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Abstract. We study the free discontinuity problem

min

{

∫

Ω\K

|∇u|2dx+ λH n−1(K)

}

where the minimum is taken over all the closed sets K ⊂ Ω and the functions u ∈ C1(Ω \ K) ∩
C0(Ω \ (M ∪ K)) with u = w on ∂Ω \ (M ∪ K); here Ω is a bounded domain in Rn, n ≥ 2,
such that H n−1(∂Ω) < +∞ and ∂Ω is a C1 surface up to an H n−1 negligible closed set M ,
w ∈ C1(∂Ω \ M) ∩ L∞(∂Ω \ M), 0 < λ < +∞ and H n−1 is the (n − 1)-dimensional Hausdorff
measure.

1. Introduction.

In this paper we prove the following existence theorem of a solution for a free discontinuity
problem with Dirichlet type boundary conditions.

THEOREM 1.1. Let n ∈ N, n ≥ 2, let Ω ⊂ Rn be a bounded domain with H n−1(∂Ω) < +∞;
assume that a closed set M exists such that H n−1(M) = 0 and ∂Ω \M is a C1 surface; let w ∈
C1(∂Ω\M)∩L∞(∂Ω\M) and let 0 < λ < +∞.Then there exists at least one pair (K,u) minimizing
the functional G defined for every closed set K ⊂ Ω and for every u ∈ C1(Ω\K)∩C0(Ω\ (M ∪K))
with u = w on ∂Ω \ (M ∪K) by

G(K,u) =

∫

Ω\K

|∇u|2dx+ λH n−1(K),

where H n−1 is the (n− 1)-dimensional Hausdorff measure.

An existence theorem for a free discontinuity minimum problem with Neumann type boundary
conditions has been recently proved in [14]. In the case n = 2 Theorem 1.1 of [14] has provided
the beginning of a positive answer to a problem of image segmentation in Computer Vision Theory
posed by D. Mumford and J. Shah in [24] (see also [6], [8], [10], [11], [23]). We refer to [12] and [16]
for very interesting conjectures on further regularity properties of the set K, which, if proved, shall
provide also a complete and positive answer to the image segmentation problem mentioned above.
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Following [12], these minimum problems fall into the class of the variational problems, in a
given open set Ω ⊂ Rn, with free discontinuities, since a solution is a pair (K,u), where K is
a closed set, u is a smooth function in Ω \ K and K is not necessarily the union of essential
boundaries, unlike the situation with free boundary problems (see [5], [1]). We remark that free
discontinuity problems more general than the ones until now considered should be regarded as
a possible schematization for various problems in Mathematical Physics where are present both
volume forces and surface tensions (see [7], [9], [12], [17], [20], [25]).

Beside the existence theorem of a pair (K,u) minimizing the functional G, in this paper we
prove also some regularity properties for the closed set K. In particular we prove the following
proposition.

PROPOSITION 1.2. If (K,u) is a minimizing pair given by Theorem 1.1, then

(i) K is (H n−1, n − 1) rectifiable, i.e. (as in [18]) there exists a sequence of C1 surfaces (Sh)
such that

H n−1(K \
⋃

h

Sh) = 0;

(ii) there exists a unique minimizing pair (K ′, u′) such that K ′ ⊆ K, H n−1(K \K ′) = 0, u = u′

in Ω \ (M ∪K) and for every x ∈ K ′ \M

lim inf
ρ→0

ρ1−nH n−1(K
′ ∩Bρ(x)) > 0.

Taking into account the idea of the so-called direct methods in Calculus of Variations, we join
to the functional G a new functional F , defined on a class of special bounded variation functions
(the class SBV (Rn) recently introduced in [13] ), where a topology can be suitably found such that
F is at the same time lower semicontinuous and coercive.

Theorem 1.1 and Proposition 1.2 are established (see section 4) by proving first the existence
of a solution u for a minimum problem for F over all the competing SBV (Rn) functions with
given Dirichlet boundary conditions (see Lemma 4.1), and then by using some partial regularity
properties of the singular set of the function u (see Theorem 3.12 and Remark 3.13).

We prove that the minimum of F is also the minimum of G and moreover we show that by a
minimizer of F one can obtain a minimizing pair of G and viceversa (see Remark 4.3).

In order to prove the previous results we use both interior estimates for u already proved in
[14] and new estimates on the behavior of u near a boundary point (see section 3).

Aknowledgement. We would like to thank Prof. E. De Giorgi for many helpful conversations
on the subject of the present paper.

2. Preliminary results for functions in SBV (Ω).

In this section, given an open set Ω ⊆ Rn , we define, following [13], the class of special
bounded variation functions SBV (Ω) and we point out a few of its properties with new results
gained in [14].

For a given set E ⊂ Rn we denote by χ
E
its characteristic function, by E its topological closure

and by ∂E its topological boundary; moreover we denote by H n−1(E) its (n − 1)-dimensional
Hausdorff measure and by |E| its Lebesgue outer measure. If Ω ,Ω′ are open subsets in Rn, with
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Ω ⊂⊂ Ω′ we mean that Ω is compact and Ω ⊂ Ω′. The word domain is used to mean an open set
Ω ⊆ Rn such that ∂Ω = ∂(Rn \ Ω).

We indicate by Bρ(x) the ball {y ∈ Rn; |y − x| < ρ}, and we set Bρ = Bρ(0), ωn = |B1|.

Let u : Ω → R be a Borel function; for x ∈ Ω and z ∈ R̃ = R ∪ {∞} we say (following [13])
that z is the approximate limit of u at x, and we write

z = ap lim
y→x

u(y),

if

g(z) = lim
ρ→0

∫

Bρ(x)
g(u(y))dy

|Bρ|

for every g ∈ C0(R̃); if z ∈ R this definition is equivalent to 2.9.12 in [18].
The set

Su = {x ∈ Ω; ap lim
y→x

u(y) does not exist }

is a Borel set, negligible with respect to the Lebesgue measure; for brevity’s sake we denote by
ũ : Ω \ Su → R̃ the function

ũ(x) = ap lim
y→x

u(y).

Let x ∈ Ω \ Su be such that ũ(x) ∈ R; we say that u is approximately differentiable at x if
there exists a vector ∇u(x) ∈ Rn (approximate gradient of u at x) such that

ap lim
y→x

|u(y)− ũ(x)−∇u(x) · (y − x)|

|y − x|
= 0.

For every u ∈ L1
loc(Ω) we define (see [19])

∫

Ω

|Du| = sup

{
∫

Ω

u divφ dx;φ ∈ C1
0 (Ω;R

n), |φ| ≤ 1

}

.

By BV (Ω) we denote the Banach space of all functions u of L1(Ω) with
∫

Ω
|Du| < +∞.

It is well-known that u ∈ BV (Ω) iff u ∈ L1(Ω) and its distributional derivativeDu is a bounded
vector measure. For the main properties of the functions of bounded variation we refer e.g. to [15],
[18], [19], [22].

Here we recall only that for every u ∈ BV (Ω) the following properties hold:

Su is (H n−1, n− 1) rectifiable (see [15], or [18], 4.5.9(16));

H n−1({x ∈ Ω; ũ(x) = ∞}) = 0 (see [18], 4.5.9(3));

∇u exists a.e. on Ω and coincides with the Radon-Nikodym derivative of Du with respect to
the Lebesgue measure (see [18], 4.5.9(26));

forH n−1 almost all x ∈ Rn there exist ν = ν(x) ∈ ∂B1 , tr
+(x, u, ν) ∈ R and tr−(x, u, ν) ∈ R

(outer and inner trace, respectively, of u at x in the direction ν) such that

lim
ρ→0

ρ−n

∫

{y∈Bρ(x);y·ν>0}

|u(y)− tr+(x, u, ν)|dy = 0,

lim
ρ→0

ρ−n

∫

{y∈Bρ(x);y·ν<0}

|u(y)− tr−(x, u, ν)|dy = 0,
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and

(2.1)

∫

Ω

|Du| ≥

∫

Ω

|∇u|dx+

∫

Su∩Ω

|tr+(x, u, ν)− tr−(x, u, ν)|dH n−1

(see [18], 4.5.9(17),(22),(15)).

Following [13], we define a class of special bounded variation functions which are characterized
by a property stronger than (2.1).

DEFINITION 2.1. We define SBV (Ω) as the class of all functions u ∈ BV (Ω) such that

(2.2)

∫

Ω

|Du| =

∫

Ω

|∇u|dx+

∫

Su∩Ω

|tr+(x, u, ν)− tr−(x, u, ν)|dH n−1.

We remark that the well-known Cantor-Vitali function has bounded variation, but it does not
satisfy (2.2).

REMARK 2.2. Let u ∈ BV (Ω) and set ua = (u ∧ a) ∨ (−a) for 0 < a < +∞. The following
properties hold:

|∇ua| ≤ |∇u| a.e. on Ω;

H n−1 ((Sua
\ Su) ∩ Ω) = 0;

∫

Ω
|Dua| ≤

∫

Ω
|Du|;

∫

Ω
|∇u|dx = lim

a→+∞

∫

Ω
|∇ua|dx;

H n−1(Su ∩ Ω) = lim
a→+∞

H n−1(Sua
∩ Ω);

∫

Ω
|Du| = lim

a→+∞

∫

Ω
|Dua|.

Moreover, for u ∈ BV (Ω), it holds:

u ∈ SBV (Ω) iff ua ∈ SBV (Ω) for every 0 < a < +∞ ;

and more generally:

u ∈ SBV (Ω) iff φ(u) ∈ SBV (Ω) for every φ : R → R uniformly Lipschitz continuous with
φ(0) = 0.

Denote by W 1,p(Ω) (p ≥ 1) the Sobolev space of functions u ∈ Lp(Ω) such that Du ∈
Lp(Ω;Rn); then we remark that, for u ∈ SBV (Ω),

u ∈ W 1,p(Ω) iff H n−1(Su ∩ Ω) = 0 and

∫

Ω

(|∇u|p + |u|p)dx < +∞

(see e.g. [18], 4.5.9(30)).
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LEMMA 2.3. Let Ω ⊂ Rn be a bounded domain with H n−1(∂Ω) < +∞. Let w ∈ W 1,1(Rn).
Let K ⊂ Ω be a closed set with H n−1(K) < +∞ and let u ∈ C1(Ω \K)∩C0(Ω \K)∩L∞(Ω \K)
with

∫

Ω\K
|∇u|dx < +∞.

Set

u′(x) =







u(x) if x ∈ Ω \K,

w(x) if x ∈ Rn \ Ω,

then

(i) u′ ∈ SBV (Rn),

(ii) H n−1(Su′ \ (K ∪ {x ∈ ∂Ω \K;u(x) 6= w̃(x)})) = 0.

Proof. We have u′ ∈ SBV (Ω) and Su′ ∩ Ω ⊆ K by Lemma 2.3 in [14]. As in [4] (see Theorem 3),
we have u′ ∈ BV (Rn) and

∫

Rn

|Du′| =

∫

Ω

|Du|+

∫

Rn\Ω

|∇u|dx+

∫

∂Ω

|tr−(x, u, ν)− w̃|dH n−1,

where ν is the outward unit normal to Ω.
Therefore u′ ∈ SBV (Rn) and, since H n−1(Su′ ∩ (Rn \ Ω)) = 0 and tr−(x, u, ν) = u(x) for H n−1-
almost all x ∈ ∂Ω \K, we infer also (ii). q.e.d.

For further results on the functions in SBV (Ω) we refer to [13], [2], [3].
In this paper we use the following semicontinuity theorem in SBV (Ω), that is an obvious

consequence of a result by L. Ambrosio (see Theorems 2.1 and 3.4 of [3]) and of Remark 2.2.

THEOREM 2.4. Let p > 1. Let uh ∈ SBV (Ω) be such that

uh → u in L1
loc(Ω),

sup
h∈N

{
∫

Ω

|∇uh|
pdx+H n−1(Suh

∩ Ω)

}

< +∞,

sup
h∈N

{
∫

Ω

|Duh|+

∫

Ω

|uh|dx

}

< +∞.

Then

(i) u ∈ SBV (Ω),

(ii) H n−1(Su ∩ Ω) ≤ lim inf
h

H n−1(Suh
∩ Ω),

(iii)

∫

Ω

|∇u|pdx ≤ lim inf
h

∫

Ω

|∇uh|
pdx.

We remark that the previous Theorem 2.4 is not true for p = 1 because, in this case, it
is possible to approximate every u ∈ BV (Ω) by a sequence of smooth functions (which are also
functions of class SBV (Ω)).

In [14], section 3, a Poincaré-Wirtinger type inequality for functions of the class SBV in a ball
and two consequences have been proved. Here, for completeness and the reader’s convenience, we
give the statements.
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Let B be a ball in Rn, n ≥ 2; for every measurable function u : B → R, we consider the non
decreasing rearrangement of u

u∗(s,B) = inf{ t ∈ R; |{u < t} ∩B| ≥ s} for 0 ≤ s ≤ |B|,

and we set

med(u,B) = u∗

(

1

2
|B|, B

)

;

moreover for every u ∈ SBV (B) such that (2γnH n−1(Su ∩B))
n

n−1 < 1
2 |B| we set

τ ′(u,B) = u∗

(

(2γnH n−1(Su ∩B))
n

n−1 , B
)

,

τ ′′(u,B) = u∗

(

|B| − (2γnH n−1(Su ∩B))
n

n−1 , B
)

,

where γn is the isoperimetric constant relative to the balls of Rn.

THEOREM 2.5 Let B ⊂ Rn be a ball, n ≥ 2, 1 ≤ p < n and p∗ = np
n−p . Let u ∈ SBV (B),

H n−1(Su ∩B) < 1
2γn

(

1
2 |B|

)

n−1

n , and

u = (u ∧ τ ′′(u,B)) ∨ τ ′(u,B).

Then

‖u−med(u,B)‖Lp∗ (B) ≤
2γnp(n− 1)

n− p
‖∇u‖Lp(B).

THEOREM 2.6. Let B ⊂ Rn be a ball, uh ∈ SBV (B), p > 1, and let

sup
h∈N

∫

B

|∇uh|
pdx < +∞,

lim
h

H n−1(Suh
∩B) = 0.

Then there exist a subsequence (uhi
) and a function u∞ ∈ W 1,p(B) such that

lim
i

[uhi
−med(uhi

, B)] = u∞ in Lr(B)

for every 1 ≤ r < np
n−p if 1 < p < n, and for every r ≥ 1 if p ≥ n; moreover

lim
i

[uhi
−med(uhi

, B)] = u∞ a.e. on B.

THEOREM 2.7 Let n ∈ N, n ≥ 2, p > 1; let u ∈ SBV (Rn) and x ∈ Rn. If

lim
ρ→0

ρ1−n

[

∫

Bρ(x)

|∇u|pdy +H n−1(Su ∩Bρ(x))

]

= 0,

then x 6∈ Su and ũ(x) ∈ R.
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3. A limit theorem and some estimates at the boundary.

Given Ω and w as in Theorem 1.1, in this section we will study some properties of a function
u ∈ SBV (Rn) solution of the following minimum problem (see Lemma 4.1 for the existence of u)

(3.1) min

{
∫

Ω

|∇v|2dx+ λH n−1(Sv); v ∈ SBV (Rn), v = we in Rn \ Ω

}

,

where we ∈ W 1,1(Rn) is an extension of the boundary datum w such that w̃e = w H n−1-a.e. on
∂Ω.

In particular we prove that, setting

Ω0 =

{

x ∈ Ω \M ; lim
ρ→0

ρ1−nH n−1(Su ∩Bρ(x)) = 0

}

,

then Ω \ Ω0 is closed and H n−1

((

Ω \ Ω0

)

△ Su

)

= 0, where A △ B denotes the symmetric
difference of the sets A and B.

Such partial regularity result (see Theorem 3.12 and Remark 3.13) shall allow us to prove
Theorem 1.1 and Proposition 1.2 in the next section, by showing that the pair (Ω \ Ω0, u) is a
solution of the minimum problem considered in this paper.

DEFINITION 3.1. Let u ∈ SBV (Rn) and 0 < c < +∞. Let K ⊂ Rn be closed. We set

F(u, c,K) =

∫

K

|∇u|2dx+ cH n−1(Su ∩K),

Φ(u, c,K) = inf { F(v, c,K) ; v ∈ SBV (Rn), v = u in Rn \K } ;

moreover, if Φ(u, c,K) < +∞, we set

Ψ(u, c,K) = F(u, c,K)− Φ(u, c,K).

We first state some technical lemmas.

LEMMA 3.2. Let u ∈ SBV (Br). For every 0 < c < +∞ the functions

ρ → F(u, c, Bρ)
and

ρ → Ψ(u, c, Bρ)

are non-decreasing in (0, r).

LEMMA 3.3. Let u ∈ SBV (Br(x0)), ρ < r. Set uρ(x) = ρ−1/2 u(x0 + ρx) for every x ∈ Br/ρ,
then

uρ ∈ SBV (Br/ρ),

F(uρ, c, B1) = ρ1−nF(u, c, Bρ(x0))

and
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Φ(uρ, c, B1) = ρ1−nΦ(u, c, Bρ(x0)).

LEMMA 3.4 Let u ∈ SBV (Rn) and 0 < c < +∞. If Ψ(u, c,K) = 0 for some closed set K ⊂ Rn,
then

F(u, c, Bρ(x)) ≤ cnωnρ
n−1

for every Bρ(x) ⊂ K.

Proof. Because of the minimality of u we have

F(u, c, Bρ(x)) ≤ F(uχ
Rn\Bρ(x)

, c, Bρ(x)) ≤ cnωnρ
n−1. q.e.d.

The proofs of the following Lemma 3.5 and Lemma 3.6 are similar to the ones exhibited in [14]
for Lemma 4.6 and Lemma 4.7 respectively.

LEMMA 3.5 Let u, v ∈ SBV (Br), 0 < c < +∞ and 0 < ρ < r. Suppose

H n−1(Su ∩ ∂Bρ) = H n−1(Sv ∩ ∂Bρ) = 0.

Set

w(x) =







u(x) if x ∈ Bρ,

v(x) if x ∈ Br \Bρ,

then
F(w, c,Bρ) ≤ F(u, c, Bρ) + cH n−1 ({ũ 6= ṽ} ∩ ∂Bρ) .

LEMMA 3.6. Let Ω1 ⊂⊂ Ω2 ⊂⊂ Rn two open sets. Let γ ∈ C1
0 (Ω2) with |γ| ≤ 1, γ ≡ 1 in a

neighborhood of Ω1, |∇γ| ≤ L. Let u, v ∈ SBV (Rn) and w = γu+(1−γ)v. For every 0 < c < +∞
and for every 0 < λ < 1 it is true that

F(w, c,Ω2) ≤
1

1− λ

[

F(u, c,Ω2) + F(v, c,Ω2 \ Ω1)
]

+
L2

λ

∫

Ω2\Ω1

|u− v|2dy.

To treat blowing-up at a boundary point of Ω for a function u ∈ SBV (Rn) minimizing the
functional F in Ω with given Dirichlet boundary datum, we introduce the following notation.

For any C1 function ϕ : Rn−1 → R with ϕ(0) = 0 = |∇ϕ(0)|, Lipϕ ≤ 1, let

Ωϕ = {x ∈ B1; xn > ϕ(x′)}

where x′ = (x1, . . . , xn−1).

We are now in a position to prove the following limit theorem.
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THEOREM 3.7. Let ϕh : Rn−1 → R be a sequence of C1 functions such that ϕh(0) = 0 =
|∇ϕh(0)|, Lipϕh ≤ 1, lim

h
‖∇ϕh‖L∞ = 0. Let wh : B1 → R be a sequence of C1 functions

such that lim
h

(‖wh‖L∞ + ‖∇wh‖L∞) = 0. Let ch ∈ R and uh ∈ SBV (Rn) such that uh = wh in

B1 \ Ωϕh
for every h ∈ N; let u∞ ∈ W 1,2(B1). Assume that

(1) lim
h

F(uh, ch, Bρ) = α(ρ) < +∞ for almost all ρ < 1,

(2) lim
h

Ψ(uh, ch,Ωϕh
∩Bρ) = 0 for almost all ρ < 1,

(3) lim
h

ch = +∞,

(4) lim
h

uh = u∞ a.e. on B1.

Then

the function u∞ ∈ C0(B1), u∞ is harmonic in {xn > 0} ∩B1, u∞ ≡ 0 in {xn ≤ 0} ∩B1 and

α(ρ) =
∫

Bρ
|∇u∞|2dy for almost all ρ < 1.

Proof. By the hypothesis on the functions ϕh, we infer that, for every δ > 0 and for every h large
enough, −δ < ϕh(x

′) < δ.
By the hypothesis on the functions wh and by the assumption uh = wh in B1 \ Ωϕh

, we infer that
lim
h

uh = 0 in {xn < −δ} ∩B1. Therefore, by (4), u∞ ≡ 0 in {xn < 0} ∩B1.

On the other hand, for every δ > 0 and for every ball Br(x) such that Br(x) ⊂ {xn > δ} ∩B1, we
have by Lemma 3.2 and by (1) and (2) respectively,

sup
h

F(uh, ch, Br(x)) < +∞

and
lim
h

Ψ(uh, ch, Br(x)) = 0.

By using Theorem 4.8 of [14] and by the arbitrariness of δ , we infer that u∞ is harmonic
in {xn > 0} ∩B1. By well-known results (see e.g. [21], chap. II, Appendices) it follows that
u∞ ∈ C0(B1), so u∞ ≡ 0 in {xn ≤ 0} ∩B1.
By the hypothesis (1) and by the semicontinuity theorem 2.4 we have, for any c > 0,

∫

Bρ

|∇u∞|2dy = F(u∞, c, Bρ) ≤ lim inf
h

F(uh, c, Bρ) ≤ lim
h

F(uh, ch, Bρ) = α(ρ)

for almost all ρ < 1.
The proof will be completed by proving the following inequality

(3.2) α(ρ) ≤

∫

Bρ

|∇u∞|2dy for almost all ρ < 1.

We may suppose ‖wh‖L∞ < 1/h. Set, with the notations of Theorem 2.5,

ûh = uh ∧ (τ ′′(uh, B1) ∨ 1/h) ∨ (τ ′(uh, B1) ∧ (−1/h)) ,

we have ûh = wh in B1 \ Ωϕh
and, by Theorem 2.6,

(3.3) lim
h

ûh = u∞ in L2(B1).
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Moreover, as in Theorem 4.8 of [14], there exists a subsequence of (ûh) (for brevity’s sake still
denoted by (ûh)) such that

(3.4) lim
h

chH n−1({˜̂uh 6= ũh} ∩ ∂Bρ) = 0

for almost all ρ < 1.
Set now

w′
h(x) =







wh(x) if x ∈ B1 \ Ωϕh
,

wh(x
′, ϕh(x

′)) + u∞(x′, xn − ϕh(x
′)) if x ∈ Ωϕh

,

we notice that the functions w′
h are Lipschitz continuous in Bρ uniformly with respect to h and

lim
h

w′
h = u∞ in L∞(Bρ) for every ρ < 1.

Finally we may prove (3.2).
Since the function ρ → α(ρ) is non-decreasing, it is also a continuous function for almost all ρ < 1.
Let ρ < 1 be such that α(·) is continuous in ρ and the hypothesis (1) and the condition (3.4) are
fulfilled. Let L > 0 be such that sup

Bρ

|∇w′
h| ≤ L for every h ∈ N.

Fixed ǫ > 0, let 0 < ρ1 < ρ be such that α(ρ)−α(ρ1) < ǫ and L2|Bρ \Bρ1
| < ǫ; moreover let ρ2 be

such that ρ1 < ρ2 < ρ and the hypothesis (1) is fulfilled.
For 0 < r < 1 and −r < δ < r we set Br,δ = Br ∩ {xn > δ }. Let 0 < ρ3 < ρ4 and 0 < δ2 < δ1 be
such that

Bρ1,δ1 ⊂⊂ Bρ2,δ2 ⊂⊂ Bρ3
⊂⊂ Bρ4

⊂⊂ Bρ

and L2|Bρ,−δ2 \Bρ1,δ1 | < ǫ.
Let γ1 and γ2 be two C1 functions such that

|γ1| ≤ 1, γ1 ≡ 1 in a neighborhood of Bρ1,δ1 , sptγ1 ⊂ Bρ2,δ2 , |∇γ1|
2 ≤ 2

(ρ2−ρ1)2
+ 2

(δ2−δ1)2
,

and
|γ2| ≤ 1, γ2 ≡ 1 in a neighborhood of Bρ3,−δ2 , sptγ2 ⊂ Bρ4

, |∇γ2|
2 ≤ 2

(ρ4−ρ3)2
.

Now we define the following three sequences of functions in SBV (B1)

ζh = γ1u∞ + (1− γ1)w
′
h

ξh = γ2ζh + (1− γ2)ûh

zh =







ξh in Bρ,

uh in B1 \Bρ.

We notice that zh = uh in B1 \ Bρ for every h ∈ N, and zh = wh in B1 \ Ωϕh
for h large enough

in order to have ‖ϕh‖L∞ < δ2. Then, setting ǫh = Ψ(uh, ch,Ωϕh
∩Bρ), by Lemma 3.5 and 3.6, for

every 0 < λ < 1 we have

F(uh, ch, Bρ)− ǫh ≤ F(zh, ch, Bρ) ≤ F(ξh, ch, Bρ) + chH n−1

(

{˜̂uh 6= ũh} ∩ ∂Bρ

)

≤

≤
1

1− λ

[

F(ζh, ch, Bρ) + F(ûh, ch, Bρ \Bρ3,−δ2)
]

+
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+
2

λ(ρ4 − ρ3)2

∫

Bρ\Bρ3,−δ2

|ûh − ζh|
2dy + chH n−1({˜̂uh 6= ũh} ∩ ∂Bρ).

By using again Lemma 3.6 we have

F(uh, ch, Bρ)− ǫh ≤
1

1− λ

[

1

1− λ

(

∫

Bρ

|∇u∞|2dy +

∫

Bρ\Bρ1,δ1

|∇w′
h|

2dy

)

+

+
1

λ

(

2

(ρ2 − ρ1)2
+

2

(δ2 − δ1)2

)
∫

Bρ\Bρ1,δ1

|w′
h − u∞|2dy + F(ûh, ch, Bρ \Bρ3,−δ2)

]

+

+
2

λ(ρ4 − ρ3)2

∫

Bρ\Bρ3,−δ2

|ûh − ζh|
2dy + chH n−1({˜̂uh 6= ũh} ∩ ∂Bρ) ;

then, letting h → +∞ and taking into account (3.3), (3.4) and the hypotheses (1), (2), we obtain

α(ρ) ≤
1

1− λ

[

1

1− λ

(

∫

Bρ

|∇u∞|2dy + ǫ

)

+ lim sup
h

F(ûh, ch, Bρ \Bρ3,−δ2)

]

≤

≤

(

1

1− λ

)2
(

∫

Bρ

|∇u∞|2dy + ǫ

)

+
1

1− λ
lim sup

h
F(uh, ch, Bρ \Bρ2

) ≤

≤

(

1

1− λ

)2
(

∫

Bρ

|∇u∞|2dy + ǫ

)

+
1

1− λ
(α(ρ)− α(ρ2)) ≤

≤

(

1

1− λ

)2
(

∫

Bρ

|∇u∞|2dy + ǫ

)

+
ǫ

1− λ
.

For the arbitrariness of ǫ and λ the assertion follows. q.e.d.

COROLLARY 3.8. Let (ϕh) and (wh) be as in Theorem 3.7. Let λh ∈ R with 0 < c ≤ λh < +∞
for every h ∈ N; let uh ∈ SBV (Rn) such that uh = wh in B1\Ωϕh

, and let u∞ ∈ W 1,2(B1). Assume
that

(1) lim
h

F(uh, λh, Bρ) = α(ρ) < +∞ for almost all ρ < 1,

(2) lim
h

Ψ(uh, λh,Ωϕh
∩Bρ) = 0 for almost all ρ < 1,

(3) lim
h

H n−1(Suh
∩B1) = 0,

(4) lim
h

uh = u∞ a.e. on B1.

Then the same thesis of Theorem 3.7 is true.

Proof. If lim sup
h

λh = +∞ the assertion follows by Theorem 3.7. If lim sup
h

λh < +∞, setting

ch = λh ∨
(

H n−1(Suh
∩B1) +

1
h

)−1/2
, we have lim

h
ch = +∞ and
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lim
h

F(uh, ch, Bρ) = α(ρ) < +∞ for almost all ρ < 1.

Since

F(uh, ch,Ωϕh
∩Bρ) = F(uh, λh,Ωϕh

∩Bρ) + (ch − λh)H n−1(Suh
∩Bρ) =

= Φ(uh, λh,Ωϕh
∩Bρ) + Ψ(uh, λh,Ωϕh

∩Bρ) + (ch − λh)H n−1(Suh
∩Bρ) ≤

≤ Φ(uh, ch,Ωϕh
∩Bρ) + Ψ(uh, λh,Ωϕh

∩Bρ) + (ch − λh)H n−1(Suh
∩Bρ),

we have also

lim
h

Ψ(uh, ch,Ωϕh
∩Bρ) = 0 for almost all ρ < 1.

Then the assertion follows again by Theorem 3.7. q.e.d.

From Corollary 3.8 we infer the following decay estimates near a boundary point.

LEMMA 3.9. For every n ∈ N, n ≥ 2, and every 0 < c < +∞, 0 < α < 1, 0 < β < 1 and L > 0
there exist ǫ = ǫ(n, c, α, β, L) and ϑ = ϑ(n, c, α, β, L) such that:

for every ϕ ∈ C1(Rn−1) with ϕ(0) = 0 = |∇ϕ(0)|, Lipϕ ≤ 1 and for every w ∈ C1(B2), with
Lipw < L, if u ∈ SBV (B2), u = w in B1 \ Ωϕ, Ψ(u, c,Ωϕ ∩B1) = 0 and

H n−1(Su ∩B1) ≤ ǫ,

then

F(u, c, Bα) ≤ αn−β max
{

F(u, c, B1), ϑ
[

(Lipϕ)
2
+ (Lipw)

2
]}

.

Proof. Suppose the lemma is not true. Then there exist n ≥ 2, c > 0, 0 < α < 1, 0 < β < 1,
L > 0, two sequences (ǫh), (ϑh) such that lim

h
ǫh = 0, lim

h
ϑh = +∞, a sequence ϕh ∈ C1(Rn−1)

with ϕh(0) = 0 = |∇ϕh(0)|, Lipϕh ≤ 1, a sequence wh ∈ C1(B2) with Lipwh < L, a sequence

uh ∈ SBV (B2) with uh = wh in B1 \ Ωϕh
, Ψ(uh, c,Ωϕh

∩B1) = 0 and

H n−1(Suh
∩B1) = ǫh ,

(3.5) F(uh, c, Bα) > αn−βϑh

[

(Lipϕh)
2
+ (Lipwh)

2
]

,

(3.6) F(uh, c, Bα) > αn−βF(uh, c, B1).

Set λh = c

F(uh,c,B1)
and vh =

(

λh

c

)

1

2 uh, we have
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F(vh, λh, B1) = 1,

Ψ(vh, λh,Ωϕh
∩B1) = 0,

vh =

(

λh

c

)
1

2

wh in B1 \ Ωϕh
.

Since by (3.5)

max
{

(Lipϕh)
2, (Lipwh)

2
}

<
c

λhαn−βϑh
,

and since (as in Lemma 3.4) inf
h

λh > 0, we have

(3.7) lim
h

Lip

[

(

λh

c

)
1

2

wh

]

= 0 and lim
h

Lipϕh = 0.

Moreover, since lim
h

ǫh = 0, by Theorem 2.6 there exist a subsequence, still denoted by (vh), and a

function v∞ ∈ W 1,2(B1) such that

lim
h

[vh −med(vh, B1)] = v∞ a.e. on B1.

By (3.7) the sequence
(

(

λh

c

)
1

2

wh −med(vh, B1)

)

uniformly converges to zero. Then, by Corollary 3.8, v∞ ∈ C0(B1), v∞ is harmonic in {xn > 0}∩B1

and v∞ ≡ 0 in {xn ≤ 0} ∩ B1. By Schwarz reflection principle there exists a function V harmonic
in B1 defined by

V (x) =







v∞(x) if xn ≥ 0,

−v∞(x′,−xn) if xn < 0,

for which we have

∫

Bα

|∇v∞|2dy =
1

2

∫

Bα

|∇V |2dy ≤
αn

2

∫

B1

|∇V |2dy = αn

∫

B1

|∇v∞|2dy.

Therefore, still by Corollary 3.8, we obtain

lim sup
h

F(vh, λh, Bα) ≤ αn

∫

B1

|∇v∞|2dy ≤ αn,

whereas by (3.6) we have

F(vh, λh, Bα) > αn−β .

So we obtain a contradiction. q.e.d.
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LEMMA 3.10. Let n ∈ N, n ≥ 2, let 0 < c < +∞, 0 < α < 1 and 0 < β < 1. Let ϕ ∈ C1(Rn−1)
with ϕ(0) = 0 = |∇ϕ(0)|, Lipϕ ≤ 1, let w ∈ C1(B2) and L = max

x∈B1

|∇w(x)|. There exist ǫ′ > 0,

0 < r < 1 such that if u ∈ SBV (B2), u = w in Br \ Ωϕ, Ψ(u, c,Ωϕ ∩Br) = 0 and if
H n−1(Su ∩Bρ) ≤ ǫ′ρn−1 for some 0 < ρ ≤ r, then

lim
t→0

t1−nF(u, c, Bt) = 0 .

Proof. Let ǫ, ϑ be as in lemma 3.9; let α′ ∈ (0, 1) be such that (α′)1−βcnωn < ǫ and let ǫ′ and ϑ′

be the constants depending on n, c, α′, β, L given by lemma 3.9.
Set uρ(x) = ρ−1/2u(ρx). We have uρ ∈ SBV (B2/ρ) and

Ψ(uρ, c,Ωϕρ
∩B1) = 0 ,

where ϕρ(x
′) = ρ−1ϕ(ρx′) for every x′ ∈ Rn−1; moreover uρ = wρ in B1 \ Ωϕρ

, where wρ(x) =

ρ−1/2w(ρx). Let r > 0 be such that

(ϑ ∨ ϑ′)
[

(

Lip
Br

ϕ
)2

+ rL2
]

< ǫ .

Assume that H n−1(Su ∩Bρ) ≤ ǫ′ρn−1 for some 0 < ρ ≤ r. Then by lemma 3.3 and lemma 3.9 we
have

F(uρ, c, B′
α) ≤ (α′)n−β

(

F(uρ, c, B1) ∨ ǫ
)

hence by lemma 3.4

F(u, c, Bα′ρ) ≤ (α′)n−β
(

F(u, c, Bρ) ∨ ǫρn−1
)

≤ (α′)n−β(cnωnρ
n−1 ∨ ǫρn−1) ≤ ǫ(α′ρ)n−1 .

Set ρ′ = α′ρ. Since we have
H n−1(Su ∩Bρ′ ≤ ǫ(ρ′)n−1

then, by lemma 3.9, we obtain

F(u, c, Bαρ′) ≤ αn−β max
{

F(u, c, Bρ′), ǫ(ρ′)n−1
}

≤ α1−βǫ(αρ′)n−1.

By induction we obtain for every h ∈ N

F(u, c, Bαhρ′) ≤ αh(1−β)ǫ(αhρ′)n−1. (3.8)

Now let t < ρ′ and let αhρ′ ≤ t < αh−1ρ′; then by (3.8) we have

t1−nF(u, c, Bt) ≤ (αhρ′)1−nF(u, c, Bαh−1ρ′) ≤ α1−nǫα(h−1)(1−β),

hence the assertion follows. q.e.d.

REMARK 3.11. Let Ω ∈ Rn be a bounded domain with H n−1(∂Ω) < +∞ and let u ∈ SBV (Rn)
be a solution of the minimum problem (3.1). Let w′

e ∈ W 1,1(Rn) such that w̃′
e = w̃e H n−1-a.e. on

∂Ω. Then the function

u′(x) =







u(x) if x ∈ Ω,

w′
e(x) if x ∈ Rn \ Ω

is a minimizer for the functional

∫

Ω

|∇v|2dx+ λH n−1(Sv)

among the functions v ∈ SBV (Rn), v = w′
e in Rn \ Ω.
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THEOREM 3.12. (Partial regularity) Let n ∈ N, n ≥ 2, let Ω ⊂ Rn be a bounded domain and
let 0 < λ < +∞. Assume that a closed set M exists such that H n−1(M) = 0 and ∂Ω \M is a C1

surface; let w ∈ C1(∂Ω \M) and let we ∈ W 1,1(Rn) be such that w̃e = w H n−1-a.e. on ∂Ω.
Assume that u ∈ SBV (Rn) satisfies the conditions Ψ(u, λ,Ω) = 0, u = we in Rn \ Ω. Set

Ω0 =

{

x ∈ Ω \M ; lim
ρ→0

ρ1−nF(u, λ,Ω ∩Bρ(x)) = 0

}

,

then
(i) Ω0 is relatively open in Ω,

(ii) H n−1

(

(Ω \ Ω0)△ Su

)

= 0.

Proof. By Theorem 4.12 in [14] Ω0 ∩ Ω is an open set. Let now x ∈ Ω0 ∩ ∂Ω; by virtue of the
hypotheses, there exists Br(x) such that Br(x)∩M = ∅ and ∂Ω∩Br(x) is a C1 surface. By Remark
3.11 we may assume we ∈ C1(Br(x)), hence lim

ρ→0
ρ1−nF(u, λ,Bρ(x)) = 0. Provided that r has been

selected small enough, by Lemma 3.10 we have

∂Ω ∩Br/2(x) ⊂ Ω0.

On the other hand, provided that r′ < r/2 be small enough in order to apply Lemma 4.11 of [14],
we have also that

Ω ∩Br′(x) ⊂ Ω0.

Thus (i) is proved. By Theorem 2.7 we have Su ∩Ω ⊂ Ω \Ω0. Finally, by a covering argument (see
e.g. Lemma 2.6 in [14]), we have H n−1

(

(Ω \ Ω0) \ Su

)

= 0, so also (ii) is proved. q.e.d.

REMARK 3.13. If u is a solution of the minimum problem (3.1) and if for x ∈ ∂Ω \M we have

lim
ρ→0

ρ1−nH n−1(Su ∩Bρ(x)) = 0,

then, by Lemma 3.10, we have also

lim
ρ→0

ρ1−nF(u, λ,Ω ∩Bρ(x)) = 0.

We remark that such a result also is true for x ∈ Ω. Indeed, to this aim, it is enough to prove a
corollary of Theorem 4.8 of [14], similar to Corollary 3.8 of this paper, so that we may assume in
the hypotheses of Lemma 4.9 of [14] the weaker condition

H n−1(Su ∩Bρ(x)) ≤ ǫρn−1

instead of

F(u, λ,Ω ∩Bρ(x)) ≤ ǫρn−1.

Therefore we conclude that the set Ω0 defined in Theorem 3.12 is equal to the set

{

x ∈ Ω \M ; lim
ρ→0

ρ1−nH n−1(Su ∩Bρ(x)) = 0

}

.
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4. Proof of the existence theorem.

We begin this section by proving the existence of a solution for the minimum problem (3.1) in
SBV (Rn).

LEMMA 4.1. Under the hypotheses of Theorem 1.1, there exists we ∈ W 1,1(Rn)∩L∞(Rn) such
that w̃e = w H n−1-a.e. on ∂Ω and ‖we‖L∞ = ‖w‖L∞ ; moreover there exists

min

{
∫

Ω

|∇v|2dx+ λH n−1(Sv); v ∈ SBV (Rn), v = we in Rn \ Ω

}

and it is smaller than, or equal to,

inf

{

∫

Ω\K

|∇v|2dx+ λH n−1(K)

}

where the infimum is taken over all the closed sets K ⊂ Ω and the functions v ∈ C1(Ω\K)∩C0(Ω\
(M ∪K)) with v = w on ∂Ω \ (M ∪K).

Proof. The existence of the function we follows by Theorem 9 in [4]. We remark that, setting
v0 = we · χRn\Ω, we have v0 ∈ SBV (Rn) and

F(v0, λ,Ω) ≤ λH n−1(∂Ω) < +∞.

Let (vh) ⊂ SBV (Rn) be a minimizing sequence for F(·, λ,Ω), with vh = we in Rn \ Ω for every
h ∈ N; by Remark 2.2 we may suppose ‖vh‖L∞ ≤ ‖we‖L∞ . By (2.2) the sequence (vh) is uniformly
bounded in BV (Rn), hence, by the compactness theorem in BV (Rn) (see e.g. [19], Theorem 1.19),
there exist a subsequence, still denoted by (vh), and a function u ∈ BV (Rn) ∩ L∞(Rn) such that
vh → u in L1(Rn). By Theorem 2.4 u ∈ SBV (Rn) and

∫

Ω

|∇u|2dx ≤ lim inf
h

∫

Ω

|∇vh|
2dx;

moreover, by a covering argument and by Remark 3.11, we may assume that we ∈ W 1,2 near any
point of ∂Ω \M , hence we may use again Theorem 2.4 to obtain

H n−1(Su) ≤ lim inf
h

H n−1(Svh
).

Then we have

∫

Ω

|∇u|2dx+ λH n−1(Su) ≤ lim
h

[
∫

Ω

|∇vh|
2dx+ λH n−1(Svh

)

]

,

therefore u is a minimizer for F(·, λ,Ω) over all the functions v ∈ SBV (Rn) having prescribed value
we in Rn \ Ω.
Now let K ⊂ Ω be a closed set, let v ∈ C1(Ω\K)∩C0(Ω\(M∪K)) with v = w on ∂Ω\(M∪K) and
∫

Ω\K
|∇v|2dx+λH n−1(K) < +∞. If φ : R → R is a C1(R)∩L∞(R) function with 0 ≤ φ′ ≤ 1 and
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φ(t) = t for |t| ≤ ‖w‖L∞ , then we may apply Lemma 2.3 to the function φ(v) obtaining a function
v′ ∈ SBV (Rn) such that

F(v′, λ,Ω) ≤

∫

Ω\K

|∇v|2dx+ λH n−1(K),

so the assertion follows. q.e.d.

Proof of Theorem 1.1. By Lemma 4.1 there exist we ∈ W 1,1(Rn) ∩ L∞(Rn) such that w̃e =
w H n−1-a.e. on ∂Ω and a function u ∈ SBV (Rn) which is a minimizer for F(·, λ,Ω) over all
the functions v ∈ SBV (Rn) having prescribed value we in Rn \ Ω. With the same notation as in
Theorem 3.12, setting K = Ω \ Ω0, we have that K is closed and

(4.1) H n−1(K △ Su) = 0.

Let Br(x) ⊂ Ω \K; by (4.1) we have that u ∈ W 1,2(Br(x)) and

∫

Br(x)

|∇u|2dy ≤

∫

Br(x)

|∇v|2dy

for every v ∈ u+W 1,2
0 (Br(x)). Thus u is harmonic in Ω\K. Moreover for every ξ ∈ ∂Ω \ (M ∪K)

there exists r > 0 such thatBr(ξ)∩(M∪K) = ∅, ∂Ω∩Br(ξ) is a C
1 surface and w ∈ C1(∂Ω ∩Br(ξ)).

By well-known results on elliptic Dirichlet problems (see e.g. [21], Chap. II, Appendices) it follows
that u ∈ C0(Ω ∩ Br(ξ)) and u = w on ∂Ω ∩ Br(ξ). Therefore u ∈ Cω(Ω \K) ∩ C0(Ω \ (M ∪K))
and we have

G(K,u) =

∫

Ω\K

|∇u|2dx+ λH n−1(K) = F(u, λ,Ω).

By Lemma 4.1 we conclude that the pair (K,u) gives a solution of the minimum problem considered
in Theorem 1.1. q.e.d.

REMARK 4.2. We notice that the minimizing pair (K,u) whose existence has been proved in
Theorem 1.1 satisfies also the conditions ‖u‖L∞ ≤ ‖w‖L∞ and u ∈ Cω(Ω \K).

REMARK 4.3 By the proof of Theorem 1.1 we conclude that

(a) if u ∈ SBV (Rn) is a minimizer for F(·, λ,Ω) over all the functions v ∈ SBV (Rn) with v = we

in Rn \Ω, then the pair (Ω \Ω0, u) gives the minimum that one is looking for in Theorem 1.1 and

G(Ω \ Ω0, u) = F(u, λ,Ω);

viceversa,

(b) if (K,u) is a minimizing pair given by Theorem 1.1 with u ∈ L∞, setting

u′(x) =







u(x) if x ∈ Ω \K,

we(x) if x ∈ Rn \ Ω,

then, by Lemma 2.3, u′ ∈ SBV (Rn) and, by (a), H n−1(Su′ △ K) = 0, Ψ(u′, λ,Ω) = 0 and
F(u′, λ,Ω) = G(K,u).



M.Carriero & A.Leaci: Dirichlet problem with free discontinuity set. 18

Proof of Proposition 1.2. Let (K,u) be a minimizing pair given by Theorem 1.1 and let
u′ ∈ SBV (Rn) defined as in (b) of the previous Remark 4.3. The assertion (i) immediately follows
by (b) of Remark 4.3 since Su′ is (H n−1, n− 1)-rectifiable.
In order to prove (ii), it is enough to choose

K ′ = Ω \ {x ∈ Ω \M ; lim
ρ→0

ρ1−nH n−1(Su′ ∩Bρ(x)) = 0}.

Indeed, by Theorem 3.12 and Remark 3.13, we have another minimizing pair (K ′, u′) which has
the required properties. Obviously the pair (K ′, u′) is uniquely determined by the properties (ii).
q.e.d.
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