THE FINE STRUCTURE OF THE SINGULAR SET OF
AREA-MINIMIZING INTEGRAL CURRENTS I: THE SINGULARITY
DEGREE OF FLAT SINGULAR POINTS

CAMILLO DE LELLIS AND ANNA SKOROBOGATOVA

ABSTRACT. We consider an area-minimizing integral current of dimension m and codimen-
sion at least 2 and fix an arbitrary interior singular point g where at least one tangent cone
is flat. For any vanishing sequence of scales around ¢ along which the rescaled currents
converge to a flat cone, we define a suitable “singularity degree” of the rescalings, which
is a real number bigger than or equal to 1. We show that this number is independent of
the chosen sequence and we prove several interesting properties linked to its value. Our
study prepares the ground for two companion works, where we show that the singular set
is (m — 2)-rectifiable and the tangent cone is unique at H™2-a.e. point.
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1. INTRODUCTION

Suppose that T is an m-dimensional integral current in a complete smooth Riemannian
manifold X. We assume that T is area-minimizing in some (relatively) open  c ¥, i.e.

M(T + 8S) = M(T)

for any (m + 1)-dimensional integral current S supported in Q. A point p € spt(T) is called
an interior regular point if there is a ball B,.(p) in which T is, up to multiplicity, an embedded
submanifold of ¥ without boundary in B,(p). Its complement in spt(7")\spt(dT) is called the
interior singular set and from now on will be denoted by Sing(T).

Determining the size and structure of Sing(7") is a problem that has attracted a lot of
interest for several decades. The answer depends sensibly on the codimension of T in 3. If
the codimension is one, the works of De Giorgi, Fleming, Almgren, Simons, and Federer in
the sixties and early seventies show that the Hausdorff dimension of Sing(T") is at most m — 7,
cf. [20]. Moreover, the bound is optimal in view of the famous Simons’ cone, cf. [3,4]. The
monograph of Almgren [5] showed in the early eighties that when the codimension is higher
than one, the Hausdorff dimension of Sing(7T’) is at most m — 2, and Almgren’s theory has since
been simplified and made more transparent in the series of works [11-15]. Almgren’s bound is
also sharp, given that every holomorphic subvariety of a Kahler manifold is an area-minimizing
integral current.

In the nineties Simon proved (see [26]) that in codimension one, Sing(T) is (m—7)-rectifiable.
Much more recently, Naber and Valtorta in [27] showed that it has locally finite #~"-measure.
In fact [27] exploits the groundbreaking ideas of the earlier work [25] to recover at the same
time the latter information and the rectifiability, using independent techniques to Simon. The
work of Simon, however, implies also the uniqueness of the tangent cone at H™~"-a.e. point in
spt(T")\spt(0T). The aim of this and its two companion works [9,10] is to prove the following
counterpart of Simon’s theorem in higher codimension.

Theorem 1.1. Let T be an m-dimensional area-minimizing current in a C>"° complete Rie-
mannian manifold of dimension m+n = m+2, with ko > 0. Then Sing(T) is (m—2)-rectifiable
and there is a unique tangent cone at H™ 2-a.e. q € Sing(T).

Theorem 1.1 can in fact be improved in the case of m = 2, in which it is known that the
singularities are isolated, cf. [6] and [16-18]. Note also that the uniqueness of tangent cones in
the latter case is known since the work of White in the eighties, cf. [31]. In higher dimensions
the regularity of Sing(7T') given by Theorem 1.1 is optimal, as the recent work [32] shows
that Sing(7T") can be a fractal with arbitrary dimension x < m — 2. It is however possible to
improve the rectifiability statement if one takes a less stringent definition of Sing(7T'), because
the examples of [32] are locally immersed submanifolds. Moreover, our techniques are far
from showing that Sing(7T’) has locally finite H™~2-measure, which could be expected, and the
general uniqueness of tangent cones remains widely open.

1.1. Flat singularities. The main issue is to establish the (m — 2)-rectifiability of those sin-
gular points where at least one tangent cone is supported in an m-dimensional plane, since the
remaining portion of the singular set is, by [27], (m —2)-rectifiable. However, we independently
establish the (m — 2)-rectifiability of the singular points with non-flat tangent cones as a con-
sequence of our work [10]. From now on if a tangent cone is supported in an m-dimensional
plane we will call it flat and a p € Sing(T) with at least one flat tangent cone will be called a
flat singular point. We know from the constancy theorem (cf. [20]) that a flat tangent cone at
a point ¢ must be an oriented m-dimensional plane counted with a positive integer multiplic-
ity . The latter is indeed the density of the current at ¢ and Allard’s celebrated regularity
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theorem [2] guarantees that if @ = 1 the point is regular. We emphasize that the striking
difference in complexity between the codimension one case and the case of higher codimension
hinges on the fact that, in higher codimension, flat singular points might exist, while they
cannot in codimension one. The latter phenomenon is due to the local characterization of inte-
gral hypercurrents as superpositions of boundaries of Caccioppoli sets (cf. [28, Theorem 27.6,
Corollary 27.8]), which is very specific to the codimension one setting. The typical examples
of area minimizers with flat singular points in higher codimension are branching singularities
of holomorphic subvarieties of Kéahler manifolds. Note moreover that the uniqueness of the
tangent cone is still unknown at flat singular points, even under the stronger assumption that
all tangent cones at the considered point are flat.

In this paper we will be concerned with the definition and properties of a suitable notion of
“singularity degree” of T at flat singular points. This is a real parameter which will be then
used to suitably subdivide the set of flat singular points of T.

Example 1.2. We illustrate the intuition behind the singularity degree in the example of a
holomorphic curve in C2, defined by

A= {(w— h(2))? = 2Pk(2) : (z,w) € C?}.

In this example we require that:

e p> () > 2 are coprime integers;
e h and k are holomorphic functions;
e k(0) #0.

Recall that, by Federer’s classical theorem, A (with the standard orientation given by the
complex structure) induces a 2-dimensional integral area-minimizing current 7' = [A] in R* =
C2?. Since p is not a multiple of @ and the latter is strictly larger than 1, the origin is an
interior singular point of T. Moreover, since p and @ are coprime and p is larger than @, the
(unique) tangent cone to T at 0 is given by Q[[{w = 0}]. In this particular example our notion
of singularity degree of T at the flat singular point 0 gives the number p/Q.

1.2. Singularity degree. A priori we have very little knowledge of the structure of the singu-
larities at a general flat singular point of an area-minimizing current of arbitrary dimension and
codimension. Thus, our definition of singularity degree will necessarily be somewhat involved.
In particular, given a flat singular point ¢, we will first identify a suitable analytical definition
of singularity degree for a given infinitesimal sequence {ry} of blow-up scales along which the
rescaled currents Ty, (cf. Section 2 for the definition) converge to a flat tangent cone. These
numbers, which might depend on {ry}, will be called singular frequency values, cf. Definition
2.6. The singularity degree of T' at a flat singular point x will then be defined as the infimum
of the singular frequency values at z, cf. Definition 2.8. We will prove a series of interesting
properties related to the singularity degree, among which we select the following three:

(i) we will show that the singularity degree is necessarily at least 1, due to the Hardt-
Simon inequality and we will show that the singular frequency values all coincide with
the singularity degree, i.e. they are the same number, independent of the subsequence,
cf. Theorem 2.9;

(ii) for each infinitesimal blow-up scale we will, up to extraction of a subsequence, identify
a suitable rescaled limit, which will be an homogeneous multivalued function and whose
degree of homogeneity is indeed the singularity degree, cf. Theorem 2.10(i);

(iii) when the singularity degree is strictly larger than 1 we will show that the (flat) tangent
cone at x is unique and the current decays to it polynomially fast, c¢f. Theorem 2.10(iv).

In the work [9] we will then show that the set of flat singular points where the singularity
degree is strictly larger than 1 is (m — 2)-rectifiable while in [10] we will complete the proof by
showing that the set of flat singular points where the singularity degree is 1 is H™ 2 negligible.
Concerning the uniqueness of the tangent cone, in this paper we show that it is unique at flat
singular points where the singularity degree is strictly larger than 1, while [10] will complete
the proof by showing H™ 2-a.e. uniqueness.
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The three properties (i)-(ii)-(iii) will be fundamental in establishing the proof of Theorem
1.1, however they are not the only important points from this paper which will be heavily used
in [9,10], for instance the BV estimate of Proposition 6.2 is crucial for [9].

1.3. Comparison with the work of Krummel & Wickramasekera. At the same time
this and the accompanying works [9, 10] were being finished, Krummel & Wickramasekera
independently were completing a program also establishing Theorem 1.1 (see [22-24]). Here
we take a moment to discuss the differences and similarities between the two programs, each
point addressing a key aspect of each of the three papers in each of the programs. One
underlying theme in both programs is to relate structural properties of the singular set to the
rate of decay of the current at certain points to its tangent cone.

e In both approaches a monotonicity formula plays an important role in the first step. In
our approach, Almgren’s monotonicity formula enters to associate to flat singular points
(namely, singular points at which at least one tangent cone is supported on a plane) a
real number, referred to as the singularity degree, which takes values at least 1. This
number is morally the infinitesimal homogeneity of the current relative to the average of
its “sheets” (the role of which is played by center manifolds which are possibly varying
with the scale). A byproduct is that, when the singularity degree is strictly larger than
1, the rate of decay to the tangent plane is at least a power law. This is accomplished
in the present paper. In their approach, Krummel & Wickramasekera define a “planar
frequency function” at the level of the current (see [22]), whose definition does not
require the introduction of a center manifold, and show that it satisfies a suitable
approximate monotonicity whenever the current is decaying to a plane on some interval
of radii about a given point. Using this, they prove a certain decomposition theorem
holds for the singular set, namely that locally about points of density @ (for given
Q € Z>1), the singular set splits into two disjoint sets, namely a relatively closed
set (denoted in [22] by B) where the current is decaying with a power law at all
scales to a tangent plane with a fixed lower bound on the decay rate, and a set which
satisfies a uniform weak approximation property. The latter set could still contain flat
singular points. In our approach the analogous set to B would be the intersection of
F0.>1+46(T) with some appropriately small ball and for some appropriate choice of the
small threshold ¢ (we refer the reader to [9] for the precise definition). Strictly speaking
the two sets do not coincide because the set B in [22] has some uniform control in the
prefactor of the power-lay decay to the unique flat tangent. This uniform control could
possibly be achieved by making some of our arguments more quantitative.

e In both cases, one exploits the power law decay rate at each “good” flat singular point
(i.e. points where the singularity degree is strictly larger than 1 in our setting, whilst
for Krummel & Wickramasekera it is the subset B described above), in order to prove
(m — 2)-rectifiability for this subset. For our program, this is achieved in [9], whilst
for Krummel & Wickramasekera this is achieved in forthcoming work [24]. However,
in Krummel & Wickramasekera’s work, the construction of a center manifold is only
needed to study flat singular points where not only is the tangent plane unique, but
additionally the current is decaying at least quadratically to this tangent plane. In
such a setting, the center manifold construction is much simpler (one does not need to
deal with intervals of flattening or changing center manifolds as described in Section 2,
for example). The reason for this is that they are able to study the set of flat singular
points in the set B described above at which the decay rate to the tangent plane is
a power law with order strictly less than 2 via their planar frequency function. See
Section 2.6 for a more in-depth discussion of this matter.

e In both approaches one must also deal with “slowly decaying” flat singular points;
in our works this is when the decay value is exactly 1 and for Krummel & Wickra-
masekera these points are contained in the second set of their decomposition theorem
described above. This part is highly non-trivial, and in both programs it is shown that
the relevant set is H™ 2-null. For us, this is addressed in [10] and for Krummel &
Wickramasekera this is handled in [23].
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It should be noted that aside from the definition of our singularity degree a priori requiring
center manifolds (which are a posteriori not necessary in the slow decay case), the order of the
last two points above is irrelevant for concluding the program. One could conduct them in
either order, and indeed in our case the last point above is chronologically the last step whilst
in Krummel & Wickramasekera’s program it is the second step.

One difference between the two sets of works is that our results are all in the general setting
of a sufficiently smooth ambient Riemannian manifold, whilst the statements of [22-24] are in
the Euclidean setting. However, we believe that this is also just a technical matter and not a
substantial difference.

Two other differences have already been pointed out above:

(i) Whilst Krummel & Wickramasekera show that the set of singular points without a
power law decay rate of some fixed small order to a unique tangent plane is H™~2-null,
we show that the set of points with singularity degree exactly equal to 1 is #™ 2-null.
The former corresponds to points where our singularity degree is between 1 and 1+ 9,
for a sufficiently small choice of § > 0.

(ii) Whilst Krummel & Wickramasekera get a uniform decay estimate for their set B, we do
not pursue this for the corresponding set ¢ >1+5(T) in our approach and we instead
subdivide it in a countable unions of sets for which the rate and the starting scale
for the decay is uniform. In [9] these sets are denoted by G ; for those points with
subquadratic decay, and a single set S for the points with superquadratic decay (here
the starting decay scale is shown to be locally uniform).

The combination of (i) and (ii) allow Krummel & Wickramasekera to achieve the additional
conclusion that in fact the set of flat singular points in a sufficiently small neighborhood U of
a point of density @) can be decomposed into the union of finitely many sets, say Fy u ... F,
each of which has locally finite H™ 2 measure. In fact they show that B enjoys the latter
structure while the flat singularities in its complement form an H™ 2-null set. We caution the
reader that this decomposition does not yield the finiteness of the measure of the whole set of
flat singular points in U because the sets F; are not apriori closed.

This raises the natural question of whether our approach is also amenable to yield similar
conclusions. We in fact do not believe that (i) is a substantial obstacle for our approach and we
think that it is possible to achieve an analogous statement (see [10] for a more detailed expla-
nation). Concerning point (ii) we also believe that a suitable refinement of our argument can
achieve a uniform decay estimate directly for §o >144(7") in a sufficiently small neighborhood
of a point of density ). These considerations are obviously influenced by the insight learned
from the works of Krummel & Wickramasekera.

Provided one can prove the analogous statements to (i) and (ii) in our case (or using the esti-
mates of Krummel and Wickramasekera in combination with our techniques, when the ambient
is the Euclidean space), our approach in [9] would yield the conclusion that Fo >1+5(T) can be
decomposed into two sets with locally finite ™2 measure and that the flat singular points
in its complement form an H™ 2-null set. In fact, since in our paper we use a modification
of the Naber-Valtorta approach, these two sets would have locally finite (m — 2)-dimensional
Minkowski content. In order to tackle the question of whether §¢g >145(T) itself has locally
finite Minkowski content, one would need instead to suitably modify the arguments in [9] in
order to tackle low frequency and high frequency points at the same time, a task which is
certainly more challenging.

Finally, Krummel & Wickramasekera additionally establish the existence of a unique non-
zero (multi-valued) Dirichlet-minimizing tangent function at H™ 2-a.e. flat singular point
of the current. This is inherently different from our approach in [9], given that one major
point of the Naber-Valtorta technique is being able to tackle the rectifiability question without
addressing the uniqueness of the tangent functions.

Acknowledgments. C.D.L. and A.S. acknowledge the support of the National Science Foun-
dation through the grant FRG-1854147.
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2. MAIN STATEMENTS

In this section we define the singular fequency values and the singularity degree and give
the main statements. We follow heavily the notation and terminology of the papers [14, 15]
and from now on we will always make the following assumption.

Assumption 2.1. T is an m-dimensional integral current in ¥ n Q with 0T'L Q = 0, where
) is an open set of R™*" = R™*+7+! and ¥ is an (m + n)-dimensional embedded submanifold
of class C3*0 with ko > 0. T is area-minimizing in ¥ N Q and 7 > 2. 0 € Q is a flat singular
point of T and @ € N\{0, 1} is the density of T at 0.

We will henceforth let C' and Cjy denote dimensional constants, depending only on m, n, Q.
The currents T, , will denote the dilations (¢q,,.)4T', where ¢y ,(z) := *=4. Since our statements
are invariant under dilations, we can also assume that

Assumption 2.2. T and ¥ satisfy Assumption 2.1 with Q = B; 5 and ¥ n By /7 (p) is the
graph of a C3% function ¥, : T,X N B; m(p) — TpEJ- for every p € ¥ n By . Moreover

c(X):= sup |DYplc2m <&,
pEZmB7\/m

where £ is a small positive constant which will be specified later.

In particular the following uniform control on the second fundamental form Ay, of ¥ "B, v
holds:
A = ||As oo ) < Coc(X) < Coe.

Following [15, Section 2] we introduce appropriate disjoint intervals |s;, ;] <]0,1], called
intervals of flattening, the union of which contains' those radii » such that the spherical excess
E(T, Bg. /7, (cf. [14, Definition 1.2] for the definition) falls below a positive fixed threshold 3.
Arguing as in [15, Section 2] for each rescaled current To,+; and rescaled ambient manifold g
we follow the algorithm detailed in [14] to produce a center manifold M and an appropriate
multivalued map N : M — Ag(R™*"). The latter takes values in the normal bundle of M
and gives an efficient approximation of the current Ty, in B3\B5j Jt;- For technical reasons,
however, we will use a slightly different definition for the parameter myg in [14, Assumption
1.3]. Our my, which we denote by my_ ; to underline the dependence on j, is defined as

XnBrm

(1) my,; = maX{E(TOM y Bﬁm), §2t?7262} s

where 09 > 0 is the parameter in [14, Assumption 1.8]. It can be readily checked that this
change is of no consequence for the conclusions of [14,15], the relevant point is that, because
of simple scaling considerations, ¢(¥o,;,) < Mg, therefore all the estimates claimed in [14, 15]
are valid with our different choice of parameter my j, provided we choose it to fall below the
same threshold e3 as in [15]. In light of this, we will henceforth make the following assumption.

Assumption 2.3. T and ¥ satisfy Assumption 2.2. The parameter € is chosen small enough
so that mg o < 5%.

Before proceeding we record a fact proved in [15], which is however not explicitly stated
there.

Lemma 2.4. Suppose that T and X are as in Assumption 2.5. If {j;} < N is the set of indices
such that tj, < sj,_1, then either the latter is finite (i.e. |J,]s;,t;] contains some open interval

10,p), or
o 9
(2) llmilnfE(TO,t“ ,Beym) = €3

For the sake of clarity, we prove this again here; see Section 2.5. Since we will repeatedly
use it throughout the rest of the paper, it is convenient to introduce the following terminology.

1t is not necessarily true that the inequality E(T, Bgmr) < €% holds for all r €]s;j,¢;]. However the
inequality certainly holds at all » = t;, while for the remaining radii in the interval holds up to a suitably fixed
constant C, cf. [15].
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Definition 2.5. Let T and X be as in Assumption 2.1. A blow-up sequence of radii {ry} is a
vanishing sequence of positive real numbers such that Tp ., converges to a flat tangent cone.

Of course a similar concept can be introduced by considering a different flat singular point
x instead of the origin. In that case we will say that the sequence is a blow-up sequence at the
flat singular point x.

Note that, having fixed a blow-up sequence {ry}, for every k sufficiently large there is a
unique j(k) such that ry €]s;au), k)] and we use the following shorthand notations:

e T} and X for the rescaled currents 10,15 LBG\/W and ambient manifolds 20,8505

e M, and Ny for the corresponding center manifolds and normal approximations of Tk;

o m(()k) for the real numbers my ;) defined in (1).

2.1. Compactness procedure. Let T satisfy Assumption 2.3 and let °& € ]

31 ﬂ]

210) 2t5k) 7 e
the scale at which the reverse Sobolev inequality [15, Corollary 5.3] holds for r = t:’z - Then
_ J
let 7, = =256 ¢ ] Tk 21 ] We rescale further the currents T}, the ambient manifolds X
3t (k) ti(k) ” (k)

and the center manifolds to
Ty == (v0.7)8 Tk = (0,70t )4 T) L Boyim, Sk = 0,7 (), M = 1o, (M) .
Tk

Define
1

Nk : ./Wk — Rm-&-n’ Nk(p) = aNk(’ka),
and let B
N,
Up = khioek, ug, : T © By — Ag(R™"),
k
where ey is the exponential map at py = @;7150) € M, defined on By c m;, ~ Tpk./wk and
h, = HNk|\L2(B3/2). The reverse Sobolev inequality of [15, Corollary 5.3] gives a uniform

control on the W2 norm of u;, on B3/5(0, ) (which denotes the unit disk of 7 centered at
0 and with radius 3/2).

Then, following the proof of [15, Theorem 6.2], there exists a subsequence (not relabeled) a
limiting m-plane o and a Dir-minimizing map u € W2 (Bs5(0,7); Ag(7g)) with nou = 0
and |uf 2B, ,,) = 1, such that (after we apply a suitable rotation to map 7 onto )

(3) up —> u  strongly in Wlloi n L%

Recall that Almgren’s famous frequency function for Dir-minimizers u : @ < R™ — Ag(R")
at a center point x € 2 and scale r > 0 is defined by

r SBV,»(:D) | Du?

S&B,,.(;v) |uf?

We refer the reader to [11, Chapter 3] for the basic properties of the frequency function. The
monotonicity of the frequency function [11, Theorem 3.15] for Dir-minimizers yields existence
of the limit as r | 0. It is more convenient to work with a smoother version of the frequency
function, which has more robust convergence properties. Following [14] we consider a Lipschitz
cut-off function ¢ : [0,00) — [0, 1] which vanishes identically for ¢ sufficiently large, equals 1
for ¢ sufficiently small and is monotone nonincreasing. We then introduce

Dute) = [IDutie (M=) 4y,
Hy(z,7):=— IZ(E)/E ¢’ (Iy;x|) dy,
T (x,r) = Tlfu“(ii’r? .

The same computations showing the monotonicity of Almgren’s frequency function for Dir-
minimizers apply to the latter smoothed variant (cf. for instance [14, Section 3]; note that
Almgren’s frequency function corresponds, formally, to the choice ¢ = 1[y 17). Moreover, it can
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be readily checked that all these smoothed frequency functions are constant when the map is
radially homogeneous, and this constant is the degree of homogeneity of the map. It follows
then from the arguments in [11, Section 3.5] that the limit

I, .(0) = lrligl L,(z,r)

is independent of the weight ¢. For the rest of the paper we will fix a convenient specific choice
of ¢, given by

1 for 0 <t <j
(4) oty =< 2—2¢ for%gtgl
0 otherwise .

When z = 0, we will omit the dependency on z for I and related quantities, and will merely
write I, (r).

Definition 2.6. Any map u as defined by the above compactness procedure is called a fine
blow-up limit along the sequence r; and the set

F(T,0) = {I,(0) : uis a fine blow-up along some r | 0},
is the set of singular frequency values of T at 0.

Remark 2.7. In the rest of the notes we will often omit the adjective “singular”. The reason
for using the adjective “fine” is that later on we will also introduce a notion of coarse blow-up,
cf. Definition 3.1.

Definition 2.8. The singularity degree of T at the flat singular point 0 is defined as
I(T,0) := inf{a: a € F(T,0)}.

A simple translation allows to extend all the definitions above to any flat interior singular
point z of T. We will therefore use I(T,z) and F(T,z) for the singularity degree and the
frequency values of T" at such an z.

2.2. Main results. We are now in a position to state the main results of this article. Our
primary result here is the following.

Theorem 2.9. Assume that T satisfies Assumption 2.3. Then I(T,0) = 1 and F(T,0) =
{I(T,0)}, i.e. there is one unique frequency value for T at 0 and it coincides with the singularity
degree.

However, our analysis delivers a number of additional pieces of information. We report them
here even though some statements will need notions which will be only introduced in the next
sections.

Theorem 2.10. Under the same assumptions of Theorem 2.9 the following holds:

(i) Al fine blow-ups are radially homogeneous and their homogeneity degree is I(T,0).

(ii) If sj, = 0 for some jo, then lim, oL, (r) = I(T,0) (see below for the definition of I, ).

(iii) If {s;} is infinite, then the functions I; converge uniformly to I(T,0) if I(T,0) > 1, while,
when I(T,0) = 1, limg_0 Ly (1) = I(T,0) = 1 for every blow-up sequence 1y, (recall
that j(k) is such that T¢ €]s;(k), tjx)])

(iv) IfI(T,0) > 1, then Ty, converge polynomially fast to a unique tangent cone as r | 0.

(v) IfI(T,0) > 2 — 02, then s;, = 0 for some jo.

(vi) If I(T,0) < 2 — 65 then {s;} is infinite and inf; Z—j > 0.

2.3. Rectifiability. Following Almgren (cf. also [33]), the set spt (T")\spt (¢T) can be strati-
fied through

S(k) (T) — { T € spt (T)\Spt (aT) . any tangent cone of T at x splits off } ,

* no more than a k-dimensional subspace
where k = 0,1,..., m. In particular

SOT)c S(T) ¢ --. « S™=(T) = S™(T) = spt(T)\spt(T) .
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Almgren’s argument (which can be seen as a suitable generalization of Federer’s reduction
argument, cf. [21]) showed that

dimy, (S®(T)) < k.

In their recent groundbreaking work [27], Naber and Valtorta further proved that S*)(T')
is k-rectifiable. Moreover, due to the classification of one-dimensional area-minimizing cones
(which are necessarily 1-dimensional lines with integer multiplicity), S™~D(T)\S™~2(T) =
. Finally, the set of flat singular points of T' (from now on denoted by F(7)) is given by

J(T) = Sing(T)\S™~D(T) = Sing(T\S"~2/(T).

Thus, proving the (m — 2)-rectifiability of Sing(T") is equivalent to proving the (m — 2)-
rectifiability of §(7T'). In our forthcoming works [9,10] the singularity degree will be used
to further stratify §(7"). The main result of [9] will be the following

Theorem 2.11. Let T be as in Theorem 1.1 Then the set {q€ F(T) : (T, q) > 1} is (m — 2)-
rectifiable.

Clearly, in view of the above theorem and of Theorem 2.9, the remaining (challenging)
step to prove the rectifiability of Sing (T') is to show that the set {¢q € F(T) : I(T,0) = 1} is
(m — 2)-rectifiable. In [10] we will then show

Theorem 2.12. Let T be as in Theorem 1.1. Then H™ 2({q € F(T) : I(T,q) = 1}) = 0.

Combined with Theorem 2.10 Theorem 2.12 implies the uniqueness of the flat tangent cone
at H™ 2-a.e. flat singular point. To conclude the proof of Theorem 1.1 in [10] we will also
show

Theorem 2.13. The tangent cone is unique at H™ 2-a.e. pe S™2)(T).

2.4. Frequency function. We end the section by introducing a pivotal object in our ar-
guments, the ¢-regularized frequency function of the normal approximation of T', cf. [15].
Recalling the function ¢ : [0,00[ of (4), for a given center manifold M with corresponding
M-normal approximation N : M — Ag(R™*™), the ¢-regularized frequency function I(z,r)
of N at a center point z € M and scale r > 0 is defined as follows:

— TDN(xaT)
In(z,r) = Tn(er)
where
Du(er) = [ DN (‘“”) ay.,
M T
and

2
HN(.’E,’I") — _J |vyd(ya$)| |N|2(b/ (d(yax)> dy
M d(ya 33) r
Here d is the geodesic distance on the center manifold M, while p is the orthogonal projection
on M (and we recall that, by the estimates in [14], the points x of interest, which belong to
the support of T, are in a regular tubular neighborhood of M). Since we will often take the
above quantities to be centered at z = 0, we will omit the implicit dependency on = most of
the time.

A major starting point of our paper is the fact that the frequency function is bounded
away from infinity and 0 (independently of the choice of center manifold and corresponding
normal approximation). The rightmost inequality is the most important analytical estimate
of Almgren’s regularity theory, while the left has been established only recently by the second
author in [29]. More precisely, the following holds:

Theorem 2.14. Under the assumptions of Theorem 2.9,

(5) 0<inf inf Ty, (r) <sup sup Iy;(r) <.
J rels;,2t5] J rels;,2t)]
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2.5. Proof of Lemma 2.4. The argument is taken from [15, Proof of Theorem 5.1], where
the statement is shown in a step in the proof of the theorem. Observe that, by definition, we
have

E(To,r Bsm) > €3

for all r €]t;,,s;,—1[. Pick a sequence r; €]¢;,,s;,—1[ with the property that t: — 1. Up to

extraction of a subsequence, not relabeled, we can assume that Tp; converges to a tangent
cone S to T" at 0. Note that Tp ,, converge to the same cone. Moreover, by the area minimizing

2 ¢ and |To,;, X €| Since |C[(éB,) = 0 for every r,

it follows immediately that |7, | Bg,/m 2o L Bgm and |To;, |1 Bgm = |C||LBg,/m-
These convergences can be easily seen to imply

property, we have that |7y,

11?1 E(To.,,, Beym) = E(C,Bgym) = 1i¥nE(TO7m,B6m) >l

2.6. Comparison of this article with [22]. Let us compare in more detail the present article
with its analogue [22] in the program implemented by Krummel & Wickramasekera discussed
in the introduction. In both [22] and this paper an almost monotone quantity plays a pivotal
role. Here, this is Almgren’s frequency function as defined in [14]. Instead in [22] the authors
introduce a new “planar frequency function”. Rather than capturing the degree of singularity
of the current at a flat singular point, the planar frequency function identifies the order of
contact of the current with the flat tangent cone. Let us consider Example 1.2 for an intuition:
our singularity degree there is the number p/@Q, while the planar frequency function at scale
0 (with respect to the tangent plane {w = 0}) coincides with p/@ if the latter is smaller than
the degree of the first nontrivial homogeneous polynomial in the Taylor expansion of h at the
origin. Otherwise, it coincides with the latter degree.

In fact, given that §¢ ~1(7") identifies the set of flat singular points at which there is a
unique tangent cone to which the current decays with a power law rate, the latter coincides
with those singular points where there is one plane for which the Krummel-Wickramasekera
planar frequency function converges to a number larger than 1, as the radius goes to 0.

As pointed out in the introduction, one significant difference of the approach in [22] is that
they avoid the requirement of introducing changing center manifolds at appropriate scales
around those flat singular points where the decay to the cone is slow. As mentioned in [22,23],
this in addition avoids the need for quite a few technical issues even to prove Almgren’s
original dimension bound. Indeed, here we a posteriori conclude that blowing up relative
to center manifolds is not necessary for points with singularity degree between 1 and 2 — 24,
(see Corollary 4.3, [10, Proposition 2.2]), but nevertheless for us the use of center manifolds is
unavoidable to deduce this.

In the current work we instead establish a BV estimate on the frequency function (relative
to varying center manifolds) which keeps the errors due to the change of center manifolds
under control. In doing this, we capture the homogeneity of the first singular order in the
expansion of the current. This way, we may use the same frequency function (relative to
the center manifolds) in all of our arguments. We expect that, to conclude the rectifiability
of those flat singular points which have a high order of contact with the tangent plane, in
their forthcoming work [24] Krummel & Wickramasekera will need to resort to the frequency
function with respect to the center manifold also, albeit only in the simpler setting. Common
to both approaches is that a suitable closeness of the current to a suitable reference plane is
needed to get an almost monotonicity estimate for both frequency functions.

The planar frequency function in [22] depends only on the current and the reference plane,
while the ones used here (and in the works [14,15]) depend on the current, the center manifold,
and the normal approzimation. Taking inspiration from [22], we believe that it is possible to
eliminate the dependence on the latter approximation. If we denote by p the orthogonal
projection on M, we can substitute rDy(z,r) with the “curvilinear excess”

o[ - swenrs (MR ) e
By, (z)
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and the height Hy (z,r) with a suitable squared L? distance of the current from M

(2 2 |Vyd(p(2),2)]* , (d(p(2),2) .
JB2T(I) == p(2) d(p(z),x) ¢ ( r )dT|( )

The ratio of these two quantities differs from Iy (z,r) only by errors which can be bounded
with suitable powers of the planar excess, as follows from the estimates in [14,15]. In particular
this implies the almost monotonicity of the “intrinsic ratio” through the almost monotonicity
of In(z,r). But in fact it is highly likely that appropriate variants of the computations in
[14,15] prove directly the monotonicity of the “intrinsic ratio”.

This also suggests the possibility of introducing a general frequency function, where M is
replaced by any sufficiently regular surface with the same dimension as the current 7'. In view
of the Taylor expansion of the area functional (see e.g. [12]), it is tempting to speculate that
a suitable almost monotonicity will hold if one has a multi-valued map on the normal bundle
of M which approximates the current with a sufficiently high degree of accuracy and if one of
the following two properties (or a suitable combination of the two) holds:

(i) The mean curvature of M vanishes, or it is asymptotically small as we approach the
central point x;

(ii) The average of the multi-valued approximation is asymptotically small as we approach
the central point x.

3. THE HARDT-SIMON INEQUALITY AND COARSE BLOW-UPS

3.1. Coarse blow-ups. Consider a blow-up sequence {r}; at the flat singular point 0 and
let:

o Tp ., be the corresponding rescaled currents;
e X, be the corresponding rescaled manifolds.

Without loss of generality we can assume that Ty, converges to Q[mo] with 7o = R™ x {0}.
Let M > 0 be large enough such that By, c Cyp, for any L e # %) with L A By, (0,m) # &
(cf. [14] for the definitions). Consider further a sequence of planes 7y with the property that
7, optimizes the excess of Tp . in Bgys and consider that

(6) E(To,r,, Cant, i) < E(To,,,Bsy) =: Ep — 0,

and define Ay := Ay, . Clearly we must have 7, — mo. By applying a rotation which is
infinitesimally close to the identity we can map 7 to mg. We then push forward the current
Tb,r,, under this rotation so that we can assume 7, = 7, while, with a slight abuse of notation,
we keep using Ty, and g, for the rotated objects.

If kg € N is large enough, we can ensure that

1
(7) E. + Ai < min {51, 5} for every k = ko,

where ¢ is the threshold in [13, Theorem 2.4]. We can therefore let fi, : B1(0,m) — Ag(7g)
be the strong Lipschitz approximation of [13, Theorem 2.4] for T, and define the rescaled
maps

- Tk
(8) fr= =
E}?
We will make the additional assumption that
(9) A2 < COri=o0(Ey).

It then follows from [13] that, up to subsequences,
() fx conlverges strongly in L? N VVl(l)C2 (B1(0, 7)) to a Dir-minimizing map f : By (0, m) —
Aq(mg),
(ii) f takes values in the orthogonal complement to g in TpX,

(iii) f(0) = Q[o]-
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Note that there is no guarantee that the blow-up is nontrivial: the nontriviality of f is in fact
equivalent (cf. [13]) to

E(TU,’I”kvcp77Tk) Sz

(10) lim inf c>0

kO Ey

for some p > 0 and some ¢.

Definition 3.1. A Dir-minimizing map f as above will be called a coarse blow-up (at 0). Its
average free part is given by the map

(11) v(x) = Z[[ﬁ(x)—nOf(x)]]-

We say that f is nontrivial if it does not vanish identically.

Obviously, if we focus our attention on some other flat singular point ¢, an obvious modifica-
tion of the above procedure defines a notion of coarse blow-up at g. Our main claim for coarse
blow-ups, which (as already pointed out) is a consequence of the Hardt-Simon inequality, is
the following.

Theorem 3.2. Let T be as in Assumption 2.3, f be a nontrivial coarse blow-up, and v be its
average-free part. Then I7(0) = 1 and, if v does not vanish identically, I,(0) > 1.

In this section we prove Theorem 3.2.

3.2. Closure under rescalings. Before coming to the proof of Theorem 3.2 we need the
following elementary observation, which verifies that the property of being a coarse blow-up is
closed under normalized L? limits.

Lemma 3.3. Let T be as in Assumption 2.3 and f be a nontrivial coarse blow-up. Let pi 0
be any vanishing sequence, let
DG)= | DI,
By,
and define the rescaled maps fj(z) := (p?_mD(j))_lﬂf(pjx). If fo is the L? limit of any
subsequence of {f;} on By, then fy is (up to a nonzero multiplicative factor) also a nontrivial
coarse blow-up.

Proof. Let rj; be a blow-up sequence with the property that the maps f1 defined in the previous
section converge to f and fix constants p and ¢ so that (10) holds. We consider a sequence
r;- = p;Ti(y) and m; := m;) and we will show that, for an appropriate choice of k(j), the
following holds:

(a) 7’ is a blow-up sequence, i.e. To,r; converges to Q[mo];

(b) Ej:= E(T(M;7 Cy4,m;) converges to 0;

(¢) The conditions (9) and (10) hold for this new blow-up sequence;

(d) If f; are the approximating maps given by [13, Theorem 2.4], then E; 1/2 f; converges
(up to subsequences) to Afy for some nonzero scalar A.

The argument is a classical diagonal one and in order to deal efficiently will all the conditions,
it is useful to decouple the two indices and introduce the radii 75 := p;ri. We introduce
then the corresponding excess Fj j := E(TO’,,J.),C,C4,7T1€) and Aj; = AZO’TM. Combining the
estimates of [13] with (9) we immediately see that there are two positive constants ¢t and ¢~
such that

Ejko} Ej ko
12 ¢ <liminf =222 < limsup —2—L_ < ¢t
(12) B DG S P B D)
Moreover, obvious scaling arguments show that A = p?Ak. It is then pretty obvious that
the conditions corresponding to (a), (b), and (c) above hold for any sequence {p; 1}, once we
keep k fixed. Observe also that for (¢) we can choose constants which are independent of k:
the radius p can in fact be taken equal to %, while the constant ¢ will depend only upon ¢~. In
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particular, for any sequence {k(j)}; which converges to infinity sufficiently fast, (a), (b), and
(c) will hold.

Next we apply, as above, suitable rotations and assume that all the planes 7, coincide with
mo (without changing notation for the various objects introduced). We consider the rescaled
maps

Fin(a) = o7 i(oye)
and let instead f; 5 : B1(0,m) — Aq(m) be the Lipschitz approximations which are given by
[13, Theorem 2.4] applied to 7o, . Observe that, by the estimates in [13, Theorem 2.4],

. —1/2 3
Jim B 3P1G (ks fix) e = 0.

On the other hand, for every fixed k, the limit of Ek_;fjk is clearly a scalar multiple A(k) of f,
and it is easy to see that this scalar multiple has a fixed range [A~, AT] for positive constants
A% depending upon ¢t and upon the constant ¢ in condition (10) for ry. It follows therefore
that (d) holds for any k(j) which diverges sufficiently fast. O

3.3. Proof of Theorem 3.2. Recalling [11, Theorem 3.19], the frequency value « at 0 of any
Dir-minimizer f is a positive number and by [11, Corollary 3.18], we have that

(13) lim p2_25‘_mf IDf> =0  Va>a,
p—0 B,

(14) lim p2_26‘_mJ IDfFP=0 Va<a.
p—0 B,

On the other hand, since the Dirichlet energy of Df is the sum of the Dirichlet energies
of o f and its average free part v, for any coarse blow-up f we conclude that I 7(0) <
min{7,(0), I,,. (0)}. Recall that o f is a classical harmonic function and hence I, 7 is a
positive integer. Thus, in order to prove that I,(0) > 1, it suffices to show that I7(0) > 1.
Introduce now

m—2  f(rz)

i

! VDir(/. B,)
and apply Lemma 3.3 to conclude that, if there is a coarse blow-up f with o = I f(()), then
there is a coarse blow-up which is a-homogeneous.

In this second part we prove that, if f is an a-homogeneous coarse blow-up, then necessarily
a > 1. This is in fact the same argument used in [1, Proposition 3.10] and we report it for
the reader’s convenience. Consider thus such a coarse blow-up and fix a blow-up sequence 7}
leading to it, according to the procedure explained above. In order to simplify our notation
we denote by T}, the current Tp ., .

First of all, recall that the error from the monotonicity formula for mass ratios gives the
estimate

1
(15) .[B4 W lq

See, for example, [30] for a derivation of this. The only subtlety compared to the classical
literature (cf. for instance [28]) is that the usual derivation of the above estimate is reduced
to the one for varifolds with bounded mean curvature. The latter is not good enough for us
because it would give a linear dependence on A, rather than a quadratic one. The quadratic
improvement, which is possible using the stronger information that our current induces a
stationary varifold in a Riemannian submanifold, is remarked in [13, Appendix A].

As described in the procedure leading to coarse blow-ups we rotate the currents suitably so
that 7 = my. We next pass the inequality (15) to the Lipschitz approximations f given by [13,
Theorem 2.4]. We let >, [(fx)i] be a (measurable) selection for the fi as in [11, Theorem 0.4].
We then write

L 2
T QT (q) < CEx + CA2.

x ()2
B [ LSO o < s,
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where K}, By < my is the (closed) domain over which the graph of the Lipschitz approx-
imation fj coincides with the current Ty (cf. [13, Theorem 0.4]. Note that, for the point
q=x+ (fr)i(z) € Ky x mit, ¢- denotes the orthogonal projection of q to (T,G;)*, where G
(the current induced by the graph of the multivalued function f) is defined as in [12, Defini-
tion 1.10].

However, since f}, is Lipschitz, and hence differentiable almost-everywhere by Rademacher’s
Theorem [11, Theorem 1.3], we can formally compute

% ((fk)z‘(@) _ 0 <$+ (fk)i($)> _ 0@t (fo)ilx)) o+ (fr)ilz)

] ar ] ] |

Since the first term on the left-hand side belongs to T,G at ¢ = = + (fx):(z), we have
2
o (i@ [+ G@]
= ()

G
Combining this with (16), we have

=t o (@]
(18) L(k;|$+ z)[m+2 [8r< || )]

We next wish to estimate the tangentlal component of the right-hand side of (17) as follows:

2
O (@) 2| 0 ([ (fi)i(=) 0 ((filo)
or || or || or ||

where we have used that, at the point ¢ = x + (fx);(z) of interest, the tangent to the current

coincides with the tangent to G, and the distance of the latter to my can be estimated with
the Lipschitz constant of fi (cf. [13, Theorem 2.4]). Writing

SR REESIE S
we immediately conclude
. 2 )i 112
() <[ (%)

as soon as FY is sufficiently small. Hence, by (18), we conclude

|z|4 :
(19) L{k et @) a( o >

Next, consider f := E, -1/2 fx and infer, from (19) the estimate

f |z ((fk:) i(z ))
Nmsg K08, T o+ B (fie) e 100 A o]
for any k > ko and p > 0. Recall that:
e f} converges strongly in W1’2(31/2) to f;
e The height bound of [30] implies that | f ]« is uniformly bounded.
We can thus pass into the limit in k& to conclude
Z ((f )i(ﬂ)
lem 2{or \ Jaf

By choosing a fast converging subsequence, we can assume that the series > |B1\Kj| is sum-
mable. Therefore, let kg 1 00 and p | 0 we get

(20) L l o ((f?;ﬁx)ﬁ dr=@

(17)

dz < CE}.

2
<CE}

2

7

= prk(q) o

<2

z < CEy.

de < C,

2
de < C.

J(Bl/z\Bp)ﬁﬂJ>k0
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Since f is a-homogeneous we have

) = e ().

]

5 (ﬂff)) — (@=1)[z]%f; (|) |

Inserting in (20) and passing to polar coordinates we conclude

12
(a—1)2 LB |f\2f s1m20-0) g <
1 0

The latter inequality implies immediately a > 1, and thus completes the proof.

and so

4. COMPARISON OF COARSE AND FINE BLOW-UPS

In this section we compare fine and coarse blow-ups at scales which are comparable to the
left endpoints of a sequence of intervals of flattening. The main conclusion is that the average-
free parts of coarse blow-ups are scalar multiples of fine blow-ups. More precisely we have the
following proposition.

Proposition 4.1. Let T be as in Assumption 2.5. Let ri be a blow-up sequence at the origin
and assume that
Py

(21) liminf 2% > 0.

k—oo Tk
Then (9) holds and we can consider a coarse blow-up f generated by a (subsequence) according
to Section 3.1 and a fine blow-up u (generated by a further subsequence) ‘according to the
procedure detailed in Section 2.1. If we denote by v the average-free part of f, then there is a
real number A > 0 such that v = Au.

Remark 4.2. In general, without assumption (21) it might be that (9) does not hold and
that we cannot, therefore, define a coarse blow-up. Even if we were to assume (9), but not
(21), we could at best infer that v = Au for some A = 0, but not that A is necessarily positive.
Easy examples for the latter behavior can be constructed using holomorphic curves of C? of
the form {(z,w) : (w — h(z))? = 2P}, for a nontrivial holomorphic h with h(0) = h’(0) = 0 and

a fraction % which is noninteger and larger than the order of vanishing of h at 0.

An obvious corollary of the latter proposition is that, under the above assumptions, v is
necessarily nontrivial and that I,,(0) = I,,(0).

4.1. Nontriviality and homogeneity of coarse blow-ups. If we combine it with Theorem
2.10(vi), Proposition 4.1 has the following further consequence, which will be useful in [10].

Corollary 4.3. Let T be as in Assumption 2.1, let 3 > 0 be the parameter in [14, Assump-
tion 1.8] and assume the singularity degree I(T,0) is strictly smaller than 2 — é2. Then any
coarse blow-up f at 0 is nontrivial, I(T,0)-homogeneous, and has average 0 (so in particular

f = v for the average-free part v).
Moreover, for every v > 2(I(T,0) — 1), we have

E(T,B,
(22) lim inf E(T.B,) >
rl0 Y

0

and there exists a radius ro (which depends on the current T') such that
2l

(23) E(T,B,) > —E(I\B,) Vr<s<n.
s

Proof. Tt follows directly from Proposition 4.1 and from Theorem 2.10(vi) that the average-free
part of any coarse blow-up at 0 is nontrivial and is I(T,0)-homogeneous. We therefore just
need to show that the average vanishes.

First of all observe that, if {f} is any family of coarse blow-ups, then kale,z(Bl) is
uniformly bounded and any limit f., of any subsequence is also a coarse blow-up. Since every
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such f, must have an average-free part which is nontrivial and I(T,0)-homogeneous, it follows
immediately that there is a positive number w > 0 such that

J |Daf* = w >0
B1

whenever @ is the average-free part of a coarse blow-up f. In particular, we also conclude the
existence of some constant € such that

(24) | p@mene<af pap
Bl Bl
for every coarse blow-up f, its average free part %, and its average n o f. -

Consider now the sequence 7 | 0 which generates any coarse blow-up f and let 7 be an
optimal plane so that E(T,Bgas,, ) = E(T, Bsas, ). The nontriviality property (24) and the
Taylor expansion of the area functional can be easily used to show that

E(T,Bsy,, ) < CE(T,B,,, ) < C*(E(T,B,,) .
From the above, if 7}, is an optimal plane such that E(T, B, ,7}.) = E(T,B,, ), then |m; —7}| <
CE(T,B,,) and thus
E(T,Bsuy,, ;) < CE(T,B,,)
However, observe as well that for any constant C' fixed, the sequence Cry, also generates (up
to possibly extract a subsequence) a coarse blow-up: in fact the excess must go to 0 (because
the currents Ty cr, converges to the same tangent cone as Tp ., which thus must be flat) and

E(T,Bscur,) = C~"E(T,Bsyy, ), so that (9) holds for the sequence Cry as well.
Let now 7, be a plane with

Ey = E(T,Bsymr,) = E(T,Bsarr, , T),

we can apply [13, Theorem 2.4] in the larger ball B(sas)2,, relative to the plane 7 to get
a Lipschitz approximation gy : Bsar(0,7;) — AQ(T(%) in the cylinder Cgpp, (0,7%), as in
the algorithm detailed in Section 3.1 to generate the coarse blow-up f. This new Lipschitz
approximation g, coincides with fr on Bj, except 1for a set whose measure is estimated by

o(E}). In particular the rescaled functions g, = E, 2 g converge to a Dir-minimizing function
g over Bgys(0, 7o) which coincides with f on By(0, ).
Next, we observe that

_ 1 _ 1
D(no F)(0) = — D(nof) = mj D(nog),
Wm JB;(0,m0) Win 2 B2 (0,m0)

by harmonicity of the two functions. But we then must have D(n o f)(0) = 0, otherwise we
can use the Taylor expansion of [12] to contradict the optimality of the plane .
The above discussion also shows that, if
E(T,Bisrrr, s 7;) = E(T, Biourr,,) =: By,
then
e — k| = o(B,?)
and

E E
C~! < liminf —]f < limsup —]f <C.
k Ek k Ek
But in fact, for every fixed j, the same conclusions apply, with a constant depending on j, for
E;, replaced with

E(Tu B2j+3Mrk77r;c) = E(T, B2-7+3Mrk)'

In particular, if r; | 0 is a sequence which generates a coarse blow-up f, then 277}, generates a
coarse blow-up g; with the property that f(x) = X\;g;(277z) for some positive nonzero number
Aj.
Next, denote by @ the average-free part of f and by v; the average-free part of g;. Observe
that Da and D7v; are (I(T,0) — 1)-homogeneous, while D(n o f) and D(n o g;) are classical
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harmonic function with D(n o f)(0) = D(n o g;)(0) = 0 and 1o g;(0) = g o f(0) = 0, in
particular I;).5,(0) = 2. Therefore, we observe that

§p, Do N2 S5, IDog,)?
T IDA? 5, Do

_ 9=3(21n0g,; (0)=2) &Bl |D(nog;)?

= 9—3(2I(T,0)—2) &Bl |D17j|2
22 U0=2) § |D(n o gj)|?

SB1 |D17j‘2

On the other hand the bound (24) is valid also for g; and v; in place of f and @, because gj is
a coarse blow-up and 7; is its average-free part. In particular, recalling that I(T,0) < 2 — 0,

we conclude o
§5, [D(mo f)
§p, [Dal?

Since (2 is fixed, j an arbitrary integer, and ds a positive number, we immediately conclude

that D(no f) =0 and no f is a constant. On the other hand recall that, since ©(T',0) = @,
f(0) = Q[0], and in particular 1 o f(0) = 0. We thus have proved that no f = 0.
Next observe that the arguments detailed so far have also the following outcome. If rg | 0
is a sequence such that E(T,B,,) — 0, then
im E(T7 Br/2) _ 27(1(1“70)71) '
rlo E(T,B,)
Fix now any v < I(T,0) — 1. The above implies the following: there is # > 0 and £ > 0 such
that:
e If r <7 and E(T,B,) < E, then
E(Ta Br/2)
E(T,B;)
We next distinguish two cases. We consider the following set
R:={0<r<7:E(T,r) <2 'E},

which can be easily checked to be open if 7 is sufficiently small. We then argue differently
dependingon whether R contains a neighborhood of the origin or not (and notice that, when
I(T,0) > 1, we are certainly in the first case). If it contains a neighborhood of the origin, then
there is 7 > 0 such that

~x

< 27202

=277,

E(Ta Br/2)

E(T,B,)
In particular, if we let ¢ := inf{E(T,B,) : %
dyadic scales we achieve

> 277 Vr <7T.
< r <7} > 0, iterating the inequality above at all

E(T,B,) > ¢ (5 )7

o=\ )

If it does not contain the origin then let R = (J,]r,r[ where r;7,; < r; and both are

infinite sequences of infinitesimal numbers. Then, E(T,B _+) = E and, up to subsequences,
k

Ty

follows in particular that there exists kg such that

. converges to a cone C' which is nonplanar and such that E(C,B,) = % for every p. It

E _ rF
— <E(T,B,)<FE Vre U]T’“,r;[
4
k=ko
In particular, arguing as above we conclude

E/ r\” _
E(T,B,) > — — Vr e U]rk,rk[,
4 2ry; KSko
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while B
E(T,B,) > E Vr<rl o storg U I i [
k=ko
The combination of these two facts give that
liminf @ >0
rl0 rY
and thus concludes the proof of (22). O

4.2. Reparametrization. An important tool for proving the Proposition 4.1 is the following
lemma, where we follow the notation and techniques introduced in [12].

Lemma 4.4. There are constants k(m,n,Q) > 0 and C(m,n, Q) with the following property.
Consider:

o A Lipschitz map g : R™ o By — Ag(R™) with |g||co + Lip (9) < k;

e A C? function @ : By — R™ with ¢(0) = 0 and |De|c1 < k;

o The function f(x) = >,;[e(x) + gi(x)] and the manifold M := {(x, p(z))};

e The maps N,F : M n Cgj; — AQ(R™*") given by [12, Theorem 5.1], satisfying

F(p) = ZZ[[p + Nl(p)ﬂ, Nl(p) J_ TpM, and TFLC5/4 = GfLC5/4

If we denote by § the multivalued map x — g(z) = >.[(0, gi(x))] € Ag(R™*™), then

(25) G(N(p(2)),9(z)) < C[Dplco(glco + |Dglco)  Vae By

Proof. We fix a point € By, denote by p € M the point p = (z,¢(x)) and let N(x) = >..[¢]
and g(x) = >};[p:]. We fix a measurable selection for the function g, so that we can write
g = >,;[9:] and a corresponding measurable selection for f, where f; = ¢ + g;. According
to [12, Lemma 5.4], the set of points {¢;} can be determined as follows. If we let s« be the
orthogonal complement of T, M, then {g;} is given by the intersection of p + s with the
support of the current Gy (i.e. the set-theoretic graph of f). This means that there are points
Z1,...,2¢ such that
@ = (i, fi)(@3)) = (i, (i) + g5y (@) ,

where j: {1,...,Q} — {1,...,Q} is some unknown function. Observe that

i — x| < Clgi — pl|s — |
where 37y denotes the vertical plane {0} x R™. We therefore easily conclude the estimate

|z — 2| < C|N|co|Dello -

Since however [N]co < C(lgleo + [@lco) < Clgleo + |Deplco), clealy

(26) |[zi — 2] < C[Dep|co(lglco + plce) -
Given the Lipschitz bound on g we conclude that there is a 7(i) such that
(27) 195y (i) = gx (i) (@)] < Cllplco(glco + [Deplco) -

Ifr:{l,...,Q} — {1,...,Q} were injective, we would immediately conclude (25). While this
might generally not be the case, it certainly is when Q) = 1, hence establishing the estimate in
this particular case.

For the general case we argue by induction. Assume therefore to have fixed ) and to have
proved the estimate valid for maps which are Q’-valued for every Q' < Q. Consider now the
following alternatives:

(a) the diameter of the set {g;(x)} is smaller than |De|co(||lgllco + ||De|co);
(b) the diameter of the set {g;(z)} is larger.

In the first case we have

195y (i) = 9:(2) < 1955y (i) = 9 (i) (@) + [gm(i) (®) — g3 (@) < (C+1)[Depco (gl co + [Depf co) -
In the second case we set d := | Dp|co(||lglco + @] co) and recall [11, Proposition 1.6]: if the
Lipschitz constant of g is smaller than a constant depending only on C, @, and n, the map
g decomposes, in the ball Boy(z) into two Lipschitz @;-valued maps with Q1 + Q2 = Q. In
particular we can use the inductive assumption to get (25). O
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4.3. Comparison estimates. In order to prove Proposition 4.1, (25) will be combined with
two important estimates comparing the Lipschitz approximation and the normal approximation
over the relevant center manifold.

The first estimate is the following control on the L? height of a normal approximation in
terms of the excess.

Lemma 4.5. Under the assumptions of Proposition 4.1, the estimate (9) holds. Moreover,
the following holds.

(i) Let hy be as in Section 2.1 for the scales ry,. Then we have

2 2
(28) 0 < liminf =% < limsup —& < 0.
k—oo - Lo k—oo Lk

(ii) Let fx be as in Section 3.1 and consider the map @,;, on By (7, 0) whose graph coincides
with the center manifold (Mj(k))o,rk./tj(k) over the cylinder Cgo(my,0). Then we have

(20) fB Bp — 10 fil? = o(Ey).
3/2

Proof. We fix 1, as in the statement and, upon extraction of a further subsequence, we assume

the existence of
Tk

lim = ¢ €0, +oo[.
k—o0 Sj(lc)
Observe that ¢ is at least 1. It is convenient to introduce the rescaled radii 7 := tf(’; : and
J
Sitk) = ?((;; Recalling the stopping condition which defines s;() in [15, Section 2.1], there
J

is a cube Ly € #7%) with Ly N Bs,.,
cs = ﬁ. Observe that, since 0 is a point of density @ for the current T, [14, Proposition

and £(Ly) = cs5;() for the specific geometric constant

3.1] implies that Lj cannot belong to %(k). If L € W,f(k), we may apply [14, Corollary 3.2]

to find a nearby cube L}, € %j(k) of comparable size. Thus, we may assume that Ly € ”//ej(k).
We can thus apply [14, Proposition 3.4] to conclude

mo,j(k)é(Lk)Q*Q‘s? < CE(TO,tj(k.)yBLk) .

Recalling however that the cylinder Cypss, (0, 7)) contains By, , as well as our amended defi-
nition of mg j(x), we immediately conclude that

Ek = E(TO,T‘ka C4M77rk’) = E(To,tj(k)7BLk) = Cilmo,j(k)g(Lk)zizéz

2-24,
—1,.2:2,2-28, "j(k) _ ~—1 2-2_2-25,
= C7 8 2% =C7 & s "
J(k)

In light of the comparability of s;() and 7y, it thus follows immediately that

o Ey,
(30) lim inf 27252

>0,
k—00 rki

which in turn immediately implies (9). In addition, rescaling by ;) and again using the
definition of mg j(x), we have
(31) E, = éilmo’j(k)fiizéz ,

where C is independent of & (it is not, however, a geometric constant, namely it might depend
on the blow-up sequence that we fixed at the beginning).
Next, observe that

9 C N ) RS, B
hy, < 7;m+1HNj(k)(2T’f) < C7y DNj(k)(2rk)7
k

where C' is independent of k. On the other hand we recall (see for instance [15, Remark 3.4])
that Dy, (27%) < C’mo}j(k)r_?”_%z. We thus conclude that

2 _2-2§
hy < Cmy o, ™
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and we achieve the right-hand inequality of (28) when combining the above with (31).
As for the left-hand inequality of (28), first recall that, by [14, Proposition 3.4] we also have
the opposite inequality

(32) hi > C«*lr—k—m—2 fﬁ |Nj(k)|2 > éf1mék)7:i_252 ’
k

where L is the Whitney region corresponding to Lj. On the other hand recall that
optimizes the excess of Tp ., in Bgys, which implies that it optimizes the excess of To,t;0) In
Bsasr,. Because of the condition sy < < @s;(x), we can find a cube H € 7))
with the property that Bsanrr, © By D Bsasr,. Due to [14, Proposition 1.11], we thus must
have

E(To,tj(k) ) BSM’Fk ) Wk) < E(To,tj(k) ) BS]\/I’Fk ) 7TH) < CE(TO,tj(k) ) BHa ﬂ-H)
< Cm07j(k)€(H)2_252 < Cm07j(k)77,37252 .

Combining this with the height bound [14, Theorem A.1] on Ty ¢ we can write

i(k)?

(33) E = f,;mE(To’tj(k)7C4M7=k> < CE(TO,tj(k)BSMFk,Wk) < Cm07j(k)fi_2§2 .

It thus follows immediately from (32) and (33) that lim infy %E > 0.

We now address the last part of the lemma, namely statement (ii). First of all we rescale
the graphs of ¢, and of fi using an homothety of center 0 and ratio 7. We denote by
@y = 7}, ' @(Tr) and fI = 7, ' fx(7x-) the corresponding maps and note that the desired
estimate is equivalent to

| @f —mo i = ofEx),

Bsiy j2(k,0)

and given the estimate (31), it suffices to show

(39 | (B =m0 i = B o(m}/5 ).
Bz, j2(mk,0) '

Consider now the plane 7 (j(k)) which served as reference to construct the center manifold
Mgy It is easy to see that |m(j(k)) — mp| < Cmé{;(k) < C¢ for some geometric constant
(see [14, Proposition 4.1]). Since nothing else will be used about 7y(j(k)), except that it serves
as reference to construct the center manifold M), in order to simplify our notation we will
simply denote it by 7y, even though the plane does depend on k.

We now consider all the cubes H € #7() which intersect B, and denote such collections
by €*). For each H € €*) we consider a cylinder Cocemy(qu, mr), where C' is a geometric
constant (which will be specified later) and qg is the center of the cube H. We then consider
the cylinder Cey(pr)(qm, ™) and, given that the height of Tp ., over m; converges to 0, conclude
that the set (gr (@) ugr (f7)) N Ccum)(qm, Tr) is contained in Cocy(ry(qm, Tr). Further, let
®,(T') be the contact set of the current To,t;, and the center manifold M), as defined in
[14, Definition 1.18], and denote by Iy its projection onto the plane 7. Finally, it will also be
convenient to define the point ¢y, as the orthogonal projection onto 7 of ¢r,.

If C is a geometric constant sufficiently large (e.g. 104/m suffices, provided & is small
enough), then the set I'y and the disks Bey(gy(Gu, ™) cover the disk Bgz, /2(0, 7). It will be
convenient to devise a slightly delicate cover, made of pairwise disjoint Borel sets, with the
following algorithm. We enumerate the disks Bey(p)(Ga, 7)) as B, i€ {1,2,...} = N\{0} and
set Fy := 'y N Bss, o and define inductively Fj,; := Bj+1\Ui<j F;.

Next, for each H we recall the approximating Lipschitz map fg of [14, Definition 1.13 &
Lemma 1.15] and let fz be the reparametrization of gr (fg) N Ccmy(qm, mr) as a graph over
the disk Beysy(qm, 7x), according to [12, Proposition 5.2]. We are now going to define a good
set G < By, /2 as follows

e G n Fy consists of those points q € Fy where fi(q) = Q[@%];
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e For each j > 0, G n F} consists of those points g € F; where fi coincides with fg for
the corresponding H such that Beoyw)(qm, mr) = Bi.

Observe that
BSFk/Q\G < Pry, ((Spt (T07tj(k) )\gr (f_l:)) N CS'Fk/Q(Oa ﬂ—k))

-

N

—.=1

==y

Y Pry (Spt (TO,tj(k)\TF (k)) N CSFk/Q(Ov,]Tk))) :

-~

~

=.=2

Tk

On the other hand, recalling that A2 = o(E},), we can use [13, Theorem 2.4] to estimate
=kl < H™ (5Pt (To,,4)\et (f7)) 0 Cary 2 (0, 7k))
< TRH™ (50t (To,r,)\er (f1)) 0 Car(0,mr)) = 7 O(E, ™).

As for 2%, we instead use the analogous estimates for each fy to get

\Ei < 2 Hm(spt((Tovtj(k)\ger))mCCf(H)(qHaﬂ-k))

He® )

Z H™ ((To,t; ) \et fr)) 0 Cocoiry (qm: TH))
He% (k)

Z 4 mo;(k)f( )2—252)1+m <mé+g(7k)F1T+2Hl/2
Le‘io”(’“

(we recall here that the constant « is fixed in [13], while d5 is chosen later in [14, Assumption
1.8] and satifies (2 —2d2)(1 + 1) < 1+ 71/2).
On the other hand,

HfTIZHCO(Bsf,C) < Ch(TO,tj(k) 5 C3Fk (07 Trkt)) = kah(TO,TINCS(Ov Trk)) < kaE]};/2 )

where in the latter inequality we have used the information that 0 is a point of density ) point
of T and the classical L* bound of Allard, cf. [30]. Moreover, recalling that HNJ-(,C)HiQ([:) <

Cm(l)/j(k)é(L)mH*%?, we infer in particular the existence of at least one point = € p,, (£) and

y € it such that (x,y) € spt (To,t,,,) and
-7 1/2  _2-6
|Pk(z) —yl < Cmoj(k)rk ’,
1/2

which in turn leads to the bound |4 ()| < C(my/>, + B/ < CE/*7y. Note that &}, is
Lipschitz, with a constant uniformly controlled in k We thus conclude that
(35) | fillcoBsr,) + 1@kl 0o By, ) < CE/*r,.

In particular, combining the latter estimate with |Bsz, 2\G| < CEx7}", we conclude that
(36) | ei-meqp<crppe.
B3, 2\G
Considering that on G N Fy the functions @}, and n o ff coincide, we are left to estimate
ST T 2= AT £
(37) S| wei-meqr<Etn Y | @k —no fal.
GnFj

j=1 j=1YBoew) (qu,mk)

We now wish to estimate each integral in the above summation by changing coordinates to
the reference plane 7y for each H € €®). Denote by ¢, the function whose graph over
Bscorry(qm, ma) coincides with M,y (which, we recall, is the graph of ¢}, over an appropriate
subset of 73,). We likewise introduce fir which is the function over Bacy ) (qa, 7r) whose graph
coincides with the graph of m o fy. Applying [14, Lemma B.1(b)] we can then estimate

| @ —mo ful <C o — fir
Beoowy (Gu,mx) Bacow) (qu,mH)
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Let us now estimate

(38) f |¢H7fH‘<J IsoH*nOfHHJ inofu—ful.
Bacery(qm,mr) Bocemy(qm,mH) Bacea) (g, mH)

In order to handle the second integral we wish to estimate |, — 7|, since we will be using C°-
estimates on fg here. First of all we compare the tilt between 73, and wg for the ancestor H’
of H with the smallest side length such that By © Bsysr,. Observe that ¢(H') < CT. Since
Ty optimizes the excess of To,t_,»(k) in By, while 7 optimizes the excess of the same current
over Bgasr,, a simple comparison argument (cf. for instance [14, Proof of (4.5)]), implies

mi — | < C(E(To s, > Bsar) Y2 + E(To, . Bi)?) < CEY? + Cm)2 72

k) 0,j(k)"k

On the other hand, by [14, Proposition 4.1] we have

= mr| < O3 7%
and we thus reach
(39) |mr — 7n| < CE/? + Omy m < CEY®.

We can now employ [14, Lemma 5.6] to estimate

1 . m
J im0 fir — il < CUFEco(Baosim (armn)y) + Ex ) (Dir (frr) + €(H)™Ey).
Bacery(qm,m)

Recall that || fallco By, (qmme) < mé{f{;)é(H)1+ﬁ2 while Dir (1) <m0 ((H)™ 222 <

¢(H)™E},. We thus easily conclude that

f Ino fu —fu| < CO(H)™ELT/*™.

Bacou)(qu,mh)

We now come to the first integral in the right hand side of (38). First of all we recall the tilted
interpolating function hy of [14, Definition 1.16] and observe that, by construction, ¢ and hy

coincide in a neighborhood of gir. Now recall that, by [14, Proposition 4.4] HDhH | < C’ml/2 )"

Since moveover | D¢y || is controlled by the second fundamental form of My, which in turn

is bounded by m./? ., we easily see that the estimate |D?pw| < < Cm!? holds as well. In

0,5(k)’ 0,5 (k)
particular, using a second order Taylor expansion on a point where ¢ — h g and its derivative

both vanish (to gain an extra factor of £(H)?) we can estimate

(om — o Jul < Cmy/5 008" + | hat =m0 ful.

Bocewy(qm,mH)

JBZC[(H)(QH;T"H)
Finally we can use [14, Proposition 5.2] to estimate
J \hy —mo fu| < CmiPe(H) 3462

Bacory (qrmH)

In summary, we have reached the estimate

| 6 —mo ful < Cmi 0(H)™2.
Beo(a) (@ ,mr)

Inserting this into (37) and decomposing into cubes H, we then get

_r o o 1/2 1/2 m 1/2 1/2  _m
L|90k*770fk|2<07’kEk/ mO,/j(k) Z ((H) +2<0Ek/ 0/(1c)7q’C .

He€ )

The latter, together with (36), gives finally (34) and completes the proof of the lemma. O

Proof of Proposition 4.1. We wish to compare

- Nipogpy

Ny = ™ Zi[[(fk)i_nofkﬂ

E}? ’

and v =
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in particular we wish to show that they have the same L2 limit, up to a scalar constant. Since
both sequences are converging to respective Dir-minimizing maps, it suffices to compare the
maps N, and vy, on some nonempty open set; we will do it on By for simplicity.

First of all we replace 1 o fi with the parameterizing map ¢, for My in vi to give a map

Uy, given by S ]
N i fk i — @
5 - Sl
k

)

since Lemma 4.5 implies that

lim G(vg, 9:)* = 0.

]{:T(X) 33/2

Recalling [13],
1Pk (5Pt (To,r )\er (i) U gr fr\spt (To,r,) N Csp2)| = o(Ek) .

Next, introduce the map F(p) := >, [(Ny)i(p) + p] on My, and let f} : Bo(0,m) — Ag(ni)
be the map whose graph coincides with the current Tz n Co(0, 7x). By [14, Theorem 2.4] and
[15, Section 4.2 & Corollary 5.3],

P, (g1 (fi)\spt (To,r,,) © 5Dt (To,r,)\er (f3)) N Caja| = o(Ey) .

In particular, if we consider the map

N (e
k E;/Q

we have that |{6} # ox}| — 0, and using that both have a uniform bound on the Dirichlet
energy, we conclude that
lim G0}, 96)* =0.
k—o0 B3/2
We also take advantage of Lemma 4.5 to assume, up to extraction of a subsequence (not
relabeled), that Ej/h3 converges to some finite constant A > 0. We are therefore left to show
that the maps N and
2 _ Zil(fi)i — il
U = h1/2
E
have the same limit. We now wish to apply Lemma 4.4 to the maps Ni. We observe that the
map ¢ in Lemma 4.4 can be taken to be the map gi defined by

9k = 2[[(]61%)1 2k

Moreover, observe that | Dey|co converges to 0. If we had a uniform bound on |gx|co in terms
of hy we could then apply Lemma 4.4 to complete the proof. Given that we only have the
bound |gkl|r2 < Chy we need to overcome this issue. We use the following simple argument.
We fix a truncation parameter M and introduce the truncation

gil = Z[[(gk)?z]]

where the maps (g1)M are defined by replacing each component (§;);(z) of the vector (g ):()
with max{—M,min{(§;);(z), M}}. By the Sobolev embedding and the uniform W? bound
on g it is easy to see that

lim suphiQJg(gk,g,]fI)2 =0.
M—w0 [k

Likewise, after defining the maps NV ,?Z as those corresponding to g{f[ in the same way as N
corresponds to gi, we see as well

lim suphgzJQ(N;W]\T;JVI)2 =0.
M—w
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We can now apply Lemma 4.4 to conclude that the limit (in k) of h;lN,ﬁV[ o g and the limit
of gM coincides on B;. Letting M — o0 we then reach the desired conclusion. O

5. FREQUENCY BOUND FOR FINE BLOW-UPS

In this section we prove the lower bound for the frequency values, which we equivalently
restate as follows for the reader’s convenience.

Theorem 5.1. Suppose that T and 3 are as in Assumption 2.3 and let u be a fine blow-up.
Then I,,(0) = 1.

In order to show the theorem, we fix a blow-up sequence {ry} which generates the fine blow-
up u through the procedure described in Section 2.1 and for each k sufficiently large we choose
the interval of flattening ]s;(),t;(x)] which contains the radius 7. We can then reduce the
proof, up to extraction of a subsequence, to three different cases. In the first case we assume
that there are finitely many intervals of flattening and hence (up to subsequence), there is a
positive integer J such that:

(40) s;=0 and {ri}r <10,t,].

In the remaining three cases we assume that there are infinitely many intervals of flattening
and that (up to subsequence) one of the following mutually exclusive conditions hold:

(41) lim 28 < g
k TEk

(42) lim 228 _
k TL

The proof will take advantage of a first coarse lower bound proved recently by the second
author, cf. [29, Theorem 7.8], which in turn can be combined with the monotonicity compu-
tations in [15] to give a suitable almost-monotonicity formula for I, cf. [29, Theorem 7.4] as
well. We summarize these conclusions in the following theorem.

Theorem 5.2. Let T', ¥ be as in Assumption 2.3 and consider any center manifold M; and
any normal approzimation N for a given interval of flattening |sj,t;] at 0. Then,

(43) Iy, (r)>co  Vre ] ?3] ,

J
(44) Iy, (a) < eIy, (b)  V]a,b] < ]‘:'33] :

J

where a = a(Q, m,n) > 0, while ¢y and C are positive numbers which depend on T (but not
on j).
5.1. Proof of Theorem 5.1 under assumption (40). We let M be the center manifold
related to the interval of flattening |0, ¢ 7], with corresponding normal approximation N. Since

we are in the case with a single center manifold, we omit the dependency on N for I and related
quantities. Observe that, by Theorem 5.2,

I(a) <e*"I(b) VYo<a<b<3
and in particular we immediately see that

co < limsupI(r) < limlionfl(r) < 4.
rl0 r
So the limit Iy := lim, o I(r) exists and it is positive and finite. It follows from the strong
convergence of uy from the definition of u being a fine blowup, that I,(r) is identically equal
to Iy, and thus Iy = [,,(0). Therefore it just suffices to show that Iy > 1. On the other hand,
by [15, Proposition 3.5], we readily see that
d 1 H(r) 2I(r) - CI(r)

dr pm—1 ro| o ol

)
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for suitable constants C' and v > 0. In particular, for every € > 0, the inequalities
2y —¢ - d 1 H(r) - 2lp+¢

~ 0 ~
T dr 08 pm—1 r
hold as soon as r is smaller than a suitable scale r(¢) > 0. Integrating the latter differential
inequality, we immediately conclude that

o H(r)
lim it e > 0
for every € > 0. Combined with the inequality T}?((:)) = I(r) = ¢, we also conclude that
D(r)

On the other hand, due to the estimate [15, (3.4)] and the fact that s; = 0, we must have
D(r) < Crmt2=20

where d2 is the small positive constant of [14, Assumption 1.8]. Comparing this with the
previous asymptotic estimate, we conclude in particular that

2lp—1) =2 — 20y,

and since 26, < ﬁ, we immediately get that Iy > 1 (in fact it turns out that I is rather close

to 2, in this case).

5.2. Proof of Theorem 5.1 under assumption (41). In this case we can apply Proposition
4.1 to a suitable subsequence of {r}y, not relabeled, and find a coarse blow-up f whose
average-free part v has the property that v = Au for some positive number A. In particular
I,(0) = I,(0) and from Theorem 3.2 we conclude I,,(0) > 1.

5.3. Proof of Theorem 5.1 under assumption (42). We fix a blow-up sequence {rj}; and
a corresponding fine blow-up u. One crucial property that we will use is that, because of the
convergence of the maps wuy from Section 2.1 to the fine blow-up u, for every positive p < 1 we
have

. ATk
45 I, = lim Iy, —
(45) () = Jim T, (£

Observe that under our assumption we know as well that ‘:J%; is infinitesimal. In particular,
J
since
g2202
_ (k)
E(T,By,,) = E(TOvTﬂk)’BSJ’(k)/tj(k)) S Cmo,j(k)t2_7252 ’
(k)

we conclude that E(T, Bs,,,) — 0. So sj) is itself a blow-up sequence, and we can apply the
previous section to infer that, for any u’ coarse blow-up generated by a subsequence, we have
I4(0) = 1. In particular, since along this subsequence of {s;)} we have comparability of the
coarse and fine blow-ups due to Proposition 4.1, we can use the corresponding convergence

(45) to infer that
liminf Iy, . (Sj(’“)> >1.

koo Lk
Fix now an arbitrary small parameter 6 > 0. Our goal is to show that there is p > 0 such that
.. PTEk Sjk) —
(46) h;?l%“”““ (%(k)) >1-20 Vpe] . ,p[ .

Knowing (46) and (45), we would then infer that I,,(p) = 1 —20 for every positive p < p, which
in turn would imply 1 — 2§ < I,,(0). The arbitrariness of ¢ then tells us that I,,(0) = 0.
In order to achieve (46), choose first &y large enough so that

Si(k)
In, ., <tj(k>> >1-6  Vk=>ko.
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Next, because of (44) we can choose o > 0 small enough (independent of k) with the property
that
s .
In,, (N =1-25 Vre ]j(k)a] , Yk ko.
L)
= 0, for any fixed positive p < ¢ and for every
J(k)

Sik)

Since however r < t;(), while limy_,o
Pﬁc

k large enough we may conclude that o]. This implies

- must belong to the interval [

(46) with p = o and thus completes the proof

6. FREQUENCY BV ESTIMATE

This section is dedicated to establishing a (quantitative) control on the radial variations of
the frequency, which is crucial for proving Theorem 2.10.

We begin by defining the universal frequency function, which makes sense of the frequency
continuously along all blow-up scales where it is possible to construct a center manifold for 7.

Definition 6.1 (Universal frequency function). Suppose that T is as in Assumption 2.1 and
let {Jsk e},

be a sequence of intervals of flattening with coinciding endpoints (i.e. such that s = ¢4 for
k = jo,...,J — 1), with corresponding center manifolds M} and Mj-normal approximations
Ny. For r €]sy,t;,], define

r

1) = I, (t) Xonta] (1)

r

D(r) := D, <tk> Xsr,tx] (7))

r

HO) = Ho, (1) ot

Unfortunately, unlike for the linearized problem, we do not have monotonicity of the fre-
quency but merely almost monotonicity. Nevertheless, we can hope to control the variation of
the negative part of the radial derivative for the frequency function. The main result of this
section is the following proposition. We will use the convention that, given a BV function f of

one variable, [%] will denote the positive and negative parts of its distribiutional derivatives,
+

while | u|/7y denotes the total variation of a measure x on its domain of definition.

Proposition 6.2. There exists v4 = Y4(m,n,Q) > 0 and C = C(m,n,Q) such that the
following holds. Suppose that T satisfies Assumption 2.3. Let {]sk,tk]}izjo be intervals of
flattening for T around 0 with coinciding endpoints. Then we have log(I + 1) € BV ([ss,t;,]),
with the quantitative estimate

Mdbgl+n]

dr

J
Y4
<C Y, mg

VTV ([s7:t50]) k=jo

(47)

Moreover, for any |a,b] which is contained in a single interval of flattening |sy,ti[ we have the

improved estimate
<o () mp
~lrva t

Remark 6.3. In our subsequent work [9] we will need the BV estimate of Proposition 6.2 for
a different definition of the universal frequency function, for which the intervals of flattening
]s;,t;] are choosing differently. We point out that, the crucial ingredients needed in proving
the above estimates are the following:

) HM%G+U]

dr

(a) The estimate in each open interval holds because for each r e] 23 1] the sidelength

{(L) of any cube L € #*) which intersects B,.(0, ) is no larger than csr for a fixed
constant ¢, = ﬁ.
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(b) The estimate at the jumps holds because there is one cube L € # (*) which intersects
By, 1,(0,m;) and has sidelength (L) > csi—j.

While in (a) we cannot afford a similar control with a constant larger than cg, in (b) we can
afford a constant ¢, smaller than ¢, at the price that the constant C' in the estimate (47) will
then depend on how small ¢, is.

In order to prove this, we will require a number of preliminary results, the proofs of which
we will defer until later.

6.1. Auxiliary results for Proposition 6.2. First of all, we recall some key variational
identities and estimates from [15] for any normal approximation of 7', which are a nonlinear
analogue of the identities in [11, Section 3.4].

Let |s, t] be an interval of flattening for T around 0 with corresponding center manifold M
and M-normal approximation N. We define the quantities

By =1 [ o (M) Sm) - D)Vt ay.

r

D L[ () i PR

2= [ o) ve a.

We thus have the following.

Lemma 6.4. There exist y4(m,n,Q) > 0 and C(m,n,Q) > 0 such that the following holds.
Suppose that T, ¥ satisfy Assumption 2.3 and let |s,t] be an interval of flattening for T around
0 with corresponding center manifold M and M-normal approximation N. Let mg be as in (1)
for]s,t]. Then Dy and Hy are absolutely continouous on |3, 3] and for a.e. r we have

) oDyt =~ w’(d‘x’”)d“’y)wmwﬁ ay

M r r2
(50) O HN (1) — mT_lH(ac,r) _ O(mg)H(z, ) + 2B(z, 7),
5
(51) IDy(r) — Ex(r)] < Z |Err? | < CmQ*Dy (r) 47 + CmoEy(r),
5
(52) 0:Diy(r) = (m = 2)r "Dy (r) = 2Gn(r)| <2 ). | Err} | + CmgDy(r)

j=1
< Cr'm*Dy(r)'* + OCm§*Dn(r)"0,Dy(r) + CmyDy (1),
where Err§ and Erré- are as in [8, Proposition 9.8, Proposition 9.9].

We omit the proof of Lemma 6.4 here, since it involves a mere repetition of the arguments
in the proofs of [15, Proposition 3.5] (see also [8, Proposition 9.5, Proposition 9.10]), combined
with the observation that the constants may be optimized to depend on appropriate powers
of my. As a consequence of the estimates in Lemma 6.4, we have the following quantitative
almost-monotonicity for the frequency in each interval of flattening.

Corollary 6.5. There exist y4(m,n,Q) > 0 and C(m,n,Q) > 0 such that the following
holds. Suppose that T, %, |s,t], M, N, and mq are as in Lemma 6.4. Then Iy is absolutely
continuous on |$,7] and for a.e. r we have

oIy (r) = —C(1 + In(r))mg* (1 L D

+ DN(T>'Y41(’/JTDN(’I")> .

In addition to the above control on the frequency variations within each interval of flattening,
we will also need to control the jumps of the frequency between successive intervals of flattening.
In order to establish this, we will require the following intermediate results.
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Lemma 6.6 (Expansion of excess). There exists a dimensional constant C = C(m,n,Q) >0
such that the following holds. Let T, ¥ be as in Assumption 2.3 and let M be a center
manifold for T with M-normal approzimation N. Let r €]0,1] and let f : B.(0,7) — Ag(7t)
be a Lipschitz map with Lip(f) < ¢. Let @, be a parameterizing map for M over w. Then we
have

r

[, 16 sepks (B=E0) diesie) - | anreine])’
C,.(0,m) 0,7

r\Y,

<c| (s ipe, s ('y'> dy
B,.(0,7) r

e J
C,.(0,m)

An important consequence of Lemma 6.6 is the following comparability between the Dirichlet
energy of N at a given scale, with that of Lipschitz approximations over suitable planes. We
will henceforth take v2 > 0 to be as in [14]. Note that we may ensure that v4 < 2.

M(p(2) = M(e,(px(2)))| dIG/(2):

Corollary 6.7. There exists a dimensional constant C = C(m,n, Q) > 0 such that the follow-
ing holds. Let T, X satisfy Assumption 2.3. Let |s,t] be an interval of flattening for T around
0 with corresponding center manifold M and M-normal approximation N, let mg be as in (1)
for ]s,t] and let m be the plane used to define @ in the center manifold algorithm of [14]. Let
[ B1(0,7) = Ag(nt) be a m-approzimation for Ty, in C4(0,7) according to [13] and for ¥ =
3, let fr : Bgyp (pL,7L) — Agq(nt) be a wp-approzimation for Ty corresponding to a Whitney
cube L as in [15, Section 2.1 (Stop)]. Let 77 be such that B(Ty ¢, Bg mr) = E(To.t, Be, s Tr)
and let BY := Bg,, (pr,7L). Let fr: B#(0,77) — Ag(mi) be the map reparameterizing gr (f1,)
as a graph over my and let @z, @ be the maps reparameterizing of gr(yp) as graph over ws, 7,
respectively. Then we have

(53) f G(Df.QID@])?6 (|y) dy—f IDNP6 (d(y)) dy'
B1(0,m) BinM
<C (DS + D) dy + Cmi*™ +C | (AN + DN
B1(0,m) BinM
+C K@) - Mepa())] 41651 2)
C4(0,m)
and
i 2 @ _ 2 @
(54) JB;M) G(Df, QDe,]) ¢<T) dy fBFmMDN ¢>< . ) dy'

<C f (DS + Dyl dy + C j (IDful + DL |") dy
Br(0,77) BL
+Cmé+’yzfm+2+'yz + CJ- (|AM‘2‘N|2 + |DN|4)
BL

eof ) - F(een )] ales o)

We will in addition require the following comparison between the gradients of the parame-
terizing maps of consecutive center manifolds in the procedure [15, Section 2.1].

Lemma 6.8. There exists a constant C = C(m,n,Q) > 0 such that the following holds.
Suppose that T', 3. satisfy Assumption 2.3. Let My_1, My be successive center manifolds for
T with respective normal approrimations Ni_1, Ny, associated to the respective intervals of
flattening |tg,tk—1] and ltxi1,tx], as defined in Section 2. Assume that E(T, Bg it k) =
E(T,Bg,/m1,) for some plane my and let @y, be map reparametrizing gr (py_1) as a graph
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over Ty. Letling @), = ¢_1 (%), we have

(55) | D~ Diy? < cmi:
2
and
(56) fB op — @ul” < Cmon.
1

Finally, we will need the following control on the difference between the projection p(z) of
a point z to a center manifold M, and the image under ¢ of the planar projection py,(2):

Lemma 6.9. There exists a constant C = C(m,n,Q) > 0 such that the following holds.
Suppose that T, M, myg, 7, f, fz, ™, 77, @z are as in Corollary 6.7. Then we have

(57) L(O @) = M(er(pr, ()| I () < OF"*img

(58) f
Cl (0,71’)

6.2. Proof of Proposition 6.2. We now have all of the relevant tools to prove the frequency
variation estimate (47). We start with the preliminary observation that I is absolutely contin-
uous on each interval |sy, tx[, while it might have jump discontinuities at the points sg = tx11.

First, we control the jumps of I at these points. Letting Dy := Dy, , Hx :== Hy, , and letting
Dy(r) = r=m=2Dy(r), Hy(r) = r~(m=YH(r) denote the corresponding scale-invariant
quantities, we claim that we have the estimate

M(p(2)) = M(e(pr(2))] dIGI(2) < Cmg 2.

Di(5%) T
(59) 106 1067 - HE - ; -] = OmE ),

Rearranging and using the triangle inequality, it suffices to demonstrate that

Dy, ( 28 ) —Dy(1)

tr—1

H;, (1)

_ tk 1 1 ( tk; )
61 Dy - = <Cmgplp_1 | — ).
( ) k—1 <tk1) IjIkil (fik) Hk (1) 0,k4k—1 th1

Y2
< C’mo’k,

Before we proceed, given 73 such that E(T, Bg, /my, ) = E(T, Bg,/my, , 7k) let us introduce the
Lipschitz approximation fy, : By = m, — Ag(mi) of [13, Theorem 2.4] for Tp 4, L B¢,/ and
the map fr_1 = ftwjtn st Bryjtn 1 (0,mp) = Ag(mit) from Corollary 6.7 with 7 = tlfﬁl' We

let @, _;, @, be as in Lemma 6.8 and let f = fk—1( L. ). We additionally introduce

te—1
the measures dug_1(y) = ¢k (t’;: (y)> dy and dp(y) = ¢ (d(y)) dy, where dy is the
m-dimensional Lebesgue measure on 7. We also define the balls B! := By, /i, N M1,
B*1:= By, 1, ,(0,7m) and the cylinder C*! := Cy, », (0, 7).
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We begin with the estimate (60). Comparing both terms with the corresponding linearized
quantity (cf. Corollary 6.7) and rescaling appropriately we have

_ t _
'D“ (’“) - Dk(l)‘

tr—1

—(m—2)
t 5 -
< <k> J |DNj—1]? dpg—1 — J G(Dfi-1,QIDy 1) dpr—1
lh—1 Bk-1 Bk-1
ty

—(m—2) i
[ ooweac () [ oA QD D i
B1nM; k-1 Bk-1

tr—1

J |DNy|? dp — f G(Dfr, QID@L])* du -
BinM; B1(0,m)

+

Jlskfl |DNk_1|2 At - JBkﬂ g(ka_l’ Q[[D‘;’k—l]])z dpg—1

+

Now we may use Lemma 6.8 to replace ¢, with ¢, yielding

]:_)kfl tik —f)k(l)
tp—1
—(m—2)
t r ~
= (t : ) | IpMAP dnea = [ 6D, QIDE 1) dcs
k—1 Bk—1 Bh—1

f DN dyt — j G(Dfv. QIDw,])? dp
BinMyg

B1 (O,ﬂ'k)

147
+ + Cmo,k 2,

We are now in a position to make use of Corollary 6.7, combined with the observation that
fk is still a valid m-approximation for Ty, in C4(0,7) as in [13], since fr_1 is a mp_1-
approximation for Ty, _, and we have the estimates [14, Proposition 4.1] on the tilting of 7y
relative to mp_1. This gives

—(m—2)
D (1) - | <o () ( [ apait+ e ay

| UDsul Dy, ) dy
Bl

s (An PN + DN )
Bl

g
Ck—1

1+ tk e £ 4 4
vo(min () (DA Del a
k-1 B1(0,7x)

— —

Mi—1(p(2)) = Mi—1(e(Pr, (2)))‘ d|Gy,_, |(Z)>

S| QA PN DN
Bin My

-

" Llwm ‘M(p(z)) - M(‘p(p’f(z)))‘ |Gyl (2) + méﬁcw).
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Lemma 6.9 thus yields

—(m—2)
Do (74) - pui| < 0 () (Lklwfku‘* + D@1 [*) dy

tp—1 tk—1

| UDsul D, ) dy
Bl

L (A PN+ DNk1|4>>
Bl

3

t -

+C(méfﬁfl (t : ) s DRI+ Del) dy
k—1 B1(0,mk)

n f (IAM[PIN + DN + mite ).
BlﬁMk ’

We may now control the initial excess myg x—1 of Ty, , in terms of the excess E(Ty 4, ,,Br,),
which is in turn controlled by the initial excess myq  of Ty, :

¢ 2—262
(62) mo, k-1 (k ) < Cmgy.
-1

This, in combination with the estimates [13, Theorem 2.4] and [14, Theorem 1.17, Theorem 2.4,
Corollary 2.5] allows us to conclude that

_ t _
’Dk_l (75’“) — Dk(l)' < Cm})j,j?.
k—1

Since the comparison of center manifolds [14, Proposition 3.7] gives Hy(1) > c¢mg for some

dimensional constant ¢ > 0, the estimate (60) follows.
Let us now prove (61). First of all, observe that

t

I B k

— tk 1 1 k—1 (tk,1> — tk

Dy ( ) — — = Hi(l)-Hp_, [ — ||.
te—1/ | H,_, (%) H; (1) H,(1) th—1

To estimate the difference between the L2-heights, we may one again compare both with the
height of the corresponding Lipschitz approximations over the averages of their sheets:

I:Ik—l tik — I:Ik(l)
tk—1
—(m—1)
t ~
< (t : ) J | Vi1 * dpsg _f G(fr—1, QlPr-11)* dpur—
k—1 Bk—1 Bk—1

—(m—1)
t
J | Ni|* dp — < : > J G(fr—1, QlPr—11)* dur—1
BinMy Bk—1

tp—1
( te ) —(m-1)
tr—1

[ | ot oted®
BinM; By

+

J- |Nie—1]? dpig—1 — J G(fre-1,Ql@x_11)* dpr—1
Bk—1 Bk—1

+
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Now let gr—_1, g be as in Lemma 4.4 for ¢, _4, fr—1 and ¢y, fr respectively and let AF—1 =
BFNLBFL AR = By(0,75)\B12(0,7). The reverse triangle inequality and the esti-
mate (25) (combined with an appropriate rescaling) then allow us to deduce that

‘I:Ikl (tk) - ﬁk(l)’ <C <tk>(m1) Lk_l G(Nk-1(@51(¥)), Gr—1(y))* dy

te—1 th—1
+ j G(Nk(21 (1), Gr(y))? dy
Ak

5
tr - ~
<0 ({5 UDGu It + 1071 f2moscs) + ClDp s

The estimates in [14, Theorem 1.17, Proposition 3.4] then give
_ tr _ )
Hk,1 — | = Hk(l) < C’moyk.
tr—1
Again using that Hy (1) > emg x, we further have
| P (t£k1> ¢
— A" comTin [,
H(1) e (m)

The desired estimate follows immediately, and thus we are able to conclude that (59) holds.

From (59) we immediately conclude
(63) D (log(I(ty) + 1) —log(I(t;) +1))- < C > m*.
k &
Indeed, if I(t;) > I(t; ), then (log(I(t;) + 1) —log(I(t; ) 4+ 1))— = 0, otherwise we have
. - _ - + I(t,) —1(t;)
(log(I(ty) + 1) —log(I(t;) + 1))~ = log(I(t;) + 1) —log(I(t;) + 1) < ==
I(t;)+1
and we can just sum (59) recalling that vo > 74 and mg < 1.

We next wish to control the absolutely continuous part of [%] . Here, we exploit the

almost-monotonicity in Corollary 6.5. We argue on each interval |sy, tx[ and will henceforth

let 0, denote differentiation in the variable i Note that 0, = t;0;. Due to Corollary 6.5, for

almost-every t €]tx1,tx] we have

-1
(log (I + 1)) (t) = ~ 0,1, <t> <1 LI, (t)>
tr tr tr
c . AN £\ AN’ t

We are now ready to introduce a monotone function 2 which will help us close the estimate.
First of all we let ¢, (t) = %mg4k1]tk+17tk](t) and let the absolutely continuous part of the
derivative of 2 be

woresioie(5) o (2] oo () (1) -4

Next we consider the “jump measure”

J
pi=C Y myisy, .
k=jo
Hence we set Q(sy) = 0 and define © by integration, setting its distributional deritative to be
w + QLY. Observe that € is monotone: p’ is obviously a nonnegative measure, while €/ is
a nonnegative function since both Dy and D), are nonnegative (recall the explicit formula for
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the latter). On the other hand the estimates proved so far obviously show that log(I+ 1) + ©
is nondecreasing. In particular it immediately follows that

=] =l L

C’Zm —&-ZJ Q4

k]o kjo

= Q(t;,) — Q(s)

<C Z mJY +C Z m] f (14 s+ 0,(Dy(s)™) + ) ds

k=jo k=jo
1

J
<C > mly +C’Zm (5 + 87™ 4+ Dy (s)™)

k=jo k=jo

CEm

s=>k k=jo

6.3. Proofs of auxiliary results from Section 6.1.

Proof of Lemma 6.6. We will argue as in [12, Section 3.1], making use of the multiple-valued
area formula. Consider

poe [ 16 - siento (P2E) aigyle
2 o(B) wesm -2 @piome (P iyl

r\Y,

By the Q-valued area formula [12, Corollary 1.11], we have

) JCT(O7W)¢('p“7fZ)'> d|G1(2) = 2Q Br@,ﬂgb('il) a
oo (1ps2o (B=20) + 0ups1h) 4

Mganwhile, for £ = (e1 + Dolp. (4,11 () €1) A (em + D@l (. 11y €m) and vj, = ex + D filyex,
wj, = ex + DPlp. (y, £ (y)) ks We have

o @p oo (Pl e
= QL'(O ﬂ)<éf(z),ﬂ7l(<ﬁ(pw(2)))>¢> (
e2f (G, (Wip(e)  letee o (22 a2
- ZJBT(OJ\') ¢ (|Ty‘> Zi:<v1 A A Uy WA - A Wiy dy
2@l (M) - Miloton() o (P ) arcl

N
(
= % fBT(Om) ) ('i‘) ;det B' dy
+2fcr(0m)<éf<z>, (M) - M lpon:0)e (P22 a1

Ip-(p)]

r

) a1G; (=)

where Bji.k = 0k +{Dfilyes, DPlp, (y.f.(y))ek)- Expanding out the first term, we have

1 X 1
g et 8 = (1= 51D + 0Dl ) (1+ D D+ O(DS|DI).
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Thus, we have

_ lyl lyl _ - lyl
B IDf2¢< T) dy+QJBL |D<P|2¢< T) dy 2;j<sz.Dso>¢( T) dy

"o (f (IDSI* + Dl + Dﬂ%?)
B, (0,m)
v (L o (€ (M) = Mlelpa(:1) ) d|Gf|<z>>

) JB,,(M G(DF. QLD (y> (JBT(OJ)(IDJ‘I4+D<P4>

(¢(p=(2))| de|<z>) :

<
N
&
=
<

O

Proof of Corollary 6.7. Tt suffices to prove (54), since the argument for (53) is analogous (in
fact it is easier since one does not need to reparameterize the graphical approximation from the
cube L to the plane 7;). Let us begin with the corresponding estimate for fr. Letting F' be
as in [12, Assumption 3.1] for the normal approximation N and letting C* := Csa,, (pr,71)
and BE := Bg4,, (pr) N M, we have

| 165 —Xiopl iy < | 1T - Mepf alTi + €17 - 6 l(Ch)
< | g [Er = MBI ATl 5 1T - G O
+OIT = T (b (BUK)),

where K < M is the set over which T (in fact the slices (T, p, p)) coincides with Tr (i.e. the
corresponding slices (T g, p, p), which in fact are the currents Y, [F;(p)] = >;[p + Ni(p)])-
Applying (a localized version of) [12, Proposition 3.4], we have

LL Gy, = Mop?d|Gy,| < LL [DN[? dy + C|T = Gy, |(CF) + C|T = T | (p™" (B\K))

e f (IAMPINP + |DNJA).
BL

Let us now control |[T' — Gy, | and |[T'— Tp|. To do this, we make use of the estimates
in [13, Theorem 2.4] and [14], combined with a Vitali covering of BX\K by Whitney regions
L(L’) and the height bound in [14, Proposition 4.1], to deduce that

LL (G = Mop* |Gy, | < f |DNJ? dy + Cmg ™ (L) ™2+

LN

+ CmiTe(L)m e 4 CJ (JAM2|IN|? + [DN|Y).
BL

It remains to replace fr with f7 inside Br(0,77), but this is trivial since Gy, = Gy, L
C(0,77). Combining this with the fact that sptG ;.nCr(0, 77) < sptG ;. nC* and Lemma 6.6,
the result follows. [l
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Proof of Lemma 6.8. Let n € C¥(Bsy,.) be a Lipschitz cutoff with n =1 on B;. Integrating by
parts and using the estimates in [14, Theorem 1.17], we have

f Dy, — Doy |* < J | Dy, — Dy *n
B, By

= _f (Pr — Pr)nAlpy, — @p) — f Dn - (e, — p1)D(pr, — Pr)
B B\B;

1 173 1/2 -
<C (m(ik + 1 1m0,/k—1) JB ler — Prl-
- 2

In particular, taking into account (62), it suffices to prove (56). To that end, consider a
Lipschitz approximation fi : B3(0,7;) — Ag(R™) as in [13, Theorem 2.4] for the current Tp ,
in the cylinder Cy2(0, 7 ), where the excess is bounded by mg . We claim that

(64) j @ — 1m0 fsl < Cmo,
B>

(65) j @y — 1m0 fsl < Cmo,
B

and obviously (56) will follow from the latter.

First of all we observe that, since the tilt between the planes 7, and 7;_ is controlled by
mé/lf due to [14, Proposition 4.1], all the estimates of [13, Theorem 2.4] apply to the map
fi: Bs/5(0,mx—1) which parametrizes graphically Gy, in the cylinder Cs/(0, 7% —1). Setting
P = cpk_l(t]f—:-), (65) will actually follow from

(66) | B — mo ful < O
Bg (O,ﬂ'kfl)

combined with [14, Lemma 5.6, Lemma B.1].
The argument leading to (66) is entirely analogous to the one leading to (64), with the only
difference that instead of a control with my j it leads to a control with

2-26,

tx

mo + () mo -1 -
th—1

However the latter is once again controlled by C'my j, because of (62).

We now come to the proof of (64). We recall the algorithm leading to the construction of
;.- In particular, By is covered by the union of contact set I' and the Whitney cubes L € #
described in [14, Section 1]. We discard the cubes which are not intersecting By and denote
the family of remaining ones by #. Since the sidelength of each such cube is at most 27No,
we can assume that each cube L € #” is fully contained within B3(0, 7x), where fj is defined.
We can then estimate

(67 | lev=meni<| te-monl+ ¥ [ lec-mosl.

32 F(\BQ LEW' L
Before coming to the estimates of each integrand in the above sums, we record the following
important consequence of [13, Theorem 2.4] and [14, Theorem 1.17]:

(68) Iy —mo filco < Cmg,,

for v = min{5%-, 1}, where 41 > 0 is as in [13, Theorem 2.4]. We moreover let K < Bs(0, )
be the set of [13, Theorem 2.4] for fi, namely the set over which, loosely speaking, the graph
of f coincides with the current Tp ,, .
In order to estimate the first integrand in the sum on the right-hand side of (67), observe
that the identity
Ty, L(T x ) = Q[Gop,]

follows from [14, Corollary 2.2]. In particular ¢, = no fi on I' n K and so we can estimate

(69) j 90— 10 il < |BAKl9, — 10 filoo < Cmi2Y.
T'nBsy
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As for the remaining summands in the right hand side of (67), we introduce the plane of
reference 7y, of [14, Definition 1.14], the 7y -approximation f7, of Lemma [14, Lemma 1.15], and
the tilted interpolating function hz and the interpolating function gz, of [14, Definition 1.16].
We start by appealing to [14, Proposition 4.4(v)& Theorem 1.17(ii)] to estimate

(70) J o — gLl < C’moyké(L)m+3+,6’2/3’
L

Next, let f; and (no fr)’ be the functions defined on L and taking values, respectively, on
Ag (m1) and 71, whose graphs coincide with the graphs of f and no fr, on L x 7rf€-. We first
use [14, Lemma B.1(b)] to estimate

(71) j gz — (o f1)] < C Ih — o fa,

B2\/m2(L) (pr,7r)

where py, is the center of L, while by [14, Proposition 5.2], we have

(72) |hL —mno fL| < Cmo’k£<L)m+3+’62 .

fBzmam(?uﬂﬂ

In addition, [14, Lemma 5.6] gives us the estimate

(73) L (o fr) —no(f)] < Cmob(L)"3+5=/2,
Putting (70), (71), (72), and (73) together we then reach

(74) | e =ne (1)l < Cmo ey

for some v > 0. Next, observe that by [14, Lemma 1.15] there is a set K} < L such that in
K x i, the current T coincides with the graph of f; and such that

(75) |L\K7| < Cmg i ((L)™

It thus turns out that f; and fj coincide over K7 n K. In particular we can estimate
(76) | me i = o fl < O]+ KL g < Cmp )
which combined with (74) gives

() | Ko = 5l < Comot(ny o Cm )

Since the collection #” consists of disjoint cubes contained in Bs, we can sum (77) over L € #’
to reach

(78) 5 [ ew—no sl < Cmo+ OmiE < Omay
Lew' YL 7
Clearly, (67), (69), and (78) imply (64) and thus complete the proof. O

Proof of Lemma 6.9. We begin with the estimate (57). Due to the fact that |¢.[cz < C'm,é/2
and the estimates in [13, Theorem 2.4], we have

f M(B(2)) = M(r(Pr, (2)))] dIG () < Omy? [P~ ;0 P, | d|Gy]
Cr(0,77) #(0,77)
<omif* [ Ip-popald]

Kxmy

=m+1, 1471
+ O T imy
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Now by the definition of the scale 7, we may use the height bound [14, Corollary 2.2], the
estimates in [14, Proposition 4.1] and to deduce that

f P —¢ropr | d|T] < f Ip(2) — 2| d|T(2)
Kxmk Kxmt

X7

N f |2 — @ 0 P (2)] AT (2)
Kxmt
< Cfm+1+[32m(1)/2+1/2m.

This gives the claimed estimate (57). The estimate (58) follows analogously, only at unit
scale and via the cover of By with Whitney cubes of % and the coincidence region I', as
in [15, Section 4]. O

6.4. Frequency jumps. While this completes the proof of the desired BV bound, we wish to
isolate one more general version of the estimates on the “jumps” of the frequency function at the
endpoint scales t;, only this time, we want to compare the frequency functions at comparable
scales, relative to two center manifolds with different centers. This will prove crucial in our
subsequent work [9]. Tt follows directly from the above arguments, after observing that we are
just using the presence of a “stopping cube” in one of the two center manifolds construction,
at the desired scale, which is not “too small”, together with the fact that at all larger scales
there are no stopping cubes which are too large. We are in addition using the fact that all
constants in the estimates on the center manifold and the associated normal approximation
are independent of the center point of the construction (cf. [29]).

Lemma 6.10. Consider T and ¥ as in Assumption 2.1, let z and w be such that (T, z) =
O(T,w) = Q and let r < rg,r1 be three positive numbers such that:

(a) T..r, falls under the Assumptions of [14, Theorem 1.17] and ¢, : [—4,4]™ > 7o — 7

is the graphical map describing the center manifold My constructed in that theorem
applied to T, ,,.

(b) Tw.r, falls under the Assumptions of [14, Theorem 1.17] and ¢, : [—4,4]™ > 7 — 71
s the graphical map describing the center manifold My constructed in that theorem
applied to Ty, r, .

(c) For the families of Whitney cubes #4 and #, of [14, Definition 1.10] used in the
construction of the respective center manifolds, we have

(79) UL)>cop  Vpe [r,4] VL e Wy s.it. Lo B,(0,m) # &
To

(80) UL)>cep  Vpe [:4] VLe#i sit. LaB,(0,m) # &,
1

where ¢y is the geometric constant of [15, Section 2].
Define

Cs :=max{{(L) : L e #y and L n B, ;,,(0,m) # &}

and let No and N be the graphical approzimations of T, ., on My and Ty, ,, on M, respec-
tively. Consider the points x1 = (0,¢,(0)) € Mo and zg = (p,, (r; " (w—2)), ¢y (ry ' (w—2))) €
M. Then we have (cf. (59)) the estimate

Lo (0,79 7)) = Iy (1,77 ' 7)| < Cmg? (1 + Iy, (20,75 '7))

where the constant C depends on m, n, i, Q, and .

7. PROOF OF THEOREM 2.9: THE CASE I(7,0) > 1

The goal of this section is to prove that the singular frequency value is unique when I(7,0) >
1. The proof will also show that the tangent cone is then a unique flat plane and that the
rescaled currents converge polynomially fast to it. In particular this section will settle Theorem
2.10(iv), but also Theorem 2.10(i),(ii)&(iii) when I(7,0) > 1.
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Proposition 7.1. Let T be as in Theorem 2.9. Then the conclusions (i)-(iv) of Theorem 2.10
hold whenever 1(T,0) > 1.

In fact, since it will be useful in our further studies in the papers [9] and [10] we record a
consequence of our analysis which is more quantitative.

Proposition 7.2. Let T be as in Theorem 2.9. For every Iy > 1 there are positive constants
C(m,n, Q) and a(Iy,m,n, Q) with the following property. If 0 is a flat singular point at which
I(T,0) = Iy, then there is a radius ro = ro(T) > 0 (which also implicitly depends on the center
point, which we are here assuming is the origin) such that

(81) E(T,B,) <C (r> max{E(T,B,,),&2rs 22} Vr <.
To
Moreover, we can choose a to be any number which satisfies the inequalities o < 2 — 282 and

a < 2(I(T,0) — 1), at the price of a constant C' which depends also upon c.

Before coming to the proof of the proposition we state the following technical fact which
will prove to be very useful.

Lemma 7.3. Let T be as in Theorem 2.9. If there are infinitely many intervals of flattening,
then
lim inf E(T, Bﬁx/mtk) =0

k—o0
and hence

liminfmg, =0
k—00 ’

Proof. The second conclusion is an obvious consequence of the first. In order to prove the first
take a sequence r; such that r; — 0 and E(7, Bﬁﬁ”) — 0. Then r; belongs to some interval
of flattening |sy(;), tx(;y]. We claim that

(82) jILH;C E(Tv B6\/Rsk(j)) =0,

which clearly would imply s (;) = tx(;)+1 and hence the conclusion of the lemma.
Up to extraction of a further subsequence, we distinguish two cases:

(i) If =+ — 0, since

sk ) s\
E(T,Bg /ms, ;) < C <t _ > Mo jo(j) < C( ‘ ) €35
k(4) Tj

we conclude immediately that (82) holds.
(ii) If inf; 2 = 5 > 0, we then estimate

E<T7 B6\/msk(j)) < U_mE(Ta BG\/ETJ)

and again (82) follows immediately.
O

We will also need the following two facts about Dir-minimizing functions. For the first one
we refer to [11], while the second is a well-known fact about classical harmonic functions and
can be proved, for instance, using the expansion into spherical harmonics.

Lemma 7.4. If u:R™ > By — Ag(R") is a Dir-minimizing function with I,,(0) = Iy, then

(83) J |Du|? < pm”’o*?J |Dul>  VYp<1.
By

P

Lemma 7.5. Ifw:R™ 2 By — R" is a classical harmonic function, then

(84) L

In other words, after subtracting an optimal affine map, the frequency (at zero scale) of a
classical harmonic map must be at least two. In particular, we can draw the following simple
corollary.

|Dw — Dw(0)|* < pm”J | Dw]|? Vp<1.

P By
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Corollary 7.6. Let u:R™ D> By — Ag(R™) be Dir-minimizing. Then

(85) G(Du,QID( o w)O))? < > 2mnhO2) [ Dy vp <1,
B, B

Proof of Proposition 7.1. From now on we assume that I(7,0) > 1. The main point will be to

show the following decay property:

(Dec) There are e = ¢(T') €]0,¢e3], @ = a(ly,m,n,Q) > 0 and « € N such that, if
E(T,Bg /m,) <€
and k > k, then:

(a) The intervals of flattening |s, tx], |Sk+1, ht1ls- -y |Sktns thyn] satisty spij_1 =
tpj for j=1,... K.

(073
(b) Mo pgr < (Sﬁ%) mo k-

Before coming to the proof of (Dec), observe that thanks to Lemma 7.3, there is at least one
integer kg € N which satisfies the small excess assumption of the decay and since it can be
iterated, we may use (Dec) to conclude that

trotin N trorin )

otJjK 2 kot+jk .

™Mo ko+jr S < Mok, <3| ——— VjeN.
tk}o tkO

On the other hand, when we have intervals of flattening with coinciding endpoints s; = 511,
we can iterate the estimate

; 2-25,

k+1

mop+1 < C (t > mor < Cmoy,
k

for C = C(m,n,Q) > 0, to conclude that indeed

t «
(86) moy <C <k> Vk = ko .
tro

We then also recall

r 2—285
E(T7 Br) <C (t) my, i Vr e [tk+1,tk] .
k

Combined with (86), we infer the geometric decay of the excess with ro = tj,, which implies im-
mediately the uniqueness of the tangent cone and the polynomial convergence of the rescalings
(i.e. point (iv) of Theorem 2.10).

Note moreover that, from (86), the fact that ¢, | 0 at least geometrically fast and the
frequency BV estimate of the previous section, we conclude the existence of the limit

Iy = 17}&)11(7') )

where I is the universal frequency function. This immediately implies that every fine blow-up
is Ip-homogeneous, which in turn gives all the other conclusions of the proposition.

It therefore remains to show (Dec). First of all we choose o < min2{I(7,0) — 1,1 — da}.
The choice of x will be more complicated, while those of kg and ¢ are subordinate to k. We
therefore fix x at the moment, without specifying its choice, and treat it as a constant in order
to obtain the choice of kg and €. We start by showing that the first point (a) of (Dec) holds
and to this effect we impose that kg is sufficiently large so that

(87) 252 < &2,

Next we recall that
Sk

E(T,Bg/ms,) < C (tk

for each k > kg, where C is a geometric constant, independent of . In particular, if we choose
sufficiently small, we conclude that E(T', Bg, /5, ) < €2, which in turn forces tx11 = s. Observe
also that mg r11 < Cmy , where the latter is the same constant of the previous estimate. In
particular, as long as tj1it1 = sg4q for i € {0,...,j}, we get E(T, Bg /ms,) < CImy . Since

2—285
) mor < Cmgp = Omax{s‘%i*%z,ez} < Ce?,
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this must be repeated  times, under the assumption that C*°sc? < 2, we get by induction
that 14441 = Sp4; and My 401 < ka+j < C7+1m07;€.

We next show the second point (b) of (Dec). First of all we observe that it suffices to show

Sk+r— “
(38) BT Boyme,.. ) < (225 ) o
In fact, if moy = 5‘215%*262, since 2 — 205 > «, we then have

(o7
=2 22§ Sk+r—1 9,295
Mo kyry = MAX{E(T, Bg /s, 1 )& Siqmi1) < < ) g2 20

172
«
Sk+r—1 m
=|\— 0.k -
tx

But if mg . = E(T,Bg/my, ), then E(T, Bg /my, ) = §2ti_252 and hence again

(0% «
-2 2-26> Sk+r—1 Sk+r—1
€ Sk+/<71 < < t E(T’ BG«/mtk) < th Mk+4k -

Towards (88), we first argue as for the proof of point (i) of Theorem (2.10) to estimate

2—265
Skt r—
(89) E(T,Bg sy, ) < C" (’“;kl) mo -

Since k and C are fixed and 2 — 25 > «, then clearly (88) follows if S’“;i:’l is sufficiently small.

We are thus left to prove (88) under the addititional assumption that

Sktr—
(90) Bl > pe> 0,

k
where py is a fixed constant which depends on k. Next, recall that :—: < 27° by [15, Proposition

2.2]. We therefore infer that s, ,._1 < 27°%t;. In fact x will be chosen large enough so that

the ratio S’”ti:’l is sufficiently small, a condition which we specify here by

(91) Skzin—l < pu.

k
The claim is now that, for an appropriate choice of p, (which in turn fixes the choice of &
and of py), once & and ky ' are sufficiently small, then (88) holds. Towards this we argue by
contradiction and assume that, no matter how small we choose ¢ and how large we choose
ko (satisfying (87)), there is always a choice of k > ko for which (88) fails. This implies the
existence of a sequence t; | 0 with the property that

Skar—1 )"
(92) mor | 0 and E(T,Bg/msy 1) > <k;kl) mo g,
while
(93) pr< 2L <,
k

We now choose the radius 7y so that 8Mry, = 64/mity, where M is the constant of (6). We will
assume that « is large enough so that 7 > spy.—1. Observe that we can now apply Proposition
4.1 and generate the coarse blow-up f : By — Ag along the scales ry, which is Dir-minimizing.
In light of the comparability of the scales 7, and sj4,._1, the average-free part v of f is, up to
a positive scalar multiple, a fine blow-up u, and we thus infer that 1,,(0) = I,,(0) > I(T,0). We
can then apply Corollary 7.6 to infer that

gim JB(, G(Df.Q[D(no f(0)* < C (%)2’1 % LM IDFP?.

We can now use the Taylor expansion of the excess in [12] to infer that, for all o € [pg, pu],

E(T,Bg mot,) < 8" o> B(T, B i) + C(B(T, Bg /my, + A%
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Since At% is controlled by my j, we easily conclude that, once we choose p, small enough so
that 8" p2 < % pS and choose k large enough and e small enough so that

1
C(E(TaBG\/Rtk + t%A2)1+7 < C’mé}? < C€2Wm07k < i,o?mo,k,

we achieve

—
max o “E(T,Bg mot,.) < Mok
[pe<o<pu] *

for all k sufficiently large. However this is in contradiction with (92) and (91).

Observe that the threshold ¢ in (Dec) may be made independent of T' (and the center point,
which it also implicitly depends on). This may be done by replacing the above contradiction
compactness argument with one in which a sequence of currents T}, and varying centers xj, are
taken. However, in order to do this one must also verify that the conclusion of Proposition 4.1
holds for “diagonal” coarse and fine blow-ups taken along such a varying sequence of currents
and centers. This is indeed true, but we omit the details here, since this is unnecessary for the
remainder of our arguments. O

8. PROOF OF THEOREM 2.9: THE CASE I(7,0) =1

In this section we complete the proof of Theorem 2.9 by handling the case I(T,0) = 1. We
will moreover complete the proof of the points (i), (ii), and (iii) in Theorem 2.10.

Proposition 8.1. Let T be as in Theorem 2.9. Then the conclusions (i), (ii) &(iii) of Theorem
2.10 hold whenever I(T,0) = 1.

A key ingredient in the proof is a decay lemma which is a refinement of the one used in the
proof of Proposition 7.1:

Lemma 8.2. Let T be as in Theorem 2.9. For every v > 0 and every nn > 0 there are € > 0
and p > 0 with the following property. Assume |a,b] is an interval of radii such that

(a) 0<a<b<p;

(b) E(T,Bg /my) < ¢ foralla <r <b;

(¢) I(r) =1+~ foralla<r <b.
Consider the intervals of flattening |sg 5, tg51V]Sk4 -1, thej—1] U - - - Ulsg, tg] covering ]a, b]
with the property that ty.5 = Sg5_1, - - -, tgy1 = Sg are contained in Ja,b]. Then

j
(94 Smyt, <
i=1

Proof. Observe that mg ,4; < &2 for ¢ > 1 just by assumption. Since by assumption we know
that mg j, < &2, it suffices to prove the decay of (Dec) as long as k + k < k+j — L where L is
a fixed natural number. In the argument by contradiction leading to the proof of (Dec) we are
thus also allowed to assume that L gets arbitrarily large, which in turn means that ;—’Z tends to
infinity (where ]ag,by] are corresponding intervals as above). In particular, notice that in the
argument given for (Dec) the key point was to infer that the average-free part of the coarse
blow-up v has I,(0) = I,(0) for some fine blow-up w while ,,(0) > 1. In our situation the
bound 7,,(0) = I(T,0) just gives 1,(0) = 1. On the other hand, using the fact that £ — 0
and our assumption that I(r) = 1+ v for all r €]ag,tx], we can use the convergence of the
frequency function to conclude

I,(p) = lim I(prg) = 1+~
k—o0
for an arbitrary positive p. This in turn gives I,,(0) = 1 + 7. O

Proof of Proposition 8.1. As we have already argued at the start of the proof of Proposition
7.1, the key is in fact to prove the second part of Theorem 2.10(iii). We thus assume that there
is some other blow-up sequence r; — 0 with the property that I(ry) — 1+ 2v for some v > 0.
Our aim is then to show that this leads to a contradiction. We apply Lemma 8.2 from the
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previous section with some parameter > 0 which will be chosen later. Fix the corresponding
€ > 0 and p > 0 given by Lemma 8.2 and consider the set

R:={re€0,p[: E(T,Bg ) <& and IT(r)=1+7},

(since the universal frequency function has jumps, at the jump points we let I (r) be the right-
hand limit). We might later need to choose ¢ even smaller than that prescribed by Lemma 8.2;
the only property needed is that the conclusion of the Lemma still applies.

Observe that R cannot contain a neighborhood of the origin, otherwise we would have
I(r) = 1+~ for all r sufficiently small, which in turn would imply that, if u is any fine blow-up,
then

L(p) =1+~ VYp>0.
This shows that 7,,(0) = 1+~ for every fine blow-up, in turn implying that I(7,0) > 1 ++. On
the other hand R must have 0 as an accumulation point, namely R consists of countably many
disjoint intervals, which might or might not include any of their endpoints. We enumerate
these intervals in order of decreasing scales, and for each one we consider its interior Jay, bx].
Note that r €]ay(s), b | for all £ sufficiently large, due to the nature of our chosen sequence
of blow-up scales.

Now notice that the intervals Jag, by[ are contained within the full collection of intervals of
flattening |s;,t;] (with the excess threshold &). Thus, we can find a sequence of radii pr > by,
approaching by asymptotically, with ]bg, px] " R = &, such that one of the following two
possibilities holds:

(a) there are py €]by, pr] with E(T, Bg, /7, ) > € for infinitely many ;
(b) for infinitely many k the inequalities E(T, Bg /m,) < €% and I(r) < 14+ hold for all r
in the interval ]bg, fx]-

We first argue that, if € is chosen sufficiently small, (a) cannot happen. We argue by contra-
diction; if this is not true, a subsequence of T ;, (and thus of T, ), not relabeled, must be
converging to a cone which is not flat. We denote it by C. Repeat now the procedure above for
each ¢ = % and assume that for each we find a corresponding sequence by, ;, with the property
that Ty, ; is converging to a non-flat cone C;. Letting sy j),te(r,;)] denote the interval of
flattening containing by, ;, clearly we first have

S .
lim 59 > ¢(j)>0  VjeN,
h= Lok, j)
for some constant ¢(j) which depends only on C, and d2 of the excess stopping condition in
the center manifold construction (cf. [14]) and on € = %, just using that

2-24;
E(T,B,) < CC. <tr) E2Vr €lsp gt
k.j
while by ; €]sk.;, ti,;] and
E(T,By, ) > ;.
On the other hand because of the convergence of Ty, . to the cone C; we have

. E(Tv Btk,j)
lim ————2%
k— E(T, Bsk,j )

In turn this implies, again because of the excess stopping condition in the center manifold
construction, that

=1.

Sor s

lim inf ~452) =>c>0

ko Lk.g)
for a constant ¢ which this time is independent of j. In particular for any sequence k(j) 1 oo
which explodes sufficiently fast we have
S . .

lim (@) 5 €

=0 )y 2
We can therefore apply Proposition 4.1 and Corollary 4.3 to any such by(;) ; and infer that the

corresponding fine and coarse blow-ups coincide.
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We now argue that at least one such coarse blow-up has to be 1-homogeneous. First of all,
for each k and j we denote by fi ; the Lipschitz approximation of the current Tp, ; given by

_ 1
[13, Theorem 2.4] and by fy,; its normalization fy ;/Ep ;, where Ej j := E(Top, ;, Bg,m) as in
Section 3.1.

Observe next that by our definition of the endpoints by, ;, for each fixed j we have

k—
Ey; =3 E(C},Bgym) = €.

For every fixed 7 we then conclude that the sequence o_f maps { fk}j};C are equi-Lipschitz and
we can assume they converge uniformly to some map f;, up to subsequence (not relabeled).
Moreover, this map is actually the limit of fi ; 1= jfr; = Ejflf;w-. Recall however that f;w-

has a uniform W2 bound, which is independent of both k and j (unlike fk,j» where it clearly
depends on j). This bound is thus valid for f] too and we can assume it converges, up to
subsequences, strongly in L? to some W12 map f. By taking a suitable diagonal sequence,
and noting that C_lEk,j < E(Top,. ;> Bsy) < CEy j, the latter can be assumed to be (up to
a scalar multiple A > 0) the coarse blow-up generated by the sequence by;) ;-

Now [13, Theorem 2.4] guarantees the existence of a compact set Ky ; < By over which the
graph of f. ; coincides with the current Ty 5, ; and enjoying the estimate |By\ Ky ;| < Cj—20+5)
for some constants C' and 3. Recall that in the supports of Tp p, ; LB; m converge in Hausdorff
distance to the support of C} I_EE)\/E.

Denote by A§ the “anisotropic rescaling map” which maps (z,y) € o x T into (z, jy)), where
we assume that 7y is the plane over which we are considering the graphical approximations
fr,j of Top,. , (up to a rotation we can indeed assume that the plane is a given fixed one). Now,
Gy, LK x 7o = (A)sTo, , L Kij x m5. On the other hand, for each fixed j, the currents
(AD)¢To,p, , converge to the current (A});C; (the convergence is in the sense of currents, but it
also implies the local Hausdorff convergence of the supports, given that j is fixed). Let K; be the
Hausdorff limit as & — oo of the compact sets K, ;. By the uniform convergence of the functions
frj to f; (as k — oo, with j fixed) it is easy to see that Gy LK x Ty = (AL K x -

Next, observe that (A})yCj is still a cone. Thus f; coincides with a 1-homogeneous function
over K;. Observe also that |K;| > limsup,, |Kj ;| and therefore |B;\K;| < Cj~21+A). Since
|B1\K;| | 0 it is easy to conclude that f, which is the L? limit of f;, must in fact be 1-
homogeneous.

Having concluded that the coarse blow up f is 1-homogeneous, we immediately infer that
the average-free part is 1-homogeneous as well, which means that the fine blow-up is too. This
however would be incompatible with the fact that I~ (by(j) ;) = 1+ 7.

We thus fix now a choice of € sufficiently small which forces the alternative (b). Recall that
the frequency BV bound gives that |I7(by) — IT(bg)| < Ce”*, which, combined with the fact
that It (bg) <1+ ~ in turn implies that

3
(95) I (by) <1+ 37

once we take € small enough. We now wish to show that H[% can be made

JiHTV(]%ﬁk[)
arbitrarily small, by choosing n and € correspondingly small and k sufficiently large. This

would imply that I has to be below 1 + I~ on all Jay, bx[ with k sufficiently large, thereby
concluding the proof (since all but finitely many elements of the initial blow-up sequence ry,
on which I(ry) — 1 + 27, must in fact be contained in R, while we just showed that in a
neighborhood of 0 relative to R the value of the universal frequency function is strictly below
1 +27). Let ]s;),t )] be the interval of flattening containing by. Using Lemma 8.2 and the
BV estimate of Proposition 6.2, we already have that the desired estimate

<n if Sj(k) > Ok,

i
]y s 00D

provided that ¢ is again chosen sufficiently small. Note that, even though the estimate is for
log(I + 1), we know apriori that I is bounded, so we can invert the log and get a an estimate
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for H [%]_HTV(] o as in (47). The only caveat is that the constant C' in the right hand side
a0

of (47) will now depend upon |I| if we replace the left hand side with H [%]_HTV. However,
we only need a constant C' which is independent of the radii, though it might depend on T

We therefore set aj, := max{ag, s;4)} and we wish to show that H[%] H can be
—ITv(aj,,brkl)

assumed arbitrarily small, provided ¢ is chosen wisely and k is sufficiently large. We observe
that now ]aj, by[ is contained in a single interval of flattening, and that the almost monotonicity
estimate on the absolutely continuous part of frequency (48) gives

/ Y4
dr t. ,J (k)
=lTv(ay oel) i(k)

Now, my j(x) is at most £2, and thus, if the ratio t?(’;) is sufficiently small we reach the desired
Sk

threshold. We can therefore assume that

A
a

=2c>0

ti(k)
for some constant ¢. With the latter lower bound at disposal it is simple to see that mg () can
be made arbitrarily small choosing ¢ small and & large. In fact, if we choose € = % and k(i) 1 oo,
we find that Tpp, ,, converges to a flat plane, which in turn shows that E(T,Bg it must
converge to 0.

(k(i)))

9. PROOF OF THEOREM 2.10(v)&(vi)

In this last section of the paper we will prove the last two statements of Theorem 2.10.

9.1. The case I(T,0) < 2—J,. Choose « €]I(T,0)—1,1—0d2[. Since all coarse and fine blow-ups
are I(T,0)-homogeneous, a simple compactness argument yields the following corollary.

(ND) There are € > 0 and p > 0 such that, if r < p and E(T, Bg,/7,) < €, then

(96) | Pz Dy
BP/QHM]' BpﬁMj
where |s;,t;] 3 p.

From (96) we immediately infer that the intervals of flattening cannot be finite. Indeed suppose
this is not the case and let J be such that s; = 0. Observe that under this assumption there
is a unique flat tangent cone to T: indeed the center manifold M ; contains the origin and
Q[ToM ] is the unique tangent cone to T'. We thus conclude E(T,Bg, s7,) — 0 as 7 | 0. In
particular (96) must hold for all p < p for some positive g and we immediately conclude that
there is a positive constant C' such that

J |DNJ|2 > Oflpm+2a72 vp < ﬁ
M‘]ﬁBp

On the other hand, in light of [15, Remark 3.4] we also have

m+2—252
J ‘DNJ|2 < Cmyg, g (p> .
MJﬁBp t]

This however forces the condition o« — 1 > 1 — do, which gives a contradiction. There are
therefore infinitely many intervals of flattening |s;, ¢;].
Now assume for a contradiction that, up to subsequence (not relabelled), we have
S
lim =Z = 0.
Jj—0 tj
IfE(T,Bg ﬁtj) does not converge to 0 as j — o0, then, up to subsequence, we can assume that
To,; converges to a cone C. Clearly, by definition, mo; = E(T,Bg /) for j large enough,
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and moreover my ; — E(C, Bg, /). On the other hand, for every fixed p > 0 sufficiently small,
we can pass into the limit in the inequality

E(Tys,,B,) < Cp* *2my

which is valid for those infinitely many j’s such that :—J < p, and conclude
J

E(Cv Bp) < Cp2_252E(Cv B6\/ﬁ) )

which is impossible because the radial invariance of C' guarantees that E(C,B,) is constant in

P
We have thus concluded that E(T, Bg \/mtj) converges to 0. In particular, so does mg ;. We

thus conclude that, for every j sufficiently large, the inequality E(T', Bg ﬁp) < €2 must be
valid for all p € [s;,t;]. This however can be combined with (96) to deduce that

S m+2a—2
f |IDN;|2 = C™* <J> f |IDN;|2.
Mj f\st t] Mj ﬁBtj

On the other hand using [14, Proposition 3.4] we immediately get
J |DNJ|2 = Cilmovj .
M thj

In particular we conclude

5s m+2a—2
J |DN;|* = C™ (J> mo,; -
M;B,, tj

But, as for the case already discussed above, this is at odds with the reverse inequality

5a m+2—292
J [DN;|* < C (j) ™o,
M;B,, tj

when z—’ is allowed to become too small.
J

9.2. The case I(T,0) > 2 — J. In this case we fix o €]1 — d2,1(T,0) — 1[. Note that in this
case we know that the intervals of flattening cover a neighborhood of 0 and thus we can infer,
again using the compactness and the fact that fine blow-ups are all I(T, 0)-homogeneous, the
following decay lemma:

(D) There is p > 0 such that, if r < p, then
(97) | pwp ez oy
BpznM, B,nM;
when |s;,t;] 3 p.
This immediately implies that, if the intervals of flattening are infinitely many, then they must
satisfy
liminf 22 > 0.
it
To see this, we in fact argue by contradiction as above, using this time [14, Proposition 3.4],
to infer that

5 m+2—252
(99 [ owese(B)
M;nB., tj
while iterating (D) we instead would get

5s m+2a—2
[ owese(2) m.
M;B,, tj

which this time is a contradiction because it would force o — 1 < 1 — 49 if i—J is allowed to
J
become too small, which does not hold.
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We can now argue as in the proof of Proposition 7.1 to obtain, for every fixed x large enough
and every k sufficiently large (depending on ), a decay of type

2«
Sk+
E(T,Bg /sy, .) < C ( tk“) E(T,Bg /m, ) + Ct3.
It is not difficult to see that, if « is chosen large enough, an iteration of this inequality (combined
with the information that lim inf :—j > 0) gives a decay of type

(99) E(T7 B6\/ﬁr) < CTQL%

for every f < «. In particular we can choose § > 2 — d5, and therefore conclude that, for a
sufficiently large j, we must have mg ; = _2t§_252. But then (99) would imply

29220 (85 \7 sro (35"
(100) E(T, BG\/HT) < CSj 7 my; < CSj 7 my,; .
J J

But of course the latter is at odds with (98) when s; is sufficiently small. This reaches a
contradiction and thus shows that there could not be infinitely many intervals of flattening.

We record here the following more quantitative consequence of our analysis, since it will be
useful for the further study of flat singular points in our papers [9] and [10].

Proposition 9.1. Let T be as in Theorem 2.9. For every u > 0 there is a positive constant
C(p,m,n,Q), with the following property. If I(T,0) > 2 — 3 + & at the flat singular point 0,
then there is rqg > 0 such that

r 2—282+p
(101) E(T,B,) <C (T> max{E(T, By, ), 2227} Vr < 1.
0
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