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Abstract. We consider an area-minimizing integral current of dimension m and codimen-

sion at least 2 and fix an arbitrary interior singular point q where at least one tangent cone

is flat. For any vanishing sequence of scales around q along which the rescaled currents
converge to a flat cone, we define a suitable “singularity degree” of the rescalings, which

is a real number bigger than or equal to 1. We show that this number is independent of

the chosen sequence and we prove several interesting properties linked to its value. Our
study prepares the ground for two companion works, where we show that the singular set

is pm ´ 2q-rectifiable and the tangent cone is unique at Hm´2-a.e. point.
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1. Introduction

Suppose that T is an m-dimensional integral current in a complete smooth Riemannian
manifold Σ. We assume that T is area-minimizing in some (relatively) open Ω Ă Σ, i.e.

MpT ` BSq ě MpT q

for any pm ` 1q-dimensional integral current S supported in Ω. A point p P sptpT q is called
an interior regular point if there is a ball Brppq in which T is, up to multiplicity, an embedded
submanifold of Σ without boundary in Brppq. Its complement in sptpT qzsptpBT q is called the
interior singular set and from now on will be denoted by SingpT q.

Determining the size and structure of SingpT q is a problem that has attracted a lot of
interest for several decades. The answer depends sensibly on the codimension of T in Σ. If
the codimension is one, the works of De Giorgi, Fleming, Almgren, Simons, and Federer in
the sixties and early seventies show that the Hausdorff dimension of SingpT q is at most m´ 7,
cf. [20]. Moreover, the bound is optimal in view of the famous Simons’ cone, cf. [3, 4]. The
monograph of Almgren [5] showed in the early eighties that when the codimension is higher
than one, the Hausdorff dimension of SingpT q is at most m´2, and Almgren’s theory has since
been simplified and made more transparent in the series of works [11–15]. Almgren’s bound is
also sharp, given that every holomorphic subvariety of a Kähler manifold is an area-minimizing
integral current.

In the nineties Simon proved (see [26]) that in codimension one, SingpT q is pm´7q-rectifiable.
Much more recently, Naber and Valtorta in [27] showed that it has locally finiteHm´7-measure.
In fact [27] exploits the groundbreaking ideas of the earlier work [25] to recover at the same
time the latter information and the rectifiability, using independent techniques to Simon. The
work of Simon, however, implies also the uniqueness of the tangent cone at Hm´7-a.e. point in
sptpT qzsptpBT q. The aim of this and its two companion works [9, 10] is to prove the following
counterpart of Simon’s theorem in higher codimension.

Theorem 1.1. Let T be an m-dimensional area-minimizing current in a C3,κ0 complete Rie-
mannian manifold of dimension m`n̄ ě m`2, with κ0 ą 0. Then SingpT q is pm´2q-rectifiable
and there is a unique tangent cone at Hm´2-a.e. q P SingpT q.

Theorem 1.1 can in fact be improved in the case of m “ 2, in which it is known that the
singularities are isolated, cf. [6] and [16–18]. Note also that the uniqueness of tangent cones in
the latter case is known since the work of White in the eighties, cf. [31]. In higher dimensions
the regularity of SingpT q given by Theorem 1.1 is optimal, as the recent work [32] shows
that SingpT q can be a fractal with arbitrary dimension κ ď m ´ 2. It is however possible to
improve the rectifiability statement if one takes a less stringent definition of SingpT q, because
the examples of [32] are locally immersed submanifolds. Moreover, our techniques are far
from showing that SingpT q has locally finite Hm´2-measure, which could be expected, and the
general uniqueness of tangent cones remains widely open.

1.1. Flat singularities. The main issue is to establish the pm´ 2q-rectifiability of those sin-
gular points where at least one tangent cone is supported in an m-dimensional plane, since the
remaining portion of the singular set is, by [27], pm´2q-rectifiable. However, we independently
establish the pm´ 2q-rectifiability of the singular points with non-flat tangent cones as a con-
sequence of our work [10]. From now on if a tangent cone is supported in an m-dimensional
plane we will call it flat and a p P SingpT q with at least one flat tangent cone will be called a
flat singular point. We know from the constancy theorem (cf. [20]) that a flat tangent cone at
a point q must be an oriented m-dimensional plane counted with a positive integer multiplic-
ity Q. The latter is indeed the density of the current at q and Allard’s celebrated regularity
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theorem [2] guarantees that if Q “ 1 the point is regular. We emphasize that the striking
difference in complexity between the codimension one case and the case of higher codimension
hinges on the fact that, in higher codimension, flat singular points might exist, while they
cannot in codimension one. The latter phenomenon is due to the local characterization of inte-
gral hypercurrents as superpositions of boundaries of Caccioppoli sets (cf. [28, Theorem 27.6,
Corollary 27.8]), which is very specific to the codimension one setting. The typical examples
of area minimizers with flat singular points in higher codimension are branching singularities
of holomorphic subvarieties of Kähler manifolds. Note moreover that the uniqueness of the
tangent cone is still unknown at flat singular points, even under the stronger assumption that
all tangent cones at the considered point are flat.

In this paper we will be concerned with the definition and properties of a suitable notion of
“singularity degree” of T at flat singular points. This is a real parameter which will be then
used to suitably subdivide the set of flat singular points of T .

Example 1.2. We illustrate the intuition behind the singularity degree in the example of a
holomorphic curve in C2, defined by

Λ :“ tpw ´ hpzqqQ “ zpkpzq : pz, wq P C2u .

In this example we require that:

‚ p ą Q ě 2 are coprime integers;
‚ h and k are holomorphic functions;
‚ kp0q ‰ 0.

Recall that, by Federer’s classical theorem, Λ (with the standard orientation given by the
complex structure) induces a 2-dimensional integral area-minimizing current T “ JΛK in R4 –

C2. Since p is not a multiple of Q and the latter is strictly larger than 1, the origin is an
interior singular point of T . Moreover, since p and Q are coprime and p is larger than Q, the
(unique) tangent cone to T at 0 is given by QJtw “ 0uK. In this particular example our notion
of singularity degree of T at the flat singular point 0 gives the number p{Q.

1.2. Singularity degree. A priori we have very little knowledge of the structure of the singu-
larities at a general flat singular point of an area-minimizing current of arbitrary dimension and
codimension. Thus, our definition of singularity degree will necessarily be somewhat involved.
In particular, given a flat singular point q, we will first identify a suitable analytical definition
of singularity degree for a given infinitesimal sequence trku of blow-up scales along which the
rescaled currents Tq,rk (cf. Section 2 for the definition) converge to a flat tangent cone. These
numbers, which might depend on trku, will be called singular frequency values, cf. Definition
2.6. The singularity degree of T at a flat singular point x will then be defined as the infimum
of the singular frequency values at x, cf. Definition 2.8. We will prove a series of interesting
properties related to the singularity degree, among which we select the following three:

(i) we will show that the singularity degree is necessarily at least 1, due to the Hardt-
Simon inequality and we will show that the singular frequency values all coincide with
the singularity degree, i.e. they are the same number, independent of the subsequence,
cf. Theorem 2.9;

(ii) for each infinitesimal blow-up scale we will, up to extraction of a subsequence, identify
a suitable rescaled limit, which will be an homogeneous multivalued function and whose
degree of homogeneity is indeed the singularity degree, cf. Theorem 2.10(i);

(iii) when the singularity degree is strictly larger than 1 we will show that the (flat) tangent
cone at x is unique and the current decays to it polynomially fast, cf. Theorem 2.10(iv).

In the work [9] we will then show that the set of flat singular points where the singularity
degree is strictly larger than 1 is pm´ 2q-rectifiable while in [10] we will complete the proof by
showing that the set of flat singular points where the singularity degree is 1 is Hm´2 negligible.
Concerning the uniqueness of the tangent cone, in this paper we show that it is unique at flat
singular points where the singularity degree is strictly larger than 1, while [10] will complete
the proof by showing Hm´2-a.e. uniqueness.
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The three properties (i)-(ii)-(iii) will be fundamental in establishing the proof of Theorem
1.1, however they are not the only important points from this paper which will be heavily used
in [9, 10], for instance the BV estimate of Proposition 6.2 is crucial for [9].

1.3. Comparison with the work of Krummel & Wickramasekera. At the same time
this and the accompanying works [9, 10] were being finished, Krummel & Wickramasekera
independently were completing a program also establishing Theorem 1.1 (see [22–24]). Here
we take a moment to discuss the differences and similarities between the two programs, each
point addressing a key aspect of each of the three papers in each of the programs. One
underlying theme in both programs is to relate structural properties of the singular set to the
rate of decay of the current at certain points to its tangent cone.

‚ In both approaches a monotonicity formula plays an important role in the first step. In
our approach, Almgren’s monotonicity formula enters to associate to flat singular points
(namely, singular points at which at least one tangent cone is supported on a plane) a
real number, referred to as the singularity degree, which takes values at least 1. This
number is morally the infinitesimal homogeneity of the current relative to the average of
its “sheets” (the role of which is played by center manifolds which are possibly varying
with the scale). A byproduct is that, when the singularity degree is strictly larger than
1, the rate of decay to the tangent plane is at least a power law. This is accomplished
in the present paper. In their approach, Krummel & Wickramasekera define a “planar
frequency function” at the level of the current (see [22]), whose definition does not
require the introduction of a center manifold, and show that it satisfies a suitable
approximate monotonicity whenever the current is decaying to a plane on some interval
of radii about a given point. Using this, they prove a certain decomposition theorem
holds for the singular set, namely that locally about points of density Q (for given
Q P Zě1), the singular set splits into two disjoint sets, namely a relatively closed
set (denoted in [22] by B) where the current is decaying with a power law at all
scales to a tangent plane with a fixed lower bound on the decay rate, and a set which
satisfies a uniform weak approximation property. The latter set could still contain flat
singular points. In our approach the analogous set to B would be the intersection of
FQ,ě1`δpT q with some appropriately small ball and for some appropriate choice of the
small threshold δ (we refer the reader to [9] for the precise definition). Strictly speaking
the two sets do not coincide because the set B in [22] has some uniform control in the
prefactor of the power-lay decay to the unique flat tangent. This uniform control could
possibly be achieved by making some of our arguments more quantitative.

‚ In both cases, one exploits the power law decay rate at each “good” flat singular point
(i.e. points where the singularity degree is strictly larger than 1 in our setting, whilst
for Krummel & Wickramasekera it is the subset B described above), in order to prove
pm ´ 2q-rectifiability for this subset. For our program, this is achieved in [9], whilst
for Krummel & Wickramasekera this is achieved in forthcoming work [24]. However,
in Krummel & Wickramasekera’s work, the construction of a center manifold is only
needed to study flat singular points where not only is the tangent plane unique, but
additionally the current is decaying at least quadratically to this tangent plane. In
such a setting, the center manifold construction is much simpler (one does not need to
deal with intervals of flattening or changing center manifolds as described in Section 2,
for example). The reason for this is that they are able to study the set of flat singular
points in the set B described above at which the decay rate to the tangent plane is
a power law with order strictly less than 2 via their planar frequency function. See
Section 2.6 for a more in-depth discussion of this matter.

‚ In both approaches one must also deal with “slowly decaying” flat singular points;
in our works this is when the decay value is exactly 1 and for Krummel & Wickra-
masekera these points are contained in the second set of their decomposition theorem
described above. This part is highly non-trivial, and in both programs it is shown that
the relevant set is Hm´2-null. For us, this is addressed in [10] and for Krummel &
Wickramasekera this is handled in [23].
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It should be noted that aside from the definition of our singularity degree a priori requiring
center manifolds (which are a posteriori not necessary in the slow decay case), the order of the
last two points above is irrelevant for concluding the program. One could conduct them in
either order, and indeed in our case the last point above is chronologically the last step whilst
in Krummel & Wickramasekera’s program it is the second step.

One difference between the two sets of works is that our results are all in the general setting
of a sufficiently smooth ambient Riemannian manifold, whilst the statements of [22–24] are in
the Euclidean setting. However, we believe that this is also just a technical matter and not a
substantial difference.

Two other differences have already been pointed out above:

(i) Whilst Krummel & Wickramasekera show that the set of singular points without a
power law decay rate of some fixed small order to a unique tangent plane is Hm´2-null,
we show that the set of points with singularity degree exactly equal to 1 is Hm´2-null.
The former corresponds to points where our singularity degree is between 1 and 1` δ,
for a sufficiently small choice of δ ą 0.

(ii) Whilst Krummel & Wickramasekera get a uniform decay estimate for their set B, we do
not pursue this for the corresponding set FQ,ě1`δpT q in our approach and we instead
subdivide it in a countable unions of sets for which the rate and the starting scale
for the decay is uniform. In [9] these sets are denoted by SK,J for those points with
subquadratic decay, and a single set S for the points with superquadratic decay (here
the starting decay scale is shown to be locally uniform).

The combination of (i) and (ii) allow Krummel & Wickramasekera to achieve the additional
conclusion that in fact the set of flat singular points in a sufficiently small neighborhood U of
a point of density Q can be decomposed into the union of finitely many sets, say F1 Y . . . FN ,
each of which has locally finite Hm´2 measure. In fact they show that B enjoys the latter
structure while the flat singularities in its complement form an Hm´2-null set. We caution the
reader that this decomposition does not yield the finiteness of the measure of the whole set of
flat singular points in U because the sets Fi are not apriori closed.

This raises the natural question of whether our approach is also amenable to yield similar
conclusions. We in fact do not believe that (i) is a substantial obstacle for our approach and we
think that it is possible to achieve an analogous statement (see [10] for a more detailed expla-
nation). Concerning point (ii) we also believe that a suitable refinement of our argument can
achieve a uniform decay estimate directly for FQ,ě1`δpT q in a sufficiently small neighborhood
of a point of density Q. These considerations are obviously influenced by the insight learned
from the works of Krummel & Wickramasekera.

Provided one can prove the analogous statements to (i) and (ii) in our case (or using the esti-
mates of Krummel and Wickramasekera in combination with our techniques, when the ambient
is the Euclidean space), our approach in [9] would yield the conclusion that FQ,ě1`δpT q can be
decomposed into two sets with locally finite Hm´2 measure and that the flat singular points
in its complement form an Hm´2-null set. In fact, since in our paper we use a modification
of the Naber-Valtorta approach, these two sets would have locally finite pm ´ 2q-dimensional
Minkowski content. In order to tackle the question of whether FQ,ě1`δpT q itself has locally
finite Minkowski content, one would need instead to suitably modify the arguments in [9] in
order to tackle low frequency and high frequency points at the same time, a task which is
certainly more challenging.

Finally, Krummel & Wickramasekera additionally establish the existence of a unique non-
zero (multi-valued) Dirichlet-minimizing tangent function at Hm´2-a.e. flat singular point
of the current. This is inherently different from our approach in [9], given that one major
point of the Naber-Valtorta technique is being able to tackle the rectifiability question without
addressing the uniqueness of the tangent functions.

Acknowledgments. C.D.L. and A.S. acknowledge the support of the National Science Foun-
dation through the grant FRG-1854147.
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2. Main statements

In this section we define the singular fequency values and the singularity degree and give
the main statements. We follow heavily the notation and terminology of the papers [14, 15]
and from now on we will always make the following assumption.

Assumption 2.1. T is an m-dimensional integral current in Σ X Ω with BT Ω “ 0, where
Ω is an open set of Rm`n “ Rm`n̄`l and Σ is an pm` n̄q-dimensional embedded submanifold
of class C3,κ0 with κ0 ą 0. T is area-minimizing in Σ X Ω and n̄ ě 2. 0 P Ω is a flat singular
point of T and Q P Nzt0, 1u is the density of T at 0.

We will henceforth let C and C0 denote dimensional constants, depending only on m,n,Q.
The currents Tq,r will denote the dilations pιq,rq7T , where ιq,rpxq :“ x´q

r . Since our statements
are invariant under dilations, we can also assume that

Assumption 2.2. T and Σ satisfy Assumption 2.1 with Ω “ B7
?
m and Σ X B7

?
mppq is the

graph of a C3,κ0 function Ψp : TpΣ X B7
?
mppq Ñ TpΣ

K for every p P Σ X B7
?
m. Moreover

cpΣq :“ sup
pPΣXB7

?
m

}DΨp}C2,κ0 ď ε̄,

where ε̄ is a small positive constant which will be specified later.

In particular the following uniform control on the second fundamental form AΣ of ΣXB7
?
m

holds:
A :“ }AΣ}C0pΣXB7

?
mq ď C0cpΣq ď C0ε̄.

Following [15, Section 2] we introduce appropriate disjoint intervals ssj , tjs Ăs0, 1s, called
intervals of flattening, the union of which contains1 those radii r such that the spherical excess
EpT,B6

?
mrq (cf. [14, Definition 1.2] for the definition) falls below a positive fixed threshold ε23.

Arguing as in [15, Section 2] for each rescaled current T0,tj and rescaled ambient manifold Σ0,tj

we follow the algorithm detailed in [14] to produce a center manifold M and an appropriate
multivalued map N : M Ñ AQpRm`nq. The latter takes values in the normal bundle of M
and gives an efficient approximation of the current T0,tj in B3zBsj{tj . For technical reasons,
however, we will use a slightly different definition for the parameter m0 in [14, Assumption
1.3]. Our m0, which we denote by m0,j to underline the dependence on j, is defined as

(1) m0,j :“ maxtEpT0,tj ,B6
?
mq, ε̄2t2´2δ2

j u ,

where δ2 ą 0 is the parameter in [14, Assumption 1.8]. It can be readily checked that this
change is of no consequence for the conclusions of [14, 15], the relevant point is that, because
of simple scaling considerations, cpΣ0,tj q ď m0,j , therefore all the estimates claimed in [14,15]
are valid with our different choice of parameter m0,j , provided we choose it to fall below the
same threshold ε3 as in [15]. In light of this, we will henceforth make the following assumption.

Assumption 2.3. T and Σ satisfy Assumption 2.2. The parameter ε̄ is chosen small enough
so that m0,0 ď ε23.

Before proceeding we record a fact proved in [15], which is however not explicitly stated
there.

Lemma 2.4. Suppose that T and Σ are as in Assumption 2.3. If tjiu Ă N is the set of indices
such that tji ă sji´1, then either the latter is finite (i.e.

Ť

jssj , tjs contains some open interval

s0, ρr), or

(2) lim inf
i

EpT0,tji ,B6
?
mq ě ε23 .

For the sake of clarity, we prove this again here; see Section 2.5. Since we will repeatedly
use it throughout the rest of the paper, it is convenient to introduce the following terminology.

1It is not necessarily true that the inequality EpT,B6
?
mrq ď ε23 holds for all r Pssj , tjs. However the

inequality certainly holds at all r “ tj , while for the remaining radii in the interval holds up to a suitably fixed

constant C, cf. [15].
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Definition 2.5. Let T and Σ be as in Assumption 2.1. A blow-up sequence of radii trku is a
vanishing sequence of positive real numbers such that T0,rk converges to a flat tangent cone.

Of course a similar concept can be introduced by considering a different flat singular point
x instead of the origin. In that case we will say that the sequence is a blow-up sequence at the
flat singular point x.

Note that, having fixed a blow-up sequence trku, for every k sufficiently large there is a
unique jpkq such that rk Pssjpkq, tjpkqs and we use the following shorthand notations:

‚ Tk and Σk for the rescaled currents T0,tjpkq
B6

?
m and ambient manifolds Σ0,tjpkq

;
‚ Mk and Nk for the corresponding center manifolds and normal approximations of Tk;

‚ m
pkq

0 for the real numbers m0,jpkq defined in (1).

2.1. Compactness procedure. Let T satisfy Assumption 2.3 and let s̄k
tjpkq

P
‰

3rk
2tjpkq

, 3rk
tjpkq

‰

be

the scale at which the reverse Sobolev inequality [15, Corollary 5.3] holds for r “
rk

tjpkq
. Then

let r̄k :“ 2s̄k
3tjpkq

P
‰

rk
tjpkq

, 2rk
tjpkq

‰

. We rescale further the currents Tk, the ambient manifolds Σk

and the center manifolds to

T̄k :“ pι0,r̄kq7Tk “
`

pι0,r̄ktjpkq
q7T

˘

B 6
?

m
r̄k

, Σ̄k :“ ι0,r̄kpΣkq, ĎMk :“ ι0,r̄kpMkq .

Define

N̄k : ĎMk Ñ Rm`n, N̄kppq :“
1

r̄k
Nkpr̄kpq,

and let

uk :“
N̄k ˝ ek

hk
, uk : πk Ą B3 Ñ AQpRm`nq,

where ek is the exponential map at pk :“ Φkp0q

r̄k
P ĎMk defined on B3 Ă πk » Tpk

ĎMk and

hk :“ }N̄k}L2pB3{2q. The reverse Sobolev inequality of [15, Corollary 5.3] gives a uniform

control on the W 1,2 norm of uk on B3{2p0, πkq (which denotes the unit disk of πk centered at
0 and with radius 3{2).

Then, following the proof of [15, Theorem 6.2], there exists a subsequence (not relabeled) a
limiting m-plane π0 and a Dir-minimizing map u P W1,2pB3{2p0, π0q;AQpπK

0 qq with η ˝ u “ 0
and }u}L2pB3{2q “ 1, such that (after we apply a suitable rotation to map πk onto π)

(3) uk ÝÑ u strongly in W1,2
loc X L2.

Recall that Almgren’s famous frequency function for Dir-minimizers u : Ω Ă Rm Ñ AQpRnq

at a center point x P Ω and scale r ą 0 is defined by

r
ş

Brpxq
|Du|2

ş

BBrpxq
|u|2

.

We refer the reader to [11, Chapter 3] for the basic properties of the frequency function. The
monotonicity of the frequency function [11, Theorem 3.15] for Dir-minimizers yields existence
of the limit as r Ó 0. It is more convenient to work with a smoother version of the frequency
function, which has more robust convergence properties. Following [14] we consider a Lipschitz
cut-off function ϕ : r0,8q Ñ r0, 1s which vanishes identically for t sufficiently large, equals 1
for t sufficiently small and is monotone nonincreasing. We then introduce

Dupx, rq :“

ż

|Dupyq|2ϕ

ˆ

|y ´ x|

r

˙

dy ,

Hupx, rq :“ ´

ż

|upyq|2

|y ´ x|
ϕ1

ˆ

|y ´ x|

r

˙

dy ,

Iupx, rq :“
rDupx, rq

Hupx, rq
.

The same computations showing the monotonicity of Almgren’s frequency function for Dir-
minimizers apply to the latter smoothed variant (cf. for instance [14, Section 3]; note that
Almgren’s frequency function corresponds, formally, to the choice ϕ “ 1r0,1s). Moreover, it can
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be readily checked that all these smoothed frequency functions are constant when the map is
radially homogeneous, and this constant is the degree of homogeneity of the map. It follows
then from the arguments in [11, Section 3.5] that the limit

Ix,up0q “ lim
rÓ0

Iupx, rq

is independent of the weight ϕ. For the rest of the paper we will fix a convenient specific choice
of ϕ, given by

(4) ϕptq “

$

&

%

1 for 0 ď t ď 1
2

2 ´ 2t for 1
2 ď t ď 1

0 otherwise .

When x “ 0, we will omit the dependency on x for I and related quantities, and will merely
write Iuprq.

Definition 2.6. Any map u as defined by the above compactness procedure is called a fine
blow-up limit along the sequence rk and the set

FpT, 0q :“ t Iup0q : u is a fine blow-up along some rk Ó 0 u ,

is the set of singular frequency values of T at 0.

Remark 2.7. In the rest of the notes we will often omit the adjective “singular”. The reason
for using the adjective “fine” is that later on we will also introduce a notion of coarse blow-up,
cf. Definition 3.1.

Definition 2.8. The singularity degree of T at the flat singular point 0 is defined as

IpT, 0q :“ inftα : α P FpT, 0qu .

A simple translation allows to extend all the definitions above to any flat interior singular
point x of T . We will therefore use IpT, xq and FpT, xq for the singularity degree and the
frequency values of T at such an x.

2.2. Main results. We are now in a position to state the main results of this article. Our
primary result here is the following.

Theorem 2.9. Assume that T satisfies Assumption 2.3. Then IpT, 0q ě 1 and FpT, 0q “

tIpT, 0qu, i.e. there is one unique frequency value for T at 0 and it coincides with the singularity
degree.

However, our analysis delivers a number of additional pieces of information. We report them
here even though some statements will need notions which will be only introduced in the next
sections.

Theorem 2.10. Under the same assumptions of Theorem 2.9 the following holds:

(i) All fine blow-ups are radially homogeneous and their homogeneity degree is IpT, 0q.
(ii) If sj0 “ 0 for some j0, then limrÓ0 Ij0prq “ IpT, 0q (see below for the definition of Ij0).
(iii) If tsju is infinite, then the functions Ij converge uniformly to IpT, 0q if IpT, 0q ą 1, while,

when IpT, 0q “ 1, limkÑ8 Ijpkqprkq “ IpT, 0q “ 1 for every blow-up sequence rk (recall
that jpkq is such that rk Pssjpkq, tjpkqs).

(iv) If IpT, 0q ą 1, then T0,r converge polynomially fast to a unique tangent cone as r Ó 0.
(v) If IpT, 0q ą 2 ´ δ2, then sj0 “ 0 for some j0.
(vi) If IpT, 0q ă 2 ´ δ2 then tsju is infinite and infj

sj
tj

ą 0.

2.3. Rectifiability. Following Almgren (cf. also [33]), the set spt pT qzspt pBT q can be strati-
fied through

SpkqpT q :“
!

x P spt pT qzspt pBT q : any tangent cone of T at x splits off
no more than a k-dimensional subspace

)

,

where k “ 0, 1, . . . ,m. In particular

Sp0qpT q Ă Sp1qpT q Ă ¨ ¨ ¨ Ă Spm´1qpT q Ă SpmqpT q “ sptpT qzsptpBT q .
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Almgren’s argument (which can be seen as a suitable generalization of Federer’s reduction
argument, cf. [21]) showed that

dimH
`

SpkqpT q
˘

ď k .

In their recent groundbreaking work [27], Naber and Valtorta further proved that SpkqpT q

is k-rectifiable. Moreover, due to the classification of one-dimensional area-minimizing cones
(which are necessarily 1-dimensional lines with integer multiplicity), Spm´1qpT qzSpm´2qpT q “

H. Finally, the set of flat singular points of T (from now on denoted by FpT q) is given by

FpT q “ SingpT qzSpm´1qpT q “ SingpT qzSpm´2qpT q .

Thus, proving the pm ´ 2q-rectifiability of SingpT q is equivalent to proving the pm ´ 2q-
rectifiability of FpT q. In our forthcoming works [9, 10] the singularity degree will be used
to further stratify FpT q. The main result of [9] will be the following

Theorem 2.11. Let T be as in Theorem 1.1 Then the set tq P FpT q : IpT, qq ą 1u is pm´ 2q-
rectifiable.

Clearly, in view of the above theorem and of Theorem 2.9, the remaining (challenging)
step to prove the rectifiability of Sing pT q is to show that the set tq P FpT q : IpT, 0q “ 1u is
pm´ 2q-rectifiable. In [10] we will then show

Theorem 2.12. Let T be as in Theorem 1.1. Then Hm´2ptq P FpT q : IpT, qq “ 1uq “ 0.

Combined with Theorem 2.10 Theorem 2.12 implies the uniqueness of the flat tangent cone
at Hm´2-a.e. flat singular point. To conclude the proof of Theorem 1.1 in [10] we will also
show

Theorem 2.13. The tangent cone is unique at Hm´2-a.e. p P Spm´2qpT q.

2.4. Frequency function. We end the section by introducing a pivotal object in our ar-
guments, the ϕ-regularized frequency function of the normal approximation of T , cf. [15].
Recalling the function ϕ : r0,8r of (4), for a given center manifold M with corresponding
M-normal approximation N : M Ñ AQpRm`nq, the ϕ-regularized frequency function Ipx, rq

of N at a center point x P M and scale r ą 0 is defined as follows:

IN px, rq :“
rDN px, rq

HN px, rq
,

where

DN px, rq :“

ż

M
|DN |2ϕ

ˆ

dpy, xq

r

˙

dy ,

and

HN px, rq :“ ´

ż

M

|∇ydpy, xq|2

dpy, xq
|N |2ϕ1

ˆ

dpy, xq

r

˙

dy

Here d is the geodesic distance on the center manifold M, while p is the orthogonal projection
on M (and we recall that, by the estimates in [14], the points x of interest, which belong to
the support of T , are in a regular tubular neighborhood of M). Since we will often take the
above quantities to be centered at x “ 0, we will omit the implicit dependency on x most of
the time.

A major starting point of our paper is the fact that the frequency function is bounded
away from infinity and 0 (independently of the choice of center manifold and corresponding
normal approximation). The rightmost inequality is the most important analytical estimate
of Almgren’s regularity theory, while the left has been established only recently by the second
author in [29]. More precisely, the following holds:

Theorem 2.14. Under the assumptions of Theorem 2.9,

(5) 0 ă inf
j

inf
rPrsj ,2tjs

INj
prq ď sup

j
sup

rPrsj ,2tjs

INj
prq ă 8 .



10 C. DE LELLIS AND A. SKOROBOGATOVA

2.5. Proof of Lemma 2.4. The argument is taken from [15, Proof of Theorem 5.1], where
the statement is shown in a step in the proof of the theorem. Observe that, by definition, we
have

EpT0,r,B6
?
mq ą ε23

for all r Pstji , sji´1r. Pick a sequence ri Pstji , sji´1r with the property that ri
tji

Ñ 1. Up to

extraction of a subsequence, not relabeled, we can assume that T0,tji converges to a tangent
cone S to T at 0. Note that T0,ri converge to the same cone. Moreover, by the area minimizing

property, we have that }T0,ri}
˚

á }C} and }T0,tji }
˚

á }C}. Since }C}pBBrq “ 0 for every r,

it follows immediately that }T0,ri} B6
?
m

˚
á }C} B6

?
m and }T0,tji } B6

?
m

˚
á }C} B6

?
m.

These convergences can be easily seen to imply

lim
i

EpT0,tji ,B6
?
mq “ EpC,B6

?
mq “ lim

i
EpT0,ri ,B6

?
mq ě ε23 .

2.6. Comparison of this article with [22]. Let us compare in more detail the present article
with its analogue [22] in the program implemented by Krummel & Wickramasekera discussed
in the introduction. In both [22] and this paper an almost monotone quantity plays a pivotal
role. Here, this is Almgren’s frequency function as defined in [14]. Instead in [22] the authors
introduce a new “planar frequency function”. Rather than capturing the degree of singularity
of the current at a flat singular point, the planar frequency function identifies the order of
contact of the current with the flat tangent cone. Let us consider Example 1.2 for an intuition:
our singularity degree there is the number p{Q, while the planar frequency function at scale
0 (with respect to the tangent plane tw “ 0u) coincides with p{Q if the latter is smaller than
the degree of the first nontrivial homogeneous polynomial in the Taylor expansion of h at the
origin. Otherwise, it coincides with the latter degree.

In fact, given that FQ,ą1pT q identifies the set of flat singular points at which there is a
unique tangent cone to which the current decays with a power law rate, the latter coincides
with those singular points where there is one plane for which the Krummel-Wickramasekera
planar frequency function converges to a number larger than 1, as the radius goes to 0.

As pointed out in the introduction, one significant difference of the approach in [22] is that
they avoid the requirement of introducing changing center manifolds at appropriate scales
around those flat singular points where the decay to the cone is slow. As mentioned in [22,23],
this in addition avoids the need for quite a few technical issues even to prove Almgren’s
original dimension bound. Indeed, here we a posteriori conclude that blowing up relative
to center manifolds is not necessary for points with singularity degree between 1 and 2 ´ 2δ2
(see Corollary 4.3, [10, Proposition 2.2]), but nevertheless for us the use of center manifolds is
unavoidable to deduce this.

In the current work we instead establish a BV estimate on the frequency function (relative
to varying center manifolds) which keeps the errors due to the change of center manifolds
under control. In doing this, we capture the homogeneity of the first singular order in the
expansion of the current. This way, we may use the same frequency function (relative to
the center manifolds) in all of our arguments. We expect that, to conclude the rectifiability
of those flat singular points which have a high order of contact with the tangent plane, in
their forthcoming work [24] Krummel & Wickramasekera will need to resort to the frequency
function with respect to the center manifold also, albeit only in the simpler setting. Common
to both approaches is that a suitable closeness of the current to a suitable reference plane is
needed to get an almost monotonicity estimate for both frequency functions.

The planar frequency function in [22] depends only on the current and the reference plane,
while the ones used here (and in the works [14,15]) depend on the current, the center manifold,
and the normal approximation. Taking inspiration from [22], we believe that it is possible to
eliminate the dependence on the latter approximation. If we denote by p the orthogonal
projection on M, we can substitute rDN px, rq with the “curvilinear excess”

r

ż

B2rpxq

|T⃗ pzq ´ M⃗pppzqq|2ϕ

ˆ

dpppzq, xq

r

˙

d}T }pzq
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and the height HN px, rq with a suitable squared L2 distance of the current from M
ż

B2rpxq

|z ´ ppzq|2
|∇ydpppzq, xq|2

dpppzq, xq
ϕ1

ˆ

dpppzq, xq

r

˙

d}T }pzq .

The ratio of these two quantities differs from IN px, rq only by errors which can be bounded
with suitable powers of the planar excess, as follows from the estimates in [14,15]. In particular
this implies the almost monotonicity of the “intrinsic ratio” through the almost monotonicity
of IN px, rq. But in fact it is highly likely that appropriate variants of the computations in
[14,15] prove directly the monotonicity of the “intrinsic ratio”.

This also suggests the possibility of introducing a general frequency function, where M is
replaced by any sufficiently regular surface with the same dimension as the current T . In view
of the Taylor expansion of the area functional (see e.g. [12]), it is tempting to speculate that
a suitable almost monotonicity will hold if one has a multi-valued map on the normal bundle
of M which approximates the current with a sufficiently high degree of accuracy and if one of
the following two properties (or a suitable combination of the two) holds:

(i) The mean curvature of M vanishes, or it is asymptotically small as we approach the
central point x;

(ii) The average of the multi-valued approximation is asymptotically small as we approach
the central point x.

3. The Hardt-Simon inequality and coarse blow-ups

3.1. Coarse blow-ups. Consider a blow-up sequence trkuk at the flat singular point 0 and
let:

‚ T0,rk be the corresponding rescaled currents;
‚ Σ0,rk be the corresponding rescaled manifolds.

Without loss of generality we can assume that T0,rk converges to QJπ0K with π0 “ Rm ˆ t0u.

Let M ą 0 be large enough such that BL Ă C4Mr̄k for any L P W pkq with LXBr̄kp0, π0q ‰ H

(cf. [14] for the definitions). Consider further a sequence of planes πk with the property that
πk optimizes the excess of T0,rk in B8M and consider that

EpT0,rk ,C4M , πkq ď EpT0,rk ,B8M q “: Ek Ñ 0 ,(6)

and define Ak :“ AΣ0,rk
. Clearly we must have πk Ñ π0. By applying a rotation which is

infinitesimally close to the identity we can map πk to π0. We then push forward the current
T0,rk under this rotation so that we can assume πk “ π0, while, with a slight abuse of notation,
we keep using T0,rk and Σ0,rk for the rotated objects.

If k0 P N is large enough, we can ensure that

(7) Ek ` A2
k ă min

!

ε1,
1

2

)

for every k ě k0,

where ε1 is the threshold in [13, Theorem 2.4]. We can therefore let fk : B1p0, π0q Ñ AQpπK
0 q

be the strong Lipschitz approximation of [13, Theorem 2.4] for T0,rk and define the rescaled
maps

(8) f̄k :“
fk

E
1{2
k

.

We will make the additional assumption that

A2
k ď Cr2k “ opEkq .(9)

It then follows from [13] that, up to subsequences,

(i) f̄k converges strongly in L2 XW 1,2
loc pB1p0, π0qq to a Dir-minimizing map f̄ : B1p0, π0q Ñ

AQpπK
0 q,

(ii) f̄ takes values in the orthogonal complement to π0 in T0Σ,
(iii) f̄p0q “ QJ0K.
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Note that there is no guarantee that the blow-up is nontrivial: the nontriviality of f̄ is in fact
equivalent (cf. [13]) to

(10) lim inf
kÓ0

EpT0,rk ,Cρ, πkq

Ek
ě c̄ ą 0

for some ρ ą 0 and some c̄.

Definition 3.1. A Dir-minimizing map f̄ as above will be called a coarse blow-up (at 0). Its
average free part is given by the map

(11) vpxq :“
ÿ

i

Jf̄ipxq ´ η ˝ f̄pxqK .

We say that f̄ is nontrivial if it does not vanish identically.

Obviously, if we focus our attention on some other flat singular point q, an obvious modifica-
tion of the above procedure defines a notion of coarse blow-up at q. Our main claim for coarse
blow-ups, which (as already pointed out) is a consequence of the Hardt-Simon inequality, is
the following.

Theorem 3.2. Let T be as in Assumption 2.3, f̄ be a nontrivial coarse blow-up, and v be its
average-free part. Then If̄ p0q ě 1 and, if v does not vanish identically, Ivp0q ě 1.

In this section we prove Theorem 3.2.

3.2. Closure under rescalings. Before coming to the proof of Theorem 3.2 we need the
following elementary observation, which verifies that the property of being a coarse blow-up is
closed under normalized L2 limits.

Lemma 3.3. Let T be as in Assumption 2.3 and f̄ be a nontrivial coarse blow-up. Let ρj Ó 0
be any vanishing sequence, let

Dpjq :“

ż

Bρj

|Df̄ |2,

and define the rescaled maps f̄jpxq :“ pρ2´m
j Dpjqq´1{2f̄pρjxq. If f̄8 is the L2 limit of any

subsequence of tf̄ju on B1, then f̄8 is (up to a nonzero multiplicative factor) also a nontrivial
coarse blow-up.

Proof. Let rk be a blow-up sequence with the property that the maps f̄k defined in the previous
section converge to f̄ and fix constants ρ̄ and c̄ so that (10) holds. We consider a sequence
r1
j :“ ρjrkpjq and πj :“ πkpjq and we will show that, for an appropriate choice of kpjq, the
following holds:

(a) r1
j is a blow-up sequence, i.e. T0,r1

j
converges to QJπ0K;

(b) Ej :“ EpT0,r1
j
,C4, πjq converges to 0;

(c) The conditions (9) and (10) hold for this new blow-up sequence;

(d) If fj are the approximating maps given by [13, Theorem 2.4], then E
´1{2
j fj converges

(up to subsequences) to λf̄8 for some nonzero scalar λ.

The argument is a classical diagonal one and in order to deal efficiently will all the conditions,
it is useful to decouple the two indices and introduce the radii rj,k :“ ρjrk. We introduce
then the corresponding excess Ej,k :“ EpT0,rj,k ,C4, πkq and Aj,k :“ AΣ0,rj,k

. Combining the

estimates of [13] with (9) we immediately see that there are two positive constants c̃` and c̃´

such that

(12) c´ ď lim inf
jÑ8

Ej,kρ
m
j

EkDpjq
ď lim sup

jÑ8

Ej,kρ
m
j

EkDpjq
ď c` .

Moreover, obvious scaling arguments show that Aj,k “ ρ2jAk. It is then pretty obvious that
the conditions corresponding to (a), (b), and (c) above hold for any sequence tρj,kuj once we
keep k fixed. Observe also that for (c) we can choose constants which are independent of k:
the radius ρ̄ can in fact be taken equal to 1

2 , while the constant c̄ will depend only upon c´. In
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particular, for any sequence tkpjquj which converges to infinity sufficiently fast, (a), (b), and
(c) will hold.

Next we apply, as above, suitable rotations and assume that all the planes πk coincide with
π0 (without changing notation for the various objects introduced). We consider the rescaled
maps

f̃j,kpxq :“ ρ´1
j fkpρjxq

and let instead fj,k : B1p0, πkq Ñ AQpπK
k q be the Lipschitz approximations which are given by

[13, Theorem 2.4] applied to T0,rj,k . Observe that, by the estimates in [13, Theorem 2.4],

lim
jÑ8

E
´1{2
k,j }Gpfj,k, f̃j,kq}L2 “ 0 .

On the other hand, for every fixed k, the limit of E´1
k,j f̃j,k is clearly a scalar multiple λpkq of f̄k,

and it is easy to see that this scalar multiple has a fixed range rλ´, λ`s for positive constants
λ˘ depending upon c˘ and upon the constant c̄ in condition (10) for rk. It follows therefore
that (d) holds for any kpjq which diverges sufficiently fast. □

3.3. Proof of Theorem 3.2. Recalling [11, Theorem 3.19], the frequency value α at 0 of any
Dir-minimizer f is a positive number and by [11, Corollary 3.18], we have that

lim
ρÑ0

ρ2´2ᾱ´m

ż

Bρ

|Df |2 “ 8 @ᾱ ą α ,(13)

lim
ρÑ0

ρ2´2ᾱ´m

ż

Bρ

|Df |2 “ 0 @ᾱ ă α .(14)

On the other hand, since the Dirichlet energy of Df̄ is the sum of the Dirichlet energies
of η ˝ f̄ and its average free part v, for any coarse blow-up f̄ we conclude that If̄ p0q ď

mintIvp0q, Iη˝f̄ p0qu. Recall that η ˝ f̄ is a classical harmonic function and hence Iη˝f̄ is a
positive integer. Thus, in order to prove that Ivp0q ě 1, it suffices to show that If̄ p0q ě 1.
Introduce now

f̄r :“ r
m´2

2
fprxq

a

Dirpf,Brq
.

and apply Lemma 3.3 to conclude that, if there is a coarse blow-up f̄ with α “ If̄ p0q, then
there is a coarse blow-up which is α-homogeneous.

In this second part we prove that, if f̄ is an α-homogeneous coarse blow-up, then necessarily
α ě 1. This is in fact the same argument used in [1, Proposition 3.10] and we report it for
the reader’s convenience. Consider thus such a coarse blow-up and fix a blow-up sequence rk
leading to it, according to the procedure explained above. In order to simplify our notation
we denote by Tk the current T0,rk .

First of all, recall that the error from the monotonicity formula for mass ratios gives the
estimate

(15)

ż

B4

1

|q|m

ˇ

ˇ

ˇ

ˇ

qK

|q|

ˇ

ˇ

ˇ

ˇ

2

d}Tk}pqq ď CEk ` CA2
k .

See, for example, [30] for a derivation of this. The only subtlety compared to the classical
literature (cf. for instance [28]) is that the usual derivation of the above estimate is reduced
to the one for varifolds with bounded mean curvature. The latter is not good enough for us
because it would give a linear dependence on Ak, rather than a quadratic one. The quadratic
improvement, which is possible using the stronger information that our current induces a
stationary varifold in a Riemannian submanifold, is remarked in [13, Appendix A].

As described in the procedure leading to coarse blow-ups we rotate the currents suitably so
that πk “ π0. We next pass the inequality (15) to the Lipschitz approximations fk given by [13,
Theorem 2.4]. We let

ř

iJpfkqiK be a (measurable) selection for the fk as in [11, Theorem 0.4].
We then write

(16)

ż

Kk

ÿ

i

|
`

x` pfkqipxq
˘K

|2

|x` pfkqipxq|m`2
dx ď CpEk ` A2

kq ď CEk,
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where Kk Ă B1 Ă πk is the (closed) domain over which the graph of the Lipschitz approx-
imation fk coincides with the current Tk (cf. [13, Theorem 0.4]. Note that, for the point
q “ x` pfkqipxq P Kk ˆ πK

k , q
K denotes the orthogonal projection of q to pTqGf qK, where Gf

(the current induced by the graph of the multivalued function f) is defined as in [12, Defini-
tion 1.10].

However, since fk is Lipschitz, and hence differentiable almost-everywhere by Rademacher’s
Theorem [11, Theorem 1.3], we can formally compute

(17)
B

Br

ˆ

pfkqipxq

|x|

˙

“
B

Br

ˆ

x` pfkqipxq

|x|

˙

“
Br px` pfkqipxqq

|x|
´
x` pfkqipxq

|x|2
.

Since the first term on the left-hand side belongs to TqGf at q “ x` pfkqipxq, we have

ˇ

ˇ

ˇ

ˇ

ˇ

„

B

Br

ˆ

pfkqipxq

|x|

˙ȷK
ˇ

ˇ

ˇ

ˇ

ˇ

2

“

ˇ

ˇ

ˇ
rx` pfkqipxqs

K
ˇ

ˇ

ˇ

2

|x|4
.

Combining this with (16), we have

(18)

ż

Kk

ÿ

i

|x|4

|x` pfkqipxq|m`2

ˇ

ˇ

ˇ

ˇ

ˇ

„

B

Br

ˆ

pfkqipxq

|x|

˙ȷK
ˇ

ˇ

ˇ

ˇ

ˇ

2

dx ď CEk .

We next wish to estimate the tangential component of the right-hand side of (17) as follows:
ˇ

ˇ

ˇ

ˇ

ˇ

„

B

Br

ˆ

pfkqipxq

|x|

˙ȷ∥
ˇ

ˇ

ˇ

ˇ

ˇ

2

ď }pT⃗kpqq
´ pπ0

}2
ˇ

ˇ

ˇ

ˇ

B

Br

ˆ

pfkqipxq

|x|

˙
ˇ

ˇ

ˇ

ˇ

2

ď CEβ
k

ˇ

ˇ

ˇ

ˇ

B

Br

ˆ

pfkqipxq

|x|

˙
ˇ

ˇ

ˇ

ˇ

2

,

where we have used that, at the point q “ x ` pfkqipxq of interest, the tangent to the current
coincides with the tangent to Gf , and the distance of the latter to π0 can be estimated with
the Lipschitz constant of fk (cf. [13, Theorem 2.4]). Writing

ˇ

ˇ

ˇ

ˇ

B

Br

ˆ

pfkqipxq

|x|

˙
ˇ

ˇ

ˇ

ˇ

2

“

ˇ

ˇ

ˇ

ˇ

ˇ

„

B

Br

ˆ

pfkqipxq

|x|

˙ȷK
ˇ

ˇ

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

ˇ

ˇ

„

B

Br

ˆ

pfkqipxq

|x|

˙ȷ∥
ˇ

ˇ

ˇ

ˇ

ˇ

2

we immediately conclude
ˇ

ˇ

ˇ

ˇ

B

Br

ˆ

pfkqipxq

|x|

˙
ˇ

ˇ

ˇ

ˇ

2

ď 2

ˇ

ˇ

ˇ

ˇ

ˇ

„

B

Br

ˆ

pfkqipxq

|x|

˙ȷK
ˇ

ˇ

ˇ

ˇ

ˇ

2

as soon as Ek is sufficiently small. Hence, by (18), we conclude

(19)

ż

Kk

ÿ

i

|x|4

|x` pfkqipxq|m`2

ˇ

ˇ

ˇ

ˇ

B

Br

ˆ

pfkqipxq

|x|

˙ˇ

ˇ

ˇ

ˇ

2

dx ď CEk .

Next, consider f̄k :“ E
´1{2
k fk and infer, from (19) the estimate

ż

Ş

jěk0
KjzBρ

ÿ

i

|x|4

|x` E
1{2
k pf̄kqipxq|m`2

ˇ

ˇ

ˇ

ˇ

B

Br

ˆ

pf̄kqipxq

|x|

˙
ˇ

ˇ

ˇ

ˇ

2

dx ď C ,

for any k ě k0 and ρ ą 0. Recall that:

‚ f̄k converges strongly in W 1,2pB1{2q to f̄ ;

‚ The height bound of [30] implies that }f̄k}8 is uniformly bounded.

We can thus pass into the limit in k to conclude
ż

pB1{2zBρqX
Ş

jěk0
Kj

ÿ

i

1

|x|m´2

ˇ

ˇ

ˇ

ˇ

B

Br

ˆ

pf̄qipxq

|x|

˙
ˇ

ˇ

ˇ

ˇ

2

dx ď C .

By choosing a fast converging subsequence, we can assume that the series
ř

|B1zKj | is sum-
mable. Therefore, let k0 Ò 8 and ρ Ó 0 we get

(20)

ż

B1{2

ÿ

i

1

|x|m´2

ˇ

ˇ

ˇ

ˇ

B

Br

ˆ

pf̄qipxq

|x|

˙
ˇ

ˇ

ˇ

ˇ

2

dx ď C
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Since f̄ is α-homogeneous we have

f̄ipxq “ |x|αf̄i

ˆ

x

|x|

˙

,

and so
B

Br

ˆ

f̄ipxq

|x|

˙

“ pα ´ 1q|x|α´2f̄i

ˆ

x

|x|

˙

.

Inserting in (20) and passing to polar coordinates we conclude

pα ´ 1q2
ż

BB1

|f̄ |2
ż 1{2

0

s´1´2p1´αq ds ď C .

The latter inequality implies immediately α ě 1, and thus completes the proof.

4. Comparison of coarse and fine blow-ups

In this section we compare fine and coarse blow-ups at scales which are comparable to the
left endpoints of a sequence of intervals of flattening. The main conclusion is that the average-
free parts of coarse blow-ups are scalar multiples of fine blow-ups. More precisely we have the
following proposition.

Proposition 4.1. Let T be as in Assumption 2.3. Let rk be a blow-up sequence at the origin
and assume that

(21) lim inf
kÑ8

sjpkq

rk
ą 0 .

Then (9) holds and we can consider a coarse blow-up f̄ generated by a (subsequence) according
to Section 3.1 and a fine blow-up u (generated by a further subsequence) according to the
procedure detailed in Section 2.1. If we denote by v the average-free part of f̄ , then there is a
real number λ ą 0 such that v “ λu.

Remark 4.2. In general, without assumption (21) it might be that (9) does not hold and
that we cannot, therefore, define a coarse blow-up. Even if we were to assume (9), but not
(21), we could at best infer that v “ λu for some λ ě 0, but not that λ is necessarily positive.
Easy examples for the latter behavior can be constructed using holomorphic curves of C2 of
the form tpz, wq : pw´hpzqqQ “ zpu, for a nontrivial holomorphic h with hp0q “ h1p0q “ 0 and
a fraction p

Q which is noninteger and larger than the order of vanishing of h at 0.

An obvious corollary of the latter proposition is that, under the above assumptions, v is
necessarily nontrivial and that Ivp0q “ Iup0q.

4.1. Nontriviality and homogeneity of coarse blow-ups. If we combine it with Theorem
2.10(vi), Proposition 4.1 has the following further consequence, which will be useful in [10].

Corollary 4.3. Let T be as in Assumption 2.1, let δ2 ą 0 be the parameter in [14, Assump-
tion 1.8] and assume the singularity degree IpT, 0q is strictly smaller than 2 ´ δ2. Then any
coarse blow-up f̄ at 0 is nontrivial, IpT, 0q-homogeneous, and has average 0 (so in particular
f̄ “ v for the average-free part v).

Moreover, for every γ ą 2pIpT, 0q ´ 1q, we have

(22) lim inf
rÓ0

EpT,Brq

rγ
ą 0

and there exists a radius r0 (which depends on the current T ) such that

(23) EpT,Brq ě
rγ

sγ
EpT,Bsq @r ă s ă r0 .

Proof. It follows directly from Proposition 4.1 and from Theorem 2.10(vi) that the average-free
part of any coarse blow-up at 0 is nontrivial and is IpT, 0q-homogeneous. We therefore just
need to show that the average vanishes.

First of all observe that, if tf̄ku is any family of coarse blow-ups, then }f̄k}W 1,2pB1q is

uniformly bounded and any limit f̄8 of any subsequence is also a coarse blow-up. Since every
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such f̄8 must have an average-free part which is nontrivial and IpT, 0q-homogeneous, it follows
immediately that there is a positive number ω ą 0 such that

ż

B1

|Dū|2 ě ω ą 0

whenever ū is the average-free part of a coarse blow-up f̄ . In particular, we also conclude the
existence of some constant Ω such that

(24)

ż

B1

|Dpη ˝ f̄q|2 ď Ω

ż

B1

|Dū|2

for every coarse blow-up f̄ , its average free part ū, and its average η ˝ f .
Consider now the sequence rk Ó 0 which generates any coarse blow-up f̄ and let πk be an

optimal plane so that EpT,B8Mk
, πkq “ EpT,B8Mk

q. The nontriviality property (24) and the
Taylor expansion of the area functional can be easily used to show that

EpT,B8Mrkq ď CEpT,Brk , πkq ď C2pEpT,Brkq .

From the above, if π1
k is an optimal plane such that EpT,Brk , π

1
kq “ EpT,Brkq, then |πk´π1

k| ď

CEpT,Brkq and thus

EpT,B8Mrk , π
1
kq ď CEpT,Brkq

However, observe as well that for any constant C fixed, the sequence Crk also generates (up
to possibly extract a subsequence) a coarse blow-up: in fact the excess must go to 0 (because
the currents T0,Crk converges to the same tangent cone as T0,rk , which thus must be flat) and
EpT,B8CMrkq ě C´mEpT,B8Mrkq, so that (9) holds for the sequence Crk as well.

Let now πk be a plane with

Ek :“ EpT,B8Mrkq “ EpT,B8Mrk , πkq,

we can apply [13, Theorem 2.4] in the larger ball Bp8Mq2rk relative to the plane πk to get

a Lipschitz approximation gk : B8M p0, πkq Ñ AQpπK
k q in the cylinder C8Mrkp0, πkq, as in

the algorithm detailed in Section 3.1 to generate the coarse blow-up f̄ . This new Lipschitz
approximation gk coincides with fk on B1, except for a set whose measure is estimated by

opEkq. In particular the rescaled functions ḡk “ E
´ 1

2

k gk converge to a Dir-minimizing function
ḡ over B8M p0, π0q which coincides with f̄ on B1p0, π0q.

Next, we observe that

Dpη ˝ f̄qp0q “
1

ωm

ż

B1p0,π0q

Dpη ˝ f̄q “
1

ωm2m

ż

B2p0,π0q

Dpη ˝ ḡq ,

by harmonicity of the two functions. But we then must have Dpη ˝ f̄qp0q “ 0, otherwise we
can use the Taylor expansion of [12] to contradict the optimality of the plane πk.

The above discussion also shows that, if

EpT,B16Mrk , π
1
kq “ EpT,B16Mrkq “: E1

k

then

|πk ´ π1
k| “ opE

1{2
k q

and

C´1 ď lim inf
k

Ek

E1
k

ď lim sup
k

Ek

E1
k

ď C .

But in fact, for every fixed j, the same conclusions apply, with a constant depending on j, for
E1

k replaced with

EpT,B2j`3Mrk , π
1
kq “ EpT,B2j`3Mrkq.

In particular, if rk Ó 0 is a sequence which generates a coarse blow-up f̄ , then 2jrk generates a
coarse blow-up ḡj with the property that f̄pxq “ λj ḡjp2´jxq for some positive nonzero number
λj .

Next, denote by ū the average-free part of f̄ and by vj the average-free part of ḡj . Observe
that Dū and Dv̄j are pIpT, 0q ´ 1q-homogeneous, while Dpη ˝ f̄q and Dpη ˝ ḡjq are classical
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harmonic function with Dpη ˝ f̄qp0q “ Dpη ˝ ḡjqp0q “ 0 and η ˝ ḡjp0q “ η ˝ f̄p0q “ 0, in
particular Iη˝ḡj p0q ě 2. Therefore, we observe that

ş

B1
|Dpη ˝ f̄q|2

ş

B1
|Dū|2

“

ş

B2´j
|Dpη ˝ ḡjq|2

ş

B2´j
|Dv̄j |2

ď
2´jp2Iη˝ḡj

p0q´2q
ş

B1
|Dpη ˝ ḡjq|2

2´jp2IpT,0q´2q
ş

B1
|Dv̄j |2

ď
22jpIpT,0q´2q

ş

B1
|Dpη ˝ ḡjq|2

ş

B1
|Dv̄j |2

On the other hand the bound (24) is valid also for ḡj and v̄j in place of f̄ and ū, because ḡj is
a coarse blow-up and v̄j is its average-free part. In particular, recalling that IpT, 0q ă 2 ´ δ2
we conclude

ş

B1
|Dpη ˝ f̄q|2

ş

B1
|Dū|2

ď 2´2δ2jΩ .

Since Ω is fixed, j an arbitrary integer, and δ2 a positive number, we immediately conclude
that Dpη ˝ f̄q ” 0 and η ˝ f̄ is a constant. On the other hand recall that, since ΘpT, 0q “ Q,
f̄p0q “ QJ0K, and in particular η ˝ f̄p0q “ 0. We thus have proved that η ˝ f̄ ” 0.

Next observe that the arguments detailed so far have also the following outcome. If rk Ó 0
is a sequence such that EpT,Brkq Ñ 0, then

lim
rÓ0

EpT,Br{2q

EpT,Brq
“ 2´pIpT,0q´1q .

Fix now any γ ă IpT, 0q ´ 1. The above implies the following: there is r̄ ą 0 and Ē ą 0 such
that:

‚ If r ă r̄ and EpT,Brq ă Ē, then

EpT,Br{2q

EpT,Brq
ě 2´γ .

We next distinguish two cases. We consider the following set

R :“ t0 ă r ă r̄ : EpT, rq ă 2´1Ēu ,

which can be easily checked to be open if r̄ is sufficiently small. We then argue differently
dependingon whether R contains a neighborhood of the origin or not (and notice that, when
IpT, 0q ą 1, we are certainly in the first case). If it contains a neighborhood of the origin, then
there is r̃ ą 0 such that

EpT,Br{2q

EpT,Brq
ě 2´γ @r ă r̃ .

In particular, if we let c̃ :“ inftEpT,Brq : r̃
2 ď r ă r̃u ą 0, iterating the inequality above at all

dyadic scales we achieve

EpT,Brq ě c̃
´ r

2r̃

¯γ

.

If it does not contain the origin then let R “
Ť

ksr´
k , r

`
k r where r`

k`1 ă r´
k and both are

infinite sequences of infinitesimal numbers. Then, EpT,Br`
k

q “ Ē and, up to subsequences,

T0,r`
k

converges to a cone C which is nonplanar and such that EpC,Bρq “ Ē
2 for every ρ. It

follows in particular that there exists k0 such that

Ē

4
ď EpT,Brq ă Ē @r P

ď

kěk0

ı

r`
k

2 , r
`
k

”

.

In particular, arguing as above we conclude

EpT,Brq ě
Ē

4

ˆ

r

2r`
k

˙γ

@r P
ď

kěk0

sr´
k , r

`
k r ,
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while
EpT,Brq ě Ē @r ă r`

k0
s.t. r R

ď

kěk0

sr´
k , r

`
k r .

The combination of these two facts give that

lim inf
rÓ0

EpT,Brq

rγ
ą 0

and thus concludes the proof of (22). □

4.2. Reparametrization. An important tool for proving the Proposition 4.1 is the following
lemma, where we follow the notation and techniques introduced in [12].

Lemma 4.4. There are constants κpm,n,Qq ą 0 and Cpm,n,Qq with the following property.
Consider:

‚ A Lipschitz map g : Rm Ą B2 Ñ AQpRnq with }g}C0 ` Lip pgq ď κ;
‚ A C2 function φ : B2 Ñ Rn with φp0q “ 0 and }Dφ}C1 ď κ;
‚ The function fpxq “

ř

iJφpxq ` gipxqK and the manifold M :“ tpx,φpxqqu;
‚ The maps N,F : M X C3{2 Ñ AQpRm`nq given by [12, Theorem 5.1], satisfying
F ppq “

ř

iJp`NippqK, Nippq K TpM, and T F C5{4 “ Gf C5{4.

If we denote by g̃ the multivalued map x ÞÑ g̃pxq “
ř

iJp0, gipxqqK P AQpRm`nq, then

(25) GpNpφpxqq, g̃pxqq ď C}Dφ}C0p}g}C0 ` }Dφ}C0q @x P B1 .

Proof. We fix a point x P B1, denote by p P M the point p “ px,φpxqq and let Npxq “
ř

iJqiK
and gpxq “

ř

iJpiK. We fix a measurable selection for the function g, so that we can write
g “

ř

iJgiK and a corresponding measurable selection for f , where fi “ φ ` gi. According
to [12, Lemma 5.4], the set of points tqiu can be determined as follows. If we let κ be the
orthogonal complement of TpM, then tqiu is given by the intersection of p ` κ with the
support of the current Gf (i.e. the set-theoretic graph of f). This means that there are points
x1, . . . , xQ such that

qi “ pxi, fjpiqpxiqq “ pxi,φpxiq ` gjpiqpxiqq ,

where j : t1, . . . , Qu Ñ t1, . . . , Qu is some unknown function. Observe that

|xi ´ x| ď C|qi ´ p||κ ´ κ0|

where κ0 denotes the vertical plane t0u ˆ Rn. We therefore easily conclude the estimate

|xi ´ x| ď C}N}C0}Dφ}0 .

Since however }N}C0 ď Cp}g}C0 ` }φ}C0q ď Cp}g}C0 ` }Dφ}C0q, clearly

(26) |xi ´ x| ď C}Dφ}C0p}g}C0 ` }φ}C0q .

Given the Lipschitz bound on g we conclude that there is a πpiq such that

(27) |gjpiqpxiq ´ gπpiqpxq| ď C}φ}C0p}g}C0 ` }Dφ}C0q .

If π : t1, . . . , Qu Ñ t1, . . . , Qu were injective, we would immediately conclude (25). While this
might generally not be the case, it certainly is when Q “ 1, hence establishing the estimate in
this particular case.

For the general case we argue by induction. Assume therefore to have fixed Q and to have
proved the estimate valid for maps which are Q1-valued for every Q1 ă Q. Consider now the
following alternatives:

(a) the diameter of the set tgipxqu is smaller than }Dφ}C0p}g}C0 ` }Dφ}C0q;
(b) the diameter of the set tgipxqu is larger.

In the first case we have

|gjpiqpxiq´gipxq| ď |gjpiqpxiq´gπpiqpxq|`|gπpiqpxq´gipxq| ď pC`1q}Dφ}C0p}g}C0 `}Dφ}C0q .

In the second case we set d :“ }Dφ}C0p}g}C0 ` }φ}C0q and recall [11, Proposition 1.6]: if the
Lipschitz constant of g is smaller than a constant depending only on C, Q, and n, the map
g decomposes, in the ball B2dpxq into two Lipschitz Qi-valued maps with Q1 ` Q2 “ Q. In
particular we can use the inductive assumption to get (25). □
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4.3. Comparison estimates. In order to prove Proposition 4.1, (25) will be combined with
two important estimates comparing the Lipschitz approximation and the normal approximation
over the relevant center manifold.

The first estimate is the following control on the L2 height of a normal approximation in
terms of the excess.

Lemma 4.5. Under the assumptions of Proposition 4.1, the estimate (9) holds. Moreover,
the following holds.

(i) Let hk be as in Section 2.1 for the scales rk. Then we have

(28) 0 ă lim inf
kÑ8

h2
k

Ek
ď lim sup

kÑ8

h2
k

Ek
ă 8 .

(ii) Let fk be as in Section 3.1 and consider the map φ̄k on B2pπk, 0q whose graph coincides
with the center manifold pMjpkqq0,rk{tjpkq

over the cylinder C3{2pπk, 0q. Then we have

(29)

ż

B3{2

|φ̄k ´ η ˝ fk|2 “ opEkq .

Proof. We fix rk as in the statement and, upon extraction of a further subsequence, we assume
the existence of

lim
kÑ8

rk
sjpkq

:“ c̃ Ps0,`8r .

Observe that c̃ is at least 1. It is convenient to introduce the rescaled radii r̄k :“ rk
tjpkq

and

s̄jpkq :“
sjpkq

tjpkq
. Recalling the stopping condition which defines sjpkq in [15, Section 2.1], there

is a cube Lk P W jpkq with Lk X Bs̄jpkq
and ℓpLkq “ css̄jpkq for the specific geometric constant

cs “ 1
64

?
m
. Observe that, since 0 is a point of density Q for the current T , [14, Proposition

3.1] implies that Lk cannot belong to W
jpkq

h . If Lk P W
jpkq
n , we may apply [14, Corollary 3.2]

to find a nearby cube L1
k P W

jpkq
e of comparable size. Thus, we may assume that Lk P W

jpkq
e .

We can thus apply [14, Proposition 3.4] to conclude

m0,jpkqℓpLkq2´2δ2 ď CEpT0,tjpkq
,BLk

q .

Recalling however that the cylinder C4Mr̄kp0, πkq contains BLk
, as well as our amended defi-

nition of m0,jpkq, we immediately conclude that

Ek :“ EpT0,rk ,C4M , πkq ě EpT0,tjpkq
,BLk

q ě C´1m0,jpkqℓpLkq2´2δ2

ě C´1c2s ε̄
2t2´2δ2

jpkq

s2´2δ2
jpkq

t2´2δ2
jpkq

“ C´1c2s ε̄
2s2´2δ2

jpkq
.

In light of the comparability of sjpkq and rk, it thus follows immediately that

(30) lim inf
kÑ8

Ek

r2´2δ2
k

ą 0 ,

which in turn immediately implies (9). In addition, rescaling by tjpkq and again using the
definition of m0,jpkq, we have

(31) Ek ě C̃´1m0,jpkqr̄
2´2δ2
k ,

where C̃ is independent of k (it is not, however, a geometric constant, namely it might depend
on the blow-up sequence that we fixed at the beginning).

Next, observe that

h2
k ď

C

r̄m`1
k

HNjpkq
p2r̄kq

(5)
ď C̃r̄´m

k DNjpkq
p2r̄kq ,

where C̃ is independent of k. On the other hand we recall (see for instance [15, Remark 3.4])

that DNjpkq
p2r̄kq ď Cm0,jpkqr̄

m`2´2δ2
k . We thus conclude that

h2
k ď Cm0,jpkqr̄

2´2δ2
k
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and we achieve the right-hand inequality of (28) when combining the above with (31).
As for the left-hand inequality of (28), first recall that, by [14, Proposition 3.4] we also have

the opposite inequality

(32) h2
k ě C̃´1r̄´m´2

k

ż

Lk

|Njpkq|2 ě C̃´1m
pkq

0 r̄2´2δ2
k ,

where Lk is the Whitney region corresponding to Lk. On the other hand recall that πk
optimizes the excess of T0,rk in B8M , which implies that it optimizes the excess of T0,tjpkq

in

B8Mr̄k . Because of the condition sjpkq ď rk ď c̄sjpkq, we can find a cube H P S jpkq Y W jpkq

with the property that B32Mr̄k Ą BH Ą B8Mr̄k . Due to [14, Proposition 1.11], we thus must
have

EpT0,tjpkq
,B8Mr̄k , πkq ď EpT0,tjpkq

,B8Mr̄k , πHq ď CEpT0,tjpkq
,BH , πHq

ď Cm0,jpkqℓpHq2´2δ2 ď Cm0,jpkqr̄
2´2δ2
k .

Combining this with the height bound [14, Theorem A.1] on T0,tjpkq
, we can write

(33) Ek “ r̄´m
k EpT0,tjpkq

,C4Mr̄kq ď CEpT0,tjpkq
B8Mr̄k , πkq ď Cm0,jpkqr̄

2´2δ2
k .

It thus follows immediately from (32) and (33) that lim infk
h2

k

Ek
ą 0.

We now address the last part of the lemma, namely statement (ii). First of all we rescale
the graphs of φ̄k and of fk using an homothety of center 0 and ratio r̄k. We denote by
φ̄r

k :“ r̄´1
k φ̄kpr̄k¨q and frk :“ r̄´1

k fkpr̄k¨q the corresponding maps and note that the desired
estimate is equivalent to

r̄´m´2
k

ż

B3r̄k{2pπk,0q

|φ̄r
k ´ η ˝ frk |2 “ opEkq ,

and given the estimate (31), it suffices to show

(34)

ż

B3r̄k{2pπk,0q

|φ̄r
k ´ η ˝ frk |2 “ E

1{2
k opm

1{2
0,jpkq

r̄m`3´δ2
k q .

Consider now the plane π0pjpkqq which served as reference to construct the center manifold

Mjpkq. It is easy to see that |π0pjpkqq ´ πk| ď Cm
1{2
0,jpkq

ď Cε̄ for some geometric constant

(see [14, Proposition 4.1]). Since nothing else will be used about π0pjpkqq, except that it serves
as reference to construct the center manifold Mjpkq, in order to simplify our notation we will
simply denote it by π0, even though the plane does depend on k.

We now consider all the cubes H P W jpkq which intersect B2r̄k and denote such collections

by C pkq. For each H P C pkq we consider a cylinder C2CℓpHqpqH , πHq, where C is a geometric
constant (which will be specified later) and qH is the center of the cube H. We then consider
the cylinder CCℓpHqpqH , πkq and, given that the height of T0,rk over πk converges to 0, conclude

that the set pgr pφ̄r
kq Y gr pf̄rk qq XCCℓpHqpqH , πkq is contained in C2CℓpHqpqH , πHq. Further, let

ΦkpΓkq be the contact set of the current T0,tjpkq
and the center manifold Mjpkq, as defined in

[14, Definition 1.18], and denote by Γk its projection onto the plane πk. Finally, it will also be
convenient to define the point q̄L as the orthogonal projection onto πk of qL.

If C is a geometric constant sufficiently large (e.g. 10
?
m suffices, provided ε̄ is small

enough), then the set Γk and the disks BCℓpHqpq̄H , πkq cover the disk B3r̄k{2p0, πkq. It will be
convenient to devise a slightly delicate cover, made of pairwise disjoint Borel sets, with the
following algorithm. We enumerate the disks BCℓpHqpq̄H , πkq as Bi, i P t1, 2, . . .u “ Nzt0u and
set F0 :“ Γk XB3r̄k{2 and define inductively Fj`1 :“ Bj`1z

Ť

iďj Fi.

Next, for each H we recall the approximating Lipschitz map fH of [14, Definition 1.13 &
Lemma 1.15] and let f̄H be the reparametrization of gr pfHq XCCℓpHqpqH , πkq as a graph over
the disk BCℓpHqpq̄H , πkq, according to [12, Proposition 5.2]. We are now going to define a good
set G Ă B3r̄k{2 as follows

‚ GX F0 consists of those points q P F0 where f̄kpqq “ QJφ̄r
kK;
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‚ For each j ą 0, G X Fj consists of those points q P Fj where f̄k coincides with f̄H for
the corresponding H such that BCℓpHqpq̄H , πkq “ Bj .

Observe that

B3r̄k{2zG Ăpπk
ppspt pT0,tjpkq

qzgr pf̄rk qq X C3r̄k{2p0, πkqq
l jh n

“:Ξ1
k

Y pπk
pspt pT0,tjpkq

zTFjpkq
q X C3r̄k{2p0, πkqqq

l jh n

“:Ξ2
k

.

On the other hand, recalling that A2
k “ opEkq, we can use [13, Theorem 2.4] to estimate

|Ξ1
k| ď Hmpspt pT0,tjpkq

qzgr pf̄rk qq X C3r̄k{2p0, πkqq

ď r̄mk Hmpspt pT0,rkqzgr pfkqq X CM p0, πkqq “ r̄mk OpE1`γ1

k q .

As for Ξ2
k, we instead use the analogous estimates for each fH to get

|Ξ2
k| ď

ÿ

HPC pkq

Hmpspt ppT0,tjpkq
zgr fHqq X CCℓpHqpqH , πkqq

ď
ÿ

HPC pkq

HmppT0,tjpkq
zgr fHqq X C2CℓpHqpqH , πHqq

ď
ÿ

LPC pkq

ℓpHqmpm0,jpkqℓpHq2´2δ2q1`γ1 ď m1`γ
0,jpkq

r̄
m`2`γ1{2
k

(we recall here that the constant γ is fixed in [13], while δ2 is chosen later in [14, Assumption
1.8] and satifies p2 ´ 2δ2qp1 ` γ1q ď 1 ` γ1{2).

On the other hand,

}f̄rk }C0pB3r̄k
q ď ChpT0,tjpkq

,C3r̄kp0, πkqq “ Cr̄khpT0,rk ,C3p0, πkqq ď Cr̄kE
1{2
k ,

where in the latter inequality we have used the information that 0 is a point of density Q point
of T and the classical L8 bound of Allard, cf. [30]. Moreover, recalling that }Njpkq}2L2pLq

ď

Cm
1{2
0,jpkq

ℓpLqm`4´2δ2 , we infer in particular the existence of at least one point x P pπk
pLq and

y P πK
k such that px, yq P spt pT0,tjpkq

q and

|φ̄r
kpxq ´ y| ď Cm

1{2
0,jpkq

r̄2´δ2
k ,

which in turn leads to the bound |φ̄r
kpxq| ď Cpm

1{2
0,jpkq

` E
1{2
k qr̄k ď CE

1{2
k r̄k. Note that φ̄r

k is

Lipschitz, with a constant uniformly controlled in k. We thus conclude that

(35) }f̄rk }C0pB3r̄k
q ` }φ̄r

k}C0pB3r̄k
q ď CE

1{2
k r̄k .

In particular, combining the latter estimate with |B3r̄k{2zG| ď CEkr̄
m
k , we conclude that

(36)

ż

B3r̄k{2zG

|φ̄r
k ´ η ˝ f̄rk |2 ď CE2

k r̄
m`2
k .

Considering that on GX F0 the functions φ̄r
k and η ˝ f̄rk coincide, we are left to estimate

ÿ

jě1

ż

GXFj

|φ̄r
k ´ η ˝ f̄rk |2 ď E

1{2
k r̄k

ÿ

jě1

ż

BCℓpHqpq̄H ,πkq

|φ̄r
k ´ η ˝ f̄H | .(37)

We now wish to estimate each integral in the above summation by changing coordinates to
the reference plane πH for each H P C pkq. Denote by φH the function whose graph over
B2CℓpHqpqH , πHq coincides with Mjpkq (which, we recall, is the graph of φ̄r

k over an appropriate
subset of πk). We likewise introduce fH which is the function over B2CℓpHqpqH , πHq whose graph

coincides with the graph of η ˝ f̄H . Applying [14, Lemma B.1(b)] we can then estimate
ż

BCℓpHqpq̄H ,πkq

|φ̄r
k ´ η ˝ f̄H | ď C

ż

B2CℓpHqpqH ,πHq

|φH ´ fH | .
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Let us now estimate

(38)

ż

B2CℓpHqpqH ,πHq

|φH ´ fH | ď

ż

B2CℓpHqpqH ,πHq

|φH ´η ˝fH | `

ż

B2CℓpHqpqH ,πHq

|η ˝fH ´ fH | .

In order to handle the second integral we wish to estimate |πk ´πH |, since we will be using C0-
estimates on fH here. First of all we compare the tilt between πk and πH1 for the ancestor H 1

of H with the smallest side length such that BH1 Ą B8Mr̄k . Observe that ℓpH 1q ď Cr̄k. Since
πH1 optimizes the excess of T0,tjpkq

in BH1 , while πk optimizes the excess of the same current

over B8Mr̄k , a simple comparison argument (cf. for instance [14, Proof of (4.5)]), implies

|πk ´ πH1 | ď CpEpT0,tjpkq
,B8M q1{2 ` EpT0,tjpkq

,B1
Hq1{2q ď CE

1{2
k ` Cm

1{2
0,jpkq

r̄1´δ2
k .

On the other hand, by [14, Proposition 4.1] we have

|πH ´ πH1 | ď Cm
1{2
0,jpkq

r̄1´δ2
k

and we thus reach

(39) |πk ´ πH | ď CE
1{2
k ` Cm

1{2
0,jpkq

r̄1´δ2
k ď CE

1{2
k .

We can now employ [14, Lemma 5.6] to estimate
ż

B2CℓpHqpqH ,πHq

|η ˝ fH ´ fH | ď Cp}fH}C0pB2CℓpHqpqH ,πHqq ` E
1{2
k qpDir pfHq ` ℓpHqmEkq .

Recall that }fH}C0pB2CℓpHqpqH ,πHq ď m
1{2m
0,jpkq

ℓpHq1`β2 , while Dir pfHq ď m0,jpkqℓpHqm`2´2δ2 ď

ℓpHqmEk. We thus easily conclude that
ż

B2CℓpHqpqH ,πHq

|η ˝ fH ´ fH | ď CℓpHqmE
1`1{2m
k .

We now come to the first integral in the right hand side of (38). First of all we recall the tilted
interpolating function hH of [14, Definition 1.16] and observe that, by construction, φH and hH

coincide in a neighborhood of qH . Now recall that, by [14, Proposition 4.4] }DhH} ď Cm
1{2
0,jpkq

.

Since moveover }D2φH} is controlled by the second fundamental form of Mjpkq, which in turn

is bounded by m
1{2
0,jpkq

, we easily see that the estimate }D2φH} ď Cm
1{2
0,jpkq

holds as well. In

particular, using a second order Taylor expansion on a point where φH ´hH and its derivative
both vanish (to gain an extra factor of ℓpHq2) we can estimate

ż

B2CℓpHqpqH ,πHq

|φH ´ η ˝ fH | ď Cm
1{2
0,jpkq

ℓpHqm`2 `

ż

B2CℓpHqpqH ,πHq

|hH ´ η ˝ fH | .

Finally we can use [14, Proposition 5.2] to estimate
ż

B2CℓpHqpqH ,πHq

|hH ´ η ˝ fH | ď Cm
pkq

0 ℓpHqm`3`β2 .

In summary, we have reached the estimate
ż

BCℓpHqpq̄H ,πkq

|φ̄r
k ´ η ˝ f̄H | ď Cm

1{2
0,jpkq

ℓpHqm`2 .

Inserting this into (37) and decomposing into cubes H, we then get
ż

G

|φ̄r
k ´ η ˝ f̄rk |2 ď Cr̄kE

1{2
k m

1{2
0,jpkq

ÿ

HPC pkq

ℓpHqm`2 ď CE
1{2
k m

1{2
0,jpkq

r̄m`3
k .

The latter, together with (36), gives finally (34) and completes the proof of the lemma. □

Proof of Proposition 4.1. We wish to compare

Ñk :“
Nk ˝ φk

hk
and vk :“

ř

iJpfkqi ´ η ˝ fkK

E
1{2
k

,
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in particular we wish to show that they have the same L2 limit, up to a scalar constant. Since
both sequences are converging to respective Dir-minimizing maps, it suffices to compare the
maps Ñk and vk on some nonempty open set; we will do it on B1 for simplicity.

First of all we replace η ˝ fk with the parameterizing map φk for Mk in vk to give a map
v̂k given by

v̂k “

ř

iJpfkqi ´ φkK

E
1{2
k

,

since Lemma 4.5 implies that

lim
kÒ8

ż

B3{2

Gpvk, v̂kq2 “ 0 .

Recalling [13],

|pkppsptpT0,rkqzgr pfkq Y gr fkzspt pT0,rkq X C3{2q| “ opEkq .

Next, introduce the map Fppq :“
ř

iJpNkqippq ` pK on Mk and let f1k : B2p0, πkq Ñ AQpπK
k q

be the map whose graph coincides with the current TF XC2p0, πkq. By [14, Theorem 2.4] and
[15, Section 4.2 & Corollary 5.3],

|pπk
ppgr pf1k qzspt pT0,rkq Y spt pT0,rkqzgr pf1k qq X C3{2| “ opEkq .

In particular, if we consider the map

v̂1k “

ř

iJpf1k qi ´ φkK

E
1{2
k

we have that |tv̂1k ‰ v̂ku| Ñ 0, and using that both have a uniform bound on the Dirichlet
energy, we conclude that

lim
kÑ8

ż

B3{2

Gpv̂1k, v̂kq2 “ 0 .

We also take advantage of Lemma 4.5 to assume, up to extraction of a subsequence (not
relabeled), that Ek{h2

k converges to some finite constant λ ą 0. We are therefore left to show

that the maps Ñk and

v̂2k “

ř

iJpf1k qi ´ φkK

h
1{2
k

have the same limit. We now wish to apply Lemma 4.4 to the maps Nk. We observe that the
map g in Lemma 4.4 can be taken to be the map gk defined by

gk :“
ÿ

i

Jpf1k qi ´ φkK .

Moreover, observe that }Dφk}C0 converges to 0. If we had a uniform bound on }gk}C0 in terms
of hk we could then apply Lemma 4.4 to complete the proof. Given that we only have the
bound }gk}L2 ď Chk we need to overcome this issue. We use the following simple argument.
We fix a truncation parameter M̄ and introduce the truncation

gM̄k :“
ÿ

i

JpgkqM̄i K

where the maps pgkqM̄i are defined by replacing each component pξiqjpxq of the vector pgkqipxq

with maxt´M̄,mintpξiqjpxq, M̄uu. By the Sobolev embedding and the uniform W 1,2 bound
on gk it is easy to see that

lim
M̄Ñ8

sup
k

h´2
k

ż

Gpgk, g
M̄
k q2 “ 0 .

Likewise, after defining the maps NM̄
k as those corresponding to gM̄k in the same way as Nk

corresponds to gk, we see as well

lim
M̄Ñ8

sup
k

h´2
k

ż

GpNk, N
M̄
k q2 “ 0 .
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We can now apply Lemma 4.4 to conclude that the limit (in k) of h´1
k NM̄

k ˝ φk and the limit

of gM̄k coincides on B1. Letting M̄ Ñ 8 we then reach the desired conclusion. □

5. Frequency bound for fine blow-ups

In this section we prove the lower bound for the frequency values, which we equivalently
restate as follows for the reader’s convenience.

Theorem 5.1. Suppose that T and Σ are as in Assumption 2.3 and let u be a fine blow-up.
Then Iup0q ě 1.

In order to show the theorem, we fix a blow-up sequence trku which generates the fine blow-
up u through the procedure described in Section 2.1 and for each k sufficiently large we choose
the interval of flattening ssjpkq, tjpkqs which contains the radius rk. We can then reduce the
proof, up to extraction of a subsequence, to three different cases. In the first case we assume
that there are finitely many intervals of flattening and hence (up to subsequence), there is a
positive integer J such that:

(40) sJ “ 0 and trkuk Ă s0, tJ s .

In the remaining three cases we assume that there are infinitely many intervals of flattening
and that (up to subsequence) one of the following mutually exclusive conditions hold:

lim
k

sjpkq

rk
ą 0(41)

lim
k

sjpkq

rk
“ 0.(42)

The proof will take advantage of a first coarse lower bound proved recently by the second
author, cf. [29, Theorem 7.8], which in turn can be combined with the monotonicity compu-
tations in [15] to give a suitable almost-monotonicity formula for IN , cf. [29, Theorem 7.4] as
well. We summarize these conclusions in the following theorem.

Theorem 5.2. Let T , Σ be as in Assumption 2.3 and consider any center manifold Mj and
any normal approximation Nj for a given interval of flattening ssj , tjs at 0. Then,

INj prq ě c0 @r P

ȷ

sj
tj
, 3

ȷ

,(43)

INj
paq ď eCbαINj

pbq @sa, bs Ă

ȷ

sj
tj
, 3

ȷ

,(44)

where α “ αpQ,m, nq ą 0, while c0 and C are positive numbers which depend on T (but not
on j).

5.1. Proof of Theorem 5.1 under assumption (40). We let M be the center manifold
related to the interval of flattening s0, tJ s, with corresponding normal approximation N . Since
we are in the case with a single center manifold, we omit the dependency on N for I and related
quantities. Observe that, by Theorem 5.2,

Ipaq ď eCbαIpbq @0 ă a ď b ă 3

and in particular we immediately see that

c0 ď lim sup
rÓ0

Iprq ď lim inf
rÓ0

Iprq ă `8 .

So the limit I0 :“ limrÓ0 Iprq exists and it is positive and finite. It follows from the strong
convergence of uk from the definition of u being a fine blowup, that Iuprq is identically equal
to I0, and thus I0 “ Iup0q. Therefore it just suffices to show that I0 ě 1. On the other hand,
by [15, Proposition 3.5], we readily see that

ˇ

ˇ

ˇ

ˇ

d

dr
log

Hprq

rm´1
´

2Iprq

r

ˇ

ˇ

ˇ

ˇ

ď
CIprq

r1´γ
,
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for suitable constants C and γ ą 0. In particular, for every ε ą 0, the inequalities

2I0 ´ ε

r
ď

d

dr
log

Hprq

rm´1
ď

2I0 ` ε

r

hold as soon as r is smaller than a suitable scale rpεq ą 0. Integrating the latter differential
inequality, we immediately conclude that

lim inf
rÓ0

Hprq

rm´1`2I0`ε
ą 0

for every ε ą 0. Combined with the inequality rDprq

Hprq
“ Iprq ě c0, we also conclude that

lim inf
rÓ0

Dprq

rm`2pI0´1q`ε
ą 0 .

On the other hand, due to the estimate [15, (3.4)] and the fact that sJ “ 0, we must have

Dprq ď Crm`2´2δ2

where δ2 is the small positive constant of [14, Assumption 1.8]. Comparing this with the
previous asymptotic estimate, we conclude in particular that

2pI0 ´ 1q ě 2 ´ 2δ2 ,

and since 2δ2 ď 1
4m , we immediately get that I0 ą 1 (in fact it turns out that I0 is rather close

to 2, in this case).

5.2. Proof of Theorem 5.1 under assumption (41). In this case we can apply Proposition
4.1 to a suitable subsequence of trkuk, not relabeled, and find a coarse blow-up f whose
average-free part v has the property that v “ λu for some positive number λ. In particular
Iup0q “ Ivp0q and from Theorem 3.2 we conclude Iup0q ě 1.

5.3. Proof of Theorem 5.1 under assumption (42). We fix a blow-up sequence trkuk and
a corresponding fine blow-up u. One crucial property that we will use is that, because of the
convergence of the maps uk from Section 2.1 to the fine blow-up u, for every positive ρ ă 1 we
have

(45) Iupρq “ lim
kÑ8

INjpkq

ˆ

ρrk
tjpkq

˙

Observe that under our assumption we know as well that
sjpkq

tjpkq
is infinitesimal. In particular,

since

EpT,Bsjpkq
q “ EpT0,Tjpkq

,Bsjpkq{tjpkq
q ď Cm0,jpkq

s2´2δ2
jpkq

t2´2δ2
jpkq

,

we conclude that EpT,Bsjpkq
q Ñ 0. So sjpkq is itself a blow-up sequence, and we can apply the

previous section to infer that, for any u1 coarse blow-up generated by a subsequence, we have
Iu1 p0q ě 1. In particular, since along this subsequence of tsjpkqu we have comparability of the
coarse and fine blow-ups due to Proposition 4.1, we can use the corresponding convergence
(45) to infer that

lim inf
kÑ8

INjpkq

ˆ

sjpkq

tjpkq

˙

ě 1 .

Fix now an arbitrary small parameter δ ą 0. Our goal is to show that there is ρ̄ ą 0 such that

(46) lim inf
kÑ8

INjpkq

ˆ

ρrk
tjpkq

˙

ě 1 ´ 2δ @ρ P

ȷ

sjpkq

rk
, ρ̄

„

.

Knowing (46) and (45), we would then infer that Iupρq ě 1´2δ for every positive ρ ă ρ̄, which
in turn would imply 1 ´ 2δ ď Iup0q. The arbitrariness of δ then tells us that Iup0q “ 0.

In order to achieve (46), choose first k0 large enough so that

INjpkq

ˆ

sjpkq

tjpkq

˙

ě 1 ´ δ @k ě k0 .
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Next, because of (44) we can choose σ ą 0 small enough (independent of k) with the property
that

INjpkq
prq ě 1 ´ 2δ @r P

ȷ

sjpkq

tjpkq

, σ

ȷ

, @k ě k0 .

Since however rk ď tjpkq, while limkÑ8
sjpkq

rk
“ 0, for any fixed positive ρ ă σ and for every

k large enough we may conclude that ρrk
tjpkq

must belong to the interval r
sjpkq

tjpkq
, σs. This implies

(46) with ρ̄ “ σ and thus completes the proof.

6. Frequency BV estimate

This section is dedicated to establishing a (quantitative) control on the radial variations of
the frequency, which is crucial for proving Theorem 2.10.

We begin by defining the universal frequency function, which makes sense of the frequency
continuously along all blow-up scales where it is possible to construct a center manifold for T .

Definition 6.1 (Universal frequency function). Suppose that T is as in Assumption 2.1 and
let tssk, tksuJk“j0

be a sequence of intervals of flattening with coinciding endpoints (i.e. such that sk “ tk`1 for
k “ j0, . . . , J ´ 1), with corresponding center manifolds Mk and Mk-normal approximations
Nk. For r PssJ , tj0s, define

Iprq :“ INk

ˆ

r

tk

˙

χssk,tksprq,

Dprq :“ DNk

ˆ

r

tk

˙

χssk,tksprq,

Hprq :“ HNk

ˆ

r

tk

˙

χssk,tksprq.

Unfortunately, unlike for the linearized problem, we do not have monotonicity of the fre-
quency but merely almost monotonicity. Nevertheless, we can hope to control the variation of
the negative part of the radial derivative for the frequency function. The main result of this
section is the following proposition. We will use the convention that, given a BV function f of

one variable,
”

df
dr

ı

˘
will denote the positive and negative parts of its distribiutional derivatives,

while }µ}TV denotes the total variation of a measure µ on its domain of definition.

Proposition 6.2. There exists γ4 “ γ4pm,n,Qq ą 0 and C “ Cpm,n,Qq such that the
following holds. Suppose that T satisfies Assumption 2.3. Let tssk, tksuJk“j0

be intervals of

flattening for T around 0 with coinciding endpoints. Then we have logpI ` 1q P BVprsJ , tj0sq,
with the quantitative estimate

(47)

›

›

›

›

„

d logpI ` 1q

dr

ȷ

´

›

›

›

›

TVprsJ ,tj0 sq

ď C
J
ÿ

k“j0

mγ4

0,k .

Moreover, for any sa, bs which is contained in a single interval of flattening ssk, tkr we have the
improved estimate

(48)

›

›

›

›

„

d logpI ` 1q

dr

ȷ

´

›

›

›

›

TVpsa,bsq

ď C

ˆ

bk
tk

˙γ4

mγ4

0,k .

Remark 6.3. In our subsequent work [9] we will need the BV estimate of Proposition 6.2 for
a different definition of the universal frequency function, for which the intervals of flattening
ssj , tjs are choosing differently. We point out that, the crucial ingredients needed in proving
the above estimates are the following:

(a) The estimate in each open interval holds because for each r Ps
sj
tj
, 1s the sidelength

ℓpLq of any cube L P W pkq which intersects Brp0, πkq is no larger than csr for a fixed
constant cs “ 1

64
?
m
.
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(b) The estimate at the jumps holds because there is one cube L P W pkq which intersects
Bsj{tj p0, πkq and has sidelength ℓpLq ě cs

sj
tj
.

While in (a) we cannot afford a similar control with a constant larger than cs, in (b) we can
afford a constant c̄s smaller than cs, at the price that the constant C in the estimate (47) will
then depend on how small c̄s is.

In order to prove this, we will require a number of preliminary results, the proofs of which
we will defer until later.

6.1. Auxiliary results for Proposition 6.2. First of all, we recall some key variational
identities and estimates from [15] for any normal approximation of T , which are a nonlinear
analogue of the identities in [11, Section 3.4].

Let ss, ts be an interval of flattening for T around 0 with corresponding center manifold M
and M-normal approximation N . We define the quantities

EN prq :“ ´
1

r

ż

M
ϕ1

ˆ

dpyq

r

˙

ÿ

i

Nipyq ¨DNipyq∇dpyq dy ,

GN prq :“ ´
1

r2

ż

M
ϕ1

ˆ

dpyq

r

˙

dpyq

|∇dpyq|2

ÿ

i

|DNipyq ¨ ∇dpyq|2 dy ,

ΣN prq :“

ż

M
ϕ

ˆ

dpyq

r

˙

|Npyq|2 dy .

We thus have the following.

Lemma 6.4. There exist γ4pm,n,Qq ą 0 and Cpm,n,Qq ą 0 such that the following holds.
Suppose that T , Σ satisfy Assumption 2.3 and let ss, ts be an interval of flattening for T around
0 with corresponding center manifold M and M-normal approximation N . Let m0 be as in (1)
for ss, ts. Then DN and HN are absolutely continouous on s st , 3s and for a.e. r we have

BrDN prq “ ´

ż

M
φ1

ˆ

dpx, yq

r

˙

dpx, yq

r2
|DNpyq|2 dy(49)

BrHN prq ´
m´ 1

r
Hpx, rq “ Opm0qHpx, rq ` 2Epx, rq,(50)

|DN prq ´ EN prq| ď

5
ÿ

j“1

|Erroj | ď Cmγ4

0 DN prq1`γ4 ` Cm0ΣN prq,(51)

ˇ

ˇBrDN prq ´ pm´ 2qr´1DN prq ´ 2GN prq
ˇ

ˇ ď 2
5
ÿ

j“1

|Errij | ` Cm0DN prq(52)

ď Cr´1mγ4

0 DN prq1`γ4 ` Cmγ4

0 DN prqγ4BrDN prq ` Cm0DN prq,

where Erroj and Errij are as in [8, Proposition 9.8, Proposition 9.9].

We omit the proof of Lemma 6.4 here, since it involves a mere repetition of the arguments
in the proofs of [15, Proposition 3.5] (see also [8, Proposition 9.5, Proposition 9.10]), combined
with the observation that the constants may be optimized to depend on appropriate powers
of m0. As a consequence of the estimates in Lemma 6.4, we have the following quantitative
almost-monotonicity for the frequency in each interval of flattening.

Corollary 6.5. There exist γ4pm,n,Qq ą 0 and Cpm,n,Qq ą 0 such that the following
holds. Suppose that T , Σ, ss, ts, M, N , and m0 are as in Lemma 6.4. Then IN is absolutely
continuous on s st , rs and for a.e. r we have

BrIN prq ě ´Cp1 ` IN prqqmγ4

0

ˆ

1 `
DN prqγ4

r
` DN prqγ4´1BrDN prq

˙

.

In addition to the above control on the frequency variations within each interval of flattening,
we will also need to control the jumps of the frequency between successive intervals of flattening.
In order to establish this, we will require the following intermediate results.
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Lemma 6.6 (Expansion of excess). There exists a dimensional constant C “ Cpm,n,Qq ą 0
such that the following holds. Let T , Σ be as in Assumption 2.3 and let M be a center
manifold for T with M-normal approximation N . Let r Ps0, 1s and let f : Brp0, πq Ñ AQpπKq

be a Lipschitz map with Lippfq ď c. Let φr be a parameterizing map for M over π. Then we
have

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Crp0,πq

|G⃗f ´ M⃗ ˝ p|2ϕ

ˆ

|pπpzq|

r

˙

d}Gf }pzq ´

ż

Brp0,πq

G
`

Df,QJDφrK
˘2

dy

ˇ

ˇ

ˇ

ˇ

ˇ

ď C

ż

Brp0,πq

p|Df |4 ` |Dφr|4qϕ

ˆ

|y|

r

˙

dy

` C

ż

Crp0,πq

ˇ

ˇ

ˇ
M⃗pppzqq ´ M⃗

`

φrppπpzqq
˘

ˇ

ˇ

ˇ
d}Gf }pzq.

An important consequence of Lemma 6.6 is the following comparability between the Dirichlet
energy of N at a given scale, with that of Lipschitz approximations over suitable planes. We
will henceforth take γ2 ą 0 to be as in [14]. Note that we may ensure that γ4 ď γ2.

Corollary 6.7. There exists a dimensional constant C “ Cpm,n,Qq ą 0 such that the follow-
ing holds. Let T , Σ satisfy Assumption 2.3. Let ss, ts be an interval of flattening for T around
0 with corresponding center manifold M and M-normal approximation N , let m0 be as in (1)
for ss, ts and let π be the plane used to define φ in the center manifold algorithm of [14]. Let
f : B1p0, πq Ñ AQpπKq be a π-approximation for T0,t in C4p0, πq according to [13] and for r̄ “
s
t , let fL : B8rLppL, πLq Ñ AQpπK

Lq be a πL-approximation for T0,t corresponding to a Whitney
cube L as in [15, Section 2.1 (Stop)]. Let πr̄ be such that EpT0,t,B6

?
mr̄q “ EpT0,t,B6

?
mr̄, πr̄q

and let BL :“ B8rLppL, πLq. Let fr̄ : Br̄p0, πr̄q Ñ AQpπK
r̄ q be the map reparameterizing gr pfLq

as a graph over πr̄ and let φr̄,φL be the maps reparameterizing of grpφq as graph over πr̄, πL
respectively. Then we have

ˇ

ˇ

ˇ

ˇ

ˇ

ż

B1p0,πq

GpDf,QJDφKq2ϕ p|y|q dy ´

ż

B1XM
|DN |2ϕ pdpyqq dy

ˇ

ˇ

ˇ

ˇ

(53)

ď C

ż

B1p0,πq

p|Df |4 ` |Dφ|4q dy ` Cm1`γ2

0 ` C

ż

B1XM
p|AM|2|N |2 ` |DN |4q

` C

ż

C1p0,πq

ˇ

ˇ

ˇ
M⃗pppzqq ´ M⃗

`

φppπpzqq
˘

ˇ

ˇ

ˇ
d}Gf }pzq,

and
ˇ

ˇ

ˇ

ˇ

ˇ

ż

Br̄p0,πr̄q

GpDfr̄, QJDφr̄Kq2ϕ

ˆ

|y|

r̄

˙

dy ´

ż

Br̄XM
|DN |2ϕ

ˆ

dpyq

r̄

˙

dy

ˇ

ˇ

ˇ

ˇ

(54)

ď C

ż

Br̄p0,πr̄q

p|Dfr̄|4 ` |Dφr̄|4q dy ` C

ż

BL

p|DfL|4 ` |DφL|4q dy

` Cm1`γ2

0 r̄m`2`γ2 ` C

ż

BL

p|AM|2|N |2 ` |DN |4q

` C

ż

Cr̄p0,πr̄q

ˇ

ˇ

ˇ
M⃗pppzqq ´ M⃗

`

φppπr̄
pzqq

˘

ˇ

ˇ

ˇ
d}Gfr̄}pzq.

We will in addition require the following comparison between the gradients of the parame-
terizing maps of consecutive center manifolds in the procedure [15, Section 2.1].

Lemma 6.8. There exists a constant C “ Cpm,n,Qq ą 0 such that the following holds.
Suppose that T , Σ satisfy Assumption 2.3. Let Mk´1,Mk be successive center manifolds for
T with respective normal approximations Nk´1, Nk, associated to the respective intervals of
flattening stk, tk´1s and stk`1, tks, as defined in Section 2. Assume that EpT,B6

?
mtk , πkq “

EpT,B6
?
mtkq for some plane πk and let φ̃k´1 be map reparametrizing gr pφk´1q as a graph
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over πk. Letting φ̃k :“ φ̃k´1

´

tk
tk´1

¨

¯

, we have

(55)

ż

B2

|Dφk ´Dφ̃k|2 ď Cm
3{2
0,k .

and

(56)

ż

B1

|φk ´ φ̃k|2 ď Cm0,k .

Finally, we will need the following control on the difference between the projection ppzq of
a point z to a center manifold M, and the image under φ of the planar projection pπ0pzq:

Lemma 6.9. There exists a constant C “ Cpm,n,Qq ą 0 such that the following holds.
Suppose that T , M, m0, r̄, f , fr̄, π, πr̄, φr̄ are as in Corollary 6.7. Then we have

ż

Cr̄p0,πr̄q

ˇ

ˇ

ˇ
M⃗pppzqq ´ M⃗

`

φr̄ppπr̄ pzqq
˘

ˇ

ˇ

ˇ
d}Gf }pzq ď Cr̄m`1m1`γ2

0 ,(57)

ż

C1p0,πq

ˇ

ˇ

ˇ
M⃗pppzqq ´ M⃗

`

φppπpzqq
˘

ˇ

ˇ

ˇ
d}Gf }pzq ď Cm1`γ2

0 .(58)

6.2. Proof of Proposition 6.2. We now have all of the relevant tools to prove the frequency
variation estimate (47). We start with the preliminary observation that I is absolutely contin-
uous on each interval ssk, tkr, while it might have jump discontinuities at the points sk “ tk`1.

First, we control the jumps of I at these points. Letting Dk :“ DNk
, Hk :“ HNk

, and letting

D̄kprq :“ r´pm´2qDkprq, H̄kprq :“ r´pm´1qHkprq denote the corresponding scale-invariant
quantities, we claim that we have the estimate

(59)
ˇ

ˇIpt`k q ´ Ipt´k q
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D̄k´1

´

tk
tk´1

¯

H̄k´1

´

tk
tk´1

¯ ´
D̄k p1q

H̄k p1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cmγ2

0,kp1 ` Ipt`k qq.

Rearranging and using the triangle inequality, it suffices to demonstrate that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D̄k´1

´

tk
tk´1

¯

´ D̄kp1q

H̄k p1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cmγ2

0,k,(60)

D̄k´1

ˆ

tk
tk´1

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

H̄k´1

´

tk
tk´1

¯ ´
1

H̄k p1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cm0,kIk´1

ˆ

tk
tk´1

˙

.(61)

Before we proceed, given πk such that EpT,B6
?
mtkq “ EpT,B6

?
mtk , πkq let us introduce the

Lipschitz approximation fk : B3 Ă πk Ñ AQpπK
k q of [13, Theorem 2.4] for T0,tk B6

?
m and

the map f̃k´1 :“ ftk{tk´1
: Btk{tk´1

p0, πkq Ñ AQpπK
k q from Corollary 6.7 with r̄ “

tk
tk´1

. We

let φ̃k´1, φ̃k be as in Lemma 6.8 and let f̃k :“ f̃k´1

`

tk
tk´1

¨
˘

. We additionally introduce

the measures dµk´1pyq :“ ϕk

´

tk´1

tk
dpyq

¯

dy and dµpyq :“ ϕ pdpyqq dy, where dy is the

m-dimensional Lebesgue measure on πk. We also define the balls Bk´1 :“ Btk{tk´1
X Mk´1,

Bk´1 :“ Btk{tk´1
p0, πkq and the cylinder Ck´1 :“ Ctk{tk´1

p0, πkq.
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We begin with the estimate (60). Comparing both terms with the corresponding linearized
quantity (cf. Corollary 6.7) and rescaling appropriately we have

ˇ

ˇ

ˇ

ˇ

D̄k´1

ˆ

tk
tk´1

˙

´ D̄kp1q

ˇ

ˇ

ˇ

ˇ

ď

ˆ

tk
tk´1

˙´pm´2q ˇ
ˇ

ˇ

ˇ

ż

Bk´1

|DNk´1|2 dµk´1 ´

ż

Bk´1

GpDf̃k´1, QJDφ̃k´1Kq2 dµk´1

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ż

B1XMk

|DNk|2 dµ´

ˆ

tk
tk´1

˙´pm´2q ż

Bk´1

GpDf̃k´1, QJDφ̃k´1Kq2 dµk´1

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˆ

tk
tk´1

˙´pm´2q ˇ
ˇ

ˇ

ˇ

ż

Bk´1

|DNk´1|2 dµk´1 ´

ż

Bk´1

GpDf̃k´1, QJDφ̃k´1Kq2 dµk´1

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ż

B1XMk

|DNk|2 dµ´

ż

B1p0,πkq

GpDf̃k, QJDφ̃kKq2 dµ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Now we may use Lemma 6.8 to replace φ̃k with φk, yielding

ˇ

ˇ

ˇ

ˇ

D̄k´1

ˆ

tk
tk´1

˙

´ D̄kp1q

ˇ

ˇ

ˇ

ˇ

ď

ˆ

tk
tk´1

˙´pm´2q ˇ
ˇ

ˇ

ˇ

ż

Bk´1

|DNk´1|2 dµk´1 ´

ż

Bk´1

GpDf̃k´1, QJDφ̃k´1Kq2 dµk´1

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ż

B1XMk

|DNk|2 dµ´

ż

B1p0,πkq

GpDf̃k, QJDφkKq2 dµ

ˇ

ˇ

ˇ

ˇ

ˇ

` Cm1`γ2

0,k .

We are now in a position to make use of Corollary 6.7, combined with the observation that
f̃k is still a valid πk-approximation for T0,tk in C4p0, πkq as in [13], since fk´1 is a πk´1-
approximation for T0,tk´1

and we have the estimates [14, Proposition 4.1] on the tilting of πk
relative to πk´1. This gives

ˇ

ˇ

ˇ

ˇ

D̄k´1

ˆ

tk
tk´1

˙

´ D̄kp1q

ˇ

ˇ

ˇ

ˇ

ď C

ˆ

tk
tk´1

˙´pm´2q
˜

ż

Bk´1

p|Dfk´1|4 ` |Dφ̃k´1|4q dy

`

ż

BLk

p|DfLk
|4 ` |DφLk

|4q dy

`

ż

BLk

p|AMk´1
|2|Nk´1|2 ` |DNk´1|4q

`

ż

Ck´1

ˇ

ˇ

ˇ
M⃗k´1pppzqq ´ M⃗k´1

`

φppπk
pzqq

˘

ˇ

ˇ

ˇ
d}Gfk´1

}pzq

¸

` C

˜

m1`γ2

0,k´1

ˆ

tk
tk´1

˙4`γ2

`

ż

B1p0,πkq

p|Df̃k|4 ` |Dφ|4q dy

`

ż

B1XMk

p|AMk
|2|Nk|2 ` |DNk|4q

`

ż

C1p0,πkq

ˇ

ˇ

ˇ
M⃗pppzqq ´ M⃗

`

φppπpzqq
˘

ˇ

ˇ

ˇ
d}Gf }pzq ` m1`γ2

0,k

¸

.
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Lemma 6.9 thus yields

ˇ

ˇ

ˇ

ˇ

D̄k´1

ˆ

tk
tk´1

˙

´ D̄kp1q

ˇ

ˇ

ˇ

ˇ

ď C

ˆ

tk
tk´1

˙´pm´2q
˜

ż

Bk´1

p|Dfk´1|4 ` |Dφ̃k´1|4q dy

`

ż

BLk

p|DfLk
|4 ` |DφLk

|4q dy

`

ż

BLk

p|AMk´1
|2|Nk´1|2 ` |DNk´1|4q

¸

` C

˜

m1`γ2

0,k´1

ˆ

tk
tk´1

˙3

`

ż

B1p0,πkq

p|Df̃k|4 ` |Dφ|4q dy

`

ż

B1XMk

p|AM|2|N |2 ` |DN |4q ` m1`γ2

0,k

¸

.

We may now control the initial excess m0,k´1 of T0,tk´1
in terms of the excess EpT0,tk´1

,BLk
q,

which is in turn controlled by the initial excess m0,k of T0,tk :

(62) m0,k´1

ˆ

tk
tk´1

˙2´2δ2

ď Cm0,k.

This, in combination with the estimates [13, Theorem 2.4] and [14, Theorem 1.17, Theorem 2.4,
Corollary 2.5] allows us to conclude that

ˇ

ˇ

ˇ

ˇ

D̄k´1

ˆ

tk
tk´1

˙

´ D̄kp1q

ˇ

ˇ

ˇ

ˇ

ď Cm1`γ2

0,k .

Since the comparison of center manifolds [14, Proposition 3.7] gives H̄kp1q ě cm0,k for some
dimensional constant c ą 0, the estimate (60) follows.

Let us now prove (61). First of all, observe that

D̄k´1

ˆ

tk
tk´1

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

H̄k´1

´

tk
tk´1

¯ ´
1

Hk p1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“
Ik´1

´

tk
tk´1

¯

Hkp1q

ˇ

ˇ

ˇ

ˇ

Hkp1q ´ H̄k´1

ˆ

tk
tk´1

˙
ˇ

ˇ

ˇ

ˇ

.

To estimate the difference between the L2-heights, we may one again compare both with the
height of the corresponding Lipschitz approximations over the averages of their sheets:

ˇ

ˇ

ˇ

ˇ

H̄k´1

ˆ

tk
tk´1

˙

´ H̄kp1q

ˇ

ˇ

ˇ

ˇ

ď

ˆ

tk
tk´1

˙´pm´1q ˇ
ˇ

ˇ

ˇ

ż

Bk´1

|Nk´1|2 dµk´1 ´

ż

Bk´1

Gpfk´1, QJφ̃k´1Kq2 dµk´1

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ż

B1XMk

|Nk|2 dµ´

ˆ

tk
tk´1

˙´pm´1q ż

Bk´1

Gpfk´1, QJφ̃k´1Kq2 dµk´1

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˆ

tk
tk´1

˙´pm´1q ˇ
ˇ

ˇ

ˇ

ż

Bk´1

|Nk´1|2 dµk´1 ´

ż

Bk´1

Gpfk´1, QJφ̃k´1Kq2 dµk´1

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

B1XMk

|Nk|2 dµ´

ż

B1

Gpf̃k, QJφ̃kKq2 dµ

ˇ

ˇ

ˇ

ˇ

.
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Now let g̃k´1, g̃k be as in Lemma 4.4 for φ̃k´1, fk´1 and φk, f̃k respectively and let Ak´1 :“

Bk´1z 1
2B

k´1, Ak :“ B1p0, πkqzB1{2p0, πkq. The reverse triangle inequality and the esti-
mate (25) (combined with an appropriate rescaling) then allow us to deduce that

ˇ

ˇ

ˇ

ˇ

H̄k´1

ˆ

tk
tk´1

˙

´ H̄kp1q

ˇ

ˇ

ˇ

ˇ

ď C

ˆ

tk
tk´1

˙´pm´1q ż

Ak´1

GpNk´1pφ̃k´1pyqq, g̃k´1pyqq2 dy

`

ż

Ak

GpNkpφkpyqq, g̃kpyqq2 dy

ď C

ˆ

tk
tk´1

˙5
`

}Dφ̃k´1}4C0 ` }Dφ̃k´1}2C0m0,k´1

˘

` C}Dφk}4C0 .

The estimates in [14, Theorem 1.17, Proposition 3.4] then give
ˇ

ˇ

ˇ

ˇ

H̄k´1

ˆ

tk
tk´1

˙

´ H̄kp1q

ˇ

ˇ

ˇ

ˇ

ď Cm2
0,k.

Again using that H̄kp1q ě cm0,k, we further have

Ik´1

´

tk
tk´1

¯

H̄kp1q
ď Cm´1

0,kIk´1

ˆ

tk
tk´1

˙

.

The desired estimate follows immediately, and thus we are able to conclude that (59) holds.

From (59) we immediately conclude
ÿ

k

plogpIpt`k q ` 1q ´ logpIpt´k q ` 1qq´ ď C
ÿ

k

mγ4

0 .(63)

Indeed, if Ipt`k q ě Ipt´k q, then plogpIpt`k q ` 1q ´ logpIpt´k q ` 1qq´ “ 0, otherwise we have

plogpIpt`k q ` 1q ´ logpIpt´k q ` 1qq´ “ logpIpt´k q ` 1q ´ logpIpt`k q ` 1q ď
Ipt´k q ´ Ipt`k q

Ipt`k q ` 1

and we can just sum (59) recalling that γ2 ě γ4 and m0 ď 1.

We next wish to control the absolutely continuous part of
”

d logpI`1q

dr

ı

´
. Here, we exploit the

almost-monotonicity in Corollary 6.5. We argue on each interval ssk, tkr and will henceforth
let Br denote differentiation in the variable t

tk
. Note that Br “ tkBt. Due to Corollary 6.5, for

almost-every t Pstk`1, tks we have

plogpI ` 1qq1ptq “
1

tk
BrIk

ˆ

t

tk

˙ˆ

1 ` Ik

ˆ

t

tk

˙˙´1

ě ´
C

tk
mγ4

0,k

«

1 `

ˆ

t

tk

˙´1

Dk

ˆ

t

tk

˙γ4

` Dk

ˆ

t

tk

˙γ4´1

D1
k

ˆ

t

tk

˙

`
t

tk

ff

.

We are now ready to introduce a monotone function Ω which will help us close the estimate.
First of all we let ψkptq :“ C

tk
mγ4

0,k1stk`1,tksptq and let the absolutely continuous part of the
derivative of Ω be

Ω1ptq :“ ψkptq

«

1 `

ˆ

t

tk

˙´1

Dk

ˆ

t

tk

˙γ4

` Dk

ˆ

t

tk

˙γ4´1

D1
k

ˆ

t

tk

˙

`
t

tk

ff

.

Next we consider the “jump measure”

µj :“ C
J
ÿ

k“j0

mγ4

0,kδtk .

Hence we set ΩpsJq “ 0 and define Ω by integration, setting its distributional deritative to be
µj ` Ω1L1. Observe that Ω is monotone: µj is obviously a nonnegative measure, while Ω1 is
a nonnegative function since both Dk and D1

k are nonnegative (recall the explicit formula for
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the latter). On the other hand the estimates proved so far obviously show that logpI ` 1q ` Ω
is nondecreasing. In particular it immediately follows that
›

›

›

›

„

d logpI ` 1q

dr

ȷ

´

›

›

›

›

TV

ď

›

›

›

›

„

dΩ

dr

ȷ

`

›

›

›

›

TV

“ Ωptj0q ´ ΩpsJq

ď C
J
ÿ

k“j0

mγ4

0,k `

J
ÿ

k“j0

ż tk

sk

pΩ1q`ptq dt

ď C
J
ÿ

k“j0

mγ4

0,k ` C
J
ÿ

k“j0

mγ4

0,k

ż 1

sk
tk

`

1 ` sγ4m´1 ` BspDkpsqγ4q ` s
˘

ds

ď C
J
ÿ

k“j0

mγ4

0,k ` C
J´1
ÿ

k“j0

mγ4

0,k ps` sγ4m ` Dkpsqγ4q

ˇ

ˇ

ˇ

ˇ

ˇ

1

s“
sk
tk

ď C
J
ÿ

k“j0

mγ4

0,k .

6.3. Proofs of auxiliary results from Section 6.1.

Proof of Lemma 6.6. We will argue as in [12, Section 3.1], making use of the multiple-valued
area formula. Consider

E :“

ż

Crp0,πq

|G⃗f ´ M⃗ ˝ p|2ϕ

ˆ

|pπpzq|

r

˙

d}Gf }pzq

“ 2

ż

Crp0,πq

ϕ

ˆ

pπppq|

r

˙

d}Gf }ppq ´ 2

ż

Crp0,πq

xG⃗f ,M⃗ ˝ pyϕ

ˆ

|pπpzq|

r

˙

d}Gf }pzq.

By the Q-valued area formula [12, Corollary 1.11], we have

2

ż

Crp0,πq

ϕ

ˆ

|pπpzq|

r

˙

d}Gf }pzq “ 2Q

ż

Brp0,πq

ϕ

ˆ

|y|

r

˙

dy

`

ż

Brp0,πq

ˆ

|Df |2ϕ

ˆ

|pπpyq|

r

˙

`Op|Df |4q

˙

dy.

Meanwhile, for ξ⃗ “ pe1 ` Dφ|pπpy,fipyqqe1q ^ pem ` Dφ|pπpy,fipyqqemq and vik “ ek ` Dfi|yek,

wi
k “ ek `Dφ|pπpy,fipyqqek, we have

2

ż

Crp0,πq

xG⃗f ,M⃗ ˝ pyϕ

ˆ

|pπpzq|

r

˙

d}Gf }pzq

“ 2

ż

Crp0,πq

xG⃗f pzq,M⃗
`

φppπpzqq
˘

yϕ

ˆ

|pπppq|

r

˙

d}Gf }pzq

` 2

ż

Crp0,πq

xG⃗f pzq,
´

M⃗pppzqq ´ M⃗
`

φppπpzqq
˘

¯

yϕ

ˆ

|pπpzq|

r

˙

d}Gf }pzq

“
2

|ξ|

ż

Brp0,πq

ϕ

ˆ

|y|

r

˙

ÿ

i

xv1 ^ ¨ ¨ ¨ ^ vm, w1 ^ ¨ ¨ ¨ ^ wmy dy

` 2

ż

Crp0,πq

xG⃗f pzq,
´

M⃗pppzqq ´ M⃗
`

φppπpzqq
˘

¯

yϕ

ˆ

|pπpzq|

r

˙

d}Gf }pzq

“
2

|ξ|

ż

Brp0,πq

ϕ

ˆ

|y|

r

˙

ÿ

i

detBi dy

` 2

ż

Crp0,πq

xG⃗f pzq,
´

M⃗pppzqq ´ M⃗
`

φppπpzqq
˘

¯

yϕ

ˆ

|pπpzq|

r

˙

d}Gf }pzq,

where Bi
jk “ δjk ` xDfi|yej , Dφ|pπpy,fipyqqeky. Expanding out the first term, we have

1

|ξ|
detBi “

ˆ

1 ´
1

2
|Dφ|2 `Op|Dφ|4q

˙

`

1 `Dfi : Dφ `Op|Df |2|Dφ|2q
˘

.
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Thus, we have

E “

ż

Brp0,πq

|Df |2ϕ

ˆ

|y|

r

˙

dy `Q

ż

BL

|Dφ|2ϕ

ˆ

|y|

r

˙

dy ´ 2
ÿ

i

ż

pDfi : Dφqϕ

ˆ

|y|

r

˙

dy

`O

˜

ż

Brp0,πq

p|Df |4 ` |Dφ|4 ` |Df |2|Dφ|2

¸

`O

˜

ż

Crp0,πq

ˇ

ˇ

ˇ

@

G⃗f pzq,
´

M⃗pppzqq ´ M⃗
`

φppπpzqq
˘

¯

D

ˇ

ˇ

ˇ
d}Gf }pzq

¸

“

ż

Brp0,πq

GpDf,QJDφKq2ϕ

ˆ

|y|

r

˙

dy `O

˜

ż

Brp0,πq

p|Df |4 ` |Dφ|4

¸

`O

˜

ż

Crp0,πq

ˇ

ˇ

ˇ
M⃗pppzqq ´ M⃗

`

φppπpzqq
˘

ˇ

ˇ

ˇ
d}Gf }pzq

¸

.

□

Proof of Corollary 6.7. It suffices to prove (54), since the argument for (53) is analogous (in
fact it is easier since one does not need to reparameterize the graphical approximation from the
cube L to the plane πr̄). Let us begin with the corresponding estimate for fL. Letting F be
as in [12, Assumption 3.1] for the normal approximation N and letting CL :“ C32rLppL, πLq

and BL :“ B64rLppLq X M, we have

ż

CL

|G⃗fL ´ M⃗ ˝ p|2 d}GfL} ď

ż

CL

|T⃗ ´ M⃗ ˝ p|2 d}T } ` C}T ´ Gf }pCLq

ď

ż

p´1pBLq

|T⃗F ´ M⃗ ˝ p|2 d}TF } ` C}T ´ GfL}pCLq

` C}T ´ TF }pp´1pBLzKqq ,

where K Ă M is the set over which T (in fact the slices xT,p, py) coincides with TF (i.e. the
corresponding slices xTF ,p, py, which in fact are the currents

ř

iJFippqK “
ř

iJp`NippqK).
Applying (a localized version of) [12, Proposition 3.4], we have

ż

CL

|G⃗fL ´ M⃗ ˝ p|2 d}GfL} ď

ż

BL

|DN |2 dy ` C}T ´ GfL}pCLq ` C}T ´ TF }pp´1pBLzKqq

` C

ż

BL

p|AM|2|N |2 ` |DN |4q.

Let us now control }T ´ GfL} and }T ´ TF }. To do this, we make use of the estimates
in [13, Theorem 2.4] and [14], combined with a Vitali covering of BLzK by Whitney regions
LpL1q and the height bound in [14, Proposition 4.1], to deduce that

ż

CL

|G⃗fL ´ M⃗ ˝ p|2 d}GfL} ď

ż

BLXM
|DN |2 dy ` Cm1`γ1

0 ℓpLqm`2`γ1

` Cm1`γ2

0 ℓpLqm`2`γ2 ` C

ż

BL

p|AM|2|N |2 ` |DN |4q.

It remains to replace fL with fr̄ inside Br̄p0, πr̄q, but this is trivial since GfL ” Gfr̄

Cr̄p0, πr̄q. Combining this with the fact that sptGfr̄ XCr̄p0, πr̄q Ă sptGfr̄ XCL and Lemma 6.6,
the result follows. □
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Proof of Lemma 6.8. Let η P C8
c pB2rq be a Lipschitz cutoff with η ” 1 on B1. Integrating by

parts and using the estimates in [14, Theorem 1.17], we have
ż

B1

|Dφk ´Dφ̃k|2 ď

ż

B2

|Dφk ´Dφ̃k|2η

“ ´

ż

B2

pφk ´ φ̃kqη∆pφk ´ φ̃kq ´

ż

B2zB1

Dη ¨ pφk ´ φ̃kqDpφk ´ φ̃kq

ď C

ˆ

m
1
2

0,k `
tk
tk´1

m
1{2
0,k´1

˙
ż

B2

|φk ´ φ̃k|.

In particular, taking into account (62), it suffices to prove (56). To that end, consider a
Lipschitz approximation fk : B3p0, πkq Ñ AQpRnq as in [13, Theorem 2.4] for the current T0,tk
in the cylinder C12p0, πkq, where the excess is bounded by m0,k. We claim that

ż

B2

|φk ´ η ˝ fk| ď Cm0,k ,(64)

ż

B2

|φ̃k ´ η ˝ fk| ď Cm0,k ,(65)

and obviously (56) will follow from the latter.
First of all we observe that, since the tilt between the planes πk and πk´1 is controlled by

m
1{2
0,k due to [14, Proposition 4.1], all the estimates of [13, Theorem 2.4] apply to the map

f̄k : B5{2p0, πk´1q which parametrizes graphically Gfk in the cylinder C5{2p0, πk´1q. Setting

φ̄k :“ φk´1p
tk

tk´1
¨q, (65) will actually follow from

(66)

ż

B2p0,πk´1q

|φ̄k ´ η ˝ f̄k| ď Cm0,k

combined with [14, Lemma 5.6, Lemma B.1].
The argument leading to (66) is entirely analogous to the one leading to (64), with the only

difference that instead of a control with m0,k it leads to a control with

m0,k `

ˆ

tk
tk´1

˙2´2δ2

m0,k´1 .

However the latter is once again controlled by Cm0,k because of (62).
We now come to the proof of (64). We recall the algorithm leading to the construction of

φk. In particular, B2 is covered by the union of contact set Γ and the Whitney cubes L P W
described in [14, Section 1]. We discard the cubes which are not intersecting B2 and denote
the family of remaining ones by W 1. Since the sidelength of each such cube is at most 2´N0 ,
we can assume that each cube L P W 1 is fully contained within B3p0, πkq, where fk is defined.
We can then estimate

(67)

ż

B2

|φk ´ η ˝ fk| ď

ż

ΓXB2

|φk ´ η ˝ fk| `
ÿ

LPW 1

ż

L

|φk ´ η ˝ fk| .

Before coming to the estimates of each integrand in the above sums, we record the following
important consequence of [13, Theorem 2.4] and [14, Theorem 1.17]:

(68) }φk ´ η ˝ fk}C0 ď Cmγ
0,k ,

for γ “ mint 1
2m , γ1u, where γ1 ą 0 is as in [13, Theorem 2.4]. We moreover let K Ă B3p0, πkq

be the set of [13, Theorem 2.4] for fk, namely the set over which, loosely speaking, the graph
of fk coincides with the current T0,tk .

In order to estimate the first integrand in the sum on the right-hand side of (67), observe
that the identity

T0,tk pΓ ˆ πK
k q “ QJGφk

K
follows from [14, Corollary 2.2]. In particular φk ” η ˝ fk on Γ XK and so we can estimate

(69)

ż

ΓXB2

|φk ´ η ˝ fk| ď |B3zK|}φk ´ η ˝ fk}C0 ď Cm1`2γ
0,k .
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As for the remaining summands in the right hand side of (67), we introduce the plane of
reference πL of [14, Definition 1.14], the πL-approximation fL of Lemma [14, Lemma 1.15], and
the tilted interpolating function hL and the interpolating function gL of [14, Definition 1.16].
We start by appealing to [14, Proposition 4.4(v)& Theorem 1.17(ii)] to estimate

(70)

ż

L

|φk ´ gL| ď Cm0,kℓpLqm`3`β2{3 .

Next, let f 1
L and pη ˝ fLq1 be the functions defined on L and taking values, respectively, on

AQpπK
Lq and πK

L , whose graphs coincide with the graphs of fL and η ˝ fL on Lˆ πK
k . We first

use [14, Lemma B.1(b)] to estimate

(71)

ż

L

|gL ´ pη ˝ fLq1| ď C

ż

B2
?

mℓpLqppL,πLq

|hL ´ η ˝ fL|,

where pL is the center of L, while by [14, Proposition 5.2], we have

(72)

ż

B2
?

mℓpLqppL,πLq

|hL ´ η ˝ fL| ď Cm0,kℓpLqm`3`β2 .

In addition, [14, Lemma 5.6] gives us the estimate

(73)

ż

L

|pη ˝ fLq1 ´ η ˝ pf 1
Lq| ď Cm0,kℓpLqm`3`β2{2 .

Putting (70), (71), (72), and (73) together we then reach

(74)

ż

L

|φk ´ η ˝ pf 1
Lq| ď Cm0,kℓpLqm`3`γ ,

for some γ ą 0. Next, observe that by [14, Lemma 1.15] there is a set K 1
L Ă L such that in

K 1
L ˆ πK

k , the current T coincides with the graph of f 1
L and such that

(75) |LzK 1
L| ď Cm1`γ1

0,k ℓpLqm

It thus turns out that f 1
L and fk coincide over K 1

L XK. In particular we can estimate

(76)

ż

L

|η ˝ f 1
L ´ η ˝ fk| ď Cp|LzK| ` |LzK 1

L|qmγ1

0,k ď Cm1`2γ1

0,k ℓpLqm ,

which combined with (74) gives

(77)

ż

L

|φk ´ η ˝ fk| ď Cm0,kℓpLqm`3`γ ` Cm1`2γ1

0,k ℓpLqm .

Since the collection W 1 consists of disjoint cubes contained in B3, we can sum (77) over L P W 1

to reach

ÿ

LPW 1

ż

L

|φk ´ η ˝ fk| ď Cm0,k ` Cm1`2γ1

0,k ď Cm0,k .(78)

Clearly, (67), (69), and (78) imply (64) and thus complete the proof. □

Proof of Lemma 6.9. We begin with the estimate (57). Due to the fact that }φr̄}C2 ď Cm
1{2
0

and the estimates in [13, Theorem 2.4], we have
ż

Cr̄p0,πr̄q

ˇ

ˇ

ˇ
M⃗pppzqq ´ M⃗

`

φr̄ppπr̄
pzqq

˘

ˇ

ˇ

ˇ
d}Gf }pzq ď Cm

1{2
0

ż

Cr̄p0,πr̄q

|p ´ φr̄ ˝ pπr̄ | d}Gf }

ď Cm
1{2
0

ż

KˆπK
r̄

|p ´ φr̄ ˝ pπr̄
| d}T }

` Cr̄m`1m1`γ1

0 .
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Now by the definition of the scale r̄, we may use the height bound [14, Corollary 2.2], the
estimates in [14, Proposition 4.1] and to deduce that

ż

KˆπK
r̄

|p ´ φr̄ ˝ pπr̄
| d}T } ď

ż

KˆπK
r̄

|ppzq ´ z| d}T }pzq

`

ż

KˆπK
r̄

|z ´ φr̄ ˝ pπr̄
pzq| d}T }pzq

ď Cr̄m`1`β2m
1{2`1{2m
0 .

This gives the claimed estimate (57). The estimate (58) follows analogously, only at unit
scale and via the cover of B1 with Whitney cubes of W and the coincidence region Γ, as
in [15, Section 4]. □

6.4. Frequency jumps. While this completes the proof of the desired BV bound, we wish to
isolate one more general version of the estimates on the “jumps” of the frequency function at the
endpoint scales tj , only this time, we want to compare the frequency functions at comparable
scales, relative to two center manifolds with different centers. This will prove crucial in our
subsequent work [9]. It follows directly from the above arguments, after observing that we are
just using the presence of a “stopping cube” in one of the two center manifolds construction,
at the desired scale, which is not “too small”, together with the fact that at all larger scales
there are no stopping cubes which are too large. We are in addition using the fact that all
constants in the estimates on the center manifold and the associated normal approximation
are independent of the center point of the construction (cf. [29]).

Lemma 6.10. Consider T and Σ as in Assumption 2.1, let z and w be such that ΘpT, zq “

ΘpT,wq “ Q and let r ď r0, r1 be three positive numbers such that:

(a) Tz,r0 falls under the Assumptions of [14, Theorem 1.17] and φ0 : r´4, 4sm Ą π0 Ñ πK
0

is the graphical map describing the center manifold M0 constructed in that theorem
applied to Tz,r0 .

(b) Tw,r1 falls under the Assumptions of [14, Theorem 1.17] and φ1 : r´4, 4sm Ą π1 Ñ πK
1

is the graphical map describing the center manifold M1 constructed in that theorem
applied to Tw,r1 .

(c) For the families of Whitney cubes W0 and W1 of [14, Definition 1.10] used in the
construction of the respective center manifolds, we have

ℓpLq ě csρ @ρ P

„

r

r0
, 4

ȷ

@L P W0 s.t. LXBρp0, π0q ‰ H(79)

ℓpLq ě csρ @ρ P

„

r

r1
, 4

ȷ

@L P W1 s.t. LXBρp0, π1q ‰ H ,(80)

where cs is the geometric constant of [15, Section 2].

Define

c̄s :“ maxtℓpLq : L P W e
0 and LXBr{r0p0, π0q ‰ Hu

and let N0 and N1 be the graphical approximations of Tz,r0 on M0 and Tw,r1 on M1 respec-

tively. Consider the points x1 “ p0,φ1p0qq P M0 and x0 “ ppπ0
pr´1

1 pw´zqq,φ0pr´1
0 pw´zqqq P

M1. Then we have (cf. (59)) the estimate

|IN0
px0, r

´1
0 rqq ´ IN1

px1, r
´1
1 rq| ď C̄mγ2

0 p1 ` IN0
px0, r

´1
0 rqq ,

where the constant C̄ depends on m, n, n̄, Q, and c̄s.

7. Proof of Theorem 2.9: the case IpT, 0q ą 1

The goal of this section is to prove that the singular frequency value is unique when IpT, 0q ą

1. The proof will also show that the tangent cone is then a unique flat plane and that the
rescaled currents converge polynomially fast to it. In particular this section will settle Theorem
2.10(iv), but also Theorem 2.10(i),(ii)&(iii) when IpT, 0q ą 1.
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Proposition 7.1. Let T be as in Theorem 2.9. Then the conclusions (i)-(iv) of Theorem 2.10
hold whenever IpT, 0q ą 1.

In fact, since it will be useful in our further studies in the papers [9] and [10] we record a
consequence of our analysis which is more quantitative.

Proposition 7.2. Let T be as in Theorem 2.9. For every I0 ą 1 there are positive constants
Cpm,n,Qq and αpI0,m, n,Qq with the following property. If 0 is a flat singular point at which
IpT, 0q ě I0, then there is a radius r0 “ r0pT q ą 0 (which also implicitly depends on the center
point, which we are here assuming is the origin) such that

(81) EpT,Brq ď C

ˆ

r

r0

˙α

maxtEpT,Br0q, ε̄2r2´2δ2
0 u @r ă r0 .

Moreover, we can choose α to be any number which satisfies the inequalities α ă 2 ´ 2δ2 and
α ă 2pIpT, 0q ´ 1q, at the price of a constant C which depends also upon α.

Before coming to the proof of the proposition we state the following technical fact which
will prove to be very useful.

Lemma 7.3. Let T be as in Theorem 2.9. If there are infinitely many intervals of flattening,
then

lim inf
kÑ8

EpT,B6
?
mtkq “ 0

and hence
lim inf
kÑ8

m0,k “ 0

Proof. The second conclusion is an obvious consequence of the first. In order to prove the first
take a sequence rj such that rj Ñ 0 and EpT,B6

?
mrj q Ñ 0. Then rj belongs to some interval

of flattening sskpjq, tkpjqs. We claim that

(82) lim
jÑ8

EpT,B6
?
mskpjq

q “ 0 ,

which clearly would imply skpjq “ tkpjq`1 and hence the conclusion of the lemma.
Up to extraction of a further subsequence, we distinguish two cases:

(i) If
skpjq

rj
Ñ 0, since

EpT,B6
?
mskpjq

q ď C

ˆ

skpjq

tkpjq

˙2´2δ2

m0,kpjq ď C

ˆ

skpjq

rj

˙2´2δ2

ε23 ,

we conclude immediately that (82) holds.
(ii) If infj

skpjq

rj
“ σ ą 0, we then estimate

EpT,B6
?
mskpjq

q ď σ´mEpT,B6
?
mrj q

and again (82) follows immediately.

□

We will also need the following two facts about Dir-minimizing functions. For the first one
we refer to [11], while the second is a well-known fact about classical harmonic functions and
can be proved, for instance, using the expansion into spherical harmonics.

Lemma 7.4. If u : Rm Ą B1 Ñ AQpRnq is a Dir-minimizing function with Iup0q “ I0, then

(83)

ż

Bρ

|Du|2 ď ρm`2I0´2

ż

B1

|Du|2 @ρ ă 1 .

Lemma 7.5. If w : Rm Ą B1 Ñ Rn is a classical harmonic function, then

(84)

ż

Bρ

|Dw ´Dwp0q|2 ď ρm`2

ż

B1

|Dw|2 @ρ ă 1 .

In other words, after subtracting an optimal affine map, the frequency (at zero scale) of a
classical harmonic map must be at least two. In particular, we can draw the following simple
corollary.
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Corollary 7.6. Let u : Rm Ą B1 Ñ AQpRnq be Dir-minimizing. Then

(85)

ż

Bρ

GpDu,QJDpη ˝ uqp0qKq2 ď ρm´2`2mintIup0q,2u

ż

B1

|Du|2 @ρ ă 1 .

Proof of Proposition 7.1. From now on we assume that IpT, 0q ą 1. The main point will be to
show the following decay property:

(Dec) There are ε “ εpT q Ps0, ε3s, α “ αpI0,m, n,Qq ą 0 and κ P N such that, if

EpT,B6
?
mtkq ă ε2

and k ě κ, then:
(a) The intervals of flattening ssk, tks, ssk`1, tk`1s, . . . , ssk`κ, tk`κs satisfy sk`j´1 “

tk`j for j “ 1, . . . , κ.

(b) m0,k`κ ď

´

sk`κ

tk

¯α

m0,k.

Before coming to the proof of (Dec), observe that thanks to Lemma 7.3, there is at least one
integer k0 P N which satisfies the small excess assumption of the decay and since it can be
iterated, we may use (Dec) to conclude that

m0,k0`jκ ď

ˆ

tk0`jκ

tk0

˙α

m0,k0
ď ε23

ˆ

tk0`jκ

tk0

˙α

@j P N .

On the other hand, when we have intervals of flattening with coinciding endpoints sk “ tk`1,
we can iterate the estimate

m0,k`1 ď C

ˆ

tk`1

tk

˙2´2δ2

m0,k ď Cm0,k ,

for C “ Cpm,n,Qq ą 0, to conclude that indeed

(86) m0,k ď C

ˆ

tk
tk0

˙α

@k ě k0 .

We then also recall

EpT,Brq ď C

ˆ

r

tk

˙2´2δ2

m0,k @r P rtk`1, tks .

Combined with (86), we infer the geometric decay of the excess with r0 “ tk0
, which implies im-

mediately the uniqueness of the tangent cone and the polynomial convergence of the rescalings
(i.e. point (iv) of Theorem 2.10).

Note moreover that, from (86), the fact that tk Ó 0 at least geometrically fast and the
frequency BV estimate of the previous section, we conclude the existence of the limit

I0 “ lim
rÓ0

Iprq ,

where I is the universal frequency function. This immediately implies that every fine blow-up
is I0-homogeneous, which in turn gives all the other conclusions of the proposition.

It therefore remains to show (Dec). First of all we choose α ă min 2tIpT, 0q ´ 1, 1 ´ δ2u.
The choice of κ will be more complicated, while those of k0 and ε are subordinate to κ. We
therefore fix κ at the moment, without specifying its choice, and treat it as a constant in order
to obtain the choice of k0 and ε. We start by showing that the first point (a) of (Dec) holds
and to this effect we impose that k0 is sufficiently large so that

(87) ε̄2t2´2δ2
k0

ď ε2.

Next we recall that

EpT,B6
?
mskq ď C

ˆ

sk
tk

˙2´2δ2

m0,k ď Cm0,k “ Cmaxtε̄2t2´2δ2
k , ε2u ď Cε2 ,

for each k ě k0, where C is a geometric constant, independent of ε. In particular, if we choose ε
sufficiently small, we conclude thatEpT,B6

?
mskq ď ε23, which in turn forces tk`1 “ sk. Observe

also that m0,k`1 ď Cm0,k, where the latter is the same constant of the previous estimate. In
particular, as long as tk`i`1 “ sk`i for i P t0, . . . , ju, we get EpT,B6

?
msj q ď Cjm0,k. Since
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this must be repeated κ times, under the assumption that Cκ0ε2 ď ε23, we get by induction
that tk`j`1 “ sk`j and mk`j`1 ď Cmk`j ď Cj`1m0,k.

We next show the second point (b) of (Dec). First of all we observe that it suffices to show

(88) EpT,B6
?
msk`κ´1

q ď

ˆ

sk`κ´1

tk

˙α

m0,k .

In fact, if m0,k “ ε̄2t2´2δ2
k , since 2 ´ 2δ2 ą α, we then have

m0,k`κ0 “ maxtEpT,B6
?
msk`κ´1

q, ε̄2s2´2δ2
k`κ´1u ď

ˆ

sk`κ´1

tk

˙α

ε̄2t2´2δ2
k

“

ˆ

sk`κ´1

tk

˙α

m0,k .

But if m0,k “ EpT,B6
?
mtkq, then EpT,B6

?
mtkq ě ε̄2t2´2δ2

k and hence again

ε̄2s2´2δ2
k`κ´1 ď

ˆ

sk`κ´1

tk

˙α

EpT,B6
?
mtkq ď

ˆ

sk`κ´1

tk

˙α

mk`κ .

Towards (88), we first argue as for the proof of point (i) of Theorem (2.10) to estimate

(89) EpT,B6
?
msk`κ´1

q ď Cκ

ˆ

sk`κ´1

tk

˙2´2δ2

m0,k .

Since κ and C are fixed and 2´2δ2 ą α, then clearly (88) follows if
sk`κ´1

tκ
is sufficiently small.

We are thus left to prove (88) under the addititional assumption that

(90)
sk`κ´1

tk
ě ρℓ ą 0 ,

where ρℓ is a fixed constant which depends on κ. Next, recall that sk
tk

ď 2´5 by [15, Proposition

2.2]. We therefore infer that sk`κ´1 ď 2´5κtk. In fact κ will be chosen large enough so that
the ratio

sk`κ´1

tk
is sufficiently small, a condition which we specify here by

(91)
sk`κ´1

tk
ď ρu .

The claim is now that, for an appropriate choice of ρu (which in turn fixes the choice of κ
and of ρℓ), once ε and k´1

0 are sufficiently small, then (88) holds. Towards this we argue by
contradiction and assume that, no matter how small we choose ε and how large we choose
k0 (satisfying (87)), there is always a choice of k ě k0 for which (88) fails. This implies the
existence of a sequence tk Ó 0 with the property that

(92) m0,k Ó 0 and EpT,B6
?
msk`κ´1

q ą

ˆ

sk`κ´1

tk

˙α

m0,k ,

while

(93) ρℓ ď
sk`κ´1

tk
ď ρu

We now choose the radius rk so that 8Mrk “ 6
?
mtk, where M is the constant of (6). We will

assume that κ is large enough so that rk ě sk`κ´1. Observe that we can now apply Proposition
4.1 and generate the coarse blow-up f̄ : BM Ñ AQ along the scales rk, which is Dir-minimizing.
In light of the comparability of the scales rk and sk`κ´1, the average-free part v of f̄ is, up to
a positive scalar multiple, a fine blow-up u, and we thus infer that Ivp0q “ Iup0q ě IpT, 0q. We
can then apply Corollary 7.6 to infer that

1

σm

ż

Bσ

GpDf̄,QJDpη ˝ f̄p0qqq2 ď C
´ σ

M

¯2α 1

Mm

ż

BM

|Df̄ |2 .

We can now use the Taylor expansion of the excess in [12] to infer that, for all σ P rρℓ, ρus,

EpT,B6
?
mσtkq ď 8mσ2αEpT,B6

?
mtkq ` CpEpT,B6

?
mtk ` t2kA

2q1`γ .
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Since At2k is controlled by m0,k, we easily conclude that, once we choose ρu small enough so
that 8mρ2αu ď 1

2ρ
α
u and choose k large enough and ε small enough so that

CpEpT,B6
?
mtk ` t2kA

2q1`γ ď Cm1`γ
0,k ď Cε2γm0,k ď

1

2
ραℓ m0,k ,

we achieve

max
rρℓďσďρus

σ´αEpT,B6
?
mσtkq ď m0,k

for all k sufficiently large. However this is in contradiction with (92) and (91).
Observe that the threshold ε in (Dec) may be made independent of T (and the center point,

which it also implicitly depends on). This may be done by replacing the above contradiction
compactness argument with one in which a sequence of currents Tk and varying centers xk are
taken. However, in order to do this one must also verify that the conclusion of Proposition 4.1
holds for “diagonal” coarse and fine blow-ups taken along such a varying sequence of currents
and centers. This is indeed true, but we omit the details here, since this is unnecessary for the
remainder of our arguments. □

8. Proof of Theorem 2.9: the case IpT, 0q “ 1

In this section we complete the proof of Theorem 2.9 by handling the case IpT, 0q “ 1. We
will moreover complete the proof of the points (i), (ii), and (iii) in Theorem 2.10.

Proposition 8.1. Let T be as in Theorem 2.9. Then the conclusions (i), (ii)&(iii) of Theorem
2.10 hold whenever IpT, 0q “ 1.

A key ingredient in the proof is a decay lemma which is a refinement of the one used in the
proof of Proposition 7.1:

Lemma 8.2. Let T be as in Theorem 2.9. For every γ ą 0 and every η ą 0 there are ε ą 0
and ρ ą 0 with the following property. Assume sa, bs is an interval of radii such that

(a) 0 ă a ă b ď ρ;
(b) EpT,B6

?
mrq ď ε for all a ď r ď b;

(c) Iprq ě 1 ` γ for all a ď r ď b.

Consider the intervals of flattening ssk̄`j̄ , tk̄`j̄sYssk̄`j̄´1, tk̄`j̄´1s Y . . .Yssk̄, tk̄s covering sa, bs
with the property that tk̄`j̄ “ sk̄`j̄´1, . . . , tk̄`1 “ sk̄ are contained in sa, bs. Then

(94)
j̄
ÿ

i“1

mγ4

0,k̄`i
ď η .

Proof. Observe that m0,κ`i ď ε2 for i ě 1 just by assumption. Since by assumption we know
that m0,k ď ε̄2, it suffices to prove the decay of (Dec) as long as k ` κ ď k̄ ` j̄ ´L where L is
a fixed natural number. In the argument by contradiction leading to the proof of (Dec) we are
thus also allowed to assume that L gets arbitrarily large, which in turn means that tk

ak
tends to

infinity (where sak, bks are corresponding intervals as above). In particular, notice that in the
argument given for (Dec) the key point was to infer that the average-free part of the coarse
blow-up v has Ivp0q “ Iup0q for some fine blow-up u while Iup0q ą 1. In our situation the
bound Iup0q ě IpT, 0q just gives Iup0q ě 1. On the other hand, using the fact that ak

tk
Ñ 0

and our assumption that Iprq ě 1 ` γ for all r Psak, tks, we can use the convergence of the
frequency function to conclude

Iupρq “ lim
kÑ8

Ipρrkq ě 1 ` γ

for an arbitrary positive ρ. This in turn gives Iup0q ě 1 ` γ. □

Proof of Proposition 8.1. As we have already argued at the start of the proof of Proposition
7.1, the key is in fact to prove the second part of Theorem 2.10(iii). We thus assume that there
is some other blow-up sequence rk Ñ 0 with the property that Iprkq Ñ 1 ` 2γ for some γ ą 0.
Our aim is then to show that this leads to a contradiction. We apply Lemma 8.2 from the



42 C. DE LELLIS AND A. SKOROBOGATOVA

previous section with some parameter η ą 0 which will be chosen later. Fix the corresponding
ε ą 0 and ρ ą 0 given by Lemma 8.2 and consider the set

R :“
␣

r Ps0, ρr : EpT,B6
?
mrq ď ε2 and I`prq ě 1 ` γ

(

,

(since the universal frequency function has jumps, at the jump points we let I`prq be the right-
hand limit). We might later need to choose ε even smaller than that prescribed by Lemma 8.2;
the only property needed is that the conclusion of the Lemma still applies.

Observe that R cannot contain a neighborhood of the origin, otherwise we would have
Iprq ě 1`γ for all r sufficiently small, which in turn would imply that, if u is any fine blow-up,
then

Iupρq ě 1 ` γ @ρ ą 0 .

This shows that Iup0q ě 1`γ for every fine blow-up, in turn implying that IpT, 0q ě 1`γ. On
the other hand R must have 0 as an accumulation point, namely R consists of countably many
disjoint intervals, which might or might not include any of their endpoints. We enumerate
these intervals in order of decreasing scales, and for each one we consider its interior sak, bkr.
Note that rℓ Psakpℓq, bkpℓqr for all ℓ sufficiently large, due to the nature of our chosen sequence
of blow-up scales.

Now notice that the intervals sak, bkr are contained within the full collection of intervals of
flattening ssj , tjs (with the excess threshold ε̄). Thus, we can find a sequence of radii ρ̃k ą bk
approaching bk asymptotically, with sbk, ρ̃ks X R “ H, such that one of the following two
possibilities holds:

(a) there are ρk Psbk, ρ̃ks with EpT,B6
?
mρk

q ą ε2 for infinitely many k;

(b) for infinitely many k the inequalities EpT,B6
?
mrq ď ε2 and Iprq ă 1` γ hold for all r

in the interval sbk, ρ̃ks.

We first argue that, if ε is chosen sufficiently small, (a) cannot happen. We argue by contra-
diction; if this is not true, a subsequence of T0,ρ̃k

(and thus of T0,bk), not relabeled, must be
converging to a cone which is not flat. We denote it by C. Repeat now the procedure above for
each ε “ 1

j and assume that for each we find a corresponding sequence bk,j , with the property

that T0,bk,j
is converging to a non-flat cone Cj . Letting ssℓpk,jq, tℓpk,jqs denote the interval of

flattening containing bk,j , clearly we first have

lim
kÑ8

sℓpk,jq

tℓpk,jq

ě cpjq ą 0 @j P N,

for some constant cpjq which depends only on Ce and δ2 of the excess stopping condition in
the center manifold construction (cf. [14]) and on ε “ 1

j , just using that

EpT,Brq ď CCe

ˆ

r

tk,j

˙2´2δ2

ε̄2@r Pssk,j , tk,jr

while bk,j Pssk,j , tk,js and

EpT,Bbk,j
q ě ε2j .

On the other hand because of the convergence of T0,tk,j
to the cone Cj we have

lim
kÑ8

EpT,Btk,j
q

EpT,Bsk,j
q

“ 1 .

In turn this implies, again because of the excess stopping condition in the center manifold
construction, that

lim inf
kÑ8

sℓpk,jq

tℓpk,jq

ě c ą 0

for a constant c which this time is independent of j. In particular for any sequence kpjq Ò 8

which explodes sufficiently fast we have

lim
jÑ8

sℓpkpjq,jq

tℓpkpjq,jq

ě
c

2
ą 0 .

We can therefore apply Proposition 4.1 and Corollary 4.3 to any such bkpjq,j and infer that the
corresponding fine and coarse blow-ups coincide.
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We now argue that at least one such coarse blow-up has to be 1-homogeneous. First of all,
for each k and j we denote by fk,j the Lipschitz approximation of the current T0,bk,j

given by

[13, Theorem 2.4] and by f̄k,j its normalization fk,j{E
1
2

k,j , where Ek,j :“ EpT0,bk,j
,B6

?
mq as in

Section 3.1.
Observe next that by our definition of the endpoints bk,j , for each fixed j we have

Ek,j
kÑ8
ÝÑ EpCj ,B6

?
mq “ ε2j .

For every fixed j we then conclude that the sequence of maps tf̄k,juk are equi-Lipschitz and
we can assume they converge uniformly to some map f̄j , up to subsequence (not relabeled).

Moreover, this map is actually the limit of f̃k,j :“ jfk,j “ ε´1
j fk,j . Recall however that f̄k,j

has a uniform W 1,2 bound, which is independent of both k and j (unlike f̃k,j , where it clearly
depends on j). This bound is thus valid for f̄j too and we can assume it converges, up to
subsequences, strongly in L2 to some W 1,2 map f̄ . By taking a suitable diagonal sequence,
and noting that C´1Ek,j ď EpT0,bk,j

,B8M q ď CEk,j , the latter can be assumed to be (up to
a scalar multiple λ ą 0) the coarse blow-up generated by the sequence bkpjq,j .

Now [13, Theorem 2.4] guarantees the existence of a compact set Kk,j Ă B1 over which the

graph of fk,j coincides with the current T0,bk,j
and enjoying the estimate |B1zKk,j | ď Cj´2p1`βq

for some constants C and β. Recall that in the supports of T0,bk,j
B5

?
m converge in Hausdorff

distance to the support of Cj B5
?
m.

Denote by λaj the “anisotropic rescaling map” which maps px, yq P π0ˆπK
0 into px, jyqq, where

we assume that π0 is the plane over which we are considering the graphical approximations
fk,j of T0,bk,j

(up to a rotation we can indeed assume that the plane is a given fixed one). Now,

Gf̃k,j
Kk,j ˆ πK

0 “ pλaj q7T0,bk,j
Kk,j ˆ πK

0 . On the other hand, for each fixed j, the currents

pλaj q7T0,bk,j
converge to the current pλaj q7Cj (the convergence is in the sense of currents, but it

also implies the local Hausdorff convergence of the supports, given that j is fixed). LetKj be the
Hausdorff limit as k Ñ 8 of the compact setsKk,j . By the uniform convergence of the functions
f̄k,j to f̄j (as k Ñ 8, with j fixed) it is easy to see that Gf̄j Kj ˆ πK

0 “ pλaj q7Cj Kj ˆ πK
0 .

Next, observe that pλaj q7Cj is still a cone. Thus f̄j coincides with a 1-homogeneous function

over Kj . Observe also that |Kj | ě lim supk |Kk,j | and therefore |B1zKj | ď Cj´2p1`βq. Since
|B1zKj | Ó 0 it is easy to conclude that f̄ , which is the L2 limit of f̄j , must in fact be 1-
homogeneous.

Having concluded that the coarse blow up f̄ is 1-homogeneous, we immediately infer that
the average-free part is 1-homogeneous as well, which means that the fine blow-up is too. This
however would be incompatible with the fact that I´pbkpjq,jq ě 1 ` γ.

We thus fix now a choice of ε sufficiently small which forces the alternative (b). Recall that
the frequency BV bound gives that |I´pbkq ´ I`pbkq| ď Cεγ4 , which, combined with the fact
that I`pbkq ď 1 ` γ in turn implies that

(95) I´pbkq ď 1 `
3

2
γ ,

once we take ε small enough. We now wish to show that
›

›

›

“

dI
dr

‰

´

›

›

›

TVpsak,bkrq
can be made

arbitrarily small, by choosing η and ε correspondingly small and k sufficiently large. This
would imply that I has to be below 1 ` 7

4γ on all sak, bkr with k sufficiently large, thereby
concluding the proof (since all but finitely many elements of the initial blow-up sequence rk,
on which Iprkq Ñ 1 ` 2γ, must in fact be contained in R, while we just showed that in a
neighborhood of 0 relative to R the value of the universal frequency function is strictly below
1 ` 2γ). Let ssjpkq, tjpkqs be the interval of flattening containing bk. Using Lemma 8.2 and the
BV estimate of Proposition 6.2, we already have that the desired estimate

›

›

›

›

„

dI

dr

ȷ

´

›

›

›

›

TVpsak,sjpkqrq

ď η if sjpkq ą ak,

provided that ε is again chosen sufficiently small. Note that, even though the estimate is for
logpI ` 1q, we know apriori that I is bounded, so we can invert the log and get a an estimate
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for
›

›

›

“

dI
dr

‰

´

›

›

›

TVpsa1
k,bkrq

as in (47). The only caveat is that the constant C in the right hand side

of (47) will now depend upon }I}8 if we replace the left hand side with
›

›

›

“

dI
dr

‰

´

›

›

›

TV
. However,

we only need a constant C which is independent of the radii, though it might depend on T .

We therefore set a1
k :“ maxtak, sjpkqu and we wish to show that

›

›

›

“

dI
dr

‰

´

›

›

›

TVpsa1
k,bkrq

can be

assumed arbitrarily small, provided ε is chosen wisely and k is sufficiently large. We observe
that now sa1

k, bkr is contained in a single interval of flattening, and that the almost monotonicity
estimate on the absolutely continuous part of frequency (48) gives

›

›

›

›

„

dI

dr

ȷ

´

›

›

›

›

TVpsa1
k,bkrq

ď C

ˆ

a1
k

tjpkq

˙γ4

m0,jpkq .

Now, m0,jpkq is at most ε̄2, and thus, if the ratio
a1
k

tjpkq
is sufficiently small we reach the desired

threshold. We can therefore assume that

a1
k

tjpkq

ě c̄ ą 0

for some constant c̄. With the latter lower bound at disposal it is simple to see that m0,jpkq can

be made arbitrarily small choosing ε small and k large. In fact, if we choose ε “ 1
i and kpiq Ò 8,

we find that T0,bkpiq
converges to a flat plane, which in turn shows that EpT,B6

?
mtjpkpiqq

q must

converge to 0. □

9. Proof of Theorem 2.10(v)&(vi)

In this last section of the paper we will prove the last two statements of Theorem 2.10.

9.1. The case IpT, 0q ă 2´δ2. Choose α PsIpT, 0q´1, 1´δ2r. Since all coarse and fine blow-ups
are IpT, 0q-homogeneous, a simple compactness argument yields the following corollary.

(ND) There are ε ą 0 and ρ ą 0 such that, if r ă ρ and EpT,B6
?
mρq ď ε, then

(96)

ż

Bρ{2XMj

|DNj |2 ě 2´pm`2α´2q

ż

BρXMj

|DNj |2

where ssj , tjs Q ρ.

From (96) we immediately infer that the intervals of flattening cannot be finite. Indeed suppose
this is not the case and let J be such that sJ “ 0. Observe that under this assumption there
is a unique flat tangent cone to T : indeed the center manifold MJ contains the origin and
QJT0MJK is the unique tangent cone to T . We thus conclude EpT,B6

?
mrq Ñ 0 as r Ó 0. In

particular (96) must hold for all ρ ď ρ̄ for some positive ρ̄ and we immediately conclude that
there is a positive constant C such that

ż

MJXBρ

|DNJ |2 ě C´1ρm`2α´2 @ρ ă ρ̄ .

On the other hand, in light of [15, Remark 3.4] we also have

ż

MJXBρ

|DNJ |2 ď Cm0,J

ˆ

ρ

tj

˙m`2´2δ2

.

This however forces the condition α ´ 1 ě 1 ´ δ2, which gives a contradiction. There are
therefore infinitely many intervals of flattening ssj , tjs.

Now assume for a contradiction that, up to subsequence (not relabelled), we have

lim
jÑ8

sj
tj

“ 0.

If EpT,B6
?
mtj q does not converge to 0 as j Ñ 8, then, up to subsequence, we can assume that

T0,tj converges to a cone C. Clearly, by definition, m0,j “ EpT,B6
?
mtj q for j large enough,
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and moreover m0,j Ñ EpC,B6
?
mq. On the other hand, for every fixed ρ ą 0 sufficiently small,

we can pass into the limit in the inequality

EpT0,tj ,Bρq ď Cρ2´2δ2m0,j ,

which is valid for those infinitely many j’s such that
sj
tj

ă ρ, and conclude

EpC,Bρq ď Cρ2´2δ2EpC,B6
?
mq ,

which is impossible because the radial invariance of C guarantees that EpC,Bρq is constant in
ρ.

We have thus concluded that EpT,B6
?
mtj q converges to 0. In particular, so does m0,j . We

thus conclude that, for every j sufficiently large, the inequality EpT,B6
?
mρq ď ε2 must be

valid for all ρ P rsj , tjs. This however can be combined with (96) to deduce that
ż

MjXBsj

|DNj |2 ě C´1

ˆ

sj
tj

˙m`2α´2 ż

MjXBtj

|DNj |2 .

On the other hand using [14, Proposition 3.4] we immediately get
ż

MjXBtj

|DNj |2 ě C´1m0,j .

In particular we conclude
ż

MjXBsj

|DNj |2 ě C´1

ˆ

sj
tj

˙m`2α´2

m0,j .

But, as for the case already discussed above, this is at odds with the reverse inequality
ż

MjXBsj

|DNj |2 ď C

ˆ

sj
tj

˙m`2´2δ2

m0,j

when
sj
tj

is allowed to become too small.

9.2. The case IpT, 0q ą 2 ´ δ2. In this case we fix α Ps1 ´ δ2, IpT, 0q ´ 1r. Note that in this
case we know that the intervals of flattening cover a neighborhood of 0 and thus we can infer,
again using the compactness and the fact that fine blow-ups are all IpT, 0q-homogeneous, the
following decay lemma:

(D) There is ρ ą 0 such that, if r ă ρ, then

(97)

ż

Bρ{2XM|

|DNj |2 ď 2´pm`2α´2q

ż

BρXMj

|DNj |2

when ssj , tjs Q ρ.

This immediately implies that, if the intervals of flattening are infinitely many, then they must
satisfy

lim inf
j

sj
tj

ą 0 .

To see this, we in fact argue by contradiction as above, using this time [14, Proposition 3.4],
to infer that

(98)

ż

MjXBsj

|DNj |2 ě C´1

ˆ

sj
tj

˙m`2´2δ2

m0,j ,

while iterating (D) we instead would get
ż

MjXBsj

|DNj |2 ď C

ˆ

sj
tj

˙m`2α´2

m0,j ,

which this time is a contradiction because it would force α ´ 1 ď 1 ´ δ2 if
sj
tj

is allowed to

become too small, which does not hold.
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We can now argue as in the proof of Proposition 7.1 to obtain, for every fixed κ large enough
and every k sufficiently large (depending on κ), a decay of type

EpT,B6
?
msk`κ

q ď C

ˆ

sk`κ

tk

˙2α

EpT,B6
?
mtkq ` Ct2k .

It is not difficult to see that, if κ is chosen large enough, an iteration of this inequality (combined
with the information that lim inf

sj
tj

ą 0) gives a decay of type

(99) EpT,B6
?
mrq ď Cr2β

for every β ă α. In particular we can choose β ą 2 ´ δ2, and therefore conclude that, for a
sufficiently large j, we must have m0,j “ ε̄2t2´2δ2

j . But then (99) would imply

(100) EpT,B6
?
mrq ď Cs

2β´p2´2δ2q

j

ˆ

sj
tj

˙2´2δ2

m0,j ď Csβ`δ2
j

ˆ

sj
tj

˙2´2δ2

m0,j .

But of course the latter is at odds with (98) when sj is sufficiently small. This reaches a
contradiction and thus shows that there could not be infinitely many intervals of flattening.

We record here the following more quantitative consequence of our analysis, since it will be
useful for the further study of flat singular points in our papers [9] and [10].

Proposition 9.1. Let T be as in Theorem 2.9. For every µ ą 0 there is a positive constant
Cpµ,m, n,Qq, with the following property. If IpT, 0q ą 2 ´ δ2 `

µ
2 at the flat singular point 0,

then there is r0 ą 0 such that

(101) EpT,Brq ď C

ˆ

r

r0

˙2´2δ2`µ

maxtEpT,Br0q, ε̄2r2´2δ2
0 u @r ă r0 .
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