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Abstract

We prove that a closed, geodesically convex subset C of Pr
2 (Rd) is closed with respect to

weak convergence in Pr
2 (Rd). This means that if (µn) ⊂ C is such that µn ⇀ µ in duality

with continuous bounded functions and supn

∫
|x|2dµn <∞, then µ ∈ C as well.

1 Introduction

The aim of this paper is to study the weak closure properties of geodesically convex sets. The
reasons of such an interest come from the fact that the distance W was recently studied because
of the strict relations with some evolution PDE’s which may be interpreted as curves of maximal
slope of certain geodesically convex functionals, i.e. functionals that are convex along geodesics.
Such an approach, introduced by Otto in [8] and then further analyzed by several authors
Carrillo-McCann-Villani in [4], by Agueh in [1] and by the author together with Ambrosio and
Savaré in [2] (see [2] for more detailed references), leads to the study of the problem of existence
and uniqueness of those curves: the theory of minimizing movements introduced by De Giorgi
([6]) provides a satisfactory answer to these questions under only weak compactness assumptions.
In [2] there are mainly two theorems on existence of curves of maximal slope for geodesically
convex functionals which rely on two different kind of assumptions on the functional F :

i) F is lower semicontinuous w.r.t. the weak topology and satisfies

F (γ[t]) ≤ (1− t)F (γ[0]) + tF (γ[1])

for any optimal plan γ ∈P2(R2d) (see Corollaries 2.4.11 and 2.4.12 of [2]),

ii) F is lower semicontinuous w.r.t. the strong topology and satisfies

F (γ[t]) ≤ (1− t)F (γ[0]) + tF (γ[1])

for any plan γ ∈P2(R2d) (see Theorem 4.0.4 of [2]).
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Here and in the following strong topology stands for the topology induced by W2, and weak
topology stands for a1 topology for which a sequence (µn) is converging to µ if and only if (µn)
converges to µ in duality with continuous and bounded functions, and supn

∫
|x|2dµn <∞.

The two notions of convexity along geodesics just introduced are strictly related to the
following notions of geodesic convexity for sets:

Definition 1.1 (Geodesically convex sets) We say that a set C ⊂ P2(Rd) is geodesically
convex if for any µ1, µ0 ∈ C there exists a γ ∈ Opt(µ0, µ1) such that the whole segment joining
µ0 to µ1 through γ belongs to C, that is:(

(1− t)π1 + tπ2
)
#

γ ∈ C, ∀t ∈ [0, 1].

Definition 1.2 (Strongly geodesically convex sets) We will say that a set C ⊂P2(Rd) is
strongly geodesically convex if for any µ1, µ0 ∈ C and every γ ∈ Adm(µ0, µ1) the whole segment
joining µ0 to µ1 through γ belongs to C, that is:(

(1− t)π1 + tπ2
)
#

γ ∈ C, ∀t ∈ [0, 1].

It is easy to check that if a functional F l.s.c. w.r.t. the W2−topology is convex along geodesics
in the sense of (i) (respectively, (ii)), then its sublevels are geodesically convex (respectively,
strongly geodesically convex).

The main result of this work is to show that in case (i) the assumption of lower semicontinuity
w.r.t. the weak topology is redundant and may be substituted with semicontinuity w.r.t. W2

provided we know that the functional attains the value +∞ at non regular measures. In order
to prove this we will show that any W2−closed geodesically convex subset of P2(Rd) is closed
w.r.t. weak convergence of measures in P2(Rd).

The idea comes from functional analysis: indeed it is well known that a closed convex subset
of an Hilbert space is weakly closed, as it may be written as intersection of a family of halfspaces.
Here we first introduce the notion halfspace in P2(Rd) and show that an halfspace is weakly
closed; then we prove that W2−closed geodesically convex subsets of Pr

2(Rd) are intersections
of a family of halfspaces, and thus weakly closed as well.

A technical issue arises when dealing with non regular measures, the author doesn’t know
whether the same result holds for general measures or not.

2 Preliminaries

In this section we recall the basic facts of optimal transport theory we will need in the rest of
the paper. This introduction is very far from being exhaustive, the interested reader may look
at [2] and [10] for proofs and generalizations.

1We will state and prove our result in term of sequential closure of geodesically convex sets, as the introduction
of the weak topology in P2(Rd) (i.e. the natural topology for which converging sequences are those weakly
converging in the sense of definition 2.1), is a bit technical and does not add really much to our understanding
of the geometry of P2(Rd). The interested reader may have a look at Chapters 2 and 5 of [7] for a detailed
discussion.
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We will denote by P2(Rd) the set of probability measures with finite second moment, i.e.:

P2(Rd) :=
{
µ ∈P(Rd) :

∫
|x|2dµ <∞

}
,

and by Pr
2(Rd) its subset made of regular measures, which are those measures which give 0

mass to n− 1 rectifiable sets.
We endow P2(Rd) with the quadratic Wasserstein distance, defined as:

W2(µ, ν) :=

√
inf
∫
|x− y|2dγ,

where the infimum is taken among all admissible plans γ ∈P(Rd×Rd) satisfying π1
#γ = µ and

π2
#γ = ν, where π1, π2 are the projection onto the first and second coordinate respectively. A

plan which realizes the minimum is called optimal.

Definition 2.1 (Convergences in P2(Rd)) We will say that a sequence (µn) converges
strongly to µ if W (µn, µ) → 0 as n → ∞ and that it converges weakly if

∫
ψdµn →

∫
ψdµ

as n→∞ for every ψ ∈ Cb(Rd) and supn
∫
|x|2dµn <∞.

The following celebrated result is due to Brenier.

Theorem 2.2 Let µ ∈ Pr
2(Rd) and ν ∈ P2(Rd). Then there exists only one optimal plan γ

and this plan is induced by an optimal map. Furthermore, this map is the gradient of a convex
function. That is, there exists a convex function ϕ : Rd → R such that γ = (Id,∇ϕ)#µ.

We will denote by T νµ the optimal map given by Brenier’s theorem. For a given µ ∈P2(Rd)
we will write L2

µ for the set of measurable maps T : Rd → Rd such that ‖T‖2µ :=
∫
|T (x)|2dµ(x) <

∞. The space L2
µ is endowed with a natural inner product: 〈T, S〉µ :=

∫
〈T (x), S(x)〉dµ(x).

The following is a well known stability result of optimal maps.

Proposition 2.3 Let ν, νn ∈ P2(Rd), n ∈ N, and µ ∈ Pr
2(Rd). Then the sequence (νn)

converges strongly (resp. weakly) to ν if and only if the sequence (T νnµ ) converges strongly (resp.
weakly) to T νµ in L2

µ.

Recall that if µ ∈ Pr
2(Rd) and ν ∈ P2(Rd) the unique constant speed geodesic on [0, 1]

starting from µ and finishing at ν is given by t 7→ µt := (Id + t(T νµ − Id))#µ, where Id is the
identity map. In this case it is said that the geodesic is induced by T νµ . It is known that if µ1

t

and µ2
t are two constant spees geodesics starting from µ and induced by T, S respectively, then

it holds:

lim
t↓0

W2(µ1
t , µ

2
t )

t
= ‖T − S‖µ. (2.1)

For a proof of this fact see Appendix of [2] or Chapter 4 of [7].
Finally recall that, with the same notation as above, it holds

lim
t↓0

W2(µ1
t , ν)
t

= −2〈T − Id, T νµ − Id〉µ, ∀ν ∈P2(Rd), (2.2)

see Proposition 7.3.6. of [2] for a proof of this fact.
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3 The result

The basic object we will need for our result is the following:

Definition 3.1 (Halfspace) Let µ ∈ Pr
2(Rd), v ∈ L2

µ and C ∈ R. The two halfspaces H +
v;C

and H −
v;C identified by v, C are:

H +
v;C :=

{
ν : 〈T νµ − Id, v〉µ ≥ C

}
,

H −
v;C :=

{
ν : 〈T νµ − Id, v〉µ ≤ C

}
.

As said, we are going to study only sequential closure of sets: the following proposition is
the enabler of the theory.

Proposition 3.2 Let µ ∈Pr
2(Rd), v ∈ L2

µ and C ∈ R. Then the two halfspaces H +
v;C and H −

v;C

are weakly sequentially closed.

Proof. Consider a sequence (νn) ⊂ P2(Rd) which weakly converges to ν. By proposition 2.3
we know that the sequence of optimal transport maps (T νnµ ) weakly converges to the optimal
transport map T νµ . Thus the bound 〈T νnµ − Id, v〉µ ≥ C (or 〈T νnµ − Id, v〉µ ≤ C) passes to the
limit. �

We want to prove that any geodesically convex subset C of Pr
2(Rd) is the intersection of a

family of halfspaces. The idea is to find, for every ν /∈ C, an halfspace which contains C and
does not contain ν. Observe that if we knew a priori the existence of a measure µ ∈ C which
realizes the minimum distance from ν to C, then the halfspace H −

T νµ−Id;0
has the needed property.

Indeed, pick any measure σ ∈ C and let µt := (Id+ t(T σµ −Id))#µ and νt := (Id+ t(T σµ −Id))#µ
be the two geodesics connecting µ to σ and ν respectively. From the minimality of µ and the
geodesic convexity of C, it follows that W (µt, ν) ≥W (µ, ν), thus from formula (2.2) we obtain

−2〈T σµ − Id, T νµ − Id〉µ = lim
t↓0

W 2(µt, ν)−W 2(µ, ν)
t

≥ 0.

However, a priori we don’t know that such µ exists (we will know this fact a posteriori, once
weak closure will be estabilished), so we need to procede proving the existence of quasi-minima,
and then showing that that the above argument still applies to quasi-minima.

The key lemma we will need is the following.

Lemma 3.3 Let (E, d) be a complete geodesic metric space, C ⊂ E a closed set, P ∈ E \ C,
and 0 ≤ a < 1. Then there exists a point Q ∈ C such that

d(Qt, C)
t

≥ a, ∀t ∈ (0, d(P,Q)], (3.1)

where Qt : [0, d(P,Q)] → E is any choice of a geodesic connecting Q to P (Q0 = Q, Q1 = P )
parameterized by arc length.
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Proof. Let we fix a notation: for any point R ∈ C let R be the set of geodesics connecting R
to P parameterized by arc length, and let Rt ∈ R be a generic element of this set.

We will say that a point R ∈ C has the property G iff for every Rt ∈ R it holds

d(Rt, C)
t

≥ a, ∀t ∈ (0, d(P,R)].

Our aim is to prove that a point with the property G exists.
Start choosing any point R ∈ C and suppose that it doesn’t have the property G. Then

there exists a point R′ ∈ C such that

d(Rt, R′) < at, for some t > 0 and some Rt ∈ R. (3.2)

From this we get
d(R,R′) ≤ d(R,Rt) + d(Rt, R′) < t(a+ 1),

and d(R′, P ) ≤ d(R′, Rt) + d(Rt, P ) < at+ d(R,P )− t from which it follows

d(R,P )− d(R′, P ) > t(1− a). (3.3)

Putting together the last two inequalities we get the key estimate

d(R,R′) <
1 + a

1− a
(
d(R,P )− d(R′, P )

)
. (3.4)

This inequality is all we need to prove the thesis: we will proceed by transfinite induction by
using its telescopic property.

Let Ω be the first uncountable ordinal. Define a function

Ω→ C

α→ Rα,

beginning by choosing R0 ∈ C in any way. Then if α is the successor of some ordinal, we have
two cases:

i) Rα−1 has the property G,

ii) Rα−1 does not have the property G.

In the first case we put Rα := Rα−1, in the second one we choose Rα among those points R′

satisfying (3.2) with R = Rα−1. Finally, if α is a limit ordinal we let Rα be the limit of Rα′ with
α′ < α.

We have to prove that this is a good definition, we will do this by proving at the same time
that the following “extended” version of (3.4) holds:

d(Rα, Rβ) <
1 + a

1− a
(d(Rα, P )− d(Rβ, P )) , ∀α ≤ β. (3.5)
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We prove this inequality by transfinite induction on β: it is true for 0, and it is easy to see that
if it holds for β then it holds for β + 1. Indeed by construction and from the first part of the
proof, Rβ+1 satisfies (3.4) with R = Rβ, R′ = Rβ+1, therefore combining (3.4) and (3.5) we get

d(Rα, Rβ+1) ≤ d(Rα, Rβ) + d(Rβ, Rβ+1)

<
1 + a

1− a
(d(Rα, P )− d(Rβ, P ) + d(Rβ, P )− d(Rβ+1, P ))

=
1 + a

1− a
(d(Rα, P )− d(Rβ+1, P )) , ∀α ≤ β.

Given that the case α = β + 1 is obvious, we get the claim.
Now let β be a limit ordinal, observe that we can’t write inequality (3.5) for such a β, yet,

since we have still to prove that Rβ exists: we are going to prove at the same time that Rβ is
well defined and that for this point (3.5) holds. Since β < Ω there exists an increasing sequence
(αn) converging to β; for every αn the inequality (3.5) holds, therefore we have

d(Rαm , Rαn) <
1 + a

1− a
(d(Rαm , P )− d(Rαn , P )) , ∀m ≤ n.

Being the sequence d(Rαn , P ) non increasing (by equation (3.3)) and bounded from below, it
is a Cauchy sequence and the previous inequality shows that the same is true for the sequence
Rαn , which therefore converges to some point we call Rβ. Since the previous argument applies to
every increasing sequence αn, showing that the corrispond points Rαn form a Cauchy sequence,
we get that Rβ is well defined (i.e. it does not depend on the particular sequence (αn) chosen),
that the function α → Rα is continuous (with respect to the order topology) and that (3.5)
holds for any β < Ω.

Observe that from inequality (3.3) it follows that if Rα+1 6= Rα, then d(Rα+1, P ) is strictly
less than d(Rα, P ). We are almost done: since there is no strictly decreasing function from Ω to
R, we have that the map α → Rα has to be eventually constant, therefore for some α we have
Rα = Rα+1, which means by construction that the point Q = Rα satisfies the thesis. �

Note that this proposition is a generalization of the Drop Theorem of Daneš valid in Banach
spaces, see [5] for further reference.

This lemma is closely related to the Ekeland-Bishop-Phelps principle. Actually a shorter
proof may be given with a direct application of the EBP principle: we present here one found
by B.Kirchheim. Use EBP principle to find Q ∈ C which is a minimizer of

x→ f(x) := d(x, P ) +
1− a
1 + a

d(x,Q).

Then such a Q has the claimed property. Indeed, if this is not the case, there exists R ∈ C and
0 ≤ t ≤ d(P,Q) such that d(R,Qt) < at. For such R we have the following bounds

d(R,P ) ≤ d(R,Qt) + d(Qt, P ) < at+ d(P,Q)− t,
d(R,Q) ≤ d(R,Qt) + d(Qt, Q) < at+ t.
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Therefore it holds

f(Q) = d(P,Q) = d(P,Q)− t(1− a) +
1− a
1 + a

t(a+ 1) > d(R,P ) +
1− a
1 + a

d(R,Q) = f(R),

which contradicts the minimality of Q.
Now we have all the elements to prove our main result.

Theorem 3.4 Let C be a strongly closed, geodesically closed subset of Pr
2(Rd). Then C is

sequentially weakly closed.

Proof. Given the structure of weakly converging sequences in P2(Rd), we can assume without
loss of generality, that C is bounded; let R be its diameter. Choose any measure ν /∈ C: the
claim will be achieved if we show that there exist a measure µ ∈ C and a constant c ∈ R such
that

〈T νµ − Id, T σµ − Id〉 ≤ c < ‖T νµ − Id‖2µ = W 2(µ, ν), ∀σ ∈ C.

Indeed in this case the set C would be included in the halfspace H −
T νµ−Id;c

which is weakly closed
by proposition 3.2 and does not contain ν. By the arbitrariness of ν we can conclude.

Let us prove our claim. Fix a < 1 and apply proposition 3.3 with P = ν to find a measure
µa satisfying

W (µat , C) ≥ atW (ν, µat ),

where µat := (Id + t(T νµa − Id))#µa. Now fix σ ∈ C and define va = T νµ − Id, w = T σµ − Id.
Observe that for small t > 0 it holds

σt :=
(
Id+ t

√
1− a2

‖va‖µa
‖w‖µa

w

)
#

µa ∈ C,

therefore we know that
W 2(µat , σt) ≥ a2t2‖va‖2µa .

Recalling equation (2.1), we get

lim
t→0+

W 2(µat , σt)
t2

= ‖va − w‖2µ,

we obtain ∥∥∥∥∥va −√1− a2
‖va‖µa
‖w‖µa

w

∥∥∥∥∥
2

µa

≥ a2‖va‖2µa .

Some algebraic manipulations show that the previous inequality implies

〈va,
√

1− a2
‖va‖µa
‖w‖µa

w〉µa ≤ ‖v
a‖µa‖w‖µa

√
1− a2 ≤ R‖va‖µa

√
1− a2.

By choosing a near to 1 and observing that ‖va‖µa ≤ W (ν, C) + R we get that the last term
of the previous inequality is close to 0. Therefore it is smaller than d2(ν, C), which in turn is
smaller then W 2(ν, µa) and the claim is achieved. �
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[3] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions,
Comm. Pure Appl. Math., 44 (1991), pp. 375–417.

[4] J.A. Carrillo, R.J. McCann and C.Villani, Kinetic equilibration rates for granular
media and related equations: entropy dissipation and mass transportation estimates, Rev.
Mat. Iberoamericana, 19 (2003), pp. 971–1018.

[5] A. Brondsted, On a lemma of Bishop and Phelps, in Partial Differential Equations and
Related Topics, J. A. Goldstein, ed., vol. 446 of Lecture Notes in Mathematics, Spinger,
Berlin, 1975, pp. 65–74.

[6] E. De Giorgi, New problems on minimizing movements, in Boundary Value Problems for
PDE and Applications, C. Baiocchi and J.L. Lions, eds. Massons, 1993, pp. 81–98.

[7] N. Gigli, On the geometry of the space of measures in Rd endowed with the quadratic
optimal transportation distance, Scuola Normale Superiore, Pisa, PhD thesis, 2008, available
at: http://cvgmt.sns.it/people/gigli/.

[8] F. Otto, The geometry of dissipative evolution equations: the porous medium equation,
Comm. Partial Differential Equations, 26 (2001), pp. 101–174.

[9] C. Villani, Topics in optimal transportation, vol. 58 of Graduate Studies in Mathematics,
American Mathematical Society, Providence, RI, 2003.

[10] C. Villani, Optimal transport, old and new, Springer Verlag, 2008.

8


