that the roles of D1 and D2 are exchanged.

Finally, to estimate I1 and I2 we directly apply Lemma 3.4. Overall, with β as in (3.28) and
αΩ,1, αΩ,2 as in (3.23), we infer (ii) with

β′ := 2β + αΩ,1 + αΩ,2 =
(

2p+

|D1 ∩ D2|
κ(Ω) + 1

)
(αΩ,1 + αΩ,2) . (3.29)

This concludes the proof of the lemma. □

As a direct consequence of the previous proof, we obtain that a similar result holds true for any
union of two domains that have a non-empty intersection and each admits some Poincaré–Wirtinger-
type inequality as given by Lemma 3.4.

Corollary 3.7. For a domain Ω ⊂ Rn, let D̃1, D̃2 ⊂ Ω be two bounded domains with D̃1 ∩ D̃2 ̸= ∅.

Further assume that for any f ∈ C∞(Ω) the domains D̃1, D̃2 admit estimates∫
D̃i×D̃i

|f(x) − f(y)|p(x) dydx ⩽ α̃i

∫
D̃i

diam(Ω)n+p(x)−1

n + p(x) − 1

∫
D̃i

|∇f(z)|p(x)

|z − x|n−1 dzdx

for some constants α̃i > 0 for i = 1, 2. Then, there holds∫
(D̃1∪D̃2)×(D̃1∪D̃2)

∣∣f(x) − f(y)
∣∣p(x) dydx ⩽ β̃′

∫
Ω

diam(Ω)n+p(x)−1

n + p(x) − 1

∫
Ω

|∇f(z)|p(x)

|z − x|n−1 dzdx, (3.30)

where the constant β̃′ > 0 is given by

β̃′ :=
(

2p+
κ(Ω)

|D̃1 ∩ D̃2|
+ 1
)

(α̃1 + α̃2). (3.31)

with κ(Ω) as in (3.18).

Proof. By splitting the integral on the left-hand side of (3.30) as in the proof of Lemma 3.4 and
following the same subsequent steps, we end up with an inequality as in (3.30) with a constant β̃′

(compare with (3.29)) given by β̃′ = 2β̃ + α̃1 + α̃2, where

β̃ := 2p+−1 κ(Ω)
|D̃1 ∩ D̃2|

(α̃1 + α̃2).

The claimed assertion follows. □
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3.3. Step 3. We are now in the position to prove our main result.

Proof of Theorem 1.1. In view of Proposition 2.4 we write Ω as the finite union

Ω =
N⋃

i=1
Di (3.32)

for some N ∈ N, where every Di is a bounded domain which is starshaped with respect to some
subset Si ⊂ Di, where every Si can be chosen as a ball with some radius R > 0 independent of i.
We further note that, without loss of generality, the sets Di are labelled so that

Di+1 ∩

(
i⋃

j=1
Dj

)
̸= ∅ ∀i = 1, ..., N − 1. (3.33)

To see this, we proceed as follows: We pick an arbitrary i1 ∈ {1, ..., N} and a corresponding Di1 .
Since Ω is open and connected by assumption and all sets Di are open as well, there exists i2 ̸= i1 in
{1, ..., N} such that Di2 ∩Di1 is non-empty. Now the union Di1 ∪Di2 is again open and by the same
arguments as before there must exist some i3 ∈ {1, ..., N}\{i1, i2} such that (Di1 ∪ Di2) ∩ Di3 ̸= ∅.
Then arguing iteratively, we find sets Di1 , ..., DiN

that exactly fulfil property (3.33).
We will now inductively apply Corollary 3.7. To that end, we first note that according to Lemma

3.4 and since |Si| = ωnRn for every i = 1, ..., N , we have the estimates∫
Di

∫
Di

|f(x) − f(y)|p(x) dydx ⩽ α̃

∫
Ω

diam(Di)n+p(x)−1

n + p(x) − 1

∫
Ω

|∇f(z)|p(x)

|z − x|n−1 dzdx

for

α̃ := 2p+
κ(Ω)
ωnRn

.

We further set

λ(Ω) := inf
1⩽i⩽N−1

∣∣∣Di+1 ∩
(⋃i

j=1 Dj

)∣∣∣ .
Then, for Ei := Di+1 ∪

(⋃i
j=1 Dj

)
we get from Corollary 3.7 for every i ∈ {1, ..., N −1} an estimate

of the form∫
Ei×Ei

∣∣f(x) − f(y)
∣∣p(x) dydx ⩽ β̃′

i

∫
Ω

(∫ ρ

0
rn+p(x)−2 dr

)∫
Ω

|∇f(z)|p(x)

|z − x|n−1 dzdx,

where the constants β̃′
i > 0 are recursively given by (as usual we set p+ := ∥p∥L∞(Ω))

β̃′
i := (κp+(Ω) + 1) (β̃′

i−1 + α̃) for i = 2, ..., N − 1

and β̃′
1 := (κp+(Ω) + 1) 2α̃, with κp+(Ω) = 2p+κ(Ω)/λ(Ω). This is a recurrence equation, whose

unique solution is given by

β̃′
i = α̃

κp+(Ω)
(
(2κp+(Ω) + 1)(κp+(Ω) + 1)i − (κp+(Ω) + 1)

)
(3.34)

for i ∈ {1, ..., N − 1}. In particular, we have

β̃′
N−1 ⩽

α̃

κp+(Ω)(1 + 2κp+(Ω))N . (3.35)

By definition we have Ω = EN−1, and thus∫
Ω×Ω

∣∣f(x) − f(y)
∣∣p(x) dydx ⩽ C̃

∫
Ω

(∫ ρ

0
rn+p(x)−2 dr

)∫
Ω

|∇f(z)|p(x)

|z − x|n−1 dzdx,
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where the constant C̃ = α̃
κp+ (Ω) (1 + 2κp+(Ω))N is given by the right-hand side of (3.35). Thus, by

Jensen’s inequality∫
Ω

∣∣f(x) − ⟨f⟩Ω
∣∣p(x) dx ⩽

1
|Ω|

∫
Ω

∫
Ω

∣∣f(x) − f(y)
∣∣p(x) dxdy

⩽
C̃

|Ω|

∫
Ω

diam(Ω)n+p(x)−1

n + p(x) − 1

∫
Ω

|∇f(z)|p(x)

|z − x|n−1 dzdx

⩽
C̃

|Ω|
(max{diam(Ω), 1})n+p+−1

n

∫
Ω

∫
Ω

|∇f(z)|p(x)

|z − x|n−1 dzdx.

(3.36)

This concludes the proof. □

Appendix A. Auxiliary Results

In this appendix, we collect the proofs of the results stated in Section 2, with the goal to clarify
the connection between Definitions 2.2 and 2.3 of starshaped domains with respect to a subset.
Afterward, we prove Proposition 2.4, showing that any Lipschitz domain can be written as the
finite union of domains which are starshaped with respect to open balls.

Lemma A.1 (Necessity of condition (A)). Let D ⊂ Rn be starshaped with respect to a set S ⊂ D
according to Definition 2.3. Then, it necessarily fulfills condition (A), i.e.

[x, y] ⊂ D ∀x ∈ S, ∀y ∈ D,

where [x, y] is the line segment with endpoints x and y.

Proof. We define the signed distance function associated with D as

bD : Rn → R, x 7→


dist(∂D, x), for x ∈ int(Rn\D),
0, for x ∈ ∂D,

− dist(∂D, x), for x ∈ int(D).
(A.1)

Here, for A ⊂ Rn the expression int(A) denotes the interior of A. By classical properties of the
signed distance, the map bD is Lipschitz continuous. We observe that the intersections of any line
segment with ∂D correspond exactly to those points of the line segment that have zero distance
function. Moreover, every line segment connecting two points from the interior to the exterior of D
has at least one intersection with ∂D.

After these premises, we argue by contradiction. Let x ∈ S and y ∈ D and assume that [x, y] is
not fully contained in D. This implies that there exists some z ∈ [x, y] such that z /∈ D. On the one
hand, the line segment [x, y] must have at least two intersections with ∂D because bD has at least
one zero in [x, z] and at least another one in [z, y]. On the other hand, because D is starshaped
with respect to S (in the sense of Definition 2.3) by assumption, the ray starting in x and passing
through y must have exactly one intersection with ∂D. This leads to a contradiction. □

As it turns out, in general, the notion of starshaped domains by means of condition (A) is weaker
than the one provided in Definition 2.3. The following counterexample illustrates this fact (compare
also with Figure 1).

Let B1 ⊂ R2 be the unit ball centered in the origin, and define D = B1\{(0, y) : y ∈ [ 1
2 , 1)}

as the slit disk. Then, setting S := {(0, 0)}, for every (x, y) ∈ D, the line segment [(0, 0), (x, y)] is
completely contained in D. On the other hand, the ray starting from (0, 0) ∈ S and going through
the point (0, 1) has infinitely many intersections with ∂D along the segment {(0, y) : y ∈ [1/2, 1)}.

However, the situation can be rectified in the case in which S is open (and D is any domain). In
this latter setting, property (A) is also sufficient for D to be starshaped with respect to S.

Lemma A.2 (Sufficiency of condition (A)). Let D ⊂ Rn be a domain and let S ⊂ D be an open set

such that the pair (D, S) fulfills property (A). Then D is starshaped with respect to S in the sense

of Definition 2.3.
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D

S

D

S

Figure 1. Two counterexamples to the sufficiency of (A). In the left picture D is
the slit disk and S is just a point. In the right picture D is constructed by removing
a whole quarter from the unit disk and S is a closed square. In both cases there
exist rays starting at a point in S that have infinite intersections with the boundary
of D.

Proof. We argue by contradiction and assume that there exist y1, y2 ∈ ∂D with y1 ̸= y2, and a
segment starting in some x ∈ S such that it intersects ∂D in at least these two points. Without loss
of generality we assume that such segment coincides with [x, y2], that [x, y2] ∩ ∂D = {y1} ∪ {y2},
and that y1 is an interior point of [x, y2].

The basic idea is that S being open allows perturbing the segment infinitesimally to force a
contradiction with property (A). Indeed, since y2 ∈ ∂D, there exists some direction σ ∈ Sn−1 and
ε > 0 such that y3 := y2 + εσ ∈ D and such that the segment from y3 containing y1 will meet a
neighborhood of x fully contained in S. The fact that D is open guarantees that y1 ∈ ∂D is not an
element of D itself, leading to a violation of (A). □

For the proof of Proposition 2.4 we rely on the following auxiliary lemma.

Lemma A.3 (Cone property of Lipschitz domains). Let Ω ⊂ Rn be a bounded Lipschitz domain.

Then, every x ∈ Ω is the vertex of a cone whose closure is contained in Ω, meaning that for every

x ∈ Ω there exist a, b > 0 and a rotation R ∈ SO(n) such that the closure of the cone

C(a, b) := {y = (y1, ..., yn) ∈ Rn : ay2
n > y2

1 + · · · + y2
n−1 and 0 < yn < b} (A.2)

is contained in Ω after rotating it by R and translating it to x. Furthermore, a and b from above

can be chosen uniformly for all x ∈ Ω.

A detailed proof of the claim can be found for example in [17, Theorem 3.3.1, p.91, and Corollary
3.3.2, p.96]. Here we will only present the intuitive idea of the proof.

Proof. Since Ω is bounded and the boundary ∂Ω is of class C0,1, there exist δ > 0, L > 0 such that
inside the boundary region

Ωδ := {x ∈ Ω : dist(∂Ω, x) < δ}
the set Ω is locally (with respect to some finite open covering of the boundary ∂Ω) the subgraph of
a Lipschitz function with Lipschitz constant L. From this, it follows that every point belonging to
Ωδ is the vertex of a (suitably rotated) cone of the type C(L′, b1) whose closure is contained in Ω, for
some slope L′ < L and some uniform b1 > 0 (possibly depending on the dimension). Furthermore,
there exist uniform a2, b2 > 0 (again possibly depending on n) such that for every x ∈ Ω\Ωδ all
cones of the type C(a2, b2) whose vertex is x and with arbitrary orientation are such that their
closure is contained in Ω. This yields the claim. □

Now, any cone as in (A.2) is starshaped with respect to an open ball in the sense of Definition
2.2. Thus, to ease the notation, in what follows Cx will always denote a cone contained in Ω and
starshaped with respect to a ball centered in x.
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Proof of Proposition 2.4. We need to show that every bounded Lipschitz domain Ω ⊂ Rn is the
union of a finite number of domains which are starshaped with respect to open balls in the sense
of Definition 2.2 (or equivalently Definition 2.3 since we established their equivalence above). We
follow the proof strategy of [23, Lemma 2, p.22]. It follows from Lemma A.3 that we can write Ω
as the (possibly not finite) union of all points in the domain and the corresponding cones which can
be chosen congruent. This implies in particular that there exists a set X ⊂ Ω such that

Ω = ∪x∈XCx,

where all cones are starshaped with respect to open balls with the same radius R > 0. Without loss
of generality, we can assume that X is a closed set. These cones yield a finite covering of Ω via the
following construction:

(1) Because Ω is bounded by assumption, the same holds true for X ⊂ Ω, so that X is compact.
Hence, there exists a finite open cover of X with balls BR/2(xi) centered at xi ∈ X, where
1 ⩽ i ⩽ N for some N ∈ N.

(2) For every i ∈ {1, .., N} we define Ui := BR/2(xi) ∩ X and

Ωi := ∪x∈Ui
Cx.

We note that BR/2(xi) ⊂ BR(x) ⊂ Cx for every x ∈ Ui. It follows from either the Definition
2.2 or Definition 2.3 that all Cx are also starshaped with respect to BR/2(xi). Consequently,
also the union Ωi is starshaped with respect to BR/2(xi).

Altogether this guarantees the existence of sets Ωi, 1 ⩽ i ⩽ N , that are all starshaped with respect
to open balls with the same radius and fulfill

Ω =
N⋃

i=1
Ωi.

This completes the proof. □

We finally prove an auxiliary estimate for integrals appearing frequently throughout our compu-
tations. The key point in the next result is the fact that the set Ω has positive finite measure.

Lemma A.4. Let Ω ⊂ Rn be a measurable set of positive finite measure, then for all z ∈ Rn there

holds ∫
Ω

1
|z − x|n−1 dx ⩽ (n + 1)ω1− 1

n
n |Ω| 1

n , (A.3)

where ωn is the volume of the unit ball in Rn.

Proof. For z ∈ Rn we set R := (|Ω|/ωn)1/n > 0. Then, there holds

|BR(z)| = Ω

where BR(z) is the ball centered at z with radius R. From the equality

|BR(z) ∩ Ω| + |BR(z)\Ω| = |BR(z)| = |Ω| = |BR(z) ∩ Ω| + |Ω\BR(z)|

we further conclude that |Ω\BR(z)| = |BR(z)\Ω|. It follows that∫
Ω\BR(z)

1
|z − x|n−1 dx ⩽ |Ω\BR(z)| 1

Rn−1

= |BR(z)\Ω| 1
Rn−1 ⩽

∫
BR(z)\Ω

1
|z − x|n−1 dx.
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Therewith, for any z ∈ Rn we can estimate the left-hand side of equation (A.3) by an integral over
the ball BR centered at the origin in the following way:∫

Ω

1
|z − x|n−1 dx =

∫
Ω\BR(z)

1
|z − x|n−1 dx +

∫
BR(z)∩Ω

1
|z − x|n−1 dx

⩽
∫

BR(z)\Ω

1
|z − x|n−1 dx +

∫
BR(z)∩Ω

1
|z − x|n−1 dx

=
∫

BR(z)

1
|z − x|n−1 dx

=
∫

BR

1
|x|n−1 dx.

By using that (n + 1)ωn = (n + 1)|B1| = |∂B1| we finally conclude that∫
BR

1
|x|n−1 dx =

∫ R

0

∫
∂Br

1
rn−1 dσdr = (n + 1)ωnR = (n + 1)ω1− 1

n
n |Ω| 1

n ,

which proves the claimed inequality. □
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