Homogenization of line tension energies

M. Fortuna!, A. Garroni?

Dipartimento di Matematica “Guido Castelnuovo”
Sapienza Universita di Roma P.le A. Moro 5 00185 Roma Italy

Abstract: We prove an homogenization result, in terms of I'-
convergence, for energies concentrated on rectifiable lines in R?
without boundary. The main application of our result is in the
context of dislocation lines in dimension 3. The result presented
here shows that the line tension energy of unions of single line
defects converge to the energy associated to macroscopic densi-
ties of dislocations carrying plastic deformation. As a byproduct
of our construction for the upper bound for the I'-Limit, we ob-
tain an alternative proof of the density of rectifiable 1-currents
without boundary in the space of divergence free fields.

1 Introduction

In this paper we prove an homogenization result for energies of the form
[ v pant, (1.1)
gl

where p1 = b® tH!' L v is a divergence free matrix valued measure, v c R3 is a
1-rectifiable set, and t its tangent. The vector b is a multiplicity which belongs
to a discrete lattice B in RY, with N > 2, and will also be called the Burgers
vector of p. Here /\/lflif(Q; BxS?) denotes the set of such measures, where 2 c R?
is an open bounded and regular set.

We consider the following scaled version of the energy in

b
E (M) = [Ymﬂaw(;’t)d}[l if M=b®t'H1|_'yE,/\/l[1if(Q;glgxs2)’

+00 otherwise.

(1.2)

Under some mild assumptions on the density ¢ we study the asymptotics of
FE, in terms of I'-convergence with respect to the weak= topology of measures.
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The main result of the paper is that the limiting energy takes the form

oy | o () it a0

+00 otherwise,

(1.3)

where g : RV*3 — [0, +00) is a convex 1-homogeneous function defined in terms
of the density 1 (see Theorem for the exact statement).

Our result extends the result in [8], where the same problem is treated in
dimension 2, ie., © ¢ R?, and from which we borrow several ideas for the
proof. The main difference is that in dimension 2 the support of the measures
in M}lf(Q;B x S') has codimension 1, so that the energy in reduces to
a functional defined in the space of SBV functions with values in B (and the
measure g is nothing but the rotated gradient of the phase field u). This allow
the authors to use tools from the Calculus of Variations for functionals defined
on partitions and therefore in SBV (see [1]).

In dimension larger than 2 there is no phase field describing the admissible
configuration, so we use techniques of geometric measure theory and the analysis
of functionals defined on rectifiable currents (rephrased in terms of the measures
in ./\/l}if(Q; B x S?)). Energies of the form have been studied in [6] where
the authors give necessary and sufficient conditions for the lower semicontinuity
of such functionals.

The major difficulty in the proof of the I'-convergence is the construction for
the upper bound. Implementing a standard density argument we first need to
reduce to the case of measures absolutely continuous with respect to Lebesgue
and having piecewise constant density. This step requires to prove that such
measures are dense in energy for the limiting functional Ey. The second key in-
gredient of the proof is then an ad hoc construction which allows to approximate
divergence free piecewise constant fields with measures concentrated on poly-
hedral closed curves and optimal energy. As a byproduct of the construction
for the recovery sequence we thus obtain a different proof of the approximation
of divergence free vector fields by means of measures defined on closed curves
(see Theorem [3.]). Stated by J. Bourgain and H. Brezis in [3] in the context
of solenoidal charges in the sense of Smirnov (see [2I]), this density result is
proved in [I5] with respect to the strict topology of measures.

The main motivation for our analysis is the study of line defects in a 3-
dimensional crystal, the so called dislocations. At a mesoscopic scale (larger
than the microscopic lattice spacing) they are indeed identified with line ob-
jects carrying a vector multiplicity belonging to the lattice, so that they can be
represented as measures belonging to /\/lflif(Q; B xS?). The divergence free con-
straint is reminiscent of the topological nature of these defects. At this level one
can associate to each dislocation a line tension energy, i.e., an energy with the
same form of . Such energies can in turn be derived from more fundamental



models. For example, in [10], [13], and [5] the authors deduce the line tension
model accounting for the elastic distortion in the material induced by the pres-
ence of dislocations. See also [19], [20], [11], and [I8] for a similar derivation
in dimension 2 for cylindrical geometry where dislocations are viewed as point
defects. Similarly, this type of line tension model can also be derived under the
assumption that the line defects are contained in a given (slip) plane as limit
of nonlocal phase transition energies (in the spirit of the Cahn Hilliard energies
for liquid-liquid phase transtions), known in the literature of dislocations as
(generalised) Nabarro-Peirls models (see [7] and the references therein). The
natural representation of the line energy here is given by functionals defined on
the space of BV functions with values in a discrete group, so that dislocations
are identified by the jump set of such functions, see [9].

In this paper we are interested in the case of a large number of dislocations
on a macroscopic scale. The interest of this case lying in the fact that a large
quantity of dislocations is responsible for plastic deformation in the material
(see [8] for a more complete analysis). In particular, starting from the rescaled
version of the line tension energy defined in , we are interested in recovering
an effective energy for a large system of dislocations on a scale at which they
can be seen as diffused. In this respect our limiting energy Ey can be under-
stood as the macroscopic (self) energy associated to a continuous distribution
of dislocations.

The result presented in here is also a crucial step for a derivation of a
macroscopic model for plasticity accounting for the presence of defects in the
same spirit of [I2]. The derivations of such macroscopic models as limit of elastic
energies for incompatible fields, under proper energy scalings, will appear in a
forthcoming paper.

The structure of the paper is as follows: in Section [2] we give preliminary
definitions and recall some known results. In Section 2.3 we state the main
result and present the proof of the lower bound. In Section [3] we present the
approximation results needed for the upper bound, the latter being proved in
Section [l

2 Preliminaries and statement of the main result

We first set all the notation needed for the statement and proof of our main
result. Unless further specified, in what follows (2 is a bounded open set of R"
with Lipschitz boundary. In what follows, without loss of generality we will
assume B =7Z", for N > 1.

2.1 Configurations

We start with the set of admissible configurations. In what follows we will
denote with [M(2)]V*" the space of bounded Radon measures with values in



RV The space M1 (Q; SxS" 1) will denote the set of measures in [M(2)]V*"
of the form
p=0®TH L7y, (2.1)

where v c R” is a l-rectifiable set with tangent vector 7 € S"! defined H! a.e.
on v, S c RY is a generic subset, and 6 € [L!(y,H L )]V is such that §(z) € S
for H'-a.e. x €. We remark that in most cases we will consider the set S to
be a discrete lattice that spans RY but for notational purposes it is convenient
to give the above definition for general sets. We also observe that although the
main result, Theorem [2.5] is stated for the case n =3, in Section 3 we prove an
approximation result which holds in any dimension, hence it is convenient to
give the relevant definitions for an arbitrary dimension n > 2.

We say that a measure in [M(Q)]V*" is divergence free if it is row-wise
divergence free, i.e., if the following holds true

[Qzaj@dmj=0 VoeCP(Q),  Vi=1,- N,
p

The subset of M (Q; SxS" 1) (and [M(2)]V*") of divergence free measures
will be denoted by M}lf(Q;S x S"71) (respectively [M(Q)]fi\]{cx") Note that,
if G e [LYQ)]V™ and p = GL™ € [M(Q)]V*" with £" the n-dimensional
Lebesgue measure, then divG = 0 in the sense of distributions if and only if
pe M)

We say that a measure € M(Q;S x S 1) is polyhedral if its support if
formed by a finite number of straight closed segments.

Remark 2.1. Given a measure pn = b® tH' Ly € MY (Q;ZN x S*71), where
beZN is constant and v € [Lip([0,1])]" is a curve such that y' = t, it holds that

(1, V) = (b, o(7(1)) = 0(7(0))), Ve e[CHR™MIY, (2.2)

hence it must be

div,u = bé,y(o) - b(s,y(l), (2.3)

where bd, € [M(Q)]Y is a Dirac delta centered at a € Q with multiplicity b.
Accordingly we say that p carries a mass of b at v(0) and a mass of =b at y(1),
where the sign depends on the orientation t. In particular for such a measure
to be divergence free in €, the curve v must not have endpoints contained in ).

Remark 2.2. If Q is a simply connected domain, measures in M}lf(Q;ZN x
S™1) can be extended to measures on the whole of R™ that can be characterized
as measures concentrated on unions of countably many closed Lipschitz loops
with constant multiplicity in ZN (see [6], Theorem 2.5, for the precise statement
given in terms of 1-rectifiable currents).

The set M}if(Q; ZN x S?) represents the set of admissible configurations for
the class of energies under consideration.



2.2 Energy densities and their main properties

Here we recall the main properties of the class of energy densities
Y ZN xS? — [0, +00).

The H! -elliptic envelope of 1 is the function 1" obtained by solving, for any
beZ" and t € S?, the cell problem

b, ) = inf{fzb(@,r)d?—[l:u:0®TH1L’yEM}lf(Bl;ZNXS”’I), (2.4)
Y
supp(u—b@t’}-lll_(RtﬁBl/2)) cc B1/2},

where B, = B,(0) denotes a ball of radius r and center 0. We say that ¢ is
H-elliptic if 9" =) (see [6]).

We will assume that 1) is H'-elliptic and we extend it to the whole of RV xS?
by setting ¥(b,t) = +oo for all be RV \ ZV. Further, we assume that

Y(bt)>clb] ¥V bezZV {0} and teS> (2.5)

Moreover we recall that #H!-ellipticity implies that 1 is subattidive and has
linear growth at infinity in the first entry, i.e., for all b,b’ € RY and ¢ € S? it
satisfies

P(b+b',t) <p(b,t) + (b, t) and (b, t) <Tb|, (2.6)

for some positive constant ¢, see [0, Lemma 3.2 (iii) and (iv)].
The recession function 1, : RY x §% - [0, 00] of ¢ is given by

oo(b,) = limiinf é@!)(sb,t). (2.7)

This is a crucial ingredient in order to determine the effective energy density
of the limiting energy Ey. For the readers’ convenience we now recall some of
the main properties of 1 as they are proved in [§].

Proposition 2.3. Let ¢ : RY xS? > Ru {+o0} be H!-elliptic, satifying (2.5)
and such that (b, t) = +o00 if b e RN NZN. Let 1hoo be its recession function.
Then the following hold:

(i) Yoo (- 1) is positively 1-homogeneous for all t € S?;

(i) Let @ = {Az:X>0,2€ZN}, then thoo(b,t) = +oo if b e RN N\ Q, and
Voo (b,t) < clb| for be Q;

(iii) Let b e RN t € S%, for any sequence zj € ZN such that |zj| - +oo0 and

z;j[ |zj| = b/|b| one has
. 1 1
lim — —
j+oo |z bl

Y (2),t) = =Yoo (b, t).



The proof of property (i) is immediate, while properties (ii) and (iii) can be
found in [§], Lemma 3.3 and 3.4 respectively.

Finally we define the function g : RV3 — [0, +c0), which provides the
effective energy density, as the convex envelope of

Voo (bt)  if A=bot, beRN, teS?

+00 otherwise,

goo(A) = { (2.8)

e, g(A) = g2 (A). Some important properties of g are described in the fol-
lowing

Lemma 2.4. The function g is continuous, 1-homogeneous, and there are
c1,co >0 such that
aAl < g(A4) < eol4],

for all matrices A e RN*3.

Proof. Every matrix A € RV*3 can be decomposed as a convex combination of

rank 1 matrices on which g, is finite, namely

N 3. Ay 34i]Aej|y N 3
A: Zj Zj J y q ®e,
i 1j=13HAej”1 | Aij e ;Z: 7

where )\; = 3_1|Aij|||A6j“Il, Zj Y )\; =1, and q;- = 3Aij”A6]’||1|Aij|_1€j e 0.
Then by convexity we have

1 Ay
g(A) < Z3\|AJ|| Voo(d) ® € )<23HA T clgjl < clAl.

Being convex and finite, g is continuous. Now from the 1-homogeneity of 1
we infer that also g is positively 1-homogeneous. By Caratheodory’s Theorem
for every € e R™V*3 and 7 > 0, there exist 3N + 1 vectors & € RV*3, and numbers
t; >0, such that Y3+, =1 and € = 23N 1 4,6 and g(&) +n 2 Z3N+1 tigeo (&i);
hence we have that

3N+1 3N+1

Ag(&) + A2 X Y tigeo (&) = 2; tigeo (A&i) 2 g(AS),
i=1 i=

and then A\g(&) > g(A¢). The opposite inequality is finally obtained similarly
replacing A and ¢ by A™! and A¢é. The bound from below is a consequence of
continuity and 1-homogeneity. O

2.3 The I'-convergence result

We now have all the ingredients in order to state the main result of the paper.



Theorem 2.5. Let 1 : ZV xS — [0, +00) be H!-elliptic and obey %|b| <1(b,t)
for allbe ZN andt e S?. Let Q c R? be an open bounded set, uniformly Lipschitz
and simply connected. Then the functionals

0 ) 1 1 1 N _ Q2
oY|—,7)|dH ifpu=00TH Lye M, (Q;0Z" xS%),
By (n) = /W 1/1(0 f 1 Y df( )

(2.9)
+00 otherwise,
I'-converge, as o — 0, with respect to the weak* topology of [M(Q)]V*3, to
dp ) . Nus
g\ = | el if pe IMQ) ],
Eo(p) = fﬂ (dull ¥ (2.10)

+00 otherwise,

where g: RV*3 — [0, +00) is the convex envelope of goo as defined in (2.8).

Remark 2.6. Notice that from the lower bound on the density ¥ one immedi-
ately deduces that a sequence with equi-bounded energy has also bounded total
variation. Therefore the compactness part of the I'-convergence result is imme-
diate.

The proof of Theorem will be a consequence of Proposition and
Proposition (respectively the lower and the upper bound).

As for the lower bound it is quite straightforward and it is a consequence of
the definition of the energy density g. We give its proof with the proposition
below.

Proposition 2.7. Let ¢ : ZV x §* — [0,+00) be H'-elliptic and obey 1| <
¥(b,t) for all b e ZN and t € S%, let Q c R be open and bounded. Then for
every sequence oj — 0 and pi; € /\/léf(Q; ajZN x S?) converging weakly* to some
divergence free measure p € [M(Q)]V*? we have

lin inf B, (1) 2 Eo(p)-

Proof. By the subadditivity of ¢ we have that for all t € S2,be RN, s> 0,k >1

it holds
(sht) _ ki(sh,t) | b(ksbt)
s - sk sk
hence, by the definitions of ¥, and g, we have
t
YD) S it LED S b .85 g(bet). (2.11)
S k—+o00 sk

Let ;€ ./\/l}if(Q; 0,7 x S§?) be converging to ju € [./\/I(Q)](]j\}X3 and be such that
liminf; By, (p17) < +o0. Then from (2.11]) we obtain

Ea'j (,uj) = [y Uj@[)(bja;l,tj)d’}‘[l 2 ﬂ g(bj ®tj)dH1 = EO(,Uj)-
i j

7



To conclude we use the fact that Ey is weakly lower semicontinuous by Reshet-
nyak’s Theorem and Lemma [2.4] so that

liminf E, (115) > Eo(p)- (2.12)
j—>+oo

O

The upper bound instead represents the core of the paper. It requires a
technical construction and will be presented in the next section, where we will
first show an approximation result for divergence free measures and then make
an explicit construction with optimal energy.

3 Approximation of divergence free measures

In this section we show two approximation results which are crucial for the I'-
limsup inequality. We will show that any divergence free measure pu € [M(2)]V*"
can be approximated, strictly and therefore in energy, with measures that are
absolutely continuous with respect to the Lebesgue measure, piecewise constant
and divergence free. Further we will show that, for n = 3 the latters can be ap-
proximated with measures in M}lf(ﬂ; Q x §?). The case of dimension n > 3
presents some difficulties due to specific construction contained in Lemma [3.10
we nevertheless expect that the approach followed in this paper can be adapted
to the general case.

3.1 Piecewise constant approximation

Here we consider the general case of functions and measures in 2 ¢ R", for
n > 2. First we introduce a class of admissible sequences of triangulations
T := {TZ}ZEL.N,M of Q cR™.

Definition 3.1. We say that a family T = {T"}ic1..m of simplezes is an
admissible sequence of triangulations (of aspect ratio Cy) if the closed tetrahedra
T, with 1 <1< M, satisfy

(i) Qcc UM T

(i3) int(T%) nint(T7) = @ fori# j (here int(T) is the topological interior part
of the set T');

(iii) there exists a positive constant Cy >0 such that for every j there exists a
point x’7 so that ‘ ‘ .
Beyr(2?) € T7 € By (a7),

where r = max; diam(7T;) is the size of the triangulation.

We say that a function f is piecewise constant relatively to T if f is constant
in int(T7) for every je{l,...,M}.



Theorem 3.2 (Piecewise constant approximation). Let Q be a simply connected
open set with Lipschitz boundary, and let u € [M(Q)]V" with divp = 0 be
given. Then there exists a sequence of measures py, € [M(Q)]V*" such that
Lo X w, with py = AR L™ and Ay is piecewise constant relatively to a sequence of
admissible triangulation Ty, and div g = 0 in Q. Furthermore limyg, || x| () =

[11(€2).-

The proof of Theorem [3:2] will be given essentially in two steps. At first,
in Lemma we approximate p via measures having smooth densities up to
the boundary. In the second step we reduce to measures which are piecewise
constant with respect to a triangulation of 2. In both cases the main difficulty
is given by the free divergence constraint, and in order to modify the measures
while preserving this constraint it will be convenient to interpret p as a current,
since the push forward of a current preserves solenoidality.

We start by regularizing the measures. The following lemma is an adapta-
tion to the present context of Proposition 6, Chapter 5 in [14].

Lemma 3.3 (Smoothing). Let Q@ c R™ be a bounded open Lipschitz set, let
pe [M(Q)]V*" be divergence free, then it exists a family of functions F. €
[LY )]V n [C=(Q)]V*™ such that

i) F.L" = i in the sense of measures;
i) |FL™[(€2) = |l (€2);
iii) div EF; =0 in Q.

Proof. Let d € C*(2) be a smooth version of d(-,§2¢), namely a function sat-
isfying 0 < d(z) < d(x,Q°) and |Vd(z)| < 1 for all z € Q. We define, for
every z € B1(0), H,(x) := x + d(z)z and observe that H,(Q2) = Q, V. H,(z) =
Id+z® vd(x). Let p. be a convolution kernel and define the regularization of
@ € [Co(Q)]V*™ for all z € Q as follows

ve(x) ::fB(O)pe(—z)go(:v+zd(:r))Vtz(x)dz

- foatar o (528t (104 22 @ vt ) an

where we performed the change of variable y = x + d(x)z. We then define by
duality the mollification of p to be (ue, @) = (1, ©e), hence

(o2 = [ ([}, 0 Po-2)0 @ + 20DV (@) ) dp()

- S (22 ) ot (2 52 o v av et

where G € [LY(Q, | u])]V*™ is such that |G| =1 |u[-a.e. and G|u| =




Rearranging the integrals in the definition of . and using Fubini’s Theorem
it is easy to see that p. < L™ with density function defined for y € Q2 by

R0 = fd@ e (5 ) 6@ va@ e b Saul@). 61)

Clearly F. € [C*(Q)]V*".
By uniform continuity, . converges uniformly in €2 to ¢, and thus pu. AN 7
in [M(9)]"", which proves i). Furthermore it holds

(aesoll = | [ pe(-2) T+ V@) © 2)p( + @) dz, Gl 2)

< [Q (1+28) @l ood] ] (),

hence
[l () < (1 +2¢) | ][ (€2), (3-2)
thus limqo |pe [ (2) = [©]|(2), and therefore ii) holds.

Finally we now prove that p. is row-wise divergence free, i.e.,
n ..
> [ FiWomdy =0, ¥eCQ), i=1N.  (33)
j=1
To see this, we denote with G? the i-th row of G, then we compute

n ..

> [ FI o)y

=179

- me,n fgPs<Z>Gil<fc>6z<Hz>j<fc>6jw<x+d(m)z)dnuu(:ﬁ)dz

7,0=1
- me,u pe(2) [ (G190 Ho)(@))dl il (2)

where we used the change of variables y = z + d(x)z and, in the last equality,
we used the fact that

ilalmz)j(x)aﬂp(x +d(x)z) = 0 (v o H.)(x).

The claim now follows since ¢ o H, € C}(2) and p is divergence free.

O]

We say that a mapping ¢ is a potential for a divergence free matrix field F' if
R¢ = F for some first order linear differential operator R satisfying div Ry =0
for every ¢ € [C*(Q)]V*™ where m = n(n —1)/2. For example if n = 3 then
R = curl. We observe that if €2 is simply connected then such an operator R
always exists as a direct consequence of Poincaré’s Lemma.

10



Thanks to Lemma |3.3], we simply need to prove Theorem for divergence
free measures of the form p = FL". To do so we would like to pass to a
potential ¢ of F', and then approximate ¢ with piecewise affine functions by
linear interpolating over a sequence of triangulations of €2. In order to show
the convergence of the interpolating sequence to ¢ we need boundedness of
its derivatives (see for instance [I7]), while from Lemma [3.3| we can only infer
¢ € [C(Q)]V*™. To obtain such bound we will modify F, since clearly a
uniform bound for the derivatives of F' implies bounds for the derivatives of ¢.
With this goal in mind we state below an extension lemma for F' whose proof
follows closely the one of a similar extension lemma proved in [6, Lemma 2.3]
in the context of 1-rectifiable currents.

Lemma 3.4 (Extension). Let 2 c R™ be a bounded Lipschitz set. There exist an
open bounded set O compactly containing ) such that for every F € [Ll(Q)]NX”
with div F = 0 in Q, there is a function F' e [Ll(Q)]NX", with div E' = 0 in ,
such that F = F in Q. In particular the measure i = FL" [M(Q)]NX” extends
the measure p = FL™.

Proof. We will prove the lemma, first in the case of F' e [L'(€2)]" with div F = 0
in , then the matrix valued case will follow simply by extending row-wise.
Choose a function N € C1(9Q;S™!), such that N(z)-v(x) > a > 0 for almost
all x € 092, where v is the outer normal to 9 (see [16] for details). Consider
the mapping g : 92 x (=po, po) = R™ defined by g(z,t) = x + tN(x), then there
exists pg sufficiently small such that g is bijective and bi-Lipschitz: indeed, by
Local Invertibility Theorem for Lipschitz mappings (see [4]), there exists po
small enough such that g is locally invertible with Lispchitz inverse function,
furthermore, since g(x,0) = z, we also get global invertibility (see [2] Lemma 33).
Let Dy = g(02 x (=po, po)) and h: Dy — Dy be defined by h(g(x,t)) = g(x,-t).
Then h is bi-Lipschitz and coincides with its inverse. We then set Q) := QuDy and
we define the extension F(y) = xaF () +XDo~aVA(h ™" (y))F(h~(y))|Vh™!], for
all y e Q.

We now show that F is divergence free. We compute, for every v € C’g(Q),

Jy v Fray= [ (v Fyay+ [ (90, IRk @)EB @) Th dy
= [{veFydys [ (900 h)(@). F(x))da
We then observe that, by direct computation, it holds

D[(XDo0¥) © h] = XanD, (z) V[ o h],

in the sense of distributions in ©, thus in particular (xpy.qi’) o h € Wh(Q).
Therefore we obtain

J (v Fydy = [ (V16 = (eopav) o ], F)dy

11



The right hand side is zero since ¢ =¥ — (xpynQ¥) o h € Wol’oo(Q): indeed it
is zero for all p € C§°(€2) and then also in W& "*°(Q) by density of smooth and
compactly supported functions with respect to the weak+ topology in W1 ().

The general case is obtained by using the above construction row-wise. [J

We are ready to prove Theorem [3.2]

Proof of Theorem[3.3 Thanks to Lemma [3:3] we first find a sequence of fields
Fy e [LY(Q)]V" n [0 (Q2)]V*" such that py, = FlL” > p, div Fj, = 0 in Q and
T, oo 100 () = L1 (2.

Using Lemma 3.4 we can find a set Q2 compactly containing {2} and a sequence
of functions FJ, extendlng Fy, such that divF), = 0 in Q. We then choose €
such that Q cc @ cc Q and by (standard) convolution we can now find a
sequence Gy, € [LY(Q)]V*" n [C=()]V*™, with divG) = 0 in €, such that
GpL" converges strictly to u. We then apply Poincaré Lemma to G, and find
a potential ¢ € [C“(Q’)]NX"(”’I)/Q, such that Ro" = Gy,

Now we fix a sequence of admissible triangulations

Tr = {Tli}izl,,..,M(k) ;

of aspect ratio Cy and size 1/k, such that € cc UM(k) T{ cc ', and for every h
we construct a sequence of piecewise affine functions qﬁk obtained interpolating
linearly the values of ¢" on the vertices of the tetrahedra T,ﬁ. By classical
discretization arguments (see for instance [17], Theorem 11.40) we have that

C
supIV ¢".

IV = V" 1) < 2

where the constant C' depends on Cy. Hence G? := R¢Z converges to Gy, in L'
for every h. Furthermore divG? =0 in Q and GZ is piecewise constant.

In conclusion by a diagonal procedure we obtain a sequence of piecewise
constant divergence free fields that converge strictly to p in €. O

3.2 Optimal construction via polygonal supported measures

From now on we focus on the special case n = 3. Indeed the constructions we
perform in Lemma [3.6] and Lemma [3.10] depend on the dimension: while in
the case n = 3 the shared face of two simplex is 2 dimensional, in the generic
case two neighbouring simplex share a n — 1 dimensional face. Nevertheless we
expect that our construction can be adapted to any dimension.

We now show a second approximation result that is closely related with
our energies. We will need to show that any piecewise constant divergence free
measure can be obtained as a limit of a sequence of measures (concentrated on
lines) with equi-bounded energy. This density result requires a rather technical
construction, a by-product of which is the theorem stated below and proved at
the end of this section.

12



Theorem 3.5. Given a divergence free measure € [M(Q)]V*3, there exists a

sequence of polyhedral measures py € M}lf(ﬂ; Q x S?) such that puy, X L.

A result of this type can actually be obtained as a consequence of the cel-
ebrated result of Smirnov [2I] which shows that every normal current without
boundary in R” can be decomposed in elementary solenoids. As Bourgain and
Brezis pointed out in [3], this decomposition implies an approximation for di-
vergence free vector fields in terms of measures supported on curves. The proof
of such approximation was given in [15], where the authors show the existence
of the approximating sequence by means of an argument that doesn’t allow to
choose the curves in the approximation. This feature clashes with our need to
control the energy of the approximating sequence. Our result is instead con-
structive (see Lemma and will imply the I'-limsup inequality in our main
result.

More precisely we approximate p by piecewise constant fields using Theorem
then on each tetrahedron of the triangulation we construct measures in
/\/lllif(Q, Q x S?) and then we glue these local approximations obtaining the
result. This is the most delicate passage of the construction: indeed gluing
while preserving the divergence free constraint presents some difficulities, to
overcome which it is important to choose the right boundary condition on each
tetrahedron, see of Lemma and Remark

We first start with a single tetrahedron. To this aim we need to introduce
some notation.

Given a tetrahedron T' ¢ R3, we perform the following subdivision of its
boundary 0T in closed triangles: consider a face of T with edges of length
l1 <lp < 13, we divide each of these edges in k segments of length [;/k, i € {1,2,3},
and consequently we obtain a division of that face in k% (closed) triangles,
denoted by A(h, k), with h=1,...,4k? see Figure|ll Hence

4k?
T = | J A(k, h). (3.4)
h=1
Note that there exists a universal constant C' > 0 such that for all (h, k) we have
(diam(7))?
k2 '

We denote with d(T,k,h) the baricenter of each triangle A(k,h), and we call
ny, the outer unit normal, with respect to 7', in A(k, h).

H2(A(h, k) <C (3.5)

Lemma 3.6. Let T c R? be a 3-simplex and F a finite union of planes in R3.
Let A e RVN*3 and assume that A = Z%l Vet withb € Q, t/ eS?. Then there
exist sequences of polyhedral measures py, Vi, W, Pk € ./\/llloC (R3; QxS?) such that
Wi = Vi +wi + pr and satisfy the following:

13



Figure 1: An example of the subdivision of the tetrahedron T', with two faces
explicitly subdivided for k£ = 2, where the blue dots are the baricenters of the
triangles obtained with the subdivision.

(1)
1 & ! J k
Vg = ﬁzlbj Qt'H L(FkﬂT ),
J=
where Fi are straight lines parallel to t/, satisfying

*

1 .
Fﬂl LTy ~ L% (3.6)

and Ty, cc T is a tetrahedron satisfying dist(Ty,0T) < diam(7T')/k?;
(ii) pe LT = v+ wp, =T = pr, | k| (OT) = 0, H' (supp p. 0 F) = 0;
(iii) for every compact set K c R? it holds limy_ e |wi | (K) + | pr| (K) = 0;

(iv) for every ¢ € [C.(R3)]V*3 it holds

I fd :f  A)da:
fm [ dpy = | (0, A)de

(v) for every p e [C(R*)]N it holds

4k
(1, Vep) = };Mnh, P(d(T, k. h)))H* (A(k, ).

Proof. Without loss of generality we may assume that the baricenter of T' coin-
cides with the origin and we define T}, := (1—]%2)T. Therefore Ty, is a tetrahedron
similar to T and dist(7}, 0T) < diam(T")/k>.

The construction is quite natural but somewhat involved, therefore we shall

present it in several steps.

14



Step 1. The segments inside T,.

We define the approximating measures inside Tj. For every j € {1,..., M}
we consider the 2-dimensional vector space Il whose normal is t/. Let vl, v% be
an orthonormal base of this plane, and consider the square lattice on II7 defined
by gi = spanZ(k—IQU{, kigvé) We then set Fé = g,{; + Rt/ and define

Sy
vi= g @ HHLTY (3.7)
It is easy to check that l/i L Ty € [M(R3)]¥* and that for all o € [C.(R3)]V*3
it holds

lim (1/2 LTy, ) = klirflm(yljc LT, )= (0’ @t/ L2LT, ). (3.8)

k—+o0

The measure inside T}, is then

M
vy, = Z ,]CI_Tk, (3.9)

J:

which then converges weaklys to AL3LT.

We now subdivide OT in triangles that we call A(h,k), for h = 1,--, 4k?
as specified in (3.4)), i.e., 9T = U‘““2 A(k,h) and d(T,k,h) is the baricenter of
A(k,h). This 5ubd1v151on induces in turns a subdivision of 07} in triangles
d(h,k) = (1- k—lz)A(h k) by projecting from the origin the A(k,h) onto OT.
Hence we can write 0T}, = U‘““2 §(k,h) with |z —y| < Cdiam(T)k™* for every
x e A(h,k),yed(k,h).

Up to removing a negligible number of lines (so that still holds), we
can assume that Fi intersects 0T} only on isolated points and that none of
these points belong to more than one triangle d(k,h). Indeed for each one of
the 4k? triangles §(k, h) there are at most O(k) lines that intersect its contour,
hence there are at most O(k3) lines that ought to be discarded but each line
has a mass of O(k™*), hence the total error is negligible in the limit. We can
also assume that Hl(Fi nT%) =0 for every j # .

Step 2. Definition in T \ Ty,
For each 1 < h < 4k? we now want to connect the lines of v, which end on
d(k,h), with the baricenter of A(k,h). We define

R(k,j.h) =T} n0(kh), N(k.jh)s=#R(k,3,h). (3.10)
We observe that H2(5(k,h)) = (1 - %)2H2(A(k‘,h)) and hence

AR ) - HE ok, ) < 02T

N(k,j,h) < CE*H%(6(k, h)) < C(diam(T'))?k>.

(3.11)

15



Figure 2: A portion of ug, for a single j and in a two dimensional schematization.
The blue dots are the baricenter of the A(k,h)’s.

In order to concentrate the mass in the baricenter d(T, k, h) of each A(k,h)
we connect each point p € R(k,j,h) to d(T, k,h) using a small straight segment
[p,d(T,k,h)]. On each of these segments we then define the measure

1 .
w(kjihip) = 30 © tH' L [p,d(T, k1)), (3.12)

where t,, is the unit tangent vector in the direction (d(T, k, h) - p) sign({(t;, ns))
and ny, is the outward normal vector of (&, h).
We then define

4k
> 2wk hp). (3.13)

1 h=1peR(k,j,h)

2
Wk +

H'ME

J

Since |w(k, 7, h,p)|(T) < C diam(T) ||k~ from (3.11)) we infer
1 s
x| (R") < O (diam(T))" ) [¥]; (3.14)
J=1

and then
klim |wg || (R™) = 0. (3.15)
—+o00

See Figure [2| for a representation of a portion of Vi and w(k,j, h,p).

Step 3. Definition outside T .
We define the mass at the baricenter d(T', k, h) to be the following vector valued
quantity:

M , v
B(T,k,h) =Y N(k, j,h)sign((t/,ns))—. (3.16)

i K
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This definition makes sense: indeed we observe that supp(vy + wy) is given
by a finite family of piecewise straight lines connecting different baricenters,
hence using Remark [2.1| one can show that for every ¢ € [CH(R?)]V it holds

4k?

(Ve +wi, Vo) = Y (B(T, k, h), o(d(T, k, h))), (3.17)
h=1

which means precisely that the vector valued mass carried by v + wy at each
baricenter on 97 is given by B(T,k,h).
For every A(k,h) with 1 < h < 4k? we define the measures

pr(h) == (H*(A(k,h))Any, — B(T, k,h)) ® (k, h)H' L~v(k, h), (3.18)

where v(k, h) is an arbitrary half line with direction 7(k, k), not intersecting F
and having endpoint in d(7T,k, h) (see Remark [3.9| for the heuristics).
Again recalling Remark for every ¢ € [C°(R?)]V it holds

(pe(h), Vo) = (H*(A(k, b)) Anp, — B(T, k,h),o(d(T, k, h))). (3.19)
We then define the total average error as follows

4%
pr = ) pe(h). (3.20)
h=1

We now want to show that, for every compact set K, |px|(K) tends to zero.
With that aim in mind we first prove the following claim.
Claim: there exists a universal constant C' such that

1 M
|B(T, k,h) —H*(6(k,h))Any| < C'r5 diam(T) > [y (3.21)
J=1

From the definition of B(T, k, h) and from the fact that Anj, = Z%l bi(t;,nn)
it is clear that we only need to consider 1 < h < 4k? and 1 < j < M such that
(t,np) # 0. Let then j,h be as above and consider the elementary cell of the
lattice G}, ie., C =TI n {v] + 3v] + 0 < 51,50 < 1}. Let also X, be the

plane that contains §(k, h), then if we denote by P]f J the elementary cell of the
(planar) lattice ¥, T we have that

11
na)l - KA )|

(3.22)

20 phiy _ 942/

since Ci; is obtained by orthogonal projection of a translation of P,f 7 on I1;.
From the previous equality and the fact that A = 2%1 bj ® t; we obtain that

M /2 A -
H2(5(k, b)) An, = Zl % sign((t],nh))%. (3.23)
J= k

17



Therefore in order to show (3.21)), in view of the definition of B(T,k,h), it is
enough to show that

2
HOWR)  n (k1 j)| < € diam(T). (3.24)
H2 ( Pk ,J)
This inequality clearly holds true, since H2(5(k,h)) /HQ(P,? 7Y counts the num-
ber of points in R(k, h, j) up to an error due to those points of the lattice 3, ﬂf‘i
that are close to the contour of §(k,h). The number of such points can in turn
be estimated by C diam(T')k, which proves (3.24)).

Finally from (3.21), (3.11]) and (3.20) we obtain that for every compact set
K cR" we have

4k? M

[k (K) < 37 Ik (R) () < %diam(T)diam(K ) 2 163l (3.25)
h=1 J=1

which then tends to zero as k — +oo.

Step 4. Conclusions.
We now combine all these constructions and define py in the whole of R",
namely
HE =V + Wk + Pk (326)

We claim that py satisfies the thesis. Indeed |(i)| follows directly from the defi-
nition of v, in Step 1, while from the definition of wy and pg in Step 2 and

Step 3 respectively. Property follows from (3.14) and ({3.25)). As for|(iv)|it
is a consequence of (3.8)), and .
To see we simply write (ux, Vo) = (g + Wi, Vo) + (pr, V) and recall

and (3.19).
]

Remark 3.7. We observe that each of the approximating measures i con-
structed in the previous lemma are such that

1 1 M
|| (K) < C [£3(T) + - diam(T)diam (K) + E(diam(T))S] Zl bjl,  (3.27)

for every compact set K c R3.

Remark 3.8. Let A(z) = ¥ M, Aixri(x) be a piecewise constant function with
null divergence, where A; € RN*3 and the T'’s are tetrahedra. If T' and T’
share a face, then, by integrating over a small cube across the common face, it
1s easy to see that it must hold

Ail/ = Ajl/, (328)

where v is the unit normal vector of the common face.
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Remark 3.9. A few comments on the measures constructed in Lemma 5.0 are
in order. Recall the definition of I and 6(k,h) given in Lemma . With
a direct computation one can see that, on average, the number of lines in ng
intersecting 6(k,h) is N(k,j, h) == H2(6(k, h))k*(t7,np)|. Consequently, given
that A=7% ;b @1/, the averaged mass on each baricenter is

B(T,k,h) = ZN(k 7, h) sign((t’, nh>)b] = H2(5(k,h))Any,.
7=1

Furthermore, since holds, it is clear how the averaged mass is a more
convenient boundary datum than the exact mass B(T,k,h), as defined in .
Indeed, in Lemma the averaged mass will allow us to glue together the
local construction of Lemma [3.¢ performed in different tetrahedra preserving
the divergence free constraint.

In this sense, the pi’s in are to be considered just a small correction
necessary to pass from B to B.

We now glue together the local construction of Lemma [3.6] to obtain the
global approximating sequence.

Lemma 3.10. Let Q c R? be an open set, T = {T',---, TM} be an admissible
triangulaiton of Q and A = 2%1 Aixri be a divergence free piecewise constant
function, with respect to T, where A; € RV*3. Assume that A; = Zj\ﬁ bé- ® t;,
for some b;- € Q, té. € S%, then there exists a sequence of polyhedral measures
I € M}lf(Q; Q x S?) such that

(i) e~ ALLQ,

(ii) there exists a sequence of measures ny, € M*(€; QxS?) such that || (K) —
0, for every compact set K, and

1 M M?
:_422 Lo tiH! L (TP N T}) + g, (3.29)
i=1j=1

where T} cc T with dist‘(T,i,ﬁT") < diam(T%)/k?, and Fiz is a union of
straight lines parallel to ;. Furthermore H (supp(pp)nOT?) = 0 for every
1<i< M.

Proof. For every tetrahedron TZ € T we apply Lemma on A; to find four
sequences of measures ,uk,l/k,wk,pk € MIOC(R?’ x §?). Deﬁne i = NM 1/%
and 7 == ¥ M wh + ph. Set Q= int(UpierT").

We observe that from of Lemma , by taking an appropriate family of
plane F (containing all the boundaries 9T"), without loss of generality we can
assume that H!(supp ui nsupppul) = 0 for i # 1, and H*(supp(ux) N 9T?) = 0
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for every 1 <i < M. In particular py, € M'(Q; Q x S?) since each pt does and
they have disjoint support.

We first show that, with this definition, uy is divergence free in Q'. Indeed
from of Lemma [3.6| we get that for every ¢ € [C°(Q)]Y

k‘2

M M 4 A
(b, V) = D {1k Vo) = D S {HA(Ai (b, b)) Agmiy, o(d(T5, k, R))),
=1 =1 h=1

.
>

where nﬁl is the outer unit normal with respect to T;, and A;(k,h) is one of
the 4k? triangles that tile 9T} (as defined in ) Then using that for any
pair i,j € {1,...,M} and h,h" € {1,...,4k?} we have that either H2(A;(k,h) N
Aj(k,h")) =0 or Aj(k,h) = Aj(k,h") we denote the set

A = {4, b, b i< g, HE(Ai(k, h) n A (R, B')) > 03,
and we can rewrite

{1, Vip) = ;W(Ai(k, h)) (Al + Ajnd ), o(d(Ti,k,h))) =0, (3.30)

since n} = —n{l, and (i3.28) holds.
Furthermore, from of Lemma [3.6{ and the fact that limy, |p [ (int T°) =

limy, || [ (€2), we have that py — AL™ in Q.
Flnally property |(i1)|is a direct consequence of choice of F, the definition of

,uk and pj, and.of Lemma O

Proof of Theorem[3.8 Let p e [M(Q)]V*® be divergence free. From Theorem
we obtain a sequence T = {T,ﬁ}lzl M(k) of admissible triangulations of
Q and a sequence Ay : Q - RV*3 of piecewise constant functions relatively
to Tr, such that A,L3 L Q approximates strictly p. For each k, let A(Q) =
{A} }ic Mk, and write A} = Y(A})imer ® em. From Lemma applied to
each Ay we then get a sequence of measures /ﬂkl € ./\/ltlif(Q; Q xS?) approximating
ApL3LQ and such that, recalling (3:27), [u] () < O Ax| 11 < C|uf (), hence

we can find a diagonal sequence ,uZ(k) A Lb. O

4 The upper bound

The approximation results proved above provide a local construction which is
the crucial ingredient for the proof of the upper bound, which is stated and
proved below.

Proposition 4.1. Let ¢ : Z x S? — [0,+00) be H'-elliptic and obey L[b| <
(b, t) for all b e Z and t € S®.. Let Q c R be a bounded open set, simply
connected with Lipschitz boundary. Then for every p e [M(Q)]V? with null
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divergence there exists a sequence i, € ./\/lglf(Q; oZN xS?) converging weakly+ to
w such that
liminf E (115) < Eo(h)-
o—>

Proof. The strategy of the proof follows closely the one in [8]. It consists of a
first step in which, using the approximation results, one reduces to divergence
free measures concentrated on polyhedral curves whose limiting energy resolves
the convexification procedure in the definition of the I'-limit. With this we
reduce the analysis to the construction of a recovery sequence for the auxiliary
functional F., defined as follows:

fr oo (0,)dH"  if 1= 6@ tH LT e MY(w; Q x S2),
Nw
Foo(p,w) := 1 polyhedral; (4.1)

+00 otherwise,

where w is an open set, and Foo (1) := Foo (i, ).

Step 1: Reduction from Ey to F.

We now prove that Ej is the relaxation of F,, with respect to the weakx*
topology, i.e., Ey = Fu. Note that from the definition of Ey we have that Ey <
F.., and hence Ej < F.,, therefore we just have to prove the upper bound. From
Theorem and Reshetnyak Continuity Theorem we obtain that divergence
free piecewise constant measures are dense in energy for Ejy, i.e., for every
divergence free measure p € [M(Q)]V*3 there exists a sequence of divergence

free piecewise constant measures v such that v X w and
Jim Bo() = Bo(). (4.2)

Thus, since the weak+ convergence is metrizable on bounded set of M(Q),
without loss of generality we can now assume p to be a divergence free piecewise
constant measure of the form

M
m= EXTiAiﬁg, (4.3)
i=1

where T = {T*,---, TM} is an admissible triangulation of Q. We thus construct
the recovery sequence in the relaxation of Fy, for a measure y as in .
First recall that ¢ is the convex envelope of go,. Moreover we know (see
Lemma that ¢ is finite and that 1pe(b,t) = +o0 if and only if b € RV \ Q.
Therefore for any fixed € > 0 and for every matrix A;, with i€ {1,..., M}, we
find Mg < 3N +1 rank one matrices of the form b2' ® t2*, with b2" € Q, theS?,

and coefficients )\éz > (0 such that Zj\/fl )\gl =1, Zj\/ﬁ )\gll;f;z ® tg = A;, and

Mg oL M o
9(Ai) + &2 37 Moo (B, 127) = 3 thoo (AL'BL", 12Y), (4.4)
j=1 j=1
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Setting bl = )\gb;j € Q we then have

(9(A) + VLT D) 3 3 e (B, (T 1), (4.5)
j=1

We now apply Lemma [3.10[ to p = Zf\fl XxTidi, with A; = Z;\/ﬁ bél ® t‘éz
satisfying , to find a sequence of measures pj, € ./\/l}if(Q; Q x S?) converging
to u, and 77 vanishing as k — +oo.

On the other hand, from of Lemma and using that 1. (0,t) < C|6|
for all 6 € Q it is easy to see that Fuo(u,int(7*) NQ) < +c0 and

M?
: i 3 i iy L i i, i
P it (1)) € 35t (61, 12) F ! (T{ Q0D )l | (9. (46)
J=

Hence from ({3.6) of Lemma [3.6{ we get

M, o 4
limsup Foo (15, int(7%) N Q) < > Voo (W2, 1Y L3H(T N Q). (4.7)
k—+o0 7=1

Recalling (4.5) we then get

Eo(p) + €E3(Q) = AZ/[:(Q(AZ) + 6)E3(Ti nQ) > %limsup Fy (,ui,int(Ti) nQ)
i=1

i=1 k—oo

M .
>limsup Y Foo (pt, int(T") N Q) = limsup Foo (115, 2),

k—oo =1 k—o0

where in the last line we used the fact that H!(supp(uz) N 9T?) =0 for all 4.
Now of Proposition implies ¥ (b, t) > c|b| for b € Q, hence, from
estimate (4.4) we deduce the existence of a universal constant C' > 0 such that

Ne
> b3 < C (1A +e). (48)
j=1

In particular, given , we have that the family of measures pj, is uniformly
bounded. Therefore, since the weak* topology is metrizable on bounded set,
via a diagonal argument we infer that for every divergence free measure pu €
[M(Q)]V3 there exists a sequence ji;, weakly* converging to j, such that

limsup Feo (fin,) < Eo(p). (4.9)

h—+o00

In particular this sequence satisfies Foo (fip,) < +00.

Step 2: Recovery sequence for Fo.
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We now prove that for a given ji= 0 @tH LT ¢ Milf(Q;RN x §%), with T
polyhedral we can construct a sequence fi, € ./\/lcllf(Q; oZN x S?) converging to

i+ and such that
lim S(I)lp Ea(laa) = Fe (/1) (4'10)
o—

Without loss of generality we can assume Fu(fi) < +00. First we observe that,
since I' is composed by a finite number of straight segments and f is divergence
free, & must be constant on each segment. In particular € Q attains a finite
number of values. Therefore we can apply Theorem 2.5 of [6] to u, deducing
that there exists a finite number of polyhedral closed loops I'; with constant
Burgers vector 6; such that

fi=Y0;®t;H' LT,

Here the 6; do not necessary belong to 0Z. Therefore we define the following
approximation of fi with measures
[l = za[%Jmman e My (Q;0Z" x %), (4.11)
(2

where we denote [gJ = ([%J, e leNJ) These measures have the same support
of p, and satisfy F,(ji,) < +00. We observe that i, is a finite sum of closed
loops with constant multiplicity, therefore, again by Theorem 2.5 in [6], it is
divergence free.

Since o [%J converges to 0;, we have that [, s f. Let now consider an
arbitrary sequence o; converging to 0, then

Eay (i) = [ o0z, )", (4.12)
where z;(z) = Y; [%JXFZ(@ e ZV. Since, clearly, for H' LT a.e. z it holds
that lim; e |2;| = +00 and lim;_, ;o 2j/|2;| = 6/|6], thanks to of Lemma [2.3]
we deduce

U (2j,t) Yoo (6,1)

lim =
I 7] 10|

On the other hand clearly it holds that lim;_, .. 0j|2;| = |0, hence by rewriting

7/) (Z'at)
O‘jQ,ZJ (Zj’t)=0j|2j||z—q’ (4.13)
J
we deduce that
lim o;9(2,t) = Yoo (0,t), H'-a.e. zel. (4.14)

j—+oo
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Finally, since |o;1(2;,t;)| < clojzj| < C(|0] + 1), we conclude via dominated
convergence theorem and get

. N _ 1 _ ~
oim_ By, (o)) = [ ee(0,)aH" = Fuo (). (4.15)

Step 3: Conclusion
We conclude the proof by combining Step 1 and Step 2. Without loss of
generality we can assume that the sequence fi, constructed in Step 1 satisfies

limsup Feo (f11,) = hl_i>r+noo Foo(fin) < Ep(p) < +00. (4.16)

h—+o0

Then for every h we obtain via Step 2 a sequence /1@} weakly* converging to fip
such that

lim Fo (fig) = Foo (fin). (4.17)
A further diagonal argument provides the wanted recovery sequence and con-
cludes the proof. O
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