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ABSTRACT. We derive a dimension-reduction limit for a three-dimensional rod with material voids
by means of I'-convergence. Hereby, we generalize the results of the purely elastic setting [57] to a
framework of free discontinuity problems. The effective one-dimensional model features a classical
elastic bending-torsion energy, but also accounts for the possibility that the limiting rod can be
broken apart into several pieces or folded. The latter phenomenon can occur because of the
persistence of voids in the limit, or due to their collapsing into a discontinuity of the limiting
deformation or its derivative. The main ingredient in the proof is a novel rigidity estimate in
varying domains under vanishing curvature regularization, obtained in [32].

1. INTRODUCTION

A fundamental question in continuum mechanics is the rigorous derivation of lower dimensional
theories for plates, shells, and rods in various energy scaling regimes, starting from three-dimensional
models of nonlinear elasticity. Although this question has received considerable attention [8,[9], early
derivations were typically based on some a priori ansatzes, often leading to theories which were not
consistent with each other. The last decades, however, have witnessed a remarkable progress in
the rigorous derivation of effective energies for thin elastic objects via variational methods, based
on a fundamental cornerstone: the celebrated rigidity estimate by G. FRIESECKE, R.D. JAMES,
and S. MULLER [40]. Ever since its appearance, this rigidity result has had numerous applications
in dimension-reduction problems providing a thorough understanding of thin elastic materials. We
refer the reader to the by far nonexhaustive list [I} 2] 20, 26, [34], 85}, [36, [39] 40}, [41] [48], 51}, 52 53]
57, 58, 59, [60, [611, [65] [66] for references.

On the contrary, beyond the purely elastic regime, when one is interested in the behavior of
materials which might have defects and impurities such as plastic slips, cracks, or stress-induced
voids, the situation is far less-well understood. The goal of this article is to advance the mathematical
understanding of thin materials with voids. This corresponds to the investigation of energies that
are driven by the competition between elastic and surface energies of perimeter type. Models of this
form are gathered under the term stress driven rearrangement instabilities (SDRI), see [13] [I5] 211
27, [42], [44), [45] [49], 50, [63], [68), [69] for some mathematical and physical literature on the subject.

We start with a short overview of the literature on dimension reduction in settings beyond
elasticity. Concerning plasticity, we refer the reader, e.g., to [I7, [24] 25 54} [56]. For models in brittle
fracture [30], there are several results on brittle plates and shells in a linear setting [3| [5, 111 43]. In
the nonlinear framework, instead, the theory is mainly restricted to static and evolutionary models
in the membrane regime [4, [I0, [I6]. The only result in a smaller energy regime appears to be [67]
for the case of a two-dimensional thin brittle beam. In the limit of vanishing thickness, the author
obtains an effective Griffith-Euler-Bernoulli energy defined on the midline of the possibly fractured
beam, accounting also for jump discontinuities of the limiting deformation and its derivative. At the
core of the arguments in [67] lies a suitable generalization of [40], namely a quantitative piecewise
geometric rigidity theorem for SBD functions [37]. As to date this result is available only in two
dimensions, the generalization of dimension-reduction results to three-dimensional fracture is still
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As a remedy, motivated by our work in [32], we introduce a curvature regularization of the form
Fhoo(B) = h%h/ |A[2dH?, (1.2)
OENQ,

where A denotes the second fundamental form of OF N Q) and k; satisfies , which allows
in particular for x;, — 0T as h — 07 at a sufficiently slow rate. The presence of such an extra
Willmore-type energy penalization allows to employ the piecewise rigidity estimate [32, Theorem
2.1] in the analysis. It is a singular perturbation for the void set E and not for the deformation
v, i.e., no higher-order gradient of v is involved in the model. We refer the reader to our recent
work [33], where a related discrete model is studied and an additional explanation for the presence
of a microscopic analogue of the term in is given, see [33, Subsection 2.5]. We also mention
that curvature regularizations are widely used in the mathematical and physical literature of SDRI
models, including the description of elastically stressed thin films or material voids, see [7, 28, 29]
46, [47, [62, [68].

The total energy of a pair (v, E) is then given by the sum of the two terms in and , ie.,

FM0, B) = Fli per (v, B) + Flipo (B). (1.3)

(We set B, = h? and p(v) = 1 for all v € S%.) The main result of this contribution is then Theo-
rem where we show that the rescaled energies (h=4F"(,-))n>0 I'-converge (in an appropriate
topology) to an effective one-dimensional functional that takes the form

% / Q>(RTR')dzy +H(OIN (0, L)) +2H" ((J, U Jg) \ OI). (1.4)

(0,L)\I
Here, I C (0,L) denotes a union of finitely many intervals in (0, L) and represents the void part
in the limiting one-dimensional rod. The deformation y: (0, L) — R? is an isometric piecewise
W?22.regular curve that represents the deformed rod. The rotation field R: (0, L) — SO(3) whose
first column is the velocity y’ represents the Frenet frame with respect to y. The elastic part of the
limiting energy corresponds to the one identified in the purely elastic setting [57]: it is quadratic
in terms of the skew-symmetric tensor R” R’ which encodes the information for the curvature and
torsion of the curve y. The associated quadratic form Q- is defined through the quadratic form
D2W (I) of linearized elasticity via a suitable minimization problem, see for details. The
second term in accounts for the presence of voids by counting their endpoints (H° stands
for the counting measure in R). The last term therein takes into account the fact that, in the
limit, voids might collapse exactly into discontinuity points of the limiting y or its Frenet frame R,
corresponding to cracks or kinks of the limiting rod, respectively. Accordingly, these discontinuity
points should be counted twice in the energy.

Let us highlight the relation to the result in [64], where a similar model of Blake-Zisserman type
(cf. [12L [I8]) for elastic plates with voids in the Kirchhoff bending energy regime is obtained. First,
in [64] plates are considered, whereas we treat the case of rods. We decided to present our approach
based on the model first for a dimension reduction from 3D-to-1D to avoid some technicalities
arising in the 3D-to-2D analysis. The latter, however, can be performed as well, and is the subject
of a forthcoming work, both in the Kirchhoft [40] and the von Kdrmén [41] regime. The fundamental
difference between our work and [64] concerns the assumptions on the void set. Whereas we allow
for voids with general geometry employing a mild curvature regularization, [64] is based on specific
restrictive assumptions on the void geometry, namely the so-called -minimal droplet assumption,
cf. [64, Equation (6)]. This can be interpreted as an L*°-diverging bound on the curvature of the
boundary of the voids. In our setting, the curvature regularization term in can be thought of
as imposing an L2-diverging bound on the curvature: firstly, this allows the void set to concentrate
at arbitrarily small scales (independently of h) and, secondly, allows the boundary of the void set
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to consist of a diverging (with h) number of connected components, see Example s Our more
general model comes at the expense of the necessity of more sophisticated geometric rigidity results
[32] compared to [40].

1.1. Organization of the paper and proof strategy. The paper is organized as follows. In
Section [2| we introduce our model and state the main compactness and I'-convergence results, i.e.,
Theorems [2.1] and respectively. Section [3| contains the core of our paper by deriving a piecewise
Sobolev approximation of sequences (vp, Ep)p>o with

sup h ™4 F"(vy, Ep) < +0.

h>0
We perform a careful enlargement of the voids Ej, according to [32 Proposition 2.8], as well as an
appropriate modification of the deformations. This is the content of Propositions and stated
at the beginning of Section [3] where we modify the deformations v;, and their gradients Vv, on
a small part of the rod, such that the new deformations are actually Sobolev in a big part of the
rod €2, with a good control on their elastic energy. Moreover, the modification is done in such a
way that the jump height of the new sequence along the entire rod is suitably controlled as well as
producing the correct jump points of the limiting deformation and its curvature-torsion tensor.

The main technical tools to obtain these modifications are the piecewise rigidity estimate [32]
Theorem 2.1] and a Korn inequality for functions with small jump set [19], applied on long cuboids
that partition ;,. More precisely, splitting the rod €, into ~ h~! many long cuboids of length ~ h,
we focus on those cuboids where the perimeter of the enlarged void is locally not large enough
to produce macroscopic fracture, see 7. In these cuboids, by means of isoperimetric
arguments and our piecewise rigidity estimate, we obtain large in volume sets in which slight modi-
fications of vy, are approximately W1 2-rigid in terms of the local elastic energy. As we believe that
the isoperimetric inequalities may be of independent interest, we state and prove them in arbitrary
space dimension, see Subsection [3.2}

Although [32] Theorem 2.1] provides an optimal estimate only in terms of the symmetrized
gradient, a use of the Korn-Poincaré inequality for functions with small jump set [I9] allows us to
upgrade our estimate to the full gradient in all but finitely many cuboids. This leads to an optimal
estimate for the difference between the rigid motions in terms of the local elastic energy, again in
all but finitely many adjacent cuboids, see Proposition and Corollary in Subsection [3.3]
In Subsection [3:4] we eventually construct the global piecewise Sobolev modifications and give the
proofs of Propositions and

Based on these preparations, the rest of the paper is more standard and the results of the elastic
case [57] can be employed directly. Section [4]is devoted to the proof of compactness (Theorem [2.1)
and Section [5| to the proof of the I'-liminf inequality of Theorem The proof of the I'-limsup
inequality is given in Section [6] by exhibiting a recovery sequence (vj, Ej)p>o. Here, we use the
corresponding recovery sequence from [57] for the deformations, and we construct the voids Ej,
with planar interfaces in order to approximate the one-dimensional limiting void sets and the jump
points.

We also remark that, from a technical viewpoint, our proof strategy provides — to our view — a
simplified alternative to obtain the I'-liminf inequality compared to the methods used in [67], which
were based on delicate interpolation and difference quotients estimates. The latter were dictated by
the fact that, in the same fashion as the result [32], the two-dimensional piecewise rigidity estimate
in SBD [37, Theorem 2.1] used in [67] provides an optimal estimate in terms of the elastic energy
only for symmetrized gradients. Therefore, the standard difference quotients method used in [57]
was not directly applicable. Our method instead leads to a piecewise Sobolev replacement with the
aid of the Korn inequality for functions with small jump set [I9]. This actually enables us to use
directly the results of [57]. We emphasize that in this regard our approach is general: given any kind
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of geometric rigidity result delivering a sharp control for symmetrized gradients, e.g. also the result
in [31], our techniques carry directly over and allow to work with piecewise Sobolev replacements.

1.2. Notation. We close the introduction with some basic notation. Given U C R2 open, we
denote by P(U) the collection of subsets of finite perimeter in U. Given E € P(U), for any
s € [0,1] we denote by E* the set of points with 3-dimensional density s with respect to E, and
by 0*E its essential boundary, see [0 Definition 3.60]. The family of sets of finite perimeter on a
one-dimensional interval (0, L) will be simply denoted by P(0,L). We also denote by Ayeq(U) the
collection of all open sets £ C U such that 9E N U is a two-dimensional C?-surface in R3. Surfaces
and functions of C?-regularity will be called regular in the following. For E € A,es(U) we denote
by A the second fundamental form of E N U, i.e., |A| = /K7 + k3, where k1 and ko are the
corresponding principal curvatures. By vg we indicate the outer unit normal to 9E NU. For every
a,b € R we denote a A b :=min{a, b} and a V b := max{a,b}.

For p € [1,00] and d,k € N we denote by LP(U;R%) and W*P(U;R?) the standard Lebesgue
and Sobolev spaces, respectively. Partial derivatives of a function f: U — R? will be denoted by
(f.i)i=1,2,3- Given measurable sets A, B, we write x4 for the characteristic function of A, A CC B if
A C B, and disty (A, B) for the Hausdorff distance between A and B. For d, k € N, we denote by £¢
and H* the d-dimensional Lebesgue measure and the k-dimensional Hausdorff measure, respectively.

We set Ry := [0,+00). By id we denote the identity mapping on R® and by Id € R3*3 the
identity matrix. For each F' € R3*3 we let

1
sym(F) := 5 (F + FTy,
and we also define
SOB3):={FeR¥>3: FTF=1d, det F =1}.

3x3 3x3 . . .
Moreover, we denote by Ri7 " and Ry [ the space of symmetric and skew-symmetric matrices,

respectively. We further write S? := {v € R®: |v| = 1}. For o > 0, we denote by T, the linear
transformation in R® with matrix representation being given by

T, := diag(1,0,0) (1.5)

with respect to the canonical basis {e1, ea, e3}.

We use standard notation for SBV-functions, cf. [6, Chapter 4] for the definition and a detailed
presentation of the properties of this space. In particular, for a function u € SBV (U;R?), we write
Vu for the approximate gradient, .J, for the jump set, and u* for the one-sided traces on J,. We
also use the notation [u] := ut — u~ for the corresponding jump height. We consider the space

SBV(U;R?) := {u € SBV(U;R%): / |Vul?dz +HTH T, NU) < +oo} .
U

In dimension one, given a < b € R and d € N, the space SBV?((a,b); R?) coincides with the space
P-H'((a,b); R?) of piecewise H!-Sobolev functions, which consists of those Y € L((a,b); R%) for
which there exists a partition

a=:tg <ty <- - <tm<tmy1:=b such that YGHl((ti,hti);Rd) Vi=1,...,m+1.

The jump set of Y is precisely the minimal set Jy = {t1,...,t,} with the above property. By
taking an appropriate representative, we may then assume that Y is uniformly continuous on
{(ti—hti)}i:l,.“,m—i—l and Y(tli) are the limits of Y(t) ast — tii.

Analogously, for k € N, we define P-H*((a,b); RY) as the space of Y € L'((a,b);R?) for which
there exists {a =: tqg < t; < -++ < ty41 := b} such that Y € H*((t;_1,t;);RY) Vi = 1,...,m + 1.
For Y in this space, the minimal set {t1,..., ¢} with the above property is Uf;ol Jy).
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2. THE MODEL AND THE MAIN RESULTS
Model in the reference domain: We denote the reference configuration of the thin rod by

Q= (0,L) x (=1 1)2 cR3, (2.1)

22
where L > 0 is a macroscopic parameter describing the length of its midline, and 0 < h < L denotes
its infinitesimal thickness. For a fixed large constant M > 1, the set of admissible pairs of function
and set is given by

Ap={(,E): E € Aweg(W), vE H' (U \ E;R?), v|p =id, [|v|pe@, < M} . (2.2)

The third condition in is for definiteness only. The last one is merely of technical nature
to ensure compactness. At the same time, it is also justified from a physical point of view, for it
corresponds to the assumption that the material under investigation is confined in a bounded region.
For each pair (v, E) € A, we consider the energy

F'(v,E) = ~W(Vv)da + RP*H*(OE N Q) + Bk, / |A|2dH?. (2.3)
Qu\E OENQ,

Here, the first and second term correspond to the elastic and the surface energy of perimeter type,
while the third term is a curvature regularization of Willmore-type, where A denotes the second
fundamental form of OE Ny, and y, is a suitable parameter. The factor h? in front of the surface
terms ensures that the elastic and the surface energy are of same order for our choice of the bending
regime, where the elastic energy per unit volume is of order h?. We refer to the introduction for
more details.

The function W: R3*3 — R, in represents the stored elastic energy density, satisfying the
usual assumptions of nonlinear elasticity. Altogether, we suppose that W € CO(R3*3; R ) satisfies

(i) Frame indifference: W (RF) = W (F) for all R € SO(3) and F € R**3
(ii) Single energy-well structure: {WW = 0} = SO(3),
(iii) Regularity: W is C? in a neighborhood of SO(3), (2.4)
) Coercivity: There exists ¢ > 0 such that for all F € R**3 it holds that
W(F) > cdist?(F, SO(3)) .

(iv

Our choice of an isotropic surface energy is for simplicity only and can be generalized, as we briefly
explain in Remark [2.4] below. As for the parameter x, > 0 in the curvature regularization, we
require

52/25 400 ash— 0. (2.5)

Tts role is connected to the application of suitable rigidity results [32) [19] and will become apparent

along the proof, see in particular (3.40).
Rescaling of the model: As it is customary in dimension-reduction problems, we perform a

change of variables to a fixed reference domain: recalling (1.5]), we rescale our variables and set

Q:=Q, V:i={recQ: (x1,has,hxs) € E} =T ,,(E). (2.6)

kph™

We also rescale the deformations accordingly, by defining y: Q — R? via
y(x) = y(z1, 22, 23) == v(z1, ha, has). (2.7)
We rescale the energy by the factor h* and set
EMy, V) =h""F"(v, E), (2.8)
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where the pair (y,V) is related to (v, E) via (2.6)-(2.7). Here, one factor h? corresponds to the
change of volume and the other factor h? corresponds to the average elastic energy per unit volume,
reflecting our choice of the bending energy regime.

For the corresponding rescaled gradients, we will use the notation

1 1
Viy(z) := (81y, E@gy, E@gy) (x) = Vou(z1, hee, has) . (2.9)

Therefore, by a change of variables we find

EMy,V)=h72 [ _W(Vpy(x))dz + / | (2), B0 (2), R (2)) | M2 (2) + €l (V)
N avnQ (2.10)

where vy (2) := (v,(2), v (2), 3 (2)) denotes the outer unit normal to OV NQ at the point z. (For

the rescaling of the perimeter part, one can test with smooth functions and use the divergence
theorem.) Here, the term £ (V) denotes the curvature contribution for the rescaled set V, for

which we refrain from performing the change of variables explicitly.
In view of (1.5)) and (2.2)), the space of rescaled admissible pairs (deformations-voids) is given by

Ap={,V): V € Ag(®), y € H'(Q\V;R?), ylv = Th(id), yllr=() < M}, (2.11)
Limiting model: The limiting energy will be defined on the space

A= {((ylda| d3),I): (ylda| ds) € SBViZ (0, L), ylr(w1) = 1, (yal|do|ds); =1d,

(2.12)
”yHLO"(Q) < M, Ie P(OvL)}7
where, recalling the definition of P-H* in Subsection we define
{(y\ dy|ds) € (P-H? x P-H' x P-H')((0, L); R®*?) with
SBVZ2 (0,L):= (2.13)

R = (y1|ds|ds) € SO(3) ae. in (o,L)}.

By a slight abuse of notation, for triplets (7| dz|ds): @ — R3*3 we will also use the notation
(y| d2| d3) € SBV2,_ (0, L) if and only if

isom

(g] da| d3)(x) = (y| dz| d3) (1) for all x € Q, for some (y|dz|d3) € SBV2,,(0,L). (2.14)
In a similar fashion, we will write
R(x) := (y1]da| d3)(x1) for all z € Q. (2.15)

With these definitions, for each ((y|dz|ds),I) € A, the limiting one-dimensional energy of Blake-
Zisserman type (cf. [12], I8 [64] for analogous models in different settings) is defined as

1
E%((y|da|ds), I) == 5/ Q>(RTR ) dxy + H°(0* I N (0,L)) + 2H°((J, U Jr) \ O°I) . (2.16)
(0,L)\I
Here, R is defined as in (2.13), and the quadratic form Qy: R3*3 — R, is defined through a

skew
minimization problem as

0
Qs(A) := min / ,Qs | Al z2] |az|as | deades (2.17)
aewr2((=4,4)%Rr?) /(~4.3) 3

for all A € R3*3 | where, for every G € R3*3,

skew?
Q5(G) := D*W(1d)[G, G (2.18)
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is the corresponding quadratic form of linearized elasticity. Note that, as R belongs to SO(3), RTR ;
is skew symmetric, and thus the elastic energy in is well defined. Moreover, due to , Qs
vanishes on Rkaefv and is strictly positive definite on Rf;rg

As mentioned also in the introduction, the limiting one-dimensional model features the classical
bending-torsion term derived in [57] and two surface terms related to the presence of voids. The
first part corresponds to the energy contribution of the limiting void I, whereas the second part is
associated to discontinuities or kinks of the deformation, represented by J, and Jg, respectively.
This term is due to the fact that voids may collapse to single points and hence enters the energy
with a factor 2, see Figure

h—0 h—0
Yy
/\

Figure 2. A collapsing void leading to a discontinuity for J, and Jg.

Main results: Keeping in mind (2.6), (2.11)), (2.12]), and setting
Vri=1x(-1/2,1/2)> € P(Q) for I € P(0,L),
our main results in this paper are summarized as follows.

Theorem 2.1. (Compactness) Let (h;)jen C (0,00) with hj 0 and (yn;, Vp,) € Ahj be such that

sup EM (yn,, Vi,) < +oo. (2.19)
jeN

Then, there exists ((y| do| ds), I) € A such that up to a non-relabeled subsequence,
©) xvi, — xv; in L'(Q),
(i) yn, — ¥ in L'(QR?), (2.20)
(i) xo\vi, Vayn, = Xo\v, R weakly in L*(Q;R*?)
where §j and R are meant here with the conventions made in 7,
Definition 2.2. We say that (ys,, Vi,) — ((y|d2|ds), I) if and only if holds.

Since (2.11) implies that sup;ey [y, ||z~ () < M, the convergence in (2.20)(ii) actually holds in
LP(Q;R3) for every p € [1,+00). We are now ready to state the main I'-convergence result.

Theorem 2.3. (I'-convergence) Let (h;)jen C (0,00) with h; N\, 0. The sequence of functionals
(€M) jen T(7)-converges to the functional £, i.e., the following two inequalities hold true.

(i) (T-liminf inequality) Whenever (yn,, Va,) — ((y| da|ds),I), then
E%((yl d2| d3), T) < liminfghj (Yn;> Vi) - (2.21)
j—+o0
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(ii) (D-limsup inequality) For every ((y|dz|ds),I) € A there exists a sequence (yn,,Vh,)jen with
(Yn;> Vi) € flh]. for each j € N, such that (yn,, Vi;) — ((y|da|ds),I), and

limsup " (yn,, Vi,) < E°((y| d2| d3), I) . (2.22)
j—+oo
Remark 2.4 (Extensions and variants). (i) We could consider more general perimeter energies of
the form

8 / o(vg) dH?
OENQy,

where limy, _0(h™28,) = 8 > 0 and ¢ is a norm in R3. For simplicity of the exposition, we have
chosen 3, = h? and ¢ to be the standard Euclidean norm in R3. The general case is completely
analogous in its treatment, up to a prefactor ¢(e;) appearing in the last two terms in .

(ii) Regarding the choice of the curvature regularization, let us mention that, in view of the results
in [32] Theorem 2.1}, any choice of the form

Rk, / |A|?dH?
OENQ,

with ¢ > 2 would be possible, up to adjusting the condition for xj in (which will then depend
also on ¢). The choice ¢ > 2, however, is essential, see [32, Lemma 2.11 and Example 2.12]. For
simplicity, we have chosen the exponent ¢ = 2, which corresponds to a curvature regularization of
Willmore type.

(iii) Let us also remark that clamped boundary conditions and body forces can be included into
the I'-convergence statement. We refrain here from giving the details, but refer the interested reader
to [67, Corollaries 2.4, 2.5] for results in this direction.

Example 2.5 (L? vs L>=-bound on the curvature). Recall (2.3) and (2.8)). The following example
shows that we can exhibit configurations (vp, E},) € Aj, with

sup h=4F"(vy,, Ep,) < 400,

h>0
where E}, consists of balls which concentrate on arbitrarily small scales (independently of h), and
whose number is diverging (with h). As a preparation, let » > 0 and observe that for F := B, CC Qp,
where B, is a ball of radius r, the second fundamental form of JF satisfies |A| = V2r~!, and the
surface energy contribution is

= (7—[2(837,) . /

|A |2 dH2> =dr(h %% + 20 2ky,) . (2.23)
0B,

In the setting of [64] (cf. Remark 3.1 therein) and for void sets consisting of a disjoint union of balls
compactly contained in Qj, an L®-bound of the form |A| < Ch~! implies a lower bound of order
h for the radius of each of those balls. The energy bound h=2H2(0E), N Q) < C on the perimeter
energy implies now that such voids can only consist of finitely many disjoint balls whose cardinality
depends only on the a priori L°°-bound and the energy bound.

Instead, in our setting we can construct an example of a sequence of voids with the aforementioned
requirements. We perform this construction for

kn — 0 such that h ™%k, — 0. (2.24)

This rate of convergence is possible as k5, only needs to satisfy (2.5)), take e.g. k, = h5Y/25 Let
N € N, let (x50)N € R3, (rin)Yt € (0,400), be such that B,,, (z:5) CC Q for all i, with

i=1
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rin < hN, Y2 for all 4, By, (zip) N By, (2j5) = 0 for i # j. Set By := UM, By, (zi4) and
vp, = id (for definiteness only as this is not the point of this example). Then, by (2.23)), we have

Np
W= F" (o, Ey) = 47y h™212), + 8aNph ™25y,

=1

By (2.24) and r; 5 < hN}:U2 for all 4, we can suitably choose Nj, — 400 to obtain a sequence of
void sets (Ep)n>o with equi-bounded surface energy, that has a diverging number of components
with no (not even diverging with h) L*-control on the curvature.

3. PIECEWISE SOBOLEV MODIFICATION OF DEFORMATIONS

This section is devoted to two preliminary propositions which are vital in the proofs of the
compactness Theorem [2.1]in Section [ and the T-liminf inequality of Theorem [2.3]in Section[5} Our
reasoning relies on the approximation of a sequence of deformations with equibounded energy by
mappings which are piecewise Sobolev. This will allow us to use the results of [57, Theorems 2.1
and 3.1] in subsets of the domain where the modified functions are weakly differentiable. In order
to control the surface contributions due to voids correctly, our arguments will also include estimates
on the jump set of the piecewise Sobolev approximations.

In this and in the following sections, we will use the continuum subscript & > 0 instead of the
sequential subscript notation (h;);jen for notational convenience. Before we can state the main
results of this section, we need to collect some more notation. Recalling the definition of € in
([2.1), for p € (0,1) we define the slightly smaller reference domain

Q= (ph, L — ph) x (=5 + $ph, & — Jph)*. (3.1)
For T € N, T > 1, we cover the domain {2, with T-cuboids, namely
Qn(i) == [(i = 1)Th,iTh) x (=% 2)*,
fori=1,...,N:= 2] +1, and let
QhZ:{Qh(i):izl,...,N}. (32)

While we will eventually send p — 0 in Section [d T is fixed throughout the paper. Therefore, we
refrain from including T in the notation of Qy,. For € R3, [ > 0 we introduce the stripes

Sh(x) = (z—lLz+1)x (-2 84)2. (3.3)
Similarly to (3.1)), for p € (0,1) we also introduce the smaller stripes
S;L!p(x) = (z—l+pl,x+1—pl) x (=% + 1ph, b — L1ph)*. (3.4)
For every measurable set K C R? and v > 0 we introduce the localized surface energy
Gl (B K) :=H*(OENK) +7/ |A|2dH?, (3.5)
OENK

where for later purposes we use a general parameter v in place of k;. Then, given an infinitesimal
sequence (€;,)n>0 C (0,400), we define the total rescaled energy by

1 1
h K

E):=— W(Vv)d — G (B Q 3.6

g (rU’ ) h26h Qh\E ( U) T+ h2 surf( ) h) ( )

for (v, E) € Aj. Note that for ¢, = h? we have G"(v, E) = h™*F"(v, E) with F" as defined in

(2.3). In this section, we treat a more general scaling ¢, of the elastic energy in order to distinguish

more clearly the scalings related to the volume of €2;, and that of the average elastic energy per unit
volume.
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Proposition 3.1 (Piecewise Sobolev approximation of deformations). Let (e€x)n>0 C (0,+00) be
a sequence satisfying limsup;,_,oenh™2 < +oo, and let 0 < p < po for some universal py > 0.
Then, there exists a constant C := C(T,M) > 0 such that for every sequence (v, Ep)p>o with
(vn, Ep) € Ap and
sup G" (vn, Ep) < +00, (3.7)
h>0
there exist sequences (wp)p>0 and (Rp)n>o0 with wy, € SBV?(Qy, ,;R3) and R, € SBV?(Qy,,; R3*3)
satisfying the following properties:

() Nwnllzoen,) <O NBallL=q,,) <O,

(i) Ju, UJr, Cpon | J 0Qn for some Q,, C Qp with #Q,, < C,
Qr€EQu,

3.8
(iii) h_2£3({$ S Q}hpt wh(a:) #* ’Uh(l‘)}) — 0, h=2c3 (Qh,p n {|Vvh — Rh| > Oh}) — 0, ( )

(iv) / dist?(Vawp, SO(3)) dz < ChZey,, / |VRy,|>dx < Cey,,
Qh,p Qh,p

/

where (On)n>0 C (0,400) is a sequence with 0, — 0 and 9he;1 > 5 0.

The result allows us to approximate v, by a piecewise Sobolev function wy by changing the
mapping on an asymptotically vanishing portion of the volume, see (3.8)(iii). The important point
is that the elastic energy of wy, is still of the same order, see (iv). In the next sections we
will also need some control on the second gradient of vy, which a priori might not exist. This is
achieved by a second sequence of functions (Rj,),~o which has bounded derivative in L? and suitably
approximates Vuy,, see again (iii),(iv).

The approximation also delivers a control on the jump set, see (ii), which corresponds to the
fact that in the limit we expect functions which jump at most a finite number of times, see ,
2.13)). The most delicate part in the derivation of the I'-liminf inequality for the surface energy in
2.16) is the correct factor 2 in front of H%((.J,UJg)\9*I). This will be achieved by a contradiction
based fundamentally on the following lemma: suppose that along a sequence the surface energy in
a set S2(x) (see (3.3))) was less than ~ 2h2, i.e., so small such that the void cannot cut through the
thin rod Qj, see Figure 3] Then, the jump height of the sequences (wp)r>0, (Rr)n>o is small, see
below. Later in Section |5| this will allow us to exclude that the limiting functions y and R
jump in the set Sé7p(x) C S ().

Figure 3. The void set is depicted in gray. In the situation of (3.10]) or Remark i), only case
(a) can occur, whereas (b),(c) are impossible.

Proposition 3.2 (Jumps of piecewise Sobolev modifications). Let (v, Ep) € Aj be a sequence
from Proposition and let wy, € SBV?(Qp, ,;R3), Ry € SBV?(Qy, ,; R3%3) be the corresponding
functions satisfying (3.8)). Then, there exist open sets E} with B, C Ef C Qp, OE; N, is a union
of finitely many reqular submanifolds, that satisfy

h=3L3(E}\ Ey) — 0, liminf h?*H2(OE; N Q) < liminf h™2G"" . (En; Qn) , (3.9)
h—0 h—0

surf
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such that the following holds for any 1 > 6Th, x € (2, L — 2l): For any set S (x) with

. 1 2 * 2

(1) WH (8Eh N Shl(l’)) < 2,

LBy, N Si (7))
L3S} (@)

(3.10)

. 1
(11) § ’

<

it holds that

1 1
ﬁ/ \/I[wh]ldHHﬁ/ VI[Rr]|dH* = 0. (3.11)
S;hp(:v)ﬂlwh

S;L,p(m)m‘]Rh

Remark 3.3. (i) One can also prove a variant of Proposition if 2 in the right hand side of
(3-10)(i) is replaced by 1, then assumption (3.10)(ii) is not needed, cf. Figure (i) In (3:11),
VI[wn]| and /|[R4]] can be replaced by |[wy]|'=? and |[Ry]|*~# for any 8 € (0,1), up to adjusting
the condition for xp, in (which will then depend also on 3). We omit details as the choice
8= % is enough for our purposes.

We refer to Remark below for a short comment how to prove (i) and (ii).

The rest of this section is entirely devoted to the proofs of Propositions (3.1 The proofs of
our main compactness and I'-convergence results then start in Section 4} In the proofs, we will send
the parameters h, p to zero (in this order). In order to avoid overburdening of notation, generic
constants which are independent of h, p but may depend on the fixed parameters T, L are denoted
by C. We will use a subscript notation whenever we want to highlight the dependence of a particular
constant on a specific parameter.

3.1. Rigidity results. This subsection is devoted to recalling some rigidity results which are the
basis for our proofs.

Geometric rigidity in variable domains: We first recall the result from [32]. For convenience,
we will directly formulate it on the set € and its subset Qy, ,, see and . The behavior
of deformations v on (connected components of) €, \ E might not be rigid. We refer to [32
Example 2.6] for an explanation in that direction. A key observation in [32] is that rigidity estimates
can be obtained outside of a thickened version of the voids. We start by formulating this result on
the modification of the void sets.

Proposition 3.4 (Thickening of sets). Let h,p > 0, let v € (0,1). Then, there exist a universal
constant Cy > 0, 1o = no(p) € (0,1), and for each n € (0,10] there exists c;, = cy(n) € (0,1), with
¢y — 0 asn — 0, such that the following holds:
Given E € Aveg(Q), we can find an open set Ej, , 4 such that E C Ep, o C Qp, OER 54 NQ, is a
union of finitely many reqular submanifolds, and

() L3(Enny \ E) < by G0 (B; ), disty (B, Epy,y) < '/,

surf

(i) H2OEn N ) < (1+ Co) Gl ().

surf

(3.12)

On the complement Q4 , \ E} , , quantitative piecewise rigidity estimates hold, as the following
result shows. Recall the notation S} () in (3.3).

Theorem 3.5 (Geometric rigidity in variable domains). Let h,p > 0, let v € (0,1) and | > 0.
Then, there exist a universal constant Co > 0, ng = no(p) > 0, and for each n € (0,1n0] there exists
Cy = Cy(n, %) >0 with Cy = 00 asn — 0, % — 0, or % — 00 such that the following holds:

For every E € Ayeg(21,), denoting by Ej, ,, ~ the set of Proposition for every U = S! () C Q,
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and U = S} p(®) C Qu,, for the connected components (U;); of U\ Eny~ and for every y €
HY(Qp, \ E;R3) there exist corresponding rotations (R;); C SO(3) and vectors (bj); C R3 such that

(i) Z,/~ |sym((Rj)TVy—1d)dexgco(1+cn~f15/2h*3s)/ dist?*(Vy, SO(3)) dz,
JJU; U\E

i) > [ |(R)TVy—1d] dz < Cpy dist?(Vy, SO(3)) da,
7 JU; ! ! U\E

1
(iif) Z/ =y~ (Rjz + b)) dz < 0777*5/ dist?(Vy, SO(3)) dz (3.13)
iJg, h U\E
where for brevity e := fU\E dist*(Vy, SO(3)) d.

Proof of Proposition and Theorem[3.5, The result is essentially given in [32] Theorem 2.1]. We
explain here the adaptations necessary to the present version of the result, in particular the scaling
in terms of the small parameter A > 0.

We apply [32, Theorem 2.1] for d = 3, ¢ =2, v € (0,1) and ¢ = || - ||2 on the sets h~1€), C R3,
Q= h='Qy, , and h='E. The constant 7y therein depends only on dist(h~'0Q, h~'€), ,) and can
thus be chosen depending only on p, see (2.1)) and . Then, the result first provides a set E,, .
with h™1E C E, ., C h™'Qy, such that by [32, (2.2)] and a scaling argument the set Ej, ,, , :== hE, ,
satisfies (3.12)). Here, we particularly note that a change of variables implies
Y (LB RTIQ) = RGN (B Q)

surf surf
Then, follows from a localized version of [32] (2.3)], see [32, Remark 2.10], first applied on the
sets h~1U, h~'U and the function wp(z) = +y(hz) for x € h=1(, \ E), and then again rescaled.
The factors h~2 and A2 in (i), (iii), respectively, ensure that all inequalities in are
scaling invariant in the sense that the constants are independent of h. The factors y~15/2, 4=3 and
v~ follow from the choice of d = 3 and ¢ = 2. We further observe that the constant C, depends
on 7 and L3(h~1U), see [32, Remark 2.10]. As £3(h~'U) = 2!, we indeed get that C, depends on
1 and the ratio of [ and h. O

In the proofs below, we will apply this rigidity result on the T-cuboids @, introduced in or
in finite unions of such cuboids. For these sets, we observe that the constant C,, depends only on n
and T (as the corresponding [ is approximately Th). Moreover, we will choose 1 and v depending
on the regime of the elastic energy ¢ such that Cn'y_15/2h_35 <land C,y° < e=% for some 0 > 0
small. Thus, we obtain a sharp control on symmetrized gradients in terms of € (see (3.13))(i)), while
the rigidity estimate in (3.13)(ii) and the Poincaré-type estimate (3.13))(iii) yield control of order
€79 hence being suboptimal in the exponent.

Korn and Poincaré inequalities: The issue of the suboptimal exponent can be remedied provided
that the surface measure of the void set is small. This relies on delicate Korn and Poincaré inequal-
ities in the space GSBD?, see [23] for the definition of this space. We formulate the result of [19]
Theorem 1.1, Theorem 1.2] in a simplified setting which does not involve functions in GSBD? but
only SBV?2-functions. In the following, we say that a: R — R? is an infinitesimal rigid motion if
a is affine with sym(Va) = 0.

Theorem 3.6 (Korn inequality for functions with small jump set). Let U C R3 be a bounded
Lipschitz domain. Then, there exists a constant ¢ = c¢(U) > 0 such that for all u € SBV?(U;R?)
there exists a set of finite perimeter w C U with

H2(0*w) < H2(JW),  L3(w) < e(H2(J,))?, (3.14)
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and an infinitesimal Tigid motion a such that
(diam(U)) ™ lu = al| 2 \w) + [Vu = Val|z2@\w) < ellsym(Va)| 2 w).- (3.15)
Moreover, there exists v € WH2(U;R3) such that v =u on U \ w and
[sym(Vo)l[L2y < ellsym(Vu)|| 2.
Furthermore, if u € L= (U;R?) one has ||v|| o) < [Jull Lo @)-

This follows from [19] (for d = 3 and p = 2) by the fact that SBV? C GSBD?. Note that in
[19, Theorem 1.1] £3(w) < ¢(H?(J,))>/? has not been stated explicitly, but it readily follows from
H2(0*w) < ¢H?(J,) and the isoperimetric inequality. The result is indeed only relevant if H?(.J,)
is small since otherwise w = U is possible and the statement is empty. In a similar fashion to
the reasoning in Theorem it is a standard matter to see that the constant in 7 is
invariant under translation and rescaling of the domain.

Difference of affine maps: To estimate the difference of rigid motions, we make use of the following
elementary lemma. By B, (x) C R? we denote the open ball centered at € R? with radius r > 0.

Lemma 3.7 (Estimate on affine maps). Let 6 > 0. Then there exists a constant C > 0 only
depending on § such for every G € R3*3, b € R®, x € R, and E C B,(x) for some r > 0 with
L3(E) > dr3 we have

IG - 4Dl L (B, () < Cr P LXE) G - +bll 2y, |G < Crm*LE)2|G - 40| () -

Proof. For r = 1 and z = 0, the result is a special case of [38, Lemma 3.4], applied (for d = 3) to
Y(t) := t2. In particular, in [38, (3.4)] we also use Holder’s inequality to get the control in terms
of the quantity £3(E)'2||G - +b||12(g). For general r > 0 and x € R3, the estimates follow from a
standard scaling and translation argument. O

3.2. Isoperimetric inequalities on cuboids. In this subsection, we present a special case of a
relative isoperimetric inequality in cuboids that are long in one direction, where the isoperimetric
constant is independent of the length. Such an inequality is possible for sets that have small relative
perimeter as, in this case, isoperimetric sets will concentrate at one of the corners or at one of the
short edges of the long cuboid. Indeed, under the small perimeter constraint, the relative boundary
cannot span a cross section of the cuboid, see Figure |4l As the result may be interesting in its own
right, it is formulated in arbitrary space dimension on the cuboids S’ (zg) := zo+(—1,1)x (-9, %)d_l
consistent with the notation . Afterwards, we will present two consequences which will be used
in the sequel.

)

Proposition 3.8 (Relative isoperimetric inequality on cuboids). Let l,0 > 0 with [/o > 1, and
xo € R%. Then, there exists a dimensional constant Cis, > 1 independent of I and o such that for
every set of finite perimeter P C S! (xg) with

HH(0* PN SL(wg)) < 0?7, (3.16)

it holds that
min{L%(P), L4(S! (z¢) \ P)} < CisooHH(0* P N S, (0)). (3.17)

Proof. Without loss of generality, after translation and uniform rescaling, we can assume that x¢ =
0, 0 = 1, and can without restriction reduce to showing the following assertion on the cuboid
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Figure 4. Void set contained in a thin rod with (a) relative perimeter less than %1, (b) relative

perimeter bigger than o9~ 1.

Qi == 54(0) = (—1,1) x (=%, 3)%"'. There exists a dimensional constant ¢4 > 0 such that for each

[ > 1 and for every set of finite perimeter P C @; with
LYP) <1 and HITNO*PNQ) <1
there holds that
LYP) < cgHTH O PN Q). (3.18)
Note that we can assume that [ > 1 as, given [y > 1, we have that for all 1 <[ <[, the statement
follows directly from the classical relative isoperimetric inequality
min{LY(P),L4Q; \ P)} < Ciso VH " (0" PN Q) ,

and the fact that that Cis, (1) < Colp, where Cy > 0 is a dimensional constant.

We prove the assertion by induction on the dimension d, the case d = 1 being a trivial statement.
Assume now that (3.18)) is true for some d > 1, and for the inductive step let us prove it in dimension
d + 1. For this purpose let P C Qd+1 (=1,1) x (=2, %)% be a set of finite perimeter, with

272
L7YP) <1 and Hd(a*Pde“) <1. (3.19)
For every t € (— 2, 2) let us set for notational simplicity = fH'l N {z441 = t} and also

P, =Pn Qf{t. By general slicing properties of sets of ﬁmte perimeter7 P, is a subset of finite
perimeter in Qf, for L'-a.e. t € (—=1/2,1/2). Let now to € (—1/2,1/2) be such that Py, is of finite
perimeter and also, as a consequence of the coarea formula (cf. [55] (18.25)]) and (| -7
1/2
HTH 0 P, N Q) < / HEH O PN Q) dt < HU O PNQITY) < 1. (3.20)

—1/2
By (3.19), we also find that for Ll-a.e. t € (—1/2,1/2),
1£4(P,) - £4(P,,)] < H (6*P O ((=1,1) x (=1/2,1/2)L x [to At to V t]))
< Hd(c')*P N Qd—‘rl)

Note that the first inequality in is immediate for smooth sets via a projection argument. In
the general case, it can be derived by the density of smooth sets and Fubini’s theorem. Therefore,
we get

(3.21)

LYP,) — 1< LYP) < LYPy,) + 1 for L1ae. t € (—1/2,1/2). (3.22)
We now claim that
LYP,) < LYQL, \ Pro) - (3.23)
Indeed, if (3.23) was not true, then by (3.20) and the inductive hypothesis we would have
LYQL \ Pry) < gt 0" Py NQY,,) < ca (3.24)

Then, by choosing I > 1, (3.22)) together with (3.24) would imply that
LYP) > LUPy) —1>21—cyg—1>1 for Ll-ae. t € (—1/2,1/2). (3.25)
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Thus, by (3.25) and Fubini’s theorem, we would get

1/2
LH(P) = / APyt > 1,

—1/2
contradicting the first assumption in . Therefore, indeed holds true. By our inductive
hypothesis and this yields
LYPy,) < cgHT 0Py N Q) < caHY (0" PN QY.
The last inequality together with implies that
LYP) < (ca+DHUO*PNQIY) for Ll-ae. t € (—1/2,1/2).

Therefore, using Fubini’s theorem again, we get

1/2
£4(p) :/ LYP)dt < (ca+DHUO* PN,
-1/2

finishing the induction and hence the proof. O

We proceed with two corollaries: Corollary and Corollary describe how a long cuboid
can be partitioned by a void set. If the void set has relative perimeter less than the area of the
cross section o? 1, then there is a very large dominant component and some small components
whose volume can be controlled by the relative perimeter of the void set. The same is true if the
void set has relative perimeter between g% ! and 209! but small volume. If we drop the volume
assumption, there may be two different large components - one consisting of the void set and a
large complementary component. If the void set has relative perimeter bigger than 20!, then,
even if the void set has small volume, it may separate the cuboid into two large complementary
components. Some indicative cases are illustrated in Figure[3} (a) Void set with perimeter less than
o971 or small volume and perimeter less than 209~1. (b) Void set with perimeter less than 209!
with large volume. (c) Void set with perimeter bigger than 20¢~! with small volume.

Corollary 3.9 (Dominant component 1). There exists Ty € N with the following property. Let
l,o0 >0 with l/o > Tpy. Let (P;);>1 be a Caccioppoli partition of S.(zo) with

Hd‘1< UJopn s(,(xo)) < od-1 (3.26)
i>1
and LE(Py) > LY(P;) for all j > 2. Then,
LYSL(z0) \ P1) < CisooHH (0" Pr N Sh(z0))  and  LUP) > Ld(sl (z0)), (3.27)

where Cigo is the constant in (3.17)).
Proof. In view of (3.26)), (3.16) holds for each P; and Proposition is applicable for each P;. To

prove the statement, it suffices to show that
L£YP) > LYS (z0) \ P1) .

Assume by contradiction that this was false. By £4(Py) > L£L4(P)) for all j > 2, this would imply
LUP;) < Ed(Sl (x0) \ P;) for all j > 1. But then we calculate using and -,

2041 = £4(S! (x0)) Zﬁd Zmln{ﬁd ), L4(S (o) \P)}
ji>1 7j>1

<Y CiaooH (07 Py N 8L (20)) = 2Cioo M (| 0P N 8L (20)) < 2Cis00?,
jz1 i>1
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where we also used the local structure of Caccioppoli partitions, see [6, Theorem 4.17]. By choosing
To € N large enough depending only on Cis, such that /o > Ty > Ciso, this yields a contradiction.
O

Corollary 3.10 (Dominant component 2). There exists Ty € N with the following property. Let
l,o >0 withl/o > Ty. Let E € P(S!(x0)) and let (P;);>1 be the connected components of SL(xo)\ E
in the sense that (P;);>1 U{E} forms a Caccioppoli partition of S (xo) with

HIH (0" P\ 0" E) N 8L (w)) =0 for all j > 1. (3.28)
Suppose that
Hf“( Jopin Sf,(xo)) <20%7t, LUE) < iﬁd(Sf,(xo)) (3.29)
j=>1

and L4(Py) > LY(P;) for all j > 2. Then,
1
LS (20) \ P) < Cisorﬂ-ld_l( Jopn Sf,(xo)) + LYE) and £1(Py) > S LU(Sk(x0)), (3.30)
Jj=1
where Ciso s the constant in (3.17)).
Proof. As L4(P;) < L4(Py), we first observe that

1
L£4P;) < §£d(Sf,(ac0)) for all j > 2. (3.31)

The sets (9*P; N SL (z0));>1 are pairwise disjoint up to H?~L-negligible sets by (3.28) and the local
structure of Caccioppoli partitions, see [6, Theorem 4.17]. Therefore, by (3.29)) we get

3w (a*Pj N S},(xo)) - ’Hd_l( Jopn Sf,(xo)) < 2091, (3.32)
Jj=1 Jj=1
This implies that at least one of the following two cases holds:
(a) AL (a*P1 N sf,(:co)) <ol (b)) Yow! (a*Pj N Sf,(xo)) <ol t,
j>2
We first assume that (a) holds. An application of Proposition yields
min{ﬁd(Pl), ,Cd(S(lT((I}(J) \ P1>} S CisoaHd_l(E)*Pl n Sf,(.’l?o)) S CiSOO'd . (333)
Then, in the case £4(P) > L4(S! (z) \ Py1), we find
LS (20) \ P1) < CigooHH0* PL N SL (20)) < Ciso0?.
This shows the first part of (3.30)). The second part follows by choosing Ty € N large enough
depending on Ciy, noting that L4(S! (zg)) = 20?1 > 2Tyo.
We show that the case LI(Py) < LS. (z0) \ P1) leads to a contradiction. Indeed, if that was
the case, by (3.33]) we would have
LYP;) < LYPy) < Cigoo? for all j > 2. (3.34)
From this we derive that
LYP;) < CiooHH(0*Pj N SE (20)) forall j > 1. (3.35)
Indeed, for j = 1 this is a consequence of (3-33). For j > 2 instead, if H4~ (0" P; N S (z0)) > 0?71,
this follows from ([3.34)). If He~1(0*P;N S (x0)) < 0?71, (8.16) holds and the estimate follows from
an application of Proposition and (3.31)).



18 MANUEL FRIEDRICH, LEONARD KREUTZ, AND KONSTANTINOS ZEMAS

Now, by (3.32)) and we obtain

ﬁd(Sl (20) \E > L4P;) < Ciooo Y HTH 0" Py 0 S (20)) < 2Cq0.

j>1 j>1
Using that £4(S! (x0)) > 2Tp0?, by choosing Ty € N large enough, this would imply
— 3
LS, (w0) \ E) < iﬁd(sfy(%))-

This however contradicts the fact that £4(E) < X£4(S (z)), see (3. 29.
We are left with case (b). Here, we can again apply Proposition on each P;, j > 2, to find

L4P;) = min{LY(P}), L(S! (x0) \ Pj)} < CisooH™ 1(3*13 NS (x0)),
where the first identity follows from (3.31). Now, by using (3.32)) we estimate
LS (20) \ P1) < LUE) + 3 LU(P) < LYE) + Y CroooH?™ 1(6*13 ns. (sco))

j>2 j>2
S CisoUHd_l( U 6*Pj N Sé(l‘o)) + ,Cd(E) .
j>1
This shows the first part of (3.30)). The second part again follows for some Ty € N large enough,
using that £L4(E) < 1 £%(SL(x0)). O

3.3. Local estimates and Sobolev extension on cuboids. In the following, we set up the
necessary notation and definitions for the remainder of Section [3] We introduce the thickened void
set and partition our reference domain €, , into cuboids, where we partition with respect to the
surface area of the boundary of the thickened void. We let (v, Er)p>o be a sequence of admissible
deformations and void sets in the thin rod €2, where for convenience we use a continuum index A
in the notation for the sequences. Recalling , we suppose that

sup G" (vn, Ep) < +00. (3.36)
h>0

We fix 0 < p < po:=1—(19/20)'/3 as in Proposition Recall the sequence (kp)p>o as in (2.5)).
For technical reasons, we need to assume that (kp,)p>0 converges to zero sufficiently fast. Therefore,
we introduce

Rp := min{xn, h?}, (3.37)
and observe that

surf(Eh?Qh) surf(Ethh) (338)

Recall T as introduced before (3.2)). From now on, we will tacitly assume that 7" is chosen sufficiently
large such that Corollaries [3:9H3.10] are applicable. After possibly increasing T, we can assume that

T > 80Cis, , (3.39)

where Ciso > 1 is the constant in Proposition Let no = no(p) € (0,1) be the constant in

Proposition In view of (2.5) and (3.37)), we can choose a sequence (1p)n>0 C (O No) converging
to zero sufficiently slow such that the constant C,, in , applying Theorem |3.5| for p, [ = 3Th,

n = nn, and v = K /h?, satisfies

h2
lim sup Cnh( ) h25 < 400, (3.40)
h—0 Kh
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Then, by Proposition applied for p, n = n,, and v = &y, /h?, for all h > 0 we can find open sets
E} with E), C E} C Qp, such that 0E; N Qy, is a union of finitely many regular submanifolds and

(i) h3L3(E; \ E) — 0, h~'disty (Ef, Ey) =0 ash—0,

3.41
(ii) hmlnfh 2H2(OF; NQy) < hmlnf h™2GEm (Ep; Q) < hmlnf h=2G5m (En; Q) - (3.41)
Here, we used - ; Mh_ = 0, .37, and that A~ 2gsurf(Eh; Qn) = qurf(Eh; Qp) is
unlformly bounded by (3.6] .7 3 36)), and (| . This is the sequence of sets in Prop051tlon E and
we note that (3.41) implies ({3 In the rlgldlty estimate (3.13]), the behavior of the deformation
inside Ej} cannot be controlled Thus in a similar fashion to (2.2)), for definiteness we can assume
that the doformation is the identity inside Ej, i.e., we introduce the modification v} : Q;, — R3 by
if Qn\ B
vi(a) o= @) Tw € DA B (3.42)
id ifxe k.

Note that by (3.41) we get

R3L3({op #0f}) <A 3LY(EF\EL) -0 ash—0. (3.43)

Recall the definition of the T-cuboids in the family 9 in (3.2). For i = 2,..., N — 1, we also
introduce the 37-cuboids by

Qn(1) == Qu(i = 1) UQn(1) UQn(i +1).
Our idea is to apply Theorem for U := Q3 (i). To this end, we also need the slightly smaller
cuboids, defined by
Qh (1) =i+ (1= p) (@1 (1) — 2:) C Qnp, (3.44)
where x; = ((¢ — 1/2)Th,0,0) denotes the center of the cuboid Q, (7). As we suppose that 0 < p <
1— (19/20)/3, implies that

L3(Qj (1) = 2053(Qh( i) (3.45)
We also introduce the (small) parameter
T \2/3
= .4
“ (10cT) ’ (3.46)
where cp := ¢(T') > 0 denotes the constant of Theorem applied on the cuboid (0,37) x (—3, )%

We will distinguish three classes of cuboids: first, we consider the family of indices associated to
good cuboids, defined by

= {z =2, N—1: HOE;NQ (i) < ahZ} . (3.47)

This will be the family of cuboids for which Theorem [3.6] can be applied without introducing a too
large exceptional set, cf. (3.14)). Next, we collect the family of bad cuboids in the index set

= {z €{2,...,N—1}\I": H2(OE; N Q) (i) < (1— p)2h2}
u {z €42, N =13\ I": H2(DE; N Q3 (1) < 201 — p)°h?, LY(E; N QY (i) < gcth}
(3.48)

For the cuboids in I{)‘, it might not be possible to apply Theorem but due to the relative
isoperimetric inequality, see Corollaries [3:9H3.10] we can still find a dominant component which will
allow us to compare rigid motions on adjacent cuboids via Lemma
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On the remaining set of indices
I={i=1,...,N:i¢ I;] UL}, (3.49)

corresponding to the so called ugly cuboids, where the thickened void may cut through the rod and
thus the behavior of v}, cannot be controlled.
By (3.36)), (3.41)), (3.47), and the fact that for each i =2,..., N — 1, we have

#{jef{2... . N-1}:Q} ,())NnQ} () #0} <5, (3.50)

we deduce that
#IpuIl) =#({1,....N}\I})<C (3.51)
for C = C(a) > 0, i.e., there are only a bounded number of indices in I}' U I"" independently of h.

We now formulate a local rigidity estimate on cuboids. As a final preparation, we introduce the
localized elastic energy by

- / dist?(Von, SO(3)) dz, (3.52)
Q5 (O\En
and use (iv) ., -, and ( - to find
Z ein < C / dist?(Vop, SO(3)) dz < Ch2e, . (3.53)
Q\En

Proposition 3.11 (Local rigidity estimate and Sobolev approximation). Let 0 < p < po. There
exists a constant C'= C(T) > 0 independent of h such that for all h > 0 and for every i € Ig U I
there exists a set of finite perimeter D?,h - wa(i) satisfying

£3(@1,()\ D) < O (05 N QL) £3@L0)\ DY) < s £4@40),  (354)

and a corresponding rigid motion r; p(x) := R; px + by, where R;p € SO(3) and b; ), € R?® with
|bin| < CM (see (2.2) for the definition of M) such that

h~2 - |v,*l(a:)—7“1-7h(at‘)|2daz:—|—/D3 |Voji (z) — lh} dz < Ce 9/10 (3.55)

where v}, is defined in (3.42).

Moreover, for i € I}' there exists a Sobolev map z;, € Wh3( %W(i);R?’) such that

(i) zip=v; on D?Jw

(ii) h72/3 “ |z”,(x) — ri7h(x)|2dx + /3 o |Vz”,(x) - R,;7h|2d:c < Céeip, (3.56)

h,p

In the followmg, we refer to D3h as the dominant component since £3(Q3 (i) \D?,h) is small, see
. ). Accordingly, r; j, denotes the dominant rigid motion which approximates v;; in Q?L’ p(i). Note
that Di n C By is also possible which means that the void has a large volume inside Q;O’h (7).

Observe that the estimate is actually better for i € Ih as 69/ can be replaced by €; ;. This
follows directly from ThlS improvement is possible due to the application of a Korn-Poincaré
inequality in case of V01d sets with small surface measure, see Theorem [3.6, We also note that the
choice of the exponent 9/10 is for definiteness only and can be enhanced to any exponent smaller
than 1, provided the sequence (kp)p>o in is chosen appropriately. Before starting with the
proof, let us recall that we use the notation C' > 0 for generic constants which are independent of
h, p but may depend on the fixed parameters T', L.
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Proof of Proposition[3.11 We use Theoremfor p>0,1=3Th,~ := kj/h? with &, from (3.37),
and the sequence 7, — 0 such that - holds. We apply the rigidity result to v} in the cuboid

U := Qj (i) for i € I} U I} and the compactly contained cuboid U:= Q3 ,(i). We denote by
Pin = {(Pi];h)j the connected components of Q27p(i) \FZ} U{E;},

where the enumeration is such that £3(P};,) is always maximal.

Recall the definitions in (3.47)—(3.48). In the case i € I} or in the case that i € I}! with
H2(OE; N Q%yp(i)) < (1 — p)®h? we can apply Corollary on @ (i) to obtain a dominant
component. If ¢ € I} with H?>(9E; N Q3 ,(i)) > (1 — p)>h? instead, we can apply Corollary on
Qi p(i), where we note that the volume condition in (3.29) is indeed satisfied by the definition of
I}, (3:45), and the fact that T > 80Cis,, see (3.39).

In both cases, using that (J;-, 0P/;, N Q3 (i) = 9E; N Q} (i), we get a dominant component

P&h C Q%,p(i) which by ([3.27) or (3.30), respectively, and (3.48) satisfy
L@ () \ Pip) < CisohH?* (OB, N Q5(1)) < Cisoh® (3.57)

or

53(Q2,p( ) \ h) < ClsohHg(aEh N Qh( )) + ‘CS(Eh N Qh p( )) < 2Cisoh3 + 2Cisohs = 4Oisoh3 :
(3.58)

Therefore, in both cases, we get by (3.39) and (3.45)) that

L 3@y, 359)

L@ () \ Piy) < 4Cisoh® + LY@ (1) \ @3 (1) < 1 +3 EB(Q?L(Z')) <10

— 20

and moreover

£2(Q3 (i) \ P},) < ChH?*(OE; N Q3 (3)) . (3.60)

Indeed, in the first case this directly follows from (3.57). In the second case, it follows from ([3.58)
and the fact #*(9E; N Q;?’L’p(i)) > (1—p)2h? > 1h* (as 0 < p < ), where the absolute constant
C > 0 needs to be chosen sufficiently large.

We now distinguish the cases

(a) P;

1/7

n=E;, (b) PLanE;=0,i€ll, (c) PYnE;=0,icll.

Case (a) : If P}, = Ej;, we define D}, := P!}, R; , :=1d, b; , :== 0, and z;, € W"(Q} ,(i); R?)
by z;p := id. Then, - ) holds by (3. 59) (3.60) and (3.55)—(3.56]) are trivially satisfied (recall
(3.42)). Note that in this case we can define a Sobolev modification z; , also if i € I}".

Preparations for (b ) and (c) : We proceed with preparations for (b) and (c). Suppose that
P!, N Ej; = 0. Then, in Theorem provides a rotation R}, € SO(3) and b}, € R? such
that

(i) / |sym((R; ;)" Voj; —1d) |2 do < C(1+ Cy, (h2Rn) 20 e, 1)ein
Pl

ih

() 172 [ o= (Rl + b Pda+ [ (R0~ 0] de < G (7).

ish ish
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where we use the notation in (3.52) and recall that we set v = &;/h? € (0,1]. By the choice of
(n)n>0 before ([3.40), limsup,,_,,enh~2 < +o00, and (3.53)) we obtain
(i) / lsym((R;} )" Voj, — Id)fdx < Co&in,
Pl
(3.61)
(i) (h‘Q/ lvi — (RL,z + bgh)|2dx+/ |(RL,) Vo —1d|° dx) < Coh™%,
Pil,h, 7 ) P}

ih

for a universal constant Cy > 0. We now show that
bin| <CM, (3.62)
for a constant C' > 0 that depends on L,T" > 0, but is independent of h > 0. As ||va|[p~(0,) <M
for some M > 1, the triangle inequality implies
L (PLy,)Ibi |7 < C/ v (z R} pa +bjy)|* de + CLY(P h)(||UhHLoo(Qh) + (diam(95))?) .
(3.63)
Thus, by , , and (ii) we get
b} |2 < Ch™3h?h=%/%¢; ), + C(M? + C) < C(M* + C), (3.64)

and thus [bj ,| < CM. After these preparations, we continue with the cases (b) and (c).

Case (b) : We first suppose that i € I}. We set D}, := P},. Then, follows from (3.59)—
and follows from (ii) by setting R, = R%’h and b;p = b})h, where we use
5;/,110 < C(hH)Y10 by and limsupy,_,o €, ™% < +o0. Observe that |b; ;| < CM by (3.62).

Case (c) : Let us now assume that i € I g. We will use Theorem to obtain a Sobolev function
which satisfies (3.56). First, let us introduce the function u; j, € SBV?( f’w(z’);ﬂ@) by

u; p(2) 1= XPi{h(SC) [(Rz‘l,h)TU;:(fC) - T (Rz‘l,h)szl,h] ) (3.65)

and note that by its definition J,,, C OE}; N Qf’lp(z) Now, (3.53), (3.61)), (3.65), as well as
lim sup;,_,o €xh ™2 < 400 imply the bounds

(i) / jsym(Vuus )2 de < Cep
3 ()

(i) h~2 /Q

By the scaling invariance of Theorem [3.6] we note that the constant therein is given by cr appearing

in (3.46)). Theorem for the map u;;, and the definition of Ig in (3.47) provide a set of finite
perimeter w; , C Qi’p(i) satisfying

(3.66)
i n|? dx+/ ‘Vulh‘2d33<06 /10
3 K3

hoi Q7,0

L3 win) < er(H2(Tu,))™? < e (H2OE; N Q) (0))"? < cra' 2hH2(DE; N Q3 (i) < cTog/zﬁi;;’

and a Sobolev map ¢;,, € W'?(Q3 (i);R?) such that
(i) Gn=uin on Qf (i) \win,
(i) lsym(VGn)llrzz oy < erllsym(Vuin)lrzz ) (3.68)
(i) NGinlloo < lluinlloe < CM,
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where the last estimate in (iii) follows from ||v}||e < M, (3.62)), and the definition of w; ;, in (3.65).
In view of ([3.46) and (3.67)), we get
1 1
L3(win) < —Th? < —L£3(Q3(1)).
(i) < 5TH < 2 L5(QR0)
We define the dominant component

D?,h = Pil,h \ win (3.69)
and observe by (3.59)-(3.60) and (3.67)) that (3.54) holds.

By the classical Korn’s inequality in W12 we find A4, j, € R3X3 such that

skew

/ IVCin — Aip)?de < CT/ lsym(Vu; »)|? dz < CCreqp (3.70)
Q3,00 Q300
where we used ([3.68))(ii) and the last step follows from (3.66|)(i). Therefore, setting

zih o= Ry pCin + Ripid + by, € Wl’Q(Qi,p(i); R?)

we observe by (3.65), (3.68)(i), and (3.69) that z;, = v} on D},. This yields (3.56)(i). Moreover,
(3.56) (iii) follows from (3.68)(iii) and (3.62).

We proceed to show (3.56) (ii). We start with the observation that (3.70) implies

/3 |VZi7h — Rllvh(Id + Ai,h)|2 dx < C{‘:i,h . (371)
Qj )

Now, we need to replace Rl{h(Id + A, p) suitably by a rotation. We claim that there exists R, €
SO(3) such that

L3Q} )R}, (Id + A; ) — Rip|* < Ceip . (3.72)
In order to show (3.72), we argue as follows. By (3.54) together with (3.68])(i), (3.66))(ii), and (3.70])
we get
LE QU Al < LOMAE = [ Vs + i = Tl do
Di,h

S 2(/ |vui,h|2 d.r +/ |v<’£,h _ A’L,h|2 d.r) S C(Eiyh + 6?/}30) .
D}, D}, ,

By using the fact that €; , < Ch2e;, < Ch*, see (3.53)), and £3(Qn(i)) = Th?, we obtain an estimate
on A; p, namely

|A;p)? < Ch3eM10 < R T/5e12
Therefore, the Taylor expansion (see [40] Equati(;n (33))) |
dist(G, SO(3)) = |sym(G) — Id| + O(|G — Id|?)
allows us to estimate
dist? ((Id + 4;,1), SO(3)) < C|A; " < Ch™oe, 4,
i.e., there exists indeed R;j € SO(3) for which
IR}, (Id + Aj ) — Ripl* < ChYPh™3e; ) < Ch™3ei, < C(L3(Q) (1)) ein -
This proves . Hence, in view of and we get

/3 |Vzin — Rin>de < Ceyp,
Q3 ,30)
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which yields the second part of (3.56)(ii). Finally, the Poincaré inequality on W(Q} ,(i); R?) also
implies that there exists a vector b; j, € R3 such that the rigid motion rin(2) := R; px + by, satisfies

h_z/ |zin(2) —rin(2))*de < Ceyp,
Q3,0
This concludes the proof of ([3.56))(ii). Eventually, in the case i € I}, we note that estimate (3.55) is

an immediate consequence of (3.56). Therefore, by repeating exactly the argument in (3.63)—(3.64)
with b; 5 in place of b},h we also get that |b; 5| < CM. This concludes the proof. O

As a consequence, we can estimate the difference of two dominant rigid motions on adjacent
cuboids.

Corollary 3.12 (Difference of rigid motions). Suppose i,i+ 1 € Ig U Ig. The rigid motions r; p,
Tit1,h given in Proposition satisfy

_ 2 —3,.9/10 9/10
h 2||Ti,h - ’ri""lah||%°°(Q‘z(i)UQ‘Z(i+1)) + |Ri,h - Ri-‘rl,h’ < Ch 3(62‘7/}7( + giil,h) . (373)
Ifi,i+1¢€ Ig, the better estimate
_ 2 _
h=2|rin — ri"‘l’h||2L°°(Qi(i)uQ*Z(i+1)) + |Rin — Rizin| < Ch™3(ein + €iv1n) (3.74)

holds.
Proof. By (3.55) and the triangle inequality we have

/ |ri’h —ri+17h|2dx < 2/ |v;‘l(x) —ri’h(x)‘zdx—l—Q/ }v}i(m) —ri+1,h(x)|2dx
D% ND3 D

3 3
ih i+1,h ih D

i+1,h
9/10 9/10
<R (N + 0. (3.75)

Note that £3(Q} (i) N Q} (i + 1)) = 2Th* and L*(Q}(j) \ D3 ,) < 2Th? by (3.54) for j = i,i + 1.
This yields

L3(D}) N Dy p) 2 L2(QR) N Q5 (i +1)) — L(Qu(0) \ DY) — L2@Q5 (i + )\ Dy ) 2 %Th?’ :

Moreover, we observe that Q3 (i) UQ3 (i + 1) is contained in a ball of radius r = ¢T'h for a universal

constant ¢ > 0. This along with (3.75) and Lemma shows (3.73). Estimate (3.74) follows in
B56)

the same fashion noting that with (ii) in place of (3.55]) the exponents 9/10 in (3.75) can be
replaced by 1. O

3.4. Construction of piecewise Sobolev modifications and proofs of the propositions.
This subsection is devoted to the construction of wy, and Ry, as well as to the proofs of Proposition|(3.1
and Proposition [3.2]

We start with the construction of (wp)nso and (Rp)pso. To this end, let " € C°°(R?) be a
cut-off function satisfying " (z) = " (21,0,0) for x € R3, 0 < 9" < 1, 9" =1 on {z; < —h}, and
" =0 on {z; > h} such that

IV [l < Ch™T. (3.76)
Recalling (3.2)), for each i = 1,..., N — 1, we set quHl(x) = ¢"(x —iThe;). Fori=1,...,N —1,

we also define the sets
ol . ((iTh—h,iTh—i—h) XRQ) Ny, ifii+1 EIQ,
bt 1] else,
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Le, {1 €(0,1)}NQy, C W, provided that 4,i + 1 € I!'. Note that the sets (¥]';,,); are
pairwise disjoint by 1l Moreover, since 0 < p < 1 — (19/20)/3 < 0.017, we get that

(QrH U}, , U ) NQh, CQF (1) foralli=2,... N —1, (3.77)
cf. (3.44). To see this, by (3-39), it suffices to note that (I'— 2Tp — 1)h > Cis0(79 — 120p)h > 0.

We now define the sequences (wp)p>0 and (Rp)p>o. First, we construct wy, € SBV?(Qy, ,; R?) as

follows. We set

wy :=1id  on Qn(i)NQy, foralliec I, (3.78)
and

wp =7yn on Qi ) NQy,, forallie I, (3.79)
where 7; 5 denotes the rigid motion given in . Eventually, recalling the definition of the
Sobolev maps z;;, € WH2( ,317/)(1');1&3) in Proposition given i € Ig c {2,...,N — 1}, and
x € Qu(1) N Qpp, we define

zin() if € Qn(i)\ (‘1’? L UPEi),
wp (@) = { Ul i (@)zimin(@) + (1= ¥y (@)zin(z) iz € Qu(i)NTl, (3.80)
Ui (@)zin(@) + (L= 90 (@)zipan(@) iz eQu@) Ny,

where the second and third part of the definition might be empty if ¥}, ; = @ or !, ., =0,
respectively Note that this is well defined by , and the fact that z;_1 ) or z;yi, exist if
Uh  #Dor WP # 0, respectively.
In the absence of information on the second derivatives of (vn) >0, We construct another sequence
of functions (Rp)n>o with Ry, € SBV?(Qy,,; R3*3) which approximate Vv, and whose derivative

can be controlled. We define

Ry :=Vw, onQn(i)NQy,, forallic Ul (3.81)
and for x € Qu(4) N Qpp, 1 € Ig, we let
Ri,h if v e Qh(l) \ (\D? 1,0 U \Il?l-&-l)
Rh(x) = wzhfl,i(x)Ri—Lh + (1 - 7, 1 z(x))Rin lf S Qh(l) 7,71,7, 9 (382)

Yl @) Rip+ (1=l (@) Rigan ifz e Qu@) N,

where R;j are given by Proposition
Note that the construction implies that indeed wy, € SBV2(Qy, ,;R3), Ry, € SBV2(Qy,; R3*3),
and the jump sets satisfy

Ju, UJr, C U, | 0Qn(i). (3.83)
ielhulh
We are now ready to give the proofs of the propositions.

Proof of Proposition[3.1] First, . ) follows from the construction -7 the uniform
control in (3.56)) (iii), the bound |b; ;| < CM for i € I', and the fact that SO( ) C R3*3 is compact.

To see ([3.8))(ii), we use (3.83) and the fact that #(I' UI) < C, see (3.51).
(B-8)

We proceed to show (iii),(iv) for wy and defer the proof for Rj to the end. Regarding
(3.8)(iii), we note that by the definition of wy, and (3.56)) (i),

{wn #u} CBue= | @@)u | (@F,0)\DZ) U{on # i}

ielPuIl iell




26 MANUEL FRIEDRICH, LEONARD KREUTZ, AND KONSTANTINOS ZEMAS

Since # (I U I") < C, using also (3.36), (3-41))(ii), and (3.54), we find
L3{wn # vn}) < L3(Bn) < CTH® + Ch > H*(0E; N Q5 (i) + L ({vn # vj;})
ielh (3.84)
< OTh? + ChH*(OE;E N Q) + L3({on # v }) < Ch3 + L3 ({vn # 01 }),
where we also used the fact that each cuboid Q3 (i) overlaps only with neighboring ones, cf. (3.50).

This along with (3.43]) shows (3.8)(iii) for wy,.
Eventually, we show (3.8])(iv) for wy,. First, by (3.78)—(3.79) we observe that

/ dist®(Vwp, SO(3)) dz = » / dist®(Vwy, SO(3)) dz . (3.85)
Q. p Qn ()N,

ielp
Moreover, by (3.80) and (3.56)(ii) we compute, for i € Ig’}

dist?(Vwp,, SO(3)) dz < / dist?*(Vzin, SO(3)) dz

/<Qh< DA I\ (T, UTE Q3,0

1‘,,1‘+1)
< / Vzin — Ripl?de < Ceip .
h p(l)
This along with (3.53|) shows

dist?(Vawy, SO(3)) dz < C Z gin < Che. (3.86)

iell
For all \Ilzh,i—i-l #0,ie.,i,i+1¢€ Ig, we estimate using (3.56) (i), (3.77)), and ([3.80))

/ dist?(Vion, SO(3)) = / Aist? (V (241 + 00141 (2 — 2i410)), SO(3)
w '

iGIg /(\Q}L(Z)HQ}L p)\(\IIL 1, 1U\I/h L+1)

h h
i,1+1 i,74+1

< C diStZ(VZiJrl’h, 50(3))

+1
@i, (i+1) (3.87)
e / (VR 1Pl — 2isinl® + 0PIV 50 — Veial?)
141
<Ceit1n+C . (R %20 — zit1nl* + | Vzin — Vaiginl?)
\Ijz ,i41

where in the last step we used that 0 < ¢, ., < 1 and ||V¢ ii1llo < Ch™1, see (3.76). Since

\I'ZiH cQ; p( i), Q37p i+1) by -, we compute by - i -, and the triangle inequality

/ |20 — Zis1, pl?dr < C/ |zihn — ri,h|2dx—|—0 \zi+1,h—ri+17h|2daj
WP Q3 ,(i+1)

+C [rin — riv1n)®de < Ch*(gin + €ivrn),
8 )UQE (i+1)

Wlher.e W? also used that £3(Q3 (1)U Q:;’Lp(z +1)) < CTh3. In a similar fashion, (i) and (3.74)
also imply

/ |Vzin — Vzip?de < C |Vzin— R
TT i Q3,0 Q5 ,(i+1)

+Ch3|Rip — Rizan? < Clein +eit1n)-

Vzig1,n — R
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The last two estimates along with (3.87)) and (3.53]) show
N-1

> / dist®(Vws, SO(3)) dz < C Y i < Ch’ep .
oh

dit1ert " Vi i=2

This together with 7 concludes the proof of the first inequality in (iv).

We now continue with the proof of (3.8))(iii) for R;. By the set By, satisfies h=2L3(By) — 0
as h — 0. To obtain an estimate on the complement Q, , \ By, we recall the definition of wj, and
Ry, in and , respectively. In particular, as z; j, = z;41,5 o1 \Ilffiﬂ \ B, see ([3.56)(ii), we
have Vv, = Vwy, = Vz ), = Va1 = wﬁi+1Vzi7h +(1- ¢Zi+1)vzi+1,h on \Il?yl-+1 \ Bp,. Therefore,
one can check that

/ |Vvh—Rh|2 dx:/ |th—Rh|2dISOZ/ |Vzi7h—R¢,h|2d$§Ch2€h,
Qh,p\Bh Qh,p\Bh iejg Qi,p(i)
where the last step follows from (3.56))(ii) and (3.53)). Let (0n)n>0 C (0,400) be an infinitesimal

sequence such that Hhe}:l/z — o0. Then, by using h=2£3(B},) — 0 we compute

h2c3 (Qh,p N {|V’Uh - Rh| > Gh}) < h_2E3((Qh’p \ Bh> N {‘V’Uh — Rh| > Gh}) + h_Qﬁs(Bh)
< h72%0, 2 |Voy, — Ry|*do + h™2L3(By,)
Qn,o\Bn
< Cep, > + h™2L3(By) — 0.
This shows (3.8)(iii) for Rjy.

We finally show the second estimate in (3.8))(iv). We observe VR, =0 on Q4 , \ |, \11?71'_),_1 (recall
(B-81), (3.82)). For all W}, | #0, ie., i,i+ 1€ Il by (3.74) and the fact that £3(U],, ) < 2h?,
we compute

| R [ 90 PR~ R e
wh wh
1,141 i,i+1
< Ch_g/ |Rin — Rivin?de <Ch™2(ein +€iv1n),
‘Il?,iJrl
where we again used that ||V7,/JZZ- 41/l £ Ch™'. Summing over all i € Ié‘ and using (3.53) we conclude
Z/ |VRh|2d.’E§C€h.
IS '1’?,141
This concludes the proof of the second estimate in (3.8])(iv). O
We close this section with the proof of Proposition [3.2]

Proof of Proposition[3.3. Fix the set S2!(z) as in the statement. We start the proof with the fol-
lowing observation: Assumption (3.10) implies that

i€I} Ul foreach ic€lI":={i:Q)(i)N5s] (x)#0}. (3.88)

Indeed, since [ > 6Th, we first get that Q3 (i) C Szl/z(w) for all i € I", see (3.3)-(3.4). Then, in view
of (3.10)(i), we find #*(9E; N Q‘;’lp(z)) < 2(1 — p)2h? for all i € I". Thus, recalling (3.47)—(3.48)),

to show that 7 € Igh U I{; it suffices to check that

L3(E; N S22 (1)) < 2Ci0h®. (3.89)
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Thus, let us check (3.89). Again using (3.10))(i) we can find a partition SZ'(z) = U_ U U, (up to a
set of negligible £3- measure) with disjoint open cuboids U_, U, such that
H2(OE; NUL) < h?. (3.90)
(£ is a shorthand for 4+ or —.) If Uy N Silm(m) = 0, the set is irrelevant for showing (3.89). Thus,
we suppose that Uy N S’Sl/ 2( ) # 0. Then, Proposition implies
min{L3(E; NU), L2(Us \ E})} < CiuohH2(OE; NUL) .

(Note that the proposition is applicable as Uy contains at least one T-cuboid.) By we get

min{L3(E; NUL), L3(Us \ E})} < Cisoh®. (3.91)

For UiOSZl/Q( ) # 0 we have L£3(Uy) > ££3(S7!(2)). Then, necessarily, £2(E;NU+) < L3(Us\E}),
since otherwise by - ii

%53(5%)) < L(Us) < LU\ By) + L3(Us N E) < Cigoh® + éﬁ%szl(x» :
This yields a contradiction, since
L£3(52(x)) = 4lh? > 24Th* > 1920C;sh*
see . Thus, using we conclude
LB NS () < £3(Bp nU_n S22 (@) + £2(EBp n Uy 0 S22 (2)) < 2Ci0h°.

This shows (3.89)), and thus (3.88)) holds.

We are now ready to verify (3.11]). In view of (3.88]), (3.83) yields that
T, NS} (@) € | 0Qn(i) Ny -

eIl

Note that in each cuboid Q(i), i € I}, the trace tr(wh) on 0Q4 (i) Ny, , coincides Wlth rl h (recall
(3.79)). If the neighboring cuboid is good, i.e., i —1 € Igh ori+1¢€ Ih by (3.56] - (i), 7 and
the trace estimate on Q,(j) (with its scaling), for j=1i—1,i+1, the trace tr(wp,) satlsﬁes

[tr(wy) — rjp|* dH? < Ch/ (R 2wy, — 70> + |Vwn — Rjp|?) dz < Chejy, .

-/BQn(i)ﬂ@Qh (1)NL2h,p Qn(d)

Thus, by a discrete Holder’s inequality we find for each ¢ € I{f that

Yi = |tr(wh) - ’I“j7h|1/2 dH2 < C(h2)3/4h1/4((8i_17h)1/4 + (81‘+1,h)1/4> .

G=i—1,i+1 [;Qh,(i)ﬂth(j)ﬂﬂh,p
Now, by (3.73)) we compute

/ |[ |1/2 dH2 < Z / wh)Jr B (wh)7|1/2 A2
Juw, NS} () ielp 8Qn ()N,

1/2
<C Z h2||rz 1,h —Ti h||Loo(Q3 (1)) + h2||Ti7h - ri—i—l,h”L/oo(Qi(i)) + 71)
iell

< CZ (h7/4 9/4oh +€9/40+6?-{j0h) +,17/zx((€i_17h)1/414_ (5i+1,h)1/4)).

.~ Th
i€l
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A discrete Holder’s inequality along with #I}* < C' (recall (3.51])) and (3.53) then yields

N-1

9/40
/ |[wh]|1/2 AM2 < Ch7/4( Z Ei,h) < Ch11/562/40.
Juw, NS}, (@) i=2

This shows the first part of (3.11). For the second part, we compute in a similar fashion, again

using (3.53)) and (3.73)), and the construction in (3.81))—(3.82))

/ [Rp]|M? dM? < Z/ [(Rn)+ — (Ry)—|"/? d3?
Jr, NS} o () el 0Qn(1)NQn,p
< Ch? Z (|Ri71,h — Ri’h|1/2 + |Ri,h - Ri+1,h|1/2)
iell
< ORI Y (0, 28 S8) < RO,
iell

This along with limsup,,_,, eh™2 < +o00 concludes the proof. O

of (i) basically follows from the previous proof by noting that the assumption with 1 in
place of 2 (on the right hand side) excludes the presence of ugly cuboids. For (ii), we also follow
the estimates above and observe that, in the worst case €, ~ h?, the integral over jump heights
[fwn]|*=? and |[R]]'~# can be estimated by h2R3(1=A)/10 and h2p31=F)/10 respectively.

Remark 3.13 (Variant of Proposition . Let us briefly comment on Remarkﬁ The proof
3.10) (i)

4. COMPACTNESS

This section is devoted to the proof of Theorem[2.1] We again use the continuum subscript A > 0
instead of the sequential subscript notation (h;);en for convenience. We first recall the relevant
result from the Sobolev setting.

Lemma 4.1 (Compactness in the Sobolev setting). Let Q, ¢, := (0,01) x ({2, 02)? for €1, > 0,
and let (Wp)n>0 be a bounded sequence in W12(Qy, 4,3 R3) such that

: 1 ) . _
hrimupﬁ/ dist*(Vywp, SO(3)) da + wnl[wr2(y, ) < Co < +o0.
—0 Qo

Then, there exist j € W2(Qy, 1,3 R3) and da, d3 € WH2(Q, 4,3 R3), all independent of (2, 23), and
a subsequence (not relabeled) such that

wp — Yy weakly in Wl’Q(Qghgz;Rg), Vi, — (g]l} Jg} Jg) strongly in LQ(Q&’@;R:SXB) . (4.1)
Moreover, (gl} Jg} d3) € SO(3) a.e. in Q, 4,, and

1Glw22(00, o) + d2llwrz,, ) + ldsllwre @, L) < C (4.2)
for a constant C' > 0 only depending on Cjy.

For the proof we refer to [57, Theorem 2.1]. The weak convergence to § has not been mentioned
in the original statement, but follows directly from weak compactness. A simple argument shows
that 7 is indeed independent of (x2,x3). In fact, and yield g ; = 0 for ¢ = 2, 3. Property
has not been stated explicitly in [57, Theorem 2.1], but is a consequence of the proof based on
the Fréchet-Kolmogorov compactness criterion. We now proceed with the proof of our compactness
result.
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Proof of Theorem[2.1} By the energy bound (2.19) and (2.10)) we have that

2 [ W(Vayn(z))de + / |(vy, (2), k™ 'vg (2), W18, (2))| dH?(2) < C, (4.3)
Q\Vh, hN

where vy, (2) := (v, (2), V¢, (2), v}, (2)) denotes the outward pointing unit normal to dVj, NQ at the
point z. Note that (4.3) implies

sup (L2(Vi,) + H*(0V, N Q) < C.

h>0
Therefore, by a compactness result for sets of finite perimeter (see [0, Theorem 3.39]), there exists
V € P(Q) such that, up to a non-relabeled subsequence, we have

v, — xv in L'(Q).
By Reshetnyak’s lower semicontinuity theorem (cf. [6, Theorem 2.38]) applied to the lower semicon-

tinuous, positively 1-homogeneous, convex function ¢ : S? — [0, +00) with ¢(v) := [(0,v2,3)|, we
get, using again (4.3]), that

/ |(o,ya,y3)|dH2gnminf/ (0,13, , 14, )| dH? < Climinfh =0,
9V NQ h=0 " Jav,na ' ' h—0

where vy denotes the measure-theoretic outer unit normal to 8*V. This implies vZ (z) = vi(x) =
0 for H*a.e. z € 9*V N Q. We denote by I := {z; € (0,L): H*(({z1} x R}) NnV) > 0} the
measure-theoretic projection of V onto the zi-axis. The previous argument shows that indeed
V =Vr:=1x(-1/2,1/2)% for some I € P(0, L), up to a set of negligible £3-measure. This proves
(2.20])(i). From now on (and also in the next sections) we will without loss of generality consider the
representative in the £!-equivalence class of I which consists of a finite union of open subintervals
of (0, L), without mentioning it further.

We now proceed with the compactness for the deformations. Denote by (vp, Er)n>o the sequence
related to (yn, Vi)n>o via 7. We first derive a compactness result for the piecewise Sobolev
modifications constructed in Proposition and then we will show (ii)7(iii) for the sequence
(yn)n>o afterwards. To this end, we fix p > 0 sufficiently small. We apply Proposition on
(vn, En)nso and €, := h? to find a sequence (wp,)n>o. (Observe that implies (3.7).) Then, we
consider the sequence (wy,)n>0 C SBV?2(Q4 ,;R3) defined by

@h(.’IJ) = zﬂh(acl, Zo, 1‘3) = wh(xl, hxg, hl’g) . (44)

After passing to a subsequence, we may assume that there exists n € 2N such that the sets Q,, in
(3-8) (ii) satisfy #Q,, =n/2 for all h > 0. Thus, by (3.8))(ii) we get (x)?_, C (0, L) such that

Ju, € pn | ({2} x R?).
i=1

Up to a further subsequence, we can suppose that for each i = 1,...,n we have 2 — x; as h — 0
for suitable z; € [0, L]. Thus, fixing an arbitrary § > 0 and defining the set

Q= 0y, \ CJ ([mi — 6,7 4 0] % IR{2> : (4.5)
=1

we find that
Whlas € WH(Q;R?)  for all h > 0 small enough.

A change of variables together with (3.8)(iv) (for €, := h?) imply that
h~? / dist?*(Vy@p, SO(3)) dz < h™* / dist?(Vawp,, SO(3)) dz < C, (4.6)
Q

5
P Qh-,p
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for a constant C' > 0 independent of h, d, and p. This along with (3.8))(i) and (4.4)) shows that the
sequence (Wp)p>0 is equibounded in Wl’Q(Qg;R3), ie.,

W [lwr.20) < C (4.7)

Therefore, by Lemma applied to the sequence (W )>0 on the connected components of the fixed
domain Qg, we obtain a map yg € WQ’Z(Qg;R3), and (dg) (dg) ewh 2(95 R3), all independent
of the (z3,x3)-coordinates, such that

Wy, — yi weakly in WI’Q(QZ;R3) and Vjwp — Rf) strongly in LQ(Qg;R?’X?’) ) (4.8)
where
R) = (44| (d2)0] (ds)3) € SO(3) ae. in Q. (4.9)
Moreover, by , , and we have
||yz||W212(Q;§) + H(dZ)i”WLZ(Qg) + ”(dS)iHWl@(Qg) <C (4.10)

for a constant C' > 0 independent of p and J.
We now replace wy, by yp, in (4.8). By (2.7)), (4.4), a scaling argument, and (3.8])(iii) we have that

£ ({z € Qf): yn(z) # wp(2)}) < h 2L ({z € Qnp: vn(z) # wi(z)}) =0 (4.11)
as h — 0. Thus, from (4.8)) and (4.11)) we deduce that
Y — yg in measure on Qi and  Vyy, — Rz in measure on Qi . (4.12)

Now, by (4.9), (£.10), (4.12), and a monotonicity argument for p — 0 and § — 0 we find  (y|dz| ds) €
(P-H? x - H1 X P- Hl)((O L);R¥*3), such that the corresponding functions 7, ds,d3: Q@ — R3

defined in (2.14) satisfy

y= yg on Qg, R:= (g1]da|d3) = Ri on Qi, (4.13)
and
yn — 9 in measure on Q and Vyy, — R in measure on (2. (4.14)

Property (£.9) also implies that (71| dz2| ds) € SO(3) a.e. in €, i.e., (y|d2|ds) € SBVZ,(0, L), see

(2.13) and the convention introduced right after it. The measure convergence y, — 7 in (4.14))

together with |lyp ||z () < M shows (2.20)(ii). By (2.4)(iv), (4.3)), and the fact that V,y;, = Id on
Vi, we have that

sup/ |Vayn|? dz < 400

A compactness argument and show that V5, — R weakly in L?(Q; R3*3). Recalling that
Xvi = xv; in L*() by (2:20)(i), the proof of (2.20)(iii) is concluded.

It finally remains to show that ((y|dz2|ds), I) € A. In fact, we have |y||Loo Q) < M by [[ynl Lo (@) <
M for all h > 0 and . Moreover, the second part of (]E ), and the fact that
y = Tp(d), Vpyr = Id on V}, (see (2.11))) show that R = Id on V; and thus y(z1) = x1 and
(y.1|da|ds) =1d on I. As above we have already seen that (y|da|ds) € SBV;Z, (0, L), the proof is

1som

concluded. O
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5. THE I'-LIMINF INEQUALITY

This section is devoted to the proof of the lower bound (2.21f) of Theorem [2.3] which is split into
proving the lower bound for the bulk and the surface part of the energy separately.

Recalling Definition we consider a sequence (yn, Vi)n>o and ((y|dz2|ds),I) € A such that
(Yn, Vi) — ((y| da| d3), I), ie., (2-20)(1)(iii) hold true.

Regarding the lower bound for the elastic energy, we will use the following result from the purely
elastic case. For its formulation, recall the definition of the elastic part of the limiting energy, as

introduced in (2.16)—(2.18)), and the convention after (2.13).
Lemma 5.1 (Lower bound in the Sobolev setting). Let Qq, ¢, := (0,01) x (—l2,02)* for {1, > 0,
and let (Wp)p>o be a sequence in W2 (Qy, 1,3 R3) such that
wp — Yy weakly in W1’2(le7gQ;R3), Vyon — R = (gj,1| cfg| CZ3) strongly in LQ(Qgth;RgX:S),
(5.1)

where §, do, and d3 are independent of (x2,x3). Then, there exists a sequence of piecewise constant
functions Rp: Qu, ¢, — SO(3) and a limiting function G € L?(Q, 4,3 R3*3) such that

REV,wy, — 1d
(i) Gp:= hthwh —~ G weakly in L*(Q, 0,; R**?),
1 1
i) liminf — W(Vywy)de > - G)d
(ii) Tt 72 /Qh . (Vywp)dz > 2 /&'21:1 . Qs3(G)dw, (5.2)

1
(111) 5/ Qs (G) dr > - (2[2) / QQ(RTRJ) dzq,
921,22 (0,£1)
where R is defined via (2.13)—(2.15]).

The proof can be found in [57, Theorem 3.1(i)]. In particular, we refer to [57, (3.4)-(3.6) and

(3.16)]. The result is stated there only for cross sections with area 1, corresponding to ¢ = %
However, a standard scaling argument shows that

0
(262)4Q2(A) = QéQ(A) = min Qs | Az | |az2|as | dzadas,
1,2 2
a€Wh:2((—£a,02)%R) J (—£3,5) T3

where Qs(A) is given by (2.17). This implies (5.2)(iii) in the present form.

The issue in our framework is that Lemma cannot be applied directly since the sequence
(yn)n>0 is not in WH2(Q; R?). Therefore, as in the proof of Theorem[2.1] we will use the modification
constructed in Proposition [3.1] in order to reduce the situation to the Sobolev setting.

Lemma 5.2. Suppose that (yn, Vi) — ((y| da| ds), I) for some ((y|dz|ds),I) € A. Then,

1
lim inf (h—2 W(Vhyh)dx) > = / Q5(RTR 1) duy . (5.3)
h—0 Q\W 2 0 L)\I

Proof. We apply Propomtlonn for p > 0 small and ¢, := h? and the sequence (vy,, Eh)h>0 related

to (Yn, Va)n>o via )—(2.7). Here, we note that it is not restrictive to assume that (€*(yn, Vi))n=0
is bounded, and thus 1 3.7)) holds. We denote the resulting sequence by (wp)p>0, and as in the proof

of the compactness result, we consider the sequence (wp)n>0 C SBV?(Q1,,;R?) defined by
wp(x) == wp (21, T2, x3) 1= wp (1, hae, hxs) . (5.4)

Similarly to the reasoning in the proof of Theorem see (4.5)), (4.8)), and (4.13]), we can define a
set Qf) for p,§ > 0 with £3(Q\ Qf,) — 0 as p,d — 0 such that

@h|92 € W1’2(Qi;R3) for all h > 0 small enough,



DERIVATION OF EFFECTIVE THEORIES FOR RODS WITH VOIDS 33

and

wp, — § weakly in Wl’z(Qf);Rg) and V,w, — R strongly in LQ(Qi;RSXS).
This means that is satisfied and we can thus apply Lemma on each connected component
of Qf) to find corresponding Gj and G such that holds on the set Qf,. The main part of the
proof will consist in confirming that (ii) also holds with y, in place of wy. Then, the liminf
inequality follows from (5.2) ().

To show (ii) for y;, in place of wy,, we will perform a by now classical linearization argument
which we sketch here for convenience: we consider a sequence of positive numbers (Ag)rso C (0, 00)
with

A =00, hAp =0 ash =0, (5.5)
and define
O :={z € Qﬁ: wp(z) =yp(x)} N{z € Qf): |Gr(z)] < An}. (5.6)
Note that £3({@wp, # ys}) — 0 by (3.8)(iii) and a scaling argument. This together with the fact that
IlGhHLZ(Qg) < C, see (5.2)(i), Ap = +00, and Chebyshev’s inequality implies that

L3(Q0\©0;) »0 ash—0. (5.7)
This yields xe, — 1 boundedly in measure in Q‘Sp as h — 0. By (2.11), W(Id) =0, W > 0, and by
the definition of O we get

L _92 T _92
hznﬁlglf (h - W (Vryn) dm) = hgn%lglf (h /QW(Vhyh) dx)

> liminf <h72/ xo, W (VW) dx) .
h—0 Qg

By the regularity and the structural hypotheses on W (recall ) we get
W(Id + F) = 1 Qy(sym(F)) + O(F),
where ®: R3*3 — R is a function satisfying
sup { |TI(‘“1|2)| D |F|<o}—=0 aso—0. (5.8)

Then, together with the definition of Gy, in (5.2))(i) this gives

lim inf (h*Z W(Vhyh)dx> > lim inf (h*Q / X@hW(IdJrhGh)dx)
h—0 AV, h—0 Qg

> lim inf / vou (1Qs(sym(Gh)) + h2(hGy) ) da
Q)

h—0
1
zliminff/ Xo, Q3(sym(Gp)) dx . (5.9)
h—0 2 Qs

Here, in the last step we used that

limsup/ xo, h2|®(hG},)| dz < lim sup sup{lf}ggcl’g)lz |hGp| < h)\h}/ xeo,|Gr*dz | =0,
h—0 Q3 h—0 " Q3

which follows from the fact that (Gj), is bounded in L*(Q;R3*%), (5.6), (5.8), and kA, — 0 (sce
(5.5)). Hence, (5.2))(i),(iii), the fact that xe, — 1 boundedly in measure in Qi, see (5.7), and the
convexity of Qs imply that

1 1
lim inf 7/ Xo, Q3(sym(Gp)) dx > B
o

1 4 T
> —(1— .
ey Qg(G) dx = 2(1 p) /ﬂ.l(Qg) Q2 (R RJ) dl‘l, (5 10)

5
2
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where 7 is the projection onto the z1-axis, and € is defined in and ([L5). As £3(Q\Q)) =0
for p,d — 0, we also get that £1((0,L)\ m (Qg)) — 0 as p,d — 0. Thus, , , and monotone
convergence yield the lower bound . Note that the last integral can also be taken on (0,L)\ I
only since Q2(0) =0 and R =1d on I, see , and . This concludes the proof. [J

We now proceed with the lower bound for the surface part of the energy, namely

Ebet (Vi) i= EM(yn, Vi) —=h™2 | W(Vayn) de = h™2G 0 (En; Q) (5.11)
Q\Vj,

where we refer to the definitions in and . Our approach deviates significantly from the
proof of lower bounds in relaxation results for energies defined on pairs of functions and sets, cf.
[15] or [2I]. This is mainly due to the fact that the nonlinear geometric rigidity result allows us to
control the elastic energy only in a large part of Q\ V},. Our argument to derive the lower bound for
the surface energy term related to collapsing voids correctly hinges on Proposition [3.2] along with
an argument by contradiction. We again suppose that I is the representative consisting of a finite
union of open intervals.

Lemma 5.3. Suppose that (yn, Vi,) — ((y| da|ds), I) for some ((y|dz|ds),I) € A. Then,
lim inf Ehe(V) = H2(0IN(0,L)) + 2H((J, U JR) \ OI) . (5.12)
—

surf
Proof. Let (Ep)n>0 be the void sets associated to (V},)n>0 according to (2.6). By (E})r>0 we denote
the open sets given by Proposition satisfying Ey, C Ef C Qp, and (3.9). We also introduce the
rescaled sets

Vi = Tyn(ER), (5.13)
and note by (3.9)), a scaling argument, and (2.20))(i) that
XV, — XV; in LI(Q) . (514)
By (3.9) and (5.11)) we have
liminf & ¢ (V3,) = liminf h 2G5 (Ep; Qp) > liminf A H?(0E; N Q) . (5.15)
h—0 h—0 h h—0

Since ((y|dz2|ds), I) € A, there exist finitely many (z;)7_; C (0, L) such that
{z1,...,2,} =(0IN(0,L)) U J, U Jg.

We choose § > 0 sufficiently small such that the sets S,QL‘s (), j=1,...,n, are pairwise disjoint and
contained in Qj, cf. (3.3). Our goal is to prove

(i) liminf W2 H* (0B, N SP(x;)) > 1 ifx; €9IN(0,L),
—
(if) liminf h2H2(0E; N SP(x)) > 2 ifa; € J,\ O, (5.16)
(iif) lim inf R H2(OE; NS (x;)) > 2 ifa; € Jr\OI.

Once (|5.16)) is shown, we can conclude as follows. By (5.15]) and the fact that the sets Sié(xj) C Qp,
j=1,...,n, are pairwise disjoint, we get

liin _)i(r)lf Esfhrf

(Vi) > lim inf > hTPHA(OE; N S () = HO(OI N (0, L)) + 2H°((J, U Jr) \ OI) .
j=1

This shows ([5.12]).



DERIVATION OF EFFECTIVE THEORIES FOR RODS WITH VOIDS 35

We now proceed with the proof of the properties stated in (5.16)). We start with (i). By a change
of variables and the definition in (5.13]) we find

dH?

h—0

liminf h=*H? (0E; N S (x;)) = lim inf/ |V, K 0 W00
h—0 OV NS (x5) h " h

where we use the notation vy = (y‘l/;,u%/;, u‘3/;) € S? for the outer unit normal to V;*. By (5.14)
and the lower semicontinuity of the perimeter (cf. [0, Proposition 3.38]), we get

lim inf h2H2(0E; N SP(x;)) > lim ingQ OV N SP (7)) > H2(OVr N SP(x5)) -
— —

The fact that {z;} x (=%, 3) C 0V} yields (i).

We proceed to show (ii). Suppose the statement was wrong, i.e., there exists 0 < p < 1 and a
subsequence (not relabeled) such that 2u > h=2H2(0F; N S#(x;)) for all h > 0. Choose p > 0
small enough such that ﬁ < 1. Then, we get

H2(OE; N S (x5)) < 2uh® < 2((1 — p)h)?.

This implies that (3-10) (i) (for I = &) holds. The fact that the sets S?°(x;), j = 1,...,n, are pairwise

disjoint implies that S (z;) NV = 0. Thus, by (5.14) we get limp 0 £3(V;¥ N SP(x;)) = 0. By
the definition of V;* and a change of variables we find

(BN SP(,) _ 1

L3S (x)) 9

for h > 0 sufficiently small, i.e., (3.10])(ii) is satisfied. Let (wp)r>o be the sequence from Proposi-

tion and let again (Wy)n>0 C SBV?(1 ,;R3) be the rescaled sequence, see (5.4). Thus, by a
change of variables and by (3.11)), we find that

V][ dH? < V@]l (v, kv, = g, )| dH?
87 p(@)NJ g, 82

mj)mJuN)h
1
:ﬁ/é Vwalld#Z = 0.
Sh,p(mj)m']wh,
By (3.8))(ii)—(iv), , [2-20) (i), and(5.4) we get wy, — ¥ in L}(Q;R3) and
sup(/ |V{Eh|2dm+7-l2(J@h)) <C,
Q

h>0

<

1,p

for a constant C' > 0 independent of h > 0. By Ambrosio’s lower semicontinuity theorem in SBV
(cf. [6l, Theorem 4.7]) and the fact that w, — § in L1(Q;R3) we get

/ \/|[g]|d7—l2§11minf/ V@ dH? = 0.
59.5(@5)0 Ty M0 I8y @s)n T,
This shows that .J; does not jump on ({z;} x R?) Ny, which contradicts the fact that z; € J,.

For (iii) we proceed in a similar fashion and first get that (3.10) is satisfied. We let (Rp,)n>0 be
the sequence in Proposition and introduce the rescaled sequence (Rp)p>0 C SBV?(Qy ,; R3*3)
by

Rh(x) = Rh($1,$27$3) = Rh(acl, h$27 hl‘3) .

By a change of variables, the properties (3.8)(ii)—(iv), as well as (2.7) and (2.9) we get

sup (/ |V Rp|?dz + HQ(JEL)) <C, IVhyn — Ri| — 0 in measure on Qip,
Q

h>0 -
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for a constant C' > 0 again independent of A > 0. Then, again by Ambrosio’s lower semicontinuity

theorem, (3.11)), (2.20)(iii), and the fact that S} ,(z;) NV, = 0, we derive

/ WMEM%ZSMMM/] VI[Ba]| dH? = 0.
59 (z)NJg h=0 S‘f,p(fﬂj)ﬂJﬁh

As in (ii), this yields a contradiction, and the proof of (iii) is concluded. O

6. THE I'-LIMSUP INEQUALITY

In this last section, we construct recovery sequences for admissible limits ((y| dz|ds),I) € A. We
start by recalling the relevant result for elastic rods, using again the convention in (2.14)—(2.15)).

Lemma 6.1 (Recovery sequences in the Sobolev setting). Let € := (0,£) x (=%, 3)? for £ > 0. Let
((y|d2|ds), I) € A be such that ylg, € W*2(Q;R?) and d|q,,d3|la, € WH2(Q;R3). Then, there

exists a sequence (yn)n>0 C W12(Q;R3) such that

yn — § strongly in W 1’2(QZ;R3), Viyn = (G1] J2| Jg) strongly in LQ(QZ;RBX‘%), (6.1)
and we have
1 1
lim — [ W == r 2
hli% B /Qg (Viyn)dzx 5 00 Q>(R R71)d1‘1, (6.2)

where R := (y1|da|ds). Moreover, if § € L°°(Qy; R?), it holds that limsup;,_, o |Yn|lec < [|7]]oo-

For the proof we refer to [57, Theorem 3.1(ii)]. We now proceed with the construction of recovery
sequences.

Proof of Theorem ii). Consider an admissible limit ((y|dz|ds),I) € A, see (2.12)—(2.13). We
will combine ideas from [57, Section 3] and [67, Subsection 5.4]. We first treat the case ||yllco < M
and address the changes for ||y||.c = M at the end of the proof. By choosing a suitable representative,
we can assume that I is the union of finitely many open subintervals of (0, L). We also denote

(J, UJR)\OI == {t1,... . tm} C (0,L), (6.3)

where 0 < t; < -+ <t < L. Denote by (J;)I the connected components of (0, L)\ (IU{t1,...,tm}).

We apply Lemmaon each connected component J; to find recovery sequences yi, € W12 (j“ R3),
where J; == J; x (—%,2)? such that (6.1)—(6.2) are satisfied for the respective functions on the re-
spective sets. For h > 0 sufficiently small, consider the sets (V4)np>0 C Areg(€2) defined by

m

Vii= (TUJ(t = hoti+ 1) x (=5, 1)°. (6.4)
i=1
Recalling ((L.5)), we introduce the deformations (yp)n>0 C SBV?(;R?) defined by
yi (z) if 2 € J; \ Vi,
= 65
yn() {n@ﬂ if z €V, . (6.5)

Since ||yllee < M, Lemma also implies that |lypllcc < M for h > 0 sufficiently small. This

shows that (yn, Vi)nso C Ap, cf. 2.11). Clearly, in view of (6.4)), we have xy;, — xv, in L'(Q).
Moreover, (6.1)) and (6.5) show that (yp)nso also satisfies (2.20)(ii),(iii). Thus, by the definition of

T-convergence in Definition we have (yn, Vi) — ((y| da|d3),I) as h — 0.
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Regarding the elastic part of the energy, from (6.2)) and (6.5) we directly infer

limsup —

wW(V dr < lim W v dz
P 2 T (Vryn) e Z (Vihyn)

1 1
= 52/ Qy(R"R 1) day = 5/ Qy(R"R1)day.  (6.6)
= Ja (0,L)\I
We now address the surface part of the energy introduced in . First, we set E}, := T (V3),
where (V},)n>0 are defined in . By (5.11] -7 , and the fact that OF, Ny, consists of planar

interfaces with unit normal :|:617 we have that

lim €146 (Vi) = lim b2 (H2(0B5 0. 00) + / Anf? aH?)

h—0 h—0 aEthh
B p—2742 e, _h hy2 (6.7)
— lim 1 (a((zu U h,tﬁ—h)) x (kb )mﬂh)

i=1

=HAIN(0,L)) +2m = 7—[0(61 N (0 L))+ 27—[0(( UJg)\dI),

where the last step follows from (6.3). Now, (6.6) and ( show in the case ||y|lL~ < M.
We conclude the proof by addressing the case ||y||oo = M . In thls case, we extend vy, ds, d3 on

(L, L+1) such that y 1,ds, ds are constant on [L, L+1) and (y| d2|ds) € SBVjom(O, L+1). For 0 <
o < 1, we consider the functions y?(x1) := oy(x1/0), d§(x1) := da2(x1/0), and df(z1) = dz(z1/0)

n (0,0(L+1)). Now, ||y ]|cc < M and we can construct a recovery sequence as above. Moreover,
one can check that lim, o E%((y7| dg|d$),ol) = E°((y| dz2|ds3), I). Thus, the conclusion follows by

a standard diagonal sequence argument in the theory of I'-convergence. O
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