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Abstract

We prove mean value formulas for classical solutions to second order linear differential
equations in the form

m
815’LL = Z Xi(ainju) + Xo’U, —+ f,
4,j=1

where A = (a;;);i j=1,..m is a bounded, symmetric and uniformly positive matrix with C!

m
coefficients under the assumption that the operator E:XJ2 + Xo — 0¢ is hypoelliptic and

j=1
the vector fields Xy, ..., X,, and X,,,4+1 := X¢ — 0; are invariant with respect to a suitable
homogeneous Lie group. Our results apply e.g. to degenerate Kolmogorov operators and

m

parabolic equations on Carnot groups dyu = Z Xi(ai; Xu) + f.

ij=1

MSC: 35K10, 35H20, 42A80

1 Introduction

The aim of this paper is to prove mean value formulas for degenerate second order partial
differential equations in the form

m m
Lu = Z Xi (ainju)—{—Xou—l—ijXju+cu—6tu: fs (1.1)
ij=1 j=1
in some open set @ € RN+, In the following, z = (z,t) = (x1,...,2y,t) denotes the point in

RN*T11 <m < N and the X;’s in (1.1) are smooth vector fields on RY, i.e.,

N
Xj(x) = ¢l ()0,  §=0,...,m, (1.2)
k=1
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gof; being C*° functions. Starting from the vector fields X, the operator .2 in (1.1) is written
through the m x m symmetric matrix A(z) = (ai;(2)); j—; _,,> Which has continuous entries and
satisfies the usual ellipticity condition: there exists a constant A > 1 such that

ATHE? <) ai(2)6ig; < AlEP (1.3)

,j=1

for every z € RVN*1 and ¢ € R™. To simplify the notation in the sequel, we still denote by A
the (m + 1) x (m + 1) matrix with entries a;; for 4,5 = 1,...,m and a(p41); = @jm+1) = 0,
for j =1,...,m+1. We assume that the coefficients of the vector b(z) = (b1(z),...,bn(z)) and
the functions ¢ and f are bounded and continuous. As we are dealing with classical solutions,
we also assume that Xja;; and X;b; are bounded continuous functions for i,j € {1,...,m}.
The reason why we write the operator .Z in its divergence form is that we need to consider the
fundamental solution I'* to the adjoint equation .Z*v = 0. In the sequel we denote

X=(X1,....Xm),  Xms1=Xo— 0. (1.4)

and we let

g = Lie(X1,..., Xm, Xim+1) (1.5)
be the Lie algebra generated by X1, ..., X;, X;nt1. The main assumptions on the operator .2
are listed below.

[H.1] The vector fields X1, ..., X,,+1 satisfy the Hérmander rank condition

rankg(z) = N + 1 for every z € RVTL, (1.6)

[H.2] there exists a homogeneous Lie group G = (}RN tlo.§ ,\) such that

i) X1,...,Xm, Xint1 are left-translation invariant on G;

it) X1,..., Xm, Xm+1 are dy-homogeneous of degree one;

[H.3] There exists a fundamental solution I'* for the adjoint operator Z*:

Lry = i X; (ainju) — Xou — i ijju + (C — inbj)u + O, (17)

ij=1 j=1 j=1
as stated in Definition 2.1, having the properties (2.15) and (2.16).

Let us briefly comment on our hypotheses. We first recall that the Hérmander condition
[H.1] implies that the operator

m
L = ZX% + Xm+1 (18)
k=1

is hypoelliptic. This means that every distributional solutiont u to Zpu = f in some open set
Q c RV belongs to C*°(Q) and is a classical solution to Zyu = f whenever f is C*(12). Note
that % is an operator of the form (1.1) if we choose A to be the m x m identity matrix, and



b =0,c=0. From this point of view, in the setting of the degenerate operators, %, plays the
role of the heat operator in the family of the uniformly parabolic operators.

In Section 2 we recall the notation of homogeneous Lie groups G = (]RN +1o, 5,\) and we
give necessary and sufficient conditions on the vector fields X7,..., X, Xjn41 for the validity
of condition [H.2]. In Section 2 we also declare the properties of the fundamental solution we
need in this note, so that the meaning of condition [H.3] will be clarified.

Mean value formulas are a very classical tool for the treatment of harmonic functions. The
first extenstions to the heat operator are due to Pini [38] and to Watson [43]. Mean value formulas
for uniformly parabolic operators with C*° smooth coefficients have been proved by Fabes and
Garofalo [20], and by Garofalo and Lanconelli [26]. More recently, mean value formulas have
ben proved in large generality by Cupini and Lanconelli in [18], who still consider operators
with smooth coefficients. In the recent articles [35] on uniformly parabolic equations and [37],
on degenerate elliptic equations, Malagoli and the authors consider differential operators whose
coefficients belong to a suitable space of functions C'+* and C(l;ra, respectively. This reduction
of regularity, from C* to C'*®, reflects in weaker regularity of the fundamental solution. As a
consequence, the integration by parts on its level sets, which is a crucial point in the proof and
for C*° coefficients relies on Sard’s theorem, becomes a delicate issue. In the case of uniformly
parabolic operators with C! coefficients, and then C! fundamental solution, in [35] it is shown
that this difficulty can be overcome in two ways, either by using a divergence theorem valid
for almost C'-regular boundaries, or using De Giorgi’s theory of perimeters. In [37] and in the
present case of degenerate operators with C([l} coefficients the almost C'-regularity of the level
sets of the fundamental solution is not guaranteed: indeed, it is not C' in the Euclidean sense.
So, we are led to rely on the theory of functions with bounded variation and sets with finite
perimeter in stratified groups, see Section 3, which provides us with the relevant formulation of
the divergence theorem. In Section 4 we prove our main results, i.e., the mean value formulas
and, as an important consequence, the strong maximum principle. Finally, in Section 5 we show
that our assumptions are verified in several important cases, such as degenerate Kolmogorov
operators and parabolic operators on Carnot groups.

We conclude this introduction with a remark on the the homogeneity property [H.2] 7). The
layers in the Lie algebra g have different degrees of homogeneity and these are at some extent
arbitrary. Assuming for simplicity Xy = 0, the commonest choice when dealing with regularity
theory is the parabolic scaling 6y : (x,0) = (Az,0) for = in the first layer, and 8y : (0,t) — (0, \%t)
on the time variable. But, as already done in [35] for uniformly parabolic operators in RN+L
the condition [H.2] i) requires that 0y (z,t) = (Az, At) and we do the same here, with z in the
first layer. Indeed, the very important property of I'* encoded in the equality

ue.r) = [T p)ds

cannot be used in connection with the divergence formula when the boundary integral is computed
with respect to the Hausdorff measure, if this last is defined through the distance generated by
the parabolic scaling. In fact, the surfaces {¢ = constant} would have codimension 2 and
therefore they would be negligible.
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2 Preliminaries and the Main Results

In this section we describe the group structure related to our differential operators and the
properties that we require to the fundamental solutions. After that, we collect our hypotheses
and state our main results. Further preliminaries concerning BV functions and sets with finite
perimeter are presented in Section 3.

Let us specify the meaning of classical solution to the equation .Zu = f in some open set
Q c RY*1 With this aim, we first recall the notion of Lie derivative. For any zy € € and
j=1,...,m+ 1 we consider a path v defined in a neighborhood I of the origin, such that

V(s) = X;(v(s),  7(0) = 2.
Then the Lie derivative X u(zp) of u at 2o is

d

Xju(z0) = 7-u(1(5)) o (2.1)

We say that u is a classical solution to .Zu = f in some open set  C RN+ if the Lie derivatives
XiXju,i,7 = 1,...,m and X,,;1u are defined as continuous functions and the differential
equation is satisfied at every point of 2. The meaning of the equation .£*u = g is analogous.

Next subsections contain some facts about the notions of Lie group and fundamental solution,
that are likely known to the expert readers. We first recall some notation and results, then we
state the main goal of this paper.

2.1 Homogeneous Lie groups

A Lie group G = (RV*! o) is said homogeneous if a family of dilations (5)),-, exists on G and
it is an automorphism of the group:

Ox(z0C) = (6x2) 0 (6x¢), forall z,¢ € R¥* L and X > 0.
The assumptions [H.1] and [H.2] induce a direct sum decomposition of g
g=W1&--- e W, (2.2)

where

Wh :Span{Xl, .. Xm,XmH},
Wy :span{[Xi,Xj] |Xi€W1,XjEWk_1}, k=2,...,pu.

Moreover [X;, X;] = 0 whenever X; € W, and X; € Wj. In the sequel we denote by m; the
dimension of Wj, for j = 1,...,u. If we represent the dilation ) on RN+ by the following
matrix

6y = diag( ALy, , ALy, - - ., AW, ), (2.3)



we call homogeneous dimension of G the integer Q = mq + 2ug + --- + pum,, and we have
det dy = A<, (2.4)

We endow each fiber of the first layer W with an inner product (-,-). (and the associated norm
| - |») that makes X1(2),..., Xm+1(2) an orthonormal frame, see [24].

We next give some general comments about the differential operators on homegeneous Lie
groups considered in this note. An important consequence of the homogeneity of the Lie group
is the pyramid-shaped structure of the coefficients of the vector fields X;’s. In the following
we write 2 = (1) +2®) 4+ ... 4+ 20 with 20) € W;, and we use the notation in (1.2). As
a consequence of the homogeneity of the differential operators X, ..., X;, 11 we have that the
coefficients 7, ..., ¢, are constant and the coefficients ¢7, IR o +m, are linear functions

of the variable 2(1). In general, if k is such that z; € W;, then the coefficient @i is a polynomial
function of the variable (1), ..., (=Y This fact plainly implies that

Xr=-X

’ o d=1,...,m+1 (2.5)

In particular, the adjoint operator -Z* acts on sufficiently smooth functions as follows

m m m
Lroi= 3 XilayX;e) - Xov = 3 biXu+ (e= 30 Xjb; o+ oo (2.6)
ij=1 j=1 j=1
For the same reason, X1, ..., X,,1 are complete vector fields, that is the integral curve of X; is

defined on the whole of R for j =1,...,m+ 1.

We next discuss the problem of the existence of a Lie group G as required in condition [H.2].
In the Examples 5.1 and 5.6 both the Lie group and the differential operators are given. In
general, when a stratified Lie group is given, a standard procedure provides us with a family of
left-invariant vector fields satisfying the Hérmander condition [H.1].

Vice versa, suppose that a collection of vector fields X1, ..., X,,+1 satisfying the Hérmander
condition [H.1] is given. Then, under some furhter assumptions, it is possible to build a stratified
Lie group such that the condition [H.2] is satisfied. Specifically the following result holds true.
Suppose that Lie(Xy,..., X, Xint+1) has dimension N + 1 and that every vector field X €
Lie(X1, ..., Xm, Xim+1) is complete. Then there exists a Lie group G (RN“, o) such that the
Lie algebra of G agrees with Lie(X1, ..., X, Xim+1). The abstract version of this result is known
as Third Fundamental Theorem of Lie, see [41, Theorem 3.15.1]. We refer to Theorem 1.1 in the
article [8] by Bonfiglioli and Lanconelli for the explicit construction of this Lie group on RV*1
in the case of vector fields with analytical coefficiens, while C*° vector fields are considered by
Biagi and Bonfiglioli in the more recent articles [6] and [7].

We next introduce the distance we use to define the Hausdorff measure related to the notion
of perimeter on which the divergence formula we need is based. From [25, Theorem 5.1] we
know that there are constants €; €]0,1], j =1,...,u, with e; = 1, such that the function

2 |2l = max {gjz]"7}, (2.7)
.]:17"'uu
where |z;| denotes the Euclidean norm of the vector z; € W, defines a norm and as a consequence

the distance
doo(2z,w) = Hwil 0 2| 00- (2.8)



We notice that d is equivalent to the Carnot-Carathéodory distance (see (5.18) below) and
that for every compact set K C RVT! there exist two positive constants ¢y and c%, such that

clz —w| < doo(z,w) §c}]2—wli, for all z,w € K. (2.9)
The invariance properties
doo(Coz,(ow) =do(2z,w), doo(drz,orw) = Ndoo(2,w), (2.10)

hold for every z,w, ¢ in RV*! and for every positive ), see again [25]. We next recall the notion
of Hélder continuous functions on Lie groups. For a €]0, 1], we say that a function u defined on
Q) is a-Holder continuous, and we write u € CZ(€2), if there exists a positive constant M such
that

lu(z) — u(w)| < Mdoo(z,w)”, for every z,w € Q. (2.11)

Let us come to some geometric measure theoretical issues. For every v € W, denote by v+ the
codimension 1 subspace of W, orthogonal to v and introduce the hyperplane N' = vt @ Wy @
-+ @® W, in RN*1 and the constant

0 = {N(B(0,1)NN)} (2.12)

where B(0,1) = {z € RV*| ||z||o < 1} and 2% is the N-dimensional euclidean Hausdorff
measure, see e.g. [3, Section 2.8]. The constant # is introduced in [34], is called spherical factor
and is denoted wg g—1 there. Moreover, it is independent of v because d is vertically symmetric
according to Definition 6.1 in [33], see Remark 6.2, Theorem 6.3 and Theorem 5.2 in [33]. We
then recall the definition of the spherical (Q — 1)-dimensional Hausdorff measure S(g_l of a
Borel set E:

© g 00
Sg_l(E) = lgﬁ)llnf {Z W(diamG(Bi))Qfl : B; balls, £ C U B;, diamg (Bz) < T‘} R
=0 1=0

where 6 is the constant in (2.12) and diamg(B) := sup, ccpdoo(2,¢). Notice that we have
normalized the measure S§* so that S§~'(B(0,1) NN) = 6.
2.2 The fundamental solution

In this subsection we give a precise definition of fundamental solution T'* for the operator Z*
in (1.7), we fix the notation for its superlevel sets and we list some further assumptions on I'*.

Definition 2.1 We say that a function T = I'*((; z) defined for every ((;z) = (&, 1;x,t) €
RNHL 5 RN*L with t > 7 is a fundamental solution to L*v = 0 if it satisfies the following
conditions for every z = (x,t) € RNV+L,

1. The function T*(-; 2) is a classical solution to the equation £L*T*(-;z) = 0 in RN x]—o0, t[;

2. the function T*(-; 2) belongs to L*(K) for every bounded measurable set K C RN x]—o0, t].
Moreover, for every (€,7) € RN x] — 0o, t[ and ¢ € C.(RY), the function

(e, ) = /RN (6,71 2, £) () dac

6



is well defined and satisfies

lim  u(,7)=@(x) for every zeRY.
(&)= (1)

We introduce some further notation in order to state our last assumption on I'*. Recall that Q
denotes the homogeneus dimension of the Lie group G. For every zy = (zg, tg) € RN*1 and for
every r > 0, we set

Pr(20) = {z € RN x] — 00, 1| F*(z;zo) — 1

Qr(20) :={z € RY x] — 00, to| T*(z; > 1y, (2.13)

and we call ¥,(29) and €,(zo) respectively the sphere and the ball with radius r and center zp.
As in the uniformly parabolic setting, here zy belongs to the topological boundary of €, (zp).
We finally set

Ire(20) = {z € RN | T*(z,t0 — 3 20) > 1}. (2.14)

Note that Z,.(z9) # 0 only for sufficiently small positive e. We also rely on the following
properties of the fundamental solution

e For every zg € RVT! there exists rg > 0 such that the set

Q,(zp) is bounded for every r < r¢; (2.15)

e it holds

lim N (T,.(20)) =0,  lim T*(x,to — €; 20)dx = 0. (2.16)
e—0 RN\Ir,a(Zo)

Note that this assumptions is analogous to the pointwise vanishing integral condition stated in
[18] as Property (H (2o, 0)).

2.3 Statement of the main results

We define the gradient Vg and the divergence divg as follows. We agree to identify a section
F = Emﬂ F;X; with its canonical coodinates F' = (Fi, ..., Fp, Fipy1). With this agreement,

we denote the gradient of f € C§(R™) and the divergence of F € CL(R", R™T!) by

m+1 m+1 m—+1
Vof =Y (X;/)X; and divgF:=-> X;Fj=>» X;Fj (2.17)
Jj=1 j=1 j=1
Moreover .
(A(2)Vef(2), Ve rf(2))z = Y aj(2)X;f(2)Xnf(2), (2.18)
7,k=1



for any f € Cé(]R”). In the following, zo € RNV*! is fixed and VI'*(2; 29) denotes the gradient
with respect to the variable z. With this notation, we set

(A(z)Vel™(z;20), Vel™ (2; 20))-
VeI (20; 2)]- ’
(A(z)Vel™(z;20), Vel™ (2; 20))-
(23 20)? '

Note that, according to (2.17) and the definition of the matrix A, VgI'*(2;20) € R™"!, while

only its first m components appear in (2.18). Moreover, we agree to set K (zp;z) = 0 whenever
VeI™(z;20) = 0. The first achievements of this note are the following mean value formulas.

Kg(z0;2) :=
(2.19)

Mg (z0;2) =

Theorem 2.2 Let £ be a differential operator in the form (1.1), satisfying the ellipticity
condition (1.3) and a;; = aj; fori,j = 1,...,m, as well as hypotheses [H.1], [H.2] and [H.3].
Suppose that the coefficients a;j,b;, ¢, X;a;5, X;b; are continuous, and that (2.15) and (2.16)
hold.

Let Q be an open subset of RNTY f € C(Q) and let u be a classical solution to Lu = f in
Q. Then, for every zy € Q and for almost every r €]0,rg] such that ,(zp) C Q we have

U\ 2 = 202 )uU\z2 QilZ z l* *Z'Z yA
(=0) /WO)KG(o,)()dSG (”/m £(2) (2= T*(2:20)) d

20)
+ i/r(zo) (diva(z) — c(z))u(z) dz,
utzo) = | o Moy 2Ju(z) =+ (L IO =T ) i) do

7y o 5 =1 5) e

The second statement holds for every r €]0,7¢] such that Q,(zp) C .

Remark 2.3 An inspection of the proof of the second assertion in Theorem 2.2 shows that we
can modify the kernel Mg by raising I'* to any exponent o > 1. Indeed, setting

(A(2)VeI™(2; 20), VeI™ (25 20)) -

Mg,a(20: 2) = T*(z; 29)*

a—1

— . a—1 " a—2 1 /.
) =T [ MoaGo2ue e+ S [0 [ S TG 0)iz) de

a—1

+ /0"“ (Qa_:a /QQ(ZO) (divgb(z) — c(2))u(z) dz) do.

In the statement of Theorem 2.2 we took the exponent o = 2 because it is the usual one in
the classical uniformly parabolic case. We recall that in Theorem 1.1 of [18] other forms for the
kernel Mg have been provided.



The mean value formulas in Theorem 2.2 provide us with a simple proof of strong maximum
and minimum principles for the operator .Z when ¢ < 0. We recall that an analogous result was
obtained by using a barrier argument by Bony in [11] for Hérmander’s operators in the form
(1.8), then by Amano in [1] for subelliptic operators with C! coefficients. In order to state the
strong maximum and minimum principles, we introduce the notion of attainable set. We say
that a curve 7 : [0, T] — RN+ is Z-admissible if it is absolutely continuous and

(s) =D wi(8)X;(3(5)) + X1 (3(s))
j=1

for almost every s € [0, 7], with wy,...,w, € L*([0,T)).

Definition 2.4 Let Q be any open subset of RNTL, and let zy € Q. The attainable set is

A, (Q) = { such that v(0) = zp and y(T') = =

z € Q| there exists an .Z-admissible curve v : [0,7] — Q }

We denote <., = o.,(2) whenever there is no ambiguity on the choice of the set ).
We finally state a condition which relates the mean value formula to -Z-admissible curves.

[H.4] For every z € RN*! and r > 0, and for every .#-admissible curve  such that v(0) = z,
there exists sg > 0 such that y(s) € Q,(2) for every s €]0, so|.

Theorem 2.5 Let £ be a differential operator satisfying all the hypotheses of Theorem 2.2 and
let u be a classical solution to Lu = f in an open subset Q@ C RN*L. Assume in addition that
¢ <0,c—divgb < 0 and that [H.4] holds. Let zy = (zo,t0) € Q be such that u(zp) = maxqu > 0
and f >0 in Q) then

u(z) =u(zg) and f(z)=u(zo)c(2) for every z € o7, (Q).

The analogous result holds true if u(zp) = mingu < 0 and f < 0 in Q. Moreover, we can drop
the assumption on the sign of u(zo) if ¢ = 0.

Note that the condition [H.4] is satisfied by the examples considered in Section 5, where
an application of Theorem 2.5 is given as well. The assumption ¢ — divgb < 0 seems to be
unnecessary for the validity of maximum and minimum principles. Indeed, in the article [35],
where a proof of the maximum principle for uniformly parabolic operators is based on the mean
value formulas, this condition was removed by a suitable change of function. However we didn’t
succed to apply the same argument in the present setting as the structure of the operator % is
very sensitive to analogous change of function.

3 Functions of bounded variation

In this section we introduce some notation and the basic results on functions of bounded variation
and sets with finite perimeter that we need to prove our mean value formulas. To simplify the



notation, we put n = N + 1 and denote by A, the Lebesgue measure in R". We also keep
the notation z = (z,t) for points in RV*! and recall that the homogeneous dimension of G is
denoted by Q, see (2.3), (2.4). If u is a Borel measure and E' is a Borel set, we use the notation
uwlL E(B) = u(ENB).

For an open set 2 C R™ we define the space BV (f2) of functions of bounded variation in
G following [14]. We refer to [3] and to [25] for more information on the Euclidean and the
subriemannian case, respectively.

Definition 3.1 Let Q be an open subset of R™. For u € L*(Q) we define

IVgull (2) = sup {/ u(z) divgg(z)dz : g € Cr (LR™1) gl < 1} . (3.1)
We say that u € BVg () if || Veu| () is finite.

Remark 3.2 We point out (see [25, Remarks 2.10, 2.19]) that the (usual) notation ||Vgu|| (£2)
is somehow misleading, as the total variation depends upon the fixed vector fields X7, ..., X411,
whereas the functional class BV (€2) only depends on G and €.

With the same proof contained e.g. in [3, Prop. 3.6], it is possible to show that if u belongs
to BV () then its total variation ||Vgul| is a finite positive Radon measure and there is a
| Vgu|-measurable function o, : 2 — R™T! such that |o,(2)|, = 1 for |[Vgu|-a.e. z € Q and

/u(z)ding(z)dz—/<g,au>deVGuH (3.2)
Q Q

for all g € CL .(2,R™"1). We denote by Vgu the vector measure —a, ||Vgul|, so that X;u is
the measure (—oy); || Vgu|| and the following integration by parts formula holds true

/ u(2) Xj9(=)dz = - / 9(2)d(X;u) () (3.3)
Q Q

for all g € C’é}c(Q).

Definition 3.3 (Sets of finite G-perimeter) Let xg be the characteristic function of the
measurable set E C R™; we say that E is a set of finite G-perimeter in Q if |Vexe| () s
finite, and we call (generalized inward) G-normal the (m + 1)-vector

vE(2) = =0y (2),
which is defined |Vexgl-a.e.

As customary, we write Pg(E, B) instead of | Vgxg|| (B) for any Borel set B. Also, notice that
if A is open, then
PG(EmAvA) :PG(EvA)v (34)

see (2.25) in [25], and recall that |vg(z)|, = 1 for Pg(E)-a.e. z € R™. With this notation, (3.2)
takes the form

/diVGg(z)dz: —/(g,I/E>ZdP¢;,(E), (3.5)
E Q

for all g € CL (Q,R™H1).
We refer to [23, Theorem 2.3.5] for a proof of the following statement that connects the total
variation of a BV function with the perimeter of its level sets.

10



Proposition 3.4 (Coarea formula) If u € BVi(Q2) for some open set Q C R™ then for a.e.
7 € R the set E; = {x € Q: u(z) > 7} has finite G-perimeter in  and

“+o0o
IVeul () = / Pe(E;, Q)dr. (3.6)
Conversely, if u € LY(Q) and fj;o P (E-,Q)dr < oo, then u € BVg(Q) and equality (3.6)
holds. Moreover, if g : @ — R is a Borel function, then

+o00o
/Q 9(2)d||Vul| (=) = / ) /Q 9(2)dPg(E,)(2)dr. (3.7)

Let us come to some finer properties of BV functions and perimeters. In order to put formula
(3.5) in a form closer to the classical one we define the measuretheoretic or essential boundary.

Definition 3.5 (Essential boundary) Let E C R" be a measurable set. We say that z € O E
if
M(Br(z)NE An (B E
lim sup n(B:(2) ) > 0, limsupw >0

r—0 W r—0 )\n(BT(Z))

and we call O F the measuretheoretic or essential boundary of E.

It is immediately checked that O5E C OE. Observe that two different but equivalent
distances on G give the same essential boundary.

Let us see that the divergence theorem (3.5) can be rewritten in a form much closer to
the classical formula, see [2, Theorems 5.3, 5.4], where the problem is settled in general metric
measure spaces, and [4, Theorem 4.16].

Theorem 3.6 Given a set of finite G-perimeter E C R", for Pg(E,-)-a.e. z € R" there is
7(z) > 0 such that
lgret < Pg(E,B(z,1)) < Lgro™!

for every r < 7(z), where 0 < {g < Lg < oo are two constants depending only on the group. As
a consequence, Pg(E,-) is concentrated on O E, i.e., Pg(E,G\ 0tE) = 0, and there is a Borel
function Bg : R™ — [{g, Lg| such that

P(;,(E,B):/ BE(z)dS(g*l(z), VB Borel set. (3.8)
BNOLE

The above theorem allows us to rewrite formula (3.5) as an integral on the essential boundary
with respect to the (Q — 1)-dimensional spherical Hausdorff measure as follows:

/ diveg()dz = — / (9, vE), Bp(z) dSS. (3.9)
E OLE

In the following remarks we collect some useful results proved by Franchi, Serapioni and Serra
Cassano [23, Theorem 2.3.5] and V. Magnani [33] on functions belonging to C(€2), for which
much more information is available.
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Remark 3.7 If Q) is bounded, a function u in C’é(ﬂ) also belongs to BV 10c(€2) and by (3.3)
the equalities

/ Xig(2)u(z)dz = / 9(2) Xju(z)dz, j=1....,m+1,
Q Q

hold for every g € C(Q). Recalling (2.5), we find that the measure derivative of u is Vgu \,.
Moreover, we say that S C Q is a G-regular surface if for any p € S there are an open
neighborhood U of p and f € CL(U) such that

SNU={z€U: f(z)=0and Vgf(z) # 0}.

Let 2 be an open subset of R™, f € CL(Q), E = {f <0}, S = {f = 0}, and let p € Q be such
that f(p) = 0 and Vg f(p) # 0. Then, as proved in [24, Theorem 2.1], there is a neighborhood
U of p such that SN U has finite perimeter and

_ Vgf(2)
Ve f(2)l:
In such a situation the equality 05 (ENU) = 0(ENU) holds, see [24, Theorem 3.3]. Notice also

that the topological dimension of a Cé—regular surface is n— 1, see [24, Proposition 3.1}, whereas
its Hausdorff dimension with respect to the distance do is @ — 1, see [24, Corollary 3.7].

vp(z) = zeSnNU. (3.10)

Remark 3.8 If I is a finite perimeter set and 03 F is G-regular, then formulas (3.8) and (3.9)
become simpler. Indeed, in this case the normal unit vector v(z) is defined for every z € OfE
and the function Sg is constant, Sg(z) = 1 for every z € 0*E, by Theorem 4.1 in [33] and
the definition of the constant 6 in (2.12). This is the reason why we have chosen the distance
doo and we have normalized the Hausdorff measure. These considerations are important in our
proof of Theorem 2.2, where (3.9) is applied to sets with finite perimeter such that a part of
the essential boundary is G-regular. Indeed, Theorem 4.1 in [33] is local, hence if F' C OLE is
G-regular and relatively open, then g =1 in F.

We end this section with a variant of the localization lemma, see [3, Proposition 3.56] for the
Euclidean case and [25, Lemma 2.21] for the case of groups, where balls instead of hyperplanes
are considered.

Lemma 3.9 Let E C R™ be a set of finite G-perimeter. Then, for Ai-a.e. T € R the set
En{t <1} has finite G-perimeter and for every Borel set B we have

VeXEenfi<r)(B) = Vexe(BN{t <7}) = An(BN{t = 7})en+1.

PROOF. Setting us(z,t) = {[(T —t)/s) V0] A 1}xg(z,t), we have us — Xpnji<ry in L' (R") as
s J 0, whence by the semicontinuity of the total variation,

Pe(En{t<7t}) < limi%nf IVgus|[(R™).
Now we compute
1
Veus ={[(t—=1t)/s) VO]A1}VexeL{t <7 — s} — g/\nl_(Eﬂ {r—s<t<7}ent
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hence, setting m(7) = A, (E N {t < 7}), we have
11H;¢S()up IVeusl|(R™) < [[Vexell({t < 7}) +m/(7),
where m’ denotes the right derivative of m, which is finite for A\j-a.e. 7 € R. This proves that
E N {t < 7} has finite G-perimeter for A\j-a.e. 7 € R. Therefore, since by (3.4)
Po(En{t<t}{t<7}) =Pz(E,{t<T}),
and SEHOLE N {t =7}) =0 for a.e. T, we have
Vexenii<r}(B) = Vexe(BN{t <7}) + Vexe(BN {t =1})

for any Borel set B and A\j-a.e. 7. But, Vgxg(z) = —€N+1S§_1 = —eyp LN forz € EN{t =71}
and the thesis follows. O

4 Proof of the mean value formula

In this section we give the proof of the mean value formulas and of the strong maximun principle.
In what follows, © is an open subset of RVN*1 2y = (zg,t9) € Q, I'*(2; 29) is the fundamental
solution of .£*, and 79 > 0 is such that Q,,(z0) is a bounded subset of 2.

First, we state the following consequence of Lemma 3.9. It applies to the set Q,.(zg, tg) N {t <
to — 5}, see Fig. 1 below.

(20 t0)

t:to—é‘

Q. (o, to)

F1G.1 - The set Q,.(x,t9) N {t <tg— 5}.

Proposition 4.1 With the notation above, for a.e. € > 0 and r €]0,ry] we have

/ divg @ dz = / (D, V0, (20))2Ba (20)4SE ™
Qr(z0)N{t<to—e} 05 (20){t<to—e}

+ / (P, ent1)-dAN
Qr(zo)ﬂ{t:to—&‘}

for every ® € CL().
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PROOF. As I'™*(-; 20) € BV 10c(£2), see Remark 3.7, by the coarea formula (3.6) for a.e. 7 €]0, ro]
the set Q,(zp) has finite G-perimeter. We then apply Lemma 3.9 with £ = Q,(z) and 7 = tg—¢
to have that Q,.(z0) N {t < to — e} has finite perimeter. The conclusion follows from (3.9). O

PROOF.OF THEOREM 2.2. Let u be a classical solution to Zu = f in Q and let ,(zp) be such
that Q,(20) is a compact subset of 2. We assume, as it is not restrictive, that « vanishes out
of a compact subset of Q so that u can be smoothly extended by setting u(z) = 0 for every
z ¢ Q. We prove our claim by applying Proposition 4.1 with r €]0, 7] and t = tg — &g, for some
monotone sequence (e )gen such that e — 0 as k — oo. Of course, we choose r and ¢ such
that the statement of Proposition 4.1 holds true.

For this choice of r, we set v(z) := I'*(2;20) — £, and we note that

m

u(z2)ZL*v(z) —v(z)Lu(z) = Z X (u(2)aij(z) Xv(2) — v(z)aiy(2) Xiu(z))
ne (4.1)
= > Xj(u(2)v(2)bj(2) = Xt (ul(z)v(2))
j=1

for every z € Q\{z0}. We then recall that .Z*v = % (divg b —¢) and Lu = f in Q\{z0}. Then
(4.1) can be written as follows

1
. (divgb — ¢)u — vf = divg P, ® .= (uUAVgv — vAVgu — uvb, —uv).
We then apply Proposition 4.1 and we find

/Qr(zo)ﬂ{t<to—ak} (%(diVGMz) — c(2))u(z) — U(Z)f(z))dz

= _/ <‘I)7 VQT(ZO)>ZBQT(z0)d8(g_1 =+ / <‘I), €N+1>zd)\N-
8&Qr(zo) Q- (20)

N{t<to—er} N{t=to—ex}

(4.2)

We next let & — oo in the above identity. As v € L'(Q.(20)), and the remaining functions
appearing in the left hand side of (4.2) are bounded and continuous on 2,(zp), we plainly have

lim (L (diveb(z) — c(2)) u(z) — v(2)f(2)) dz =

k=00 )0, (20)N{t<to—er}

/ (L (divgb(z) — c(2)) u(z) — v(2) f(2)) d=.
Qr(20)

We next prove that

lim (P, ent1)2dAN = u(z0). (4.4)
k=400 JQ, (20)n{t=to—e}

We have (@, ent1).(2) = u(z)v(z), then

1
/ <(I), 6N+1>zd)\N = /~u(:z:,t0 — Ek) (F*({L‘, to — €k;l'0,t0) — 7“) dl’, (4.5)
Q

r(z0)N{t=to—er } Ty
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where we have denoted

T = {xeRN | (z,to — €k) EM}.

Note that Zj, agrees with the set T, ¢(20) defined in (2.14), with ¢ = ¢, then the following
assertion holds because of our assumption (2.16)

lim N <fk) —0, lim T (z, to — ex; 7o, to)da = 0. (4.6)

k—o0 k—oo JRN\T,

Since I'* is the fundamental solution to Z*v = 0, and u is bounded and continuous, we have

lim [ T™(x,to — ex; zo, to)u(x, to)dr = u(xg, to).
k—oo JrRN
The conclusion of the proof of (4.4) then follows from (4.6), by using again the fact that u is
bounded and uniformly continuous.
We are left with the first integral in the right hand side of (4.2). We preliminarily note that
v(z) = 0 for every z € 98, (zp), then

®(z) = (u(2)A(2)Vgo(2),0) Vz € 0Q(20).

Moreover, (3.10) gives v(z) = —% for every z such that VgI'™(z;20) # 0, while ®(z) =

0 whenever VgI™(z; z9) = 0. We then find

/ <q)7y>259r(z0)d8((%71 = / U(l',t)KG(Z();Z),@QT(ZO)ngil, (47)
9 (20) Q- (20)

ﬁ{t<t0—6k} ﬁ{t<t0—€k}

where . .
(A(2)VeI™ (25 20), VeI (23 20)) -
IVeIl™*(2;20)|-
is the kernel defined in (2.19). We next prove that Kg(zo;-) belongs to L' with respect to
the measure S(g_l L 058 (20). We apply the identity (4.2) to a compactly supported smooth

Kg(2052) =

function u with the property that u(z) = 1 for every z € ,(z9). We have Zu = ¢ in Q,(z0),
then (4.3) and (4.4) yield

1
lim K (20; 2)Ba,.(» dS81 =1 +/ c(2)I™(2z; 20) — —divg b(2) | dz.
R oy (O G 20) = Zdive ()

Since the functions K¢ and Bq, (,,) are both non-negative and the sequence (5k) ke
we conclude that

y 1s decreasing,

/ K (20;2)Ba, (2)dS5
8&Qr(zo)

is finite. This proves the first equality in the following

lim <®,I/>ZﬁQT(ZO)dS€_1 :/ u(:v,t)K(g(zo;z)ﬁgr(ZO)dS(g_l
k=400 Jor 0, (z0) N {t<to—ex } ¥r(20) (4.8)

= / u(z,t) Kg(zo0; z)alé‘(gf1
Yr(20)
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for every u € C(2,(zp)). In the second equality we took into account that Kg(zp;z) = 0 if
Vel (z) = 0 and that ¢, (20) \ { VeI = 0} is a Cf-regular surface, hence B, (.,) = 1 there, see
Remark 3.8. The proof of the first assertion of Theorem 2.2 then follows by using (4.3), (4.4)
and (4.8) in (4.2).

The proof of the second assertion of Theorem 2.2 is a direct consequence of the first one and
of the coarea formula stated in Proposition 3.4. Indeed, fix a positive r as above, multiply by %
and integrate over ]0,r[. We find

71~/0T u(z0)do :% /Or </ag;§zg(zo) K (205 2)u(2) dPG(Qg(ZO))> do

(] PREICERE) =) do (9)

(] PRCECERSNE iz ) e

The left hand side of the above equality equals u(zy), while the last two terms agree with the
last two terms appearing in the statement of Theorem 2.2. In order to conclude the proof we
only need to show that

/Or (/%QQ(ZO) Kg(20; 2)u(z) dP@(Qg(Zo))>dQ— /Qg(zo) Mg (20; z)u(z)dz (4.10)

where Mg is the kernel defined in (2.19). With this aim, we set
Ey(z0) == {z € RV [ T"(2:20) >y}, >0,

and we substitute y = é in the left hand side of (4.10). Note that 05 Ey(20) = 05Q,(20) if y = %
and I'*(z; 29) =y for every z € 95 FEy(20). Then

' (A(x)Val*(z; 20), VoI (2 20))-
/0 ([)&QQ(ZO) IVeI™*(20; 2)|2 u(z) dP@(Q@(ZO))>dQ

_ [T <A(Z)VGF*(Z;Zo),VGF*(Z;Zo»zuZ .
_/i y2</aaEy<zo> Vol (2 20 (2) dPg(Ey( 0>>)dy

_ / - ( / (A(2)Vel™ (2 20), Val™ (1 20))-
1 \Josmy(zo)  T7(2520)?|VeI™ (23 20) -

We finally recall the definition of the kernel Mg and we conclude the proof of (4.10) by using
the coarea formula stated in Proposition 3.4. O

u(2) dP@(Ey(Zo))> dy.

PRrROOF. OF THEOREM 2.5. We first note that .Z 1 = ¢, then Theorem 2.2 yields

1 1 @
/ Mg (z1;2)dz + / (i/ (divg b(2) — ¢(2)) dz) ds
0 Ja,(=1) 0.Jo Qu(21)

+ /QS(Zl) c(z) (% —T*(z; zl)) dz) ds =1
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for every z; € Q and ¢ > 0 such that Q,(z;) C Q.
We claim that for every z; € © such that u(z;) = maxq u we have

u(z) = u(z1) for every z € Qy(21). (4.11)

By using again Theorem 2.2 and the above identity we obtain

0 :; /Qg(zﬂ Mg(z1;2) (u(z) — u(z1)) dz
1 [@ .
+ Q/O }9</§23(z1) (divg b(2) — c(2)) (u(z) — u(z1)) dz) ds

1 [¢ L
+ Q/o </§25(Z1)(f(2) —u(z1)c(2)) (2 = T*(z521)) dz) ds.

Note that ¢ < 0,f > 0,divgb(2) — ¢(z) > 0 and u(z) < u(z1), being u(z1) = maxqu > 0.
Moreover, Mg (21;2) > 0 and T'*(2; 21) > 1 for every z € Q,(1), then

0 >2 /QQ(Zl) Mg(z1;2) (u(z) — u(z1)) dz

0>t /0 @%( /st (divg b(2) — (2)) (u(z) — u(z1)) dz)ds

1 ‘ 2) —u(z1)e(2)) (2 = T*(z; 2 z | ds
OZQ/O (/QS(Zl)(f() (21)e(2)) (5 F(>1))d>d'

Hence the three integral vanish and, as a consequence, (divg b(z) — ¢(2)) ((u(z) — u(z1)) = 0 for
An+1 almost every z € Q,(z1). Because our assumption on the sign of divg b — ¢ we have that
u(z) = u(z1) for ANF1 almost every z € Q,(21), and (4.11) follows from the continuity of w.

We are in position to conclude the proof of Theorem 2.5. Let z be a point of <7, (), and
let v : [0,7] — © be an .Z-admissible path such that v(0) = 29 and v(T") = z. We prove that
u(y(t)) = u(zo) for every t € [0,T]. Let

I:={te0,T] ] u(v(s)) = u(z) for every s € [0,1]}, t:=supl.

Clearly, I # () as 0 € I. Moreover I is closed, because of the continuity of u and ~, then ¢ € I.
We now prove by contradiction that ¢ = T. Indeed, if ¢ < T, then we let 21 := 7(¢), and we
note that z; € Q, u(z1) = maxq u. Moreover, there exist r; > 0 such that Q,, (z1) C Q and, by
condition [H.4], a positive s; such that y(f+s) € Q,,(21) for every s € [0, s1]. As a consequence
of (4.11) we obtain u(y(t + s)) = u(z1) = u(zp) for every s € [0, s1[, and this contradicts the
assumption ¢ < 7. This proves that u(z) = u(zp) for every z € o7, (). By the continuity of u
we conclude that u(z) = u(zg) for every z € 7,,(2). Eventually, since u is constant in o7 (12),
we conclude that f(z) = ZLu(z) = u(z0) c(z) for every z € a7, ().

We finally remark that the condition on the sign of u(zy) was used only to guarentee that
u(20)c(z) has the required sign. If we assume ¢ = 0, the needed condition is always satisfied,
and we conclude that f = 0. O
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5 Examples

In this section we list several examples of well-known and important operators verifying the
hypotheses of our results, that basically rely on a suitable group structure and on the existence
and the properties of the fundamental solution. As said in the Introduction, we warn the reader
that the natural dilation operator used in the regularity theory is not the same we use here
to prove mean value formulas, and in each example both are described. The homogeneous Lie
groups in the examples we are going to present are the Carnot groups and the Kolmogorov
groups. We refer to the monograph [9] for a detailed treatment of the subject of Carnot groups,
and to the survey article [5] for the homogeneous Kolmogorov groups. Next, we check that our
hypotheses on the fundamental solutions hold true, recalling in each case the relevant known
results on existence and estimates. Concerning the problem of its existence, we recall that Levi’s
parametrix method provides us with the existence of a fundamental solution for non-divergence
operators with Holder continuous coefficients in the setting of uniformly elliptic and parabolic
operators. This method has been extended to the case of heat operators on Carnot groups
whose prototypical case is the Heisenberg group in Example 5.1 and to degenerate Kolmogorov
operators, described in Example 5.6, which are two large classes of operators to which our results

apply.

Example 5.1 SUBLAPLACIAN AND PARABOLIC OPERATOR ON THE HEISENBERG GROUP. The
Heisenberg group H" = (R?"*! .) is defined by the composition law

n
(,y,5) - (¢, 8") = (w tay+y, s+ +2) (dhy - mj%))- (5.1)
j=1

The dilation _
5)\(1‘,:%5) = ()\ﬂ?,)\y,)\25) (52)

is an automorphism of H" and induces a direct sum decomposition on R??+!
R = 1, @ Vs, (5.3)
where Vi = {(x,4,0) | z,y, € R"} and Vo = {= (0,0, s) | s € R}. The vector fields
Xj = 0r; +2y;0s, Y; =0, —2x;0s, j=1,...,n, (5.4)
are left-invariant on (H",-). Moreover
(X;,Y;] =—40s, j=1,...,n,

while
[XJ,X]{]:[YY],Y]C]:[X],Yk]zo, j,kzl,...,n.

In particular, Xy,...,X,,Y7,...,Y, evaluated at (z,y,s) = (0,0,0) is a basis of V] and the
Lie algebra generated by Xi,...,X,,Y1,...,Y,, evaluated at any point of R?"*!  agrees with
R2?7+1 The homogeneous dimension of the Heisenberg group is Qp = 2n + 2. The differential

operator
n

Agn =Y (X7 +Y}), (5.5)
j=1
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is said sub-Laplacian on H".
The homogeneous Lie group G = (R2”+2, o, (dy) )\>0) relevant to the heat operator on the

Heisenberg group,
n

MHo=> (X7 +Y7) -0, (5.6)
j=1
is defined by the composition
(z,y,5,t)0 (,y,s',t) = ((:v,y, s)- (2'y,s'),t + t’), (5.7)
and by the dilation N
5)\(337y737t) = (5)\(x7y75)7)‘t)‘ (58)

Here W1 = {(z,y,0,t) | z,y,€ R",t € R} and Wy = {= (0,0,5,0) | s € R}, and the
homogeneous dimension is @ = Qg + 1. Note that the parabolic scaling

3,\(:B,y,s,t) = (g,\(x,y, 3),)\275) (5.9)

is commonly used in the regularity theory for the solutions to Hou = f. In this framework,
the vector fields X1,...,X,, Y1,...,Y, are homogeneous of degree 1 with respect to the dilation
(0x)a>0, while the derivative 0; is homogeneous of degree 2, as usual in the case of parabolic
operators. The homogeneous dimension of the group, with respect to (5 A) A>Q) 18 Qp+2, because
of the different role played by the time variable t. O

As said above, the Heisenberg group is the prototype of Carnot groups C = (RV, -, gA) The
Lie group G = (RN + o, (0y) ,\>0) relevant to the heat operator on a Carnot group is defined by
the operations N

(x,t) o (2/,t) = (:E calt+ t/), n(z,t) = ((5)\56, )\t), (5.10)

being
oy = diag(AlLm,, ALy, -, MLy, ). (5.11)

The homogeneous dimension of the Carnot group C is Q¢ = m1 + 2mg + --- + uwm,,, and the
homogeneous dimension of G defined in (2.4) is Q¢ + 1.

If we consider the direct sum decomposition (2.2), we let m = my and we choose a family
of left-invariant vector fields Xi,..., X,, that form a basis of Wi, with the property that
X1(0),...X,,(0) are orthonormal. The sub-Laplacian on C and the heat operator are then
defined as

Ac:=> X7, Ho=Ac— 0. (5.12)
j=1
Also in this case, the parabolic dilation

Ox(x,t) = (Ox(x), A2t) (5.13)

is useful in the regularity theory relevant to Hg, and Q¢ + 2 is the homogeneous dimension of
G with respect to (5,\))\>0.

We next quote an existence result proved by Bonfiglioli, Lanconelli and Uguzzoni [10], which
applies to parabolic and elliptic operators on Carnot groups. In the next statement do(z,y)
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denotes the distance of x and ¢ € RY, which agrees with duo((£,0),(z,0)). Note that the
regularity assumption made in [10] is written in terms of the parabolic distance. Indeed, in [10]
the following condition

[u(@, t) = u(€, 7)| < Mi(doo(,€) + [t = 7[V2)”,  for every (,1),(&,7) € Q,

is required on the coefficients of the operator. However, this condition follows from (2.11) if we
choose o = 3/2, since the coefficients are bounded.

Theorem 5.2 (Theorem 1.2 in [10]) Let X1,... Xy, be vector fields that satisfy the Hormander
condition [H.1] and that generate a Carnot group C = (RY,-,8y), and let Q¢ be its homogeneous
dimension. Consider the differential operator

m m m
Hu = Z X, (ainju) + 2 Z Xiainju + Z XZ-Xjal-ju — agu, (514)
ij=1 ij=1 ij=1
where A = (a;j)i j=1,..m 15 a symmetric matriz satisfying the condition (1.3) for some constant
A > 1. Suppose that, for every i,j = 1,...,m, the coefficients a;; and their derivatives X;a;;
and X;Xja;j belong to the space C&(RNTY) for some o €]0,1]. Then there exists a fundamental
solution I'* of the adjoint operator

m
H* = Z ainin + 0.
ij=1
Moreover, I'* satisfies the following estimates: for every positive T there exist two positive
constants M only depending on H, and C(T'), also depending on T', such that

2 x
06 0) < e (-1 ). (5.15)

for every (€,7), (x,t) € RNTY with 0 < t — 7 < T. Moreover, there exist My, Ko, Ty > 0 such
that

Cc 2 T
P o) > e (-, (5.16

for every (€,7), (z,t) € RNTL with 0 < t — 7 < Ty such that M[)@ < —log (Ko(t — T)QC/Q).

Remark 5.3 Even though the inequality (5.16) is not explicitly written in [10], it is a direct
consequence of the inequalities (2.2) and (2.15) therein. Moreover, bounds analogous to (5.15)
hold for the derivatives }X;F*((f,T),(ZE,t)) ,‘X;X;F*((f,T),(x,t))‘ ,i,7 = 1,...m and for
|0-I*((&,7), (x,t))]. We expect that the assumptions on the coefficients of the lower order
terms of the operator H can be relaxed.

The following result ensures that the mean value formulas stated in Theorem 2.2 hold for
every operator ‘H satisfying the assumptions of Theorem 5.2.

Proposition 5.4 Under the assumption of Theorem 5.2, there exists a positive ro such that
(2.15) and (2.16) hold for every zo € RNF1,

20



PRrROOF. Fix a positive T and let M and C(T') be the constants appearing in the bound (5.15).
If we choose rq such that o < T9c/2/C(T), we find

Q(0,t0) € {(2,1) € RN xtg — T tol| &2 (, 30) < M(to — ) log (-S4 ) |

T e (xo,tg) C {a: e RN | dgo(a:,xo) < Melog (fgg};)} ,

for every (xg,tp) € RN*1 r €]0,70] and ¢ €]0,T]. This proves (2.15) and the first assertion in
(2.16). On the other hand, from the inequality (5.16) it follows that

IT,E(mO’tO) D {:E € RN | dgo(mal‘()) < Miolog (gg;?%)}a

for every € €]0, Tp], then

0< / I (z,tg — &; xo, to)dx
RN\IT,E(x07tO)

o
o
|
=

<

) (=42
_cm exp [ =220 ) de
5QC/2 {mGRN\ng(I,lo)ZMLOlog(EQc/Q)} Me

d3.(y,0)
= C’(T)/ exp (—OO’) dy.
{yGRNIdio(y,O)Zi0 log(C(TO)T)} M

M £2c/2

Note that the quantities in the last two lines agree because of the change of variable y =
Sx(rgt o x) with \ = \% and the property (2.10) of the distance d. The last integral vanishes
as € — 0 and this concludes the proof. O

Proposition 5.5 Under the assumption of Theorem 5.2, the operator H defined in (5.14)
satisfies condition [H.4].

PRrOOF. Consider the set Q,(z) for some z = (z,t) € RV*! and r > 0, and denote 7(s) =

r\s),t — S§). el §1 De any positive constant suc a 0S < 1, where 0 1S as In (S
t Let s1 b iti tant such that Kos2¢/? < 1, where K is as in th

statement of Theorem 5.2. We claim that there exists so €]0, s1] such that

d3. (x(s), )

1
< ——1log (KOSIQC/Q) , for every s €]0, s2], (5.17)
S M(]

where My, Ky are the constants appearing in (5.16). As a consequence, (5.16) is satisfied for
every (&, 7) = (x(s),t —s) = y(s) with 0 < s < s9 A Tp, so that

*(y(s), (z, 1)) > Koc(Tp) (ﬂ) oc/2 1

S T

for every s €]0, so[ if we set 59 = so A Ty A s1(rKoc(Tp))?/2c. This means that v(s) € Q,(2) for
every s €]0, so[, and the proof of [H.4] is concluded.
In order to prove that there exists a positive so such that our claim (5.17) holds, we recall

that the Carnot-Carathéodory distance between two points x,y belonging to the Carnot group
C = (RV,.,6,) can be defined as

T
duoly, ) = inf /0 w(r)|dr (5.18)
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where the infimum is taken among all the absolutely continuous paths z : [0, 7] — RY such that
z(0)=2z, z(T)=y, and z(r)= ijXj(x(T)). (5.19)
j=1

By Hoélder’s inequality, we have

/ () dr < vi( [ ' o(r) P "

then, if we consider the path x = z(s) in (5.17), we find

1 s 2 s
- (/ ]w(7)]d7'> < / lw(T)2dr — 0, as s—0,
S\ Jo 0

because we assume that w € L?([0,T],R™). Then also

dg(x(s), 7)

—-0 as s—0,

and the claim (5.17) follows from the fact that d is equivalent to d.. in all Carnot groups. O

Example 5.6 DEGENERATE KOLMOGOROV OPERATORS. The simplest degenerate Kolmogorov
operator defined for (z,y,t) € R™ x R" x R is

n n
Ko:=>_ 07 +Y w0, — 0, (5.20)
j=1 j=1
and can be written in the form (1.8) with m = n and
n
Xj =0, j=1...,n, and X,41= Z:Ejayj — 0.
j=1

Note that
[XjaXTL+1]:ayja j:17"'7n7

and Hérmander condition [H.1] is satisfied. The homogeneous Lie group K = (R*"*1 0, (6))1>0)
relevant to this operator is defined by the composition rule

(z,y,t) 0 (&Y, t) = (@ +a",y+y —ta, t +1), (5.21)

and by the dilation
5)\(‘T’y7t) = (A$7A2ya>‘t)v (522)

which is an automorphism of K and induces a direct sum decomposition on R?7+1
R = W, @ W, (5.23)

where W1 = {(z,0,t) | z € R",t € R} and W5 = {(0,y,0) | y € R"}.
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The parabolic dilation on K
5>\(:B,y,t) = (A\z, M3y, \%t), (5.24)
induces a different direct sum decomposition on R?*+!
R =V o Vya Vs, (5.25)

where Vi = {(2,0,0) | z € R"}, Vo = {= (0,0,¢) | t € R} and V53 = {(0,4,0) | y € R"}. Note
that the homogeneous dimension of the group K with respect to the dilation (5.22) is Q@ = 3n+1,
while its homogeneous dimension with respect to the dilation (5.24) is 4n + 2. O

The above example arises in stochastic analysis and in its several applications, we refer to
the article [5] for a survey of known results and for a recent bibliography on this subject. The
Example 5.6 is also the proptotype of a more general family of degenerate Kolmogorov operators.
Indeed our main results apply to differential operators of the form

m N

i,j=1 1,j=1

under the assumption that the matrix A = (a;;), i=1..m has real constant entries, is symmetric
and strictly positive in R™, while B = (b;;), J=1,.N has real constant entries and takes the
following form, where we agree to let mg = m in order to have a simple and consistent notation:

o o ... 0 0
B O ... O O
B=10 By ... O O], (5.27)
O O ... B, O
Here every block Bj is a m; X m;_1 matrix of rank m; with j = 1,2,..., k. Moreover, the m; s
are positive integers such that
mo>mi1>...>mg>1, and mg+mi+...+me=N (5.28)

and all the entries of the blocks denoted by O are zeros. Note that a plain change of variable
allows us to write the second order part of the operator Ky as Z;n:1 (’*)%]_, without modifying the
stucture of the matrix B. Then the operator Ky in (5.26) can be written in the form (1.1) if we
set b=0,c=0

N
XOZ Zbijazjc‘)xi, Xj:axj, forjzl,...,m.

ij=1
In [32] it has been proved that the operator Ko in (5.26) is invariant with respect to the following
Lie group structure

(x,t)o(&,7)=(E+ E(T)z, t+7), E(7) = exp(—71B). (5.29)
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Moreover Ky is invariant with respect to the dilation §) defined by the matrix
6y = diag( Mg, ALy, - .., AL, L N, (5.30)
where I,,; denotes the identity matrix in R™/. A direct computation shows that
K = (RV*1,0, (dx)x>0)

is a homogeneous Lie group whose homogeneous dimension is Q = mg+1+2my+- -+ (k+1)m,,
and that the vector fields X1, ..., Xy, X;n41 satify the conditions [H.1] and [H.2].
It is remarkable that, if we consider the parabolic dilation

Oy = diag( Mg, XL, - .., A2, A2, (5.31)
then we find the direct sum decomposition g =V} @ - - - @ Vo, 11 with
Vlzspan{Xl,...Xm}, ngspan{Xerl}, VQJ':{O}, for j=2,... K,
Vajr1 = span{[X;, Xpi1] | Xi € Voj_1}, J=1y. ., K

This decomposition differs from (2.2) in that all the spaces Wi, ..., W, appearing in (2.2) are
non-trivial. The integer Qp = my + 3m1 + - -+ + (2k + 1)my, + 2 is usually referred to as .
Let us consider the variable coefficient degenerate Kolmogorov operator

m m N
Ruim 32 0 (aydu) + Sobduubent 3 badu—du (53
i,j=1 7j=1 i,j=1

where the matrix A = (ai;); ;_, _,, is symmetric and satisfies the condition (1.3) for some
constant A > 1, by, ..., by, and ¢ are bounded continuous functions, and B = (b;;)
in the Example 5.6. Consider also its adjoint operator

o is as
i,j=1,....IN

m m N
K*v = Z 8961 (aij(‘?xjv) - Z@xj (bj’U) + cv — Z bl-jxj&;iv + at’U.
ij—1 j=1 ig—1

The following result has been proved by one of the authors in [39] for Kolmogorov operators
with no lower order terms, and by Di Francesco and Pascucci in [19] in the general setting. It
requires a further notation. For any positive A we consider the operator

m N
Kauw:=AY 2 u+ Y byx;0 — 0. (5.33)
j=1 i,j=1

Representing the matrix B as in (5.27), where Bj is a m; x m;_; is matrix of rank m; for
j=1,2,...,k, and the integers my, ..., m, do satisfy (5.28), then the fundamental solution of
KA is well defined and can be explicitly written as follows. Denote by J the N x N matrix
J = diag(l,,,0,...,0) and define, for every ¢t € R,

E(t) = exp(—tB),  C(t) = /O " B(s)J BT (s) ds.
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Then the matrix C(t) is non singular for every positive ¢ and the fundamental solution I'y of
ICa is
(47TA)_%

TA(OC,t;&,T):m

exp (— 5 (C7Ht —7)(x — BE(t — 7)&), 2 — Bt — 7)), (5.34)
for t > 7, while 'z (x,¢;&,7) = 0 whenever t < 7. Moreover, I'} (§,7;2,t) := T'a(x,t;&,7) is the
fundamental solution of K. With this notation we have

Theorem 5.7 (Theorem 1.4 in [19]) Consider the degenerate Kolmogorov operator K in (5.32).
Assume that the matriz A = (a); iy, is symmetric and satisfies the condition (1.3) for some
constant A > 1, while B = (bij); ;_,  y has the form (5.27), where Bj is a mj x mj_y is matriz
of rank m; with j = 1,2,...,k, and the integers my,...,m, do satisfy (5.28). Assume also
that, for every i,j = 1,...,m, the coefficients a;j,b;,c, 0z a;; and O;b; are bounded functions
belonging to the space C’a(RN‘H) for some a €]0,1]. Then there exists a fundamental solution
'™ of the adjoint operator K*. Moreover, I'* satisfies the following estimates: for every positive
T there exist four positive constants At only depending on K, and A=, C~(T) and CT(T), also
depending on T', such that

CT(T)TH-((&7), (2,1)) ST*((&,7), (2,1)) < CT(T) TR ((&,7), (2,1)), (5.35)
for every (€,7), (z,t) e RNt with 0 <t — 7 < T.

The following result ensures that the mean value formulas stated in Theorem 2.2 hold for
every operator K satisfying the assumptions of Theorem 5.7.

Proposition 5.8 If the operator K defined in (5.32) satisfies the assumption of Theorem 5.7,
then there exists a positive ro such that (2.15) and (2.16) hold for every zy € RN*L.

The proof of Proposition 5.8 is analogous to that of Proposition 5.4 and is omitted. We
next prove that, under the assumption of Theorem 5.7, the operator K satisfies [H.4], then
Theorem 2.5 does apply to K. We then find the following strong maximum-minimum principle
for degenerate Kolmogorov operators.

Proposition 5.9 Let K be the operator defined in (5.32), satisfying the assumption of Theorem
5.7, with ¢ < 0 and ¢ —divgb < 0. Let u be a classical solution to Ku = f in an open subset
Q Cc RV and let 29 = (x0,t9) € Q be such that u(zy) = maxqu > 0 and f > 0 in Q; then

u(z) =u(zg) and f(z)=u(z)c(2) for every z € o, (Q).

The analogous result holds true if u(zp) = mingu < 0 and f < 0 in Q. Moreover, we can drop
the assumption on the sign of u(zo) if ¢ = 0.

PrOOF. We first prove that K satisfies [H.4]. Consider the set ,.(2) for some z = (z,t) € RV+1
and r > 0, and let 7' > 0 be such that Q,(z) C RV x|t — T, t[. From (5.35) it follows that

Q(2) D O, (2) = {g € RV x] — o0, t: T%_(C; 2) > ﬁ}
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As in the proof of Proposition 5.5, we need to show that there exists a positive s such that
v(s) € Q,(z) for every s €]0, so[. If we denote y(s) = (z(s),t — s), in view of (5.34), this means
that

(C7H () — E(s)a(s)), @ — B(s)a(s)) < Co+ Cy (log(r) — 2572 log(s))

for some positive constants Cy, C7 depending on A~ and on T. Recall that Qp is the parabolic
homogeneous dimension of K. This fact has been proved in Lemma 3.7 of [31]. This concludes
the proof of [H.4], then Theorem 2.5 does apply to K. O

Remark 5.10 In the case of degenerate Kolmogorov operators the geometry of the propagation
set doesn’t agree with the one relevant to uniformly parabolic operators. Consider for instance
the following operator K:

Ku(z,y,t) = 0y (a(z,y, t)0pu(z, y, t)) + 2dyu(z, y,t) — Opu(z, y,t)

defined for (z,y,t) € Q =] — R, R[x] — 1,1[x] — 1,1[C R3, with R > 0, and let 2o = (0,0,0).
Then 7., () = {(x,y,t) € Q : |y| < —Rt} (see Fig. 2 below). We recall that in Proposition
4.5 of [15] it is shown that there exists a non-negative solution u to Ku = 0 vanishing in the set
o, () and strictly positive elsewere. Then the minimum principle stated in Proposition 5.9 is
sharp.

F1G.2 - The set 7, ().

Remark 5.11 Theorem 5.7 and Propositions 5.8 and 5.9 have been proved in [19] under a
less restrictive assumption. Specifically, the Lie group defined by (5.29) doesn’t need to be
homogeneous. The matrix B is assumed to have the following form

By x ... x %
B=|0 By ... x x| (5.36)
O O ... By =«
where every block B; is a m; X m;_1 matrix of rank m; with j = 1,2,...,x, and the blocks

denoted by * are arbitrary.
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Note that, in this case, the identity (2.5) still holds for j = 1,...,m, while X ,f =

—Xm+1f — trBf for suitably smooth test functions f. Moreover, bounds analogous to (5.35)
hold for ‘X;F*((f,T), (z,1))|, for j =1,...,m+1, and for | X7 X T*((£, 1), (:U,t))’ Ji,j=1,...m.
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