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AREA-MINIMIZING INTEGRAL CURRENTS II: RECTIFIABILITY OF
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THAN 1
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ABSTRACT. We consider an area-minimizing integral current T' of codimension higher than
1 in a smooth Riemannian manifold X. In a previous paper we have subdivided the set of
interior singular points with at least one flat tangent cone according to a real parameter,
which we refer to as “singularity degree”. This parameter determines the infinitesimal order
of contact at the point in question between the “singular part” of T and its “best regular
approximation”. In this paper we show that the set of points for which the singularity
degree is strictly larger than 1, is (m — 2)-rectifiable. In a subsequent work we prove that
the remaining flat singular points form an (m — 2)-null set, thus concluding that the singular
set of T is (m — 2)-rectifiable.
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1. INTRODUCTION

Suppose that T is an m-dimensional integral current in a complete smooth Riemannian
manifold 3, which for simplicity we will assume to be properly embedded in an open subset of
a sufficiently large Euclidean space. We assume that 7" is area-minimizing within its integral
homology class in some (relatively) open Q c X, i.e.

M(T + 8S) > M(T)

for any (m + 1)-dimensional integral current S supported in . A point p € spt(T)\spt(dT) is
regular if there is a neighborhood U of p in which the current 7' is a smooth m-dimensional
oriented submanifold of ¥ with constant integer multiplicity. The complement of the set of
regular points in spt(7T)\spt(dT) is called singular set and will be denoted by Sing(T).

This is the second of three papers (the others being [9,10]) in which we prove the following
theorem

Theorem 1.1. Let T be an m-dimensional area-minimizing current in a C>"° complete Rie-
mannian manifold of dimension m+n = m+2, with kg > 0. Then Sing(T) is (m—2)-rectifiable
and there is a unique tangent cone at H™ 2-a.e. q € Sing(T).

We refer to our first work [9] for the historical context and the motivation of our study.
Recall that, following Almgren’s stratification theorem, we can divide Sing(7") into the disjoint
union of

e the subset S(m—2) (T) of points p at which any tangent cone to T has at most m — 2
linearly independent directions of translation invariance;

e the remaining set Sing(T)\S(™~2)(T) of those singular points at which at least one
tangent cone is a flat plane (counted with some integer multiplicity Q).

We introduce the notation F(7') for the latter set and we will call its elements flat singular
points. The (m — 2)-rectifiability of S"~2)(T) follows from the remarkable work of Naber
and Valtorta, cf. [27,29]. Hence the main focus of our works is proving the rectifiability
of F(T). Because of the constancy theorem, it is well known that every point p € §(T)
has positive integer density ©(T,p). Moreover, by Allard’s regularity theorem, this density
must be necessarily biger than 1. We can therefore subdivide §(7') as (Jg=o F@(T) where



RECTIFIABILITY: SINGULARITY DEGREE STRICTLY LARGER THAN 1 3

So(T) :={peFT) :0(T,p) = Q}. Our first work [9] introduced a further real parameter,
belonging to the range [1,00[. We call it singularity degree of T at p and denote it by I(T,p).

When I(T,p) > 1 it follows from the analysis in [9] that the tangent cone to p is a unique
plane and that T has an order of contact with it which is at least min{I(7, p),2}. In particular
at any point p € F(T') where the tangent cone might be non-unique, the value of I(T,p) is
necessarily 1. In this paper we will prove the following.

Theorem 1.2. Let T be as in Theorem 1.1 and Q € N\{1,2} Then the set

3Q>1(T) :=={pe3(T): 0(T,p) =Q and KT,p)>1}
is (m — 2)-rectifiable.

In our final paper [10] we will then complete the proof of the rectifiability of Sing(T") by
showing that the following holds.

Theorem 1.3. Let T and @ be as in Theorem 1.2. Then Fo1(T) := §o(T)\Fo,>1(T) is an
H™2-null set.

Notice that, while Theorem 1.2 and Theorem 1.3 together imply that the tangent cone is
unique at H™ 2-a.e. point p € F(T), this does not answer the question of the uniqueness
of tangent cones at H" 2-a.e. point p € S(m~2) (T), as claimed in Theorem 1.1. The latter
statement does not follow from the analysis of Naber and Valtorta in [29]; there, the authors
only handle points p € S ~2)(T) that are uniformly bounded away from F(T). However,
we address this in [10], and indeed the H™ 2-a.e. uniqueness of tangent cones is a simple
byproduct of the tools which we introduce therein.

A fundamental tool to prove Theorem 1.2 is the technique developed by Naber and Valtorta
in [27] to tackle the rectifiability of the singular set of harmonic maps between manifolds.
In [8], the first author together with Marchese, Spadaro, and Valtorta, showed that these
techniques can be adapted to prove the (m — 2)-rectifiability of the singular set of multiple-
valued Dir-minimizing functions. The latter are the functions pioneered by Almgren in his
big regularity paper [2] in order to study the “linearization” of the area functional for area-
minimizing currents locally around flat singularities. In this work we combine the results
and estimates of [9] with those of [14,15], allowing us to suitably adapt the computations
and arguments contained within [8], leading to the rectifiability of o ~1(T"). This is more
transparent when proving (m — 2)-rectifiability for the portion of points of §g ~1(T) at which
the singularity degree is above 2 — § for a suitable small threshold § > 0, locally giving rise
to a single graphical approximation for 7' which is suitably close to being a multiple-valued
Dir-minimizer and is defined on a single center manifold domain that passes through all other
such nearby singularities.

However, in general, we cannot necessarily hope for such a convenient graphical approx-
imation for 7', due to the presence of ever-changing graphical approximations for 7" locally
around the points p € Fg, 1 (T") with I(T,p) < 2 — 4, with corresponding domains that do not
necessarily pass through the nearby points in g ~1(7). We therefore subdivide this paper
into two cases, each of which we treat separately: I(T,p) €]1,2 — §[ and I(T, p) = 2 — 4.

It is worth pointing out that in our arguments, we subdivide §F¢g ~1(T") into countably many
pieces (depending on the scale at which T is sufficiently close to an m-dimensional plane with
multiplicity @, and the decay rate towards this plane for the rescalings of T" around a given
point, which is determined by I(7,-). Each of these pieces further has locally finite (m — 2)-
dimensional upper Minkowski content, but the subdivision prevents us from making the same
conclusion for the entirety of §g ~1(T") in Theorem 1.2.

1.1. Comparison with the works of Krummel and Wickramasekera. While we were
completing this and the two works [9,10] leading to our proof of Theorem 1.1, we have learned
that in the works [23-25], Krummel & Wickramasekera arrived independently at a program that
shows the same final result. We refer to the introduction of [9] for a more general comparison
between the two programs.

We expect that most of the differences in the two approaches are in fact between our article
[9] and the corresponding one [23], as well as with the present article and the forthcoming
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work [25], where Krummel & Wickramasekera will use rather different arguments to show that
§0,>1(T) is (m — 2)-rectifiable. Here, we rely on the techniques introduced by Naber and
Valtorta, as in the adaptation to the study of the singular set of multi-valued Dir-minimizing
functions in [8], while we expect that Krummel & Wickramasekera will rely on the techniques
of Simon adapted to Dir-minimizing functions in their previous work [22].

As explained in [9,10], we believe that a refinement of the arguments therein can deliver
the stronger conclusion that the set §g <1+5(7) (defined in the obvious way) is H™ 2-null.
Moreover, we believe that we can then achieve local uniformity in the decay estimate for
§0,>1+6(T), thus removing the requirement of subdividing it further into countably many
pieces as in Sections 3 and 9.

The proof of the uniform decay estimate mentioned above would require a suitable quantifi-
cation of the argument in [9, Section 8], showing that, for every fixed 6 > 0, there is an ¢ > 0
such that, if at a certain scale r around a given point p € Fo(T') the planar excess is smaller
than e, then the universal frequency cannot be smaller than I(T, p) — 4.

These considerations are obviously influenced by the insight learned from the works [23,24],
as explained more in detail in [9]. The H™~2-nullity and the uniform decay estimate are reached
by Krummel and Wickramasekera in their works for sets which are defined in a different
way, but combining the results in [9] and [23,24] one can suitably compare those sets with
So,<1+46(T) and §g >145(T) and hence transfer to them the conclusions of [23,24] (at least
when the ambient manifold is the Euclidean space).

With the methods of this paper we would then be able to split §g >14+4(T) into two sets
which have locally finite Minkowski content (and hence finite H™~2 measure). In order to reach
this local finiteness statement for the full set Fg >14+6(7") one would further need to tackle the
sets of low frequency points and high frequency points at the same time and such a task would
require a more substantial modification of the techniques of this paper.

2. PRELIMINARIES AND MAIN RESULTS

In this section we recall the definition of the singularity degree and universal frequency
function introduced in [9] and we further subdivide §¢ ~1 into the two pieces described above.
The remaining parts of the paper will address the rectifiability of these two different parts of

SQ,>1-

2.1. Intervals of flattening and center manifolds. We follow heavily the notation and
terminology of the papers [14,15] and from now on we will always make the following assump-
tion.

Assumption 2.1. T is an m-dimensional integral current in ¥ n Q with 0T'L Q = 0, where
) is an open set of R™*" = R™*+7+! and ¥ is an (m + n)-dimensional embedded submanifold
of class C3"° with kg > 0. T is area-minimizing in ¥ n Q and n > 2. 0 € Q is a flat singular
point of T and @ € N\{0, 1} is the density of T at 0.

We will henceforth let C' and Cy denote dimensional constants, depending only on m,n, Q.
The currents 77, ,» will denote the dilations (¢4,,)3T, where ¢, .(y) := ¥-*. Since our statements
are invariant under dilations, we can also assume that

Assumption 2.2. Q) = B; ;7 and X n By 7 (p) is the graph of a C3*o function ¥, : T, N
B /m(p) — TpEt for every p € ¥ n By ;. Moreover
c(X):= sup |DYp[c2n <E,
pEEmB7ﬁ

where £ is a small positive constant which will be specified later.

This in particular gives us the following uniform control on the second fundamental form
AZ of ¥ in B7ﬁ2
A = |As|cos) < Coc(X) < Cot.
Following [15, Section 2], for every flat singular point = € Fg(T") we introduce disjoint intervals
]s;(x),t;(x)] <]0,1], which we refer to as intervals of flattening around z. The union of these
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intervals cover the scales r at which the spherical excess E(T, Bg, /m:(2)) (see [14, Definition
1.2] for the definition) is below a positive fixed threshold 3. Arguing as in [15, Section 2]
for each rescaled current 7T}, ; (,) and rescaled ambient manifold ¥, ; () we follow the algo-
rithm detailed in [14] to produce a center manifold M and an appropriate multi-valued map
N : M — Ag(R™*™). The latter takes values in the normal bundle of M and gives an efficient
approximation of the current T}, ; (,) in B3\By,(4)/t,(2)- However, here we use a slightly dif-
ferent definition to that in [14, Assumption 1.3] for the parameter m,. This is for the purpose
of consistency with [9], since we will be making use of the results therein. Here, we let

(1) My j = maX{E(Tw,tj (x)s Bﬁ\/m)v 5_2tj ($)27262} s

where 0o > 0 is the parameter in [14, Assumption 1.8]. It can be readily checked that this
change is of no consequence for the conclusions of [14,15]. Indeed, because of simple scaling
considerations, ¢(X;,;) < My j, so all the estimates claimed in [14, 15] are valid with our
different choice of parameter m ;.

2.2. Blow-up sequences, fine blow-ups, and singularity degree. We next introduce the
blow-up sequences of [9] as follows.

Definition 2.3. Let T and ¥ be as in Assumption 2.1. A blow-up sequence of radii {ry} at
x € §o(T) is a vanishing sequence of positive real numbers such that T, ,, converges to a flat
tangent cone.

Suppose that T', ¥, and x € Fo(T') are as in Assumption 2.1. Let |s;,t;] be the j-th interval
of flattening for T' around = (where we omit the dependency of s; and ¢; on z to make our
notation lighter), as defined in [15, Section 2]. Let 74 €]s;(), ;)] be a sequence of scales
along which

E(Tv BG\/ET;C (x)a 771@) — 0,
for some choice of m-planes 7. Let M, ;) denote the center manifold at scale ¢ ;) around ,
with corresponding current Ty, = Ty 4, L Bg/m (which are area-minimizing in the appropri-
ately rescaled ¥ = Ex7tj(k)) and M, j)-normal approximation N, ;). We refer the reader
to [15, Section 2] and [14] for the defining procedure of these objects. With a slight abuse of
notation we will sometimes use My, and Ny, for the corresponding center manifolds and normal
approximations.

Let St e ] 3re - 3m ] be the scale at which the reverse Sobolev inequality [15, Corol-
tj(k) 2t5k) 7 i) B
lary 5.3] holds for 7 = . Then let 7 = =t € ] Tk 2Tk ] We rescale further the
ot 3t (k) tik) 7 ti(h)
currents Ty, the ambient manifolds ¥ and the center manifolds to

Tk = (Lo,fk)ﬁTk = ((Lac,mtj(k))ﬂT) LB@y ik = [’O,szm,j(k:ﬁ Mk = [’O,ko:L’,j(k)?
Tk

and let

’I’T’Lx7j(k) = maX{E(Tk, B6ﬁ>7§2(fktj(k))2_252}-
Define 1

Nk : ./Wk — Rm+n’ Nk(p) = aNk(fkp),
and let B
N,
ug = kho ek, ug : T © By — Ag(R™"),
k
where e; is the exponential map at pi = ‘1)7’2750) € M, defined on Bs < 7, ~ Tpkﬂk and
hy := | Ni|r2(s,). The reverse Sobolev inequality of [15, Corollary 5.3] gives a uniform control
2

on the W2 norm of uy, on B3 (0, ).
Then, following the proof of [15, Theorem 6.2], there exists a limiting m-plane 7y and a non-
trivial Dir-minimizing map u € WLQ(B% (0,70); Ag(mg)) with nou = 0 and [ufz2(p,) = 1,
2
such that up to subsequences,

1,2 2
loc nL”

(2) up — u  strongly in W
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Recall that Almgren’s famous frequency function for Dir-minimizers u : @ < R™ — Ag(R")
at a center point x € 2 and scale r > 0 is defined by

r SBV,»(:D) | Du|?

S&B,,.(;v) |uf?
We refer the reader to [11, Chapter 3] for the basic properties of the frequency function. The
monotonicity of the frequency function [11, Theorem 3.15] for Dir-minimizers yields existence
of the limit as r | 0. It is more convenient to work with a smoother version of the frequency
function, which has more robust convergence properties. Following [14] we consider a com-
pactly supported, monotone decreasing Lipschitz cut-off function ¢ : [0,00) — [0,1]. We then

introduce
Dulw,r) := leU(y)I% ("y;x') dy,
2 —
D, (x,
Iu(ir,’f') = M .

The same computations showing the monotonicity of Almgren’s frequency function for Dir-
minimizers apply to the latter smoothed variant (cf. for instance [14, Section 3]; note that
Almgren’s frequency function corresponds, formally, to the choice ¢ = 1(g1)). Moreover, it
can be readily checked that all these smoothed frequency functions are constant when the map
is radially homogeneous, and this constant is the degree of homogeneity of the function. It
follows then from the arguments in [11, Section 3.5] that the limit

I,(z,0) = 1%61 I,(z,r)

is independent of ¢. For the rest of the paper we will fix a convenient specific choice of ¢, given
by

1 for 0 <t < %
(3) p(t) =13 2-2t forl<t<l1
0 otherwise .

When z = 0, we will omit the dependency on z for I and related quantities, and will merely
write I, (r).

Definition 2.4. Any map u as above is called a fine blow-up limit along the sequence ry, (at
x) and the set
F(T,z) :=={I,(0) : uis a fine blow-up along some r; | 0},

is the set of frequency values of T at x.

We now make sense of the infinitesimal order of contact between T and the average of its
sheets via the following definition.

Definition 2.5. The singularity degree of T' at the flat singular point x is defined as
(T, ) :==inf F(T,x).
We recall the following key result from [9]:
Theorem 2.6 (Uniqueness of the frequency value). Assume that T satisfies Assumption 2.1
and that x € Singgy, ;(T). Then I(T,x) = 1 and F(T,x) = {(T,x)}. Moreover:
(1) if I(T,x) > 1, then there is a unique flat tangent cone my and Ty, converges to it
polynomially fast;
(ii) of (T, z) > 2 — d9, then there are finitely many intervals of flattening at x (and in
particular, one center manifold which passes through x ).

More precisely, the polynomial decay in Theorem 2.6 can be stated in the following way,
which will come in useful later in this article, cf. [9, Proposition 7.2].
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Proposition 2.7. Let T be as in Theorem 2.6 and let p € Fo(T) with I(T,p) > 1. For any
0 < p < min{l(T,p) — 1,1 — 3}, there exists C(I(T,p),m,n,Q,u) > 0 and 17o(T,p) > 0 such
that for every r < s < 1y we have

7\ 28
(4) E(T,B.(p)) <C (;) max{E(T, B,(p)), e2s> 292} |

2.3. First subdivision. We are now ready to subdivide Theorem 1.2 into two main parts,
based on the singularity degree.

Theorem 2.8. Let T be as in Theorem 1.2 and Q € N\{0,1}. Then the set
(5) 84 1= {peSo(T) : U(Tp) =2 - 6o}

is m — 2-rectifiable.

Theorem 2.9. Let T be as in Theorem 1.2, Q) € N\{0,1}. Then

(6) 3o ={peo(l):1<I(T,p) <2—0ds}

is m — 2-rectifiable.

Note that we are now omitting the implicit dependency on T'. A few important points will
be in common in the proofs of the two theorems. However, one major difference is in how
the center manifolds will be handled in the two cases. In both we will construct “alternative”
center manifolds, following the same algorithm of [14], but with a different choice of parameters.
After further splitting into countably many pieces to gain uniformity in several parameters,
the difference is, roughly speaking, the following. For the set S}é we will locally find a single
center manifold passing through all these points, while at each point in Sﬁ;), we will construct
a sequence of center manifolds, each one defined for the interval of scales sy, ¢x] for which the
ratio i—: is a fixed constant.

Acknowledgments. C.D.L. and A.S. acknowledge the support of the National Science Foun-
dation through the grant FRG-1854147.

Part 1. Rectifiability of high frequency points
3. REDUCTION TO A SINGLE CENTER MANIFOLD

3.1. Choice of 3, second subdivision and new center manifold. Suppose that T is as
in Assumption 2.1 and suppose that x € S}é We start by introducing a parameter 3 which is
slightly larger than d2 as prescribed in [14, Assumption 1.8], while the remaining parameter fo
will obey the same relation S = 495. The choice of d2 within [14, Assumption 1.8] is engineered
so that a finite number of strict inequalities involving the dimension m and the parameters
~v1 and B hold. These inequalities are then used to show that the estimates in [14, Theorem
1.17 & Theorem 2.4] hold for the positive exponents x and -, therein, which determine the
regularity of the center manifold and the corresponding normal approximation. Decreasing 3
to dy will then just make these exponents smaller. Likewise, [14, Proposition 3.4, Proposition
3.5, Proposition 3.6 & Proposition 3.7] will hold with slightly changed values of the constants
involved in the estimates.

Now choose p with the property that 1 —d3 < p <1 — s < I(T,2) — 1 and let us invoke
Proposition 2.7 for this choice of p. Observe in particular that for every point x € 822 the
decay (4) holds with a constant C' which is now fixed for all radii » < ro(x). In particular, for
a small positive constant &, to be specified later, gg can be subdivided into a countable union
of sets S;, defined by

(7) S;j :=={pe gt E(T,B;-1(p)) <& and (4) holds in B, (p) Vr < j~'}

Clearly, we have S; < S,41, and thus Theorem 2.8 is reduced to proving (m — 2)-rectifiability
for each S; with j large enough. This will be accomplished in the following statement.
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Theorem 3.1. There exists £(Q, m,n) > 0 such that the following holds. Suppose that T is as
in Assumption 2.1, let j be sufficiently large and let p € S;. Let d3 > 0 be as described above,

6\/lﬁj and define mg := maX{E(TpmmB6\/E),5_7’(2)_262} < 2. Then

(1) Ty, satisfies the assumptions of the statements in [14] and [15] where the center man-
ifold My is constructed using the parameter d3 in place of 42, and myq as defined above.
(ii) The rescaling tpr,(S;) N B /m is contained in Mo and therefore so is its closure S;
(iii) S is (m — 2)-rectifiable and has the (m — 2)-dimensional Minkowski content bound

(8) B.(S) < Cr?,

for a positive constant C' = C(m,n,n,T,j).

set rg :=

The aim of this section is to prove the conclusion (i) and (ii) in Theorem 3.1. But indeed
we will prove a stronger form of (ii), namely that S belongs to what is called, in [14], the
“contact set” (denoted by ®(I'); see [14]) between My and T, ,,. Points in the latter set
enjoy better properties than a generic point in Mgy n spt(T},,). More precisely, the M-
normal approximation N is “almost” Dir-minimizing at all scales around such points, and as
a consequence a series of important integral identities are valid up to small errors. These facts
play a pivotal role in the rest of the paper, dedicated to prove (iii), and therefore we will
record them below in Lemma 3.3. In fact we will need a suitable refinement, namely that these
identities are valid at any point x € M and at any scale that is larger than a small scale
comparable to the distance of = to S, ¢f. Lemma 3.6.

Let us now show how Proposition 2.7 yields the result of Theorem 3.1(i).

3.2. Proof of Theorem 3.1(i) and of S ¢ ®(T") < My. Let p € S'é and let g = 6\/%3,.
First of all observe that, by Proposition 2.7, for every n > 0, if j is chosen large enough
(possibly larger than that corresponding to the scale where Proposition 2.7 applies), then
E(T}y.ry, Bgymr) < nr?=2% for every r < 1. In particular, the scale 1 satisfies whichever
smallness condition might be required by the modifications of the statements in [14,15] for
Ty r, With 03 in place of d2. Let now mg be the plane which is used as reference to apply the
algorithm in [14, Section 1] and construct the center manifold M. Moreover, consider any cube
L € €, for the family € of dyadic cubes of my defined in [14, Section 1] and let ¢; be the constant
in [15, (2.5)]. Obviously, if 7 is chosen sufficiently small, E(T}, ,,,Br) < Cemof(L)>~2% and in
particular L cannot belong to #¢. On the other hand, by [14, Proposition 3.1], it also cannot
belong to #". Thus, by [15, Proposition 2.2(iii)], L cannot belong to #™ either. It follows
therefore that the condition [15, (Stop), Section 2.1] is never met, and hence sy = 0. The
above choice of 7 in turn determines how large 7 must be. This therefore implies that for j
sufficiently large and p € S;, the origin must lie in ®(T") < My for Tj ..

Fix now a point ¢ € S and consider its projection z = pr,(¢q). The very same argument
implies immediately that xz cannot belong to any L € # and it is, therefore, a subset of the
set T of [14, Definition 1.17].

In fact we want to record a stronger consequence of the decay of the excess of Proposition 2.7.

Corollary 3.2. Let T, p be as in Theorem 3.1 and assume that j is large enough so that
the conclusion (i) of Theorem 3.1 applies. For every fixed ¢; > 0, the following is true, after
further increasing j if necessary. For every q € S and for every r < 1, every cube L which
intersects B,.(q,mo) satisfies (L) < csr.

3.3. Frequency function, almost-monotonicity and frequency lower bound. From
now on we will fix & arbitrarily (to be determined later; cf. Lemma 3.6) and assume that
J € N is fixed large enough such that the conclusions of Corollary 3.2 hold, that 0 € S;, and
we will use the notation M and N for the center manifold M and the normal approximation
Ny (for the current Tp ., with 7o = ﬁv on the interval of flattening ]0,1]). In light of the
above reasoning, we will henceforth work under the assumption that Theorem 3.1(i) applies
and that S ¢ ®(T") < M.

We can now introduce the pivotal object of our analysis, the (regularized) frequency function
for any given M-normal approximation N of T" as in Assumption 2.1. Let ¢ be defined as above
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and let d : M x M — R be the geodesic distance on M. We will repeatedly use the following
properties of d, which are consequences of the C3"-estimates on the center manifold M (we
refer the reader to [14] and [6]):

1
(i) dlw,y) = |o = 9] + O (mg o — yI),
;
(i) [V,d(,y)| = 1+ 0 (mid(,y)),
(iii) V3(d?) = g + O(mod), where g is the metric induced on M by the Euclidean ambient
metric.

We then introduce the following functions:

D)= | Do (M) ay.

[ IV @) e, Ay, @)
H(z,r) = fMd(yJ) |N¢< . >dy

rD(z,r)
H(z,7)
Note that we will often omit the implicit dependency on N of I and related quantities, since
we are considering one single fixed normal approximation N throughout. When it is necessary
to highlight such dependence, we will write Iy, Dy and Hy. We refer the reader to [15] or [6]
for more details on the above quantities. Moreover, since in practically all the computations
the derivative of d is taken in the variable which is the same as the integration variable, in all
such cases we will write instead Vd.

We moreover define

E(z,r) = —ifM ( )ZN (y)Vd(z,y) dy,

d(z, y)
o / s
G(z,r) = . qu ( " > \Vda:y\QZ“'DN -Vd(z,y)|* dy,

2= [ o(M0) NG 4y,

The first key point is that the variational identities that are pivotal for the almost monotonicity
of the frequency function I(x,-) hold indeed for every = € S and for every r €]0,1].

I(z,r) =

Lemma 3.3. There exists y4(m,n, Q) > 0 sufficiently small and a constant C(m,n,Q) > 0
such that the following holds. Suppose that the conclusions of the previous sections apply to
To,ry, M and N and that € in Theorem 3.1 is sufficiently small. Then for any v € ®(T") and
any r €]0,1], we have the following identities

© oD -~ [ o (M22) LD iprp g

(10)  oH(zr) — mT_lH(x,r) — O(mo)H(z, 1) + 2B(z, 7),
5
(11) |D(z,7) — E(x,r)] < Z | Err§ | < Cmd*D(z,r)' ™" + CmoX(z, ),
5
(12) 6-D(z,7) — (m = 2)r~'D(2,7) — 2G(z,7)| <2 Y| | Err} | + CmoD(x,7)

j=1
< Cr'md*D(z, 7)) + CmJ*D(x,7)"0,D(x,7) + CmoD(x,7),

where Err§ and Erré are as in [6, Proposition 9.8, Proposition 9.9].

We omit the proof of Lemma 3.3 here, since it involves a mere repetition of the arguments
in the proofs of [15, Proposition 3.5] (see also [6, Proposition 9.5, Proposition 9.10]), combined
with the observation that:
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(1) the constants may be optimized to depend on appropriate powers of my, resulting in
the more explicit computations given above;

(2) the validity of the estimates on all scales and at all points 2z € ®(T") uses the fact that,
for any g € T', any Whitney cube L € # which intersects the disk B,.(g, 7o) is no larger
than cyr, where ¢, is as in [15, (2.5)].

As an immediate consequence, arguing as in [9, Corollary 6.5] we obtain that

(13) dirlog(l +1(2,r) > —Cm

for 4 > 0 as in Lemma 3.3 and C(m,n, Q) > 0. In turn we can exploit the latter monotonicity
to obtain the following corollary.

Corollary 3.4. Let Ty ., M, N, C, and v4 be as in Lemma 3.3. Then for any v € ®(T') we
have the following:
(i) I(x,0) = lim, o I(z,r) exists and moreover x — I(x,0) is upper semicontinuous;
(ii) The unique tangent cone to T at x is Q[T M];
(iil) z is a flat singular point and I(x,0) = 2 — 0.

Proof. Points (i) and (ii) are obvious from the monotonicity of log(1+1I(z,r)). As for point (iii)
a simple unique continuation argument using the fact that the singular set of 7" has dimension
2 shows that no point « € ®(I') can be a regular point because otherwise in a neighborhood of
it the current would just coincide with the center manifold. The estimate on I(z,0) is instead
achieved using the excess decay at z and argueing as in [9, Section 9.2]. ([

We also observe that an obvious compactness argument gives a uniform bound for the
frequency I(x,4) as x varies in By n M. In particular, given the validity of the monotonicity
of log(1 + I), we can infer the following upper bound

(14) I(z,r) <A Vz e S,Vre€l0,4].

On the other knowing that lim, o I(x,r) = 2 — J5 for all x € ®(T"), it just suffices to choose myg
to be sufficiently small to gain a positive lower bound on I(z,r) at all scales.

Corollary 3.5. Let Ty ,,, M, N, C, and v4 be as in Theorem 3.1 and let € therein be suffi-
ciently small. Then there is a constant A > 0 (depending on T') such that

(15) g <I(z,r) <A Vz e ®(T), Vr€]0,4].

3.4. Almost monotonicity at points = close to S. In general the estimates of Lemma 3.3
are not valid at every point x € M and every scale r. As remarked, the condition for their
validity at scale r is that B, (0, px,(2)) does not intersect cubes of # which have side length
larger than csr. We may ensure that this holds at all scales r €]0,1] for any point in S, but
cannot hope to achieve this at all scales r €]0,1] at points that are not in the contact set
®(T"). Unfortunately, we need to consider points outside of the contact set when taking spatial
variations. However, for an arbitrary small constant 77 > 0, we can leverage Corollary 3.2 to
establish the validity of the desired estimates at any given point z € M n B and every scale
r larger than nd(z, S) (where, as usual d(z,S) = min{d(z,y) : y € S}).

Lemma 3.6. Suppose that the conclusions of the previous sections apply to Ty r,, M and N
with rg = 6%/@ and that € in Theorem 3.1 is sufficiently small. For every fixed n > 0, there
exists a choice of ¢s in Corollary 3.2 such that if j is larger than the corresponding threshold
therein, then all the estimates of Lemma 3.3 (and hence that of (13) and Corollary 3.5) hold

for every x € M and every r €|nd(x,S), 1] by possibly adjusting the constants.

The proof of Lemma 3.6 is entirely analogous to that of the fact that S < ®(T'), only
taking r €]nd(z,S), 1] and observing that given ¢, > 0 as in [15, (2.5)], any cube L € € with
L B(q,m) # & and £(L) > csr > ¢nd(z,S) would in turn satisfy L n By, g)+r (4, m0) # &

for some S 3 & = pr,(§), contradicting the conclusion of Corollary 3.2 for ¢; = lfj

3|
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3.5. Main reduction. Using an obvious covering argument and up to translations and dila-
tions, we can always substitute 7" with T ,,, so we can now summarize a set of assumptions
which we will make throughout the rest of this article.

Assumption 3.7. For some fixed (yet as small as desired) positive constants e4, 17, and some
fixed Iy = 2 — J3 (yet as close to 2 — Jo as desired) the following holds.

(i) T satisfies Assumption 2.1, Assumption 2.2 and I(T,0) > .
(ii) There is one interval of flattening ]0, 1] around 0 with corresponding mg g = mgy <
(iii) If M is the corresponding center manifold, then S := {x € Fo(T) : I(z,0) = Lo} n
is a closed subset of M.
(iv) For every z € By n M, the estimates of Lemma 3.3, Corollary 3.5 and the upper bound
on the frequency are valid for all radii r €] d(z, S), 1] (and hence for all radii r €]0, 1]
when z € S).

3.
B,

Note that in particular, the choice of £4 in turn determines the final choice of & in Theorem
3.1 and the parameter £ in Assumption 2.2.

4. ALMOST MONOTONICITY AND COMPARABILITY OF ERROR TERMS

In this section we establish some further consequences of Lemmas 3.3 and 3.6 and Corollary
3.5. The estimates of this section will greatly simplify many subsequent computations.

Lemma 4.1. For any fitzed n > 0 and A > 0 as in (14), if €4 is chosen sufficiently small,
then the following holds for any T as in Assumption 3.7, every x € M n By and any p,r €

Ind(x,S),4].

(16) C™ <I(z,r) <A

(17) A" YD(z,r) <H(x,7) < OrD(x,7)
(18) S(z,7) < Cr®D(z, 1)

(19) E(z,r) < CD(x,r)

(20) p T H(z, p) = T H(2, 7) exp <—C’ JT I(z, 5)% — O(mg)(r — p))
(21) H(z,r) < CH(z, }) ’

(22) H(x,r) < Crmt3-20

(23) G(z,r) < Cr—"D(z,1)

(24) |0,D(z,7)] < Cr—'D(z,7)

(25) |0, H(x,r)] < CD(x,r),

where the constant C' depends on Iy, A, and n, but not on e4. In particular:

(26) D(z,r) — E(z,r)| < Cm{*r""D(x,7)

(27) 10,D(x,7) — (m —2)r'D(z,7) — 2G(z,7)| < CmJ*r"* ' D(x,r)
(28) O XI(w, 1) = —CmJrri—t.

From now we will work under the assumptions that the parameters allow for the conclusions
of Lemma 4.1 to hold.

Assumption 4.2. T, Iy, 62, 03, €4, A and n are as in Assumption 3.7. In addition the
parameter €4 is small enough, compared to Iy, A, and 7, so that the estimates of Lemma 4.1
are valid.

4.1. Proof of Lemma 4.1. We begin with (16). The upper bound was already established
. To achieve the lower bound, we proceed via contradiction, following a similar argument to
that in [31].

Indeed, suppose that the lower bound in (16) fails. Then, one can find a sequence of currents
T}, satisfying Assumption 3.7 with vanishing 4 = €4 | 0 and extract a sequence of points
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xp € My n By with corresponding normal approximations Nj and scales ry €|nd(z, St,), 4]
such that

INk (mk,Tk> — 0.

In particular, this means that there exist points y, € St, with d(yg, zx) < %rk. Recentering
around xy, rescaling by 75 as in Section 2.2 and taking a normalized limit, we conclude that
(up to subsequence) there exists a limiting Dir-minimizer u : 7o, > By — Ag(n%) with

(i) 1,(0,1) = 0,
(ii) u(g) = Q[O] and I,(7,0) = Iy = 2 — 05,
where ¢ is the subsequential limit of % However, (i) implies that D, (0,1) = 0, which,
combined with (ii) tells us that « = Q0] on B;. This, however, contradicts the lower frequency
bound in (ii).
The inequalities (17) are clearly just an alternative way of writing (16), while the estimate
(19) is merely a consequence of (11) and (18) combined.
To obtain the equation (20), we first observe that (10) and (11) together yield the estimate
o-H(xz,r) m—1

or (logr!'""H(z,r)) = Hoor)  r

<

<IN

I(z,r) + Cmgo +
We then apply (19) and integrate between scales p and r to conclude. Setting p = 7 and
invoking the upper frequency bound in (16) clearly further implies (21).

To see that the L2-height decay (22) holds, one may simply cover

Pr, ((Br(2)\By2(2)) n M)

by a family of disjoint Whitney cubes L with ¢(L) < 2r, and apply the estimate [14, Theorem
2.4 (2.3)] on each Whitney region L for each of these cubes L (see [15, Remark 3.4] for the
corresponding estimate on D(z,7)).

The inequality (23) follows immediately from the definition of G, combined with the obser-

vation that d(z,y) < r whenever ¢’ (M) > 0. Similarly, the bound (24) follows directly

-
from the identity (9) and again the fact that d(z,y) < r.

Finally, the estimate (25) follows from (10) and the upper bounds in (17) and (19). The
estimates (26)-(28) are an obvious consequence of the preceding estimates (16)-(25) and the
estimates in Lemma 3.3, (13) and Corollary 3.5.

5. SPATIAL VARIATIONS

In this section we will control how much N deviates from being homogeneous on average
between two scales, in terms of the frequency pinching. The latter is defined as follows:

Definition 5.1. Suppose that T, M and N are as in Assumption 4.2. For z € B; n M and
any nd(z,S) < p <r < 1, define the frequency pinching W} (z) between scales p and r by

Wy (z) = |I(z,7) — I(z, p)|.
We begin with the following important proposition.

Proposition 5.2. Suppose that T, M, N are as in Assumption 4.2 and 4 is as in Lemma 3.3.
There exists C = C(m,n,Q,A) >0 and 8 = S(m,n,Q,A) > 0 such that the following estimate
holds for every x € By n M and for every pair p,r with 4nd(z,S) < p <r < 1. If we define

AZ () = <B2T(x)\B§(a:)) A M
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then

d(z,y)Vd(z,y) ?

\[A”(z) 27: |Vd(l',y)|

4
< CH(x,2r) < ;T(x) + mJ*r’log (;)) .

Remark 5.3. We warn the reader that, even though much of our computations are based on
the ones of the work [8], we will use a different convention concerning derivatives of the maps Nj.
In [8], the authors use the unusual convention v - DN; for the directional derivative of the map
N; in direction v (where N; is regarded as a map taking values into R™*™ and the derivative
is understood as the vector consisting of the directional derivatives of each component of N;).
In this paper we will often stick to the more standard convention 0, N; or DN;v.

DN;(y

d(z,y)

We will also require the following control on variations of the frequency in terms of frequency
pinching.

Lemma 5.4. Suppose that T, M and N be as in Assumption 4.2 and let v4 be as in Lemma 3. 3.

Let x1, 9 € Bin M with d(x1,x2) < §, wherer is such that 8n max{d(z1,S),d(z2,8)} <r < 1.
Then there exist C' = C'(m,n,Q,\) > 0 such that for any z,y € [x1,x2], we have

I(y,r) —I(z,r)| < C [(I/Vg,r(gcl))é + (W;T(m)) : + mg4r74] @

In order to prove the latter, we will also need the following additional variation estimates
and identities.

Lemma 5.5. Let T, M and N be as in Assumption 4.2 and let x € By n M. Let nd(z,S) <
p<r<1, and let v be a vector field on M. We have

= %qu/ (d(a;,y)) ZauwNi(y) -0, N;(y) dy + O (mJ") T’Y“_lD(x,r)

B =23 [ 'ijyy Lo (422 vt Mt .

5.1. Proof of Proposition 5.2. Since the center x here is fixed, we will suppress the depen-
dency on x for I and all related quantities, for simplicity. By the estimates in Lemma 4.1 and

the fact that |Vd(z,y)| =1+ O(m§|y — z[), we have

Wi (x) = ET 0:I(s) ds = Lr BS[PSI]()S()S)] _ SD(;’I)&;I(S) ds
2" sG(s) — I(s)D(s) Cmt I D(s)H 4+ 50,[D(s) 1] . )
=), H(s) cma’ |, ( H(s) +1( )> d
_ 27 sG(s) — 2I(s)E(s) + s~ 'I(s)?H(s) Om r s1I(s)D(s) .
-2, ) ds —Cmy L o

- Omy* er <D(S)1J“Y4 + 505 [D(s)"] + I(s)> ds.

1S}
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We can rewrite the integral I as

1= f aw | () @y ( :

_ d(z,y)Vd(z,y) )2 2 2.2 s
20(s) ), N, ( N S )+I<>N<y>| |w<,y>|>dyd

J

[ (1) S e

() V@)
PN 9 v)] '

where

x,y)Vd(z,y) 2

fa.9) = TN G 1o 0 V)

Combining this again with the estimates in Lemma 4.1, we thus arrive at the inequality

o {(z,y,s)
2r » I
g(:zr)ZQJ 7J = dyds
: 2 sH(s) A3 (@) d(z,y)

—Cm JQT (s“ll(s) + D(}.;)(;M + SD(S;;Z;D(S)) ds

1S}

2

A £(2,y,8)
> QJ J 2222 2 dy ds — CmJ* (r7* — p74).
sH(s) J s (x) d(z,y) o'( )

Now consider

C(xay) = 2

J

d(e,y)Vd(z,y) g

DN;(y) Vdlz,y)| I(d(z, y))N; (y)|Vd(z,y)]

The triangle inequality and the Cauchy-Schwartz inequality yields
((zy) < 26(z,y,5) + 2/L(s) — L(d(z, ) PIN ()] < 26(2,y, 5) + CWj, ) (@) N (y) .

We now proceed to estimate the pinching W;(I v (x) in terms of the pinching W2"(z). Observe
) 2

that the almost monotonicity of the frequency (28) tells us that for any nd(z,S) <s <t <1,
we have

(29) I(s) <I(t) + Cmi*t.
This yields
(30) Wiz (@) < W;T(x) + Cmi'r’* — Cm/*s™.

1

i _1 1
Moreover, since FIE) =<,

J f ( ) 1 (2.9) 2d(z,y) q
x,y) ds dy > J ((x,y J — ds dy
.A2T(w (z,y) 52 II(QT) A?{(w) d(z,y) 52
4

5 1 f ¢(z,y)
2H(2r) Jazr () d(=,y)
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Therefore, we have

2r
4
CJ C(z,y) dy ds — Cmg*r7 log (7°> — Cmir
A5 (@) d(zx,y) P
2d(z y) A
A2r(m d(z,y) S P)

S| S(a.y)
H(2T> .A?g'"(z) d T,y

(z,y)
C J C(z,y) <4r)
> dy — CmJ*r"log | — | — CmJir.
H(2r) J a2 ) d(z,y) 0 p 0

<

4
— Cmg'r7 log <r) - Cmg'r™
p

<

Rearranging, this yields the claimed estimate.
5.2. Proof of Lemma 5.5. Observe that we have
Vd(z,y
(31) oD(er) = [ o (A22) U ) D2 a

Consider the vector field X;(p) = Y (p(p)) where
d
(2, y)) Y

(32) Y@w=¢(

,
Then

(33) divagY = ¢ (d‘fj y)) VAED) v H,

and

B Duy =10 () @ty + o (1Y )ZAMew>®%,

where v,(y) = Vd(z,y) and {e;} form an orthonormal frame of M, with e; = v. Thus,

testing [15, (3.25)] with this vector field and using the decay in Proposition 2.7 yields

(35) (?vD(x,r):J |DN|2diVMYdy+O(m§)T > D(x,7)
M
2 , d 5 11 —~1
2 Jo (52 S aniop ay - Omi D) Ehm%

where E\rg are the inner variational errors in [15, (3.19), (3.26), (3.27), (3.28)], but for our
new choice of vector field Y. We estimate them analogously to [15, Section 4], again using the
excess decay of Proposition 2.7 to get improved scaling, combined with an analogous estimate
0 (27), to obtain

5 .
(36) 3 (B < Cm*r'D(a,r) "% + Cmy D(x,r) "8, D(z,7)

< CmJ'r" "~ 'D(z,7)

Note that in order to get these estimates we require r > nd(z, S), to ensure that B,.(g, o) does
not intersect any cube L € # with ¢(L) > csr (cf. Lemma 3.6). The identity for 0,H(zx,r) is
merely a computation, identical to that in the proof of [8, Proposition 3.1].
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5.3. Proof of Lemma 5.4. Let z,y be as in the statement of the lemma and let z lie in the
line segment [z,y]. For a given vector field v, the chain rule yields
royD(x,r)  I(z,r)0,H(z,r)

Oul(z, 1) = H(z,r) H(z,r)

We may now proceed as in the proof of [8, Theorem 4.2]. Nevertheless, we repeat the argument
here for clarity. Let p, be the measure with density

_|Vd(,y)| , (d(z,y)
= Uy () o

and let

Vd(xh y)
\Vd(z1,y)|

Vd(z,y) d(z,y)

N,y ~ [V y] Y

Nx (y) = d(.’l?, y)

U<y) = d(x17$2)
Then by Lemma 5.5, for every r €]nd(x, S), 1] we have

O X(x,r) = ﬁ JM Z<B%Ni, Oy Niy dpy + Cm r7I(z,r)

I(z,r)
3 o CDYCEVEDRTS
We can now write
Vd(x ) Y Vd(x Y
0uN;(y) = DN;(y)d(z1,y) |Vdga:1 y;| - D]\Ti(y)d(mg,y)Vdgxzy;|
= 6771'1 Nz(y) - aan Nz(y)
= (On,, Ni(y) = Xz, d(z1,9))Ni(y)) = (9n,, Ni(y) — L(z2, d(22,9))Ni(y))
+ I(mh d((El, y)) - I(.’IJ27 d(l’g, y)) N'L(y)
e,
Thus, we have
_ 2 I(z,r)
é’vI(% T) - H(QC, T) J;w ;<877le’ gl,z - 5277,> d,ua: - 2H((£’ T) JM |Vd‘ ;<Nza 5171 — 82,7(> d,u%
2 I(z,r)

_c v P
+ H(z,r) JM &3 ;<a’)mNLaN7,> 2H(x7r) fM |Vd|532i: |N; | dpeg

+ Cmy'r"I(z,r)

_ 2 I(z,7)
- T JM Zi@hm, Eri— &) dpty — 2H @) JM |Vd| ;m, Eri— &) dpy

23
N;. N; —rD
+H(x,r) (L\A;@m A S (x7r)>
+ Cm{*r"I(z,r).

With the aim to establish control in terms of frequency pinching at the endpoints z; and
To, we can now rewrite &3 as

& = (I(z1,d(z1,y)) — Uz, 7)) + (L1, 7) — a2, 7)) + (L2, 7) — L(z2, d(22,9)))
= WY (1) + Win o (@2) + L1, 7) = I(22, 7).

This, combined with the Cauchy-Schwartz inequality, Lemma 3.3, an analogous almost mono-
tonicity estimate to (30) and the uniform upper bound on the frequency (16) tells us that for
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some 6 = Y6(75, 3,m) we have

JZZ: (1€

|I($17 T) - I(x27 T)l

1

1 2 ? I(z,r)
H(x,r) lj; 190 il d,uxl - H(z,r)?

N

[0,1(z,7)| < C

[N

)

2+ [E]%) duml

y 1474
+ Cmj'r H(z,7) (D(z,7) + S, 7))
|W;1(m1,y)(xl)‘ + W5, o (22)]
Ny (z2,y) 1+74
s - (D(m, T) + ¥(x, 7"))

+ Cmy*rI(z,r).

Now invoking Proposition 5.2, for £ = 1,2 we have

JZ €0l dpw = — JZ €0l (y) Wd(fiif)/)'df (d(i’ y)) dy

< CH(zy, 27“)(W§T(xg) + mytr7).

Thus, when combined with the upper bounds in (16) and (18), we conclude that
21w, )| < C[WEr () + mdtr)d + (W (@) + mt) ]
+ CmJr" 1(z,r)(D(x,7)" + r*D(z,7)) + Cm'r™.
<C [ng"(xl)% + W‘é"(xg)% + m?r%] + CmJ*r.

Integrating this inequality over the geodesic segment [z,y] < M and using the estimates in
Lemma 4.1, the result follows.

6. QUANTITATIVE SPLITTING

In what follows we will need to consider affine subspaces spanned by families of vectors. For
this reason it will be useful to introduce the following notation. Given an ordered set of points
X = {xg,21,...,21} we will denote by V(X) the affine subspace spanned by {x; — 2o, 22 —
Zo,---,%k — To} and centered at xg, namely

(37) V(X) = xo + span({(z1 — z0), (x2 — x0), ..., (xx — T0)}) -

We will now show that approximate homogeneity implies the existence of an approximate
spine in given directions. We begin with the following definition.

Definition 6.1. We say that a set X = {zg,21,...,2r} < B.(x) is pr-linearly independent if
d(x;, V({zo, ..., xi—1})) = pr foralli=1,...,k

We say that a set F'  B,.(z) pr-spans a k-dimensional affine subspace V' if there is a pr-linearly
independent set of points X = {z;}}_, = F such that V = V(X).

The following lemma gives a quantitative notion of the existence of an approximate spine
in S, provided that N is (quantitatively) almost-homogeneous about an (m — 2)-dimensional
linear space.

Lemma 6.2. Suppose that T, M, N are as in Assumption 4.2, let x € S and let p, p, p €]0, 1]
be given. There exists € = eg.2(m,n,Q, A, p, p, p) €]0,€3] such that the following holds. Suppose
that for some r > 0,

max{E(T, By, (z)),(2r)* 2} < .
Let X = {x;}"? < B,(2) n'S be a pr-linearly independent set of points with
2r .
Wii(wi) <e for each i.

Then S A (B,\B,,(V(X))) = &.
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Proof. We argue by contradiction. Without loss of generality, assume = = 0. Suppose that
the statement is false. Then there exists sequences ¢ | 0, r, | 0 and corresponding sequences
of center manifolds M), and normalized normal approximations N with Hy, (0,1) = 1 for
To.r,- Moreover, for S, := S(Ty,r, ), there is a sequence of (m — 1)-tuples of points X} :=
{Th0,Zk 15 Thym—2} € By N Sy such that

(i) X is p-linearly independent for some p €]0, 1];

(ii) WZ2(Ng, 1) < ex — 0 as k — oo for some p €]0,1];

(iii) there exists a point y, € Si; N B1\B5(V(Xy))).

We can thus use the compactness argument from Section 2.2 to conclude that

(1) My, —> 7y in C3F;
(2) Npoe, — uin L? and in Wli)’f, where u is a Dir-minimizer with nowu = 0;
(3) X} converges pointwise to Xo = {zg,...,Tm—2} C To;
(4) yi, converge pointwise to y € T, N B1\B;(V (X)) with u(y) = Q[0].
Denote by Ag(u) the set of points y € me, such that u(y) = Q[n o u(y)] = Q[0]. Due to the
dichotomy [11, Proposition 3.22], we know that

(38) dimH(AQ (U) (@ Bl) <m-—2.

Indeed H,(0,1) = 1 and nou = 0, so u cannot be identically equal to Q[n o u]. Moreover,
H,(y,7) > 0 for every 7 € (0,1) and every y € By, since otherwise we would contradict the
dimension estimate (38). This, in combination with (ii) tells us that

IL,(zi, p) = L(z,2) fori=0,...,m—2.

The monotonicity of the (regularized) frequency for Dir-minimizers then tells us that u is a;-
homogeneous about the center x; in the annulus B (x;)\Bs(x;) C 7o, for some o > 0. We
can then extend u to an a;-homogeneous function about z; on my; call it v;. Observe that for
any z # x;, there is a neighbourhood U, c 74 of z on which v; is a Dir-minimizer (by using a
scaling argument and the fact that v; agrees with a Dir-minimizer on Ba(x;)\Bj(z;) € o).

This allows us to apply the unique continuation result [8, Lemma 6.9] to conclude that u = v;
on Bgg\{z;}, and hence u = v; on Bgy. By iteratively applying [8, Lemma 6.8], we may thus
conclude that a; = a for each i = 0,...,m — 2, and that v = Q[0] on the (m — 2)-dimensional
plane V(Xy) = xo +span{(@m,m—2 — o), . . ., (1 —xg)}. In other words, u is an a-homogeneous
function in two variables about the (m — 2)-dimensional plane V(Xq).

Since y ¢ V(Xy) and u(y) = Q[0] but u is a-homogeneous, this implies that u = Q[0] on
xo + span{Z;,—2 — o, ..., L1 — Lo,y — To}. This however contradicts the dimension estimate
on Ag(u), thus allowing us to conclude. O

The following lemma tells us that it suffices to have approximate homogeneity on a linearly
independent set of points, in order to conclude approximate homogeneity in the entire affine
subspace spanned by these points.

Lemma 6.3. Suppose that T, M and N are as in Assumption 4.2, let x € S and let
0,0, p €]0,1] be given. Then for any given & > 0, there exists ¢ = €43 > 0, dependent on
m,n,Q, A\, p,p,p,0, such that the following holds. Suppose that for some r > 0,

max{E(T, By, (z)),5(2r)* 2} < .
Let X = {x;}"? = B,(2) n'S be a pr-linearly independent set of points with
Wp?:(xl) <e for every i.
Then for every yi,y2 € B,(x) " B (V(X)) n'S and for every r1,re € [pr,r] we have
T(y1, 1) = Uyz, 2)| < 0.

Proof. We again argue by contradiction. Without loss of generality, assume x = 0. Suppose
that the statement is false. Then there exists sequences ¢, | 0, 7 | 0 and corresponding
sequences of center manifolds My, and normalized normal approximations N, with H ~,(0,1) =
1 for Ty, and a sequence of (m — 1)-tuples of points Xy, := {xk 0, Tk 1,.--,Thm—2} € B1 NSy
(where Sy, := S(Tp,,,)) such that
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(i) Xk is p-linearly independent for some p > 0;
(ii) Wg(Nk,xk7i) < e, — 0 as k — oo for some p > 0;
(iii) there are points yx 1, Yk,2 € B1 n B¢, (V(Xk)) n Sy and corresponding scales ry ; € [p, 1]
such that
Tk Yk, 15 m8,1) = Li(Yn 2, 7e,2)| = 6 >0,
where Iy, = I, .
We can thus use the compactness argument from Section 2.2 to conclude that
(1) My —> g in C3*;
(2) Njoer — uin L? and in I/Vli)’cz, where « is a Dir-minimizer with 1 ou = 0;
(3) X} converges pointwise to Xo, = {zg,...,Tm—2};
(4) yx,; converge pointwise to y; and the respective scales 1y ; converge to scales r; € [p, 1] for
1=1,2.

Arguing as in the proof of Lemma 6.2, we can deduce that v = Q0] on V(Xy) = z9 +

span{m,—2 — o,...,x1 — To}, with I,(y,7) = a > 0 for any y € V(Xy) and any 7 > 0.
However, since yr1, Yr2 € Sk and 74, € [p,1], we also have Xy (yx, 7k,:) — Lu(ys, ;) for
1 =1,2, so (iii) contradicts the homogeneity of w. O

7. FLATNESS CONTROL

In this section we proceed to estimate the “mean flatness” in a ball for a measure p supported
in S, in terms of a (m — 2)-dimensional p-weighted average of the frequency pinching (plus a
suitable lower order term). We introduce therefore the so called Jones’ By coefficients, which
will give us a suitable tool to measure the mean flatness of ;1 at a given scale around a given
point.

Definition 7.1. Given a Radon measure p in R™*" and k€ {0,1,...,m + n — 1}, we define
the k-dimensional Jones’ By coefficient of p as

_ - dist(y, L) >
k " k ’
B, (x,7) = . égflanes ; lr JBT(Z) ( . dp(y)

The pivotal estimate of this section is thus the following proposition.

1/2

Proposition 7.2. There exist thresholds n(m) > 0, e(A,m,n,Q,n), ag = ag(A,m,n,Q) >
0 and C(A,m,n,Q) > 0 such that the following holds. Suppose that T, M and N satisfy
Assumption 4.2 with parameters €4 and n smaller than the above thresholds. Suppose that
W s a finite non-negative Radon measure with spt(u) < S. Then for all v €]0,1] and every
xo € B,/ NS we have

C

T.m72

(8572 (o, 7/8)] < f Wiis(@) dp(z) + Cmgor=(m =200 y(B, 5 (x0)).
B,/s(wo)
In order to prove this proposition, we will require the following lemma, the proof of which
is omitted here and can be found in [8].

Lemma 7.3 ([8], Lemma 5.4). Let Q@ < R™ be a connected open set and suppose that u :
Q2 — Ag(R™) is a Dir-minimizer. Assume there is a ball B < Q and a system of coordinates
T1,..., Ty Such that u|B s a function of x1 only. Then wu is a function of only 1 on all of ).

7.1. Proof of Proposition 7.2. We may assume that u(B,/s(z0)) > 0, else the claimed
inequality is trivial. Since it will be convenient for us to restrict ourselves to (m—2)-dimensional
affine subspaces L of T);, M in Definition 7.1, we begin with some basic linear algebra to simplify
the mean flatness that we would like to control. Let

1

(39) Taor = LB, a(0) er 7 du()
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denote the barycenter of p in B, /s(xo) N Ty, M, where pg, is the orthogonal projection of
R™*™ onto T,,M. Following the approach of [29] and [8, Section 5], we may consider the
symmetric bilinear form by, , : T, M x Ty M — R defined by

(40) bao,r (v, W) = ‘[ (P (7) = Pao (Ta,r)) V) (Pao (¥) = Pz (Taro ) - w) dpa()

B, /s(z0)

_ f (@ = Zaor) - 0) (& = g ) - w) du(),
B, /s(z0)

and we diagonalize by, ,. This yields an orthonormal basis {v;}7; of eigenvectors and a
corresponding family of eigenvalues 0 < A\, < --- < Ay for the linear map

(41) T(v) = jB o (Pa(0) = P ) Payf) i)
r/8(Z0

_ J (& = Zagr) - V) P () dpa(),
B, s(%0)

which diagonalize by, . Namely, T'(v;) = Ajv; and by, (v, v;) = A;.
This yields the characterization

(42) inf (f)_(m_z) fB . (diSt(y’L)f dp(y) = (r/8) ™" Am—1 + Am).-

affine (m — 2)-planes \ 8 T
LcTyy M

We therefore conclude that
(43) (85 2 (20, 7/8) 17 < (r/8) ™™ (Am—1 + Am) <2(r/8) ™ A1

Moreover the (m — 2)-planes minimizing the left hand side of (42) are those of the form
L = xy + span{vy, ..., v;,m_2}, for any choice of orthonormal basis as above.

Fix now any z € Ba,(20)\B,/4(70) n M. Following [8], we would like to differentiate the
map N at the point z along the vector v;. However the latter vector is an element of T, M
and not an element of T, M. In order to find a suitable element of T, M we consider the
geodesic segment connecting xg and z on M and the parallel transport along it. This gives a
well-defined linear map £, : T, M — T, M. This map is, in fact, the differential de,|¢ of the
exponential map e,, at the point ¢ = e;ol(z).

Since
[ = mm) opee — 2) duta) = ~Age;
B, /s(z0)
and
[ @) v dut) ~o
B'r/S(xO)
foreach j=1,...,m,i=1,...,Q and any fixed « > 0 (to be determined later) we have

—AjDNi(2) - £:(v;) =

DNi(2) - £:(~Ayuy) = DNi(2) - £ ( | (@m0 du<x>>

r/S(xU)

SN | () o) dule)

B, s(%0)

= f (T = Zao,r) - 0 [DNi(2) - £:(Pay (2 — 7)) — alNi(2)] dp(a).
B, /s(z0)

Now observe that
d(a, 2)Vd(z, 2)| _ 172

eZ(pxo(Z_x))_ \Vd(x,z)| = o T
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We therefore reach the (approximate) identity

d(x,2)Vd(z, z)

—\;DN;i(2) - £.(v;) = j ( )((x — Tao,r) - Vj) |:DN1‘(Z) . i)
r/8 (L0 ’

- ati()| dute)

+0 (mg/*r?) |DNi(z)|J o=@z .
r/8(Z0

We now square both sides, sum over the components i of the @Q-valued map N, and use

the Cauchy-Schwartz inequality and the estimates on the distance d. Letting w(zx,z) :=
d(z,2)Vd(z,z)

N Ve thus have

X 2 IDNi(z) - e (v))I?
<C T — Tyr ~vj2d T DN; x,2) — aN;(z 2 Au(z
< JBTMM'( ror) - 03[ dad )Lr/m;' (2) - w(z, 2) — aNi(2)? dpu(z)
+ Cmgrt (B, s(20)) DN (2) f (& = Zag.r) - 032 dpi()

B, /s(x0)

Recalling the definition
A = e (0) = | o= ) dta),
r/8(x0)

we thus achieve

ANIDNG) )P SC [ SIDNG) i) — N (o

(44) + Cmor* (B, ()| DN (2)]?.
In what follows we will use the shorthand notation

|IDN(2) -v|? = Z|DN ) -v]?

We now set A2/4(x0) = Bo,(20)\B,/4(z0) n M and use (43) (plus the ordering 0 < A, <

Am—1 < ... < A1) to get the following inequality:
138 o,/ | S IDNG) -0
A7 (x0) j=1
)\ m—1
<C f |IDN(2) - £, (v;)]* dz
rm Azh(ﬁfo) ; J

< %f 2 Nj|DN(2) - £,(v;)|? dz
r A7, (o) j=1
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We hence use (44) to get

m—2 ; 8
B @l |

r/4

_2 (0)P d

< Cmo#-WBT/g(xo))f IDN?
Ba, (z0) "M

ot JjAw (z0) fBr/s( Z |IDN;(2) - w(z, 2) — aNi(2))|” du(z) dz

zo)

< Cmort " (B s(o0) | IDNJ?
Bo,(zo)n M

o JA% (z0) fBr/S(mO) ; |DN ( ) (l‘ Z) aNZ(Z)” dM(w) dz

< Cmor4_mM(Br/s($o))f |DN?
By (20)n M

—m ) () — Iz |z — 2N ()2 o) de
+Cr JM(WJ ,/8(L0)Zl:|w($’z) DN;(z) — I(=, | NN:(2) 2 du(z)

N

~~ -~

=R (zo,r)

+C’r7mf f I(z, |z — z|) — a|?|N(2)]* du(zx) dz.
AZ7 (x0) IByys(xo)
Firstly, observe that Fubini’s theorem and the estimates in Proposition 5.2 and Lemma 4.1 tell
us that for r €]0,1],
Rizo,r) < Cr | H(,20)(Wii(a) + mir) du(z).
r/8(Z0)
Now fix any such r and choose

o= £ I(y,r) du(y).
r/s(xO)

We may hence once again use the triangle inequality to write

JA2T

/4

| s =~ PN duo) d:

(z0) JB,/8(x0)

<o | L @PINEP dule) az
/4(x0) 7/8(130)

‘ I(z,7) — o’ N(2)|* du(z) dz
+ JM(%)J P/8(10)| (z,7) — a2 [N (2)[? du(z)
= (1) + (I1).

We estimate the two terms on the right-hand side separately. For (I), we may use the almost-
monotonicity (28) combined with (16) to conclude that

) = Crifan20) (JB ( )[Wr/4( )]2 dp(z) + mg e (Br/s(wo)))
r/8(Z0

= Crian2r) <JB ( )Wr/4( x) dp(z) + mgyr?n (BT/S('TO))) .
r/8(Z0
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Meanwhile, to control (IT) we use Lemma 5.4, (21) and (22) to deduce that for n = n(m) >0
sufficiently small,

C’rH(xO,2r)f ‘[ . .
I < — s WA () + W (y) + mr™) dp(z) d
( ) N(BT/S(xO)) BT/S(-’EO) B,‘/S(ro)( /8() /S(y) 0 ) M() M(y)

< CrH(xg, 2r) (J ( )Wf/rs(:r) dp(z) + mg“rwu(Br/g(xo))) .
B, /s(xo

Taking into account that
Tf |IDN|? < CH(xo,2r),
Bo,(zo)nM

it thus remains to check that
m—1
(45) f > IDN(2) - €. (v;)|* dz > c(A)M,
A7 (o) j=1 "

for some C(A) > 0. We prove this by contradiction. The inequality is scaling invariant, so by
rescaling and recentering, we may assume that r = 1 and xo = 0. If (45) fails, then we can
extract a sequence of currents Ty with corresponding center manifolds My, and corresponding
normalized normal approximations Ny, with §g _\, [DNy|> < CA and {5, INL)? =1,
for which

o My — 7y (taking mék)} <e? —0),

e noN—0,

e Ni(yr) = Q0]  for some yi € Byjg N My (since pr, (B,s) > 0),

\El ﬁMk

but

m—1 B
[ N ipNe) R — o
Bz\BlﬂMk j=1
for some choice of orthonormal vectors {v¥, ... vk |}, where £* is the linear map £, : Ty M, —
T, Mj. Up to subsequence, we can find a limiting Dir-minimizer u : 7y © By — AQ(Rm+”)
with

nou=0,
u(y) = Q0]  for some y € By,

and
m—1
f S 1Du(z) v = 0
BQ\§1 j=1
for some choice of orthonormal directions {v1, ..., v,—1} (where each v; is the limit of v;-“; note

also that, since My, converge to the flat plane my,, the maps E’; converge to the identity map
from 7, onto itself).

Proceeding as in the proof of [8, Proposition 5.3], we deduce that w is a function of only one
variable on By\Bj, and hence on the whole of By due to Lemma 7.3. Since u(y) = Q[0], we
deduce that dimy (Agu) = m — 1, which is a contradiction, since u is non-trivial.

8. RECTIFIABILITY

This section is dedicated to proving the rectifiability of S in claim (iii) of Theorem 3.1. In
order to do this, we make use of the following result from [7], which we re-state here for the
convenience of the reader.

Theorem 8.1. Let k € N be an integer with k < m + n. Suppose that E < R™*" is a Souslin
set that is non o-finite with respect to H*. Then there exists a closed subset F — E with
0 < H¥(F) < oo that is purely k-unrectifiable.
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Unlike the arguments in [27], here we do not require the Minkowski content bound (8)
in Theorem 3.1(iii) to conclude rectifiability. This is because we may replace the covering
arguments of Naber and Valtorta by Theorem 8.1, together with the existence of a Frostman
measure supported on each finite H™2-measure subset of S n By in order to provide us with
the necessary a priori measure bound on balls. We may then appeal to the work of Azzam and
Tolsa [3], where the rectifiability of a Radon measure comes from the control of its Sy-square
function (see (47)). However, we provide a proof of the bound (8) in Appendix A nevertheless,
since we believe that this is of independent interest.

8.1. Proof of rectifiability in Theorem 3.1(iii). If SnB; is o-finite with respect to H™ 2,
but not rectifiable, then it is a classical fact that S contains a purely (m—2)-unrectifiable closed
set F with 0 < H™ 2(F) < o (see e.g. [26, Theorem 15.6]). On the other hand, if S n By is
not o-finite, then we can appeal to Theorem 8.1 to again find such a closed subset F.

Let i be a Frostman measure supported on F' (see [26, Theorem 8.17], for example). Namely,
1 is a nontrivial non-negative Radon measure with spt(u) < F' and

(46) w(B(z)) <r™? Va, Vr<1

In light of the characterization of rectifiability in [3, Theorem 1.1], it suffices to prove that
for every y € By and every t < i we have

(47) JBM f (85, L du(z) < .

Indeed this would imply that the support of p is rectifiable, but since such support has finite
and positive H™~2 measure and it is contained in F, we reach a contradiction. We appeal to
Proposition 7.2: we are integrating z with respect to u, so necessarily z € S when z is in the
support of p and thus the estimate applies.

We have

ny)f 5557 P CJBt(yf " l)fs(z) W2 (w) dp(w) ds dpu(z)

B, (2))
+ Cmg° f f ds du(z2).
O JB, ) Jo smTiTeo )

Thus, via analogous estimates to those in Step 4 in the proof of Lemma A.1, additionally
invoking the bound ( 46) we deduce that

ds - ds
ﬁz,u — du(z) <C Ws (w)— dp(w)
B¢(y) B2t (y)

+ Cmg° J J oo ds du(z)
By (y)

< Ctm_2W01/8 + Otm 2+m1n{a0,ﬁ}m0
< C(m,n,Q,A).
This yields the desired contradiction, completing the proof.

Part 2. Rectifiability of low frequency points
9. SUBDIVISION OF LOW FREQUENCY POINTS

It will be useful to decompose the set SZQ into a countable collection of pieces as follows.
First of all, we may write
FonBi = ] &k,
KeN
for
Gri={yeFo(T):2-6—-25>1(T,y) =1+2 5} nB;.
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Moreover, we can further decompose each subset Sx as Gx = | Jen O K, 7, but before intro-
ducing the latter decomposition, let us recall Proposition 2.7, which we re-state for convenience.

Proposition 9.1. Let T be as in Theorem 2.6 and let x € Fqo(T) with I(T,x) > 1. For any
0 < p<min{l(T,z)—1,1— 062}, there exists C(I(T,x), m,n,Q, u) > 0 and ro(z) > 0 such that

(48) E(T,B,(z)) < C (2)2” max{E(T, B,(z)),82s> %2} Wr<s<rp.

In particular we can claim the following, using the fact that I(T,z) = 1 + 27X for every
T e GK.

Corollary 9.2. Let T be as in Proposition 9.1 and let y := 275~ There exists C(K,m,n, Q)
such that for every x € Sk there is r,(x) such that

2n
(49) E(T,B,(z)) < C (f) max{E(T, B, (z)), 825722} Wr<s<r,.
s
On the other hand, appealing to [9, Corollary 4.3] we can use the upper bound I(T, z) <

2 — 8y — 27K to derive a lower bound for the excess. More precisely

Corollary 9.3. Let T be as in Proposition 9.1 and let v := 1 — 6y —27K~1

there is ri(x) such that

. For every x € G

(50) E(T,B,(z)) = r* Vr <y
and
(51) E(T,B,(z)) > (g)QV Vr <.

Remark 9.4. Observe that, since v > I(T,x) — 1, by choosing 7; sufficiently small we have
eliminated constants in the left hand side of both inequalities.

Notice that if » < min{r;(z),r,(z)}, (49) can be simplified further because, by (50), 2v >
2 — 02 and & < 1, the maximum in the right hand side of (49) is achieved by E(T, B (x)).

We now further subdivide G into pieces in order to achieve uniformity of the thresholds
r; and 1, for every point in each fixed piece. Strictly speaking, we would like to define G 5
to be those points z € G for which the upper and lower estimates (49), (50), and (51) hold
for all radii » < J~'. However, for technical reasons it will be convenient to have a closed set
in our definition. We thus define G ; as follows.

Definition 9.5. Let T be as in Theorem 9.7 and let €5 be a small positive constant which
will be specified later. For every K € N\{0} define p = u(K) := 275~ and v := v(K) :=
1 — 6 — 27571 We define Sk ; (which implicitly also depends on ¢5) for K,.J € N\{0} as
those points = € spt(T) n By for which

(52) E(T, B, (z)) < (2)2“(“ E(T,B,(z)) Vr<s< @
(53) E(T,B,(z)) > (g)zu(m E(T,B.(z)) Vr<s< @
(54) E(T,Bg jimy—1) < €3

(55) E(T,B.(z)) = r*%)  vrg Gym )

We record here some obvious corollaries of our overall discussion.

Proposition 9.6. Let T be as in Theorem 2.9 and define Sk ; as in Definition 9.5. Then

(i) %lQ c UJ2J07K2K0 Sk .y for every Ko and Jy.
(ii) Each Sk, j is closed and contained in Fo(T).
(iil) 1+ 27K <I(T,2) <2—02— 27K for all v € & ;.

Proof. Point (ii) is a simple exercise in measure theory, while the claims (i) and (iii) are obvious
consequences of Corollary 9.2 and Corollary 9.3. (|
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We now can observe that by translating, rescaling and intersecting with smaller closed
balls, we can, without loss of generality, set the parameter J to be equal to 1. In particular
the validity of Theorem 2.9 can be reduced to the following.

Theorem 9.7. There exists e5(m,n,Q) > 0 such that the following holds. Let T be as in
Theorem 2.9. Then the closed set G := Gk 1 (which, recall, depends on e5) has finite (m — 2)-
dimensional upper Minkowski content and is (m—2)-rectifiable and has the (m—2)-dimensional
Minkowski content bound

(56) B, (&) < Cr?,
for a positive constant C = C(m,n,n, T, K).

From now on we may further assume that K is fixed, and so we will drop both subscripts
from G ;.

10. UNIVERSAL FREQUENCY FUNCTION AND RADIAL VARIATIONS

The argument to prove Theorem 9.7 follows a strategy which has many similarities with
that used to prove Theorem 3.1. The major difference is that, unlike in Part 1, we cannot
hope to find a single center manifold passing through all points p € &. To get around this,
we decompose the interval ]0,1] into countably many sub-intervals whose endpoints are given
by a suitable geometric sequence and construct a center manifold for each of them, hence use
it to compute a corresponding frequency function. These sub-intervals will be comparable to
the intervals of flattening from Section 2.2, but suitably adapted to fit in with the covering
arguments in Section 8 of Part 1. We may in turn construct center manifolds and corresponding
normal approximations associated to these intervals, analogously to that in Section 2.2. We
then define a corresponding universal frequency function (cf. [9]), which is defined to be the
frequency function for the relevant normal approximation within each interval. Although in
each individual interval we can prove estimates analogous to the ones in Section 3, this universal
frequency functions undergoes jump discontinuities at the endpoints of the intervals. However,
using estimates from [9], we are still able to bound the total variation of the universal frequency
function quantitatively, in terms of the excess at the starting scale. To that end, the lower and
upper bounds on the excess provided in the previous section will be key ingredients.

10.1. Center manifolds. We now fix a constant vy €]0, 1/2] whose choice will specified later
as depending only on m, n, and Q. Given a point z € & and a geometric blow-up sequence
{7¥}%, we apply the procedure in [14, Theorem 1.17] to T, ~+ and define a corresponding center
manifold M . It follows from (52) and (54) that, because of our choice of &, the theorem
is indeed applicable. It turns out that we in fact need to guarantee that E(T,Bg \/m,yk) is
even smaller because we need to adjust the parameters in [14, Assumption 1.9] in order ensure
applicability of Proposition 10.1 below and of other similar statements. This however follows
from the fact that we are free to choose £ small enough.

We next notice that it follows from (55) that we may replace the procedure in [15, Section
2.1] with the intervals ]y**1 ~*] in place of ]sg, %], and with m{ therein defined instead by

(57) my | = E(Tw,,yk,7 BG\/E) = E(T, B6\/E,Yk (.13)) .

In fact this can be assumed to be the case even if we take the variant of the definition of
mf§ defined in [9]. From now on we will instead use the notation m, ; for this quantity.
We next denote by N j the corresponding normal approximation for T, ,» as constructed in
[14, Theorem 2.4].

In the rest of the paper we will denote by d the geodesic distance on the center manifold
M . In reality this is a collection of functions d = d;; which depend on the points z
and the integer k, but since this dependence is not important, we will omit it. We now
record two relevant facts. One is a consequence of adjusting suitably one of the parameters in
[14, Assumption 1.8], while the other is a consequence of the lower bound (53). In order to
state these facts, we denote by 7, ;, the plane used to construct the graphical parametrization
¥, . of the center manifold in [14, Theorem 2.4] and by # =k the collection of Whitney cubes
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n [14, Definition 1.10]. Note that the center manifold M, ; does not necessarily contain the
origin 0 = ¢, (7). However we use the point (0, ¢, ,(0)) € 7y 5 % wik as a proxy for it and
we will denote it by pz x -

Proposition 10.1. Let v and n be two fixed constants and let cs = ﬁ be as in [15, Section

2]. Upon choosing the number Ny in [14, Assumption 1.9] sufficiently large and adjusting
accordingly the constants C,, Cp, and €5 in [14, Assumpion 1.9] we can ensure that

(a) For every w € My i and every radius v such that 7y < r < 3 the largest cube L € Wk
intersecting the disk B, (px, , (w), Tz k) satisfies {(L) < csr.

There is a positive constant ¢s < cg depending upon K and all the various parameters in
[14, Assumption 1.9], with the exception of €5 in there, such that

(b) B,(0,7, %) intersects a cube L € W™ with £(L) > sy, which violates the excess
condition (EX) of [14, Definition 1.10].

Proof. Point (a) is merely a consequence of the fact that ¢(L) < 2706 which comes from
the construction of the center manifold (see [14, Proposition 1.11]). As for the second point,
(53) and (57) together imply that some cube intersecting B., (0, 7, x) of sidelength comparable
to v must violate the conditions (EX) of [14, Definition 1.10]. O

10.2. Frequency functions. Next, for each center manifold M, ; we define a corresponding
frequency function. We just proceed as in Section 2.2, in particular we choose the cut-off ¢ as

in (3) and set
D, (w,r) : JM |DN, 1 (2) 20 (d("’;z)) dz,

o)== [ RN e (152) o

rDy k(w,r)
H, (w,r)

L x(w,r) =

We refer the reader to [15] or [6] for more details on the above quantities. We moreover define
the quantities

E, (w,r) = fM o (M) SN DIV, i) Vi, )

i

Gentor) = [ 0 (U5 i DIPOR () Vw2
Beatwr)=[ 0 (d(“’>) Ner ()

r

The first key point is that the variational identities that are pivotal for the almost monotonicity
of the frequency function I, ;. For the following lemma the arguments are the same as those
given for Lemma 3.3 and its strengthening Lemma 3.6.

Lemma 10.2. There exists e(m, n, Q) such that for any e5 €]0,¢], there exists y4(m,n,Q) > 0
sufficiently small and a constant C(m,n, Q) > 0 such that the following estimates hold for every
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x €6, any we My, and every radius r €]ny, 4]:

(5%)
0Dy go(w,7) = — fo ¥ (d(“:j Z)) d(;”;z) IDN,1.()[? dz
(59)
O HL i ,7) — T 0,7) = O L (1,7) + 2B, 7),
(60)

5
Dok (w,7) = By g (w,r)| < Y |Brrd | < Cm], Dy g (w,r) 7% 4+ Crg 1 B o (w, 1),
j=1

(61)
|0: Dy i (w,r) — (m — 2)r D, g (w, ) — 2G, s (w,7)|

5
<2 Z | Err [ + Cmg 1Dy g (w, 1)
j=1

< C’T*lm;‘kax?k(w,7‘)1+"’4 + Cmeka,k(w, )70, Dy i (w, ) + Cmy 1 Dy g (w, 1),
where Err] and Errj- are as in [6, Proposition 9.8, Proposition 9.9].
10.3. Universal frequency function and total variation estimate. We are now in a
position to introduce the universal frequency function adapted to our situation. A similar
object was introduced by the authors in [9] for the original sequence of center manifolds and
normal approximations corresponding to the intervals of flattening around a given point. Here,
we amend the definition accordingly.

Definition 10.3 (Universal frequency function adapted to {7?};). For r €]y**1,4*] and z € &,
define

r
I(JI,T) = I:c,k <pa:,ka k) s
’Y
T
D(:L’,’)") = Dm,k (p:c,kv "Yk> )

r
H($,’I‘) = Hz,k (pm,kv 'Yk> .

We recall the following BV estimate on the universal frequency function, which, although
originally stated for the universal frequency as defined in [9, Definition 6.1], also holds for the
universal frequency function in Definition 10.3.

Proposition 10.4. There exists £(m,n, Q) €]0,¢]| such that for any e5 €]0,&], there exists
C = C(m,n,Q,v) such that the following holds for every x € &:

[t} |

(62) dr

TV([0,1])

We observe that the estimate of the total variation on each open interval |y**1 ~*[ is just
using Lemma 10.2. As for the proof given in [9] to estimate the jumps

[log(1 + I(z,+*))* = log(1 + I(z,v")~|

the crucial ingredient which allows us to apply the same argument in [9] is given by Proposition
10.1(b), as it is explained in [9, Remark 6.3].

10.4. Upper and lower bounds on the frequency. As an immediate consequence of the
total variation estimate we infer the existence of an upper bound for the frequency I(x,r). We
also infer the existence of the limit I(x,0) = lim, o I(x,r). We can then argue as in [9] to
show that I(z,0) = I(x,0) = 1 + 2~ %. In turn, upon choosing & sufficiently small we infer the
following
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Corollary 10.5. For £ as in Proposition 10.4 and any e5 €]0,&], the following holds:
1+27 5V <z, r) <2 Ve 6,Vr€]0,1].
Hence, a simple contradiction argument also guarantees a similar control for points suffi-

ciently close to G at the appropriate scale.

Corollary 10.6. There exists e* €]0, ] such that for any €5 €]0,e*] and any x € &, there is a
positive constant Co(y,n, m,n,Q), such that the following holds for every w e M, and every
r €]y, 4]:
C’O_1 < I p(w,r) < Cy.
Using the latter lower bound we can remove the logarithm from the monotonicity estimate.

Corollary 10.7. For any €5 €]0,*],  and r as in Corollary 10.6 we have
D ¥
O Lo i (w,r) = —~Cmls, le4kM

' T

D 4
—Cm 2’Y4 ( Lk(:}’r) + T) )

The estimates in Lemma 10.2 and Corollary 10.7 can further be simplified. We record this
here, together with some additional estimates, which will be useful to simplify variational error
terms in the forthcoming sections.

le“kDJ g(w,7)74710, D, x(w,r)

Lemma 10.8. Suppose that T, €5, V4, , My i and Ny, are as in Corollary 10.7. Then there
exist constants C dependent on K, v, and n, but not on x,k or €5, such that the following
estimates hold for every w e My, n By and any p,r €]ny, 4].

(63) C<I, i (w,7) < C

(64) C™ Dy (w,r) <H, k(w,r) < CrDy i (w,7)

(65) 2m,k( r) < Cr’D, xk(w,r)

(66) ak(w,7) < CDg p(w,7)

k(W H, ,(w,r T ds

(67) pljrfl p) len(il ) - <_CJ Lo (w,5)— — O(map)(r = p))
P

(68) HI,k(w7T) < CHa: k( w, 4)

(69) H, (w,r) < Cr™t3- 202

(70) Gop(w,r) < Cr~ "Dy p(w,r)

(71) |0, Dy i (w, )] < Cr~" Dy p(w, )

(72) |0-Hy g (w,7)| < CDy i (w,7),

In particular:

(73) Dy (w, ) = By g (w,r)| < Cm 7" Dy g (w,7)

(74) 0rDy p(w, 1) — mTQDz (w, 1) —2G, k(w,r)| < Cm;‘fkr”“’leyk(w,r)

(75) OrLy g (w,r) = —Cm ]! LA

Proof. Note that (63) has already been shown in Corollary 10.6. The inequalities (64) are
clearly just an alternative way of writing (63), while the estimate (66) is merely a consequence
of (60) and (65) combined. (65) follows from the lower bound in (63) and a simple Poincaré
inequality, as argued in [15].
To obtain the equation (67), we first observe that (59) and (60) together yield the estimate
0rHy g (w,r)  m—1

o, (logrl_me’k(w’m) = ;-I k’(w ;) -

2E, (w,r)
H, i (w,r)’

N

2
;Ix,k(w,r) +Cmy +
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T

We then apply (66) and integrate between scales p and r to conclude. Setting p = 7 and
invoking the upper frequency bound in (63) clearly further implies (68).
To see that the L2-height decay (22) holds, one may simply cover

Pr., ((Br(w)\B,j2(w)) N My i)

by a family of disjoint Whitney cubes L € # with ¢(L) < 2r, and apply the estimate [14,
Theorem 2.4 (2.3)] on each Whitney region £ for each of these cubes L (see [15, Remark 3.4]
for the corresponding estimate on Dy, i (w,7)).

The inequality (70) follows immediately from the definition of G, j, combined with the

observation that d(w,z) < r whenever ¢’ M > 0. Similarly, the bound (71) follows

directly from the identity (58) and again the fact that d(w, z) < r.

Finally, the estimate (72) follows from (59) and the upper bounds in (64) and (66). The
estimates (73)-(75) are an obvious consequence of the preceding estimates (63)-(72) and the
estimates in Lemma 10.2 and Corollary 10.7. O

11. SPATIAL VARIATIONS

Let us now control on how much a given normal approximation N = N, j deviates from
being homogeneous on average between two scales, in terms of the frequency pinching, which
is defined as follows.

Definition 11.1. Let 7" and & be as in Theorem 9.7, let x € & and assume M, ; and N ;
are as in Section 10.1. Consider w € M, n By and a corresponding point y = x + y*w. Let
p, T be two radii which satisfy the inequalities

(76) Mt <p<r <dqyk.
We define the frequency pinching W, (z,k,y) around y between the scales p and r
Iw,k (wv 'Y_kr> - Im,k (w7 W_kp> ‘ .

Our first key spatial variational result is the following.

Wy (z, k,y) =

Proposition 11.2. Assume T and & are as in Theorem 9.7 and 4 be as in Lemma 10.2. Let
x € & and k € N. Then there exists C = C(m,n,Q, K,v,n) such that, for any we My, n By
and any radii satisfying

(77) ATt <p<r <29,

the following holds. Let y = x + v*w and let Aé’"(w) = (BQT/W (w)\B _2_ (w)) N Mg . Then

J‘Azzr(w) Z

2 dz

d(w, z)

d(w,z)Vd(w,z)

D(Ny k)i(2) |Vd(w, z)|

K2

2r r\ 7 4r
<CH, (w, ) ( 2 (x, k,y) + m)* () log ()) .
vk i ) A\ Ak p

We will also require the following control on spatial variations of the frequency in terms of
frequency pinching:

Lemma 11.3. Let 4 be as in Lemma 10.2, T and G as in Theorem 9.7, © € & and k € N.
Let y1,yo e Bin My g, yi = 2 + Yoz, and d(z1,z9) < 'y_kg, where T is such that

8n,yk‘+1<,r<,yk'

Then there exists C = C(m,n,Q,~,n) > 0 such that for any z1, 22 € [x1,x2], we have

r r
I(K,k‘ (Zla P)/]C) - Iz,k <Z27 "Yk) ‘
4

3 w o\ 72| ARd(z, 2
<C l(Wf/%(Lk,yl)) + (Wf/%(x,k,yg)) +m2 (71c> ] M

Nl

r
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In order to prove the latter, we will also need the following additional variation estimates
and identities.

Lemma 11.4. Suppose that T and & are as in Theorem 9.7, let t € & and k€ N. Let v be a
vector field on My .. For any w € My n By and any radius r satisfying ny < r < 2 we have

0Dy (w,7) = %JM ( )Zayw wk) - 0y(Nak)i(2) dz
+O(m 4,) D, x(w,r)
N 0 (A2 oy o 21, (Va2

11.1. Proof of Proposition 11.2. The proof is entirely analogous to that of the correspond-
ing Proposition 5.2 and we follow it closely indicating the necessary small changes.

Since the center = and the associated center manifold M ; and normal approximation Ny j
here are fixed, we will suppress the dependency on z and k for M, N, I, W and all other
quantities, for simplicity. We will additionally suppress dependency on w for I and related
quantities, since it is also fixed here. By the estimates in Lemma 10.8 and the fact that
|[Vd(w, 2)| =1+ O(m%\z — wl), we have

s [P o g e [ DO sDE)AHE)
w3 (y%J 051(s) d f H(s) HGE

4

2T sG(s) — I(s)D(s) JZr <D(s)1ﬂ4 + 50,[D(s)1+7] >
> 2 ds — Cm™ +1I(s) | ds
L H(s) 2 H(s)
_ 2 5G(s) — 21(s)E(s) + s (s)2H(s) " 2r s1I(s)D(s)
=2 ; H(s) ds —Cm f; Tds
&, :’I >
o [ [P+ 50, [D(s) ]
Cm L ( Hs) + I(s)) ds.

We can rewrite the integral I as

- f aw L ()

 d(w, 2)Vd(w, 2) 52 2V d(w. 2 ) ds ds
AT (- e ) s PN PVt >|>d a

[ () e

(w, 2)Vd(w, 2) |*
(Z ’DN |Vd(w, 2)|

1]

where

7 d(w,2)Vd(w, z) . 2
tw,2.5) = 3| PN AT 100Vl )
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Combining this again with the estimates in Lemma 10.8, we thus arrive at the inequality

27
1
Wi (y) = QJ J 75(11}, %5) dz ds
? A% (w)

g sH(s) Jas d(w, z)
—Om 4 o sY (s D(S)Hmy4 sD(s)710,D(s) s
‘ f( 6+ P+ ) ¢

o &(w, z,8)
> 2 S8 4z ds — Cmt (0 — o),
Jg SH(S)J (w) d(w,2) 2 ds = Cmg'(r )

i
2

Now consider

C(wv Z) = Z

J

d(w, 2)Vd(w, z) 2

The triangle inequality and the Cauchy-Schwartz inequality yields
C(w, 2) < 26(w, z,5) + 2|L(s) — L(d(w, 2))]IN (2)]* < 26(w, 2, 8) + CW(y, .y ()N (2)]*.

We now proceed to estimate the pinching Wy, Z)(y) in terms of the pinching W27 (y). Observe
) 2
that the almost monotonicity of the frequency (75) tells us that for any radii s, ¢ satisfying

77,yk+1<3<t<,yk7
we have
(78) I(s) < I(t) + Cm 4.

This yields

(79) Wit (¥) < WE'(y) + Cm4r7 — Cms7e,
Moreover, since d(ul),z) >4
2d(w,2) . 2iw2) |
Lo [ s [t [ L

1
=
2H(27’) JAZPT(U)) d(’LU, Z)
4

Therefore, we have

2r
WQT C’J C(w, 2) dz ds — Cm™r" log <4T> — Cm
.Aq (w) d( ) P
2d(w z) Ar
J J C(w, z) ds dz — Cmr7 log () — Cm4rm
%’ (w) Jd(w,z) 52 P
¢(w, z) ar
d Yapva ] _ Y4 74
> H2n L\zr d(w,2) z — Cm™r7 log p Cm™r
C(w, 2)

C J (47")
= dz — Cm™r"log [ — | — Cm™r74.
H(QT) AZB'r(w) d(w, Z) 14
4

Rearranging, this yields the claimed estimate.
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11.2. Proof of Lemma 11.4. This proof follows the lines of Lemma 5.5. As pointed out in
that proof, the second identity is a computation, identical to that in the proof of [8, Propo-
sition 3.1]. As for the first estimate, we once again, we omit dependency on z and k of all
quantities. As in the proof of Lemma 5.5 we have

(80) 2,D(w,r) qu ( )> Vd(w.2) ) DN ()2 ds.

r

Hence we consider the vector field X;(p) = Y (p(p)) where

(s1) Y@w=¢(““”)v

,
and compute its divergence and its covariant derivative as in (33) and (34) We then test [15,
(3.25)] with the vector field X;(p) = Y(p(p)) and using the fact that ny < r to estimate

1-3y

2 D(w,r)

(82) 2D (w, ) :J IDNPdivag Y + O(m)r
M

=2 Jo () S wieamep as - 0miD ZEE7

where Err] are the inner variational errors in [15, (3.19), (3.26), (3.27), (3.28)], but for our new
choice of vector field Y. We estimate them analogously to [15, Section 4], again using ny < r
combined with an analogous estimate to (74), to obtain

(83) Z |Err | < Cmr 'D(w,r)' T + Cm"D(w,r)*0,D(w,r) < Cm*D(w,r).

Note that in order to get these estimates we require r > 7y to be able to use Lemma 10.8.

11.3. Proof of Lemma 11.3. Given Lemma 11.4 and the estimates in Lemma 10.8 the proof
is verbatim the one of Lemma 5.4.

12. QUANTITATIVE SPLITTING

This section parallells the analogous one for the case of high frequency points. In what
follows we will need to consider affine subspaces spanned by families of vectors. Recall the
definition of the affine shspace V(X)) spanned by an ordered set of points X = {xg,z1,..., 2}
{x1 — x0,2 — 20, ..., 2 — 20} and centered at zg, as in (37), namely

V(X) = zo + span({(z1 — x0), (x2 — o), ..., (xx — T0)}) .

Likewise we repeat here Definition 6.1 for the reader’s convenience.

Definition 12.1. We say that a set X = {xg,21,...,2;} < B,(z) is pr-linearly independent
if

d(x;, V({zo,...,xi—1})) = pr foralli=1,...,k
We say that a set F' < B,.(z) pr- spans a k-dimensional affine subspace V' if there is a pr-linearly
independent set of points X = {z;}}_, = F such that V = V(X).

As for Lemma 6.2 the following gives a quantitative notion of the existence of an approximate
spine in &, provided that N, ;) is (quantitatively) almost-homogeneous about an (m — 2)-
dimensional submanifold of its center manifold.

Lemma 12.2. Let T and & be as in Theorem 9.7 and let p,p €]0,1], p €]n,1] be gwen. If
e5 in Definition 9.5 is smaller than a suitable threshold E(m,n, Q,vy, K, p, p, p) < €*, then the
following holds. Let x € & and v**! < r < ~4*. Consider points X = {z;}]" 2 c B () n 6
which satisfy the following contitions:
e X is a pr-linearly independent set;
e if y; denotes the closest point to x; with the property that v=*(y; — z) belongs to My j,
then
2r : = :
Wi (z,j(k),yi) <€ for each i.
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Then & n (Br\Bﬁr(V(X))) =J.

Proof. The argument is similar to that given for Lemma 6.2. We argue by contradiction and,
without loss of generality, assume = = 0. Moreover, we assume that & = 1, which we can
achieve after an appropriate rescaling. We thus write W3(0,-) in place of W2 (z, k,-)), while
the points y; are the closest point projections of x; to the center manifold My ;. In fact since
then v < r < 1 we can also apply a further rescaling and assume that » = 1. Suppose that
the statement is false. Then there exists sequences ¢; | 0, and corresponding sequences of
center manifolds M; and normalized normal approximations N; with Hy, (0,1) = 1 for Tp,.
Moreover, there is a sequence of (m — 1)-tuples of points X; = {z10,211,...,T1,m-2} < B
such that

(i) X, is p-linearly independent for some p €]0, 1];

(ii) Wg(O,ym) < g — 0 as ] — o for some p €]0, 1];

(iii) there exists a point 3, € & N B1\B;(V(X;))).

We can thus use the compactness argument from Section 2.2 to conclude that

(1) M| — 7 in C3’”§
(2) Njoe; —> u in L? and in W'I})f, where u is a Dir-minimizer with n o u = 0;
(3) X, converges pointwise to Xo, = {X0,...,Tm—2} C Too;

(4) i converge pointwise to § € T, N B1\B;(V (X)) with u(y) = Q[0].
Denote by Ag(u) the set of points y € my such that u(y) = Q[n o u(y)] = Q[0]. The proof
now proceeds as for the argument of the analogous Lemma 6.2 and we just repeat here for the

reader’s convenience.
Due to the dichotomy [11, Proposition 3.22], we know that

(84) dimH(AQ (U) M Bl) <m-—2.

Indeed H,(0,1) = 1 and g ou = 0, so u cannot be identically equal to Q[n o u]. Moreover,
H,(y,7) > 0 for every 7 € (0,1) and every y € By, since otherwise we would contradict the
dimension estimate (84). This, in combination with (ii) tells us that

L,(zi, p) = L,(z,2) fori=0,...,m—2.

The monotonicity of the (regularized) frequency for Dir-minimizers then tells us that w is a;-
homogeneous about the center x; in the annulus B (x;)\Bs(x;) € 7w, for some o > 0. We
can then extend u to an a;-homogeneous function about z; on my; call it v;. Observe that for
any z # x;, there is a neighbourhood U, < 74 of z on which v; is a Dir-minimizer (by using a
scaling argument and the fact that v; agrees with a Dir-minimizer on Bs(x;)\B;(x;) € ).

This allows us to apply the unique continuation result [8, Lemma 6.9] to conclude that u = v;
on Bgs\{z;}, and hence u = v; on Bgy. By iteratively applying [8, Lemma 6.8], we may thus
conclude that o; = a for each i = 0,...,m — 2, and that v = Q[0] on the (m — 2)-dimensional
plane V(Xy) = xo +span{(@m,—2 — o), - . ., (1 — o) }. In other words, u is an a-homogeneous
function in two variables about the (m — 2)-plane V(Xy).

Since 7 ¢ V(X4) and u(y) = Q[0] but w is a-homogeneous, this implies that u = Q[0] on
xo + span{Z,;,—2 — o, ..., L1 — To,§ — To}. This however contradicts the dimension estimate
on Ag(u), thus allowing us to conclude. O

We will also require the following lemma, which controls spatial and radial frequency vari-
ations via frequency pinching in (m — 2) independent directions, and is the analog of Lemma
6.3.

Lemma 12.3. Let T and & be as in Theorem 9.7 and let p,p €]0,1], p €]n, 1] be given. For
any § > 0, if e5 is smaller than a suitable threshold £(m,n,Q,~, K, p,p,p,0) < €*, then the
following holds. Let x € & and v**' < r < ~*. Consider points X = {z;}"* < B,(z) n &
which satisfy the following contitions:

e X is a pr-linearly independent set;

e if y; denotes the closest point to x; with the property that v~ *(y; — x) belongs to My j,

then
Wg:(x,j(k),yi) <é for each 1.
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Then for every z1,22 € B.(z) n Bz.(V(X)) and for every ri,r2 € [p,1], if w; denotes the
closest point to v~ %(z; — ) that belongs to M ., the following estimate holds:
‘I.'L',k‘(wly Tl) - Iw,k(w27r2)| < J.

The proof of the Lemma follows the same arguments of the proof of Lemma 6.3 and the
adjustments needed are just the same which are employed in the proof of Lemma 12.2.

13. FLATNESS CONTROL

This section is the counterpart of Section 7. We start recalling the Jones’ 35 coefficient for
a Radon measure p introduced in Definition 7.1.

Definition 13.1. Given a Radon measure p in R™*" and k € {0,1,...,m+n—1}, we define
the k-dimensional Jones’ S coefficient of u as

. 2 1/2
B5 ,(w,r) = inf lr‘k JB . (W) du(z)l .

affine k-planes L

We now wish to state a counterpart of Proposition 7.2. Note however an important dif-
ference: points in the set & are not necessarily contained in the rescaling of the (scaled and
translated) center manifold z + 'yk/\/lm,k. For this reason we introduce a suitable “projection”

Definition 13.2. Consider the center manifold M, ; and denote by 7, ;, the reference plane
used to construct in [14, Theorem 1.17] the map ¢ : mpp D [—4,4]" — ﬂi‘,k such that
gr (¢) = Mg . For any p € B« () let

4= (Pr,,. (Y (0= 2)): 0(Pr, (v (P — 1)) € My
Finally we let p,j : Box(z) — (z + "My i) be the map p — z + 7*q.
Proposition 13.3. There are ag = ag(A,m,n,Q) > 0, n = n(m) €]0, é[, C(A,m,n,Q,v) >0
with the following property. Assume €5 in Definition 9.5 is smaller than a threshold which
depends on m,n,Q,K,n, and let T and & be as in Theorem 9.7. Suppose that p is a finite

non-negative Radon measure with spt(p) < & and let xg € &. Then for all r € ]8777’““,7’“]
we have
(852 (o, 7/8))* < Cr= () f W'l (20, k, Doy (x)) dpa()
B,/s(z0)
+ Cm0 = (m=2700) (B, 5 (w0)).

Zo,

Proof. Let v := (Pao,k )l Br/s(w0). This measure is indeed supported in x + v* My and we
can therefore apply the same argument of Proposition 7.2. Observe moreover that

f W (20, k,y) du(y)

would then be, by definition,
D [ W 0k Py (o) dia).
B, /s(x0)

We would then be able to estimate

(8 % (20, 7/8)]* < Cr~(m=2) JB ( )Wf/% (20, ks Pao k(7)) dpu(x)
r/8(Z0o

+ Cm20 = (M0 (B, 5 (20)),
using Proposition 7.2 after rescaling all the objects by =%, for the choice of g therein.

However, since the distance between z € & "B, /s(z0) and +’yk./\/l$7k is controlled by miﬁzk
we have the obvious estimate

(85 2 (o, /8)1 < 2[B3", 2 (20, 7/8)]* + Cmmgy k1™ =D (B, 5(w0))

T,
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Recall next that by Proposition 9.1, we have mg,, , < C~* for some positive exponent &
(depending on A, m,n, Q). Thus, since v¥ < (8ny)~!r, we easily conclude that

—(m— 1/2 _(m—2—
Mgy kT ( 2)M<BT/8(‘r0>) < sz{) kT (m=2 aU)M(Br/S(xO))
up to further decreasing the previous choice of the exponent aq if necessary. Combining this
with the observation that v(B, s(w0)) < Cu(B,/s(70)), the conclusion of Proposition 13.3
follows immediately. O

14. RECTIFIABILITY

In this section we complete the proof of the rectifiability conclusion in Theorem 9.7 in a way
which is rather similar to the proof of Theorem 3.1. As in Part 1, we make use of Theorem
8.1 and [3, Theorem 1.1] rather than the covering arguments in [27], which are only needed for
the Minkowski content bound (56). We defer the proof of the latter to Appendix B.

14.1. Proof of rectifiability in Theorem 9.7. This follows via an analogous procedure to
that outlined in Section 8.1. However, since we are using the frequency relative to different
center manifolds in different intervals of scales, we include the relevant details here for the
purpose of clarity.

‘We may once again reduce to the case where p is a Frostman measure satisfying the estimate
(46) with spt(pu) < F for a closed purely (m — 2)-unrectifiable closed subset F' < & with
0 < H™2(F) < oo. We aim to again demonstrate the validity of (47): arguing as in Section
8.1 we then arrive at a contradiction, thus concluding the rectifiability of &. Letting jo = jo(t)
be such that t € ]’ijH, 7j0]7 in light of Proposition 13.3, we have

ds o L , ds
th f 2 “ du(z) <JBt(y)j>ZjO Ljﬂ[ 2 (% s)I° s du(2)

< cf
B (y) Z

J v s~ (m=1) J W32 (2, 4,p..;(w)) du(w) ds du(2)
3=jo YT B.(2)

d!
" B (y) Z

.
[ migt D g,
j=go V!

z,] sm—l—ozo

Arguing as in Step 4 of the proof of Lemma B.2, we make use of the estimate (46) for u and
the excess decay of Proposition 9.1 to conclude

Lt@ j (o < du(e)

v ds
< C Z Ws328(w>jaw)7 du(w)
S

Bat(y) j>j, Yt

v B
+C Z f mao_w ds du(z)
Bt(y) J=Jo

it zZ,7 SM7170([)
Ctm72 + ngaotm72+min{ao,6}

C(m,n,Q,A).

This yields a contradiction as desired, and thus concludes the proof.

<
<

APPENDIX A. MINKOWSKI CONTENT BOUND IN THEOREM 3.1

Here, we provide the proofs of the Minkowski content bound (8) of Theorem 3.1(iii). This
will be done by combining the estimate of Proposition 7.2 with an iterative covering technique
borrowed from [27]. We start with the following covering lemma.
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Lemma A.1. Let p < 1/100, let 0 < T < % and let 7 > 0 be a fixed number smaller than the
threshold of Proposition 7.2. There exists €4 = e4(A,m,n,Q) > 0 sufficiently small such that
the following holds. Suppose that T is as in Assumption 4.2 for these choices of n and e4. Let
9 €S nByyg, let D =S nBr(zg) and let U := sup,cp L(y, 7).

Then there exists 6 = da.1(m,n,Q, A, p) > 0, a dimensional constant Cr = Cr(m) > 0 and
a finite cover of D by balls B, (x;) such that
(a) ri > 10p0;

(b) Zz rlm—Q < CRTm72,'
(c) For every i, either r; < o or
Fy=Dn BTI(I'Z) N {y : I(yvai) € (U - 57U + 5)} < Bph‘(‘/i)v
for some (m — 3)-dimensional subspace V; < R™*™,

The parameters €4 and 7 of Assumption 4.2 are first chosen small enough so that we can
apply Proposition 7.2. Then, ¢4 is further decreased if necessary, to ensure that mg° falls
below a desired small dimensional constant, in order to absorb a suitable error term. Lemma
A.1 will in turn be used to prove the following second efficient covering result, analogous

to [8, Proposition 7.2], where the parameter p will be chosen smaller than a geometric constant
depending only on m.

Proposition A.2. Fiz n as in Lemma A.1 and let T < %. There exist 6 = §(A,m,n,Q),
ea(A,m,n,Q,8) > 0 and a dimensional constant Cy = Cy(m) = 1 such that the following
holds.

Assume that T is as in Assumption 4.2 for the above choices of n and 4. Suppose that
o € SN Byg and let D = S n By (wg) and U := sup,ep I(y,7). Then, for every s €]0,7|,
there exists a finite cover of D by balls B, (x;) with r; = s and a decomposition of D into sets
A; © D such that

(a) A; € D n By, (x;);
(b) S < Cyr?;
(c) For every © we have either r; = s or

sup I(y,r;) < U — 6.
yeA;

A.1. Proof of Lemma A.1. Without less of generality we assume that xy = 0.

Step 1: Inductive procedure. We inductively construct special families €(k), k = {0, ...k},
where x = —|log(,(80)], consisting of covers by balls of D, such that

100)7
B,(z) e € (k) = r=%forsomeje{0,...,kz}.

The procedure goes as follows. At the starting step ¢'(0) = {By/s}. Suppose now that we have
already constructed the cover €' (k). Take a ball B,.(z) € €(k). If r = (pr)j with j < k, place
B, (z) into €(k + 1).
Ifr= %, for fixed ¢ > 0 (to be determined later) consider the set
FB,(x)=DnB,(x)n{y:I(y,pr)e (U-6U+90)}.

Notice that this is the set of points in D n B,.(z) at which the frequency is pinched by at most
0. We then have two possibilities:

(K) keep B, (z) in €(k + 1) if F(B,(z)) does not pr-span an (m — 2)-dimensional
affine subspace;

(D) discard B, (z) from € (k + 1) if F(B,(z)) pr-spans an (m — 2)-dimensional
affine subspace V = V(B,(x)) c R™*".

Observe that if (K) holds, then there is an (m — 3)-dimensional space V such that F(B,.(x))
B, (V), i.e. B,(x) satisfies condition (c) of the statement of the lemma.
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We next wish to apply Lemma 6.2 with p = 5. Choosing § < =52, we may conclude that
within every ball B,.(z) € € (k) for which (D) holds,

D nB,(z) € B, (V).
We may thus replace
(B}, == {B(ww’»‘ (x) € €(k) : (D) holds for B ,,)x (x) }
8 8

with a collection .Z (k + 1) of balls {Bf}; with radius % that cover

D n UBP(l[;P)k (V(Bl))

We may moreover ensure that the concentric balls %]NBz are pairwise disjoint, and that their
centers are contained in D n B,.(z) n | J,(V(B?)). Letting #(k + 1) be a Vitali subcover of

{B,(z) e €(k) : (K) holds},
and letting
Ck+1):=F(k+1)uvABk+1),

we have a new cover of D.

Step 2: Frequency pinching. Before we continue, we first show that the following frequency
pinching estimate holds: for any £ > 0, we can choose § > 0 sufficiently small (dependent on
p and &) such that either

(85) ©(k) = {Bys} or I (m %) e[U—€&U+€ ¥Bu(x)e€k), k=0,...,x
Indeed, if we do not stop refining immediately, then for any ball B,(z) € ¢'(k) we have
= 102" g0 some j + 1 < k. Thus, by construction, we know that there exists a ball B’ of

radius (pr)j satisfying (D); namely F(B’) p(loTp)j—spans an (m—2)-dimensional affine subspace
V, and that x € D n'V n B’. There must hence exist at least one other point z € F(B') n V.
We now wish to apply Lemma 6.3 with p = p and p = £: provided that ¢ < min{eg 3, %}, we

have ¢
or

(- 2) ] <
‘ v ) =<3

Since z € F(B’), this yields the second alternative in (85).
Step 3: Discrete (m — 2)-dimensional measures and coarse packing estimate. It remains to
check that the covering ¢'(x) satisfies the conditions (a)-(c). Since & is the smallest integer
such that % < o, the conditions (a) and (c) are a trivial consequence of the construction

of the inductive covering.
Hence, we just need to verify that (b) holds; namely, that

m—2
St <
i

where €'(k) = {Bss, (z;)};. For this, we will make use of [27, Theorem 3.4]. With this in mind,
we introduce the discrete measures
W= Zs;"ﬂdx“ s = Z 52"725%..
1 1:8; <8

1 (10p)"
5 8

First of all, note that us = 0 for every s < 7 := , due to the construction of our covering.

We proceed to inductively show that
(86)

ws(By(z)) < Crs™ 2 for every x € B, and every s = 72/,  j=0,...,J :=log, (g) —4.
The base case is trivially true, since
pr (B (2)) = N(a, 7)™ 2,

where N(z,7) = #{i:s; =7}. This is a dimensional constant, since we have a Vitali cover.
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Suppose that (86) holds for 0,...,j, for some j < J. Leting r := #2/, we will first of all
show that

(87) p2r (B2, (2)) < C(m)Cr(2r)" 2,

for some dimensional constant C'(m). This follows by simply subdividing pe,. into

Hor = fir + Z 5?72511 = Uy + ﬂr,

1r<s; <2r

combined with the observation that B, (z) can be covered by at most C(m) balls B,.(z;), on
each of which we may use the inductive assumption, meanwhile

(88) fir (B ()) < N(z,2r)(2r)" 72 < C(m)(2r)" 2,
where N(z,2r) = #{i:r <s; <2r}.

Step 4: Inductive packing estimate We will now improve the coarse bound (87) to the
estimate

(89) p2r (B2, (2)) < Cr(2r)" 72,

where Cp is the dimensional constant coming from [27, Theorem 3.4].
Let fi := po, L Bo,(z). We claim that

t
d
(90) f J [557,;2(2,3)]27: dfi(z) < 62t™2 Wy e Ba,(z), Vte (0,2r],
B, y) 0

where dy = dg(m) > 0 is as in [27, Theorem 3.4] (denoted by simply 0 therein).
Firstly, notice that Proposition 7.2 (coupled with the fact that z; € S) tells us that there
exists ap > 0 (as in the statement of the proposition) such that we have

(91) (857 (i, s )]ksf_sz( )Ws(w) dji(w) + Cm QO% Vs e (0,2r],

where W (z;) :== W325(x;)14=,, since the balls By, (;) are pairwise disjoint.
Let us first deal with the second term on the right-hand side of (91). Consider first the case
r <t < 2r. Then, due to (87), we have

N(y,2r)(2r)™ QJB( LWT an()
< mg°(C(m) + N(y,2r))(Cr(m))?(2r)>(m=2¢-(m=27e0)

<
< C(m)ymgetm—2teo,

In the case t < r, we first of all notice that if there exists z; € By (y) with s; > 3¢, then there are
no other points x; € By (y) since the balls B, (z;) are pairwise disjoint. This in turn implies
that ,6’5?/;2(,2, s) = 0 for every z € B;(y) and every s < t.

Thus, we may assume that s; < 3¢ for every x; € By(y), in which case we can use the
inductive assumption, combined with the fact that e, = s + fir to conclude that

Jo. J Cmip P2 47(2) < On(m)Clmpmn =20,

5m2a0

Here we have used that B,(y) can be covered by at most N(y,3t) balls of radius s; € [t,3t),
so we get an estimate analogous to (88) for fi;. Thus, by decreasing ¢4 further if necessary, so
that mg° is small enough (dependent only on m), we can indeed ensure that (90) holds.

To control the frequency term W324(x;) on the right-hand side of (91), we proceed in almost
exactly the same way as in the proof of [8, Lemma 7.3]. Nevertheless, we repeat the argument
here for the convenience of the reader.
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Let ¢ € (0,2r]. Due to the inductive assumption (86) and Fubini’s theorem, we have

JBt y)L s Js(z) Wi(w) dj(w )E dji(2)
L s JBt(u Jb(z) dir(w) dﬁ(z)%
Lt s JBAy fsu) w) dprs(w) dps(2) (is
'[0 Sml fg+t(y J.Bs(w) dpra(2) dps (w) is
Jo sm- fw(y f‘g(w) dpis(2) dprs(w )d:

to1 ds
+J po— QJ WS(w)J dps(2) dps(w) —.
r S B+t (y) B (w) s

For the first term on the right-hand side, we use the inductive assumption and another appli-
cation of Fubini’s theorem to conclude that

T 1 _
[ =] @] e duw S <o fW )< ).
oS Byt (y) B.(w) Ba:(y)

Meanwhile, to estimate the second term on the right-hand side, we use the coarse bound (88)
to obtain

t 1 B
f m,gj Ws<w>f djta(2) dpts () j jw ) dyu )
r S Bsyt(y) B (w) Bar(y)

In conclusion, we have

(92) JBt y)Jos B.(2) Wa(w) da(w) is : Jth u)f Wil 7dut( )

We may now estimate the total frequency pinching between scale 0 and ¢ as follows. Letting
N be the smallest integer such that 2Vs; > ¢, the almost-monotonicity of the frequency at all
scales s €]0, 1] around x; yields

t
j W2 () 22
s S

k3

N 2j+181_

ds
< W32 (2;) —
al 2t g
< Z [(1 + C’mg“’ (2j+65i)ﬂ)1($i, 2j+68i) — (1 — C’mg“’ (sti)ﬁ):[(l‘i, 2j8i)] f ?
': 2js7j

< log2 Z WQZJJS (z;) + Cmgot?
> j+e+1
J .
= log?2 Z Z W;HS'_ Si(xy) + CmOOtB
zfojfo
= log 2 Z WZHN+1 (i) + Cmgot?
< 6W81/8(x1) log2 + Cmg°t’

(85)
< 6€log2 + C’mo‘xotﬁ.
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A combination of the inductive assumption for ¢ < r and the coarse bound (87) tells us that
wt(Bai(y)) < C(m)t™=2. Thus, we conclude that

t

- d

J J Ws(w)—s dps(w) < C(m)Et™ =2 + CmGotm 248,
B (y) JO §

By choosing ¢4 even smaller to decrease m° further if necessary, and taking £ sufficiently

small (which relies on choosing § small enough), we successfully establish the tighter inductive

packing estimate (89).

A.2. Proof of Proposition A.2. We may once again assume that zo = 0. First, let 4 be
as in Lemma A.1; we will later choose it to be smaller if necessary. We will apply Lemma A.1
iteratively to build families of “stopping time regions”, where a new covering is built within
a large ball on which we stopped the previous covering procedure early. We will show that
the iteration can be stopped after finitely many steps, at which point we will have packed the
singularities tightly enough to obtain the desired conclusion. Fix 7 < % arbitrarily, and for
now also fix the parameter p arbitrarily; it will be determined later. We first apply Lemma A.1
with our fixed choice of 7 and o = s.
This yields a cover C(0) := {B,,(x;)}. We can subdivide this cover into the ‘good’ balls
G(0) == {B,,(x;) : 7 < s} and the ‘bad’ balls B(0) := { B, (x;) : 7, > s }.
Construct a new cover C(1) of D as follows. Place all balls in G(0) into C(1). For each
ball B, (z;) € B(0), Lemma A.1 (c) tells us that all points y € D n B, (x;) with I(y, pr;) €
(U —=641,U 4 d4.1) are contained in a pr;-tubular neighbourhood of V; for some (m — 3)-
dimensional affine space V; ¢ R™*",
We may thus cover SNB,,., (V;) By, (z;) by at most C'(m)p~(™~3) balls {Bi’k},]jz(ll) of radius
2pr;, centered at points in S.
For any given index 7, there are now two possibilities; either
(i) 2pr; < s: then we include both B, (z;) and the balls {B%*} into C(1) and stop refining
for this 4;

(ii) 2pr; = s: then we apply Lemma A.1 to each ball B** for this fixed i (with 7 = 2pr; and
o = s), yielding a new cover of B** by balls. We place both B,, (z;) and these new balls
(for each k =1,..., N(i)) into the new cover C(1).

We can then iterate this procedure inductively, only at each stage k letting
B(k) = {B,,(z;) € C(k) : s < r; < 2pr; for some B,, (z;) € C(k— 1)},

until after finitely many steps of the iteration, we obtain a cover C(¢) where the radius of every
ball is no larger than s. Note that £ = ¢(p,s), and that as long as we choose p < m, we
have
dooorri<2 Y P <20k,
B, (z;)eC(¢) B, (z;)eC(0)

Now if there are any balls of radius r; < s in our covering C(£), we may replace them with
concentric balls of radius s; since p = p(m) is now fixed, this would only increase the packing
estimate (b) by a factor of C(m), since no ball can be smaller than 10ps.

Now let & = da.1(m,n,Q,A,p) for our choice of p = p(m). Making use of the almost-
monotonicity (28) of the frequency and the uniform upper frequency bound (16), for any given
T < %, any y€ B;(z) n'S and any p < 7 we have

I(y,p) < I(y,7) + CmP*T7* < U + Cm*r" < U + Cei ™.

Thus, choosing &4 smaller if necessary, we may ensure that I(y, p) < U+ for every y € B, (z)
and every p < T.

Finally, if B, (z;) € G({) uB({), let A; := D nB,,(z;). On the other hand, if B, (z;) € B(k)
for k<f—1, let

(93) A= (DnBy@)\ ) Bl
Brj(acj)cBri(x,-)
B, (z;)eB(k+1)
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Observe that in each A} in (93), we necessarily have

sup I(y, pri) < U — 4,

ye A
due to our choice of 7. Thus, since I(y, pr;) = c¢(m)I(y,r;), we may replace B,, (z;) with a
collection of at most C(m)p~™ balls of radius pr; that covers A}, which again only increases

the packing estimate (b) by a dimensional constant. We may then let A; := A} n B, (z;) for
each ball B, (x;) in this cover of Aj.

A.3. Proof of the bound (8) in Theorem 3.1(iii). With the latter proposition at hand we
are in a position to conclude the Minkowski content bound in Theorem 3.1(iii) from Proposi-
tion A.2. The proof of this is almost identical to the proof of [8, Theorem 2.5], but we sketch
it here nevertheless.

Let us first establish the upper Minkowski content bound. Let 7 be as in Proposition A.2,
and cover By /g by a family Fy of at most N(m) balls of radius 7. Due to (16), we have

U(z) =sup{I(y,7) : ye Sn B, (z)} < A.
Fix a ball B,(x) € Fy. Applying Proposition A.2 with an arbitrary fixed choice of s €]0, 7|

and D = S n B.(x), we get a resulting decomposition of S n B, (z) into sets {A;};, with
A; © By, (z;). Now consider the collection

Bo(z) == {Bg,(x;) : 8; > s}.
Notice that for every ball By, (z;) € Bo(x), we have

sup {I(y, s;) :y€ A;} <U(z) — a2
We can now once again cover each such A; by N(m) balls of radius 7s;, and then for each such
ball B¢, (), apply Proposition A.2 again to D = A; n B, (x), with the same fixed s to yield
a new decomposition {A; ;}; of each A;, with corresponding balls {B, ;(x;;)} for which we
have

Zs TmCVZsm 2 < O(1,m)*C%.

In addition, observe that elther 8i,; = s Or

sup {I(y,8i,5) ty€ Aij} <SU —2042.
In the latter case, we repeat the above refined covering step. Iterating this procedure, for each
k € N we can find a decomposition {Al(-k) }i with a corresponding covering by balls {B ) (xgk))}l
such that i

(94) YsHm? < o mytcy,
i
and for which
sup { I(y,sz(-k)) Ty € Agk) } < U —kdgo.

Thus, this inductive procedure terminates after finitely many steps, and so we end up with a
cover of Dy by balls of radius exactly s, for which the (m — 2)-dimensional upper Minkowski
content bound (94) is indeed a dimensional constant.

APPENDIX B. MINKOWSKI CONTENT BOUND IN THEOREM 9.7

Here, we demonstrate the validity of the Minkowski content bound (56) of Theorem 9.7. A
crucial ingredient is the following lemma, which allows, given two points z,w € & at a given
scale, to compare the universal frequency function of ¢ at that scale with the frequency function
computed on the center manifold relative to z.

Lemma B.1. There exists a constant C = Cpg1(m,n,Q,~, K) with the following property.
Assume T and & are as in Theorem 9.7, let z,w € & with w € B.x(2) and let s be a scale
which satisfies V¥ < s < 4*. Finally consider the point @ = v_k(pz,k(w) —z). Then

(95) [L(w, s) — 1, (0,7 "s)| < cm,)',
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Once we rescale the current 1" to T}, ., we need to compare two frequency functions computed
on two different center manifolds. The proof is entirely analogous to the argument of [9,
Section 6.2] used to estimate the jump of the universal frequency function when we change
center manifolds and in particular Lemma B.1 corresponds to [9, Lemma 6.10]. The crucial
ingredient is the presence of a “stopping cube” which is not too large and not too small, which
is guaranteed by Proposition 10.1.

Now we are in a position to repeat the analogous covering arguments to those in the preced-
ing appendix. First of all, we have the following lemma, which is the counterpart of Lemma
A.1 for S’ZQ

Lemma B.2. Let p < 1/100 be fized so that Cpzx < 1, where C is the constant in [9,
Proposition 7.2], let (10p)" = o < 7 = (10p)7> < 1 for some integers k and jo and let n be as
in Theorem 13.3. There exists 5 = e5(A,m,n, Q) > 0 such that the following holds. Suppose
that T is as in Theorem 9.7 for these choices of n and 5. Let xg € & N By, let v = 10p, let
D c 6 nB(x0) and let U == sup,p I(w, 7).

Then there exists 5(m,n,Q, A, p,K,J), a dimensional constant Cr = Cr(m) > 0 and a
finite cover of D by balls By, (x;) such that
(a) i = (10p)"**;
(b) Zz ,er72 < C«RTm—Z;

(¢) For every i, either r; = (10p)" or
Fi:=D B, (z;) n{w: L(w,pr;) €]U = 6,U + [} < B,,,(V;),
for some (m — 3)-dimensional subspace V; < R™*"™,

Note, once again, that the parameters €5 and n are first chosen small enough so that we can
apply Proposition 13.3. Then, e5 is further decreased if necessary, so that mg° falls below a
desired small dimensional constant, allowing us to absorb a suitable error term. Lemma B.2
will in turn be used to prove the following second efficient covering result, which is the analogue
of Proposition A.2 but for &.

Proposition B.3. There is a choice of p (and hence of v = 10p) such that the following
holds. Let n be as in Theorem 13.5 and let 7 = (10p)7 for some jo € N. There exists
d(m,n,Q,A) > 0, es(A,m,n,Q,d5) > 0 and a dimensional constant Cy = Cy(m) = 1 such
that the following holds.

Assume that T is as in Theorem 9.7 for the above choices of n and 5. Suppose that xq €
&nBy andlet D € &nB.(wg) and U := sup,cp I(y, 7). Then, for every s = (10p)* €]0, [ as
in Lemma B.2, there exists a finite cover of D by balls B,.,(x;) with r; = s and a decomposition
of D into sets A; € D such that
(a) A; € D n B, (z;);

(b) Sr? < Cyr?;

3
(c) For every i we have either r; = s or

sup I(y, ) < U — 0.
yeEA;

Note that in Lemma B.2 and Proposition B.3, we are able to make conclusions in terms
of the universal frequency I at individual points (rather than the frequency function relative
to the center manifold associated to the relevant ball) precisely due to Lemma B.1. Observe
also that p (and hence ) is finally chosen in the above Proposition. p will have to satisfy the
inequality dictated in Lemma B.2 and a further smallness assumption which however depends
only on m. This in turn determins . Ultimately both depend only on m, n, Q and the
parameter K entering in the definition of &.

B.1. Proof of Lemma B.2. We may assume throughout that zo = 0, for simplicity. Step 1:
Inductive procedure. Fix 6 > 0 for now; it will be determined later. We inductively construct
families €(k), k = {0, ...k}, consisting of covers of D by balls B,.(z) centered at points z € D
such that

B,(z) e €(k) = r = (10p)’ =+’ for some j € {0, ..., k},
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as follows.

Let €(0) = {B1}. Suppose that we have already constructed the cover €' (k). Take a ball
B, (z) € € (k). If r = (10p)’ with j < k, place B,.(z) into € (k + 1).

If r = (10p)¥, consider the set

FB,(z)) =6 nB.(z) n{w:L(w,pr)e]U—6,U+6[}.
Notice that this is the set of points in & N B,.(x) at which the universal frequency is pinched
by at most d between scales pr and r. We have two possibilities:
(K)  keep B,.(z) in €1 (k + 1) if F(B,(x)) does not pr-span an (m — 2)-dimensional
affine subspace;
(D)  discard B,(z) from €1 (k + 1) if F(B,(x)) pr-spans an (m — 2)-dimensional
affine subspace V = V(B,(z)) « R™*",

Observe that if (K) holds, then by definition, (c) in the statement of the lemma holds.
We may thus replace

{BZ}Z = {B(lop)k(l') € Cg(k) : (D) holds for B(lOp)k(I) }
with a collection .Z (k + 1) of balls {B¢}; with radius (10p)¥*+! that cover
& (B0 (V(BY).

Note that the excess decay from Theorem 2.6 once again tells us that E(T ]NBZ) < 2. We may
moreover ensure that the concentric balls %Bi are pairwise disjoint, and that their centers are
contained in & N B,.(z) n | J;(V(B")). Let Z(k + 1) be a Vitali subcover of

(B, (z) e (k) : (K) holds} .

The cover €(k+ 1) =% (k+ 1) u #(k + 1) provides a new covering that replaces € (k).

Step 2: Frequency pinching. Before we continue, let us first show that the following frequency
pinching estimate holds: for any 1 > 0, we can choose § > 0 sufficiently small (dependent on
p and n) such that if € (k) # &, then either

(96) €1(k) ={B1} or 1 (m, %) € [U—n,U + n] for every B,.(z) € 61(k), k=0,...,k.

Indeed, if we do not stop refining immediately, then for any ball B,.(x) € €1 (k), r = (10p)7 !
for some j + 1 < k. Thus, by construction, we know that there exists a ball B’ of radius (10p)”
centered at 2’ satisfying (D). Namely, p(F(B’)) p(10p)?-spans an (m — 2)-dimensional affine

subspace V and x € V' n B’. There must hence exist at least one other point z € F(B') n V.

We wish to apply Lemma 12.3 with p = p and p = £ in order to show that
(97) ‘I (x %) - I(z,r)‘ < g

However, notice that the conclusion of Lemma 12.3 is the spatial frequency pinching relative
to the center manifold M, ; associated to B,.(z') (recall that r = (10p)? = ~7 for some j < k).
This is where Lemma B.1 comes in, allowing us to compare the frequency pinching relative to
M 4, with the universal frequencies centered at x, z respectively.

Indeed, applying Lemma B.1 to M, ; and letting Z, Z denote the respective projections of

v (z—a') and v (z — 2’) onto M, ;, we have

()t < () -1y (1)

+ |II'7]' (27 1) - I(Za T)|

II/J (i’, g) — Im/yj (27 1)

Letting 0 = # in Lemma 12.3 and applying this to the middle term on the right-hand side of
the above inequality, meanwhile using Lemma B.1 for the other two terms on the right-hand
side, the estimate (97) indeed follows, after ensuring that 27 < sc. - Since z € F(B'), this
yields the second alternative in (96). '
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Step 3: Discrete (m — 2)-dimensional measures and coarse packing estimate. It remains to
check that the covering € (k) satisfies the conditions (a)-(c¢). By definition of &, the condi-
tions (a) and (c¢) are a trivial consequence of the construction of the inductive covering.

Hence, we just need to verify that the packing estimate (b) holds; namely, that

m—2
Z s, < Cg,
7

where € (k) = {Bss, (2;)}s. For this, we will make use of [27, Theorem 3.4]. With this in mind,
we introduce the discrete measures

._ m—2 ._ m—2
W= Esi Oy s s = 2 57" "0,
1 1:8; <8

First of all, note that pus; = 0 for every s < 7 :=
covering.
We proceed to inductively show that

£(10p)", due to the construction of our

(98) ps(Bs(2)) < Crs™>  VaeBoy, s=72, j=0,... 5 :=log, (g) — 4
The base case is trivially true, since
1z (Br () < N(a, P2,

where N(z,7) = #{i:s; =7}. This is a dimensional constant, since we have a Vitali cover.
Suppose that (98) holds for 0,...,j, for some j < jo. Letting r := 727, we will first of all
show that

(99) par (Bar (@) < C(m)Cr(2r)"™ 2,

for some dimensional constant C'(m). This follows by simply subdividing pse,. into

Hor = [ + 2 5?_2511 = fir + for,

1r<s; <2r

combined with the observation that B, (z) can be covered by at most C(m) balls B,.(z;), on
each of which we may use the inductive assumption, meanwhile

(100) fir (B2 (2)) < N(x,2r)(2r)" % < C(m)(2r)" 72,

where N (z,2r) = #{i:r <s; <2r}.
Step 4: Inductive packing estimate. We will now improve the coarse bound (99) to the
estimate

(101) pi2r(Bay () < Cr(2r)™ 2,

where Cp is the dimensional constant coming from [27, Theorem 3.4].
Let fi := po, L Bo,(z). We claim that

t
102 [ [ 18P dne) < ye Ba(o), vee (0.20),
B:.(y)Jo s

where dy = dg(m) > 0 is as in [27, Theorem 3.4] (denoted by simply 0 therein).
First, let us write

N

TR

=40 17

(103) | eor<

where jo = jo(t) is such that ¢ € |70 490]. Now we may apply Proposition 13.3 for each x;
and for each k, together with the excess decay in Proposition 2.7, to conclude that there exists
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ap > 0 (as in the statement of the proposition) such that for each s € ]’yj‘H7 vj] we have

C

sm—2

T . _ ag i Bs [
(104) [ﬁg’flf(xi, 5))? < W(zi, j,w) dia(w) + Cm%j%

B (x:)

¢ 7 [i(Bs(zi))

< W(zi, j,w) dig(w) + Cmg°
B, (z;)

sm—2 z;,0 gm—2—ao :

< 75_2 J W(z4, §,w) dii(w) + CEEQOM
s Bs(x'i)

gm—2—ag :

where for z = zp, € By(w;), Wi(wy,4,2) == W32 (24, §,71)14>s,, since the balls By, (z;) are
pairwise disjoint. Let us first deal with the second term on the right-hand side of (104).
Consider first the case r <t < 2r. Then due to (99), we have

o = _ T 1(Bg(2)) ds .
anener [ [ EEELE g
Bi(y) Jo $ §
< 290 (C(m) + N (y, 20)) (Cr(m) 2 (2r) 2= (m=2=a0)

< C(m)agao tm—2tao

In the case t < r, we first of all notice that if there exists z; € By(y) with s; > 3¢, then there are
no other points xy € Ba:(y) since the balls By, (z;) are pairwise disjoint. This in turn implies
that 55”17_2 (z,8) =0 for every z € By(y) and every s < t.

Thus, we may assume that s; < 3t for every x; € B;(y), in which case we may can use the
inductive assumption, combined with the fact that po, = s + fiz to conclude that

[e7s) S

t = Bg
[ [ e BB 4) < cumcmyeiorm 2.
B:(y) JO §

Here we have used that B,(y) can be covered by at most N(y, 3t) balls of radius s; € [t,3t),
so we get an estimate analogous to (100) for fi;. Thus, by choosing 5?‘10 small enough, we can
indeed ensure that (90) holds.

To control the frequency term W32%(z;, j, z) on the right-hand side of (104), we proceed as
follows.

Let ¢ €]0,2r]. Applying Fubini’s theorem as in the proof of Lemma A.1 and making use of
Lemma B.1 and the coarse bound (99), we have

th(y)

" 1 = . ds
f . m—2 J WS(Zvja w) d[},(w)— dﬂ(z)
izdo(t) VYT S B.(2) B

<com |

Ba:(y) i=jo(t) It

v ds
Wawgow) S dp(w) + Clogy | 3 mi dp(w)
° B2 (W) jjo(t)

Now, the almost-monotonicity of the frequency (75) on a fixed center manifold, the excess
decay in Proposition 9.1, and the choice of jo(t) and 1 together yield the following estimate
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for any z;:

) ds
Z T xz7]7mi)?
~i

J=jo(t

I d
<C ) LH[Izi,j(o, 32)(1+ CmJt ;) — 1, 5(0,1)(1 — cm;ﬁj)]?s + O
J=jo(t) 7
o ds )
<C Z . w (J;z,j,xl)— + Cez 14t
5=jo(t) VY

ds

<C f ng(xz,]mcl) + Cedvm
izdo(t) T

< Cn+ Cedl e,

Thus, by the above observation that there is at most one point x; € Bo;(y) and again using
the coarse bound (99), we conclude that

t
d min 3 — i
J J 18552 (2.9)12 =" dii(z) < O =2 4 Qe rn2e0d ym2min{as,o)
B 1/) ' 8

By choosing e5 even smaller if necessary, and taking 7 sufficiently small (which is ensured
by choosing § sufficiently small, we successfully establish the tighter inductive packing esti-
mate (101).

B.2. Proof of Proposition B.3. We may once again assume that z = 0. We will apply
Lemma B.2 iteratively to build families of “stopping time regions”, where a new covering is
built within a large ball on which we stopped the previous covering procedure early. We will
show that the iteration can be stopped after finitely many steps, at which point we will have
packed the singularities tightly enough to obtain the desired conclusion.

In the statement of Lemma B.2, let us fix the parameter p arbitrarily for now, and in turn fix
ko arbitrarily so that the parameter 7 is also fixed for now; these parameters will be determined
later. We first apply Lemma B.2 with our fixed choice of 7 and o = s = (10p)".

This yields a cover C(0) := {B,,(x;)} of D. We can subdivide this cover into the ‘good’ balls
G(0) == {B,,(x;) : ; < s} and the ‘bad’ balls B(0) := { B, (x;) : 7, > s}.

Construct a new cover C(1) of D as follows. Place all balls in G(0) into C(1). For each ball
B, (z;) € B(0), Lemma B.2 (c) tells us that, for § as defined therein, all points y € D "B, (z;)
with I(y, pr;) €]U — 6,U + §[ are contained in a pri-tubular neighbourhood of V; for some
(m — 3)-dimensional affine space V; < R™*".

We may thus cover & n B, (V;) n B, (z;) by at most C(m)p~(m=3) balls {B" k} 1 of
radius 2pr;, centered at points in &.

For any given index 7, there are now two possibilities; either

(i) 2pr; < s: then we include both B, (z;) and the balls {B%*} into C(1) and stop refining
for this 4;

(ii) 2pr; = s: then we apply Lemma A.1 to each ball B** for this fixed i (with 7 = 2pr; and
o = s), yielding a new cover of B“* by balls. We place both B, (z;) and these new balls
(for each k =1,..., N(i)) into the new cover C(1).

We can then iterate this procedure inductively, only at each stage k letting
= {B,,(x;) €C(k) : s <1; < 2pr; for some B, (z;) €C(k—1)},

until after ﬁmtely many steps of the iteration, we obtain a cover C(¢) where the radius of every
ball is no larger than s. Note that ¢ = £(p,s), and that as long as we choose p < we

Z sz—z <2 Z r;" 2 <2Ck.
B, (z;)eC(¢) Brj (z;)eC(0)

1
2C(m)?
have
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Now if there are any balls of radius r; < s in our covering C(£), we may replace them with
concentric balls of radius s; since p = p(m) is now fixed, this would only increase the packing
estimate (b) by a factor of C'(m), since no ball can be smaller than 10ps.

Now let & := ¢ for our choice of p = p(m). Making use of the quantitative BV estimate from
Proposition 10.4 on the universal frequency function, as well as the excess decay in Proposition
9.1, for any given 7 = (10p)* < 1, any y € B,(z) n & and any s < 7 we have

k
I(y,s) <I(y,7)+C ZO: myY < U+ Ce2rire,
J=Js
where j, € N such that /s < s < 7771, Thus, choosing e5 smaller if necessary, we may ensure
that I(y, p) < U + ¢ for every y € B (x) and every p < .
Finally, if B, (z;) € G({) uB({), let A; := D nB,,(z;). On the other hand, if B, (z;) € B(k)
for k </£—1, let

(105) Al = (D A By, () U B, (z;).
BTj (Ij)CBri (:El)
B, (z;)eB(k+1)

Observe that in each A} in (105), we necessarily have

sup I(y, pri) < U =6,
ye Al

due to our choice of 7. Thus, since I(y, pr;) = c¢(m)I(y,r;), we may replace B,,(z;) with a
collection of at most C(m)p~™ balls of radius pr; that covers A, which again only increases
the packing estimate (b) by a dimensional constant. We may then let A; := A} n B, (z;) for
each ball B, (x;) in this cover of Aj.

B.3. Proof of the bound (56) in Theorem (9.7). The proof of the Minkowski content
bound now follows by iterating Proposition B.3, in exactly the same way as that in Section
A.3. We therefore omit the details.

REFERENCES

1] W. K. Allard, On the first variation of a wvarifold, Ann. of Math. (2) 95 (1972), 417-491, DOI
10.2307,/1970868.

[2] F.J. Almgren Jr., Almgren’s big reqularity paper, World Scientific Monograph Series in Mathematics, vol. 1,
World Scientific Publishing Co., Inc., River Edge, NJ, 2000. Q-valued functions minimizing Dirichlet’s
integral and the regularity of area-minimizing rectifiable currents up to codimension 2, With a preface by
Jean E. Taylor and Vladimir Scheffer.

(3] J. Azzam and X. Tolsa, Characterization of n-rectifiability in terms of Jones’ square function: Part II,
Geom. Funct. Anal. 25 (2015), no. 5, 1371-1412, DOI 10.1007/s00039-015-0334-7.

[4] S. X.-D. Chang, Two-dimensional area minimizing integral currents are classical minimal surfaces, J.
Amer. Math. Soc. 1 (1988), no. 4, 699-778, DOI 10.2307/1990991.

[5] C. De Lellis, The size of the singular set of area-minimizing currents, arXiv preprint arXiv:1506.08118
(2015).

[6] C. De Lellis, G. De Philippis, J. Hirsch, and A. Massaccesi, Boundary regularity of mass-minimizing
integral currents and a question of Almgren, 2017 MATRIX annals, 2019, pp. 193-205.

[7] C. De Lellis and I. Fleschler, An elementary rectifiability lemma and some applications, arXiv preprint
arXiv:2307.02866 (2023).

[8] C. De Lellis, A. Marchese, E. Spadaro, and D. Valtorta, Rectifiability and upper Minkowski bounds
for singularities of harmonic Q-valued maps, Comment. Math. Helv. 93 (2018), no. 4, 737-779, DOI
10.4171/CMH/449.

[9] C. De Lellis and A. Skorobogatova, The fine structure of the singular set of area-minimizing integral
currents II: rectifiability of flat singular points with singularity degree larger than 1, arXiv preprint (2023).

[10] C. De Lellis, P. Minter, and A. Skorobogatova, The fine structure of the singular set of area-minimizing
integral currents III: Frequency 1 flat singular points and H™ %-a.e uniqueness of tangent cones, arXiv
preprint (2023).

[11] C. De Lellis and E. N. Spadaro, Q-valued functions revisited, Mem. Amer. Math. Soc. 211 (2011), no. 991,
vi+79, DOI 10.1090/S0065-9266-10-00607-1.

[12] C. De Lellis and E. Spadaro, Multiple valued functions and integral currents, Ann. Sc. Norm. Super. Pisa
CL. Sci. (5) 14 (2015), no. 4, 1239-1269.



(13]
(14]

(15]

RECTIFIABILITY: SINGULARITY DEGREE STRICTLY LARGER THAN 1 49

, Regularity of area minimizing currents I: gradient LP estimates, Geom. Funct. Anal. 24 (2014),
no. 6, 1831-1884, DOI 10.1007/s00039-014-0306-3.

, Regularity of area minimizing currents II: center manifold, Ann. of Math. (2) 183 (2016), no. 2,
499-575, DOI 10.4007/annals.2016.183.2.2.

, Regularity of area minimizing currents I11: blow-up, Ann. of Math. (2) 183 (2016), no. 2, 577617,
DOI 10.4007/annals.2016.183.2.3.

[16] C. De Lellis, E. Spadaro, and L. Spolaor, Regularity theory for 2-dimensional almost minimal currents I:

Lipschitz approxzimation, Trans. Amer. Math. Soc. 370 (2018), no. 3, 1783-1801, DOI 10.1090/tran/6995.

[17] ——, Regularity theory for 2-dimensional almost minimal currents II: Branched center manifold, Ann.

(18]

PDE 3 (2017), no. 2, Paper No. 18, 85, DOI 10.1007/s40818-017-0035-7.
, Regularity theory for 2-dimensional almost minimal currents III: Blowup, J. Differential Geom.
116 (2020), no. 1, 125-185, DOI 10.4310/jdg/1599271254.

[19] R. Hardt and L. Simon, Boundary regularity and embedded solutions for the oriented Plateau problem,

Ann. of Math. (2) 110 (1979), no. 3, 439-486, DOI 10.2307/1971233.

[20] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153,

(21]

Springer-Verlag New York Inc., New York, 1969.

, The singular sets of area minimizing rectifiable currents with codimension one and of area min-
imizing flat chains modulo two with arbitrary codimension, Bull. Amer. Math. Soc. 76 (1970), 767-771,
DOI 10.1090/S0002-9904-1970-12542-3.

[22] Brian Krummel and Neshan Wickramasekera, Fine properties of branch point singularities: Dirichlet en-

23]

(24]

[25]

ergy minimizing multi-valued functions, arXiv preprint arXiv:1711.06222 (2018).

, Analysis of singularities of area minimizing currents: planar frequency, branch points of rapid
decay, and weak locally uniform approzimation, arXiv preprint arXiv:2304.10653 (2023).

, Analysis of singularities of area minimizing currents: a uniform height bound, estimates away
from branch points of rapid decay, and uniqueness of tangent comes, arXiv preprint arXiv:2304.10272
(2023).

, Analysis of singularities of area minimising currents: higher order decay estimates at branch
points and rectifiability of the singular set (In preparation).

[26] P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathe-

matics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability.

[27] A. Naber and D. Valtorta, Rectifiable-Reifenberg and the regularity of stationary and minimizing harmonic

maps, Ann. of Math. (2) 185 (2017), no. 1, 131-227, DOI 10.4007/annals.2017.185.1.3.

[28] L. Simon, Rectifiability of the singular sets of multiplicity 1 minimal surfaces and energy minimizing maps,

Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), 1995, pp. 246-305.

[29] A. Naber and D. Valtorta, The singular structure and regularity of stationary varifolds, J. Eur. Math. Soc.

(JEMS) 22 (2020), no. 10, 3305-3382, DOI 10.4171 /jems/987.

[30] L. Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis,

Australian National University, vol. 3, Australian National University, Centre for Mathematical Analysis,
Canberra, 1983.

[31] A. Skorobogatova, An upper Minkowski bound for the interior singular set of area minimizing currents

(2021), available at 2108.00418.

[32] L. Spolaor, Almgren’s type regularity for semicalibrated currents, Adv. Math. 350 (2019), 747-815, DOI

(33]

10.1016/j.aim.2019.04.057.
B. White, Stratification of minimal surfaces, mean curvature flows, and harmonic maps, J. Reine Angew.
Math. 488 (1997), 1-35, DOI 10.1515/¢rl1.1997.488.1.

SCHOOL OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDY, 1 EINSTEIN DR., PRINCETON NJ 05840, USA
Email address: camillo.delellis@ias.edu

DEPARTMENT OF MATHEMATICS, FINE HALL, PRINCETON UNIVERSITY, WASHINGTON ROAD, PRINCETON, NJ

08540, USA

Email address: as110@princeton.edu


2108.00418

	1. Introduction
	1.1. Comparison with the works of Krummel and Wickramasekera

	2. Preliminaries and main results
	2.1. Intervals of flattening and center manifolds
	2.2. Blow-up sequences, fine blow-ups, and singularity degree
	2.3. First subdivision
	Acknowledgments

	Part 1. Rectifiability of high frequency points
	3. Reduction to a single center manifold
	3.1. Choice of delta3, second subdivision and new center manifold
	3.2. Proof of Theorem quantitative(i) and of SsubsetM
	3.3. Frequency function, almost-monotonicity and frequency lower bound
	3.4. Almost monotonicity at points x close to S
	3.5. Main reduction

	4. Almost monotonicity and comparability of error terms
	4.1. Proof of Lemma 4.1

	5. Spatial variations
	5.1. Proof of Proposition 5.2
	5.2. Proof of Lemma 5.5
	5.3. Proof of Lemma 5.4

	6. Quantitative splitting
	7. Flatness control
	7.1. Proof of Proposition 7.2

	8. Rectifiability
	8.1. Proof of rectifiability in Theorem Minkowski(iii)


	Part 2. Rectifiability of low frequency points
	9. Subdivision of low frequency points
	10. Universal frequency function and radial variations
	10.1. Center manifolds
	10.2. Frequency functions
	10.3. Universal frequency function and total variation estimate
	10.4. Upper and lower bounds on the frequency

	11. Spatial variations
	11.1. Proof of Proposition 11.2
	11.2. Proof of Lemma 11.4
	11.3. Proof of Lemma 11.3

	12. Quantitative splitting
	13. Flatness control
	14. Rectifiability
	14.1. Proof of rectifiability in Theorem 9.7

	Appendix A. Minkowski content bound in Theorem 3.1
	A.1. Proof of Lemma cover1
	A.2. Proof of Proposition cover2
	A.3. Proof of the bound e:Minkowski-high in Theorem t:main-quantitative(iii)

	Appendix B. Minkowski content bound in Theorem 9.7
	B.1. Proof of Lemma B.2
	B.2. Proof of Proposition cover2
	B.3. Proof of the bound e:Minkowski-low in Theorem t:main-low-one-piece

	References


