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Abstract. We examine the relationship between infinity har-
monic functions, absolutely minimizing Lipschitz extensions, strong
absolutely minimizing Lipschitz extensions, and absolutely gradi-
ent minimizing extensions in Carnot-Carathéodory spaces. Us-
ing the weak Fubini property we show that absolutely minimizing
Lipschitz extensions are infinity harmonic in any sub-Riemannian
manifold.

1. Introduction

In this paper we study the relationships between absolutely minimiz-
ing Lipschitz extensions and infinity harmonic functions in Riemannian
manifolds and Carnot-Carathéodory spaces. In the classic Euclidean
setting, infinity harmonic functions are the viscosity solutions of the
infinity Laplace equation

0 = ∆∞u =
n∑

i,j=1

uxi,xj
uxi
uxj

.

On the other hand, given Y ⊂⊂ X ⊂ Rn and a Lipschitz function
F : Y → R, an absolutely minimizing Lipschitz extension (AMLE) of
F is a Lipschitz function u : X → R such that u = F on Y and the
Lipschitz constant of u

Lip(u, U) := sup
x,y∈U, x 6=y

|u(x) − u(y)|

|x− y|

is minimal for any open set U ⊂⊂ X\Y .
We are particularly interested in the case where Y = ∂Ω and X = Ω

for some bounded domain Ω ⊂ R
n. If this is the case, the AMLE of g

on Ω is exactly the viscosity solution of

(1)

{
∆∞u = 0 in Ω

u = g on ∂Ω;

see e.g. [13].
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The concept of absolutely minimizing Lipschitz extension makes
sense in any metric space; such functions exist and are uniquely de-
termined by their boundary values in any length space (see [22] and
[14]). On the other hand, the definition of infinity harmonic functions
can be considered in manifolds where we have identified a way to de-
fine second order derivatives. The two main examples of the manifolds
under consideration are Riemannian spaces and Carnot-Carathéodory
(also called sub-Riemannian) spaces, both of which are length spaces
endowed with their natural metric.

We recall briefly what sub-Riemannian geometries are (see [4, 17]).
Let {X1(x), . . . , Xm(x)} be a family of smooth vector fields on Rn (C1-
regularity would be enough for our purposes) and set

Xx := Span{X1(x), . . . , Xm(x)} and X := {(x, v) | x ∈ R
n, v ∈ Xx}.

Definition 1.1. A sub-Riemannian structure in Rn is a triple

(Rn,X , 〈·, ·〉g),

where 〈·, ·〉g is a Riemannian metric defined on X by requiring that the

vector fields {X1, . . . , Xm} are orthonormal.

An absolutely continuous curve γ : [0, T ] → Rn is called horizontal if
γ̇(t) ∈ Xγ(t), a. e. t ∈ [0, T ]; i.e. if there exists α(t) = (α1(t), . . . , αm(t))
measurable functions such that

(2) γ̇(t) =

m∑

i=1

αi(t)Xi(γ(t)), a.e. t ∈ [0, T ].

We set |γ̇(t)|g = 〈γ̇(t), γ̇(t)〉
1
2
g and define the length-functional

(3) l(γ) =

∫ T

0

|γ̇(t)|gdt =

∫ T

0

√
α2

1(t) + · · ·+ α2
m(t) dt.

According to the previous notation we write

(4) |v|X =

(
m∑

i=1

v2
i

)1/2

for any horizontal vector v =
∑m

i=1 viXi(x) ∈ Xx.
Once defined the length-functional, we can introduce the following

distance

(5) d(x, y) := inf{l(γ) | γ horizontal curve joining x to y}.

Whenever the Hörmander condition is satisfied (i.e. the Lie algebra
associated to X generates at any point the whole of R

n) this distance
is finite, continuous with respect to the Euclidean topology, and mini-
mizing geodesics exist but, in general, they are not unique, even locally.

Several approaches have been used to get the equivalence between
infinity harmonic funtions and AMLEs in different settings. We present
a metric approach, based on the notion of strong absolutely minimizing
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Lipschitz extensions (SAMLEs) recently introduced by Juutinen and
Shanmugalingam in [15]. In their paper the equivalence between AMLE
and SAMLE is proved in spaces where a weak Fubini property holds.
One of our main results is Theorem 3.4, where we prove that such a
property holds in any Carnot-Carathéodory space, thus establishing
the equivalence between AMLE and SAMLE in this setting.

The paper is organized as follows. In Section 2 we discuss AMLEs in
a general metric setting. We recall the notion of SAMLEs, the weak Fu-
bini property and various results proved in [15]. In Section 3 we prove
the validity of the weak Fubini property in general sub-Riemannian
manifolds. We first show the result in the particular case of Riemann-
ian manifolds. Then we give the proof for Carnot groups and the
general sub-Riemannian case. In Section 4 we recall various definitions
and properties regarding the infinity Laplace equation and infinity har-
monic functions in sub-Riemannian manifolds. We discuss the notion of
absolutely gradient minimizing extensions (AGMEs), which is known to
be equivalent to infinity harmonic functions in Riemannian manifolds
and Carnot groups (see [3, 25]). However, in general sub-Riemannian
manifolds only one implication is known: any AGME is infinity har-
monic. We then show that AGMEs are equivalent to SAMLEs which
allow us to derive our main result: in a general Carnot-Carathéodory
space any AMLE is an infinity harmonic function. A first application
of this result is related to the theory of the tug-of-war, introduced by Y.
Peres, O. Schramm, S. Sheffield and D.B. Wilson in [22]. They prove
that the limit of the values of suitable tug-of-war stochastic games is
the unique AMLE of a given Lipschitz function g, in any length space.
In particular, they deduce that such a value function is also infinity
harmonic in the Euclidean case. By applying our result, we can con-
clude that this limit of value functions of tug-of-war games is infinity
harmonic also in in the sub-Riemannian.

2. AMLEs, SAMLEs and the weak Fubini property.

The problem of finding a Lipschitz extension of some given Lipschitz
function F : Y ⊂ Rn → R, has been studied extensively. See for
example [2, 8]. Given a metric space (X, d), a proper subset Y of X,
and a Lipschitz function F : Y → R, we are interested in finding a
“good” Lipschitz function, extending F to the whole X. Before giving
the definitions, we recall that the Lipschitz constant of F in a subset
Y is defined as

(6) Lip(F, Y ) = sup
x,y∈Y

x 6=y

|F (x) − F (y)|

d(x, y)
.

Given a metric space (X, d), a proper subset Y of X and a Lipschitz
function F : Y → R, finding a minimal Lipschitz extension of F on X
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requires finding a Lipschitz function u : X → R such that

Lip(F, Y ) = Lip(u,X).

Minimal Lipschitz extensions always exist. McShane and Whitney
found the two following minimal extensions (see [16, 26])

u1(x) = inf
y∈Y

{
F (y) + Lip(F, Y )d(x, y)

}
,

and

u2(x) = sup
y∈Y

{
F (y) − Lip(F, Y )d(x, y)

}
.

Hence minimal Lipschitz extensions are, in general, not unique.

Definition 2.1. Let (X, d) be a metric space and Y a proper subset
of X. Given a Lipschitz function F : Y → R, we say that u : X → R is
an absolutely minimizing Lipschitz extension (AMLE) of F on X when

(i) u is a minimal Lipschitz extension of F on X,
(ii) for any open set U ⊂⊂ X\Y

(7) Lip(u, U) = Lip(u, ∂U).

We say that a function u is AMLE in an open set Ω ⊂ Rn if it is
AMLE of its boundary datum, i.e. if u ∈ Lip(Ω) and (7) holds, for any
U ⊂⊂ Ω.

In the Euclidean setting, it is well-known that it is possible to char-
acterize AMLEs using comparison with cones ([2, 8]). Champion and
De Pascale have shown in [7] how to extend this characterization to
any length space (X, d), by using suitable metric cones.

Definition 2.2. Let (X, d) be a length space and Ω be a proper and
open subset of X. We say that the function u : Ω → R satisfies
comparison with metric cones from above if, for any z ∈ X, a ∈ R,
b ≥ 0 and U ⊂ Ω open, the implication

u(x) ≤ a+ b d(x, z) on ∂(U \ {z}) ⇒ u(x) ≤ a+ b d(x, z) on U

holds. We say that the function u satisfies comparison with metric
cones from below if, for any z, a, b and U as before, we have

u(x) ≥ a− b d(x, z) on ∂(U \ {z}) ⇒ u(x) ≥ a− b d(x, z) on U.

The function u satisfies comparison with metric cones if u satisfies com-
parisons from above and below. Note that a function u satisfies com-
parison from below exactly when −u satisfies comparison from above.

Remark 2.3. For any z ∈ X, b ≥ 0 and a ∈ R, the function ϕ(x) =
a± b d(x, z) in the above definition is called a metric cone.

Theorem 2.4 ([7]). Let (X, d) be a length space and Ω ⊂ Rn open
and bounded, then u : Ω → R is an AMLE if and only if u satisfies
comparison with metric cones in Ω.
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Recall that a length space is a metric space where the distance be-
tween any pair of points is the infimum of the lengths of continuous arcs
joining them. Riemannian and sub-Riemannian manifolds are length
spaces.

The existence of AMLEs in general length spaces was first shown by
Juutinen in [14], while the uniqueness was proved by Peres, Schramm,
Sheffield and Wilson in [22], by using the fact that AMLEs arise as
limits of value functions of random tug-of-war games when the step
tends to zero. In particular, they prove the following

Theorem 2.5 ([22]). Let (X, d) be a length space and Y be a proper
subset of X. For any given Lipschitz function F : Y → R, there exists
a unique AMLE of F on X.

Next, we introduce the notion of strong absolutely minimizing Lip-
schitz extensions. Let U be an open subset in a metric measure space
(X, d, µ) and F : U → R be a function. For a fixed point x ∈ U , the
local Lipschitz constant of F at the point x is given by

(8) Lip F (x) = lim
R→0+

sup
y∈BR(x)\{x}

|F (x) − F (y)|

d(x, y)
,

where BR(x) is the ball of radius R and center x. The local Lipschitz
constant of a function F on a open set U ⊂ X is defined as

(9) L̂ip (F, U) = µ-ess sup
x∈U

Lip F (x).

Here, µ denotes the “natural” measure on the space X. For Rie-
mannian manifolds, this has to be understood as the volume mea-
sure induced by the Riemannian structure; when dealing with a sub-
Riemannian structure defined on Rn, µ will instead denote the Lebesgue
measure Ln. The measure µ will always be understood and frequently
omitted.

Definition 2.6. Let (X, d, µ) be a metric measure space. Given a
Lipschitz function F : Y → R

n with Y ⊂ X, we say that a Lispchitz
function u : X → Rn is a strong absolutely minimizing Lipschitz exten-
sion (SAMLE) of F on X if u = F on Y and, for any U ⊂⊂ X\Y and
for any v ∈ Lip(U) with u = v on ∂U , we have

L̂ip(u, U) ≤ L̂ip(v, U).

Note that we always have L̂ip(u, U) ≤ Lip(u, U). The opposite in-
equality depends on the structure of the set. In fact, if U is not geodesi-

cally convex, it is possible to give examples where L̂ip(u, U) < Lip(u, U)
(see Ex. 4.6 below).

Nevertheless, in many cases there is no difference between minimizing

L̂ip(u, U) or Lip(u, U). To study when this is the case we need to
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introduce the weak Fubini property, which is the main object under
investigation in this paper.

Consider a metric measure space (X, d, µ). Given a family Γ of curves
in X, the set of admissible metrics is

M(Γ) = {ρ : ρ ≥ 0 is Borel and

∫

γ

ρ ≥ 1 for all γ ∈ Γ}.

The modulus of the curve family Γ is given by

Mod Γ = inf

{∫

X

ρ dµ : ρ ∈M(Γ)

}
.

Note that if two curve families satisfy Γ1 ⊂ Γ2, then their moduli satisfy
Mod Γ1 ≤ Mod Γ2.

Definition 2.7. Let (X, d, µ) be a metric measure space. We say that
X satisfies the weak Fubini property if there exists C > 0 and τ0 > 0
such that, for any 0 < τ ≤ τ0 and B1, B2 balls with

d(B1, B2) > τ max{diam(B1), diam(B2)},

we have
Mod Γ(B1, B2, τ) > 0,

where the family Γ = Γ(B1, B2, τ) consists of all curves in X, joining
B1 and B2 and such that l(γ) ≤ d(B1, B2) + Cτ .

Remark 2.8. The property, given by Definition 2.7, is called weak
Fubini since it can be related to the existence of a Fubini-type decom-
position for the measure µ. Let us clarify this in the Euclidean space
Rn endowed with the Lebesgue measure Ln. For some fixed τ > 0 let
us consider a segment γ ∈ Γ := Γ(B1, B2, τ) and let U be a neigh-
bourhood of γ such that U ⊂ ∪{γ : γ ∈ Γ}. Let x ∈ B1 be the first
endpoint of γ and Π be the affine plane through x orthogonal to γ; set
V := B1 ∩ Π. Then we can decompose Ln as dLn

∣∣
U

= dHn−1|V ⊕ dt
and, by Fubini Theorem, for any ρ ∈M(Γ) it holds
∫

X

ρ dLn ≥

∫

U

ρ dLn =

∫

V

(∫

γx

ρ dt

)
dHn−1(x) ≥ Hn−1(V ) > 0,

where γx denotes the segment (belonging to Γ) parallel to γ and with
endpoint x ∈ V . Hence the weak Fubini property holds.

Using the weak Fubini property, Juutinen and Shanmugalingam proved
the following equivalence.

Theorem 2.9 ([15]). Let (X, d, µ) be a metric measure space. If (X, d)
is a length space and the weak Fubini property holds, then u is an AMLE
if and only if u is a SAMLE.

Our goal is to prove that the weak Fubini property holds in any sub-
Riemannian manifold, so that Theorem 2.9 applies to such structures.
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3. The weak Fubini property in sub-Riemannian

manifolds.

The proof of the validity of the weak Fubini property in general sub-
Riemannian manifolds is somewhat technical. We show the result first
in the particular cases of Riemannian manifolds and Carnot groups,
where the proofs are easier.

Theorem 3.1. Let (M, d, µ) be a n-dimensional Riemannian manifold
endowed with the geodesic distance d and the natural volume measure
µ. Then the weak Fubini property holds.

Proof. Set C = 1 and fix τ > 0. Consider B1, B2 as in Definition
2.7. Fix x ∈ B1 and y ∈ B2 such that d(x, y) ≤ d(B1, B2) + τ/2.
Write d = d(x, y) and consider a quasi-geodesic γ : [0, d + ε] → M ,
parametrized by arc length, with γ(0) = x and γ(d + ε) = y. We
may assume that Im γ ⊂ M is an embedded sub-manifold and that
l(γ) = d+ ε ≤ d(B1, B2) + τ/2.

Our strategy is to build a suitable subfamily A of all the admissible
curves Γ := Γ(B1, B2, τ) and show that Mod (A) > 0. Denote by Nγ
the normal bundle (with rank n− 1) to the sub-manifold γ

Nγ = {(γ(t), w) |w ∈ Nγ(t)γ ⊂ Tγ(t)M, t ∈ [0, d+ ε]}

and consider the exponential map

exp : Nγ 7→ R
n

(γ(t), w) 7→ exp(w)(γ(t)) .

It is well known (see e.g. [20, Ch. 7, Prop. 26]) that γ has a normal
neighbourhood U in M ; i.e. exp : Z → U is a diffeomorphism between
U and an open set Z ⊂ Nγ with the property that (γ(t), 0) ∈ Z for any
t. It is not restrictive to assume that Z is diffeomorphic to [0, d+ε]×V
for some open set V ⊂ Rn−1. Denote by I : [0, d + ε] × V → Z such
a diffeomorphism, which we can assume to satisfy I(t, 0) = (γ(t), 0).
The composition

F = exp ◦I : [0, d+ ε] × V → U

is a diffeomorphism and satisfies F (t, 0) = exp(γ(t), 0) = γ(t). Without
loss of generality, we may assume that

inf {| det JF (t, v)| : (t, v) ∈ [0, d+ ε] × V } = k > 0,

where by JF we mean the Jacobian-matrix of F with respect to (t, v).
For any v ∈ V define the curve γv(t) = F (t, v). Recall that γ0 =
F (·, 0) = γ. The subfamily of all the admissible curves we are going to
consider is A = {γv := F (·, v) | v ∈ V } ⊂ Γ. In fact, possibly restricting
V and U , we can assume that

l(γv) ≤ l(γ) +
τ

2
, γv(0) ∈ B1 and γv(d+ ε) ∈ B2,
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so that γv ∈ Γ for any v ∈ V . Since |γ̇0(t)| = |γ̇(t)| = 1, we can
always choose V sufficiently small in order to have |γ̇v(t)| ≤ 2 for any
(t, v) ∈ [0, d + ε] × V (in fact F (t, v) is a diffeomorphism, so γ̇v → γ̇,
as v → 0).

Consider a Borel positive function ρ : M → R with
∫

γ
ρ ≥ 1 for any

γ ∈ Γ. A change of variable gives
∫

M

ρ dµ ≥

∫

U

ρ dµ

=

∫

[0,d+ε]×V

ρ(F (t, v))| detJF (t, v)| dLn−1(v) dt

≥k

∫

V

(∫ d+ε

0

ρ(γv(t))dt

)
dLn−1(v).

Being γv ∈ Γ we can observe that

1 ≤

∫

γv

ρ =

∫ d+ε

0

ρ(γv(t))|γ̇v(t)|dt ≤ 2

∫ d+ε

0

ρ(γv(t)) dt

and conclude

Mod (A) = inf

{∫

M

ρ dµ
∣∣ ρ admissible for A

}
≥
k

2
Ln−1(V ) > 0,

since V is open and non empty in Rn−1. Hence Mod (Γ) > 0, as
desired. �

To show that the weak Fubini property holds in Carnot groups we
extend the previous argument. We briefly recall that a Carnot group
G is a Carnot-Carathéodory space endowed with a group operation ·
and a one-parameter group of dilations (δs)s≥0 such that

‖δs(x)‖CC = s ‖x‖CC , for any s ≥ 0,

where ‖x‖CC = d(x, 0) is the Carnot-Carathéodory norm defined on G.
We recall also that a Carnot group of finite step k has a stratified Lie
algebra g with grading g = ⊕k

i=1Vi. Since k is finite, the exponential
map between g and G is always assumed to be the identity (after pos-
sibly applying an appropriate diffeomorphism). Vector fields in Vi have
order i. The full gradient of a function u therefore consists of deriva-
tives of different orders. The horizontal gradient is the projection of
the gradient onto V1. We shall denote the second-order terms of the
gradient by Tu and we note that it is the projection of the gradient
onto V2. For more complete details concerning Carnot groups, we ad-
dress the interested reader to [12] and the references therein.
Next we show the validity of the weak Fubini property in Carnot
groups. The proof will serve as the basis for the sub-Riemannian case,
which is necessarily more technical.

We begin with a technical lemma, which will also be a keypoint in
the proof of the general result.
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Lemma 3.2. Let X = {X1(x), . . . , Xm(x)} be a family of smooth vec-
tor fields in Rn satisfying the Hörmander condition and let B1, B2 be
balls in Rn with positive distance. For any τ > 0 there esists a smooth
horizontal curve γ between x ∈ B1 and y ∈ B2 such that

l(γ) ≤ d(B1, B2) +
τ

2
.

Proof. By the Hörmander condition, there exists an horizontal curve
γ0 : [0, T ] → R

n between B1 and B2, which realizes the distance. Note
that in general γ0(0) ∈ ∂B1 and γ0(T ) ∈ ∂B2. Nevertheless, since the
distance is continuous, we can always find a new horizontal curve γ :
[0, T ] → Rn such that γ(0) ∈ B1, γ(T ) ∈ B2 and l(γ) ≤ d(B1, B2) + τ

4
.

Let us now consider such a quasi-geodesic γ between B1 and B2. Since
γ is horizontal, then

γ̇(t) =

m∑

i=1

αi(t)Xi(γ(t)),

for some measurable function α(t) = (α1(t), . . . , αm(t)) ∈ Rm.
Up to a reparametrization, we can assume that αi ∈ L∞([0, T ]). For
any τ > 0, we define a family of horizontal smooth curves γτ by

γ̇τ (t) =

m∑

i=1

ατ
i (t)Xi(γ

τ (t)), γτ (0) = γ(0),

where C∞([0, T ]) 3 ατ → α in L1([0, T ]) as τ → 0 (the esistence of
such ατ (t) is standard by convolutions).
In order to conclude, it is enough to prove that l(γτ ) → l(γ) and
γτ (T ) → γ(T ) as τ → 0.
We first show the convergence of l(γτ ). In fact,

∣∣l(γτ ) − l(γ)
∣∣ =

∣∣∣∣
∫ T

0

‖ατ (t)‖ dt−

∫ T

0

‖α(t)‖ dt

∣∣∣∣

≤

∫ T

0

∣∣ ‖ατ (t)‖ − ‖α(t)‖
∣∣dt

≤

∫ T

0

‖ατ (t) − α(t)‖ dt→ 0, as τ → 0.

The pointwise convergence of the curves can be easily proved by Gron-
wall’s Lemma. Recalling that γ(0) = γτ (0) for any τ > 0, then

|γτ(t) − γ(t)| ≤
m∑

i=1

∫ t

0

∣∣ατ
i (s)Xi(γ

τ (s)) − αi(s)Xi(γ(s))
∣∣ds

≤
m∑

i=1

∫ t

0

(∣∣ατ
i (s) − αi(s)

∣∣ |Xi(γ(s))| + |ατ
i (s)|

∣∣Xi(γ
τ (s)) −Xi(γ(s))

∣∣
)
ds,
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where we have added ±
∑m

i=1 α
τ
i (s)Xi(γ(s)). Since αi and Xi are

smooth, they are Lipschitz and bounded in a compact set contain-
ing Im(γ). Moreover we may assume that ‖ατ

i ‖∞ ≤ ‖αi‖∞, bound
independent on τ . Therefore we get the following estimates:

|γτ (t) − γ(t)| ≤ C1

m∑

i=1

∫ t

0

|ατ
i (s) − αi(s)|ds+ C2

∫ t

0

|γτ (s) − γ(s)|ds

≤ C1

m∑

i=1

∫ T

0

|ατ
i (s) − αi(s)|ds+ C2

∫ t

0

|γτ (s) − γ(s)|ds.

Note that C1

∑m
i=1

∫ T

0
|ατ

i (s)−αi(s)|ds is constant in t, then, by Gron-
wall’s Lemma, we can conclude

|γτ (t) − γ(t)| ≤ C1e
C2T

m∑

i=1

∫ T

0

|ατ
i (s) − αi(s)|ds→ 0, as τ → 0.

In particular, we can apply the previous convergence to t = T and
deduce that γτ (T ) ∈ B2 for sufficiently small τ > 0.
This concludes the proof. �

We can now prove the weak Fubini property in Carnot groups.

Theorem 3.3. In any Carnot group G, endowed with the associated
Carnot-Carathéodory distance d(x, y) and the natural volume measure
µ, the weak Fubini property holds.

Proof. Let C = 1, τ > 0 be fixed and B1, B2 as in Definition 2.7.
We can consider a quasi-geodesic γ as in Lemma 3.2, i.e. γ smooth,
horizontal and such that l(γ) ≤ d(B1, B2)+ τ

2
, with x = γ(0) ∈ B1 and

y = γ(T ) ∈ B2.
Since γ(t) is horizontal and smooth, then there exists a smooth func-

tion α : [0, T ] → Rm with α(t) = (α1(t), . . . , αm(t)) such that

γ̇(t) =

m∑

j=1

αj(t)Xj(γ(t)), for any t ∈ [0, T ].

We can approximate in L1 the function α by locally-constant functions,
i.e. we can find h : [0, T ] → Rm such that

i) There exist values

0 = T0 < T1 < T2 < · · · < Tq = T

such that h(t) = hi = (hi
1, . . . , h

i
m) ∈ Rm, whenever t ∈ (Ti−1, Ti],

with i = 1, . . . , q;
ii) hi

1 6= 0, for any i = 1, . . . , q. In particular there exists δ > 0
such that |hi

1| ≥ δ, for any i = 1, . . . , q;
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iii) if η : [0, T ] → G is the curve defined by η(0) = x and

η̇(t) =
m∑

j=1

hj(t)Xj(η(t)),

then l(η) < l(γ)+ τ
2
≤ d(B1, B2)+τ . Moreover, as we have seen

in Lemma 3.2, y′ := η(T ) is close to y, which implies y′ ∈ B2.

Recall that we identify G with Rn by means of exponential coordinates.
It is well known that the set

W := {x ∈ R
n | x1 = 0}

is a maximal subgroup of G which can be identified with Rn−1 via
the map R

n−1 3 w 7→ (0, w) ∈ R
n ≡ G. Given a (relatively) open

neighborhood U ⊂ W ≡ Rn−1 of x, we define the map

Φ : U × [0, T ] → G ≡ R
n

(w, t) 7−→ (0, w) · η(t)

The translated curve ηw(t) := Φ(w, η(t)) is still smooth on [0, T ] and
so, if U is sufficiently small, it joins w ∈ B1 (which is a point close to
x) to a point w · y′ ∈ B2 and

l(ηw) = l(η) < d(B1, B2) + τ,

for any w ∈ W. In particular, ηw ∈ Γ := Γ(B1, B2, τ) for any w ∈ U .
Assume for a moment that

| det JΦ(w, t)| ≥ δ for Ln-a.e.(w, t) ∈ R
n.

Consider a Borel function ρ ≥ 0 on G such that
∫

c
ρ ≥ 1 for any c ∈ Γ.

In particular
∫

ηw
ρ ≥ 1 for any w ∈ U and therefore there exists a

measurable function i : U → {1, . . . , q} such that
∫

ηi
w

ρ ≥
1

q
, for any w ∈ U, where ηi

w := ηw
∣∣(Ti(w)−1,Ti(w)]

.

Fix i0∈{1, . . . , q}such that Ln−1(Ui0)>0,where Ui0:={w∈ U | i(w)=i0}.
Therefore∫

G

ρ dµ ≥

∫

Φ(Ui0
×(Ti0−1,Ti0

))

ρ dµ

=

∫

Ui0

(∫ Ti0

Ti0−1

| detJΦ(w, t)|ρ(ηw(t)) dt

)
dLn−1(w)

≥

∫

Ui0

δ

‖η̇w‖∞

(∫ Ti0

Ti0−1

|η̇w(t)|ρ(ηw(t)) dt

)
dLn−1(w)

≥
δ

‖η̇‖∞

1

q
Ln−1(Ui0)
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and this implies that

Mod(Γ) ≥
δ Ln−1(Ui0)

q ‖η̇‖∞
> 0,

as desired.
We still need to prove that | detJΦ(w, t)| ≥ δ for Ln-a.e. (w, t) ∈ Rn.

Let t ∈ [0, T ] be fixed. By the definition of Φ, the first coordinates of
η and ηw coincide: this is due to the the Baker-Campbell-Hausdorff
formula (see e.g. [24]) which implies that, in exponential coordinates,
the group law is commutative in the first m coordinates (i.e., the hori-
zontal ones).
Therefore we can consider the map Φt defined by

R
n−1 ≡ W ⊃ U 3 w

Φt7−→ Φ(w, t) ∈ {η1(t)} × R
n−1 ≡ R

n−1 .

Since ∂
∂t

Φ(w, t) = η̇(t) =
∑m

j=1 hj(t)Xj(η(t)), the first component of
∂
∂t

Φ(w, t) is exactly h1, because in exponential coordinates the vector
fields look as

X1 = (1, 0, . . . , 0︸ ︷︷ ︸
∈Rm

, ∗, . . . , ∗) . . . Xm = (0, . . . , 0, 1︸ ︷︷ ︸
∈Rm

, ∗, . . . , ∗).

Therefore

JΦ(w, t) =

(
0 h1(t)

JΦt(w) v(t)

)
,

where 0 is the null 1 × (n − 1)-matrix and v(t) ∈ Rn−1. This implies
that | det JΦ| = |h1(t)| | detJΦt|.
By assumption (ii), our claim will be proved once we show that

det JΦt = 1.

That is easy to verify. In fact, the differential of the right translation
by η(t) is an n × n lower triangular matrix M with elements on the
diagonal equal to 1. Hence, it is sufficient to observe that JΦt is the
(n− 1) × (n− 1) minor of M obtained by erasing its first row and its
first column to conclude that det JΦt = 1. �

We conclude this section by proving the weak Fubini property for
general sub-Riemannian spaces.

Let X be a distribution on Rn satisfying the Hörmander condition.
We assume that the dimXx = m is independent from x and that
X is spanned by smooth vector fields X1(x), . . . , Xm(x) satisfying the
Hörmander condition. Using Lemma 3.2 it is not difficult to see that
for open sets E,F ⊂ R

n it holds

(10)
d(E,F ) = inf

{
l(γ)

∣∣ γ : [0, T ] → R
n horizontal and smooth,

γ(0) ∈ E, γ(T ) ∈ F
}
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where the length l(γ) is the given by (3) and d is the Carnot-Carathéodry
distance defind in (5).

Theorem 3.4. Let
(
Rn,X ,

〈
·, ·
〉

g

)
be a sub-Riemannian space endowed

with the Carnot-Carathéodory distance defined in (5) and the natural
volume measure µ; then the weak Fubini property holds.

Proof. Let τ > 0 be fixed and consider balls B1, B2 as in Definition 2.7.
By (10) there exists a smooth horizontal curve γ : [0, T ] → Rn such
that γ(0) ∈ B1, γ(T ) ∈ B2, with

l(γ) ≤ d(B1, B2) +
τ

2
.

We may also assume that γ is parametrized by arclength, so that T =
l(γ). Since γ̇ is smooth and |γ̇| = 1, then γ is locally injective.

For the reader’s convenience, we divide the proof into several steps.
Our strategy is as follows: In Steps 0-3 we construct a family A =
{γx}x∈Σ0 of horizontal Lipschitz curves γx : [0, T ] → Rn which are,
in some sense, parallel to γ. The space of parameters Σ0 is an open
subset of R

n−1 containing the origin. The family of curves A spans a
neighbourhood U of γ in Rn. They can be constructed in such a way
that γ0 = γ and γx ∈ Γ := Γ(B1, B2, τ) for any x ∈ Σ0, i.e. A ⊂ Γ (see
Step 4).

We claim that Mod A > 0, which would imply Mod Γ > 0. To this
aim, let ρ be a positive Borel function on Rn such that

∫
c
ρ ≥ 1 for

any curve c ∈ Γ; in particular,
∫

γx
ρ ≥ 1 for any γx ∈ A. Our explicit

construction will show that the speed of any γx is bounded away from
0. This condition will imply that

∫ T

0

ρ(γx(s))ds ≥ C1 > 0

and, in turn, that
∫
[0,T ]×Σ0

ρ(γx(s))dL
n(s, x) ≥ C2 > 0. From this

information, and the fact that the map (s, x) 7→ γx(s) is locally a
Lipschitz homeomorphism, it will follow that

∫
Rn ρ ≥ C3 > 0 for any

admissible ρ, i.e. Mod A ≥ C3: this will establish the claim.

Step 0: preliminary considerations.
Let ε > 0 be fixed and sufficiently small, in a sense we will specify
later. We claim that there exist

0 = s0 < s1 < · · · < sq < sq+1 = T

and neighbourhoods Ui ⊂ R
n of γ([si, si+1]), i = 0, . . . , q, with the

following properties:

• there exists a horizontal vector field Zi ∈ C∞(Ui,R
n) such that

(11)
Zi(γ(s)) = γ̇(s) for any s ∈ [si, si+1] and
0 < 1 − ε ≤ |Zi|X ≤ 1 + ε on Ui,

(recall that |v|X is the norm defined in (4));
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• there is a C∞ change of coordinates (u1, . . . , un) according to
which Ui is an open connected subset of Rn

u1,...,un
with γ(si) = 0

and Zi = ∂u1 .

We stress in particular that, according to such coordinates, we have

γ(s) = (s− si, 0, . . . , 0) for any s ∈ [si, si+1].

The curves γx will be constructed as concatenation of integral lines
of (multiples of) the vector fields Zi (see Steps 1,2,3). We also point
out that we do not know a priori that γ is simple, otherwise one could
easily prove our claim with q = 0, which would make the construction
of the curves γx much easier.

Let us prove our claim. Since γ is smooth and locally injective, for
any t ∈ [0, T ] we can find

• t′ = t′(t), t′′ = t′′(t) such that t′ < t′′ and 0 ≤ t′ ≤ t ≤ t′′ ≤ T
• a neighbourhood Ut of γ(t)

with the following properties:

• γ|[t′,t′′] is simple and γ([t′, t′′]) ⊂ Ut;
• there exists a horizontal vector field Zt ∈ C∞(Ut,R

n) extending
the horizontal C∞ vector γ̇, that is, Zt(γ(s)) = γ̇(s) for any
s ∈ [t′, t′′];

• there exists ε > 0 such that 1 − ε < |Zt|X < 1 + ε on Ut (since
|γ̇| = 1, i.e. |Zt|X = 1 on γ([t′, t′′]), it will be enough to take Ut

sufficiently small);
• there is a C∞ change of coordinates according to which Ut is an

open connected subset of Rn
u1,...,un

with γ(t′) = 0 and Zt = ∂u1

(this follows from the Rectifiability Theorem for ODEs, see e.g.
[1]).

In particular, according to such coordinates, we have

γ(s) = (s− t′, 0, . . . , 0) for any s ∈ [t′, t′′].

By compactness of [0, T ] and the fact that none of the intervals [t′, t′′]
has empty interior, there exists a finite set {ti}

q
i=0 ⊂ [0, T ] such that

[0, T ] ⊂

q⋃

i=0

[t′i, t
′′
i ] where t′i := t′(ti), t

′′
i := t′′(ti) .

We may assume that the covering {[t′i, t
′′
i ]}i is minimal, in the sense that

there exists no couple i, j with i 6= j and such that [t′i, t
′′
i ] ⊂ [t′j , t

′′
j ]. In

particular t′i 6= t′j , t
′′
i 6= t′′j whenever i 6= j; moreover, the implication

(12) t′i < t′j =⇒ t′′i < t′′j

holds. Let our intervals be ordered so that i < j ⇒ t′i < t′j; one must
have

(13) t′i+1 ≤ t′′i for any i,
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otherwise

(t′′i , t
′
i+1) ∩ [t′j , t

′′
j ] = ∅ for any j = 0, . . . , q

(it is sufficient to consider separately the cases j ≤ i and j > i and to
use (12)). This would lead to a contradiction since (t′′i , t

′
i+1) 6⊂ ∪j [t

′
j , t

′′
j ].

Let us set si := t′i, i = 0, . . . , q and sq+1 := T = t′′q ; we have by (13)

[si, si+1] = [t′i, t
′
i+1] ⊂ [t′i, t

′′
i ]

and our claim follows by setting Ui := Uti and Zi := Zti.

Step 1: construction of the horizontal curves γx on [0, s1].
Let us consider γ|[0,s1] in the coordinate chart (u1, . . . , un) for U0 given
by Step 0: such curve appears as the path s 7→ (s, 0, . . . , 0); moreover,
γ(0) = 0 and Z0 = ∂u1 .
We can fix an open set Σ0 ⊂ {u1 = 0} ≡ Rn−1 with γ(0) = 0 ∈ Σ0; we
may assume that [0, s1] × Σ0 ⊂⊂ U0. Therefore the map

γx(s) := exp(sZ0)(x) = (s, x) ∈ R × R
n−1

is well defined for s ∈ [0, s1], x ∈ Σ0 and, since γ̇x = ∂u1 = Z0, it is a
horizontal curve in U0 with 1 − ε < |γ̇x|X < 1 + ε. Define

Σ1 := {s1} × Σ0 =
⋃

x∈Σ0

γx(s1) .

Step 2: extension of γx to [s1, s2].
Possibly restricting Σ0, the C∞ hypersurface Σ1 is contained in U1. Σ1

is transversal to Z1 = ∂u1 at γ(s1) = 0 ∈ Σ1 (where u1, . . . , un are now
the coordinates chosen for U1). Possibly considering a smaller Σ0, Σ1

is then a C∞ graph over the hyperplane {u1 = 0}, i.e.

Σ1 = {(φ1(y), y) : y ∈ V1}

for some C∞ real map φ1 defined on an open subset V1 ⊂ {u1 = 0}.
We have φ1(0) = 0 and, after restricting Σ0, we may also assume
|φ1| < δ, for some δ to be chosen later.
We are going to extend the curves {γx}x∈Σ0 to [0, s2]. We have γx(s1) =
(φ1(v

1
x), v

1
x) ∈ Σ1 for some v1

x ∈ V1. We set

γx(s) :=

(
φ1(v

1
x) +

s2 − s1 − φ1(v
1
x)

s2 − s1
(s− s1), v

1
x

)
, s ∈ [s1, s2].

In other words, γx|[s1,s2] is a parametrization of the segment joining
(φ(v1

x), v
1
x) and (s2−s1, v

1
x); moreover, it is a horizontal curve because its

derivative is a multiple of ∂u1 = Z1. It is clear that, possibly restricting
Σ0, γx(s) is well defined for any x ∈ Σ0, s ∈ [0, s2] and is a horizontal
curve in U1. Set

Σ2 := {s2 − s1} × V1 =
⋃

x∈Σ0

γx(s2)
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Vi

γ(si+1)

Σi = graph φi
Σi+1

γx

0 = γ(si) γ

Figure 1. Construction of γx in the chart (Ui, ψi)

γ

U1

Uq

Σi Σ2

Σ0

Σ1

U0

γx

Figure 2. The curves γx span a tubolar neighbourhood
of γ

to be the C∞ surface consisting of the endpoints γx(s2): in the chart
for U1, Σ2 appears as a portion of an hyperplane.

Step 3: extension of γx to the whole [0, T ].
As in Step 2 one can prove that, in the coordinate chart for U2 given
by Step 0, the surface Σ2 is the graph of a C∞ map φ2 : V2 → R with
|φ2| < δ; in doing so, it could be necessary to reduce Σ0 and/or δ. We
have γx(s2) = (φ2(v

2
x), v

2
x) for some v2

x ∈ V2. We extend γx by

γx(s) :=

(
φ2(v

2
x) +

s3 − s2 − φ2(v
2
x)

s3 − s2

(s− s2), v
2
x

)
, s ∈ [s2, s3]

and set Σ3 :=
⋃

x∈Σ0
γx(s3) = {s3 − s2} × V2.

By induction on i we end up with a horizontal curve γx : [0, T ] → R
n

defined for x ∈ Σ0. The endpoints of each γx are, respectively, a point
of Σ0 and a point lying on a C∞ surface Σq+1 ⊂ Uq.

Step 4: each γx belongs to Γ.
Again restricting Σ0, we may assume that Σ0 ⊂ B1 and Σq+1 ⊂ B2, so
that

γx(0) ∈ B1 and γx(T ) ∈ B2 for any x ∈ Σ0.
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If δ is sufficiently small, for any x ∈ Σ0 and s ∈ [si, si+1] there exists
vx ∈ Vi such that

|γ̇x(s)|X =

∣∣∣∣
si+1 − si − φi(vx)

si+1 − si

∣∣∣∣ |∂ui
1
|X ≤ 1 + 2ε,

because, by (11), |∂ui
1
|X = |Zi| ≤ 1 + ε; here, ui

1, . . . , u
i
n denote the

coordinates for Ui given by Step 0. Therefore

l(γx) ≤ (1 + 2ε)T ≤ (1 + 2ε)
(
d(B1, B2) +

τ

2

)

and then l(γx) ≤ d(B1, B2)+τ provided ε is sufficiently small (depend-
ing only on d(B1, B2) and τ). In particular, γx ∈ Γ (with C = 1).

Step 5: the Jacobian of the map (s, x) 7→ γx(s).
By construction, the Lipschitz map

[0, T ] × Σ0 3 (s, x)
F

7−→ γx(s) ∈ R
n

is locally a diffeomorphism; it is not necessarily injective because, for
example, γ could have self-intersections. Nevertheless, for any i the
map F|[si,si+1]×Σ0 is a diffeomorphism (onto its image). Possibly re-
stricting Σ0 we can suppose that

C := inf{| detJF (s, x)| : (s, x) ∈ [0, T ] × Σ0} > 0 .

Step 6: conclusion.
Let ρ be a positive Borel function on Rn with

∫
c
ρ ≥ 1 for any c ∈ Γ.

Since
∫

γx
ρ ≥ 1 for any x ∈ Σ0, there exists a Borel map I : Σ0 →

{0, . . . , q} such that

∫

γx|[sI(x),sI(x)+1]

ρ ≥
1

q + 1
.

In particular there exists j ∈ {0, 1, . . . , q} such that

Ln−1({x ∈ Σ0 : I(x) = j}) ≥ 1
q+1

Ln−1(Σ0)

We have therefore
∫

Rn

ρ dµ ≥

∫

F ([sj ,sj+1]×Σ0)

ρ dµ

=

∫

[sj ,sj+1]×Σ0

| det JF (s, x)|ρ(F (s, x)) dLn(s, x),
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where we have used a change of variable. It follows that
∫

Rn

ρ dµ ≥ C

∫

Σ0

∫ sj+1

sj

ρ(γx(s)) ds dx

≥
C

1 + 2ε

∫

Σ0

∫ sj+1

sj

ρ(γx(s))|γ̇x(s)|X ds dx

≥
C

1 + 2ε

∫

{x∈Σ0:I(x)=j}

(∫
γx
ρ
)
dx

≥
C

1 + 2ε
·

1

q + 1
· Ln−1(Σ0) ·

1

q + 1
> 0

and then ModA > 0 with A = {γx}x∈Σ0 , as claimed. �

Therefore, by Theorems 2.9 and the weak Fubini property, we can
conclude the following equivalence.

Corollary 3.5. In Riemannian and sub-Riemannian manifolds, en-
dowed with their natural volume measure, AMLEs and SAMLEs are
equivalent notions.

We also state the following corollary, which will be of use later.

Corollary 3.6. Let ℘ = ℘(x) be a property holding for Ln-a.e. x ∈ Rn

and let x0, y0 ∈ Rn be fixed. Then, for any ε > 0 there exist two points
xε ∈ Bε(x0), yε ∈ Bε(y0) and a horizontal curve γ : [0, T ] → Rn with
γ(0) = xε and γ(T ) = yε such that l(γ) < d(x0, y0) + ε and ℘ holds at
γ(t) for L1-a.e. t ∈ [0, T ].

Proof. Consider B1 := Bε(x0), B2 := Bε(y0). By repeating the con-
struction given in Theorem 3.4 (with τ := ε) we can find T > 0 and

• a C∞ hypersurface Σ0 ⊂ Bε(x0);
• 0 = s0 < s1 < · · · < sq < sq+1 = T ;
• a Lipschitz continuous map F : [0, T ] × Σ0 → Rn

such that

• for any i, F is a C∞ diffeomorphism from ([si, si+1] × Σ0) onto
its image;

• for any x ∈ Σ0, the curve γx := F (·, x) is horizontal, γx(0) ∈
Bε(x0) and γx(T ) ∈ Bε(y0);

• the length of each γx is less than d(x0, y0) + ε.

Let (Ui, ψi) be the charts utilized in the same construction and recall
that, for any x ∈ Σ0 and any i the curve γx|[si,si+1] is a straigth hori-
zontal segment according to the coordinates (Ui, ψi). By the classical
Fubini theorem, for Hn−1-a.e. x ∈ Σ0 the property ℘ holds at γx(t)
for L1-a.e. t ∈ [si, si+1]. As a consequence, for Hn−1-a.e. x ∈ Σ0 the
property ℘ holds at γx(t) for L1-a.e. t ∈ [0, T ], and this concludes the
proof. �
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Remark 3.7. A better insight of the proof of Corollary 3.6 shows that
there are a lot of horizontal curves γ as in the statement.

4. Equivalence between absolutely minimizing Lipschitz

extensions and infinity harmonic functions.

As we have already pointed out in the introduction, it is known that,
in Euclidean spaces, AMLEs and infinity harmonic functions are equiv-
alent notions. We are going to introduce the corresponding horizontal
operators and to investigate the same relation in Riemannian and sub-
Riemannian manifolds. As usual, X = {X1(x), . . . , Xm(x)} denotes a
family of smooth vector fields in Rn satisfying the Hörmander condition
and d is the associated Carnot-Carathéodory distance.

Definition 4.1. We define the horizontal gradient of u : Rn → R as

DXu :=
(
X1u, . . . , Xmu

)

and the symmetrized matrix of horizontal second order derivatives of u
as (

D2
Xu
)?

i,j
:=

1

2
(XiXju+XjXiu) , for i, j = 1, . . . , m.

Using the previous intrinsic differential operators, we introduce the
(renormalized) infinity Laplace operator by

∆∞,Xu := 〈
(
D2

Xu
)?
DXu,DXu〉.

The equation under consideration is the infinity Laplace equation
given by

(14) ∆∞,Xu = 0.

We say that a function u is of class C1
X if u is continuous and Xiu is

continuous for i = 1, . . . , m. Analogously, u ∈ Ck
X with k ≥ 1 if u is

continuous with its first k horizontal derivatives. Of course, we do not
specify if such continuity is w.r.t. the metric d or the usual Euclidean
one because, under the Hörmander condition, the topology induced by
d is equivalent to the Euclidean one.

Definition 4.2. We call (horizontal) infinity harmonic function any
viscosity solution of (14); that is, an infinity harmonic function u is a
continuous function such that

(1) if φ ∈ C2
X is such that u− φ has a local maximum at x0, then

−∆∞,Xφ(x0) ≤ 0 (subsolution property).
(2) if φ ∈ C2

X is such that u− φ has a local minimum at x0, then
−∆∞,Xψ(x0) ≥ 0 (supersolution property).

Our aim is that of understanding whether, given a bounded domain
Ω ⊂ Rn and g ∈ Lip(∂Ω, d), a function u is the AMLE of g on Ω if and
only if it is infinity harmonic on Ω with u = g on ∂Ω. In order to obtain
this equivalence, we first need to introduce the concept of absolutely
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gradient minimizing extension. In fact, it is well know that, at least in
the Euclidean case, the infinity Laplacian is the Aronsson equation of
the L∞-norm of the gradient; in particular, infinity harmonic functions
are those functions minimizing such a norm.

As common in the literature, we hereafter denote by W 1,∞
X (Ω) the

space of real functions on Ω whose first-order horizontal derivatives are
essentially bounded.

Definition 4.3. Let Ω ⊂ Rn be a bounded domain and g ∈ Lip(∂Ω, d).
We say that u ∈ W 1,∞

X (Ω) is an absolutely gradient minimizing exten-
sion (AGME) of g on Ω if

(1) u = g on ∂Ω
(2) for any U ⊂⊂ Ω open, if v ∈W 1,∞

0 (U) with v = u on ∂U , then

‖DXu‖∞,U ≤ ‖DXv‖∞,U .

The following result was proved by C. Wang [25].

Theorem 4.4. If u is AGME in a Carnot-Carathéodory space, then u
is a viscosity solution of (14).

Still in [25], the author proved also that, in any Carnot group, the
viscosity solutions of

(15)

{
∆∞,Xu = 0, on Ω

u = g, on ∂Ω

are unique. The previous uniqueness result is also known in Riemann-
ian manifolds ([3]) and in Grušin-type spaces ([5]). Uniqueness for
the problem (15) implies that the reverse implication (i.e. that infin-
ity harmonic functions are AGMEs) holds, thus establishing the full
equivalence between AGMEs and infinity harmonic functions.

We can summarize the previous results in the following corollary.

Corollary 4.5 ([25], [3], [5]). In Riemanian manifolds, Carnot groups
and Grušin-type spaces, a function is AGME if and only if it is infinity
harmonic.

Unfortunately, in general Carnot-Carathéorory spaces the unique-
ness for problem (15), as well as the implication “infinity harmonic ⇒
AGME”, are still open problems. Therefore the previous full equiva-
lence is not yet established in the general setting.

We want to study also the relationships between the notions of
AMLE and AGME. In the Euclidean setting it is known that Lip(u, U)
equals ‖Du‖L∞(U) for any Lipschitz function u on a convex set U ⊂ R

n.

If U is not convex only one inequality holds, namely Lip(u, U) ≥
‖Du‖L∞(U). The reverse inequality is in general false, as the follow-
ing example shows.
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Example 4.6. Define Ω = B1(0) = {(x, y) ∈ R2 | x2 + y2 < 1} and let
Br(0) = {(x, y) ∈ R2 | x2 + y2 ≤ r2}, with 0 < r � 1 fixed. Consider
the open set

Ω̃ = Ω \
(
Br(0) ∪ {(x, y) ∈ R

2 | y = 0, x ≤ 0}
)
,

then Ω̃ is connected and bounded but not convex. Let us consider the
“angle” function u : Ω̃ → R defined by

u(x, y) =






arctan y
x

if x > 0
π + arctan y

x
if x < 0 and y > 0

−π + arctan y
x

if x < 0 and y < 0
π/2 if x = 0 and y > r
−π/2 if x = 0 and y < −r

It is easy to see that

|Du| =
1√

x2 + y2
<

1

r
, for any (x, y) ∈ Ω̃,

so that ‖Du‖∞,Ω̃ ≤ 1
r
.

Now look at points P = (xP , yP ), Q = (xQ, yQ) ∈ Ω̃ such that xP =
xQ ≈ −1 and 0 < yP � 1 and −1 � yQ < 0, so that d(P,Q) < ε� 1.
We have

u(P ) ≈ π while u(Q) ≈ −π

Hence
|u(P ) − u(Q)|

|P −Q|
≈

2π

ε

and then Lip(u, Ω̃) = +∞, whence Lip(u, Ω̃) > ‖Du‖∞,Ω̃.

An analogue result holds for geodesically convex sets in Carnot-
Carathéodory spaces; in this setting, however, the geometry of geodesi-
cally convex sets is not as well-behaved as in Euclidean spaces. For
example, in the Heisenberg group the only geodesically convex sets are
the whole space, the empty set and the geodesics themselves [18].
However, let us note that balls are starshaped (i.e. geodesically convex
with respect to an interior fixed point) w.r.t. the center in any metric
space. This observation motivated us to use the notion of SAMLEs in
order to link AMLEs to infinity harmonic functions.

We are going to show that in any Carnot-Carathéodory space the
local Lipschitz norm introduced in (9) and the L∞-norm of the gradient
are indeed the same object.

Theorem 4.7. Let
(
R

n,X ,
〈
,
〉

g

)
be a Riemannian or sub-Riemannian

manifold and d(x, y) the associated Riemannian or, respectively, Carnot-
Carathéodory distance. Let U ⊂ Rn be an open set and u : U → R be
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a Lipschitz function. Then

L̂ip (u, U) = ‖DXu‖∞,U .

Proof. In [10] (see also [11]) it was proved that, under the Hörmander
condition, for any open and bounded set Ω ⊂ U and for any Lipschitz
function u : U → R it holds

‖DXu‖∞,Ω ≤ Lip(u,Ω).

Using this result in Ω = BR(x0) ⊂ U and passing to the limit as
R → 0+ we find

|DXu(x)| ≤ Lip u(x), a.e. x ∈ U.

On considering the essential supremum we achieve

‖DXu‖∞,U ≤ ess sup
x∈U

Lip u(x) = L̂ip (u, U).

We are left to prove the reverse inequality.
Let x ∈ U be fixed and R > 0 be such that BR(x) ⊂ U and fix
y ∈ BR(x). By Corollary 3.6, for any ε > 0 there exists a horizontal
curve γε : [0, T ] → Rn such that γε(0) = xε, γε(T ) = yε and

d(x, xε) < ε, d(y, yε) < ε, l(γε) < d(x, y) + 3ε

u is horizontally differentiable at γε(t) for L1-a.e. t ∈ [0, T ].

If ε is such that d(x, y) + 3ε < R, then Im γε ⊂ U and

|u(xε) − u(yε)| ≤

∣∣∣∣
∫ T

0

d

dt
u(γε(t))dt

∣∣∣∣ =

∣∣∣∣
∫ T

0

DXu(γε(t)) · γ̇ε(t)dt

∣∣∣∣

≤ ‖DXu‖∞,BR(x)

∫ T

0

|γ̇ε(t)|dt = ‖DXu‖∞,BR(x) l(γε)

= ‖DXu‖∞,BR(x)

(
d(x, y) + 3ε

)
.

Taking into account the continuity of u, as ε→ 0 we obtain

|u(x) − u(y)| ≤ ‖DXu‖∞,BR(x) d(x, y)

Taking the supremum among y ∈ BR(x) \ {x} and passing to the limit
as R→ 0+, we can conclude

Lip u(x) ≤ ‖DXu‖∞,U , ∀x ∈ U,

i.e.
L̂ip (u, U) = ess sup

x∈U
Lip u(x) ≤ ‖DXu‖∞,U

which concludes the proof. �

In the particular case of Carnot group, Taylor approximation allows
to prove the identity between Lip u(x) and |DXu(x)| for a. e x. This
is not necessary in order to study the relation between AMLEs and
infinity harmonic functions; nevertheless, we decided to include it since
it can be useful in different contexts.
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The intrinsic Taylor’s approximation in Carnot groups was proved in
[21]; more precisely, if u is a Lipschitz function on a Carnot group G,
then u is horizontally differentiable at a.e. x ∈ G, i.e.

(16) u(y · x) = u(x) + 〈DXu(x), y〉 + o(‖y‖CC)

where y denotes the horizontal projection of y onto the horizontal layer.

Proposition 4.8. Let G be a Carnot group, u : G → R a Lipschitz
function and x ∈ G a point such that u is horizontally differentiable at
x. Then

(17) Lip u(x) = |DXu(x)|.

Proof. Let R > 0 be fixed and let h be a “horizontal” point (i.e.,
h = h), to be chosen later, such that ‖h‖CC = 1. Let s ∈ (0, R) and
define y := x · δs(h) ∈ BR(x). By (16) we have

u(y) = u(x) + 〈DXu(x), x−1 · y〉 + o
( ∥∥x−1 · y

∥∥
CC

)

= 〈DXu(x), δs(h)〉 + o
(
‖δs(h)‖CC

)

so that

u(y)− u(x) = s〈DXu(x), h〉 + o(s).

Since d(x, y) = ‖δs(h)‖CC = s we get

u(y) − u(x)

d(x, y)
= 〈DXu(x), h〉 + o(1).

After choosing h := DXu(x)
|DXu(x)|

, we obtain

sup
y∈BR(x)\{x0}

u(y) − u(x)

d(x, y)
≥ |DXu(x)| + o(1).

On passing to the limit as R → 0+ we conclude

(18) Lip u(x) ≥ |DXu(x)|.

In order to get the reverse inequality, we proceed in a similar way.
We write the first order Taylor’s approximation at a point y = x · δs(h)
with ‖h‖CC = 1 but h not necessarily horizontal. We then have

u(y)− u(x) = s〈DXu(x), h〉 + o(s).

Using the Cauchy-Schwartz inequality we find

|u(y)− u(x)|

d(y, x)
≤ |DXu(x)||h| + o(1).

Note that |h| ≤ ‖h‖CC = 1 and so

|u(y)− u(x)|

d(y, x)
≤ |DXu(x)| + o(1),
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for any y ∈ BR(x). Taking the supremum and then passing to the limit
as R→ 0+, we can conclude

(19) Lip u(x) ≤ |DXu(x)|.

Inequalities (18) and (19) are enough to conclude the proof of the
Theorem. �

Remark 4.9. Recall that, whenever u is Lipschitz w.r.t. the Carnot-
Carathédory distance in some bounded set Ω ⊂ Rn, thenDXu ∈ L∞(Ω)
(see [10] and [11]). In the particular case of a Carnot group the re-
sult is indeed stronger: the Lipschitz continuity w.r.t. the Carnot-
Carathédory distance implies that the function is also horizontally dif-
ferentiable a.e. (Pansu-Rademacher Theorem, e.g. in [17]).

Before stating the final result, i.e. the equivalence between AMLEs
and infinity harmonic functions, we would like to summarize all the
equivalences that have been obtained so far:

existence & uniqueness
length
spaces

��

existence
sub-Riem.

))

uniqueness

Carnot groups,
Riem. manif.

��
AMLE

Carnot groups and Riemannian spaces +3

length
spaces

��

∆∞u = 0

CONES

length
spaces

KS

sub-Riem. +3
SAMLE

sub-Riem. +3

sub-Riem.
ks AGME

sub-Riem.
ks

sub-Riem.

KS

We can conclude the following.

Theorem 4.10. Let (Rn,X , 〈 , 〉g) be a Riemannian or sub-Rieman-
nian manifold, Ω ⊂ Rn open and bounded and let g : ∂Ω → R be a
Lipschitz boundary datum. If u : Ω → R is the AMLE of g, then u is
infinity harmonic on Ω.
Moreover, in the particular cases of Riemannian manifolds, Carnot
groups and Grušin spaces, also the reverse implication holds.

Proof. By the weak Fubini property, we know that AMLEs and SAM-
LEs are equivalent notions. Moreover, by Theorem 4.7, u is AMLE
if and only if u is AGME. In order to conclude, it is sufficient to re-
call that AGMEs are infinity harmonic and, by the uniqueness results
for the infinity Laplacian, the reverse implication holds in Riemaniann
manifolds, Carnot groups and Grušin spaces. �

Finally, we would like to apply our main theorem to a result re-
cently proved by the first two named authors and Bieske in [6]. There,
the authors have used the relation between AMLEs and infinity har-
monic functions to give a geometric characterization of the set where
the distance from a fixed point is infinity harmonic in Riemannian
manifolds and Carnot groups. Actually, only one implication is nec-
essary. Therefore that characterization can now be generalized to any
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sub-Riemannian structure. Let us briefly recall this result.
Let us fix a base point x0 ∈ Rn and define d(x) := d(x, x0) as, re-
spectively, the Riemannian or Carnot-Carathéodory distance from x0.
Hereafter, we indicate by E ′ the set of all the points x such that any
geodesic from x0 to x cease to be length minimizing exactly at x.

Theorem 4.11 ([6]). The function d(x) is AMLE in the set A :=
Rn \

(
E ′ ∪ {x0}

)
, since there d(x) satisfies comparison by metric cones

by above and below.

In Euclidean spaces E ′ = ∅, thus the Euclidean distance d(x) = |x| is
infinity harmonic in Rn \ {0}, as we already knew. In the Riemannian
sphere Sn we get that d(x) is AMLE in Sn \ {x0, x1}, x1 being the
antipodal point to x0. In the 1-dimensional Heisenberg group, the
result implies that the Carnot-Carathéodory distance from the origin
is AMLE outside the center of the group.
By applying Theorem 4.10 we can derive the following corollary.

Corollary 4.12. If d(x) is a Riemannian or Carnot-Carathéodory dis-
tance from a point, then d(x) is infinity harmonic in A.

Proof. By Theorem 4.11 we know that d(x) is AMLE in A. By Theorem
4.10 this implies that d(x) is also infinity harmonic, in any Riemannian
or sub-Riemannian structure. Hence the corollary is proved. �

In [6] the authors have shown explicitly that d(x) is not infinity har-
monic in the center of the Heisenberg group.
The relation between so-called bilateral solutions of a Hamilton-Jacobi
equation and the corresponding Aronsson equation found by Soravia
in [23] can be applied to the special case of the eikonal equation and
the infinity Laplace equation. In this case, Soravia’s result yields the
same characterization by geodesics. In fact it is known that the Carnot-
Carathéodory distance from a point is a viscosity solution of the eikonal
equation in Rn except the point (see [9] and [19]) and by [23] it turns
out to be a bilateral solution exactly in A = Rn \

(
E ′ ∪ {x0}

)
. There-

fore, at least in Carnot groups, the set A is exactly the set where d(x)
is AMLE and infinity harmonic.
Proving the same characterization in general sub-Riemannian struc-
tures seems much harder, due in particular to the difficulties concern-
ing comparison principles for the infinity Laplace equation in such a
generality.
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