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Abstract. We derive a dimension-reduction limit for a three-dimensional rod with material voids

by means of Γ-convergence. Hereby, we generalize the results of the purely elastic setting [58] to a
framework of free discontinuity problems. The effective one-dimensional model features a classical

elastic bending-torsion energy, but also accounts for the possibility that the limiting rod can be

broken apart into several pieces or folded. The latter phenomenon can occur because of the
persistence of voids in the limit, or due to their collapsing into a discontinuity of the limiting

deformation or its derivative. The main ingredient in the proof is a novel rigidity estimate in

varying domains under vanishing curvature regularization, obtained in [33].

1. Introduction

A fundamental question in continuum mechanics is the rigorous derivation of lower dimensional
theories for plates, shells, and rods in various energy scaling regimes, starting from three-dimensional
models of nonlinear elasticity. Although this question has received considerable attention [8, 9], early
derivations were typically based on some a priori ansatzes, often leading to theories which were not
consistent with each other. The last decades, however, have witnessed a remarkable progress in
the rigorous derivation of effective energies for thin elastic objects via variational methods, based
on a fundamental cornerstone: the celebrated rigidity estimate by G. Friesecke, R.D. James,
and S. Müller [41]. Ever since its appearance, this rigidity result has had numerous applications
in dimension-reduction problems providing a thorough understanding of thin elastic materials. We
refer the reader to the by far nonexhaustive list [1, 2, 20, 27, 35, 36, 37, 40, 41, 42, 49, 52, 53, 54,
58, 59, 60, 61, 62, 66, 67] for references.

On the contrary, beyond the purely elastic regime, when one is interested in the behavior of
materials which might have defects and impurities such as plastic slips, cracks, or stress-induced
voids, the situation is far less-well understood. The goal of this article is to advance the mathematical
understanding of thin materials with voids. This corresponds to the investigation of energies that
are driven by the competition between elastic and surface energies of perimeter type. Models of this
form are gathered under the term stress driven rearrangement instabilities (SDRI), see [13, 15, 21,
28, 43, 45, 46, 50, 51, 64, 69, 70] for some mathematical and physical literature on the subject.

We start with a short overview of the literature on dimension reduction in settings beyond
elasticity. Concerning plasticity, we refer the reader, e.g., to [17, 25, 26, 55, 57]. For models in brittle
fracture [31], there are several results on brittle plates and shells in a linear setting [3, 5, 11, 44]. In
the nonlinear framework, instead, the theory is mainly restricted to static and evolutionary models
in the membrane regime [4, 10, 16]. The only result in a smaller energy regime appears to be [68]
for the case of a two-dimensional thin brittle beam. In the limit of vanishing thickness, the author
obtains an effective Griffith-Euler-Bernoulli energy defined on the midline of the possibly fractured
beam, accounting also for jump discontinuities of the limiting deformation and its derivative. At the
core of the arguments in [68] lies a suitable generalization of [41], namely a quantitative piecewise
geometric rigidity theorem for SBD functions [38]. As to date this result is available only in two
dimensions, the generalization of dimension-reduction results to three-dimensional fracture is still
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impeded. Let us however mention that analogous rigidity results in higher dimensions are available
in models for nonsimple materials [32], where the elastic energy depends additionally on the second
gradient of the deformation.

In the setting of material voids, a recent result [65] deals with the derivation of a plate theory
in the bending energy regime. There the analysis is limited to voids with restrictive assumptions
on their geometry, still allowing to resort to the classical rigidity theorem of [41]. Our goal is to
derive a related result for thin rods without restriction on the void geometry. The cornerstone
of our approach is a novel rigidity result in the realm of SDRI-models [33], based on a curvature
regularization of the surface term. We now describe our setting in more detail.

We consider a three-dimensional thin rod with reference configuration Ωh = (0, L)× hS ⊂ R3 of
thickness 0 < h � 1, for a cross section S ⊂ R2. For simplicity of the exposition we focus on the
case S = (− 1

2 ,
1
2 )2, but mention that adaptations to more general geometries are possible. From a

variational viewpoint, models describing the formation of material voids in thin rods fall into the
framework of free discontinuity problems [6], and typical energies take the form

Fhel,per(v,E) :=

ˆ
Ωh\E

W (∇v) dx+ βh

ˆ
∂E∩Ωh

ϕ(νE) dH2 . (1.1)

Here, E ⊂ Ωh represents the (sufficiently regular) void set within an elastic rod with reference
configuration Ωh ⊂ R3, and v is the corresponding elastic deformation. The first part of (1.1)
represents the nonlinear elastic energy with density W (see Section 2 for details), whereas the
second one depends on a parameter βh > 0 and on a possibly anisotropic density ϕ evaluated at the
outer unit normal νE to ∂E ∩ Ωh. For purely expository reasons, we will restrict ourselves to the
isotropic case, i.e., ϕ(·) = | · |2.

Regarding the energy scaling, at a heuristic level, it is well known that elastic energies of the
order h4 correspond to bending and torsion, keeping the midline unstretched, cf. [58]. At the same
time, the surface area of voids completely separating the rod is of order h2. Now, depending on the
choice of βh, different limiting models can be expected: the case βh � h2 will result in a purely
elastic rod model, whereas the case βh � h2 will result in a model of purely brittle fracture. The
critical regime βh ∼ h2 is the most interesting and mathematically most challenging case, for the
elastic and surface contributions are of the same order.

Therefore, we set βh := h2 from now on. Rescaling the energy in (1.1) by h−4, the natural
attempt would be to rigorously derive a corresponding effective one-dimensional theory by means of
Γ-convergence [14, 23]. However, the presence of a priori unprescribed voids in the model hinders
the use of the classical rigidity result of [41]. Indeed, the voids might possibly exhibit extremely
complicated geometries such as densely packed thin spikes or microscopically small components with
small surface measure on different length scales, see Figure 1.

Figure 1. Densely packed thin spikes and microscopically small components leading to loss of
rigidity. For simplicity, the figure illustrates and example in dimension two.
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As a remedy, motivated by our work in [33], we introduce a curvature regularization of the form

Fhcurv(E) := h2κh

ˆ
∂E∩Ωh

|A|2 dH2 , (1.2)

where A denotes the second fundamental form of ∂E ∩ Ωh and κh satisfies (2.5), which allows
in particular for κh → 0+ as h → 0+ at a sufficiently slow rate. The presence of such an extra
Willmore-type energy penalization allows to employ the piecewise rigidity estimate [33, Theorem
2.1] in the analysis. It is a singular perturbation for the void set E and not for the deformation
v, i.e., no higher-order gradient of v is involved in the model. We refer the reader to our recent
work [34], where a related discrete model is studied and an additional explanation for the presence
of a microscopic analogue of the term in (1.2) is given, see [34, Subsection 2.5]. We also mention
that curvature regularizations are widely used in the mathematical and physical literature of SDRI
models, including the description of elastically stressed thin films or material voids, see [7, 29, 30,
47, 48, 63, 69]. In spite of possible modeling relevance, we emphasize that we include the curvature
contribution in our model only for mathematical reasons as a regularization term. In particular, it
does not affect the effective limiting problem.

The total energy of a pair (v,E) is then given by the sum of the two terms in (1.1) and (1.2), i.e.,

Fh(v,E) = Fhel,per(v,E) + Fhcurv(E) . (1.3)

(We set βh = h2 and ϕ(ν) ≡ 1 for all ν ∈ S2.) The main result of this contribution is then Theo-
rem 2.3, where we show that the rescaled energies (h−4Fh(·, ·))h>0 Γ-converge (in an appropriate
topology) to an effective one-dimensional functional that takes the form

1

2

ˆ
(0,L)\I

Q2(RTR′) dx1 +H0(∂I ∩ (0, L)) + 2H0
(
(Jy ∪ JR) \ ∂I

)
. (1.4)

Here, I ⊂ (0, L) denotes a union of finitely many intervals in (0, L) and represents the void part
in the limiting one-dimensional rod. The deformation y : (0, L) → R3 is an isometric piecewise
W 2,2-regular curve that represents the deformed rod. The rotation field R : (0, L) → SO(3) whose
first column is the velocity y′ represents the Frenet frame with respect to y. The elastic part of the
limiting energy corresponds to the one identified in the purely elastic setting [58]: it is quadratic
in terms of the skew-symmetric tensor RTR′ which encodes the information for the curvature and
torsion of the curve y. The associated quadratic form Q2 is defined through the quadratic form
D2W (I) of linearized elasticity via a suitable minimization problem, see (2.17) for details. The
second term in (1.4) accounts for the presence of voids by counting their endpoints (H0 stands
for the counting measure in R). The last term therein takes into account the fact that, in the
limit, voids might collapse exactly into discontinuity points of the limiting y or its Frenet frame R,
corresponding to cracks or kinks of the limiting rod, respectively. Accordingly, these discontinuity
points should be counted twice in the energy.

Let us highlight the relation to the result in [65], where a similar model of Blake-Zisserman type
(cf. [12, 18]) for elastic plates with voids in the Kirchhoff bending energy regime is obtained. First,
in [65] plates are considered, whereas we treat the case of rods. We decided to present our approach
based on the model (1.3) first for a dimension reduction from 3D-to-1D to avoid some technicalities
arising in the 3D-to-2D analysis. The latter, however, can be performed as well, and is the subject
of a forthcoming work, both in the Kirchhoff [41] and the von Kármán [42] regime. The fundamental
difference between our work and [65] concerns the assumptions on the void set. Whereas we allow
for voids with general geometry employing a mild curvature regularization, [65] is based on specific
restrictive assumptions on the void geometry, namely the so-called ψ-minimal droplet assumption,
cf. [65, Equation (6)]. This can be interpreted as an L∞-diverging bound on the curvature of the
boundary of the voids. In our setting, the curvature regularization term in (1.3) can be thought of
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as imposing an L2-diverging bound on the curvature: firstly, this allows the void set to concentrate
at arbitrarily small scales (independently of h) and, secondly, allows the boundary of the void set
to consist of a diverging (with h) number of connected components, see Example 2.6. Our more
general model comes at the expense of the necessity of more sophisticated geometric rigidity results
[33] compared to [41].

1.1. Organization of the paper and proof strategy. The paper is organized as follows. In
Section 2 we introduce our model and state the main compactness and Γ-convergence results, i.e.,
Theorems 2.1 and 2.3, respectively. We also include some comments on the limiting model and
discuss possible boundary value problems. Section 3 contains the core of our paper by deriving a
blockwise Sobolev approximation of sequences (vh, Eh)h>0 with

sup
h>0

h−4Fh(vh, Eh) < +∞ .

We perform a careful enlargement of the voids Eh according to [33, Proposition 2.8], as well as an
appropriate modification of the deformations. This is the content of Propositions 3.1 and 3.2 stated
at the beginning of Section 3, where we modify the deformations vh and their gradients ∇vh on
a small part of the rod, such that the new deformations are actually Sobolev in big blocks of the
rod Ωh with a good control on their elastic energy. Moreover, the modification is done in such a
way that the jump height of the new sequence along the entire rod is suitably controlled as well as
producing the correct jump points of the limiting deformation and its curvature-torsion tensor.

The main technical tools to obtain these modifications are the piecewise rigidity estimate [33,
Theorem 2.1] and a Korn inequality for functions with small jump set [19], applied on long cuboids
that partition Ωh. More precisely, splitting the rod Ωh into ∼ h−1 many long cuboids of length ∼ h,
we focus on those cuboids where the perimeter of the enlarged void is locally not large enough
to produce macroscopic fracture, see (3.47)–(3.49). In these cuboids, by means of isoperimetric
arguments and our piecewise rigidity estimate, we obtain large in volume sets in which slight modi-
fications of vh are approximately W 1,2-rigid in terms of the local elastic energy. As we believe that
the isoperimetric inequalities may be of independent interest, we state and prove them in arbitrary
space dimension, see Subsection 3.2.

Although [33, Theorem 2.1] provides an optimal estimate only in terms of the symmetrized
gradient, a use of the Korn-Poincaré inequality for functions with small jump set [19] allows us to
upgrade our estimate to the full gradient in all but finitely many cuboids. This leads to an optimal
estimate for the difference between the rigid motions in terms of the local elastic energy, again in
all but finitely many adjacent cuboids, see Proposition 3.11 and Corollary 3.12 in Subsection 3.3.
In Subsection 3.4, we eventually construct the global blockwise Sobolev modifications and give the
proofs of Propositions 3.1 and 3.2.

Based on these preparations, the rest of the paper is more standard and the results of the elastic
case [58] can be employed directly. Section 4 is devoted to the proof of compactness (Theorem 2.1)
and Section 5 to the proof of the Γ-liminf inequality of Theorem 2.3. The proof of the Γ-limsup
inequality is given in Section 6 by exhibiting a recovery sequence (vh, Eh)h>0. Here, we use the
corresponding recovery sequence from [58] for the deformations, and we construct the voids Eh
with planar interfaces in order to approximate the one-dimensional limiting void sets and the jump
points.

We also remark that, from a technical viewpoint, our proof strategy provides – to our view – a
simplified alternative to obtain the Γ-liminf inequality compared to the methods used in [68], which
were based on delicate interpolation and difference quotients estimates. The latter were dictated by
the fact that, in the same fashion as the result [33], the two-dimensional piecewise rigidity estimate
in SBD [38, Theorem 2.1] used in [68] provides an optimal estimate in terms of the elastic energy
only for symmetrized gradients. Therefore, the standard difference quotients method used in [58]
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was not directly applicable. Our method instead leads to a blockwise Sobolev replacement with the
aid of the Korn inequality for functions with small jump set [19]. This actually enables us to use
directly the results of [58]. We emphasize that in this regard our approach is general: given any kind
of geometric rigidity result delivering a sharp control for symmetrized gradients, e.g. also the result
in [32], our techniques carry directly over and allow to work with blockwise Sobolev replacements.

1.2. Notation. We close the introduction with some basic notation. Given U ⊂ R3 open, we
denote by P(U) the collection of subsets of finite perimeter in U . Given E ∈ P(U), for any s ∈ [0, 1]
we denote by Es the set of points with 3-dimensional density s with respect to E, and by ∂∗E its
essential boundary, see [6, Definition 3.60]. The family of sets of finite perimeter on a one-dimensional
interval (0, L) will be simply denoted by P(0, L). We also denote by Areg(U) the collection of all
open sets E ⊂ U such that ∂E ∩ U is a two-dimensional C2-surface in R3. Surfaces and functions
of C2-regularity will be called C2-regular in the following. For E ∈ Areg(U) we denote by A the

second fundamental form of ∂E ∩ U , i.e., |A| =
√
κ2

1 + κ2
2, where κ1 and κ2 are the corresponding

principal curvatures. By νE we indicate the outer unit normal to ∂E ∩ U . For every a, b ∈ R we
denote a ∧ b := min{a, b} and a ∨ b := max{a, b} .

For p ∈ [1,∞] and d, k ∈ N we denote by Lp(U ;Rd) and W k,p(U ;Rd) the standard Lebesgue
and Sobolev spaces, respectively. Partial derivatives of a function f : U → R3 will be denoted by
(f,i)i=1,2,3. Given measurable sets A,B, we write χA for the characteristic function of A, A ⊂⊂ B if

A ⊂ B, and distH(A,B) for the Hausdorff distance between A and B. For d, k ∈ N, we denote by Ld
and Hk the d-dimensional Lebesgue measure and the k-dimensional Hausdorff measure, respectively.

We set R+ := [0,+∞). By id we denote the identity mapping on R3 and by Id ∈ R3×3 the
identity matrix. For each F ∈ R3×3 we let

sym(F ) :=
1

2

(
F + FT

)
,

and we also define

SO(3) := {F ∈ R3×3 : FTF = Id, detF = 1} .
Moreover, we denote by R3×3

sym and R3×3
skew the space of symmetric and skew-symmetric matrices,

respectively. We further write S2 := {ν ∈ R3 : |ν| = 1}. For σ > 0, we denote by Tσ the linear
transformation in R3 with matrix representation being given by

Tσ := diag(1, σ, σ) (1.5)

with respect to the canonical basis {e1, e2, e3}.
We use standard notation for SBV -functions, cf. [6, Chapter 4] for the definition and a detailed

presentation of the properties of this space. In particular, for a function u ∈ SBV (U ;Rd), we write
∇u for the approximate gradient, Ju for the jump set, and u± for the one-sided traces on Ju. We
also use the notation [u] := u+ − u− for the corresponding jump height. We consider the space

SBV 2(U ;Rd) :=
{
u ∈ SBV (U ;Rd) :

ˆ
U

|∇u|2 dx+Hd−1(Ju ∩ U) < +∞
}
.

In dimension one, given a < b ∈ R and d ∈ N, the space SBV 2((a, b);Rd) coincides with the space
P -W 1,2((a, b);Rd) of piecewise W 1,2-Sobolev functions, which consists of those Y ∈ L1((a, b);Rd)
for which there exists a partition

a =: t0 < t1 < · · · < tm < tm+1 := b such that Y ∈W 1,2((ti−1, ti);Rd) ∀i = 1, . . . ,m+ 1 .

The jump set of Y is precisely the minimal set JY = {t1, . . . , tm} with the above property. By
taking an appropriate representative, we may then assume that Y is uniformly continuous on
{(ti−1, ti)}i=1,...,m+1 and Y (t±i ) are the limits of Y (t) as t→ t±i .
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Analogously, for k ∈ N, we define P -W k,2((a, b);Rd) as the space of Y ∈ L1((a, b);Rd) for which
there exists {a =: t0 < t1 < · · · < tm+1 := b} such that Y ∈ W k,2((ti−1, ti);Rd) ∀i = 1, . . . ,m + 1.

For Y in this space, the minimal set {t1, . . . , tm} with the above property is
⋃k−1
l=0 JY (l) , where Y (l)

denotes the l-th derivate of Y .

2. The model and the main results

Model in the reference domain: We denote the reference configuration of the thin rod by

Ωh := (0, L)× (−h2 ,
h
2 )2 ⊂ R3 , (2.1)

where L > 0 is a macroscopic parameter describing the length of its midline, and 0 < h� L denotes
its infinitesimal thickness. For a fixed large constant M � 1, the set of admissible pairs of function
and set is given by

Ah :=
{

(v,E) : E ∈ Areg(Ωh), v ∈W 1,2(Ωh \ E;R3) , v|E ≡ id , ‖v‖L∞(Ωh) ≤M
}
. (2.2)

The third condition in (2.2) is for definiteness only. The last one is merely of technical nature
to ensure compactness. At the same time, it is also justified from a physical point of view, for it
corresponds to the assumption that the material under investigation is confined in a bounded region.
For each pair (v,E) ∈ Ah, we consider the energy

Fh(v,E) :=

ˆ
Ωh\E

W (∇v) dx+ h2H2(∂E ∩ Ωh) + h2κh

ˆ
∂E∩Ωh

|A|2 dH2 . (2.3)

Here, the first and second term correspond to the elastic and the surface energy of perimeter type,
while the third term is a curvature regularization of Willmore-type, where A denotes the second
fundamental form of ∂E ∩ Ωh and κh is a suitable parameter. The factor h2 in front of the surface
terms ensures that the elastic and the surface energy are of same order for our choice of the bending
regime, where the elastic energy per unit volume is of order h2. We refer to the introduction for
more details.

The function W : R3×3 → R+ in (2.3) represents the stored elastic energy density, satisfying the
usual assumptions of nonlinear elasticity. Altogether, we suppose that W ∈ C0(R3×3;R+) satisfies

(i) Frame indifference: W (RF ) = W (F ) for all R ∈ SO(3) and F ∈ R3×3 ,

(ii) Single energy-well structure: {W = 0} ≡ SO(3) ,

(iii) Regularity: W is C2 in a neighborhood of SO(3) ,

(iv) Coercivity: There exists c > 0 such that for all F ∈ R3×3 it holds that

W (F ) ≥ cdist2(F, SO(3)) .

(2.4)

Our choice of an isotropic surface energy is for simplicity only and can be generalized, as we briefly
explain in Remark 2.4 below. As for the parameter κh > 0 in the curvature regularization, we
require

κhh
−52/25 → +∞ as h→ 0 . (2.5)

We point out that (2.5) is a technical assumption and chosen for simplicity rather than optimality.
Its role is connected to the application of suitable rigidity results [33, 19] and will become apparent
along the proof, see in particular (3.40).

Rescaling of the model: As it is customary in dimension-reduction problems, we perform a
change of variables to a fixed reference domain: recalling (1.5), we rescale our variables and set

Ω := Ω1 , V := {x ∈ Ω : (x1, hx2, hx3) ∈ E} = T1/h(E) . (2.6)
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We also rescale the deformations accordingly, by defining y : Ω→ R3 via

y(x) := y(x1, x2, x3) := v(x1, hx2, hx3) . (2.7)

We rescale the energy by the factor h4 and set

Eh(y, V ) := h−4Fh(v,E) , (2.8)

where the pair (y, V ) is related to (v,E) via (2.6)–(2.7). Here, one factor h2 corresponds to the
change of volume and the other factor h2 corresponds to the average elastic energy per unit volume,
reflecting our choice of the bending energy regime.

For the corresponding rescaled gradients, we will use the notation

∇hy(x) :=
(
∂1y,

1

h
∂2y,

1

h
∂3y
)

(x) = ∇v(x1, hx2, hx3) . (2.9)

Therefore, by a change of variables we find

Eh(y, V ) = h−2

ˆ
Ω\V

W (∇hy(x)) dx+

ˆ
∂V ∩Ω

∣∣(ν1
V (z), h−1ν2

V (z), h−1ν3
V (z)

)∣∣dH2(z) + Ehcurv(V ) ,

(2.10)

where νV (z) :=
(
ν1
V (z), ν2

V (z), ν3
V (z)

)
denotes the outer unit normal to ∂V ∩Ω at the point z. (For

the rescaling of the perimeter part, one can test with smooth functions and use the divergence
theorem.) Here, the term Ehcurv(V ) denotes the curvature contribution for the rescaled set V , for
which we refrain from performing the change of variables explicitly.

In view of (1.5) and (2.2), the space of rescaled admissible pairs (deformations-voids) is given by

Âh := {(y, V ) : V ∈ Areg(Ω) , y ∈W 1,2(Ω \ V ;R3) , y|V ≡ Th(id) , ‖y‖L∞(Ω) ≤M} . (2.11)

Limiting model: The limiting energy will be defined on the space

A :=
{(

(y| d2| d3), I
)

: (y| d2| d3) ∈ SBV 2
isom(0, L) , y|I(x1) ≡ x1 , (y,1| d2| d3)|I ≡ Id ,

‖y‖L∞(Ω) ≤M , I ∈ P(0, L)
}
,

(2.12)

where, recalling the definition of P -W k,2 in Subsection 1.2, we define

SBV 2
isom(0, L) :=

{
(y| d2| d3) ∈

(
P -W 2,2 × P -W 1,2 × P -W 1,2

)(
(0, L);R3×3

)
with

R := (y,1| d2| d3) ∈ SO(3) a.e. in (0, L)
}
.

(2.13)

By a slight abuse of notation, for triplets (ȳ| d̄2| d̄3) : Ω → R3×3 we will also use the notation
(ȳ| d̄2| d̄3) ∈ SBV 2

isom(0, L) if and only if

(ȳ| d̄2| d̄3)(x) = (y| d2| d3)(x1) for all x ∈ Ω, for some (y| d2| d3) ∈ SBV 2
isom(0, L) . (2.14)

In a similar fashion, we will write

R̄(x) := (y,1| d2| d3)(x1) for all x ∈ Ω . (2.15)

With these definitions, for each ((y| d2| d3), I) ∈ A, the limiting one-dimensional energy of Blake-
Zisserman type (cf. [12, 18, 65] for analogous models in different settings) is defined as

E0
(
(y| d2| d3), I

)
:=

1

2

ˆ
(0,L)\I

Q2(RTR,1) dx1 +H0
(
∂∗I ∩ (0, L)

)
+ 2H0

(
(Jy ∪ JR) \ ∂∗I

)
. (2.16)
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Here, R is defined as in (2.13), and the quadratic form Q2 : R3×3
skew → R+ is defined through a

minimization problem as

Q2(A) := min
a∈W 1,2

(
(− 1

2 ,
1
2 )

2
;R3
)
ˆ

(− 1
2 ,

1
2 )

2
Q3

A
 0
x2

x3

∣∣∣∣∣α,2
∣∣∣∣∣α,3

 dx2 dx3 (2.17)

for all A ∈ R3×3
skew, where, for every G ∈ R3×3,

Q3(G) := D2W (Id)[G,G] (2.18)

is the corresponding quadratic form of linearized elasticity. Note that, as R belongs to SO(3), RTR,1
is skew symmetric, and thus the elastic energy in (2.16) is well defined. Moreover, due to (2.4), Q3

vanishes on R3×3
skew and is strictly positive definite on R3×3

sym.
As mentioned also in the introduction, the limiting one-dimensional model features the classical

bending-torsion term derived in [58] and two surface terms related to the presence of voids. The
first part corresponds to the energy contribution of the limiting void I, whereas the second part is
associated to discontinuities or kinks of the deformation, represented by Jy and JR, respectively.
This term is due to the fact that voids may collapse to single points and hence enters the energy
with a factor 2, see Figure 2.

vh

y
h→ 0 h→ 0

Figure 2. A collapsing void leading to a discontinuity for Jy and JR.

Main results: Keeping in mind (2.6), (2.11), (2.12), and setting

VI := I × (−1/2, 1/2)2 ∈ P(Ω) for I ∈ P(0, L) ,

our main results in this paper are summarized as follows.

Theorem 2.1. (Compactness) Let (hj)j∈N ⊂ (0,∞) with hj ↘ 0 and (yhj , Vhj ) ∈ Âhj be such that

sup
j∈N
Ehj (yhj , Vhj ) < +∞ . (2.19)

Then, there exists
(
(y| d2| d3), I

)
∈ A such that up to a non-relabeled subsequence,

(i) χVhj −→ χVI in L1(Ω) ,

(ii) yhj −→ ȳ in L1(Ω;R3) ,

(iii) χΩ\Vhj∇hjyhj ⇀ χΩ\VI R̄ weakly in L2(Ω;R3×3) ,

(2.20)

where ȳ and R̄ are meant here with the conventions made in (2.14)–(2.15).

Definition 2.2. We say that (yhj , Vhj )
τ−→
(
(y| d2| d3), I

)
if and only if (2.20) holds.
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Since (2.11) implies that supj∈N ‖yhj‖L∞(Ω) ≤M , the convergence in (2.20)(ii) actually holds in

Lp(Ω;R3) for every p ∈ [1,+∞). We are now ready to state the main Γ-convergence result.

Theorem 2.3. (Γ-convergence) Let (hj)j∈N ⊂ (0,∞) with hj ↘ 0. The sequence of functionals

(Ehj )j∈N Γ(τ)-converges to the functional E0, i.e., the following two inequalities hold true.

(i) (Γ-liminf inequality) Whenever (yhj , Vhj )
τ−→
(
(y| d2| d3), I

)
, then

E0
(
(y| d2| d3), I

)
≤ lim inf

j→+∞
Ehj (yhj , Vhj ) . (2.21)

(ii) (Γ-limsup inequality) For every
(
(y| d2| d3), I

)
∈ A there exists a sequence (yhj , Vhj )j∈N with

(yhj , Vhj ) ∈ Âhj for each j ∈ N, such that (yhj , Vhj )
τ−→
(
(y| d2| d3), I

)
, and

lim sup
j→+∞

Ehj (yhj , Vhj ) ≤ E0
(
(y| d2| d3), I

)
. (2.22)

Remark 2.4 (Extensions and variants). (i) We could consider more general perimeter energies of
the form

βh

ˆ
∂E∩Ωh

ϕ(νE) dH2 ,

where limh→0(h−2βh) = β > 0 and ϕ is a norm in R3. For simplicity of the exposition, we have
chosen βh = h2 and ϕ to be the standard Euclidean norm in R3. The general case is completely
analogous in its treatment, up to a prefactor ϕ(e1) appearing in the last two terms in (2.16).

(ii) Regarding the choice of the curvature regularization, let us mention that, in view of the results
in [33, Theorem 2.1], any choice of the form

h2κh

ˆ
∂E∩Ωh

|A|q dH2

with q ≥ 2 would be possible, up to adjusting the condition for κh in (2.5) (which will then depend
also on q). The choice q ≥ 2, however, is essential, see [33, Lemma 2.11 and Example 2.12]. For
simplicity, we have chosen the exponent q = 2, which corresponds to a curvature regularization of
Willmore type.

(iii) Let us also remark that clamped boundary conditions and body forces can be included into
the Γ-convergence statement. We refrain here from giving the details, but refer the interested reader
to [68, Corollaries 2.4, 2.5] for results in this direction.

Remark 2.5 (Discussion on the limiting model). The limiting model includes the Griffith-Euler-
Bernoulli theory for brittle beams derived in [68], which corresponds to an energy of the form

EGEB(y) :=

ˆ L

0

|κy|2 dx1 +H0(Jy ∪ Jy′) , (2.23)

where y ∈ P -W 2,2((0, L);R2) is an arclength parametrization and κy denotes the corresponding
curvature. This follows from our model for I = ∅, deformations y = (y1, y2, 0), and Frenet frames
R = (y′| d2| d3) with d2 = (−y′2, y′1, 0) and d3 = (0, 0, 1). This functional is related to a one-
dimensional version of the Blake-Zisserman model [12], where y is scalar and κy is replaced by y′′.
Our model (with I = ∅) and the model in (2.23) have a similar response to boundary value problems.
In particular, prescribing boundary conditions y(0) and y(L) which are not compatible with smooth
elements in A, e.g. if |y(0) − y(L)| > L, we necessarily have Jy ∪ Jy′ 6= ∅. Even if the boundary
conditions can be achieved by smooth elements in A, cracks may be favorable whenever all curves
connecting y(0) and y(L) have large curvature, e.g. if |y(0)− y(L)| � L.

Adding a volume constraint of the form h−2L3(Eh) → 0 in our 3d model, we can easily recover
(2.16) without voids, i.e., I = ∅. If we allow for voids in the limit, the interpretation of the model is



10 MANUEL FRIEDRICH, LEONARD KREUTZ, AND KONSTANTINOS ZEMAS

a bit more delicate, as the non-smoothness could be introduced through cracks, kinks, or voids. In
the extreme case, even everything could be covered by void. To avoid the latter phenomenon, one
could add a volume constraint of the form L3(Eh) ≤ αh2 for α ∈ (0, L) or introduce body forces
(both of which can be incorporated in the Γ-convergence result). With a body force of typeˆ

(0,L)\I
f(x) · y(x1) dx1 ,

cracks may be energetically favorable compared to voids. In fact, with lateral stretched boundary
conditions (e.g. y(0) = 0, y(L) = (L′, 0, 0) with L′ > L) and f ≡ −e3 (corresponding to gravity
force), one can check that it is convenient not to introduce void but a crack, with Jy close to 0 or
L.

Example 2.6 (L2 vs L∞-bound on the curvature). Recall (2.3) and (2.8). The following example
shows that we can exhibit configurations (vh, Eh) ∈ Ah with

sup
h>0

h−4Fh(vh, Eh) < +∞ ,

where Eh consists of balls which concentrate on arbitrarily small scales (independently of h), and
whose number is diverging (with h). As a preparation, let r > 0 and observe that for E := Br ⊂⊂ Ωh,

where Br is a ball of radius r, the second fundamental form of ∂E satisfies |A| =
√

2r−1, and the
surface energy contribution is

h−2

(
H2(∂Br) + κh

ˆ
∂Br

|A|2 dH2

)
= 4π

(
h−2r2 + 2h−2κh

)
. (2.24)

In the setting of [65] (cf. Remark 3.1 therein) and for void sets consisting of a disjoint union of balls
compactly contained in Ωh, an L∞-bound of the form |A| ≤ Ch−1 implies a lower bound of order
h for the radius of each of those balls. The energy bound h−2H2(∂Eh ∩ Ωh) ≤ C on the perimeter
energy implies now that such voids can only consist of finitely many disjoint balls whose cardinality
depends only on the a priori L∞-bound and the energy bound.

Instead, in our setting we can construct an example of a sequence of voids with the aforementioned
requirements. We perform this construction for

κh → 0 such that h−2κh → 0 . (2.25)

This rate of convergence is possible as κh only needs to satisfy (2.5), take e.g. κh = h51/25. Let

Nh ∈ N, let (xi,h)Nhi=1 ⊂ R3, (ri,h)Nhi=1 ⊂ (0,+∞), be such that Bri,h(xi,h) ⊂⊂ Ωh for all i, with

ri,h ≤ hN
−1/2
h for all i, Bri,h(xi,h) ∩ Brj,h(xj,h) = ∅ for i 6= j. Set Eh :=

⋃Nh
i=1Bri,h(xi,h) and

vh = id (for definiteness only as this is not the point of this example). Then, by (2.24), we have

h−4Fh(vh, Eh) = 4π

Nh∑
i=1

h−2r2
i,h + 8πNhh

−2κh .

By (2.25) and ri,h ≤ hN
−1/2
h for all i, we can suitably choose Nh → +∞ to obtain a sequence of

void sets (Eh)h>0 with equi-bounded surface energy, that has a diverging number of components
with no (not even diverging with h) L∞-control on the curvature.

3. Blockwise Sobolev modification of deformations

This section is devoted to two preliminary propositions which are vital in the proofs of the
compactness Theorem 2.1 in Section 4 and the Γ-liminf inequality of Theorem 2.3 in Section 5. Our
reasoning relies on the approximation of a sequence of deformations with equibounded energy by
mappings which are blockwise Sobolev. This will allow us to use the results of [58, Theorems 2.1
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and 3.1] in subsets of the domain where the modified functions are weakly differentiable. In order
to control the surface contributions due to voids correctly, our arguments will also include estimates
on the jump set of the blockwise Sobolev approximations. The main gain of our construction is the
fact that, in contrast to the jump set of original deformations (vh)h>0, we are able to control the
geometry of the jump set of the newly constructed sequence, namely the new jump set is contained
in finitely many vertical planes. That is the reason why we call this modification blockwise Sobolev
approximation.

In this and in the following sections, we will use the continuum subscript h > 0 instead of the
sequential subscript notation (hj)j∈N for notational convenience. Before we can state the main
results of this section, we need to collect some more notation. Recalling the definition of Ωh in
(2.1), for ρ ∈ (0, 1) we define the slightly smaller reference domain

Ωh,ρ := (ρh, L− ρh)× (−h2 + 1
2ρh,

h
2 −

1
2ρh)2 . (3.1)

For T ∈ N, T � 1, we cover the domain Ωh with T-cuboids, namely

Qh(i) :=
[
(i− 1)Th, iTh

)
× (−h2 ,

h
2 )2 ,

for i = 1, . . . , N := b LThc+ 1, and let

Qh := {Qh(i) : i = 1, . . . , N} . (3.2)

While we will eventually send ρ → 0 in Section 4, T is fixed throughout the paper. Therefore, we
refrain from including T in the notation of Qh. For x ∈ R3, l ≥ 0 we introduce the stripes

Slh(x) := (x− l, x+ l)× (−h2 ,
h
2 )2 . (3.3)

Similarly to (3.1), for ρ ∈ (0, 1) we also introduce the smaller stripes

Slh,ρ(x) := (x− l + ρl, x+ l − ρl)× (−h2 + 1
2ρh,

h
2 −

1
2ρh)2 . (3.4)

For every measurable set K ⊂ R3 and γ > 0 we introduce the localized surface energy

Gγsurf(E;K) := H2(∂E ∩K) + γ

ˆ
∂E∩K

|A|2 dH2 , (3.5)

where for later purposes we use a general parameter γ in place of κh. Then, given an infinitesimal
sequence (εh)h>0 ⊂ (0,+∞), we define the total rescaled energy by

Gh(v,E) :=
1

h2εh

ˆ
Ωh\E

W (∇v) dx+
1

h2
Gκhsurf(E; Ωh) (3.6)

for (v,E) ∈ Ah. Note that for εh = h2 we have Gh(v,E) = h−4Fh(v,E) with Fh as defined in
(2.3). In this section, we treat a more general scaling εh of the elastic energy in order to distinguish
more clearly the scalings related to the volume of Ωh and that of the average elastic energy per unit
volume.

In the next proposition, we assume that T � 1 is chosen big enough, see (3.39) for details. We
also recall the role of M � 1 in (2.2).

Proposition 3.1 (Blockwise Sobolev approximation of deformations). Let (εh)h>0 ⊂ (0,+∞) be
a sequence satisfying lim suph→0 εhh

−2 < +∞, and let 0 < ρ ≤ ρ0 for some universal ρ0 > 0.
Then, there exists a constant C := C(T,M) > 0 such that for every sequence (vh, Eh)h>0 with
(vh, Eh) ∈ Ah and

sup
h>0
Gh(vh, Eh) < +∞ , (3.7)
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there exist sequences (wh)h>0 and (Rh)h>0 with wh ∈ SBV 2(Ωh,ρ;R3) and Rh ∈ SBV 2(Ωh,ρ;R3×3)
satisfying the following properties:

(i) ‖wh‖L∞(Ωh,ρ) ≤ C, ‖Rh‖L∞(Ωh,ρ) ≤ C ,

(ii) Jwh ∪ JRh ⊂ Ωh,ρ ∩
⋃

Qh∈Qvh

∂Qh for some Qvh ⊂ Qh with #Qvh ≤ C ,

(iii) h−2L3
(
{x ∈ Ωh,ρ : wh(x) 6= vh(x)}

)
→ 0, h−2L3

(
Ωh,ρ ∩

{
|∇vh −Rh| > θh

})
→ 0 ,

(iv)

ˆ
Ωh,ρ

dist2(∇wh, SO(3)) dx ≤ Ch2εh ,

ˆ
Ωh,ρ

|∇Rh|2 dx ≤ Cεh ,

(3.8)

where (θh)h>0 ⊂ (0,+∞) is a sequence with θh → 0 and θhε
−1/2
h →∞.

The result allows us to approximate vh by a blockwise Sobolev function wh by changing the
mapping on an asymptotically vanishing portion of the volume, see (3.8)(iii). The important point
is that the elastic energy of wh is still of the same order, see (3.8)(iv). In the next sections we
will also need some control on the second gradient of vh, which a priori might not exist. This is
achieved by a second sequence of functions (Rh)h>0 which has bounded derivative in L2 and suitably
approximates ∇vh, see again (3.8)(iii),(iv).

The approximation also delivers a control on the jump set, see (3.8)(ii), which corresponds to the
fact that in the limit we expect functions which jump at most a finite number of times, see (2.12),
(2.13). The most delicate part in the derivation of the Γ-liminf inequality for the surface energy in
(2.16) is the correct factor 2 in front of H0

(
(Jy∪JR)\∂∗I

)
. This will be achieved by a contradiction

based fundamentally on the following lemma: suppose that along a sequence the surface energy in
a set S2l

h (x) (see (3.3)) was less than ∼ 2h2, i.e., so small such that the void cannot cut through the
thin rod Ωh, see Figure 3. Then, the jump height of the sequences (wh)h>0, (Rh)h>0 is small, see
(3.11) below. Later in Section 5 this will allow us to exclude that the limiting functions y and R
jump in the set Slh,ρ(x) ⊂ S2l

h (x).

(b) (c)(a)

Figure 3. The void set is depicted in gray. In the situation of (3.10) or Remark 3.3(i), only case
(a) can occur, whereas (b),(c) are impossible.

Recall the stripes Slh(x) and Slh,ρ(x) defined in (3.3) and (3.4), respectively.

Proposition 3.2 (Jumps of blockwise Sobolev modifications). Let (vh, Eh) ∈ Ah be a sequence
from Proposition 3.1 and let wh ∈ SBV 2(Ωh,ρ;R3), Rh ∈ SBV 2(Ωh,ρ;R3×3) be the corresponding
functions satisfying (3.8). Then, there exist open sets E∗h with Eh ⊂ E∗h ⊂ Ωh, ∂E∗h ∩Ωh is a union
of finitely many C2-regular submanifolds, that satisfy

h−3L3(E∗h \ Eh)→ 0, lim inf
h→0

h−2H2(∂E∗h ∩ Ωh) ≤ lim inf
h→0

h−2Gκhsurf(Eh; Ωh) , (3.9)

such that the following holds for any l ≥ 6Th, x ∈ (2l, L− 2l): For any stripe S2l
h (x) with

(i)
1

((1− ρ)h)2
H2
(
∂E∗h ∩ S2l

h (x)
)
< 2 ,

(ii)
L3(E∗h ∩ S2l

h (x))

L3(S2l
h (x))

≤ 1

9
,

(3.10)
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it holds that

1

h2

ˆ
Slh,ρ(x)∩Jwh

√
|[wh]|dH2 +

1

h2

ˆ
Slh,ρ(x)∩JRh

√
|[Rh]|dH2 → 0 . (3.11)

Remark 3.3. (i) One can also prove a variant of Proposition 3.2: if 2 in the right hand side of
(3.10)(i) is replaced by 1, then assumption (3.10)(ii) is not needed, cf. Figure 3. (ii) In (3.11),√
|[wh]| and

√
|[Rh]| can be replaced by |[wh]|1−β and |[Rh]|1−β for any β ∈ (0, 1), up to adjusting

the condition for κh in (2.5) (which will then depend also on β). We omit details as the choice
β = 1

2 is enough for our purposes.
We refer to Remark 3.13 below for a short comment how to prove (i) and (ii).

The rest of this section is entirely devoted to the proofs of Propositions 3.1–3.2. The proofs of
our main compactness and Γ-convergence results then start in Section 4. In the proofs, we will send
the parameters h, ρ to zero (in this order). In order to avoid overburdening of notation, generic
constants which are independent of h, ρ but may depend on the fixed parameters T, L are denoted
by C. We will use a subscript notation whenever we want to highlight the dependence of a particular
constant on a specific parameter.

3.1. Rigidity results. This subsection is devoted to recalling some rigidity results which are the
basis for our proofs.

Geometric rigidity in variable domains: We first recall the result [33, Theorem 2.1]. For con-
venience, we will directly formulate it on the set Ωh and its subset Ωh,ρ, see (2.1) and (3.1). The

behavior of deformations v on (connected components of) Ωh \ E might not be rigid. We refer to
[33, Example 2.6] for an explanation in that direction. A key observation in [33] is that rigidity
estimates can be obtained outside of a thickened version of the voids. We start by formulating this
result on the modification of the void sets.

Proposition 3.4 (Thickening of sets). Let h, ρ > 0, let γ ∈ (0, 1). Then, there exist a universal
constant C0 > 0, η0 = η0(ρ) ∈ (0, 1), and for each η ∈ (0, η0] the following holds:
Given E ∈ Areg(Ωh), we can find an open set Eh,η,γ such that E ⊂ Eh,η,γ ⊂ Ωh, ∂Eh,η,γ ∩ Ωh is a
union of finitely many C2-regular submanifolds, and

(i) L3(Eh,η,γ \ E) ≤ hηγ1/2Gγh
2

surf(E; Ωh), distH(E,Eh,η,γ) ≤ hηγ1/2 ,

(ii) H2(∂Eh,η,γ ∩ Ωh) ≤ (1 + C0η)Gγh
2

surf(E; Ωh) .
(3.12)

On the complement Ωh,ρ \ Eh,η,γ quantitative piecewise rigidity estimates hold, as the following
result shows. Recall the notation Slh(x) in (3.3).

Theorem 3.5 (Geometric rigidity in variable domains). Let h, ρ > 0, let γ ∈ (0, 1) and l > 0.
Then, there exist a universal constant C0 > 0, η0 = η0(ρ) > 0, and for each η ∈ (0, η0] there exists
Cη = Cη(η, lh ) > 0 with Cη →∞ as η → 0, l

h → 0, or l
h →∞ such that the following holds:

For every E ∈ Areg(Ωh), denoting by Eh,η,γ the set of Proposition 3.4, for every U = Slh(x) ⊂ Ωh
and Ũ = Slh,ρ(x) ⊂ Ωh,ρ, for the connected components (Ũj)j of Ũ \ Eh,η,γ and for every y ∈
W 1,2(Ωh \ E;R3) there exist corresponding rotations (Rj)j ⊂ SO(3) and vectors (bj)j ⊂ R3 such
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that

(i)
∑

j

ˆ
Ũj

∣∣sym
(
(Rj)

T∇y − Id
)∣∣2 dx ≤ C0

(
1 + Cηγ

−15/2h−3ε
) ˆ

U\E
dist2(∇y, SO(3)) dx ,

(ii)
∑

j

ˆ
Ũj

∣∣(Rj)T∇y − Id
∣∣2 dx ≤ Cηγ−3

ˆ
U\E

dist2(∇y, SO(3)) dx ,

(iii)
∑

j

ˆ
Ũj

1

h2

∣∣y − (Rjx+ bj)
∣∣2 dx ≤ Cηγ−5

ˆ
U\E

dist2(∇y, SO(3)) dx , (3.13)

where for brevity ε :=
´
U\E dist2(∇y, SO(3)) dx.

Proof of Proposition 3.4 and Theorem 3.5. The result is essentially given in [33, Theorem 2.1]. We
explain here the adaptations necessary to the present version of the result, in particular the scaling
in terms of the small parameter h > 0.

We apply [33, Theorem 2.1] for d = 3, q = 2, γ ∈ (0, 1) and ϕ ≡ ‖ · ‖2 on the sets h−1Ωh ⊂ R3,

Ω̃ := h−1Ωh,ρ and h−1E. The constant η0 therein depends only on dist(h−1∂Ωh, h
−1Ωh,ρ) and can

thus be chosen depending only on ρ, see (2.1) and (3.1). Then, the result first provides a set Eη,γ
with h−1E ⊂ Eη,γ ⊂ h−1Ωh such that by [33, (2.2)] and a scaling argument the set Eh,η,γ := hEη,γ
satisfies (3.12). Here, we particularly note that a change of variables implies

Gγsurf(h
−1E;h−1Ωh) = h−2Gγh

2

surf(E; Ωh) .

Then, (3.13) follows from a localized version of [33, (2.3)], see [33, Remark 2.10], first applied on the

sets h−1U , h−1Ũ and the function wh(x) = 1
hy(hx) for x ∈ h−1(Ωh \ E), and then again rescaled.

The factors h−3 and h−2 in (3.13)(i), (iii), respectively, ensure that all inequalities in (3.13) are
scaling invariant in the sense that the constants are independent of h. The factors γ−15/2, γ−3 and
γ−5 follow from the choice of d = 3 and q = 2. We further observe that the constant Cη depends

on η and L3(h−1U), see [33, Remark 2.10]. As L3(h−1U) = 2l
h , we indeed get that Cη depends on

η and the ratio of l and h. �

In the proofs below, we will apply this rigidity result on the T -cuboids Qh introduced in (3.2) or
in finite unions of such cuboids. For these sets, we observe that the constant Cη depends only on η
and T (as the corresponding l is approximately Th). Moreover, we will choose η and γ depending
on the regime of the elastic energy ε such that Cηγ

−15/2h−3ε ≤ 1 and Cηγ
−5 ≤ ε−θ for some θ > 0

small. Thus, we obtain a sharp control on symmetrized gradients in terms of ε (see (3.13)(i)), while
the rigidity estimate in (3.13)(ii) and the Poincaré-type estimate (3.13)(iii) yield control of order
ε1−θ, hence being suboptimal in the exponent.

Korn and Poincaré inequalities: The issue of the suboptimal exponent can be remedied provided
that the surface measure of the void set is small. This relies on delicate Korn and Poincaré inequal-
ities in the space GSBD2, see [24] for the definition of this space. We formulate the result of [19,
Theorem 1.1, Theorem 1.2] in a simplified setting which does not involve functions in GSBD2 but
only SBV 2-functions. In the following, we say that a : R3 → R3 is an infinitesimal rigid motion if
a is affine with sym(∇a) = 0.

Theorem 3.6 (Korn inequality for functions with small jump set). Let U ⊂ R3 be a bounded
Lipschitz domain. Then, there exists a constant c = c(U) > 0 such that for all u ∈ SBV 2(U ;R3)
there exists a set of finite perimeter ω ⊂ U with

H2(∂∗ω) ≤ cH2(Ju) , L3(ω) ≤ c(H2(Ju))3/2 , (3.14)
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and an infinitesimal rigid motion a such that

(diam(U))−1‖u− a‖L2(U\ω) + ‖∇u−∇a‖L2(U\ω) ≤ c‖sym(∇u)‖L2(U). (3.15)

Moreover, there exists v ∈W 1,2(U ;R3) such that v ≡ u on U \ ω and

‖sym(∇v)‖L2(U) ≤ c‖sym(∇u)‖L2(U).

Furthermore, if u ∈ L∞(U ;R3) one has ‖v‖L∞(U) ≤ ‖u‖L∞(U).

This follows from [19] (for d = 3 and p = 2) by the fact that SBV 2 ⊂ GSBD2. Note that in
[19, Theorem 1.1] L3(ω) ≤ c(H2(Ju))3/2 has not been stated explicitly, but it readily follows from
H2(∂∗ω) ≤ cH2(Ju) and the isoperimetric inequality. The result is indeed only relevant if H2(Ju)
is small since otherwise ω = U is possible and the statement is empty. In a similar fashion to
the reasoning in Theorem 3.5, it is a standard matter to see that the constant in (3.14)–(3.15) is
invariant under translation and rescaling of the domain.

Difference of affine maps: To estimate the difference of rigid motions, we make use of the following
elementary lemma. By Br(x) ⊂ R3 we denote the open ball centered at x ∈ R3 with radius r > 0.

Lemma 3.7 (Estimate on affine maps). Let δ > 0. Then there exists a constant C > 0 only
depending on δ such for every G ∈ R3×3, b ∈ R3, x ∈ R3, and E ⊂ Br(x) for some r > 0 with
L3(E) ≥ δr3 we have

‖G ·+b‖L∞(Br(x)) ≤ Cr−3L3(E)1/2‖G ·+b‖L2(E), |G| ≤ Cr−4L3(E)1/2‖G ·+b‖L2(E) .

Proof. For r = 1 and x = 0, the result is a special case of [39, Lemma 3.4], applied (for d = 3) to
ψ(t) := t2. In particular, in [39, (3.4)] we also use Hölder’s inequality to get the control in terms
of the quantity L3(E)1/2‖G · +b‖L2(E). For general r > 0 and x ∈ R3, the estimates follow from a
standard scaling and translation argument. �

3.2. Isoperimetric inequalities on cuboids. In this subsection, we present a special case of a
relative isoperimetric inequality in cuboids that are long in one direction, where the isoperimetric
constant is independent of the length. Such an inequality is possible for sets that have small relative
perimeter as, in this case, isoperimetric sets will concentrate at one of the corners or at one of the
short edges of the long cuboid. Indeed, under the small perimeter constraint, the relative boundary
cannot span a cross section of the cuboid, see Figure 4. As the result may be interesting in its own
right, it is formulated in arbitrary space dimension on the cuboids Slσ(x0) := x0+(−l, l)×(−σ2 ,

σ
2 )d−1,

consistent with the notation (3.3). Afterwards, we will present two consequences which will be used
in the sequel.

Proposition 3.8 (Relative isoperimetric inequality on cuboids). Let l, σ > 0 with l/σ ≥ 1, and
x0 ∈ Rd. Then, there exists a dimensional constant Ciso ≥ 1 independent of l and σ such that for
every set of finite perimeter P ⊂ Slσ(x0) with

Hd−1
(
∂∗P ∩ Slσ(x0)

)
< σd−1 , (3.16)

it holds that

min{Ld(P ),Ld(Slσ(x0) \ P )} ≤ CisoσHd−1(∂∗P ∩ Slσ(x0)) . (3.17)

Proof. Without loss of generality, after translation and uniform rescaling, we can assume that x0 =
0, σ = 1, and can without restriction reduce to showing the following assertion on the cuboid
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(a) (b)

Figure 4. Void set contained in a thin rod with (a) relative perimeter less than σd−1, (b) relative

perimeter bigger than σd−1.

Ql := Sl1(0) = (−l, l) × (− 1
2 ,

1
2 )d−1. There exists a dimensional constant cd > 0 such that for each

l ≥ 1 and for every set of finite perimeter P ⊂ Ql with

Ld(P ) ≤ l and Hd−1(∂∗P ∩Ql) < 1 ,

there holds that
Ld(P ) ≤ cdHd−1(∂∗P ∩Ql) . (3.18)

Note that we can assume that l � 1 as, given l0 > 1, we have that for all 1 ≤ l ≤ l0 the statement
follows directly from the classical relative isoperimetric inequality

min{Ld(P ),Ld(Ql \ P )} ≤ Ciso(l)Hd−1(∂∗P ∩Ql) ,

and the fact that that Ciso(l) ≤ C0l0, where C0 > 0 is a dimensional constant.
We prove the assertion by induction on the dimension d, the case d = 1 being a trivial statement.

Assume now that (3.18) is true for some d ≥ 1, and for the inductive step let us prove it in dimension

d+ 1. For this purpose, let P ⊂ Qd+1
l := (−l, l)× (− 1

2 ,
1
2 )d be a set of finite perimeter, with

Ld+1(P ) ≤ l and Hd(∂∗P ∩Qd+1
l ) < 1 . (3.19)

For every t ∈ (− 1
2 ,

1
2 ), let us set for notational simplicity Qdl,t := Qd+1

l ∩ {xd+1 = t} and also

Pt := P ∩ Qdl,t. By general slicing properties of sets of finite perimeter, Pt is a subset of finite

perimeter in Qdl,t for L1-a.e. t ∈ (−1/2, 1/2). Let now t0 ∈ (−1/2, 1/2) be such that Pt0 is of finite

perimeter and also, as a consequence of the coarea formula (cf. [56, (18.25)]) and (3.19),

Hd−1(∂∗Pt0 ∩Qdl,t0) ≤
ˆ 1/2

−1/2

Hd−1(∂∗Pt ∩Qdl,t) dt ≤ Hd(∂∗P ∩Qd+1
l ) < 1 . (3.20)

By (3.19), we also find that for L1-a.e. t ∈ (−1/2, 1/2),∣∣Ld(Pt)− Ld(Pt0)
∣∣ ≤ Hd(∂∗P ∩ ((−l, l)× (−1/2, 1/2)d−1 × [t0 ∧ t, t0 ∨ t]

))
≤ Hd(∂∗P ∩Qd+1

l ) < 1 .
(3.21)

Note that the first inequality in (3.21) is immediate for smooth sets via a projection argument. In
the general case, it can be derived by the density of smooth sets and Fubini’s theorem. Therefore,
we get

Ld(Pt0)− 1 < Ld(Pt) < Ld(Pt0) + 1 for L1-a.e. t ∈ (−1/2, 1/2) . (3.22)

We now claim that
Ld(Pt0) ≤ Ld(Qdl,t0 \ Pt0) . (3.23)

Indeed, if (3.23) was not true, then by (3.20) and the inductive hypothesis we would have

Ld(Qdl,t0 \ Pt0) ≤ cdHd−1(∂∗Pt0 ∩Qdl,t0) < cd (3.24)

Then, by choosing l� 1, (3.22) together with (3.24) would imply that

Ld(Pt) > Ld(Pt0)− 1 > 2l − cd − 1 > l for L1-a.e. t ∈ (−1/2, 1/2) . (3.25)
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Thus, by (3.25) and Fubini’s theorem, we would get

Ld+1(P ) =

ˆ 1/2

−1/2

Ld(Pt) dt > l ,

contradicting the first assumption in (3.19). Therefore, indeed (3.23) holds true. By our inductive
hypothesis and (3.20) this yields

Ld(Pt0) ≤ cdHd−1(∂∗Pt0 ∩Qdl,t0) ≤ cdHd(∂∗P ∩Qd+1
l ) .

The last inequality together with (3.21) implies that

Ld(Pt) ≤ (cd + 1)Hd(∂∗P ∩Qd+1
l ) for L1-a.e. t ∈ (−1/2, 1/2) .

Therefore, using Fubini’s theorem again, we get

Ld+1(P ) =

ˆ 1/2

−1/2

Ld(Pt) dt ≤ (cd + 1)Hd(∂∗P ∩Qd+1
l ) ,

finishing the induction and hence the proof. �

We proceed with two corollaries: Corollary 3.9 and Corollary 3.10 describe how a long cuboid
can be partitioned by a void set. If the void set has relative perimeter less than the area of the
cross section σd−1, then there is a very large dominant component and some small components
whose volume can be controlled by the relative perimeter of the void set. The same is true if the
void set has relative perimeter between σd−1 and 2σd−1 but small volume. If we drop the volume
assumption, there may be two different large components - one consisting of the void set and a
large complementary component. If the void set has relative perimeter bigger than 2σd−1, then,
even if the void set has small volume, it may separate the cuboid into two large complementary
components. Some indicative cases are illustrated in Figure 3: (a) Void set with perimeter less than
σd−1 or small volume and perimeter less than 2σd−1. (b) Void set with perimeter less than 2σd−1

with large volume. (c) Void set with perimeter bigger than 2σd−1 with small volume.

Corollary 3.9 (Dominant component 1). There exists T0 ∈ N with the following property. Let
l, σ > 0 with l/σ ≥ T0. Let (Pj)j≥1 be a Caccioppoli partition of Slσ(x0) with

Hd−1
( ⋃
j≥1

∂∗Pj ∩ Slσ(x0)
)
< σd−1 (3.26)

and Ld(P1) ≥ Ld(Pj) for all j ≥ 2. Then,

Ld(Slσ(x0) \ P1) ≤ CisoσHd−1
(
∂∗P1 ∩ Slσ(x0)

)
and Ld(P1) >

1

2
Ld(Slσ(x0)) , (3.27)

where Ciso is the constant in (3.17).

Proof. In view of (3.26), (3.16) holds for each Pj and Proposition 3.8 is applicable for each Pj . To
prove the statement, it suffices to show that

Ld(P1) > Ld(Slσ(x0) \ P1) .

Assume by contradiction that this was false. By Ld(P1) ≥ Ld(Pj) for all j ≥ 2, this would imply
Ld(Pj) ≤ Ld(Slσ(x0) \ Pj) for all j ≥ 1. But then we calculate using (3.17) and (3.26),

2lσd−1 = Ld(Slσ(x0)) =
∑
j≥1

Ld(Pj) =
∑
j≥1

min{Ld(Pj),Ld(Slσ(x0) \ Pj)}

≤
∑
j≥1

CisoσHd−1(∂∗Pj ∩ Slσ(x0)) = 2CisoσHd−1
( ⋃
j≥1

∂∗Pj ∩ Slσ(x0)
)
< 2Cisoσ

d ,
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where we also used the local structure of Caccioppoli partitions, see [6, Theorem 4.17]. By choosing
T0 ∈ N large enough depending only on Ciso such that l/σ ≥ T0 > Ciso, this yields a contradiction.

�

Corollary 3.10 (Dominant component 2). There exists T0 ∈ N with the following property. Let
l, σ > 0 with l/σ ≥ T0. Let E ∈ P(Slσ(x0)) and let (Pj)j≥1 be the connected components of Slσ(x0)\E
in the sense that (Pj)j≥1 ∪ {E} forms a Caccioppoli partition of Slσ(x0) with

Hd−1
(
(∂∗Pj \ ∂∗E) ∩ Slσ(x0)

)
= 0 for all j ≥ 1 . (3.28)

Suppose that

Hd−1
( ⋃
j≥1

∂∗Pj ∩ Slσ(x0)
)
< 2σd−1, Ld(E) ≤ 1

4
Ld(Slσ(x0)) (3.29)

and Ld(P1) ≥ Ld(Pj) for all j ≥ 2. Then,

Ld(Slσ(x0) \ P1) ≤ CisoσHd−1
( ⋃
j≥1

∂∗Pj ∩ Slσ(x0)
)

+ Ld(E) and Ld(P1) >
1

2
Ld(Slσ(x0)) , (3.30)

where Ciso is the constant in (3.17).

Proof. As Ld(Pj) ≤ Ld(P1), we first observe that

Ld(Pj) ≤
1

2
Ld(Slσ(x0)) for all j ≥ 2 . (3.31)

The sets (∂∗Pj ∩Slσ(x0))j≥1 are pairwise disjoint up to Hd−1-negligible sets by (3.28) and the local
structure of Caccioppoli partitions, see [6, Theorem 4.17]. Therefore, by (3.29) we get∑

j≥1

Hd−1
(
∂∗Pj ∩ Slσ(x0)

)
= Hd−1

( ⋃
j≥1

∂∗Pj ∩ Slσ(x0)
)
< 2σd−1 . (3.32)

This implies that at least one of the following two cases holds:

(a) Hd−1
(
∂∗P1 ∩ Slσ(x0)

)
< σd−1, (b)

∑
j≥2

Hd−1
(
∂∗Pj ∩ Slσ(x0)

)
< σd−1 .

We first assume that (a) holds. An application of Proposition 3.8 yields

min{Ld(P1),Ld(Slσ(x0) \ P1)} ≤ CisoσHd−1(∂∗P1 ∩ Slσ(x0)) ≤ Cisoσ
d . (3.33)

Then, in the case Ld(P1) ≥ Ld(Slσ(x0) \ P1), we find

Ld(Slσ(x0) \ P1) ≤ CisoσHd−1(∂∗P1 ∩ Slσ(x0)) ≤ Cisoσ
d .

This shows the first part of (3.30). The second part follows by choosing T0 ∈ N large enough
depending on Ciso noting that Ld(Slσ(x0)) = 2lσd−1 ≥ 2T0σ

d.
We show that the case Ld(P1) < Ld(Slσ(x0) \ P1) leads to a contradiction. Indeed, if that was

the case, by (3.33) we would have

Ld(Pj) ≤ Ld(P1) ≤ Cisoσ
d for all j ≥ 2 . (3.34)

From this we derive that

Ld(Pj) ≤ CisoσHd−1(∂∗Pj ∩ Slσ(x0)) for all j ≥ 1 . (3.35)

Indeed, for j = 1 this is a consequence of (3.33). For j ≥ 2 instead, if Hd−1(∂∗Pj ∩Slσ(x0)) ≥ σd−1,
this follows from (3.34). If Hd−1(∂∗Pj ∩Slσ(x0)) < σd−1, (3.16) holds and the estimate follows from
an application of Proposition 3.8 and (3.31).
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Now, by (3.32) and (3.35) we obtain

Ld(Slσ(x0) \ E) =
∑
j≥1

Ld(Pj) ≤ Cisoσ
∑
j≥1

Hd−1(∂∗Pj ∩ Slσ(x0)) ≤ 2Cdσ
d .

Using that Ld(Slσ(x0)) ≥ 2T0σ
d, by choosing T0 ∈ N large enough, this would imply

Ld(Slσ(x0) \ E) <
3

4
Ld(Slσ(x0)) .

This however contradicts the fact that Ld(E) ≤ 1
4L

d(Slσ(x0)), see (3.29).
We are left with case (b). Here, we can again apply Proposition 3.8 on each Pj , j ≥ 2, to find

Ld(Pj) = min{Ld(Pj),Ld(Slσ(x0) \ Pj)} ≤ CisoσHd−1(∂∗Pj ∩ Slσ(x0)) ,

where the first identity follows from (3.31). Now, by using (3.32) we estimate

Ld(Slσ(x0) \ P1) ≤ Ld(E) +
∑
j≥2

Ld(Pj) ≤ Ld(E) +
∑
j≥2

CisoσHd−1
(
∂∗Pj ∩ Slσ(x0)

)
≤ CisoσHd−1

( ⋃
j≥1

∂∗Pj ∩ Slσ(x0)
)

+ Ld(E) .

This shows the first part of (3.30). The second part again follows for some T0 ∈ N large enough,
using that Ld(E) ≤ 1

4L
d(Slσ(x0)). �

3.3. Local estimates and Sobolev extension on cuboids. In the following, we set up the
necessary notation and definitions for the remainder of Section 3. We introduce the thickened void
set and partition our reference domain Ωh,ρ into cuboids, where we partition with respect to the
surface area of the boundary of the thickened void. We let (vh, Eh)h>0 be a sequence of admissible
deformations and void sets in the thin rod Ωh, where for convenience we use a continuum index h
in the notation for the sequences. Recalling (3.6), we suppose that

sup
h>0
Gh(vh, Eh) < +∞ . (3.36)

We fix 0 < ρ ≤ ρ0 := 1− (19/20)1/3 as in Proposition 3.1. Recall the sequence (κh)h>0 as in (2.5).
For technical reasons, we need to assume that (κh)h>0 converges to zero sufficiently fast. Therefore,
we introduce

κ̄h := min{κh, h2} , (3.37)

and observe that

Gκ̄hsurf(Eh; Ωh) ≤ Gκhsurf(Eh; Ωh) . (3.38)

Recall T as introduced before (3.2). From now on, we will tacitly assume that T is chosen sufficiently
large such that Corollaries 3.9–3.10 are applicable. After possibly increasing T , we can assume that

T ≥ 80Ciso , (3.39)

where Ciso ≥ 1 is the constant in Proposition 3.8. Let η0 = η0(ρ) ∈ (0, 1) be the constant in
Proposition 3.4. In view of (2.5) and (3.37), we can choose a sequence (ηh)h>0 ⊂ (0, η0) converging
to zero sufficiently slow such that the constant Cηh in (3.13), applying Theorem 3.5 for ρ, l = 3Th,
η = ηh, and γ = κ̄h/h

2, satisfies

lim sup
h→0

Cηh

(h2

κ̄h

)5

h2/5 < +∞ . (3.40)
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Then, by Proposition 3.4 applied for ρ, η = ηh, and γ = κ̄h/h
2, for all h > 0 we can find open sets

E∗h with Eh ⊂ E∗h ⊂ Ωh such that ∂E∗h∩Ωh is a union of finitely many C2-regular submanifolds and

(i) h−3L3(E∗h \ Eh)→ 0, h−1 distH(E∗h, Eh)→ 0 as h→ 0 ,

(ii) lim inf
h→0

h−2H2(∂E∗h ∩ Ωh) ≤ lim inf
h→0

h−2Gκ̄hsurf(Eh; Ωh) ≤ lim inf
h→0

h−2Gκhsurf(Eh; Ωh) .
(3.41)

Here, we used (3.12)(i), (ii), ηh → 0, (3.37), and that h−2Gγh
2

surf(Eh; Ωh) = h−2Gκhsurf(Eh; Ωh) is
uniformly bounded by (3.6), (3.36), and (3.38). This is the sequence of sets in Proposition 3.2 and
we note that (3.41) implies (3.9). In the rigidity estimate (3.13), the behavior of the deformation
inside E∗h cannot be controlled. Thus, in a similar fashion to (2.2), for definiteness we can assume
that the deformation is the identity inside E∗h, i.e., we introduce the modification v∗h : Ωh → R3 by

v∗h(x) :=

{
vh(x) if x ∈ Ωh \ E∗h,
id if x ∈ E∗h .

(3.42)

Note that by (3.41) we get

h−3L3({vh 6= v∗h}) ≤ h−3L3(E∗h \ Eh)→ 0 as h→ 0 . (3.43)

Recall the definition of the T -cuboids in the family Qh in (3.2). For i = 2, . . . , N − 1, we also
introduce the 3T -cuboids by

Q3
h(i) := Qh(i− 1) ∪Qh(i) ∪Qh(i+ 1) .

Our idea is to apply Theorem 3.5 for U := Q3
h(i). To this end, we also need the slightly smaller

cuboids, defined by

Q3
h,ρ(i) := xi + (1− ρ)

(
Q3
h(i)− xi

)
⊂ Ωh,ρ , (3.44)

where xi = ((i− 1/2)Th, 0, 0) denotes the center of the cuboid Qh(i). As we suppose that 0 < ρ ≤
1− (19/20)1/3, (3.44) implies that

L3(Q3
h,ρ(i)) ≥

19

20
L3(Q3

h(i)) . (3.45)

We also introduce the (small) parameter

α =
( T

10cT

)2/3

, (3.46)

where cT := c(T ) > 0 denotes the constant of Theorem 3.6 applied on the cuboid (0, 3T )× (− 1
2 ,

1
2 )2.

We will distinguish three classes of cuboids: first, we consider the family of indices associated to
good cuboids, defined by

Ihg :=
{
i = 2, . . . , N − 1: H2(∂E∗h ∩Q3

h,ρ(i)) ≤ αh2
}
. (3.47)

This will be the family of cuboids for which Theorem 3.6 can be applied without introducing a too
large exceptional set, cf. (3.14). Next, we collect the family of bad cuboids in the index set

Ihb : =
{
i ∈ {2, . . . , N − 1} \ Ihg : H2

(
∂E∗h ∩Q3

h,ρ(i)
)
< (1− ρ)2h2

}
∪
{
i ∈ {2, . . . , N − 1} \ Ihg : H2

(
∂E∗h ∩Q3

h,ρ(i)) < 2(1− ρ)2h2 , L3(E∗h ∩Q3
h,ρ(i)) ≤ 2Cisoh

3
}
.

(3.48)

For the cuboids in Ihb , it might not be possible to apply Theorem 3.6, but due to the relative
isoperimetric inequality, see Corollaries 3.9–3.10, we can still find a dominant component which will
allow us to compare rigid motions on adjacent cuboids via Lemma 3.7.
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On the remaining set of indices

Ihu := {i = 1, . . . , N : i /∈ Ihg ∪ Ihb } , (3.49)

corresponding to the so called ugly cuboids, where the thickened void may cut through the rod and
thus the behavior of v∗h cannot be controlled.

Note that for each i = 2, . . . , N − 1, we have

#
{
j ∈ {2, . . . , N − 1} : Q3

h,ρ(i) ∩Q3
h,ρ(j) 6= ∅

}
≤ 5 . (3.50)

By (3.47)–(3.50), (3.41)(ii), and (3.36), for h > 0 small enough, we obtain

α#
(
Ihb ∪ Ihu

)
≤ h−2

∑
i∈Ihb∪Ihu

H2(∂E∗h ∩Q3
h,ρ(i)) ≤ Ch−2H2(∂E∗h ∩ Ωh) ≤ Ch−2Gκhsurf(Eh; Ωh) ≤ C .

Thus, we deduce that

#
(
Ihb ∪ Ihu

)
= #

(
{1, . . . , N} \ Ihg

)
≤ C (3.51)

for C = C(α) > 0, i.e., there are only a bounded number of indices in Ihb ∪ Ihu independently of h.
We now formulate a local rigidity estimate on cuboids. As a final preparation, we introduce the

localized elastic energy by

εi,h :=

ˆ
Q3
h(i)\Eh

dist2(∇vh, SO(3)) dx , (3.52)

and use (2.4)(iv), (3.6), (3.36), and (3.50) to find

N−1∑
i=2

εi,h ≤ C
ˆ

Ωh\Eh
dist2(∇vh, SO(3)) dx ≤ Ch2εh . (3.53)

Proposition 3.11 (Local rigidity estimate and Sobolev approximation). Let 0 < ρ ≤ ρ0. There
exists a constant C = C(T ) > 0 independent of h such that for all h > 0 and for every i ∈ Ihg ∪ Ihb
there exists a set of finite perimeter D3

i,h ⊂ Q3
h,ρ(i) satisfying

L3
(
Q3
h,ρ(i) \D3

i,h

)
≤ ChH2

(
∂E∗h ∩Q3

h(i)
)
, L3(Q3

h(i) \D3
i,h) ≤ 1

5
L3(Q3

h(i)) , (3.54)

and a corresponding rigid motion ri,h(x) := Ri,hx + bi,h, where Ri,h ∈ SO(3) and bi,h ∈ R3 with
|bi,h| ≤ CM (see (2.2) for the definition of M) such that

h−2

ˆ
D3
i,h

∣∣v∗h(x)− ri,h(x)
∣∣2 dx+

ˆ
D3
i,h

∣∣∇v∗h(x)−Ri,h
∣∣2 dx ≤ Cε9/10

i,h , (3.55)

where v∗h is defined in (3.42).
Moreover, for i ∈ Ihg there exists a Sobolev map zi,h ∈W 1,2(Q3

h,ρ(i);R3) such that

(i) zi,h ≡ v∗h on D3
i,h ,

(ii) h−2

ˆ
Q3
h,ρ(i)

∣∣zi,h(x)− ri,h(x)
∣∣2 dx+

ˆ
Q3
h,ρ(i)

∣∣∇zi,h(x)−Ri,h
∣∣2 dx ≤ Cεi,h ,

(iii) ‖zi,h‖L∞(Q3
h,ρ(i)) ≤ CM .

(3.56)

In the following, we refer to D3
i,h as the dominant component since L3(Q3

h(i) \D3
i,h) is small, see

(3.54). Accordingly, ri,h denotes the dominant rigid motion which approximates v∗h in Q3
h,ρ(i). Note

that D3
i,h ⊂ E∗h is also possible which means that the void has a large volume inside Q3

h,ρ(i).

Observe that the estimate (3.55) is actually better for i ∈ Ihg as ε
9/10
i,h can be replaced by εi,h. This

follows directly from (3.56). This improvement is possible due to the application of a Korn-Poincaré
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inequality in case of void sets with small surface measure, see Theorem 3.6. We also note that the
choice of the exponent 9/10 is for definiteness only and can be enhanced to any exponent smaller
than 1, provided the sequence (κh)h>0 in (2.5) is chosen appropriately. Before starting with the
proof, let us recall that we use the notation C > 0 for generic constants which are independent of
h, ρ but may depend on the fixed parameters T, L.

Proof of Proposition 3.11. We use Theorem 3.5 for ρ > 0, l = 3Th, γ := κ̄h/h
2 with κ̄h from (3.37),

and the sequence ηh → 0 such that (3.40) holds. We apply the rigidity result to v∗h in the cuboid

U := Q3
h(i) for i ∈ Ihg ∪ Ihb and the compactly contained cuboid Ũ := Q3

h,ρ(i). We denote by

Pi,h :=
{

(P ji,h)j the connected components of Q3
h,ρ(i) \ E∗h

}
∪ {E∗h} ,

where the enumeration is such that L3(P 1
i,h) is always maximal.

Recall the definitions in (3.47)–(3.48). In the case i ∈ Ihg or in the case that i ∈ Ihb with

H2
(
∂E∗h ∩ Q3

h,ρ(i)
)
< (1 − ρ)2h2 we can apply Corollary 3.9 on Q3

h,ρ(i) to obtain a dominant

component. If i ∈ Ihb with H2
(
∂E∗h ∩Q3

h,ρ(i)
)
≥ (1− ρ)2h2 instead, we can apply Corollary 3.10 on

Q3
h,ρ(i), where we note that the volume condition in (3.29) is indeed satisfied by the definition of

Ihb , (3.45), and the fact that T ≥ 80Ciso, see (3.39).

In both cases, using that
⋃
j≥1 ∂P

j
i,h ∩ Q3

h,ρ(i) = ∂E∗h ∩ Q3
h,ρ(i), we get a dominant component

P 1
i,h ⊂ Q3

h,ρ(i) which by (3.27) or (3.30), respectively, and (3.48) satisfy

L3(Q3
h,ρ(i) \ P 1

i,h) ≤ CisohH2(∂E∗h ∩Q3
h(i)) ≤ Cisoh

3 (3.57)

or

L3(Q3
h,ρ(i) \ P 1

i,h) ≤ CisohH2(∂E∗h ∩Q3
h(i)) + L3(E∗h ∩Q3

h,ρ(i)) ≤ 2Cisoh
3 + 2Cisoh

3 = 4Cisoh
3 .

(3.58)

Therefore, in both cases, we get by (3.39) and (3.45) that

L3(Q3
h(i) \ P 1

i,h) ≤ 4Cisoh
3 + L3(Q3

h(i) \Q3
h,ρ(i)) ≤

1

20
Th3 +

1

20
L3(Q3

h(i)) ≤ 1

10
L3(Q3

h(i)) , (3.59)

and moreover

L3
(
Q3
h,ρ(i) \ P 1

i,h

)
≤ ChH2(∂E∗h ∩Q3

h(i)) . (3.60)

Indeed, in the first case this directly follows from (3.57). In the second case, it follows from (3.58)
and the fact H2

(
∂E∗h ∩ Q3

h,ρ(i)
)
≥ (1 − ρ)2h2 ≥ 1

4h
2 (as 0 < ρ ≤ 1

2 ), where the absolute constant
C > 0 needs to be chosen sufficiently large.

We now distinguish the cases

(a) P 1
i,h = E∗h, (b) P 1

i,h ∩ E∗h = ∅, i ∈ Ihb , (c) P 1
i,h ∩ E∗h = ∅, i ∈ Ihg .

Case (a) : If P 1
i,h = E∗h, we define D3

i,h := P 1
i,h, Ri,h := Id, bi,h := 0, and zi,h ∈W 1,2(Q3

h,ρ(i);R3)

by zi,h := id. Then, (3.54) holds by (3.59)–(3.60) and (3.55)–(3.56) are trivially satisfied (recall
(3.42)). Note that in this case we can define a Sobolev modification zi,h also if i ∈ Ihb .

Preparations for (b) and (c) : We proceed with preparations for (b) and (c). Suppose that
P 1
i,h ∩ E∗h = ∅. Then, (3.13) in Theorem 3.5 provides a rotation R1

i,h ∈ SO(3) and b1i,h ∈ R3 such
that

(i)

ˆ
P 1
i,h

∣∣sym
(
(R1

i,h)T∇v∗h − Id
)∣∣2 dx ≤ C

(
1 + Cηh(h−2κ̄h)−15/2h−3εi,h

)
εi,h ,

(ii) h−2

ˆ
P 1
i,h

|v∗h − (R1
i,hx+ b1i,h)|2 dx+

ˆ
P 1
i,h

∣∣(R1
i,h)T∇v∗h − Id

∣∣2 dx ≤ Cηh(h−2κ̄h)−5εi,h ,
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where we use the notation in (3.52) and recall that we set γ = κ̄h/h
2 ∈ (0, 1]. By the choice of

(ηh)h>0 before (3.40), lim suph→0 εhh
−2 < +∞, and (3.53) we obtain

(i)

ˆ
P 1
i,h

∣∣sym
(
(R1

i,h)T∇v∗h − Id
)∣∣2 dx ≤ C0εi,h ,

(ii)
(
h−2

ˆ
P 1
i,h

|v∗h − (R1
i,hx+ b1i,h)|2 dx+

ˆ
P 1
i,h

∣∣(R1
i,h)T∇v∗h − Id

∣∣2 dx
)
≤ C0h

−2/5εi,h ,

(3.61)

for a universal constant C0 > 0. We now show that

|b1i,h| ≤ CM , (3.62)

for a constant C > 0 that depends on L, T > 0, but is independent of h > 0. As ‖vh‖L∞(Ωh) ≤ M
for some M ≥ 1, the triangle inequality implies

L3(P 1
i,h)|b1i,h|2 ≤ C

ˆ
P 1
i,h

|v∗h(x)− (R1
i,hx+ b1i,h)|2 dx+ CL3(P 1

i,h)
(
‖vh‖2L∞(Ωh) + (diam(Ωh))2

)
.

(3.63)

Thus, by (3.53), (3.59), and (3.61)(ii) we get

|b1i,h|2 ≤ Ch−3h2h−2/5εi,h + C(M2 + C) ≤ C(M2 + C) , (3.64)

and thus |b1i,h| ≤ CM . After these preparations, we continue with the cases (b) and (c).

Case (b) : We first suppose that i ∈ Ihb . We set D3
i,h := P 1

i,h. Then, (3.54) follows from (3.59)–

(3.60) and (3.55) follows from (3.61)(ii) by setting Ri,h := R1
i,h and bi,h := b1i,h, where we use

ε
1/10
i,h ≤ C(h4)1/10 by (3.53) and lim suph→0 εhh

−2 < +∞. Observe that |bi,h| ≤ CM by (3.62).

Case (c) : Let us now assume that i ∈ Ihg . We will use Theorem 3.6 to obtain a Sobolev function

which satisfies (3.56). First, let us introduce the function ui,h ∈ SBV 2(Q3
h,ρ(i);R3) by

ui,h(x) := χP 1
i,h

(x)
[
(R1

i,h)T v∗h(x)− x− (R1
i,h)T b1i,h

]
, (3.65)

and note that by its definition Jui,h ⊂ ∂E∗h ∩ Q3
h,ρ(i). Now, (3.53), (3.61), (3.65), as well as

lim suph→0 εhh
−2 < +∞ imply the bounds

(i)

ˆ
Q3
h,ρ(i)

|sym
(
∇ui,h

)
|2 dx ≤ Cεi,h ,

(ii) h−2

ˆ
Q3
h,ρ(i)

|ui,h|2 dx+

ˆ
Q3
h,ρ(i)

|∇ui,h|2 dx ≤ Cε9/10
i,h .

(3.66)

By the scaling invariance of Theorem 3.6 we note that the constant therein is given by cT appearing
in (3.46). Theorem 3.6 for the map ui,h and the definition of Ihg in (3.47) provide a set of finite

perimeter ωi,h ⊂ Q3
h,ρ(i) satisfying

L3(ωi,h) ≤ cT
(
H2(Jui,h)

)3/2 ≤ cT (H2(∂E∗h ∩Q3
h,ρ(i))

)3/2 ≤ cTα1/2hH2(∂E∗h ∩Q3
h,ρ(i)) ≤ cTα3/2h3

(3.67)

and a Sobolev map ζi,h ∈W 1,2(Q3
h,ρ(i);R3) such that

(i) ζi,h ≡ ui,h on Q3
h,ρ(i) \ ωi,h ,

(ii) ‖sym(∇ζi,h)‖L2(Q3
h,ρ(i)) ≤ cT ‖sym(∇ui,h)‖L2(Q3

h,ρ(i)) ,

(iii) ‖ζi,h‖∞ ≤ ‖ui,h‖∞ ≤ CM ,

(3.68)
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where the last estimate in (iii) follows from ‖v∗h‖∞ ≤M , (3.62), and the definition of ui,h in (3.65).
In view of (3.46) and (3.67), we get

L3(ωi,h) ≤ 1

10
Th3 ≤ 1

10
L3(Q3

h(i)) .

We define the dominant component

D3
i,h := P 1

i,h \ ωi,h (3.69)

and observe by (3.59)–(3.60) and (3.67) that (3.54) holds.
By the classical Korn’s inequality in W 1,2 we find Ai,h ∈ R3×3

skew such thatˆ
Q3
h,ρ(i)

|∇ζi,h −Ai,h|2 dx ≤ CT
ˆ
Q3
h,ρ(i)

|sym(∇ui,h)|2 dx ≤ CCT εi,h , (3.70)

where we used (3.68)(ii) and the last step follows from (3.66)(i). Therefore, setting

zi,h := R1
i,hζi,h +R1

i,hid + b1i,h ∈W 1,2(Q3
h,ρ(i);R3)

we observe by (3.65), (3.68)(i), and (3.69) that zi,h ≡ v∗h on D3
i,h. This yields (3.56)(i). Moreover,

(3.56)(iii) follows from (3.68)(iii) and (3.62).
We proceed to show (3.56)(ii). We start with the observation that (3.70) impliesˆ

Q3
h,ρ(i)

|∇zi,h −R1
i,h(Id +Ai,h)|2 dx ≤ Cεi,h . (3.71)

Now, we need to replace R1
i,h(Id + Ai,h) suitably by a rotation. We claim that there exists Ri,h ∈

SO(3) such that

L3(Q3
h,ρ(i))|R1

i,h(Id +Ai,h)−Ri,h|2 ≤ Cεi,h . (3.72)

In order to show (3.72), we argue as follows. By (3.54) together with (3.68)(i), (3.66)(ii), and (3.70)
we get

4
5L

3(Qh(i))|Ai,h|2 ≤ L3(D3
i,h)|Ai,h|2 =

ˆ
D3
i,h

∣∣∇ui,h +Ai,h −∇ζi,h
∣∣2 dx

≤ 2
(ˆ

D3
i,h

|∇ui,h|2 dx+

ˆ
D3
i,h

|∇ζi,h −Ai,h|2 dx
)
≤ C(εi,h + ε

9/10
i,h ) .

By using the fact that εi,h ≤ Ch2εh ≤ Ch4, see (3.53), and L3(Qh(i)) = Th3, we obtain an estimate
on Ai,h, namely

|Ai,h|2 ≤ Ch−3ε
9/10
i,h ≤ Ch−7/5ε

1/2
i,h .

Therefore, the Taylor expansion (see [41, Equation (33)])

dist(G,SO(3)) = |sym(G)− Id|+ O(|G− Id|2)

allows us to estimate

dist2
(
(Id +Ai,h), SO(3)

)
≤ C|Ai,h|4 ≤ Ch−14/5εi,h ,

i.e., there exists indeed Ri,h ∈ SO(3) for which

|R1
i,h(Id +Ai,h)−Ri,h|2 ≤ Ch1/5h−3εi,h ≤ Ch−3εi,h ≤ C(L3(Q3

h,ρ(i)))
−1εi,h .

This proves (3.72). Hence, in view of (3.71) and(3.72) we getˆ
Q3
h,ρ(i)

|∇zi,h −Ri,h|2 dx ≤ Cεi,h ,
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which yields the second part of (3.56)(ii). Finally, the Poincaré inequality on W 1,2(Q3
h,ρ(i);R3) also

implies that there exists a vector bi,h ∈ R3 such that the rigid motion ri,h(x) := Ri,hx+ bi,h satisfies

h−2

ˆ
Q3
h,ρ(i)

|zi,h(x)− ri,h(x)|2 dx ≤ Cεi,h .

This concludes the proof of (3.56)(ii). Eventually, in the case i ∈ Ihg , we note that estimate (3.55) is
an immediate consequence of (3.56). Therefore, by repeating exactly the argument in (3.63)–(3.64)
with bi,h in place of b1i,h we also get that |bi,h| ≤ CM . This concludes the proof. �

As a consequence, we can estimate the difference of two dominant rigid motions on adjacent
cuboids.

Corollary 3.12 (Difference of rigid motions). Suppose i, i + 1 ∈ Ihg ∪ Ihb . The rigid motions ri,h,
ri+1,h given in Proposition 3.11 satisfy

h−2‖ri,h − ri+1,h‖2L∞(Q3
h(i)∪Q3

h(i+1)) +
∣∣Ri,h −Ri+1,h

∣∣2 ≤ Ch−3(ε
9/10
i,h + ε

9/10
i+1,h) . (3.73)

If i, i+ 1 ∈ Ihg , the better estimate

h−2‖ri,h − ri+1,h‖2L∞(Q3
h(i)∪Q3

h(i+1)) +
∣∣Ri,h −Ri+1,h

∣∣2 ≤ Ch−3(εi,h + εi+1,h) (3.74)

holds.

Proof. By (3.55) and the triangle inequality we haveˆ
D3
i,h∩D

3
i+1,h

∣∣ri,h − ri+1,h

∣∣2 dx ≤ 2

ˆ
D3
i,h

∣∣v∗h(x)− ri,h(x)
∣∣2 dx+ 2

ˆ
D3
i+1,h

∣∣v∗h(x)− ri+1,h(x)
∣∣2 dx

≤ Ch2(ε
9/10
i,h + ε

9/10
i+1,h) . (3.75)

Note that L3(Q3
h(i) ∩ Q3

h(i + 1)) = 2Th3 and L3(Q3
h(j) \ D3

j,h) ≤ 3
5Th

3 by (3.54) for j = i, i + 1.
This yields

L3(D3
i,h ∩D3

i+1,h) ≥ L3(Q3
h(i) ∩Q3

h(i+ 1))− L3(Q3
h(i) \D3

i,h)− L3(Q3
h(i+ 1) \D3

i+1,h) ≥ 4

5
Th3 .

Moreover, we observe that Q3
h(i)∪Q3

h(i+ 1) is contained in a ball of radius r = cTh for a universal
constant c > 0. This along with (3.75) and Lemma 3.7 shows (3.73). Estimate (3.74) follows in
the same fashion noting that with (3.56)(ii) in place of (3.55) the exponents 9/10 in (3.75) can be
replaced by 1. �

3.4. Construction of blockwise Sobolev modifications and proofs of the propositions.
This subsection is devoted to the construction of wh andRh, as well as to the proofs of Proposition 3.1
and Proposition 3.2.

We start with the construction of (wh)h>0 and (Rh)h>0. To this end, let ψh ∈ C∞(R3) be a
cut-off function satisfying ψh(x) = ψh(x1, 0, 0) for x ∈ R3, 0 ≤ ψh ≤ 1, ψh ≡ 1 on {x1 ≤ −h}, and
ψh ≡ 0 on {x1 ≥ h} such that

‖∇ψh‖∞ ≤ Ch−1 . (3.76)

Recalling (3.2), for each i = 1, . . . , N − 1, we set ψhi,i+1(x) = ψh(x− iThe1). For i = 1, . . . , N − 1,
we also define the sets

Ψh
i,i+1 :=

{(
(iTh− h, iTh+ h)× R2

)
∩ Ωh,ρ if i, i+ 1 ∈ Ihg ,

∅ else ,
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i.e., {ψhi,i+1 ∈ (0, 1)} ∩ Ωh,ρ ⊂ Ψh
i,i+1, provided that i, i + 1 ∈ Ihg . Note that the sets (Ψh

i,i+1)i are

pairwise disjoint by (3.39). Moreover, since 0 < ρ ≤ 1− (19/20)1/3 ≤ 0.017, we get that(
Qh(i) ∪Ψh

i−1,i ∪Ψh
i,i+1

)
∩ Ωh,ρ ⊂ Q3

h,ρ(i) for all i = 2, . . . , N − 1, (3.77)

cf. (3.44). To see this, by (3.39), it suffices to note that (T − 3
2Tρ− 1)h ≥ Ciso(79− 120ρ)h > 0.

We now define the sequences (wh)h>0 and (Rh)h>0. First, we construct wh ∈ SBV 2(Ωh,ρ;R3) as
follows. We set

wh := id on Qh(i) ∩ Ωh,ρ for all i ∈ Ihu , (3.78)

and

wh := ri,h on Qh(i) ∩ Ωh,ρ for all i ∈ Ihb , (3.79)

where ri,h denotes the rigid motion given in (3.55). Eventually, recalling the definition of the
Sobolev maps zi,h ∈ W 1,2(Q3

h,ρ(i);R3) in Proposition 3.11, given i ∈ Ihg ⊂ {2, . . . , N − 1}, and

x ∈ Qh(i) ∩ Ωh,ρ, we define

wh(x) :=


zi,h(x) if x ∈ Qh(i) \ (Ψh

i−1,i ∪Ψh
i,i+1) ,

ψhi−1,i(x)zi−1,h(x) + (1− ψhi−1,i(x))zi,h(x) if x ∈ Qh(i) ∩Ψh
i−1,i ,

ψhi,i+1(x)zi,h(x) + (1− ψhi,i+1(x))zi+1,h(x) if x ∈ Qh(i) ∩Ψh
i,i+1 ,

(3.80)

where the second and third part of the definition might be empty if Ψh
i−1,i = ∅ or Ψh

i,i+1 = ∅,
respectively. Note that this is well defined by (3.77), and the fact that zi−1,h or zi+1,h exist if
Ψh
i−1,i 6= ∅ or Ψh

i,i+1 6= ∅, respectively.
In the absence of information on the second derivatives of (vh)h>0, we construct another sequence

of functions (Rh)h>0 with Rh ∈ SBV 2(Ωh,ρ;R3×3) which approximate ∇vh and whose derivative
can be controlled. We define

Rh := ∇wh on Qh(i) ∩ Ωh,ρ for all i ∈ Ihb ∪ Ihu , (3.81)

and for x ∈ Qh(i) ∩ Ωh,ρ, i ∈ Ihg , we let

Rh(x) :=


Ri,h if x ∈ Qh(i) \ (Ψh

i−1,i ∪Ψh
i,i+1) ,

ψhi−1,i(x)Ri−1,h + (1− ψhi−1,i(x))Ri,h if x ∈ Qh(i) ∩Ψh
i−1,i ,

ψhi,i+1(x)Ri,h + (1− ψhi,i+1(x))Ri+1,h if x ∈ Qh(i) ∩Ψh
i,i+1 ,

(3.82)

where Ri,h are given by Proposition 3.11.
Note that the construction implies that indeed wh ∈ SBV 2(Ωh,ρ;R3), Rh ∈ SBV 2(Ωh,ρ;R3×3),

and the jump sets satisfy

Jwh ∪ JRh ⊂ Ωh,ρ ∩
⋃

i∈Ihb∪Ihu

∂Qh(i) . (3.83)

We are now ready to give the proofs of the propositions.

Proof of Proposition 3.1. First, (3.8)(i) follows from the construction (3.78)–(3.82), the uniform
control in (3.56)(iii), the bound |bi,h| ≤ CM for i ∈ Ihb , and the fact that SO(3) ⊂ R3×3 is compact.
To see (3.8)(ii), we use (3.83) and the fact that #(Ihb ∪ Ihu ) ≤ C, see (3.51).

We proceed to show (3.8)(iii),(iv) for wh and defer the proof for Rh to the end. Regarding
(3.8)(iii), we note that by the definition of wh and (3.56)(i),

{wh 6= vh} ⊂ Bh :=
⋃

i∈Ihb∪Ihu

Q3
h(i) ∪

⋃
i∈Ihg

(
Q3
h,ρ(i) \D3

i,h

)
∪ {vh 6= v∗h} .
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Since #(Ihb ∪ Ihu ) ≤ C, using also (3.36), (3.41)(ii), and (3.54), we find

L3({wh 6= vh}) ≤ L3(Bh) ≤ CTh3 + Ch
∑
i∈Ihg

H2(∂E∗h ∩Q3
h(i)) + L3({vh 6= v∗h})

≤ CTh3 + ChH2(∂E∗h ∩ Ωh) + L3({vh 6= v∗h}) ≤ Ch3 + L3({vh 6= v∗h}) ,
(3.84)

where we also used the fact that each cuboid Q3
h(i) overlaps only with neighboring ones, cf. (3.50).

This along with (3.43) shows (3.8)(iii) for wh.
Eventually, we show (3.8)(iv) for wh. First, by (3.78)–(3.79) we observe thatˆ

Ωh,ρ

dist2(∇wh, SO(3)) dx =
∑
i∈Ihg

ˆ
Qh(i)∩Ωh,ρ

dist2(∇wh, SO(3)) dx . (3.85)

Moreover, by (3.80) and (3.56)(ii) we compute, for i ∈ Ihg ,ˆ
(Qh(i)∩Ωh,ρ)\(Ψhi−1,i∪Ψhi,i+1)

dist2(∇wh, SO(3)) dx ≤
ˆ
Q3
h,ρ(i)

dist2(∇zi,h, SO(3)) dx

≤
ˆ
Q3
h,ρ(i)

|∇zi,h −Ri,h|2 dx ≤ Cεi,h .

This along with (3.53) shows∑
i∈Ihg

ˆ
(Qh(i)∩Ωh,ρ)\(Ψhi−1,i∪Ψhi,i+1)

dist2(∇wh, SO(3)) dx ≤ C
∑
i∈Ihg

εi,h ≤ Ch2εh . (3.86)

For all Ψh
i,i+1 6= ∅, i.e., i, i+ 1 ∈ Ihg , we estimate using (3.56)(ii), (3.77), and (3.80)ˆ

Ψhi,i+1

dist2(∇wh, SO(3)) =

ˆ
Ψhi,i+1

dist2
(
∇
(
zi+1,h + ψhi,i+1(zi,h − zi+1,h)

)
, SO(3)

)
≤ C

ˆ
Q3
h,ρ(i+1)

dist2(∇zi+1,h, SO(3))

+ C

ˆ
Ψhi,i+1

(|∇ψhi,i+1|2|zi,h − zi+1,h|2 + |ψhi,i+1|2|∇zi,h −∇zi+1,h|2)

≤ Cεi+1,h + C

ˆ
Ψhi,i+1

(
h−2|zi,h − zi+1,h|2 + |∇zi,h −∇zi+1,h|2

)
,

(3.87)

where in the last step we used that 0 ≤ ψhi,i+1 ≤ 1 and ‖∇ψhi,i+1‖∞ ≤ Ch−1, see (3.76). Since

Ψh
i,i+1 ⊂ Q3

h,ρ(i), Q
3
h,ρ(i+ 1) by (3.77), we compute by (3.56)(ii), (3.74), and the triangle inequalityˆ

Ψhi,i+1

|zi,h − zi+1,h|2 dx ≤ C
ˆ
Q3
h,ρ(i)

|zi,h − ri,h|2 dx+ C

ˆ
Q3
h,ρ(i+1)

|zi+1,h − ri+1,h|2 dx

+ C

ˆ
Q3
h,ρ(i)∪Q3

h,ρ(i+1)

|ri,h − ri+1,h|2 dx ≤ Ch2(εi,h + εi+1,h) ,

where we also used that L3(Q3
h,ρ(i)∪Q3

h,ρ(i+1)) ≤ CTh3. In a similar fashion, (3.56)(ii) and (3.74)
also implyˆ

Ψhi,i+1

|∇zi,h −∇zi+1,h|2 dx ≤ C
ˆ
Q3
h,ρ(i)

|∇zi,h −Ri,h|2 dx+ C

ˆ
Q3
h,ρ(i+1)

|∇zi+1,h −Ri+1,h|2 dx

+ Ch3|Ri,h −Ri+1,h|2 ≤ C(εi,h + εi+1,h) .
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The last two estimates along with (3.87) and (3.53) show∑
i,i+1∈Ihg

ˆ
Ψhi,i+1

dist2(∇wh, SO(3)) dx ≤ C
N−1∑
i=2

εi,h ≤ Ch2εh .

This together with (3.85)–(3.86) concludes the proof of the first inequality in (3.8)(iv).
We now continue with the proof of (3.8)(iii) for Rh. By (3.84) the set Bh satisfies h−2L3(Bh)→ 0

as h → 0. To obtain an estimate on the complement Ωh,ρ \ Bh, we recall the definition of wh and
Rh in (3.80) and (3.82), respectively. In particular, as zi,h = zi+1,h on Ψh

i,i+1 \Bh, see (3.56)(ii), we

have ∇vh = ∇wh = ∇zi,h = ∇zi+1,h = ψhi,i+1∇zi,h + (1−ψhi,i+1)∇zi+1,h on Ψh
i,i+1 \Bh. Therefore,

one can check thatˆ
Ωh,ρ\Bh

|∇vh −Rh|2 dx =

ˆ
Ωh,ρ\Bh

|∇wh −Rh|2 dx ≤ C
∑
i∈Ihg

ˆ
Q3
h,ρ(i)

|∇zi,h −Ri,h|2 dx ≤ Ch2εh ,

where the last step follows from (3.56)(ii) and (3.53). Let (θh)h>0 ⊂ (0,+∞) be an infinitesimal

sequence such that θhε
−1/2
h →∞. Then, by using h−2L3(Bh)→ 0 we compute

h−2L3
(
Ωh,ρ ∩

{
|∇vh −Rh| > θh

})
≤ h−2L3

(
(Ωh,ρ \Bh) ∩

{
|∇vh −Rh| > θh

})
+ h−2L3(Bh)

≤ h−2θ−2
h

ˆ
Ωh,ρ\Bh

|∇vh −Rh|2 dx+ h−2L3(Bh)

≤ Cεhθ−2
h + h−2L3(Bh)→ 0 .

This shows (3.8)(iii) for Rh.
We finally show the second estimate in (3.8)(iv). We observe ∇Rh = 0 on Ωh,ρ \

⋃
i Ψh

i,i+1 (recall

(3.81), (3.82)). For all Ψh
i,i+1 6= ∅, i.e., i, i + 1 ∈ Ihg , by (3.74) and the fact that L3(Ψh

i,i+1) ≤ 2h3,
we computeˆ

Ψhi,i+1

|∇Rh|2 dx =

ˆ
Ψhi,i+1

|∇ψhi,i+1|2|Ri,h −Ri+1,h|2 dx

≤ Ch−2

ˆ
Ψhi,i+1

|Ri,h −Ri+1,h|2 dx ≤ Ch−2(εi,h + εi+1,h) ,

where we again used that ‖∇ψhi,i+1‖ ≤ Ch−1. Summing over all i ∈ Ihg and using (3.53) we conclude∑
i∈Ihg

ˆ
Ψhi,i+1

|∇Rh|2 dx ≤ Cεh .

This concludes the proof of the second estimate in (3.8)(iv). �

We close this section with the proof of Proposition 3.2.

Proof of Proposition 3.2. Fix the stripe S2l
h (x) as in the statement. We start the proof with the

following observation: Assumption (3.10) implies that

i ∈ Ihg ∪ Ihb for each i ∈ Ih := {i : Q3
h(i) ∩ Slh,ρ(x) 6= ∅} . (3.88)

Indeed, since l ≥ 6Th, we first get that Q3
h(i) ⊂ S3l/2

h (x) for all i ∈ Ih, see (3.3)–(3.4). Then, in view

of (3.10)(i), we find H2
(
∂E∗h ∩ Q3

h,ρ(i)) < 2(1 − ρ)2h2 for all i ∈ Ih. Thus, recalling (3.47)–(3.48),

to show that i ∈ Ihg ∪ Ihb it suffices to check that

L3
(
E∗h ∩ S

3l/2
h (x)

)
≤ 2Cisoh

3 . (3.89)
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Thus, let us check (3.89). Again using (3.10)(i) we can find a partition S2l
h (x) = U− ∪ U+ (up to a

set of negligible L3- measure) with disjoint open cuboids U−, U+ such that

H2
(
∂E∗h ∩ U±

)
< h2 . (3.90)

(± is a shorthand for + or −.) If U± ∩ S3l/2
h (x) = ∅, the set is irrelevant for showing (3.89). Thus,

we suppose that U± ∩ S3l/2
h (x) 6= ∅. Then, Proposition 3.8 implies

min{L3(E∗h ∩ U±),L3(U± \ E∗h)} ≤ CisohH2(∂E∗h ∩ U±) .

(Note that the proposition is applicable as U± contains at least one T -cuboid.) By (3.90) we get

min{L3(E∗h ∩ U±),L3(U± \ E∗h)} ≤ Cisoh
3 . (3.91)

For U±∩S3l/2
h (x) 6= ∅ we have L3(U±) ≥ 1

8L
3(S2l

h (x)). Then, necessarily, L3(E∗h∩U±) ≤ L3(U±\E∗h),
since otherwise by (3.10)(ii)

1

8
L3(S2l

h (x)) ≤ L3(U±) ≤ L3(U± \ E∗h) + L3(U± ∩ E∗h) ≤ Cisoh
3 +

1

9
L3(S2l

h (x)) .

This yields a contradiction, since

L3(S2l
h (x)) = 4lh2 ≥ 24Th3 ≥ 1920Cisoh

3 ,

see (3.39). Thus, using (3.91) we conclude

L3
(
E∗h ∩ S

3l/2
h (x)

)
≤ L3

(
E∗h ∩ U− ∩ S

3l/2
h (x)

)
+ L3

(
E∗h ∩ U+ ∩ S3l/2

h (x)
)
≤ 2Cisoh

3.

This shows (3.89), and thus (3.88) holds.
We are now ready to verify (3.11). In view of (3.88), (3.83) yields that

Jwh ∩ Slh,ρ(x) ⊂
⋃
i∈Ihb

∂Qh(i) ∩ Ωh,ρ .

Note that in each cuboid Qh(i), i ∈ Ihb , the trace tr(wh) on ∂Qh(i)∩Ωh,ρ coincides with ri,h (recall
(3.79)). If the neighboring cuboid is good, i.e., i − 1 ∈ Ihg or i + 1 ∈ Ihg , by (3.56)(ii), (3.80), and
the trace estimate on Qh(j) (with its scaling), for j = i− 1, i+ 1, the trace tr(wh) satisfiesˆ
∂Qh(i)∩∂Qh(j)∩Ωh,ρ

|tr(wh)− rj,h|2 dH2 ≤ Ch
ˆ
Qh(j)

(
h−2|wh − rj,h|2 + |∇wh −Rj,h|2

)
dx ≤ Chεj,h .

Thus, by a discrete Hölder’s inequality we find for each i ∈ Ihb that

γi :=
∑

j=i−1,i+1

ˆ
∂Qh(i)∩∂Qh(j)∩Ωh,ρ

|tr(wh)− rj,h|1/2 dH2 ≤ C(h2)3/4h1/4
(
(εi−1,h)1/4 + (εi+1,h)1/4

)
.

Now, by (3.73) we computeˆ
Jwh∩S

l
h,ρ(x)

|[wh]|1/2 dH2 ≤
∑
i∈Ihb

ˆ
∂Qh(i)∩Ωh,ρ

|(wh)+ − (wh)−|1/2 dH2

≤ C
∑
i∈Ihb

(
h2‖ri−1,h − ri,h‖1/2L∞(Q3

h(i))
+ h2‖ri,h − ri+1,h‖1/2L∞(Q3

h(i))
+ γi

)
≤ C

∑
i∈Ihb

(
h7/4

(
ε

9/40
i−1,h + ε

9/40
i,h + ε

9/40
i+1,h

)
+ h7/4

(
(εi−1,h)1/4 + (εi+1,h)1/4

))
.
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A discrete Hölder’s inequality along with #Ihb ≤ C (recall (3.51)) and (3.53) then yields

ˆ
Jwh∩S

l
h,ρ(x)

|[wh]|1/2 dH2 ≤ Ch7/4
(N−1∑
i=2

εi,h

)9/40

≤ Ch11/5ε
9/40
h .

This shows the first part of (3.11). For the second part, we compute in a similar fashion, again
using (3.53) and (3.73), and the construction in (3.81)–(3.82)ˆ

JRh∩S
l
h,ρ(x)

|[Rh]|1/2 dH2 ≤
∑
i∈Ihb

ˆ
∂Qh(i)∩Ωh,ρ

|(Rh)+ − (Rh)−|1/2 dH2

≤ Ch2
∑
i∈Ihb

(
|Ri−1,h −Ri,h|1/2 + |Ri,h −Ri+1,h|1/2

)
≤ Ch2−3/4

∑
i∈Ihb

(
ε

9/40
i−1,h + ε

9/40
i,h + ε

9/40
i+1,h

)
≤ Ch17/10ε

9/40
h .

This along with lim suph→0 εhh
−2 < +∞ concludes the proof. �

Remark 3.13 (Variant of Proposition 3.2). Let us briefly comment on Remark 3.3. The proof
of (i) basically follows from the previous proof by noting that the assumption (3.10)(i) with 1 in
place of 2 (on the right hand side) excludes the presence of ugly cuboids. For (ii), we also follow
the estimates above and observe that, in the worst case εh ∼ h2, the integral over jump heights
|[wh]|1−β and |[Rh]|1−β can be estimated by h2h13(1−β)/10 and h2h3(1−β)/10, respectively.

4. Compactness

This section is devoted to the proof of Theorem 2.1. We again use the continuum subscript h > 0
instead of the sequential subscript notation (hj)j∈N for convenience. We first recall the relevant
result from the Sobolev setting.

Lemma 4.1 (Compactness in the Sobolev setting). Let Ω`1,`2 := (0, `1)× (−`2, `2)2 for `1, `2 > 0,
and let (w̃h)h>0 be a bounded sequence in W 1,2(Ω`1,`2 ;R3) such that

lim sup
h→0

1

h2

ˆ
Ω`1,`2

dist2(∇hw̃h, SO(3)) dx+ ‖w̃h‖W 1,2(Ω`1,`2 ) ≤ C0 < +∞ .

Then, there exist ȳ ∈W 2,2(Ω`1,`2 ;R3) and d̄2, d̄3 ∈W 1,2(Ω`1,`2 ;R3), all independent of (x2, x3), and
a subsequence (not relabeled) such that

w̃h ⇀ ȳ weakly in W 1,2(Ω`1,`2 ;R3), ∇hw̃h →
(
ȳ,1
∣∣ d̄2

∣∣ d̄3

)
strongly in L2(Ω`1,`2 ;R3×3) . (4.1)

Moreover, (ȳ,1
∣∣ d̄2

∣∣ d̄3) ∈ SO(3) a.e. in Ω`1,`2 , and

‖ȳ‖W 2,2(Ω`1,`2 ) + ‖d̄2‖W 1,2(Ω`1,`2 ) + ‖d̄3‖W 1,2(Ω`1,`2 ) ≤ C (4.2)

for a constant C > 0 only depending on C0.

For the proof we refer to [58, Theorem 2.1]. The weak convergence to ȳ has not been mentioned
in the original statement, but follows directly from weak compactness. A simple argument shows
that ȳ is indeed independent of (x2, x3). In fact, (4.1) and (2.9) yield ȳ,i ≡ 0 for i = 2, 3. Property
(4.2) has not been stated explicitly in [58, Theorem 2.1], but is a consequence of the proof of [58,
Theorem 2.1] (cf. the last estimate therein) and the equivalent characterization of Sobolev spaces
via finite differences, see e.g. [22, Theorem 1.36]. We now proceed with the proof of our compactness
result.
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Proof of Theorem 2.1. By the energy bound (2.19) and (2.10) we have that

h−2

ˆ
Ω\Vh

W (∇hyh(x)) dx+

ˆ
∂Vh∩Ω

∣∣(ν1
Vh

(z), h−1ν2
Vh

(z), h−1ν3
Vh

(z)
)∣∣dH2(z) ≤ C , (4.3)

where νVh(z) := (ν1
Vh

(z), ν2
Vh

(z), ν3
Vh

(z)) denotes the outward pointing unit normal to ∂Vh∩Ω at the
point z. Note that (4.3) implies

sup
h>0

(
L3(Vh) +H2(∂Vh ∩ Ω)

)
≤ C .

Therefore, by a compactness result for sets of finite perimeter (see [6, Theorem 3.39]), there exists
V ∈ P(Ω) such that, up to a non-relabeled subsequence, we have

χVh → χV in L1(Ω) .

By Reshetnyak’s lower semicontinuity theorem (cf. [6, Theorem 2.38]) applied to the lower semicon-
tinuous, positively 1-homogeneous, convex function φ : S2 → [0,+∞) with φ(ν) := |(0, ν2, ν3)|, we
get, using again (4.3), thatˆ

∂∗V ∩Ω

|(0, ν2
V , ν

3
V )|dH2 ≤ lim inf

h→0

ˆ
∂Vh∩Ω

|(0, ν2
Vh
, ν3
Vh

)|dH2 ≤ C lim inf
h→0

h = 0 ,

where νV denotes the measure-theoretic outer unit normal to ∂∗V . This implies ν2
V (x) = ν3

V (x) =
0 for H2-a.e. x ∈ ∂∗V ∩ Ω. We denote by I := {x1 ∈ (0, L) : H2(({x1} × R2) ∩ V ) > 0} the
measure-theoretic projection of V onto the x1-axis. The previous argument shows that indeed
V = VI := I × (−1/2, 1/2)2 for some I ∈ P(0, L), up to a set of negligible L3-measure. This proves
(2.20)(i). From now on (and also in the next sections) we will without loss of generality consider the
representative in the L1-equivalence class of I which consists of a finite union of open subintervals
of (0, L), without mentioning it further.

We now proceed with the compactness for the deformations. Denote by (vh, Eh)h>0 the sequence
related to (yh, Vh)h>0 via (2.6)–(2.7). We first derive a compactness result for the blockwise Sobolev
modifications constructed in Proposition 3.1 and then we will show (2.20)(ii),(iii) for the sequence
(yh)h>0 afterwards. To this end, we fix ρ > 0 sufficiently small. We apply Proposition 3.1 on
(vh, Eh)h>0 and εh := h2 to find a sequence (wh)h>0. (Observe that (2.19) implies (3.7).) Then, we
consider the sequence (w̃h)h>0 ⊂ SBV 2(Ω1,ρ;R3) defined by

w̃h(x) := w̃h(x1, x2, x3) := wh(x1, hx2, hx3) . (4.4)

After passing to a subsequence, we may assume that there exists n ∈ 2N such that the sets Qvh in
(3.8)(ii) satisfy #Qvh = n/2 for all h > 0. Thus, by (3.8)(ii) we get (xhi )ni=1 ⊂ (0, L) such that

Jwh ⊂ Ωh,ρ ∩
n⋃
i=1

(
{xhi } × R2

)
.

Up to a further subsequence, we can suppose that for each i = 1, . . . , n we have xhi → xi as h → 0
for suitable xi ∈ [0, L]. Thus, fixing an arbitrary δ > 0 and defining the set

Ωδρ := Ω1,ρ \
n⋃
i=1

(
[xi − δ, xi + δ]× R2

)
, (4.5)

we find that
w̃h|Ωδρ ∈W

1,2(Ωδρ;R3) for all h > 0 small enough.

A change of variables together with (3.8)(iv) (for εh := h2) imply that

h−2

ˆ
Ωδρ

dist2(∇hw̃h, SO(3)) dx ≤ h−4

ˆ
Ωh,ρ

dist2(∇wh, SO(3)) dx ≤ C , (4.6)
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for a constant C > 0 independent of h, δ, and ρ. This along with (3.8)(i) and (4.4) shows that the
sequence (w̃h)h>0 is equibounded in W 1,2(Ωδρ;R3), i.e.,

‖w̃h‖W 1,2(Ωδρ) ≤ C . (4.7)

Therefore, by Lemma 4.1 applied to the sequence (w̃h)h>0 on the connected components of the fixed
domain Ωδρ, we obtain a map yδρ ∈ W 2,2(Ωδρ;R3), and (d2)δρ, (d3)δρ ∈ W 1,2(Ωδρ;R3), all independent
of the (x2, x3)-coordinates, such that

w̃h ⇀ yδρ weakly in W 1,2(Ωδρ;R3) and ∇hw̃h → Rδρ strongly in L2(Ωδρ;R3×3) , (4.8)

where

Rδρ :=
(
yδρ,1

∣∣ (d2)δρ
∣∣ (d3)δρ

)
∈ SO(3) a.e. in Ωδρ . (4.9)

Moreover, by (4.2), (4.6), and (4.7) we have

‖yδρ‖W 2,2(Ωδρ) + ‖(d2)δρ‖W 1,2(Ωδρ) + ‖(d3)δρ‖W 1,2(Ωδρ) ≤ C (4.10)

for a constant C > 0 independent of ρ and δ.
We now replace w̃h by yh in (4.8). By (2.7), (4.4), a scaling argument, and (3.8)(iii) we have that

L3
(
{x ∈ Ωδρ : yh(x) 6= w̃h(x)}

)
≤ h−2L3

(
{x ∈ Ωh,ρ : vh(x) 6= wh(x)}

)
→ 0 (4.11)

as h→ 0. Thus, from (4.8) and (4.11) we deduce that

yh → yδρ in measure on Ωδρ and ∇hyh → Rδρ in measure on Ωδρ . (4.12)

Now, by (4.9), (4.10), (4.12), and a monotonicity argument for ρ→ 0 and δ → 0 we find (y| d2| d3) ∈
(P -W 2,2×P -W 1,2×P -W 1,2)((0, L);R3×3

)
, such that the corresponding functions ȳ, d̄2, d̄3 : Ω→ R3

defined in (2.14) satisfy

ȳ = yδρ on Ωδρ, R̄ := (ȳ,1| d̄2| d̄3) = Rδρ on Ωδρ , (4.13)

and

yh → ȳ in measure on Ω and ∇hyh → R̄ in measure on Ω . (4.14)

Property (4.9) also implies that (ȳ,1
∣∣ d̄2

∣∣ d̄3) ∈ SO(3) a.e. in Ω, i.e., (y| d2| d3) ∈ SBV 2
isom(0, L), see

(2.13) and the convention introduced right after it. The measure convergence yh → ȳ in (4.14)
together with ‖yh‖L∞(Ω) ≤M shows (2.20)(ii). By (2.4)(iv), (4.3), and the fact that ∇hyh = Id on
Vh we have that

sup
h>0

ˆ
Ω

|∇hyh|2 dx < +∞ .

A compactness argument and (4.14) show that ∇hyh ⇀ R̄ weakly in L2(Ω;R3×3). Recalling that
χVh → χVI in L1(Ω) by (2.20)(i), the proof of (2.20)(iii) is concluded.

It finally remains to show that ((y| d2| d3), I) ∈ A. In fact, we have ‖y‖L∞(Ω) ≤M by ‖yh‖L∞(Ω) ≤
M for all h > 0 and (4.14). Moreover, the second part of (4.14), (2.20)(i), and the fact that
y = Th(id), ∇hyh = Id on Vh (see (2.11)) show that R̄ ≡ Id on VI and thus y(x1) ≡ x1 and
(y,1| d2| d3) ≡ Id on I. As above we have already seen that (y| d2| d3) ∈ SBV 2

isom(0, L), the proof is
concluded. �
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5. The Γ-liminf inequality

This section is devoted to the proof of the lower bound (2.21) of Theorem 2.3, which is split into
proving the lower bound for the bulk and the surface part of the energy separately.

Recalling Definition 2.2, we consider a sequence (yh, Vh)h>0 and ((y| d2| d3), I) ∈ A such that

(yh, Vh)
τ−→ ((y| d2| d3), I), i.e., (2.20)(i)–(iii) hold true.

Regarding the lower bound for the elastic energy, we will use the following result from the purely
elastic case. For its formulation, recall the definition of the elastic part of the limiting energy, as
introduced in (2.16)–(2.18), and the convention after (2.13).

Lemma 5.1 (Lower bound in the Sobolev setting). Let Ω`1,`2 := (0, `1)× (−`2, `2)2 for `1, `2 > 0,
and let (w̃h)h>0 be a sequence in W 1,2(Ω`1,`2 ;R3) such that

w̃h ⇀ ȳ weakly in W 1,2(Ω`1,`2 ;R3), ∇hw̃h → R̄ =
(
ȳ,1
∣∣ d̄2

∣∣ d̄3

)
strongly in L2(Ω`1,`2 ;R3×3) ,

(5.1)

where ȳ, d̄2, and d̄3 are independent of (x2, x3). Then, there exists a sequence of piecewise constant
functions Rh : Ω`1,`2 → SO(3) and a limiting function G ∈ L2(Ω`1,`2 ;R3×3) such that

(i) Gh :=
RTh∇hw̃h − Id

h
⇀ G weakly in L2(Ω`1,`2 ;R3×3) ,

(ii) lim inf
h→0

1

h2

ˆ
Ω`1,`2

W (∇hw̃h) dx ≥ 1

2

ˆ
Ω`1,`2

Q3(G) dx ,

(iii)
1

2

ˆ
Ω`1,`2

Q3(G) dx ≥ 1

2
(2`2)4

ˆ
(0,`1)

Q2(RTR,1) dx1 ,

(5.2)

where R is defined via (2.13)–(2.15).

The proof can be found in [58, Theorem 3.1(i)]. In particular, we refer to [58, (3.4)–(3.6), (3.16),
and Remark 3.2]. The result is stated there only for cross sections with area 1, corresponding to
`2 = 1

2 . However, a standard scaling argument shows that

(2`2)4Q2(A) = Q`22 (A) := min
a∈W 1,2((−`2,`2)2;R3)

ˆ
(−`2,`2)2

Q3

A
 0
x2

x3

∣∣∣∣∣α,2
∣∣∣∣∣α,3

 dx2 dx3 ,

where Q2(A) is given by (2.17). This implies (5.2)(iii) in the present form.
The issue in our framework is that Lemma 5.1 cannot be applied directly since the sequence

(yh)h>0 is only in W 1,2(Ω \ Eh;R3) and the geometry of (Eh)h>0 cannot be controlled a priori.
Therefore, as in the proof of Theorem 2.1, we will use the modification (wh)h>0 constructed in
Proposition 3.1. The advantage here is that, due to (3.8)(ii), the geometry of the jump set of
(wh)h>0 is well controlled in the sense that it is contained in the vertical faces of finitely many
cuboids. Therefore, far from these cuboids, we can reduce to the Sobolev setting.

Lemma 5.2. Suppose that (yh, Vh)
τ−→ ((y| d2| d3), I) for some ((y| d2| d3), I) ∈ A. Then,

lim inf
h→0

(
h−2

ˆ
Ω\Vh

W (∇hyh) dx
)
≥ 1

2

ˆ
(0,L)\I

Q2(RTR,1) dx1 . (5.3)

Proof. We apply Proposition 3.1 for ρ > 0 small and εh := h2 and the sequence (vh, Eh)h>0 related
to (yh, Vh)h>0 via (2.6)–(2.7). Here, we note that it is not restrictive to assume that (Eh(yh, Vh))h>0

is bounded, and thus (3.7) holds. We denote the resulting sequence by (wh)h>0, and as in the proof
of the compactness result, we consider the sequence (w̃h)h>0 ⊂ SBV 2(Ω1,ρ;R3) defined by

w̃h(x) := w̃h(x1, x2, x3) := wh(x1, hx2, hx3) . (5.4)
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Similarly to the reasoning in the proof of Theorem 2.1, see (4.5), (4.8), and (4.13), we can define a
set Ωδρ for ρ, δ > 0 with L3(Ω \ Ωδρ)→ 0 as ρ, δ → 0 such that

w̃h|Ωδρ ∈W
1,2(Ωδρ;R3) for all h > 0 small enough ,

and

w̃h ⇀ ȳ weakly in W 1,2(Ωδρ;R3) and ∇hw̃h → R̄ strongly in L2(Ωδρ;R3×3) .

This means that (5.1) is satisfied and we can thus apply Lemma 5.1 on each connected component
of Ωδρ to find corresponding Gh and G such that (5.2) holds on the set Ωδρ. The main part of the
proof will consist in confirming that (5.2)(ii) also holds with yh in place of w̃h. Then, the liminf
inequality follows from (5.2)(iii).

To show (5.2)(ii) for yh in place of w̃h, we will perform a by now classical linearization argument
which we sketch here for convenience: we consider a sequence of positive numbers (λh)h>0 ⊂ (0,∞)
with

λh →∞ , hλh → 0 as h→ 0 , (5.5)

and define

Θh := {x ∈ Ωδρ : w̃h(x) = yh(x)} ∩ {x ∈ Ωδρ : |Gh(x)| ≤ λh} . (5.6)

Note that L3({w̃h 6= yh})→ 0 by (3.8)(iii) and a scaling argument. This together with the fact that
‖Gh‖L2(Ωδρ) ≤ C, see (5.2)(i), λh → +∞, and Chebyshev’s inequality implies that

L3(Ωδρ \Θh)→ 0 as h→ 0 . (5.7)

This yields χΘh → 1 boundedly in measure in Ωδρ as h→ 0. By (2.11), W (Id) = 0, W ≥ 0, and by
the definition of Θh we get

lim inf
h→0

(
h−2

ˆ
Ω\Vh

W (∇hyh) dx
)

= lim inf
h→0

(
h−2

ˆ
Ω

W (∇hyh) dx
)

≥ lim inf
h→0

(
h−2

ˆ
Ωδρ

χΘhW (∇hw̃h) dx
)
.

By the regularity and the structural hypotheses on W (recall (2.4)) we get

W (Id + F ) = 1
2Q3(sym(F )) + Φ(F ) ,

where Φ: R3×3 → R is a function satisfying

sup
{ |Φ(F )|
|F |2 : |F | ≤ σ

}
→ 0 as σ → 0. (5.8)

Then, together with the definition of Gh in (5.2)(i) this gives

lim inf
h→0

(
h−2

ˆ
Ω\Vh

W (∇hyh) dx
)
≥ lim inf

h→0

(
h−2

ˆ
Ωδρ

χΘhW (Id + hGh) dx
)

≥ lim inf
h→0

ˆ
Ωδρ

χΘh

(
1
2Q3(sym(Gh)) + h−2Φ(hGh)

)
dx

= lim inf
h→0

1

2

ˆ
Ωδρ

χΘhQ3(sym(Gh)) dx . (5.9)

Here, in the last step we used that

lim sup
h→0

ˆ
Ωδρ

χΘhh
−2|Φ(hGh)|dx ≤ lim sup

h→0

(
sup

{ |Φ(hGh)|
|hGh|2 : |hGh| ≤ hλh

} ˆ
Ωδρ

χΘh |Gh|2 dx

)
= 0 ,
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which follows from the fact that (Gh)h is bounded in L2(Ωδρ;R3×3), (5.6), (5.8), and hλh → 0 (see

(5.5)). Hence, (5.2)(i),(iii), the fact that χΘh → 1 boundedly in measure in Ωδρ, see (5.7), and the
convexity of Q3 imply that

lim inf
h→0

1

2

ˆ
Ωδρ

χΘhQ3(sym(Gh)) dx ≥ 1

2

ˆ
Ωδρ

Q3(G) dx ≥ 1

2
(1− ρ)4

ˆ
π1(Ωδρ)

Q2

(
RTR,1

)
dx1 , (5.10)

where π1 is the projection onto the x1-axis, and Ωδρ is defined in (3.1) and (4.5). As L3(Ω \Ωδρ)→ 0

for ρ, δ → 0, we also get that L1((0, L)\π1(Ωδρ))→ 0 as ρ, δ → 0. Thus, (5.9), (5.10), and monotone
convergence yield the lower bound (5.3). Note that the last integral can also be taken on (0, L) \ I
only since Q2(0) = 0 and R = Id on I, see (2.12), (2.13) and (2.17). This concludes the proof. �

We now proceed with the lower bound for the surface part of the energy, namely

Ehsurf(Vh) := Eh(yh, Vh)− h−2

ˆ
Ω\Vh

W (∇hyh) dx = h−2Gκhsurf(Eh; Ωh) , (5.11)

where we refer to the definitions in (2.8) and (3.5). Our approach deviates significantly from the
proof of lower bounds in relaxation results for energies defined on pairs of functions and sets, cf.
[15] or [21]. This is mainly due to the fact that the nonlinear geometric rigidity result allows us to
control the elastic energy only in a large part of Ω\Vh. Our argument to derive the lower bound for
the surface energy term related to collapsing voids correctly hinges on Proposition 3.2 along with
an argument by contradiction. We again suppose that I is the representative consisting of a finite
union of open intervals.

Lemma 5.3. Suppose that (yh, Vh)
τ−→ ((y| d2| d3), I) for some ((y| d2| d3), I) ∈ A. Then,

lim inf
h→0

Ehsurf(Vh) ≥ H0(∂I ∩ (0, L)) + 2H0
(
(Jy ∪ JR) \ ∂I

)
. (5.12)

Proof. Let (Eh)h>0 be the void sets associated to (Vh)h>0 according to (2.6). By (E∗h)h>0 we denote
the open sets given by Proposition 3.2 satisfying Eh ⊂ E∗h ⊂ Ωh and (3.9). We also introduce the
rescaled sets

V ∗h := T1/h(E∗h) , (5.13)

and note by (3.9), a scaling argument, and (2.20)(i) that

χV ∗h −→ χVI in L1(Ω) . (5.14)

By (3.9) and (5.11) we have

lim inf
h→0

Ehsurf(Vh) = lim inf
h→0

h−2Gκhsurf(Eh; Ωh) ≥ lim inf
h→0

h−2H2(∂E∗h ∩ Ωh) . (5.15)

Since ((y| d2| d3), I) ∈ A, there exist finitely many (xj)
n
j=1 ⊂ (0, L) such that

{x1, . . . , xn} = (∂I ∩ (0, L)) ∪ Jy ∪ JR .

We choose δ > 0 sufficiently small such that the sets S2δ
h (xj), j = 1, . . . , n, are pairwise disjoint and

contained in Ωh, cf. (3.3). Our goal is to prove

(i) lim inf
h→0

h−2H2
(
∂E∗h ∩ S2δ

h (xj)
)
≥ 1 if xj ∈ ∂I ∩ (0, L) ,

(ii) lim inf
h→0

h−2H2
(
∂E∗h ∩ S2δ

h (xj)
)
≥ 2 if xj ∈ Jy \ ∂I ,

(iii) lim inf
h→0

h−2H2
(
∂E∗h ∩ S2δ

h (xj)
)
≥ 2 if xj ∈ JR \ ∂I .

(5.16)
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Once (5.16) is shown, we can conclude as follows. By (5.15) and the fact that the sets S2δ
h (xj) ⊂ Ωh,

j = 1, . . . , n, are pairwise disjoint, we get

lim inf
h→0

Ehsurf(Vh) ≥ lim inf
h→0

n∑
j=1

h−2H2(∂E∗h ∩ S2δ
h (xj)) ≥ H0(∂I ∩ (0, L)) + 2H0

(
(Jy ∪ JR) \ ∂I

)
.

This shows (5.12).
We now proceed with the proof of the properties stated in (5.16). We start with (i). By a change

of variables and the definition in (5.13) we find

lim inf
h→0

h−2H2
(
∂E∗h ∩ S2δ

h (xj)
)

= lim inf
h→0

ˆ
∂V ∗h ∩S

2δ
1 (xj)

|(ν1
V ∗h
, h−1ν2

V ∗h
, h−1ν3

V ∗h
)|dH2

where we use the notation νV ∗h = (ν1
V ∗h
, ν2
V ∗h
, ν3
V ∗h

) ∈ S2 for the outer unit normal to V ∗h . By (5.14)

and the lower semicontinuity of the perimeter (cf. [6, Proposition 3.38]), we get

lim inf
h→0

h−2H2
(
∂E∗h ∩ S2δ

h (xj)
)
≥ lim inf

h→0
H2
(
∂V ∗h ∩ S2δ

1 (xj)
)
≥ H2

(
∂VI ∩ Sδ1(xj)

)
.

The fact that {xj} × (− 1
2 ,

1
2 ) ⊂ ∂VI yields (i).

We proceed to show (ii). Suppose the statement was wrong, i.e., there exists 0 < µ < 1 and a
subsequence (not relabeled) such that 2µ ≥ h−2H2(∂E∗h ∩ S2δ

h (xj)) for all h > 0. Choose ρ > 0
small enough such that µ

(1−ρ)2 < 1. Then, we get

H2
(
∂E∗h ∩ S2δ

h (xj)
)
≤ 2µh2 < 2((1− ρ)h)2 .

This implies that (3.10)(i) (for l = δ) holds. The fact that the sets S2δ
1 (xj), j = 1, . . . , n, are pairwise

disjoint implies that S2δ
1 (xj) ∩ VI = ∅. Thus, by (5.14) we get limh→∞ L3(V ∗h ∩ S2δ

1 (xj)) = 0. By
the definition of V ∗h and a change of variables we find

L3(E∗h ∩ S2δ
h (xj))

L3(S2δ
h (xj))

≤ 1

9

for h > 0 sufficiently small, i.e., (3.10)(ii) is satisfied. Let (wh)h>0 be the sequence from Proposi-
tion 3.1 and let again (w̃h)h>0 ⊂ SBV 2(Ω1,ρ;R3) be the rescaled sequence, see (5.4). Thus, by a
change of variables and by (3.11), we find thatˆ

Sδ1,ρ(xj)∩Jw̃h

√
|[w̃h]|dH2 ≤

ˆ
Sδ1,ρ(xj)∩Jw̃h

√
|[w̃h]| |(ν1

w̃h
, h−1ν2

w̃h
, h−1ν3

w̃h
)|dH2

=
1

h2

ˆ
Sδh,ρ(xj)∩Jwh

√
|[wh]|dH2 → 0 .

By (3.8)(ii)–(iv), (2.7), (2.20)(ii), and(5.4) we get w̃h → ȳ in L1(Ω1,ρ;R3) and

sup
h>0

(ˆ
Ω1,ρ

|∇w̃h|2dx+H2(Jw̃h)
)
≤ C ,

for a constant C > 0 independent of h > 0. By Ambrosio’s lower semicontinuity theorem in SBV
(cf. [6, Theorem 4.7]) and the fact that w̃h → ȳ in L1(Ω;R3) we getˆ

Sδ1,ρ(xj)∩Jȳ

√
|[ȳ]|dH2 ≤ lim inf

h→0

ˆ
Sδ1,ρ(xj)∩Jw̃h

√
|[w̃h]|dH2 = 0 .

This shows that Jȳ does not jump on ({xj} × R2) ∩ Ω1,ρ which contradicts the fact that xj ∈ Jy.
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For (iii) we proceed in a similar fashion and first get that (3.10) is satisfied. We let (Rh)h>0 be

the sequence in Proposition 3.2 and introduce the rescaled sequence (R̃h)h>0 ⊂ SBV 2(Ω1,ρ;R3×3)
by

R̃h(x) := R̃h(x1, x2, x3) := Rh(x1, hx2, hx3) .

By a change of variables, the properties (3.8)(ii)–(iv), as well as (2.7) and (2.9) we get

sup
h>0

(ˆ
Ω1,ρ

|∇R̃h|2dx+H2(JR̃h)
)
≤ C, |∇hyh − R̃h| → 0 in measure on Ω1,ρ ,

for a constant C > 0 again independent of h > 0. Then, again by Ambrosio’s lower semicontinuity
theorem, (3.11), (2.20)(iii), and the fact that Sδ1,ρ(xj) ∩ VI = ∅, we deriveˆ

Sδ1,ρ(xj)∩JR̄

√
|[R̄]|dH2 ≤ lim inf

h→0

ˆ
Sδ1,ρ(xj)∩JR̃h

√
|[R̃h]|dH2 = 0 .

As in (ii), this yields a contradiction, and the proof of (iii) is concluded. �

6. The Γ-limsup inequality

In this last section, we construct recovery sequences for admissible limits ((y| d2| d3), I) ∈ A. We
start by recalling the relevant result for elastic rods, using again the convention in (2.14)–(2.15).

Lemma 6.1 (Recovery sequences in the Sobolev setting). Let Ω` := (0, `)× (− 1
2 ,

1
2 )2 for ` > 0. Let

((y| d2| d3), I) ∈ A be such that ȳ|Ω` ∈ W 2,2(Ω`;R3) and d̄|Ω` , d̄3|Ω` ∈ W 1,2(Ω`;R3). Then, there
exists a sequence (yh)h>0 ⊂W 1,2(Ω`;R3) such that

yh → ȳ strongly in W 1,2(Ω`;R3), ∇hyh → (ȳ,1| d̄2| d̄3) strongly in L2(Ω`;R3×3) , (6.1)

and we have

lim
h→0

1

h2

ˆ
Ω`

W (∇hyh) dx =
1

2

ˆ
(0,`)

Q2(RTR,1) dx1 , (6.2)

where R := (y,1| d2| d3). Moreover, if ȳ ∈ L∞(Ω`;R3), it holds that lim suph→∞ ‖yh‖∞ ≤ ‖ȳ‖∞.

For the proof we refer to [58, Theorem 3.1(ii)]. We now proceed with the construction of recovery
sequences.

Proof of Theorem 2.3(ii). Consider an admissible limit ((y| d2| d3), I) ∈ A, see (2.12)–(2.13). We
will combine ideas from [58, Section 3] and [68, Subsection 5.4]. We first treat the case ‖y‖∞ < M
and address the changes for ‖y‖∞ = M at the end of the proof. By choosing a suitable representative,
we can assume that I is the union of finitely many open subintervals of (0, L). We also denote

(Jy ∪ JR) \ ∂I := {t1, . . . , tm} ⊂ (0, L) , (6.3)

where 0 < t1 < · · · < tm < L. Denote by (Ji)
n
i the connected components of (0, L)\(I∪{t1, . . . , tm}).

We apply Lemma 6.1 on each connected component Ji to find recovery sequences yih ∈W 1,2(J̃i;R3),

where J̃i := Ji × (− 1
2 ,

1
2 )2 such that (6.1)–(6.2) are satisfied for the respective functions on the re-

spective sets. For h > 0 sufficiently small, consider the sets (Vh)h>0 ⊂ Areg(Ω) defined by

Vh :=
(
I ∪

m⋃
i=1

(ti − h, ti + h)
)
× (− 1

2 ,
1
2 )2 . (6.4)

Recalling (1.5), we introduce the deformations (yh)h>0 ⊂ SBV 2(Ω;R3) defined by

yh(x) :=

{
yih(x) if x ∈ J̃i \ Vh,
Th(id) if x ∈ Vh .

(6.5)
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Since ‖y‖∞ < M , Lemma 6.1 also implies that ‖yh‖∞ ≤ M for h > 0 sufficiently small. This

shows that (yh, Vh)h>0 ⊂ Âh, cf. (2.11). Clearly, in view of (6.4), we have χVh → χVI in L1(Ω).
Moreover, (6.1) and (6.5) show that (yh)h>0 also satisfies (2.20)(ii),(iii). Thus, by the definition of

τ -convergence in Definition 2.2 we have (yh, Vh)
τ−→ ((y| d2| d3), I) as h→ 0.

Regarding the elastic part of the energy, from (6.2) and (6.5) we directly infer

lim sup
h→0

1

h2

ˆ
Ω\Vh

W (∇hyh) dx ≤ lim
h→0

1

h2

n∑
i=1

ˆ
J̃i

W (∇hyh) dx

=
1

2

n∑
i=1

ˆ
Ji

Q2(RTR,1) dx1 =
1

2

ˆ
(0,L)\I

Q2(RTR,1) dx1 . (6.6)

We now address the surface part of the energy introduced in (5.11). First, we set Eh := Th(Vh),
where (Vh)h>0 are defined in (6.4). By (5.11), (3.5), and the fact that ∂Eh ∩ Ωh consists of planar
interfaces with unit normal ±e1, we have that

lim
h→0
Ehsurf(Vh) = lim

h→0
h−2

(
H2(∂Eh ∩ Ωh) + κh

ˆ
∂Eh∩Ωh

|Ah|2 dH2
)

= lim
h→0

h−2H2
(
∂
((
I ∪

m⋃
i=1

(ti − h, ti + h)
)
× (−h2 ,

h
2 )2
)
∩ Ωh

)
= H0(∂I ∩ (0, L)) + 2m = H0(∂I ∩ (0, L)) + 2H0((Jy ∪ JR) \ ∂I) ,

(6.7)

where the last step follows from (6.3). Now, (6.6) and (6.7) show (2.22) in the case ‖y‖L∞ < M .
We conclude the proof by addressing the case ‖y‖∞ = M . In this case, we extend y, d2, d3 on

(L,L+1) such that y,1, d2, d3 are constant on [L,L+1) and (y| d2| d3) ∈ SBV 2
isom(0, L+1). For 0 <

σ < 1, we consider the functions yσ(x1) := σy(x1/σ), dσ2 (x1) := d2(x1/σ), and dσ3 (x1) := d3(x1/σ)
on (0, σ(L+ 1)). Now, ‖yσ‖∞ < M and we can construct a recovery sequence as above. Moreover,
one can check that limσ→0 E0((yσ| dσ2 | dσ3 ), σI) = E0((y| d2| d3), I). Thus, the conclusion follows by
a standard diagonal sequence argument in the theory of Γ-convergence. �
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