
Mean value formulas for classical solutions to subelliptic evolution

equations in stratified Lie groups

Diego Pallara * Sergio Polidoro �

Abstract

We prove mean value formulas for classical solutions to second order linear differential
equations in the form

∂tu =

m∑
i,j=1

Xi(aijXju) +X0u+ f,

where A = (aij)i,j=1,...,m is a bounded, symmetric and uniformly positive matrix with C1

coefficients under the assumption that the operator

m∑
j=1

X2
j + X0 − ∂t is hypoelliptic and

the vector fields X1, . . . , Xm and Xm+1 := X0 − ∂t are invariant with respect to a suitable
homogeneous Lie group. Our results apply e.g. to degenerate Kolmogorov operators and

parabolic equations on Carnot groups ∂tu =

m∑
i,j=1

Xi(aijXju) + f .

MSC: 35K10, 35H20, 42A80

1 Introduction

The aim of this paper is to prove mean value formulas for degenerate second order partial
differential equations in the form

L u :=

m∑
i,j=1

Xi (aijXju) +X0u+

m∑
j=1

bjXju+ cu− ∂tu = f, (1.1)

in some open set Ω ⊂ RN+1. In the following, z = (x, t) = (x1, . . . , xN , t) denotes the point in
RN+1, 1 ≤ m ≤ N and the Xj ’s in (1.1) are smooth vector fields on RN , i.e.,

Xj(x) =

N∑
k=1

φjk(x)∂xk , j = 0, . . . ,m, (1.2)
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φjk being C∞ functions. Starting from the vector fields Xj , the operator L in (1.1) is written
through the m×m symmetric matrix A(z) = (aij(z))i,j=1,...,m, which has continuous entries and
satisfies the usual ellipticity condition: there exists a constant Λ ≥ 1 such that

Λ−1|ξ|2 ≤
m∑

i,j=1

aij(z)ξiξj ≤ Λ|ξ|2, (1.3)

for every z ∈ RN+1 and ξ ∈ Rm. To simplify the notation in the sequel, we still denote by A
the (m + 1) × (m + 1) matrix with entries aij for i, j = 1, . . . ,m and a(m+1) j = aj (m+1) = 0,
for j = 1, . . . ,m+1. We assume that the coefficients of the vector b(z) = (b1(z), . . . , bm(z)) and
the functions c and f are bounded and continuous. As we are dealing with classical solutions,
we also assume that Xiaij and Xjbj are bounded continuous functions for i, j ∈ {1, . . . ,m}.
The reason why we write the operator L in its divergence form is that we need to consider the
fundamental solution Γ∗ to the adjoint equation L ∗v = 0. In the sequel we denote

X = (X1, . . . , Xm) , Xm+1 = X0 − ∂t. (1.4)

and we let
g = Lie(X1, . . . , Xm, Xm+1) (1.5)

be the Lie algebra generated by X1, . . . , Xm, Xm+1. The main assumptions on the operator L
are listed below.

[H.1] The vector fields X1, . . . , Xm+1 satisfy the Hörmander rank condition

rank g(z) = N + 1 for every z ∈ RN+1. (1.6)

[H.2] there exists a homogeneous Lie group G =
(
RN+1, ◦, δλ

)
such that

i) X1, . . . , Xm, Xm+1 are left-translation invariant on G;

ii) X1, . . . , Xm, Xm+1 are δλ-homogeneous of degree one;

[H.3] There exists a fundamental solution Γ∗ for the adjoint operator L ∗:

L ∗u :=

m∑
i,j=1

Xi (aijXju)−X0u−
m∑
j=1

bjXju+
(
c−

m∑
j=1

Xjbj

)
u+ ∂tu, (1.7)

as stated in Definition 2.1, having the properties (2.15) and (2.16).

Let us briefly comment on our hypotheses. We first recall that the Hörmander condition
[H.1] implies that the operator

L0 :=

m∑
k=1

X2
k +Xm+1 (1.8)

is hypoelliptic. This means that every distributional solutiont u to L0u = f in some open set
Ω ⊂ RN+1 belongs to C∞(Ω) and is a classical solution to L0u = f whenever f is C∞(Ω). Note
that L0 is an operator of the form (1.1) if we choose A to be the m ×m identity matrix, and
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b = 0, c = 0. From this point of view, in the setting of the degenerate operators, L0 plays the
role of the heat operator in the family of the uniformly parabolic operators.

In Section 2 we recall the notation of homogeneous Lie groups G =
(
RN+1, ◦, δλ

)
and we

give necessary and sufficient conditions on the vector fields X1, . . . , Xm, Xm+1 for the validity
of condition [H.2]. In Section 2 we also declare the properties of the fundamental solution we
need in this note, so that the meaning of condition [H.3] will be clarified.

Mean value formulas are a very classical tool for the treatment of harmonic functions. The
first extenstions to the heat operator are due to Pini [38] and toWatson [43]. Mean value formulas
for uniformly parabolic operators with C∞ smooth coefficients have been proved by Fabes and
Garofalo [20], and by Garofalo and Lanconelli [26]. More recently, mean value formulas have
ben proved in large generality by Cupini and Lanconelli in [18], who still consider operators
with smooth coefficients. In the recent articles [35] on uniformly parabolic equations and [37],
on degenerate elliptic equations, Malagoli and the authors consider differential operators whose
coefficients belong to a suitable space of functions C1+α and C1+α

G , respectively. This reduction
of regularity, from C∞ to C1+α, reflects in weaker regularity of the fundamental solution. As a
consequence, the integration by parts on its level sets, which is a crucial point in the proof and
for C∞ coefficients relies on Sard’s theorem, becomes a delicate issue. In the case of uniformly
parabolic operators with C1 coefficients, and then C1 fundamental solution, in [35] it is shown
that this difficulty can be overcome in two ways, either by using a divergence theorem valid
for almost C1-regular boundaries, or using De Giorgi’s theory of perimeters. In [37] and in the
present case of degenerate operators with C1

G coefficients the almost C1-regularity of the level
sets of the fundamental solution is not guaranteed: indeed, it is not C1 in the Euclidean sense.
So, we are led to rely on the theory of functions with bounded variation and sets with finite
perimeter in stratified groups, see Section 3, which provides us with the relevant formulation of
the divergence theorem. In Section 4 we prove our main results, i.e., the mean value formulas
and, as an important consequence, the strong maximum principle. Finally, in Section 5 we show
that our assumptions are verified in several important cases, such as degenerate Kolmogorov
operators and parabolic operators on Carnot groups.

We conclude this introduction with a remark on the the homogeneity property [H.2] ii). The
layers in the Lie algebra g have different degrees of homogeneity and these are at some extent
arbitrary. Assuming for simplicity X0 = 0, the commonest choice when dealing with regularity
theory is the parabolic scaling δλ : (x, 0) = (λx, 0) for x in the first layer, and δλ : (0, t) 7→ (0, λ2t)
on the time variable. But, as already done in [35] for uniformly parabolic operators in RN+1,
the condition [H.2] ii) requires that δλ(x, t) = (λx, λt) and we do the same here, with x in the
first layer. Indeed, the very important property of Γ∗ encoded in the equality

u(ξ, τ) =

∫
RN

Γ∗(ξ, τ ;x, t)φ(x)dx

cannot be used in connection with the divergence formula when the boundary integral is computed
with respect to the Hausdorff measure, if this last is defined through the distance generated by
the parabolic scaling. In fact, the surfaces {t = constant} would have codimension 2 and
therefore they would be negligible.

Acknowledgments. The authors are members of Gruppo Nazionale per l’Analisi Matematica,
la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica
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2 Preliminaries and the Main Results

In this section we describe the group structure related to our differential operators and the
properties that we require to the fundamental solutions. After that, we collect our hypotheses
and state our main results. Further preliminaries concerning BV functions and sets with finite
perimeter are presented in Section 3.

Let us specify the meaning of classical solution to the equation L u = f in some open set
Ω ⊂ RN+1. With this aim, we first recall the notion of Lie derivative. For any z0 ∈ Ω and
j = 1, . . . ,m+ 1 we consider a path γ defined in a neighborhood I of the origin, such that

γ′(s) = Xj(γ(s)), γ(0) = z0.

Then the Lie derivative Xju(z0) of u at z0 is

Xju(z0) :=
d

ds
u(γ(s))|s=0. (2.1)

We say that u is a classical solution to L u = f in some open set Ω ⊂ RN+1 if the Lie derivatives
XiXju, i, j = 1, . . . ,m and Xm+1u are defined as continuous functions and the differential
equation is satisfied at every point of Ω. The meaning of the equation L ∗u = g is analogous.

Next subsections contain some facts about the notions of Lie group and fundamental solution,
that are likely known to the expert readers. We first recall some notation and results, then we
state the main goal of this paper.

2.1 Homogeneous Lie groups

A Lie group G =
(
RN+1, ◦

)
is said homogeneous if a family of dilations (δλ)λ>0 exists on G and

it is an automorphism of the group:

δλ(z ◦ ζ) = (δλz) ◦ (δλζ) , for all z, ζ ∈ RN+1 and λ > 0.

The assumptions [H.1] and [H.2] induce a direct sum decomposition of g

g =W1 ⊕ · · · ⊕Wµ, (2.2)

where

W1 =span
{
X1, . . . Xm, Xm+1

}
,

Wk =span
{
[Xi, Xj ] | Xi ∈W1, Xj ∈Wk−1

}
, k = 2, . . . , µ.

Moreover [Xi, Xj ] = 0 whenever Xi ∈ Wµ, and Xj ∈ W1. In the sequel we denote by mj the
dimension of Wj , for j = 1, . . . , µ. If we represent the dilation δλ on RN+1 by the following
matrix

δλ = diag(λIm1 , λ
2Im2 , . . . , λ

µImµ), (2.3)
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we call homogeneous dimension of G the integer Q = m1 + 2µ2 + · · ·+ µmµ and we have

det δλ = λQ. (2.4)

We endow each fiber of the first layer W1 with an inner product ⟨·, ·⟩z (and the associated norm
| · |z) that makes X1(z), . . . , Xm+1(z) an orthonormal frame, see [24].

We next give some general comments about the differential operators on homegeneous Lie
groups considered in this note. An important consequence of the homogeneity of the Lie group
is the pyramid-shaped structure of the coefficients of the vector fields Xj ’s. In the following
we write x = x(1) + x(2) + · · · + x(k) with x(j) ∈ Wj , and we use the notation in (1.2). As
a consequence of the homogeneity of the differential operators X1, . . . , Xm+1 we have that the
coefficients φj1, . . . , φ

j
m are constant and the coefficients φjm+1, . . . , φ

j
m+m2

are linear functions

of the variable x(1). In general, if k is such that xk ∈Wi, then the coefficient φjk is a polynomial
function of the variable x(1), . . . , x(i−1). This fact plainly implies that

X∗
j = −Xj , j = 1, . . . ,m+ 1. (2.5)

In particular, the adjoint operator L ∗ acts on sufficiently smooth functions as follows

L ∗v :=

m∑
i,j=1

Xi (aijXjv)−X0v −
m∑
j=1

bjXjv +
(
c−

m∑
j=1

Xjbj

)
v + ∂tv. (2.6)

For the same reason, X1, . . . , Xm+1 are complete vector fields, that is the integral curve of Xj is
defined on the whole of R for j = 1, . . . ,m+ 1.

We next discuss the problem of the existence of a Lie group G as required in condition [H.2].
In the Examples 5.1 and 5.6 both the Lie group and the differential operators are given. In
general, when a stratified Lie group is given, a standard procedure provides us with a family of
left-invariant vector fields satisfying the Hörmander condition [H.1].

Vice versa, suppose that a collection of vector fields X1, . . . , Xm+1 satisfying the Hörmander
condition [H.1] is given. Then, under some furhter assumptions, it is possible to build a stratified
Lie group such that the condition [H.2] is satisfied. Specifically the following result holds true.
Suppose that Lie(X1, . . . , Xm, Xm+1) has dimension N + 1 and that every vector field X ∈
Lie(X1, . . . , Xm, Xm+1) is complete. Then there exists a Lie group G

(
RN+1, ◦

)
such that the

Lie algebra of G agrees with Lie(X1, . . . , Xm, Xm+1). The abstract version of this result is known
as Third Fundamental Theorem of Lie, see [41, Theorem 3.15.1]. We refer to Theorem 1.1 in the
article [8] by Bonfiglioli and Lanconelli for the explicit construction of this Lie group on RN+1

in the case of vector fields with analytical coefficiens, while C∞ vector fields are considered by
Biagi and Bonfiglioli in the more recent articles [6] and [7].

We next introduce the distance we use to define the Hausdorff measure related to the notion
of perimeter on which the divergence formula we need is based. From [25, Theorem 5.1] we
know that there are constants εj ∈]0, 1], j = 1, . . . , µ, with ε1 = 1, such that the function

z 7→ ∥z∥∞ = max
j=1,...,µ

{εj |zj |1/j}, (2.7)

where |zj | denotes the Euclidean norm of the vector zj ∈Wj , defines a norm and as a consequence
the distance

d∞(z, w) = ∥w−1 ◦ z∥∞. (2.8)
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We notice that d∞ is equivalent to the Carnot-Carathéodory distance (see (5.18) below) and
that for every compact set K ⊂ RN+1 there exist two positive constants c−K and c+K , such that

c−K |z − w| ≤ d∞(z, w) ≤ c+K |z − w|
1
µ , for all z, w ∈ K. (2.9)

The invariance properties

d∞(ζ ◦ z, ζ ◦ w) = d∞(z, w), d∞(δλz, δλw) = λ d∞(z, w), (2.10)

hold for every z, w, ζ in RN+1 and for every positive λ, see again [25]. We next recall the notion
of Hölder continuous functions on Lie groups. For α ∈]0, 1], we say that a function u defined on
Ω is α-Hölder continuous, and we write u ∈ CαG(Ω), if there exists a positive constant M such
that

|u(z)− u(w)| ≤Md∞(z, w)α, for every z, w ∈ Ω. (2.11)

Let us come to some geometric measure theoretical issues. For every ν ∈W1, denote by ν⊥ the
codimension 1 subspace of W1 orthogonal to ν and introduce the hyperplane N = ν⊥ ⊕W2 ⊕
· · · ⊕Wµ in RN+1 and the constant

θ = {H N
e (B(0, 1) ∩N )} (2.12)

where B(0, 1) = {z ∈ RN+1| ∥z∥∞ ≤ 1} and H N
e is the N -dimensional euclidean Hausdorff

measure, see e.g. [3, Section 2.8]. The constant θ is introduced in [34], is called spherical factor
and is denoted ωG,Q−1 there. Moreover, it is independent of ν because d∞ is vertically symmetric
according to Definition 6.1 in [33], see Remark 6.2, Theorem 6.3 and Theorem 5.2 in [33]. We
then recall the definition of the spherical (Q − 1)-dimensional Hausdorff measure SQ−1

G of a
Borel set E:

SQ−1
G (E) = lim

r↓0
inf

{ ∞∑
i=0

θ

2Q−1
(diamG(Bi))

Q−1 : Bi balls , E ⊂
∞⋃
i=0

Bi, diamG (Bi) ≤ r

}
,

where θ is the constant in (2.12) and diamG(B) := supz,ζ∈B d∞(z, ζ). Notice that we have

normalized the measure SQ−1
G so that SQ−1

G (B(0, 1) ∩N ) = θ.

2.2 The fundamental solution

In this subsection we give a precise definition of fundamental solution Γ∗ for the operator L ∗

in (1.7), we fix the notation for its superlevel sets and we list some further assumptions on Γ∗.

Definition 2.1 We say that a function Γ∗ = Γ∗(ζ; z) defined for every (ζ; z) = (ξ, τ ;x, t) ∈
RN+1 × RN+1 with t > τ is a fundamental solution to L ∗v = 0 if it satisfies the following
conditions for every z = (x, t) ∈ RN+1.

1. The function Γ∗( · ; z) is a classical solution to the equation L ∗ Γ∗(· ; z) = 0 in RN×]−∞, t[;

2. the function Γ∗( · ; z) belongs to L1(K) for every bounded measurable set K ⊂ RN×]−∞, t[.
Moreover, for every (ξ, τ) ∈ RN×]−∞, t[ and φ ∈ Cc(RN ), the function

u(ξ, τ) :=

∫
RN

Γ∗(ξ, τ ;x, t)φ(x)dx
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is well defined and satisfies

lim
(ξ,τ)→(x,t)

u(ξ, τ) = φ(x) for every x ∈ RN .

We introduce some further notation in order to state our last assumption on Γ∗. Recall that Q
denotes the homogeneus dimension of the Lie group G. For every z0 = (x0, t0) ∈ RN+1 and for
every r > 0, we set

ψr(z0) :=
{
z ∈ RN×]−∞, t0[| Γ∗(z; z0) =

1
r

}
,

Ωr(z0) :=
{
z ∈ RN×]−∞, t0[| Γ∗(z; z0) >

1
r

}
,

(2.13)

and we call ψr(z0) and Ωr(z0) respectively the sphere and the ball with radius r and center z0.
As in the uniformly parabolic setting, here z0 belongs to the topological boundary of Ωr(z0).
We finally set

Ir,ε(z0) :=
{
x ∈ RN | Γ∗(x, t0 − ε; z0) >

1
r

}
. (2.14)

Note that Ir,ε(z0) ̸= ∅ only for sufficiently small positive ε. We also rely on the following
properties of the fundamental solution

� For every z0 ∈ RN+1 there exists r0 > 0 such that the set

Ωr(z0) is bounded for every r < r0; (2.15)

� it holds

lim
ε→0

H N
e (Ir,ε(z0)) = 0, lim

ε→0

∫
RN\Ir,ε(z0)

Γ∗(x, t0 − ε; z0)dx = 0. (2.16)

Note that this assumptions is analogous to the pointwise vanishing integral condition stated in
[18] as Property (H(z0, ϱ)).

2.3 Statement of the main results

We define the gradient ∇G and the divergence divG as follows. We agree to identify a section
F =

∑m+1
j=1 FjXj with its canonical coodinates F = (F1, . . . , Fm, Fm+1). With this agreement,

we denote the gradient of f ∈ C1
G(Rn) and the divergence of F ∈ C1

G(Rn,Rm+1) by

∇Gf :=
m+1∑
j=1

(Xjf)Xj and divGF := −
m+1∑
j=1

X∗
j Fj =

m+1∑
j=1

XjFj . (2.17)

Moreover

⟨A(z)∇Gf(z),∇Gf(z)⟩z :=
m∑

j,k=1

ajk(z)Xjf(z)Xkf(z), (2.18)
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for any f ∈ C1
G(Rn). In the following, z0 ∈ RN+1 is fixed and ∇GΓ

∗(z; z0) denotes the gradient
with respect to the variable z. With this notation, we set

KG(z0; z) :=
⟨A(z)∇GΓ

∗(z; z0),∇GΓ
∗(z; z0)⟩z

|∇GΓ∗(z0; z)|z
,

MG(z0; z) :=
⟨A(z)∇GΓ

∗(z; z0),∇GΓ
∗(z; z0)⟩z

Γ∗(z; z0)2
.

(2.19)

Note that, according to (2.17) and the definition of the matrix A, ∇GΓ
∗(z; z0) ∈ Rm+1, while

only its first m components appear in (2.18). Moreover, we agree to set K(z0; z) = 0 whenever
∇GΓ

∗(z; z0) = 0. The first achievements of this note are the following mean value formulas.

Theorem 2.2 Let L be a differential operator in the form (1.1), satisfying the ellipticity
condition (1.3) and aij = aji for i, j = 1, . . . ,m, as well as hypotheses [H.1], [H.2] and [H.3].
Suppose that the coefficients aij , bj , c,Xiaij , Xjbj are continuous, and that (2.15) and (2.16)
hold.

Let Ω be an open subset of RN+1, f ∈ C(Ω) and let u be a classical solution to L u = f in
Ω. Then, for every z0 ∈ Ω and for almost every r ∈]0, r0] such that Ωr(z0) ⊂ Ω we have

u(z0) =

∫
ψr(z0)

KG(z0; z)u(z) dSQ−1
G (z) +

∫
Ωr(z0)

f(z)
(
1
r − Γ∗(z; z0)

)
dz

+
1

r

∫
Ωr(z0)

(
divGb(z)− c(z)

)
u(z) dz,

u(z0) =
1

r

∫
Ωr(z0)

MG(z0; z)u(z) dz +
1

r

∫ r

0

(∫
Ωϱ(z0)

f(z)
(
1
ϱ − Γ∗(z; z0)

)
dz
)
dϱ

+
1

r

∫ r

0

1
ϱ

(∫
Ωϱ(z0)

(
divGb(z)− c(z)

)
u(z) dz

)
dϱ.

The second statement holds for every r ∈]0, r0] such that Ωr(z0) ⊂ Ω.

Remark 2.3 An inspection of the proof of the second assertion in Theorem 2.2 shows that we
can modify the kernel MG by raising Γ∗ to any exponent α > 1. Indeed, setting

MG,α(z0; z) :=
⟨A(z)∇GΓ

∗(z; z0),∇GΓ
∗(z; z0)⟩z

Γ∗(z; z0)α

we find

u(z0) =
α− 1

rα−1

∫
Ωr(z0)

MG,α(z0; z)u(z) dz +
α− 1

rα−1

∫ r

0

(
ϱα−2

∫
Ωϱ(z0)

f(z)
(
1
ϱ − Γ∗(z; z0)

)
dz
)
dϱ

+
α− 1

rα−1

∫ r

0

(
ϱα−3

∫
Ωϱ(z0)

(
divGb(z)− c(z)

)
u(z) dz

)
dϱ.

In the statement of Theorem 2.2 we took the exponent α = 2 because it is the usual one in
the classical uniformly parabolic case. We recall that in Theorem 1.1 of [18] other forms for the
kernel MG have been provided.
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The mean value formulas in Theorem 2.2 provide us with a simple proof of strong maximum
and minimum principles for the operator L when c ≤ 0. We recall that an analogous result was
obtained by using a barrier argument by Bony in [11] for Hörmander’s operators in the form
(1.8), then by Amano in [1] for subelliptic operators with C1 coefficients. In order to state the
strong maximum and minimum principles, we introduce the notion of attainable set. We say
that a curve γ : [0, T ] → RN+1 is L -admissible if it is absolutely continuous and

γ̇(s) =

m∑
j=1

ωj(s)Xj(γ(s)) +Xm+1(γ(s))

for almost every s ∈ [0, T ], with ω1, . . . , ωm ∈ L2([0, T ]).

Definition 2.4 Let Ω be any open subset of RN+1, and let z0 ∈ Ω. The attainable set is

Az0(Ω) =

{
z ∈ Ω | there exists an L -admissible curve γ : [0, T ] → Ω

such that γ(0) = z0 and γ(T ) = z

}
.

We denote Az0 = Az0(Ω) whenever there is no ambiguity on the choice of the set Ω.

We finally state a condition which relates the mean value formula to L -admissible curves.

[H.4] For every z ∈ RN+1 and r > 0, and for every L -admissible curve γ such that γ(0) = z,
there exists s0 > 0 such that γ(s) ∈ Ωr(z) for every s ∈]0, s0[.

Theorem 2.5 Let L be a differential operator satisfying all the hypotheses of Theorem 2.2 and
let u be a classical solution to L u = f in an open subset Ω ⊂ RN+1. Assume in addition that
c ≤ 0, c− divGb < 0 and that [H.4] holds. Let z0 = (x0, t0) ∈ Ω be such that u(z0) = maxΩ u ≥ 0
and f ≥ 0 in Ω; then

u(z) = u(z0) and f(z) = u(z0)c(z) for every z ∈ Az0(Ω).

The analogous result holds true if u(z0) = minΩ u ≤ 0 and f ≤ 0 in Ω. Moreover, we can drop
the assumption on the sign of u(z0) if c = 0.

Note that the condition [H.4] is satisfied by the examples considered in Section 5, where
an application of Theorem 2.5 is given as well. The assumption c − divGb < 0 seems to be
unnecessary for the validity of maximum and minimum principles. Indeed, in the article [35],
where a proof of the maximum principle for uniformly parabolic operators is based on the mean
value formulas, this condition was removed by a suitable change of function. However we didn’t
succed to apply the same argument in the present setting as the structure of the operator L is
very sensitive to analogous change of function.

3 Functions of bounded variation

In this section we introduce some notation and the basic results on functions of bounded variation
and sets with finite perimeter that we need to prove our mean value formulas. To simplify the
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notation, we put n = N + 1 and denote by λn the Lebesgue measure in Rn. We also keep
the notation z = (x, t) for points in RN+1 and recall that the homogeneous dimension of G is
denoted by Q, see (2.3), (2.4). If µ is a Borel measure and E is a Borel set, we use the notation
µ E(B) = µ(E ∩B).

For an open set Ω ⊂ Rn we define the space BVG(Ω) of functions of bounded variation in
G following [14]. We refer to [3] and to [25] for more information on the Euclidean and the
subriemannian case, respectively.

Definition 3.1 Let Ω be an open subset of Rn. For u ∈ L1(Ω) we define

∥∇Gu∥ (Ω) = sup

{∫
Rn

u(z) divGg(z)dz : g ∈ C1
c

(
Ω,Rm+1

)
, ∥g∥∞ ≤ 1

}
. (3.1)

We say that u ∈ BVG(Ω) if ∥∇Gu∥ (Ω) is finite.

Remark 3.2 We point out (see [25, Remarks 2.10, 2.19]) that the (usual) notation ∥∇Gu∥ (Ω)
is somehow misleading, as the total variation depends upon the fixed vector fields X1, . . . , Xm+1,
whereas the functional class BVG(Ω) only depends on G and Ω.

With the same proof contained e.g. in [3, Prop. 3.6], it is possible to show that if u belongs
to BVG(Ω) then its total variation ∥∇Gu∥ is a finite positive Radon measure and there is a
∥∇Gu∥-measurable function σu : Ω → Rm+1 such that |σu(z)|z = 1 for ∥∇Gu∥-a.e. z ∈ Ω and∫

Ω
u(z)divGg(z)dz =

∫
Ω
⟨g, σu⟩z d ∥∇Gu∥ (3.2)

for all g ∈ C1
G,c(Ω,Rm+1). We denote by ∇Gu the vector measure −σu ∥∇Gu∥, so that Xju is

the measure (−σu)j ∥∇Gu∥ and the following integration by parts formula holds true∫
Ω
u(z)Xjg(z)dz = −

∫
Ω
g (z) d (Xju) (z) (3.3)

for all g ∈ C1
G,c(Ω).

Definition 3.3 (Sets of finite G-perimeter) Let χE be the characteristic function of the
measurable set E ⊂ Rn; we say that E is a set of finite G-perimeter in Ω if ∥∇GχE∥ (Ω) is
finite, and we call (generalized inward) G-normal the (m+ 1)-vector

νE(z) = −σχE (z),

which is defined ∥∇GχE∥-a.e.

As customary, we write PG(E,B) instead of ∥∇GχE∥ (B) for any Borel set B. Also, notice that
if A is open, then

PG(E ∩A,A) = PG(E,A), (3.4)

see (2.25) in [25], and recall that |νE(z)|z = 1 for PG(E)-a.e. z ∈ Rn. With this notation, (3.2)
takes the form ∫

E
divGg(z)dz = −

∫
Ω
⟨g, νE⟩zdPG(E), (3.5)

for all g ∈ C1
G,c(Ω,Rm+1).

We refer to [23, Theorem 2.3.5] for a proof of the following statement that connects the total
variation of a BVG function with the perimeter of its level sets.
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Proposition 3.4 (Coarea formula) If u ∈ BVG(Ω) for some open set Ω ⊂ Rn then for a.e.
τ ∈ R the set Eτ = {x ∈ Ω : u(x) > τ} has finite G-perimeter in Ω and

∥∇Gu∥ (Ω) =
∫ +∞

−∞
PG(Eτ ,Ω)dτ. (3.6)

Conversely, if u ∈ L1(Ω) and
∫ +∞
−∞ PG(Eτ ,Ω)dτ < ∞, then u ∈ BVG(Ω) and equality (3.6)

holds. Moreover, if g : Ω → R is a Borel function, then∫
Ω
g(z)d ∥∇Gu∥ (z) =

∫ +∞

−∞

∫
Ω
g(z)dPG(Eτ )(z)dτ. (3.7)

Let us come to some finer properties of BVG functions and perimeters. In order to put formula
(3.5) in a form closer to the classical one we define the measuretheoretic or essential boundary.

Definition 3.5 (Essential boundary) Let E ⊂ Rn be a measurable set. We say that z ∈ ∂∗GE
if

lim sup
r→0

λn(Br(z) ∩ E)

λn(Br(z))
> 0, lim sup

r→0

λn(Br(z) \ E)

λn(Br(z))
> 0

and we call ∂∗GE the measuretheoretic or essential boundary of E.

It is immediately checked that ∂∗GE ⊂ ∂E. Observe that two different but equivalent
distances on G give the same essential boundary.

Let us see that the divergence theorem (3.5) can be rewritten in a form much closer to
the classical formula, see [2, Theorems 5.3, 5.4], where the problem is settled in general metric
measure spaces, and [4, Theorem 4.16].

Theorem 3.6 Given a set of finite G-perimeter E ⊂ Rn, for PG(E, ·)-a.e. z ∈ Rn there is
r̄(z) > 0 such that

ℓGr
Q−1 ≤ PG(E,B(z, r)) ≤ LGr

Q−1

for every r < r̄(z), where 0 < ℓG ≤ LG <∞ are two constants depending only on the group. As
a consequence, PG(E, ·) is concentrated on ∂∗GE, i.e., PG(E,G \ ∂∗GE) = 0, and there is a Borel
function βE : Rn → [ℓG, LG] such that

PG(E,B) =

∫
B∩∂∗GE

βE(z) dSQ−1
G (z), ∀B Borel set. (3.8)

The above theorem allows us to rewrite formula (3.5) as an integral on the essential boundary
with respect to the (Q− 1)-dimensional spherical Hausdorff measure as follows:∫

E
divGg(z)dz = −

∫
∂∗GE

⟨g, νE⟩z βE(z) dSQ−1
G . (3.9)

In the following remarks we collect some useful results proved by Franchi, Serapioni and Serra
Cassano [23, Theorem 2.3.5] and V. Magnani [33] on functions belonging to C1

G(Ω), for which
much more information is available.
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Remark 3.7 If Ω is bounded, a function u in C1
G(Ω) also belongs to BVG,loc(Ω) and by (3.3)

the equalities ∫
Ω
X∗
j g(z)u(z)dz =

∫
Ω
g(z)Xju(z)dz, j = 1, . . . ,m+ 1,

hold for every g ∈ C1
c (Ω). Recalling (2.5), we find that the measure derivative of u is ∇Guλn.

Moreover, we say that S ⊂ Ω is a G-regular surface if for any p ∈ S there are an open
neighborhood U of p and f ∈ C1

G(U) such that

S ∩ U = {z ∈ U : f(z) = 0 and ∇Gf(z) ̸= 0}.

Let Ω be an open subset of Rn, f ∈ C1
G(Ω), E = {f < 0}, S = {f = 0}, and let p ∈ Ω be such

that f(p) = 0 and ∇Gf(p) ̸= 0. Then, as proved in [24, Theorem 2.1], there is a neighborhood
U of p such that S ∩ U has finite perimeter and

νE(z) = − ∇Gf(z)

|∇Gf(z)|z
, z ∈ S ∩ U. (3.10)

In such a situation the equality ∂∗G(E ∩U) = ∂(E ∩U) holds, see [24, Theorem 3.3]. Notice also
that the topological dimension of a C1

G-regular surface is n−1, see [24, Proposition 3.1], whereas
its Hausdorff dimension with respect to the distance d∞ is Q− 1, see [24, Corollary 3.7].

Remark 3.8 If E is a finite perimeter set and ∂∗GE is G-regular, then formulas (3.8) and (3.9)
become simpler. Indeed, in this case the normal unit vector ν(z) is defined for every z ∈ ∂∗GE
and the function βE is constant, βE(z) = 1 for every z ∈ ∂∗E, by Theorem 4.1 in [33] and
the definition of the constant θ in (2.12). This is the reason why we have chosen the distance
d∞ and we have normalized the Hausdorff measure. These considerations are important in our
proof of Theorem 2.2, where (3.9) is applied to sets with finite perimeter such that a part of
the essential boundary is G-regular. Indeed, Theorem 4.1 in [33] is local, hence if F ⊂ ∂∗GE is
G-regular and relatively open, then βE = 1 in F .

We end this section with a variant of the localization lemma, see [3, Proposition 3.56] for the
Euclidean case and [25, Lemma 2.21] for the case of groups, where balls instead of hyperplanes
are considered.

Lemma 3.9 Let E ⊂ Rn be a set of finite G-perimeter. Then, for λ1-a.e. τ ∈ R the set
E ∩ {t < τ} has finite G-perimeter and for every Borel set B we have

∇GχE∩{t<τ}(B) = ∇GχE(B ∩ {t < τ})− λN (B ∩ {t = τ})eN+1.

Proof. Setting us(x, t) = {[(τ − t)/s) ∨ 0] ∧ 1}χE(x, t), we have us → χE∩{t<τ} in L1(Rn) as
s ↓ 0, whence by the semicontinuity of the total variation,

PG(E ∩ {t < τ}) ≤ lim inf
s↓0

∥∇Gus∥(Rn).

Now we compute

∇Gus = {[(τ − t)/s) ∨ 0] ∧ 1}∇GχE {t < τ − s} − 1

s
λn (E ∩ {τ − s < t < τ})eN+1

12



hence, setting m(τ) = λn(E ∩ {t < τ}), we have

lim sup
s↓0

∥∇Gus∥(Rn) ≤ ∥∇GχE∥({t < τ}) +m′(τ),

where m′ denotes the right derivative of m, which is finite for λ1-a.e. τ ∈ R. This proves that
E ∩ {t < τ} has finite G-perimeter for λ1-a.e. τ ∈ R. Therefore, since by (3.4)

PG(E ∩ {t < τ}, {t < τ}) = PG(E, {t < τ}),

and SQ−1
G (∂∗GE ∩ {t = τ}) = 0 for a.e. τ , we have

∇GχE∩{t<τ}(B) = ∇GχE(B ∩ {t < τ}) +∇GχE(B ∩ {t = τ})

for any Borel set B and λ1-a.e. τ . But, ∇GχE(z) = −eN+1SQ−1
G = −eN+1LN for z ∈ E∩{t = τ}

and the thesis follows. □

4 Proof of the mean value formula

In this section we give the proof of the mean value formulas and of the strong maximun principle.
In what follows, Ω is an open subset of RN+1, z0 = (x0, t0) ∈ Ω, Γ∗(z; z0) is the fundamental
solution of L ∗, and r0 > 0 is such that Ωr0(z0) is a bounded subset of Ω.

First, we state the following consequence of Lemma 3.9. It applies to the set Ωr(x0, t0)∩
{
t <

t0 − ε
}
, see Fig. 1 below.

(x0, t0)

Ωr(x0, t0)

t = t0 − ε

Fig.1 - The set Ωr(x0, t0) ∩
{
t < t0 − ε

}
.

Proposition 4.1 With the notation above, for a.e. ε > 0 and r ∈]0, r0] we have∫
Ωr(z0)∩{t<t0−ε}

divGΦ dz =

∫
∂∗GΩr(z0)∩{t<t0−ε}

⟨Φ, νΩr(z0)⟩zβΩr(z0)dS
Q−1
G

+

∫
Ωr(z0)∩{t=t0−ε}

⟨Φ, eN+1⟩zdλN

for every Φ ∈ C1
G(Ω).
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Proof. As Γ∗(·; z0) ∈ BVG,loc(Ω), see Remark 3.7, by the coarea formula (3.6) for a.e. r ∈]0, r0]
the set Ωr(z0) has finite G-perimeter. We then apply Lemma 3.9 with E = Ωr(z0) and τ = t0−ε
to have that Ωr(z0) ∩ {t < t0 − ε} has finite perimeter. The conclusion follows from (3.9). □

Proof.of Theorem 2.2. Let u be a classical solution to L u = f in Ω and let Ωr(z0) be such
that Ωr(z0) is a compact subset of Ω. We assume, as it is not restrictive, that u vanishes out
of a compact subset of Ω so that u can be smoothly extended by setting u(z) = 0 for every
z ̸∈ Ω. We prove our claim by applying Proposition 4.1 with r ∈]0, r0] and t = t0 − εk, for some
monotone sequence (εk)k∈N such that εk → 0 as k → ∞. Of course, we choose r and εk such
that the statement of Proposition 4.1 holds true.

For this choice of r, we set v(z) := Γ∗(z; z0)− 1
r , and we note that

u(z)L ∗v(z)− v(z)L u(z) =

m∑
i,j=1

Xj

(
u(z)aij(z)Xiv(z)− v(z)aij(z)Xiu(z)

)
−

m∑
j=1

Xj(u(z)v(z)bj(z))−Xm+1(u(z)v(z))

(4.1)

for every z ∈ Ω\
{
z0
}
. We then recall that L ∗v = 1

r (divG b− c) and L u = f in Ω\
{
z0
}
. Then

(4.1) can be written as follows

1

r
(divGb− c)u− vf = divGΦ, Φ := (uA∇Gv − vA∇Gu− uvb,−uv).

We then apply Proposition 4.1 and we find∫
Ωr(z0)∩{t<t0−εk}

(
1
r (divGb(z)− c(z))u(z)− v(z)f(z)

)
dz

= −
∫
∂∗GΩr(z0)∩{t<t0−εk}

⟨Φ, νΩr(z0)⟩zβΩr(z0)dS
Q−1
G +

∫
Ωr(z0)∩{t=t0−εk}

⟨Φ, eN+1⟩zdλN .
(4.2)

We next let k → ∞ in the above identity. As v ∈ L1(Ωr(z0)), and the remaining functions
appearing in the left hand side of (4.2) are bounded and continuous on Ωr(z0), we plainly have

lim
k→∞

∫
Ωr(z0)∩{t<t0−εk}

(
1
r (divGb(z)− c(z))u(z)− v(z)f(z)

)
dz =∫

Ωr(z0)

(
1
r (divGb(z)− c(z))u(z)− v(z)f(z)

)
dz.

(4.3)

We next prove that

lim
k→+∞

∫
Ωr(z0)∩{t=t0−εk}

⟨Φ, eN+1⟩zdλN = u(z0). (4.4)

We have ⟨Φ, eN+1⟩z(z) = u(z)v(z), then∫
Ωr(z0)∩{t=t0−εk}

⟨Φ, eN+1⟩zdλN =

∫
Ĩk
u(x, t0 − εk)

(
Γ∗(x, t0 − εk;x0, t0)−

1

r

)
dx, (4.5)
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where we have denoted
Ĩk :=

{
x ∈ RN | (x, t0 − εk) ∈ Ωr(z0)

}
.

Note that Ĩk agrees with the set Ir,ε(z0) defined in (2.14), with ε = εk, then the following
assertion holds because of our assumption (2.16)

lim
k→∞

H N
e

(
Ĩk
)
= 0, lim

k→∞

∫
RN\Ĩk

Γ∗(x, t0 − εk;x0, t0)dx = 0. (4.6)

Since Γ∗ is the fundamental solution to L ∗v = 0, and u is bounded and continuous, we have

lim
k→∞

∫
RN

Γ∗(x, t0 − εk;x0, t0)u(x, t0)dx = u(x0, t0).

The conclusion of the proof of (4.4) then follows from (4.6), by using again the fact that u is
bounded and uniformly continuous.

We are left with the first integral in the right hand side of (4.2). We preliminarily note that
v(z) = 0 for every z ∈ ∂Ωr(z0), then

Φ(z) =
(
u(z)A(z)∇Gv(z), 0

)
∀z ∈ ∂Ωr(z0).

Moreover, (3.10) gives ν(z) = − ∇GΓ
∗(z;z0)

|∇GΓ∗(z;z0)|z for every z such that ∇GΓ
∗(z; z0) ̸= 0, while Φ(z) =

0 whenever ∇GΓ
∗(z; z0) = 0. We then find∫

∂∗GΩr(z0)∩{t<t0−εk}
⟨Φ, ν⟩zβΩr(z0)dS

Q−1
G =

∫
∂∗GΩr(z0)∩{t<t0−εk}

u(x, t)KG(z0; z)βΩr(z0)dS
Q−1
G , (4.7)

where

KG(z0; z) =
⟨A(z)∇GΓ

∗(z; z0),∇GΓ
∗(z; z0)⟩z

|∇GΓ∗(z; z0)|z
is the kernel defined in (2.19). We next prove that KG(z0; ·) belongs to L1 with respect to
the measure SQ−1

G ∂∗GΩr(z0). We apply the identity (4.2) to a compactly supported smooth

function u with the property that u(z) = 1 for every z ∈ Ωr(z0). We have L u = c in Ωr(z0),
then (4.3) and (4.4) yield

lim
k→+∞

∫
∂∗GΩr(z0)∩{t<t0−εk}

KG(z0; z)βΩr(z0)dS
Q−1
G = 1 +

∫
Ωr(z0)

(
c(z)Γ∗(z; z0)−

1

r
divG b(z)

)
dz.

Since the functionsKG and βΩr(z0) are both non-negative and the sequence
(
εk
)
k∈N is decreasing,

we conclude that ∫
∂∗GΩr(z0)

KG(z0; z)βΩr(z0)dS
Q−1
G

is finite. This proves the first equality in the following

lim
k→+∞

∫
∂∗GΩr(z0)∩{t<t0−εk}

⟨Φ, ν⟩zβΩr(z0)dS
Q−1
G =

∫
ψr(z0)
u(x, t)KG(z0; z)βΩr(z0)dS

Q−1
G

=

∫
ψr(z0)

u(x, t)KG(z0; z)dSQ−1
G

(4.8)
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for every u ∈ C(Ωr(z0)). In the second equality we took into account that KG(z0; z) = 0 if
∇GΓ

∗(z) = 0 and that ψr(z0) \ {∇GΓ
∗ = 0} is a C1

G-regular surface, hence βΩr(z0) = 1 there, see
Remark 3.8. The proof of the first assertion of Theorem 2.2 then follows by using (4.3), (4.4)
and (4.8) in (4.2).

The proof of the second assertion of Theorem 2.2 is a direct consequence of the first one and
of the coarea formula stated in Proposition 3.4. Indeed, fix a positive r as above, multiply by 1

r
and integrate over ]0, r[. We find

1

r

∫ r

0
u(z0)dϱ =

1

r

∫ r

0

(∫
∂∗GΩϱ(z0)

KG(z0; z)u(z) dPG(Ωϱ(z0))

)
dϱ

+
1

r

∫ r

0

(∫
Ωϱ(z0)

f(z)
(
1
ϱ − Γ∗(z; z0)

)
dz

)
dϱ

+
1

r

∫ r

0

1
ϱ

(∫
Ωϱ(z0)

(divGb(z)− c(z))u(z) dz

)
dϱ.

(4.9)

The left hand side of the above equality equals u(z0), while the last two terms agree with the
last two terms appearing in the statement of Theorem 2.2. In order to conclude the proof we
only need to show that∫ r

0

(∫
∂∗GΩϱ(z0)

KG(z0; z)u(z) dPG(Ωϱ(z0))

)
dϱ =

∫
Ωϱ(z0)

MG(z0; z)u(z)dz (4.10)

where MG is the kernel defined in (2.19). With this aim, we set

Ey(z0) :=
{
z ∈ RN+1 | Γ∗(z; z0) > y

}
, y > 0,

and we substitute y = 1
ϱ in the left hand side of (4.10). Note that ∂∗GEy(z0) = ∂∗GΩϱ(z0) if y = 1

ϱ
and Γ∗(z; z0) = y for every z ∈ ∂∗GEy(z0). Then∫ r

0

(∫
∂∗GΩϱ(z0)

⟨A(z)∇GΓ
∗(z; z0),∇GΓ

∗(z; z0)⟩z
|∇GΓ∗(z0; z)|z

u(z) dPG(Ωϱ(z0))

)
dϱ

=

∫ ∞

1
r

1

y2

(∫
∂∗GEy(z0)

⟨A(z)∇GΓ
∗(z; z0),∇GΓ

∗(z; z0)⟩z
|∇GΓ∗(z; z0)|z

u(z) dPG(Ey(z0))

)
dy

=

∫ ∞

1
r

(∫
∂∗GEy(z0)

⟨A(z)∇GΓ
∗(z; z0),∇GΓ

∗(z; z0)⟩z
Γ∗(z; z0)2|∇GΓ∗(z; z0)|z

u(z) dPG(Ey(z0))

)
dy.

We finally recall the definition of the kernel MG and we conclude the proof of (4.10) by using
the coarea formula stated in Proposition 3.4. □

Proof. of Theorem 2.5. We first note that L 1 = c, then Theorem 2.2 yields

1

ϱ

∫
Ωϱ(z1)

MG(z1; z) dz +
1

ϱ

∫ ϱ

0

(
1
s

∫
Ωs(z1)

(divG b(z)− c(z)) dz
)
ds

+

∫
Ωs(z1)

c(z)
(
1
s − Γ∗(z; z1)

)
dz
)
ds = 1
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for every z1 ∈ Ω and ϱ > 0 such that Ωϱ(z1) ⊂ Ω.
We claim that for every z1 ∈ Ω such that u(z1) = maxΩ u we have

u(z) = u(z1) for every z ∈ Ωϱ(z1). (4.11)

By using again Theorem 2.2 and the above identity we obtain

0 =
1

ϱ

∫
Ωϱ(z1)

MG(z1; z)
(
u(z)− u(z1)

)
dz

+
1

ϱ

∫ ϱ

0

1
s

(∫
Ωs(z1)

(divG b(z)− c(z))
(
u(z)− u(z1)

)
dz
)
ds

+
1

ϱ

∫ ϱ

0

(∫
Ωs(z1)

(f(z)− u(z1)c(z))
(
1
s − Γ∗(z; z1)

)
dz

)
ds.

Note that c ≤ 0, f ≥ 0, divG b(z) − c(z) > 0 and u(z) ≤ u(z1), being u(z1) = maxΩ u ≥ 0.
Moreover, MG(z1; z) ≥ 0 and Γ∗(z; z1) >

1
s for every z ∈ Ωs(z1), then

0 ≥1

ϱ

∫
Ωϱ(z1)

MG(z1; z)
(
u(z)− u(z1)

)
dz

0 ≥1

ϱ

∫ ϱ

0

1
s

(∫
Ωs(z1)

(divG b(z)− c(z))
(
u(z)− u(z1)

)
dz
)
ds

0 ≥1

ϱ

∫ ϱ

0

(∫
Ωs(z1)

(f(z)− u(z1)c(z))
(
1
s − Γ∗(z; z1)

)
dz

)
ds.

Hence the three integral vanish and, as a consequence, (divG b(z)− c(z))
(
(u(z)−u(z1)

)
= 0 for

λN+1 almost every z ∈ Ωϱ(z1). Because our assumption on the sign of divG b − c we have that
u(z) = u(z1) for λ

N+1 almost every z ∈ Ωϱ(z1), and (4.11) follows from the continuity of u.
We are in position to conclude the proof of Theorem 2.5. Let z be a point of Az0(Ω), and

let γ : [0, T ] → Ω be an L -admissible path such that γ(0) = z0 and γ(T ) = z. We prove that
u(γ(t)) = u(z0) for every t ∈ [0, T ]. Let

I :=
{
t ∈ [0, T ] | u(γ(s)) = u(z0) for every s ∈ [0, t]

}
, t := sup I.

Clearly, I ̸= ∅ as 0 ∈ I. Moreover I is closed, because of the continuity of u and γ, then t ∈ I.
We now prove by contradiction that t = T . Indeed, if t < T , then we let z1 := γ(t), and we
note that z1 ∈ Ω, u(z1) = maxΩ u. Moreover, there exist r1 > 0 such that Ωr1(z1) ⊂ Ω and, by
condition [H.4], a positive s1 such that γ(t+ s) ∈ Ωr1(z1) for every s ∈ [0, s1[. As a consequence
of (4.11) we obtain u(γ(t + s)) = u(z1) = u(z0) for every s ∈ [0, s1[, and this contradicts the
assumption t < T . This proves that u(z) = u(z0) for every z ∈ Az0(Ω). By the continuity of u
we conclude that u(z) = u(z0) for every z ∈ Az0(Ω). Eventually, since u is constant in Az0(Ω),
we conclude that f(z) = L u(z) = u(z0) c(z) for every z ∈ Az0(Ω).

We finally remark that the condition on the sign of u(z0) was used only to guarentee that
u(z0)c(z) has the required sign. If we assume c = 0, the needed condition is always satisfied,
and we conclude that f = 0. □
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5 Examples

In this section we list several examples of well-known and important operators verifying the
hypotheses of our results, that basically rely on a suitable group structure and on the existence
and the properties of the fundamental solution. As said in the Introduction, we warn the reader
that the natural dilation operator used in the regularity theory is not the same we use here
to prove mean value formulas, and in each example both are described. The homogeneous Lie
groups in the examples we are going to present are the Carnot groups and the Kolmogorov
groups. We refer to the monograph [9] for a detailed treatment of the subject of Carnot groups,
and to the survey article [5] for the homogeneous Kolmogorov groups. Next, we check that our
hypotheses on the fundamental solutions hold true, recalling in each case the relevant known
results on existence and estimates. Concerning the problem of its existence, we recall that Levi’s
parametrix method provides us with the existence of a fundamental solution for non-divergence
operators with Hölder continuous coefficients in the setting of uniformly elliptic and parabolic
operators. This method has been extended to the case of heat operators on Carnot groups
whose prototypical case is the Heisenberg group in Example 5.1 and to degenerate Kolmogorov
operators, described in Example 5.6, which are two large classes of operators to which our results
apply.

Example 5.1 Sublaplacian and parabolic operator on the Heisenberg group. The
Heisenberg group Hn = (R2n+1, ·) is defined by the composition law

(x, y, s) · (x′, y′, s′) =
(
x+ x′, y + y′, s+ s′ + 2

n∑
j=1

(x′jyj − xjy
′
j)
)
. (5.1)

The dilation
δ̃λ(x, y, s) =

(
λx, λy, λ2s

)
(5.2)

is an automorphism of Hn and induces a direct sum decomposition on R2n+1

R2n+1 = V1 ⊕ V2, (5.3)

where V1 = {(x, y, 0) | x, y,∈ Rn} and V2 = {= (0, 0, s) | s ∈ R}. The vector fields

Xj = ∂xj + 2yj∂s, Yj = ∂yj − 2xj∂s, j = 1, . . . , n, (5.4)

are left-invariant on (Hn, ·). Moreover

[Xj , Yj ] = −4∂s, j = 1, . . . , n,

while
[Xj , Xk] = [Yj , Yk] = [Xj , Yk] = 0, j, k = 1, . . . , n.

In particular, X1, . . . , Xn, Y1, . . . , Yn evaluated at (x, y, s) = (0, 0, 0) is a basis of V1 and the
Lie algebra generated by X1, . . . , Xn, Y1, . . . , Yn, evaluated at any point of R2n+1, agrees with
R2n+1. The homogeneous dimension of the Heisenberg group is QH = 2n + 2. The differential
operator

∆Hn :=
n∑
j=1

(
X2
j + Y 2

j

)
, (5.5)
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is said sub-Laplacian on Hn.
The homogeneous Lie group G =

(
R2n+2, ◦, (δλ)λ>0

)
relevant to the heat operator on the

Heisenberg group,

H0 :=
n∑
j=1

(
X2
j + Y 2

j

)
− ∂t, (5.6)

is defined by the composition

(x, y, s, t) ◦ (x′, y′, s′, t′) =
(
(x, y, s) · (x′y′, s′), t+ t′

)
, (5.7)

and by the dilation
δλ(x, y, s, t) =

(
δ̃λ(x, y, s), λt

)
. (5.8)

Here W1 = {(x, y, 0, t) | x, y,∈ Rn, t ∈ R} and W2 = {= (0, 0, s, 0) | s ∈ R}, and the
homogeneous dimension is Q = QH + 1. Note that the parabolic scaling

δ̂λ(x, y, s, t) =
(
δ̃λ(x, y, s), λ

2t
)

(5.9)

is commonly used in the regularity theory for the solutions to H0u = f . In this framework,
the vector fields X1, . . . , Xn, Y1, . . . , Yn are homogeneous of degree 1 with respect to the dilation
(δλ)λ>0, while the derivative ∂t is homogeneous of degree 2, as usual in the case of parabolic
operators. The homogeneous dimension of the group, with respect to

(
δ̂λ
)
λ>0

, is QH+2, because
of the different role played by the time variable t. □

As said above, the Heisenberg group is the prototype of Carnot groups C = (RN , ·, δ̃λ). The
Lie group G =

(
RN+1, ◦, (δλ)λ>0

)
relevant to the heat operator on a Carnot group is defined by

the operations
(x, t) ◦ (x′, t′) =

(
x · x′, t+ t′

)
, δλ(x, t) =

(
δ̃λx, λt

)
, (5.10)

being
δ̃λ = diag(λIm1 , λ

2Im2 , . . . , λ
µImµ). (5.11)

The homogeneous dimension of the Carnot group C is QC = m1 + 2m2 + · · · + µmµ, and the
homogeneous dimension of G defined in (2.4) is QC + 1.

If we consider the direct sum decomposition (2.2), we let m = m1 and we choose a family
of left-invariant vector fields X1, . . . , Xm that form a basis of W1, with the property that
X1(0), . . . Xm(0) are orthonormal. The sub-Laplacian on C and the heat operator are then
defined as

∆C :=
m∑
j=1

X2
j , H0 = ∆C − ∂t. (5.12)

Also in this case, the parabolic dilation

δ̂λ(x, t) =
(
δ̃λ(x), λ

2t
)

(5.13)

is useful in the regularity theory relevant to H0, and QC + 2 is the homogeneous dimension of
G with respect to

(
δ̂λ
)
λ>0

.
We next quote an existence result proved by Bonfiglioli, Lanconelli and Uguzzoni [10], which

applies to parabolic and elliptic operators on Carnot groups. In the next statement d∞(x, y)
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denotes the distance of x and ξ ∈ RN , which agrees with d∞((ξ, 0), (x, 0)). Note that the
regularity assumption made in [10] is written in terms of the parabolic distance. Indeed, in [10]
the following condition

|u(x, t)− u(ξ, τ)| ≤M1

(
d∞(x, ξ) + |t− τ |1/2

)β
, for every (x, t), (ξ, τ) ∈ Ω,

is required on the coefficients of the operator. However, this condition follows from (2.11) if we
choose α = β/2, since the coefficients are bounded.

Theorem 5.2 (Theorem 1.2 in [10]) Let X1, . . . Xm be vector fields that satisfy the Hörmander
condition [H.1] and that generate a Carnot group C = (RN , ·, δ̃λ), and let QC be its homogeneous
dimension. Consider the differential operator

Hu :=

m∑
i,j=1

Xi (aijXju) + 2

m∑
i,j=1

XiaijXju+

m∑
i,j=1

XiXjaiju− ∂tu, (5.14)

where A = (aij)i,j=1,...,m is a symmetric matrix satisfying the condition (1.3) for some constant
Λ ≥ 1. Suppose that, for every i, j = 1, . . . ,m, the coefficients aij and their derivatives Xiaij
and XiXjaij belong to the space CαG(RN+1) for some α ∈]0, 1]. Then there exists a fundamental
solution Γ∗ of the adjoint operator

H∗ =
m∑

i,j=1

aijXiXj + ∂t.

Moreover, Γ∗ satisfies the following estimates: for every positive T there exist two positive
constants M only depending on H, and C(T ), also depending on T , such that

0 ≤ Γ∗((ξ, τ), (x, t)) ≤ C(T )

(t− τ)QC/2
exp

(
− d2∞(ξ, x)

M(t− τ)

)
, (5.15)

for every (ξ, τ), (x, t) ∈ RN+1 with 0 < t − τ ≤ T . Moreover, there exist M0,K0, T0 > 0 such
that

Γ∗((ξ, τ), (x, t)) ≥ c(T0)

(t− τ)QC/2
exp

(
−M0

d2∞(ξ, x)

t− τ

)
, (5.16)

for every (ξ, τ), (x, t) ∈ RN+1 with 0 < t− τ ≤ T0 such that M0
d2∞(ξ,x)
t−τ ≤ − log

(
K0(t− τ)QC/2

)
.

Remark 5.3 Even though the inequality (5.16) is not explicitly written in [10], it is a direct
consequence of the inequalities (2.2) and (2.15) therein. Moreover, bounds analogous to (5.15)

hold for the derivatives
∣∣∣X∗

j Γ
∗((ξ, τ), (x, t))

∣∣∣ , ∣∣∣X∗
iX

∗
j Γ

∗((ξ, τ), (x, t))
∣∣∣ , i, j = 1, . . .m and for

|∂τΓ∗((ξ, τ), (x, t))|. We expect that the assumptions on the coefficients of the lower order
terms of the operator H can be relaxed.

The following result ensures that the mean value formulas stated in Theorem 2.2 hold for
every operator H satisfying the assumptions of Theorem 5.2.

Proposition 5.4 Under the assumption of Theorem 5.2, there exists a positive r0 such that
(2.15) and (2.16) hold for every z0 ∈ RN+1.

20



Proof. Fix a positive T and let M and C(T ) be the constants appearing in the bound (5.15).
If we choose r0 such that r0 ≤ TQC/2/C(T ), we find

Ωr(x0, t0) ⊂
{
(x, t) ∈ RN×]t0 − T, t0[| d2∞(x, x0) < M(t0 − t) log

(
C(T )r

(t0−t)QC/2

)}
,

Ir,ε(x0, t0) ⊂
{
x ∈ RN | d2∞(x, x0) < Mε log

(
C(T )r

εQC/2

)}
,

for every (x0, t0) ∈ RN+1, r ∈]0, r0] and ε ∈]0, T ]. This proves (2.15) and the first assertion in
(2.16). On the other hand, from the inequality (5.16) it follows that

Ir,ε(x0, t0) ⊃
{
x ∈ RN | d2∞(x, x0) <

ε
M0

log
(
c(T0)r

εQC/2

)}
,

for every ε ∈]0, T0], then

0 <

∫
RN\Ir,ε(x0,t0)

Γ∗(x, t0 − ε;x0, t0)dx

≤ C(T )

εQC/2

∫{
x∈RN |d2∞(x,x0)≥ ε

M0
log

(
c(T0)r

εQC/2

)} exp

(
−d

2
∞(x, x0)

Mε

)
dx

= C(T )

∫{
y∈RN |d2∞(y,0)≥ 1

M0
log

(
c(T0)r

εQC/2

)} exp

(
−d

2
∞(y, 0)

M

)
dy.

Note that the quantities in the last two lines agree because of the change of variable y =
δλ(x

−1
0 ◦ x) with λ = 1√

ε
and the property (2.10) of the distance d∞. The last integral vanishes

as ε→ 0 and this concludes the proof. □

Proposition 5.5 Under the assumption of Theorem 5.2, the operator H defined in (5.14)
satisfies condition [H.4].

Proof. Consider the set Ωr(z) for some z = (x, t) ∈ RN+1, and r > 0, and denote γ(s) =

(x(s), t − s). Let s1 be any positive constant such that K0s
QC/2
1 < 1, where K0 is as in the

statement of Theorem 5.2. We claim that there exists s2 ∈]0, s1] such that

d2∞(x(s), x)

s
≤ − 1

M0
log
(
K0s

QC/2
1

)
, for every s ∈]0, s2], (5.17)

where M0,K0 are the constants appearing in (5.16). As a consequence, (5.16) is satisfied for
every (ξ, τ) = (x(s), t− s) = γ(s) with 0 < s < s2 ∧ T0, so that

Γ∗(γ(s), (x, t)) ≥ K0c(T0)
(s1
s

)QC/2
>

1

r

for every s ∈]0, s0[ if we set s0 = s2 ∧ T0 ∧ s1(rK0c(T0))
2/QC . This means that γ(s) ∈ Ωr(z) for

every s ∈]0, s0[, and the proof of [H.4] is concluded.
In order to prove that there exists a positive s2 such that our claim (5.17) holds, we recall

that the Carnot-Carathéodory distance between two points x, y belonging to the Carnot group
C = (RN , ·, δ̃λ) can be defined as

dcc(y, x) = inf

∫ T

0
|ω(τ)|dτ (5.18)
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where the infimum is taken among all the absolutely continuous paths x : [0, T ] → RN such that

x(0) = x, x(T ) = y, and ẋ(τ) =
m∑
j=1

ωjXj(x(τ)). (5.19)

By Hölder’s inequality, we have∫ T

0
|ω(τ)|dτ ≤

√
T

(∫ T

0
|ω(τ)|2dτ

)1/2

,

then, if we consider the path x = x(s) in (5.17), we find

1

s

(∫ s

0
|ω(τ)|dτ

)2

≤
∫ s

0
|ω(τ)|2dτ → 0, as s→ 0,

because we assume that ω ∈ L2([0, T ],Rm). Then also

d2cc(x(s), x)

s
→ 0 as s→ 0,

and the claim (5.17) follows from the fact that d∞ is equivalent to dcc in all Carnot groups. □

Example 5.6 Degenerate Kolmogorov operators. The simplest degenerate Kolmogorov
operator defined for (x, y, t) ∈ Rn × Rn × R is

K0 :=

n∑
j=1

∂2xj +

n∑
j=1

xj∂yj − ∂t (5.20)

and can be written in the form (1.8) with m = n and

Xj = ∂xj , j = 1, . . . , n, and Xn+1 =

n∑
j=1

xj∂yj − ∂t.

Note that
[Xj , Xn+1] = ∂yj , j = 1, . . . , n,

and Hörmander condition [H.1] is satisfied. The homogeneous Lie group K =
(
R2n+1, ◦, (δλ)λ>0

)
relevant to this operator is defined by the composition rule

(x, y, t) ◦ (x′y′, t′) = (x+ x′, y + y′ − t′x, t+ t′), (5.21)

and by the dilation
δλ(x, y, t) = (λx, λ2y, λt), (5.22)

which is an automorphism of K and induces a direct sum decomposition on R2n+1

R2n+1 =W1 ⊕W2, (5.23)

where W1 = {(x, 0, t) | x ∈ Rn, t ∈ R} and W2 = {(0, y, 0) | y ∈ Rn}.
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The parabolic dilation on K

δ̂λ(x, y, t) = (λx, λ3y, λ2t), (5.24)

induces a different direct sum decomposition on R2n+1

R2n+1 = V1 ⊕ V2 ⊕ V3, (5.25)

where V1 = {(x, 0, 0) | x ∈ Rn}, V2 = {= (0, 0, t) | t ∈ R} and V3 = {(0, y, 0) | y ∈ Rn}. Note
that the homogeneous dimension of the group K with respect to the dilation (5.22) is Q = 3n+1,
while its homogeneous dimension with respect to the dilation (5.24) is 4n+ 2. □

The above example arises in stochastic analysis and in its several applications, we refer to
the article [5] for a survey of known results and for a recent bibliography on this subject. The
Example 5.6 is also the proptotype of a more general family of degenerate Kolmogorov operators.
Indeed our main results apply to differential operators of the form

K0 :=
m∑

i,j=1

aij∂xixj +
N∑

i,j=1

bijxj∂xi − ∂t (5.26)

under the assumption that the matrix A = (aij)i,j=1,...,m has real constant entries, is symmetric
and strictly positive in Rm, while B = (bij)i,j=1,...,N has real constant entries and takes the
following form, where we agree to let m0 = m in order to have a simple and consistent notation:

B =


O O . . . O O
B1 O . . . O O
O B2 . . . O O
...

...
. . .

...
...

O O . . . Bκ O

 . (5.27)

Here every block Bj is a mj ×mj−1 matrix of rank mj with j = 1, 2, . . . , κ. Moreover, the mjs
are positive integers such that

m0 ≥ m1 ≥ . . . ≥ mκ ≥ 1, and m0 +m1 + . . .+mκ = N (5.28)

and all the entries of the blocks denoted by O are zeros. Note that a plain change of variable
allows us to write the second order part of the operator K0 as

∑m
j=1 ∂

2
xj , without modifying the

stucture of the matrix B. Then the operator K0 in (5.26) can be written in the form (1.1) if we
set b = 0, c = 0

X0 =
N∑

i,j=1

bijxj∂xi , Xj = ∂xj , for j = 1, . . . ,m.

In [32] it has been proved that the operator K0 in (5.26) is invariant with respect to the following
Lie group structure

(x, t) ◦ (ξ, τ) = (ξ + E(τ)x, t+ τ), E(τ) = exp(−τB). (5.29)
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Moreover K0 is invariant with respect to the dilation δλ defined by the matrix

δλ = diag(λIm0 , λ
2Im1 , . . . , λ

κ+1Imκ , λ), (5.30)

where Imj denotes the identity matrix in Rmj . A direct computation shows that

K =
(
RN+1, ◦, (δλ)λ>0

)
is a homogeneous Lie group whose homogeneous dimension is Q = m0+1+2m1+ · · ·+(κ+1)mκ

and that the vector fields X1, . . . , Xm, Xm+1 satify the conditions [H.1] and [H.2].
It is remarkable that, if we consider the parabolic dilation

δ̃λ = diag(λIm0 , λ
3Im1 , . . . , λ

2κ+1Imκ , λ
2), (5.31)

then we find the direct sum decomposition g = V1 ⊕ · · · ⊕ V2κ+1 with

V1 = span
{
X1, . . . Xm

}
, V2 = span

{
Xm+1

}
, V2j =

{
0
}
, for j = 2, . . . , κ,

V2j+1 = span
{
[Xi, Xm+1] | Xi ∈ V2j−1

}
, j = i, . . . , κ.

This decomposition differs from (2.2) in that all the spaces W1, . . . ,Wµ appearing in (2.2) are
non-trivial. The integer QP = m0 + 3m1 + · · ·+ (2κ+ 1)mκ + 2 is usually referred to as .

Let us consider the variable coefficient degenerate Kolmogorov operator

Ku :=

m∑
i,j=1

∂xi
(
aij∂xju

)
+

m∑
j=1

bj∂xju+ cu+

N∑
i,j=1

bijxj∂xiu− ∂tu (5.32)

where the matrix A = (aij)i,j=1,...,m is symmetric and satisfies the condition (1.3) for some
constant Λ ≥ 1, b1, . . . , bm, and c are bounded continuous functions, and B = (bij)i,j=1,...,N is as
in the Example 5.6. Consider also its adjoint operator

K∗v =

m∑
i,j=1

∂xi
(
aij∂xjv

)
−

m∑
j=1

∂xj (bjv) + cv −
N∑

i,j=1

bijxj∂xiv + ∂tv.

The following result has been proved by one of the authors in [39] for Kolmogorov operators
with no lower order terms, and by Di Francesco and Pascucci in [19] in the general setting. It
requires a further notation. For any positive Λ we consider the operator

KΛu := Λ
m∑
j=1

∂2xiu+
N∑

i,j=1

bijxj∂xi − ∂t. (5.33)

Representing the matrix B as in (5.27), where Bj is a mj × mj−1 is matrix of rank mj for
j = 1, 2, . . . , κ, and the integers m0, . . . ,mκ do satisfy (5.28), then the fundamental solution of
KΛ is well defined and can be explicitly written as follows. Denote by J the N × N matrix
J := diag(Im0 , 0, . . . , 0) and define, for every t ∈ R,

E(t) = exp(−tB), C(t) =

∫ t

0
E(s) J ET (s) ds.
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Then the matrix C(t) is non singular for every positive t and the fundamental solution ΓΛ of
KΛ is

ΓΛ(x, t; ξ, τ) =
(4πΛ)−

N
2√

detC(t− τ)
exp

(
− 1

4Λ⟨C
−1(t− τ)(x− E(t− τ)ξ), x− E(t− τ)ξ⟩

)
, (5.34)

for t > τ , while ΓΛ(x, t; ξ, τ) = 0 whenever t ≤ τ . Moreover, Γ∗
Λ(ξ, τ ;x, t) := ΓΛ(x, t; ξ, τ) is the

fundamental solution of K∗
Λ. With this notation we have

Theorem 5.7 (Theorem 1.4 in [19]) Consider the degenerate Kolmogorov operator K in (5.32).
Assume that the matrix A = (aij)i,j=1,...,m is symmetric and satisfies the condition (1.3) for some
constant Λ ≥ 1, while B = (bij)i,j=1,...,N has the form (5.27), where Bj is a mj×mj−1 is matrix
of rank mj with j = 1, 2, . . . , κ, and the integers m0, . . . ,mκ do satisfy (5.28). Assume also
that, for every i, j = 1, . . . ,m, the coefficients aij , bj , c, ∂xiaij and ∂xjbj are bounded functions
belonging to the space CαG(RN+1) for some α ∈]0, 1]. Then there exists a fundamental solution
Γ∗ of the adjoint operator K∗. Moreover, Γ∗ satisfies the following estimates: for every positive
T there exist four positive constants Λ+ only depending on K, and Λ−, C−(T ) and C+(T ), also
depending on T , such that

C−(T ) Γ∗
Λ−((ξ, τ), (x, t)) ≤ Γ∗((ξ, τ), (x, t)) ≤ C+(T ) Γ∗

Λ+((ξ, τ), (x, t)), (5.35)

for every (ξ, τ), (x, t) ∈ RN+1 with 0 < t− τ ≤ T .

The following result ensures that the mean value formulas stated in Theorem 2.2 hold for
every operator K satisfying the assumptions of Theorem 5.7.

Proposition 5.8 If the operator K defined in (5.32) satisfies the assumption of Theorem 5.7,
then there exists a positive r0 such that (2.15) and (2.16) hold for every z0 ∈ RN+1.

The proof of Proposition 5.8 is analogous to that of Proposition 5.4 and is omitted. We
next prove that, under the assumption of Theorem 5.7, the operator K satisfies [H.4], then
Theorem 2.5 does apply to K. We then find the following strong maximum-minimum principle
for degenerate Kolmogorov operators.

Proposition 5.9 Let K be the operator defined in (5.32), satisfying the assumption of Theorem
5.7, with c ≤ 0 and c − divG b < 0. Let u be a classical solution to Ku = f in an open subset
Ω ⊂ RN+1, and let z0 = (x0, t0) ∈ Ω be such that u(z0) = maxΩ u ≥ 0 and f ≥ 0 in Ω; then

u(z) = u(z0) and f(z) = u(z0)c(z) for every z ∈ Az0(Ω).

The analogous result holds true if u(z0) = minΩ u ≤ 0 and f ≤ 0 in Ω. Moreover, we can drop
the assumption on the sign of u(z0) if c = 0.

Proof. We first prove that K satisfies [H.4]. Consider the set Ωr(z) for some z = (x, t) ∈ RN+1,
and r > 0, and let T > 0 be such that Ωr(z) ⊂ RN×]t− T, t[. From (5.35) it follows that

Ωr(z) ⊃ Ω̂r(z) :=
{
ζ ∈ RN×]−∞, t[: Γ∗

Λ−(ζ; z) > 1
C−(T )r

}
.
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As in the proof of Proposition 5.5, we need to show that there exists a positive s2 such that
γ(s) ∈ Ω̂r(z) for every s ∈]0, s2[. If we denote γ(s) = (x(s), t− s), in view of (5.34), this means
that

⟨C−1(s)(x− E(s)x(s)), x− E(s)x(s)⟩ ≤ C0 + C1

(
log(r)− QP−2

2 log(s)
)

for some positive constants C0, C1 depending on Λ− and on T . Recall that QP is the parabolic
homogeneous dimension of K. This fact has been proved in Lemma 3.7 of [31]. This concludes
the proof of [H.4], then Theorem 2.5 does apply to K. □

Remark 5.10 In the case of degenerate Kolmogorov operators the geometry of the propagation
set doesn’t agree with the one relevant to uniformly parabolic operators. Consider for instance
the following operator K:

Ku(x, y, t) = ∂x
(
a(x, y, t)∂xu(x, y, t)

)
+ x∂yu(x, y, t)− ∂tu(x, y, t)

defined for (x, y, t) ∈ Ω =] − R,R[×] − 1, 1[×] − 1, 1[⊂ R3, with R > 0, and let z0 = (0, 0, 0).
Then Az0(Ω) = {(x, y, t) ∈ Ω : |y| < −R t} (see Fig. 2 below). We recall that in Proposition
4.5 of [15] it is shown that there exists a non-negative solution u to Ku = 0 vanishing in the set
Az0(Ω) and strictly positive elsewere. Then the minimum principle stated in Proposition 5.9 is
sharp.

t

xy

(0, 0, 0)

Fig.2 - The set Az0(Ω).

Remark 5.11 Theorem 5.7 and Propositions 5.8 and 5.9 have been proved in [19] under a
less restrictive assumption. Specifically, the Lie group defined by (5.29) doesn’t need to be
homogeneous. The matrix B is assumed to have the following form

B =


∗ ∗ . . . ∗ ∗
B1 ∗ . . . ∗ ∗
O B2 . . . ∗ ∗
...

...
. . .

...
...

O O . . . Bκ ∗

 , (5.36)

where every block Bj is a mj × mj−1 matrix of rank mj with j = 1, 2, . . . , κ, and the blocks
denoted by ∗ are arbitrary.
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Note that, in this case, the identity (2.5) still holds for j = 1, . . . ,m, while X∗
m+1f =

−Xm+1f − trBf for suitably smooth test functions f . Moreover, bounds analogous to (5.35)

hold for
∣∣∣X∗

j Γ
∗((ξ, τ), (x, t))

∣∣∣, for j = 1, . . . ,m+1, and for
∣∣∣X∗

iX
∗
j Γ

∗((ξ, τ), (x, t))
∣∣∣ , i, j = 1, . . .m.
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