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UNIFORM SOBOLEV, INTERPOLATION AND GEOMETRIC
CALDERÓN–ZYGMUND INEQUALITIES FOR GRAPH HYPERSURFACES

SERENA DELLA CORTE, ANTONIA DIANA, AND CARLO MANTEGAZZA

ABSTRACT. In this note, our aim is to show that families of smooth hypersurfaces of Rn+1

which are all C1–close enough to a fixed compact, embedded one, have uniformly bounded
constants in some relevant inequalities for mathematical analysis, like Sobolev, Gagliardo–
Nirenberg and “geometric” Calderón–Zygmund inequalities. This technical result is quite
useful, in particular, in the study of the geometric flows of hypersurfaces.
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1. INTRODUCTION AND PRELIMINARIES

In this note, our aim is to show that families of smooth hypersurfaces of Rn+1 which are
all C1–close enough to a fixed compact, embedded one, have uniformly bounded constants
in some relevant inequalities for mathematical analysis, like Sobolev, Gagliardo–Nirenberg,
“geometric” Calderón–Zygmund, trace and extension inequalities. This technical result is
quite useful, in particular, in the analysis of the geometric flows of hypersurfaces, when one
studies the behavior of the hypersurfaces close (in some norm, for instance in C1–norm) to
critical ones (possibly “stable”) or the asymptotic limits of flows existing for all times (see
for instance [2, 3, 10, 13], where such controls on the constants are necessary).

We start by setting up some notation and recall some basic facts about hypersurfaces in
Euclidean spaces that we need in the sequel, possible references are [1, 6, 15].

We will consider smooth, n–dimensional, compact hypersurfaces M , embedded in Rn+1,
getting a Riemannian metric g by pull–back of the standard scalar product 〈· | ·〉 of Rn+1 via
the embedding map ϕ : M → Rn+1, hence, turning it into a Riemannian manifold (M, g).
Then, we use ∇ for the associated Levi–Civita covariant derivative and µ for the canonical
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measure induced by the metric g, which actually coincides with the n–dimensional Haus-
dorff measureHn of Rn+1 restricted to M . Then, the components of g in a local chart are

gij =

〈
∂ϕ

∂xi

∣∣∣ ∂ϕ
∂xj

〉
and the “canonical” measure µ, induced on M by the metric g is then locally described by
µ =

√
det gij L n, where L n is the standard Lebesgue measure on Rn.

The inner product on M , extended to tensors, is given by

g(T, S) = gi1s1 . . . gikskg
j1z1 . . . gjlzlT i1...ikj1...jl

Ss1...skz1...zl

where gij is the matrix of the coefficients of the metric tensor in the local coordinates and gij

is its inverse. Clearly, the norm of a tensor is then

|T | =
√
g(T, T ) .

The induced Levi–Civita covariant derivative on (M, g) of a vector fieldX and of a 1–form
ω are respectively given by

∇jXi =
∂Xi

∂xj
+ ΓijkX

k , ∇jωi =
∂ωi
∂xj
− Γkjiωk ,

where Γijk are the Christoffel symbols of the connection∇, expressed by the formula

Γijk =
1

2
gil
( ∂

∂xj
gkl +

∂

∂xk
gjl −

∂

∂xl
gjk

)
. (1.1)

With∇mT we will mean the m–th iterated covariant derivative of a tensor T .
Being M embedded, we can assume it is a subset of Rn+1 (hence the embedding map is

the identity) and we denote with ν : M → Rn its global unit normal vector field, pointing
outward. It is indeed well known (theorem of Jordan–Brouwer, see [6, Proposition 12.2], for
instance) that any compact, embeddedM “divides” Rn+1 in two connected components, one
of them bounded (called “the interior”), both having M as its smooth boundary, hence the
hypersurface is orientable and such field ν exists.

Then, we define the second fundamental form B which is a symmetric bilinear form given,
in a local charts, by its components

hij = −
〈

∂2ϕ

∂xi∂xj

∣∣∣∣ ν〉
and whose trace is the mean curvature H = gijhij of the hypersurface (with these choices, the
standard sphere of Rn has positive mean curvature).

Remark 1.1. If the hypersurface M is locally the graph of a function f : U → R with U an
open subset of Rn, that is, M = {(x, f(x)) : x ∈ U}, then we have

gij = δij +
∂f

∂xi

∂f

∂xj
, ν = − (∇f,−1)√

1 + |∇f |2
,

hij =
Hessijf√
1 + |∇f |2

, (1.2)

H =
∆f√

1 + |∇f |2
− Hess f(∇f,∇f)(√

1 + |∇f |2
)3 = div

(
∇f√

1 + |∇f |2

)
(1.3)
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where Hess f is the (standard) Hessian of the function f .

Then, the following Gauss–Weingarten relations hold,

∂2ϕ

∂xi∂xj
= Γkij

∂ϕ

∂xk
− hijν

∂ν

∂xj
= hjlg

ls ∂ϕ

∂xs
, (1.4)

which easily imply
∇2ϕ = −Bν and ∆ϕ = −Hν . (1.5)

The symmetry properties of the covariant derivative of B are given by the following Co-
dazzi equations,

∇ihjk = ∇jhik = ∇khij
which imply the following Simons’ identity (see [23]),

∆hij = ∇i∇jH + Hhilg
lshsj − |B|2hij . (1.6)

Finally, the Riemann tensor can be expressed as (Gauss equations),

Rijkl = hikhjl − hilhjk . (1.7)

If now we choose a fixed smooth, compact, embedded hypersurface of Rn+1, it is well
known (by its compactness and smoothness) that, for ε > 0 small enough, M0 has a tubular
neighborhood

Nε =
{
x ∈ Rn+1 : d(x,M0) < ε

}
(where d is the Euclidean distance on Rn+1) such that the orthogonal projection map π : Nε →
M0 giving the (unique) closest point on M0, is well defined and smooth. Then, if E is “the
interior” of M0, the signed distance function dE : Nε → R from M0

dE(x) =

{
d(x,M0) if x /∈ E
−d(x,M0) if x ∈ E

is well defined and smooth in Nε and ν(x) = ∇dE(x), for every x ∈M0. Moreover, for every
x ∈ Nε, the projection map π is given explicitly by

πE(x) = x−∇d2
E(x)/2 = x− dE(x)∇dE(x)

(indeed, actually ν(x) = ∇dE(x) for every x ∈M0).
This implies that, every smooth hypersurface M which is C1–close enough to M0, can be
written (possibly after reparametrization) as

M =
{
x+ ψ(x)ν(x) : x ∈M0

}
, (1.8)

for a smooth function ψ : M0 → R with ‖ψ‖C1(M0) < ε. Indeed, if ϕ0 : M̃ → Rn+1 and
ϕ : M̃ → Rn+1 are two smooth immersions (ϕ0 embedding) of a differentiable manifold M̃ ,
describing respectively M0 and M , close in C1, then the map π ◦ ϕ ◦ ϕ−1

0 : M0 → M0 is a
diffeomorphism, which implies that π|M : M → M0 is also a diffeomorphism. Then, the
map ψ above in expression (1.8), is uniquely given by ψ(x) = dE(π|−1

M (x)), which has small
C1–norm, as π|M gets C1–closer and closer to the identity, as ϕ is C1–close to ϕ0.

Hence, from now on, we will consider families of hypersurfaces (clearly all containing
M0)

C1
δ(M0) =

{
M =

{
x+ ψ(x)ν(x) : x ∈M0

}
for a smooth ψ : M0 → R with ‖ψ‖C1(M0) < δ

}
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where δ ∈ (0, ε). We are going to see that the constants in Sobolev, Gagliardo–Nirenberg,
some geometric Calderón–Zygmund inequalities, trace and extension inequalities are uni-
formly bounded, depending only on M0 and δ.

Before starting discussing that, we introduce another technical construction. We notice
that, possibly choosing a smaller ε > 0, the tubular neighborhood Nε of M0 defined above,
can be covered by a finite number of open hypercubes Q1, . . . , Qk ⊆ Rn+1 respectively
centered at some points p1, . . . , pk ∈ M0, such that, for every i ∈ {1, . . . , k} and every
M ∈ C1

δ(M0), the “pieces” of hypersurfaces M ∩ Qi can be written as graphs on the tan-
gent hyperplanes to M0 at the points pi ∈M0, as in the following figure.

p
i

M

p
i
T

	

M0

M0

Qi

Then, we let ρi : Rn+1 → [0, 1] a smooth partition of unity (with compact support) for Nε,
associated to the open covering Qi, hence, if M ∈ C1

δ(M0) and u : M → R, there holds

u(y) =
k∑
i=1

u(y)ρi(y) =
k∑
i=1

ui(y)

with the compact support of ui : M → R contained in the piece M ∩Qi of the hypersurface
M , which is described as the graph of a smooth function θi : TpiM0 → R, that is,M∩Qi is the
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image of the map x 7→ θi(x)ν(pi) on TpiM0 ∩Qi. It is then easy to see that ‖θi‖C1(TpiM0) ≤ 2δ,
for every i ∈ {1, . . . , k}.

We notice and underline that the family (and the number) of the hypercubes Qi, as well
as the width ε > 0 of the tubular neighborhood Nε that we considered for this construction,
only depend on M0, precisely on its local and global geometry (in particular, on its second
fundamental form B0 – see [9] for more details).

We highlight to the reader that in the following, we will often denote with C a constant which may
vary from a line to another.

2. SOBOLEV, POINCARÉ AND GAGLIARDO–NIRENBERG INTERPOLATION INEQUALITIES

We start discussing the Sobolev constants CS(p, n) of any compact hypersurface M , for
every p ∈ [1, n), entering in the following inequalities (which are known to hold, see [5,
Chapter 2], for instance),

‖u‖Lp∗ =
(ˆ

M
|u|p∗ dµ

)1/p∗

≤ CS(p, n)
(ˆ

M
|∇u|p + |u|p dµ

)1/p
= CS(p, n)‖u‖W 1,p

for every C1–function u : M → R (or u ∈ W 1,p(M)), where p∗ = np
n−p is the Sobolev conjugate

exponent of p. It is well known that a bound on CS(1, n) implies a bound on CS(p, n), for
every p ∈ [1, n) (see [5, Chapter 2, Section 5], for instance), hence we concentrate on the case
p = 1, where 1∗ = n

n−1 .
We first want to argue localizing things by means of the construction of the previous sec-

tion. We then have a finite family of hypercubesQi centered at pi ∈M0, the partition of unity
ρi and functions θi : TpiM0 → R, describing the pieces M ∩ Qi of any smooth hypersurface
in C1

δ(M0), with ‖θi‖C1(TpiM0) ≤ 2δ, for every i ∈ {1, . . . , k} and δ > 0. Hence, we can write

(ˆ
M
|u|

n
n−1 dµ

)n−1
n

=
(ˆ

M

∣∣∣ k∑
i=1

uρi

∣∣∣ n
n−1

dµ
)n−1

n ≤
k∑
i=1

(ˆ
M∩Qi

|uρi|
n
n−1 dµ

)n−1
n

as the compact support of uρi is contained in M ∩Qi.
Then, for every C1 function v : M → R, with compact support in M ∩ Qi, we have, setting
νi = ν(pi),

(ˆ
M∩Qi

|v(y)|
n
n−1 dµ(y)

)n−1
n

=
(ˆ

TpiM0∩Qi
|v(x+ θi(x)νi)|

n
n−1

√
1 + |∇θi(x)|2 dx

)n−1
n

≤ (1 + 2δ)
n−1
n

(ˆ
TpiM0

|v(x+ θi(x)νi)|
n
n−1 dx

)n−1
n
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and applying the Sobolev inequality inequality in Rn ≈ TpiM0, for C1 functions with com-
pact support, we have(ˆ

TpiM0

|v(x+ θi(x)νi)|
n
n−1 dx

)n−1
n ≤C

ˆ
TpiM0

∣∣∇v(x+ θi(x)νi) ◦
(
Id +∇θi(x)⊗ νi

)∣∣ dx
≤C
ˆ
TpiM0

|∇v(x+ θi(x)νi)|
∣∣Id +∇θi(x)⊗ νi

∣∣ dx
≤C
ˆ
TpiM0

|∇v(x+ θi(x)νi)|
(
1 + |∇θi(x)|

)
dx

≤C(1 + 2δ)

ˆ
TpiM0

|∇v(x+ θi(x)νi)| dx

≤C 1 + 2δ

1− 2δ

ˆ
TpiM0

|∇v(x+ θi(x)νi)|
∣∣Id +∇θi(x)⊗ νi

∣∣ dx
=C

1 + 2δ

1− 2δ

ˆ
M
|∇v(y)| dµ(y) . (2.1)

Hence, (ˆ
M∩Qi

|v|
n
n−1 dµ

)n−1
n ≤ C (1 + 2δ)

2n−1
n

1− 2δ

ˆ
M
|∇v| dµ .

and setting vi = uρi, after summing on i ∈ {1, . . . , k}, we conclude

(ˆ
M
|u|

n
n−1 dµ

)n−1
n ≤

k∑
i=1

(ˆ
M∩Qi

|vi|
n
n−1 dµ

)n−1
n

≤C(δ)
k∑
i=1

ˆ
M
|∇vi| dµ

=C(δ)

k∑
i=1

ˆ
M
|∇u|ρi + |u| |∇ρi| dµ

≤C(δ)

ˆ
M
|∇u| dµ+ C(δ)C ′(M0)

ˆ
M
|u| dµ , (2.2)

for a constant C ′(M0) such that |∇ρi| ≤ C ′(M0), for every i ∈ {1, . . . , k}. This clearly gives
a uniform bound on CS(1, n) for all the hypersurfaces in C1

δ(M0), depending only on M0 (in
particular, on its second fundamental form B0, as we said in the previous section) and δ > 0.

Let now see an alternate line, based on the graph representation of the hypersurfaces
M ∈ C1

δ(M0) over M0.
For every C1 function u : M → R, we have(ˆ

M
|u(y)|

n
n−1 dµ(y)

)n−1
n

=
(ˆ

M0

|u(x+ ψ(x)ν(x))|
n
n−1 JΨ(x) dµ0(x)

)n−1
n
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where JΨ is the (tangential) Jacobian of the map Ψ : M0 →M given by Ψ(x) = x+ ψ(x)ν(x)
(by the area formula, see [22, Chapter 2, Section 8]), which is given by

JΨ(x) =
√

det(dΨT
x ◦ dΨx)

and it is an easy check that, at every point x ∈M0, there holds
1

C(B0, δ)
≤ JΨ ≤ C(B0, δ) ,

for some constant C(B0, δ) > 0, where B0 is the second fundamental form of M0. Moreover,
C(B0, δ) goes to 1 as δ → 0. Notice that the fact that B0 appears here can be seen from the
expression of dΨ, that is

dΨ(x) = Id +∇ψ(x)⊗ ν + ψ(x)dν(x) = Id +∇ψ(x)⊗ ν + ψ(x)B0(x) ,

by the Gauss–Weingarten relations (1.4).
Then, by applying the Sobolev inequality holding for M0, we have(ˆ

M0

|u(x+ ψ(x)ν(x))|
n
n−1 dµ0(x)

)n−1
n ≤C(M0,B0, δ)

ˆ
M0

∣∣∇[u(x+ ψ(x)ν(x))]
∣∣ dµ0(x)

=C(M0,B0, δ)

ˆ
M
|∇u(y)| JΨ−1(y) dµ(y)

≤C(M0,B0, δ)

ˆ
M
|∇u(y)| dµ(y) .

Hence, (ˆ
M
|u|

n
n−1 dµ

)n−1
n ≤ C(M0,B0, δ)

ˆ
M
|∇u| dµ .

As before, this means that the constant C(M0,B0, δ) is a uniform bound on CS(1, n) for all
the hypersurfaces in C1

δ(M0), moreover, since C(M0,B0, δ) → 1, as δ → 0, it also shows the
continuous dependence of CS(1, n) under the C1–convergence of the hypersurfaces.

Theorem 2.1. Let M0 ⊆ Rn+1 be a smooth, compact hypersurface, embedded in Rn+1. Then, there
exist uniform bounds, depending only on M0 and δ (more precisely, on the “C1– structure” of the
immersion of M0 in Rn+1, its dimension and its second fundamental form), for all the hypersurfaces
M ∈ C1

δ(M0) on:
(i) the volume of M ,

(ii) the Sobolev constants for p ∈ [1, n) of the embeddings W 1,p(M) ↪→ Lp
∗
(M),

(iii) the Sobolev constants for p ∈ (n,∞] of the embeddings W 1,p(M) ↪→ C0,1−n/p(M),
(iv) the constants in the Poincaré–Wirtinger inequalities on M , for p ∈ [1,+∞],
(v) the Sobolev constant of the embedding W 1,n(M) ↪→ BMO(M),

(vi) all the constants in the embeddings of the fractional Sobolev spaces W s,p(M),
(vii) all the constants in the Gagliardo–Nirenberg interpolation inequalities on M .

Moreover, all these bounds go to the corresponding constants for M0, as δ → 0.

Proof.
(i) This is trivial due to the C1–closedness of M to M0.
(ii) As explained at the beginning of the section, we can estimate the constant in the

Sobolev inequality for p ∈ [1, n), by means of CS(1, n), which is uniformly bounded for
all the hypersurfaces M ∈ C1

δ(M0), by the above discussion.
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(iii) If p > n, we show that there exists a uniform constant C = C(p, n,M0,B0, δ) such that

‖u‖C0,γ(M) ≤ C‖u‖W 1,p(M) (2.3)

with γ = 1− n/p and ‖u‖C0,γ = supM |u|+ supx 6=y
u(x)−u(y)
|x−y|γ .

As before, given the partition of unity ρi and the cubes Qi, the following holds

sup
y∈M
|u(y)| ≤ sup

y∈M∩Qi

k∑
i=1

|uρi|.

Then, for every C1 function v : M → R with compact support in M ∩Qi, setting νi = ν(pi),
we have

sup
y∈M∩Qi

|v| = sup
x∈TpiM0

|v(x+ θi(x)νi)| ≤ C‖∇v‖Lp(TpiM0) ≤ C‖∇v‖Lp(M)

with C = C(p, n,M0,B0, δ), where the inequalities follows by applying the Sobolev inequal-
ity for p > n in TpiM0 ≈ Rn, then arguing as in obtaining estimate (2.1). Then, setting
vi = uρi and estimating as in getting inequality (2.2), we conclude

sup
M
|u| ≤ C(δ)

k∑
i=1

( ˆ
M
|∇vi|p dµ

)1/p

≤ C(δ)

k∑
i=1

( ˆ
M
|∇u|pρpi + |u|p |∇ρi|p dµ

)1/p

≤ C(δ)
(ˆ

M
|∇u|p dµ

)1/p
+ C(δ)C ′(M0)

( ˆ
M
|u|p dµ

)1/p
. (2.4)

Regarding the seminorm [u]C0,γ = supx 6=y
u(x)−u(y)
|x−y|γ , given two points y, y∗ ∈M , we have

|u(y∗)− u(y)| =
∣∣∣ k∑
i=1

vi(y
∗)− vi(y)

∣∣∣ ≤ k∑
i=1

|vi(y∗)− vi(y)| , (2.5)

hence, given a C1 function v : M → R with compact support in M ∩Qi, we have

|v(y∗)− v(y)| = |v(x∗ + θi(x
∗)νi(x

∗))− v(x+ θi(x)νi(x))|
≤C(n, p,M0) |x∗ + θi(x

∗)νi(x
∗)− (x+ θi(x)νi(x))|γ ‖∇v‖Lp(TpiM0)

≤C(n, p,M0) |y∗ − y|γ ‖∇v‖Lp(M) (2.6)

where the first inequality follows by arguing as in Theorem 5.6.4 in [14]). Then, collecting
inequalities (2.5) and (2.6), we conclude

|u(y∗)− u(y)| ≤
∑
|vi(y∗)− vi(y)| ≤ C(p, n, δ,M0)|y∗ − y|γ‖∇u‖W 1,p(M)

which together with inequality (2.4) give the desired estimate (2.3).
(iv) The conclusion for the Poincaré–Wirtinger inequality, for any 1 ≤ p ≤ ∞,

‖u− ũ‖Lp(M) ≤ C‖∇u‖Lp(M) ,

where ũ =
ffl
M u dµ follows by the one in Rn (Theorem 5.8.1 in [14]) and arguing exactly as

for the Sobolev inequalities.
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(v) As shown in Section 5.8.1 of [14], applying Poincaré–Wirtinger with p = 1, we get
ˆ
M
|u− ũ| dµ ≤ C(p, n, δ,M0)

ˆ
M
|∇u| dµ ≤ C(p, n, δ,M0)

(ˆ
M
|∇u|n

) 1
n
,

hence, the embedding W 1,n(M) ↪→ BMO(M) holds with auniform constant.
(vi) As for the “usual” (with integer order) Sobolev spaces, all the constants in the embed-

dings of the fractional Sobolev spaces are also uniform for this family. The proof is along
the same line, localizing with a partition of unity and using the inequalities holding in Rn
(see [20] and [21]).

(vii) Finally, we want to show that for any q, r real numbers 1 ≤ q ≤ ∞, 1 ≤ r ≤ ∞ and
j,m integers 0 ≤ j < m, there exists a constant C depending only on n, j,m, r, q, θ,M0 and δ
such that the following interpolation inequalities hold

‖∇ju‖Lp(M) ≤ C
(
‖∇mu‖Lr(M) + ‖u‖Lr(M)

)θ‖u‖1−θLq(M), (2.7)

where
1

p
=
j

n
+ θ
(1

r
− m

n

)
+

1− θ
q

for all θ ∈ [j/m, 1] such that p is nonnegative, with the exception of the case r = n
m−j 6= 1 for

which the inequality is not valid for θ = 1.
Moreover, if u : ∂F → R is a smooth function with

ffl
∂F u dµ = 0, inequality (2.7) simplifies to

‖∇ju‖Lp(∂F ) ≤ C‖∇mu‖θLr(∂F )‖u‖
1−θ
Lq(∂F ) .

We can obtain these inequalities by following the proof of Theorem 3.70 of [5] (see also
Proposition 5.1 of [19]), noticing that in such proof one only needs a bound on the vol-
ume, the Sobolev embedding theorems (that in our case hold with uniform constants, as we
saw above) and some “universal” inequalities in which the constants do not depend on the
hypersurfaces at all [5, Theorem 3.69]. �

Remark 2.2 (The fractional Sobolev spaces W s,p(M)).
At point (vi) of the theorem above we considered the fractional Sobolev space W s,p on the
hypersurfaces M ∈ C1

δ(M0), which are usually defined via local charts for M and partitions
of unity, that is, getting back to the definition with the Gagliardo W s,p–seminorms in Rn
(we refer to [4, 12, 20, 21], for details). They can be also defined equivalently by considering
directly on M the Gagliardo W s,p–seminorm of a function f ∈ Lp(M), for s ∈ (0, 1), as
follows

[f ]pW s,p(M) =

ˆ
M

ˆ
M

|f(x)− f(y)|p

|x− y|2+sp
dµ(x)dµ(y)

and setting ‖f‖W s,p(M) = ‖f‖Lp(M) + [f ]W s,p(M). Moreover, the constants giving the equiva-
lence of the two norms obtained by localization or by this direct definition are uniform for all
M ∈ C1

δ(M0). Indeed, the localization method of Section 1, is “uniform” for all M ∈ C1
δ(M0),

meaning that the number of necessary local charts is fixed and the diffeomorphisms be-
tween Rn and “corresponding” (associated to correlated local charts, that is, being a graph
on the same piece ofM0, as in our construction) local “pieces” of any different hypersurfaces
M ∈ C1

δ(M0), are uniformly close each other in C1–norm.
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3. GEOMETRIC CALDERÓN–ZYGMUND INEQUALITIES

Theorem 3.1. Let M0 ⊆ Rn+1 be a smooth, compact hypersurface, embedded in Rn+1 and 1 < p <
+∞. Then, if δ > 0 is small enough, there exists a constant C = C(M0, p, δ) such that the following
geometric Calderon–Zygmund inequality holds,

‖B‖Lp(M) ≤ C
(
1 + ‖H‖Lp(M)

)
(3.1)

for every M ∈ C1
δ(M0).

Proof. In order to show inequality (3.1), we use the graph representation of the hypersurfaces
M ∈ C1

δ(M0) over M0, for δ small enough, introduced in the first section. Thus, since M is
locally the graph of a function f : U ⊆ TpiM → R on the tangent hyperplane to M0 at the
point pi ∈ M0, we can assume that TpiM = Rn and M is given by M ∩ Qi = {(x, f(x)) :
x ∈ U ⊂ Rn}, moreover, we can also assume that U is a ball B2R ⊆ Rn of radius 2R > 0,
centered at the origin. The second fundamental form B and mean curvature H of M are then
expressed by formulas (1.2) and (1.3),

B =
Hess f√
1 + |∇f |2

H =
∆f√

1 + |∇f |2
− Hess f(∇f,∇f)(√

1 + |∇f |2
)3 .

We let ρ : Rn → [0, 1] a cut–off function with compact support in B2R and equal to 1 on BR
and we set AR = {(x, f(x)) : x ∈ BR}, A2R = {(x, f(x)) : x ∈ B2R}, then

‖B‖pLp(AR) =

ˆ
BR

|B|p
√

1 + |∇f |2 dx ≤ C
ˆ
BR

ρp|Hess f |p dx ≤ C
ˆ
Rn
|ρHess f |p dx (3.2)

andˆ
Rn
|ρHess f |p dx ≤C

ˆ
Rn
|Hess(ρf)|p dx+ C

ˆ
Rn
|2〈∇ρ|∇f〉|p dx+ C

ˆ
Rn
|fHessρ|p dx

≤C
ˆ
Rn
|Hess(ρf)|p dx+Q(f,∇f, ρ,∇ρ,Hess ρ) ,

whereQ is the sum of second and third integral. Hence, by the standard Calderon–Zygmund
estimates in Rn (see [16], for instance), we getˆ

Rn
|ρHess f |p ≤C

ˆ
Rn
|∆(ρf)|p dx+Q ≤

ˆ
Rn
|ρ∆f |p dx+Q

≤C
ˆ
Rn

∣∣∣ρH
√

1 + |∇f |2 +
ρHess f(∇f,∇f)

1 + |∇f |2
∣∣∣p dx+Q

≤C
ˆ
Rn
|ρH|p dx+ C

ˆ
Rn
|ρHess f(∇f,∇f)|p dx+Q

≤C
ˆ
Rn
|ρH|p dx+ C|∇f |2p

ˆ
Rn
|ρHess f |p dx+Q

where the constant C depends only on M0 and δ and Q = Q(f,∇f, ρ,∇ρ,Hess ρ), thus this
latter is also depending only M0 and δ.
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If δ > 0 is small enough, then C|∇f |2p < 1/2 and we getˆ
Rn
|ρHess f |p ≤ 2C

ˆ
Rn
|ρH|p dx+ 2Q ≤ 2C

ˆ
B2R

|H|p dx+ 2Q ≤ 2C‖H‖pLp(AR) + 2Q

which clearly implies, by formula (3.2),

‖B‖Lp(AR) ≤ C
(
1 + ‖H‖Lp(M)

)
.

Since the number of sets like AR covering M is fixed, we have the thesis. �

We have an analogous theorem for Schauder estimates.

Theorem 3.2. LetM0 ⊆ Rn+1 be a smooth, compact hypersurface, embedded in Rn+1 and α ∈ (0, 1].
Then, if δ > 0 is small enough, there exists a constant C = C(M0, α, δ) such that the following
geometric Schauder estimate holds,

‖B‖C0,α(M) ≤ C
(
1 + ‖H‖C0,α(M)

)
for every M ∈ C1,α

δ (M0).

Proof. Assuming that M ∈ C1,α
δ (M0) with α ∈ (0, 1], that is f ∈ C1,α(BR) (hence ∇f ∈

C0,α(BR)), we have

‖B‖C0,α(AR) ≤ C
∥∥∥∥ Hess f√

1 + |∇f |2

∥∥∥∥
C0,α(BR)

≤ C ‖f‖C2,α(BR) . (3.3)

Hence, by the standard Schauder estimates in B2R (see [16], for instance), we get

‖f‖C2,α(BR) ≤C ‖∆f‖C0,α(B2R) +Q
(
‖f‖C1,α(B2R)

)
≤C

∥∥∥∥H
√

1 + |∇f |2 +
Hess f(∇f,∇f)

1 + |∇f |2

∥∥∥∥
C0,α(B2R)

+Q
(
‖f‖C1,α(B2R)

)
≤C ‖H‖C0,α(B2R) + C ‖∇f‖2C0,α(B2R)‖Hess f‖C0,α(B2R) +Q

(
‖f‖C1,α(B2R)

)
≤C ‖H‖C0,α(B2R) + C ‖∇f‖2C0,α(B2R)‖f‖C2,α(B2R) +Q

(
‖f‖C1,α(B2R)

)
where the constant C depends only on M0 and δ.
Then, if δ > 0 is small enough, we have C ‖∇f‖2C0,α(B2R) < 1/2 and we get

‖f‖C2,α(BR) ≤ C ‖H‖C0,α(B2R) +Q ≤ C ‖H‖C0,α(M) +Q

which clearly implies, by formula (3.3),

‖B‖C0,α(AR) ≤ C
(
1 + ‖H‖C0,α(M)

)
,

where the constant C depends only on M0 and δ. Since the family of sets like AR covers all
M , this inequality holds on all M ∈ C1,α

δ (M0) and we have the thesis. �

We now consider families of n–dimensional graph hypersurfaces in M ∈ C1
δ(M0) over M0

as above, with a uniform bound ‖H‖Lp(M) ≤ CH with p ≥ n, for every M in such family (by
Theorem 3.2, if δ > 0 is small enough, this implies ‖B‖Lp(M) ≤ CB) or ‖B‖L∞(M) ≤ CB.

As in the previous section, we consider a finite family of hypercubes Qi centered at pi ∈
M0, an associated partition of unity ρi and functions θi : TpiM0 → R such that ‖θi‖C1(TpiM0) ≤
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2δ, for every i ∈ {1, . . . , k} and δ small enough. Hence, for every C2–function u : M → R we
have

‖∇2u‖pLp(M) ≤C
k∑
i=1

‖∇2(uρi)‖pLp(M∩Qi) . (3.4)

Then, for every C2 function v : M → R, with compact support in M ∩ Qi, we have, setting
νi = ν(pi),

ˆ
M∩Qi

|∇2v(y)|p dµ(y) =

ˆ
TpiM0∩Qi

∣∣(∇2v)(x+ θi(x)νi)
∣∣p√1 + |∇θi(x)|2 dx

≤ (1 + 2δ)

ˆ
TpiM0

∣∣(∇2v)(x+ θi(x)νi)
∣∣p dx .

We now compute the last integral using on M ∩ Qi the coordinates given by TpiM0 ≈ Rn,
noticing that in such coordinates the local embedding of M is simply given by x 7→ ϕ(x) =
x + θi(x)νi and the metric and the Christoffel symbols Γs`m of the connection ∇ can be ex-
pressed as

g`m(x) = δ`m +
∂θi
∂x`

(x)
∂θi
∂xm

(x) hence, Γs`m(x) = Gs`m(Hess θi(x),∇θi(x))

by formula (1.1), where Gs`m are smooth functions which are linear in Hess θi(x). It is then
easy to see, by recalling the first formula (1.4), that we can bound the Hessian Hess θi(x)
with B(x) as follows (notice that by the same formula, immediately holds also |B(x)| ≤
C(|∇θi|)|Hess θi(x)|),∣∣∣ ∂2θi

∂x`∂xm

∣∣∣ =
∣∣∣ ∂2ϕ

∂x`∂xm

∣∣∣ =
∣∣∣Γs`m ∂ϕ

∂xs
− h`mν

∣∣∣ ≤ |Gs`m(Hess θi,∇θi)||∇θi|+ |B| ,

hence, being |∇θi| ≤ δ, we conclude

|Hess θi(x)| ≤ C|Hess θi(x)||∇θi(x)|+ C|B(x)|

with a constant C depending only on M0 and δ, which implies, if δ is small enough such that
C|∇θi| < 1/2,

|Hess θi(x)| ≤ C|B(x)| .

This clearly implies the estimate

|Γs`m(x)| ≤ C|B(x)| ,

then, computing schematically, we have

(∇2v)(x+ θi(x)νi) = Hess
TpiM0
x v(x+ θi(x)νi)− Γ(x) ∗ ∇TpiM0

x v(x+ θi(x)νi) (3.5)

hence,

|(∇2v)(x+ θi(x)νi)| ≤C|Hess
TpiM0
x v(x+ θi(x)νi)|+ C|B(x)||∇v(x+ θi(x)νi)||∇θi(x)|

≤C|Hess
TpiM0
x v(x+ θi(x)νi)|+ Cδ|B(x)||∇v(x+ θi(x)νi)| .
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Applying the Calderón–Zygmund inequality in TpiM0 ≈ Rn, we getˆ
Rn

∣∣(∇2v)(x+ θi(x)νi)
∣∣p dx ≤C ˆ

Rn
|Hess

TpiM0
x v(x+ θi(x)νi)|p dx

+ Cδp
ˆ
Rn
|B(x)|p|∇v(x+ θi(x)νi)|p dx

≤C
ˆ
Rn
|∆TpiM0

x v(x+ θi(x)νi)|p dx

+ C

ˆ
M∩Qi

|v(y)|p µ(y) + Cδp
ˆ
M∩Qi

|B|p|∇v(y)|p dµ(y) .

Contracting equation (3.5) with the inverse of the metric and estimating, we have

|∆TpiM0
x v(x+ θi(x)νi)| ≤ C|(∆v)(x+ θi(x)νi)|+ C|B(x)||∇v(x+ θi(x)νi)|

thus, by the previous inequalityˆ
M∩Qi

|∇2v(y)|p dµ(y) ≤C
ˆ
Rn
|(∆v)(x+ θi(x)νi)|p dx+ C

ˆ
M∩Qi

|v(y)|p µ(y)

+ Cδp
ˆ
M∩Qi

|B|p|∇v(y)|p dµ(y)

≤C
ˆ
M∩Qi

|∆v(y)|p dµ(y) + C

ˆ
M∩Qi

|v(y)|p µ(y)

+ Cδp
ˆ
M∩Qi

|B|p|∇v(y)|p dµ(y) .

Getting back to inequality (3.4), we obtain

‖∇2u‖pLp(M) ≤C
k∑
i=1

‖∇2(uρi)‖pLp(M∩Qi)

≤C
k∑
i=1

ˆ
M∩Qi

|∆(uρi)|p dµ+ C

ˆ
M∩Qi

|uρi|p dµ+ Cδp
ˆ
M∩Qi

|B|p|∇(uρi)|p dµ

≤C
k∑
i=1

ˆ
M∩Qi

|∆u|p dµ+ C

ˆ
M∩Qi

(
|u|p + |∇u|p

)
dµ

≤C
ˆ
M
|∆u|p dµ+ C

ˆ
M

(
|u|p + |∇u|p

)
dµ , (3.6)

with C = C(M0, ρi,∇ρi,Hess ρi, p, δ, ‖B‖L∞(M)). Interpolating the integral of |∇u|p and tak-
ing into account the uniform Sobolev inequalities of the previous section, we conclude that
for any p ∈ (1,+∞), if δ > 0 is small enough, there hold

‖∇2u‖Lp(M) ≤ C‖∆2u‖Lp(M) + C‖u‖Lp(M) (3.7)

and
‖u‖W 2,p(M) ≤ C‖∆2u‖Lp(M) + C‖u‖Lp(M) (3.8)

where the constant C depends only on M0, p, δ and ‖B‖L∞(M).
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Remark 3.3. Notice that if p < n, we can modify the chain of inequalities (3.6) as follows,

‖∇2u‖pLp(M) ≤C
k∑
i=1

‖∇2(uρi)‖pLp(M∩Qi)

≤C
k∑
i=1

ˆ
M∩Qi

|∆(uρi)|p dµ+ C

ˆ
M∩Qi

|uρi|p dµ+ Cδp
ˆ
M∩Qi

|B|p|∇(uρi)|p dµ

≤C
k∑
i=1

ˆ
M∩Qi

|∆(uρi)|p dµ+ C

ˆ
M∩Qi

|uρi|p dµ

+ Cδp
(ˆ

M∩Qi
|B|n dµ

)p/n(ˆ
M∩Qi

|∇(uρi)|np/(n−p) dµ
)(n−p)/n

≤C
k∑
i=1

ˆ
M∩Qi

|∆(uρi)|p dµ+ C

ˆ
M∩Qi

|uρi|p dµ

+ Cδp‖B‖pLn(M∩Qi)‖∇
2(uρi)‖pLp(M∩Qi) .

Hence, arguing as before, it is easy to conclude that inequalities (3.7) and (3.8) hold with a
constant C = C(M0, p, δ, ‖B‖Ln(M)), if δ > 0 is small enough.

With a similar argument, computing as in Theorem 3.1, we have analogous Schauder
estimates for C2,α functions u : M → R, with M ∈ C1,α

δ (M0) and δ > 0 is small enough,

‖u‖C2,α(M) ≤ C‖∆2u‖C0,α(M) + C‖u‖C0,α(M) (3.9)

where the constant C depends only on M0, α ∈ (0, 1], δ and ‖B‖C0,α .

Remark 3.4. By localization, computing in coordinates, it is easy to generalize estimates (3.7), (3.8)
and (3.9) also to tensors, under the same hypotheses. The same holds also for all the esti-
mates of the previous section (see [19] for an example of how this can be done).

3.1. Geometric higher order Calderón–Zygmund estimates.
We let M0 as above and p > 1, we want to deal with ‖∇kB‖Lp(M), assuming that we have

a uniform bound ‖H‖Lq(M) ≤ CH with q > n, whereM is an n–dimensional graph hypersur-
faces over M0 in C1

δ(M0) as above, if δ > 0 is small enough, which implies ‖B‖Lq(M) ≤ CB,
by Theorem (3.1).
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Using (1.5) and taking into account Remark 3.4, we have

‖∇kB‖Lp(M) = ‖∇i1 . . .∇ikB‖Lp(M)

≤C‖∆∇i3 . . .∇ikB‖Lp(M) + C‖∇i3 . . .∇ikB‖Lp(M)

=C‖g`m∇`∇m∇i3 . . .∇ikB‖Lp(M) + C‖∇k−2B‖Lp(M)

≤C‖g`m∇`∇i3∇m . . .∇ikB‖Lp(M) + C‖∇k−2B‖Lp(M)

+ ‖g`m∇`(Riem ?∇i4 . . .∇ikB)i3m‖Lp(M)

≤C‖g`m∇`∇i3∇i4∇m . . .∇ikB‖Lp(M) + C‖∇k−2B‖Lp(M)

+ ‖g`m∇`(Riem ?∇i4 . . .∇ikB)i3m‖Lp(M)

+ ‖g`m∇`∇i3(Riem ?∇i5 . . .∇ikB)i4m‖Lp(M)

. . .

≤C‖g`m∇`∇i3∇i4 . . .∇ik∇mB‖Lp(M) + C‖∇k−2B‖Lp(M)

+ C

k−2∑
s=0

‖∇sRiem ?∇k−2−sB‖Lp(M)

≤C‖g`m∇i3∇`∇i4 . . .∇ik∇mB‖Lp(M) + C‖∇k−2B‖Lp(M)

+ C

k−2∑
s=0

‖∇sRiem ?∇k−2−sB‖Lp(M)

. . .

≤C‖g`m∇i3∇i4 . . .∇ik∇`∇mB‖Lp(M) + C‖∇k−2B‖Lp(M)

+ C
k−2∑
s=0

‖∇sRiem ?∇k−2−sB‖Lp(M)

=C‖∇k−2∆B‖Lp(M) + C‖∇k−2B‖Lp(M)

+ C

k−2∑
s=0

‖∇sRiem ?∇k−2−sB‖Lp(M) (3.10)

where the symbol ? means a sum of terms each one given by some contraction with the
inverse of the metric gij .
By the formula (1.7) for the Riemann tensor, we can write

‖∇kB‖Lp(M) ≤C‖∇k−2∆B‖Lp(M) + C‖∇k−2B‖Lp(M) + C

k−2∑
s=0

‖∇sB2 ?∇k−2−sB‖Lp(M)

≤C‖∇k−2∆B‖Lp(M) + C‖∇k−2B‖Lp(M) + C

k−2∑
s,r,t=0

s+r+t=k−2

‖∇sB ?∇rB ?∇tB‖Lp(M) .

Now, by Simons’ identity (1.6), we have

∇k−2∆B = ∇kH +∇k−2(HB2)−∇k−2(|B|2B)
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hence

‖∇k−2∆B‖Lp(M) ≤ ‖∇kH‖Lp(M) + C
k−2∑
s,r,t=0

s+r+t=k−2

‖∇sB ?∇rB ?∇tB‖Lp(M) .

Using this estimate in inequality (3.10), we conclude

‖∇kB‖Lp(M) ≤C‖∇kH‖Lp(M) + C‖∇k−2B‖Lp(M) + C
k−2∑
s,r,t=0

s+r+t=k−2

‖∇sB ?∇rB ?∇tB‖Lp(M) .

We now estimate any of the term in the last sum as follows: assuming that p(k + 1) > n,
otherwise we estimate every term∇sB ?∇rB ?∇tB in L(n+k)/(k+1)(M) and then bound with
this latter its norm in Lp(M) (the volumes are equibounded for all M ∈ C1

δ(M0)), we have

‖∇sB ?∇rB ?∇tB‖Lp(M) ≤ C‖∇sB‖Lαp(M)‖∇rB‖Lβp(M)‖∇tB‖Lγp(M) , (3.11)

with

α =
k + 1

s+ 1
, β =

k + 1

r + 1
, γ =

k + 1

t+ 1
,

hence, 1/α + 1/β + 1/γ = 1. Moreover, using the interpolation estimates (2.7) (extended to
tensors – see Remark 3.4), we have

‖∇sB‖Lpα(M) ≤C
(
‖∇kB‖Lp(M) + ‖B‖Lp(M)

)θα‖B‖1−θαLq(M) ,

‖∇sB‖Lpβ(M) ≤C
(
‖∇kB‖Lp(M) + ‖B‖Lp(M)

)θβ‖B‖1−θβLq(M) ,

‖∇sB‖Lpγ(M) ≤C
(
‖∇kB‖Lp(M) + ‖B‖Lp(M)

)θγ‖B‖1−θγLq(M) ,

with
1

pα
=
s

n
+ θα

(1

p
− k

n

)
+

1− θα
q

,

1

pβ
=
r

n
+ θβ

(1

p
− k

n

)
+

1− θβ
q

,

1

pγ
=
t

n
+ θγ

(1

p
− k

n

)
+

1− θγ
q

,

hence,

1

p
=

1

pα
+

1

pβ
+

1

pγ
=
k − 2

n
+ (θα + θβ + θγ)

(1

p
− k

n

)
+

3− θα − θβ − θγ
q

,

which implies, letting Θ = (θα + θβ + θγ),

1

p
=
k − 2

n
+ Θ

(1

p
− k

n

)
+

3−Θ

q
<
k − 2

n
+ Θ

(1

p
− k

n

)
+

3−Θ

n
=
k + 1

n
+ Θ

(1

p
− k + 1

n

)
.

As we assumed p(k + 1) > n, it follows Θ < 1.
Thus, putting these estimates in inequality (3.11), we conclude

‖∇sB?∇rB?∇tB‖Lp(M) ≤ C
(
‖∇kB‖Lp(M)+‖B‖Lp(M)

)Θ‖B‖3−Θ
Lq(M) ≤ C

(
‖∇kB‖Lp(M)+‖B‖Lp(M)

)Θ
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as we said that ‖B‖Lq(M) is uniformly bounded for all M ∈ C1
δ(M0).

Hence, by means of Young inequality, as Θ < 1, we estimate

‖∇kB‖Lp(M) ≤C‖∇kH‖Lp(M) + C‖∇k−2B‖Lp(M) + C
(
‖∇kB‖Lp(M) + ‖B‖Lp(M)

)Θ
≤C‖∇kH‖Lp(M) + C‖∇k−2B‖Lp(M) + Cε‖∇kB‖Lp(M) + C‖B‖Lp(M) + C

and choosing ε > 0 such that Cε < 1/2, after “absorbing” the term Cε‖∇kB‖Lp(M) in the left
hand side and estimating ‖B‖Lp(M) with C(1 + ‖H‖Lp(M)), we obtain

‖∇kB‖Lp(M) ≤ C‖∇kH‖Lp(M) + C‖∇k−2B‖Lp(M) + C‖H‖Lp(M) + C .

The term ‖∇k−2B‖Lp(M) can be treated analogously, by interpolation between ‖∇kB‖Lp(M)

and ‖B‖Lp(M) (it is actually easier to be dealt with), hence we finally have the estimate

‖∇kB‖Lp(M) ≤ C‖∇kH‖Lp(M) + C‖H‖Lp(M) + C .

In particular, if we have a uniform bound ‖H‖L∞(M) ≤ CH, there holds

‖∇kB‖Lp(M) ≤ C
(
1 + ‖∇kH‖Lp(M)

)
and

‖B‖Wk,p(M) ≤ C
(
1 + ‖H‖Wk,p(M)

)
.

for any M ∈ C1
δ(M0), with δ > 0 small enough.

4. OTHER INEQUALITIES

Let M0 be a smooth and compact hypersurface embedded in Rn+1, bounding a domain
E0 and ε > 0 the width of a tubular neighborhood Nε of M0. For any δ ∈ (0, ε), we consider
the family of domains

C1
δ (E0) =

{
E = Ψ(E0) :

Ψ : E0 → E is a diffeomorphism with ‖Ψ− Id‖C1(E0) < δ

Ψ(x) = x+ ψ(x)ν0(x) for every x ∈M0 and ‖ψ‖C1(M0) < δ

}
where ν0 is the unit normal vector field pointing outward of M0.
Then, the Jacobian of the map Ψ : E0 → E (and also the tangencial one of its restriction to
M0) is bounded from above and from below by some constants which depend only on δ and
the second fundamental form of M0 (see Section 2 for details).

It clearly follows that if E ∈ C1
δ (E0), then M = ∂E = Ψ(M0) ∈ C1

δ(M0). Moreover, if
M ∈ C1

δ′(M0), then there exists a smooth function ψ : M0 → R with ‖ψ‖C1(M0) < δ′, such that
M =

{
x+ψ(x)ν(x) : x ∈M0

}
, then we can construct a smooth diffeomorphism Ψ : E0 → E

as follows (E is the domain bounded by M ):

Ψ(x) =

{
x if x ∈ E0 \Nε

x+ Θ(d0(x)/ε)ψ(π0(x))∇d0(x) if x ∈ E0 ∩Nε

where d0 is the signed distance function from M0 (which is negative in E0) and t 7→ Θ(t) is
a smooth monotone nonincreasing function, defined on R, such that it is equal to 1 if t ≤ 0
and to 0 if t ≥ 1/2, with |Θ′(t)| ≤ 3, for every t ∈ R. So, it follows

‖Ψ− Id‖C1(E0) = ‖Θ(d0(·)/ε)ψ(π0(·))∇d0(·)‖C1(E0) ≤ C
(
ε,M0, ‖Θ‖C1(R)

)
‖ψ‖C1(M0) .

Hence, fixed any δ ∈ (0, ε), depending the constant C only on M0 and ε, possibly choosing
δ′ small enough, the set E belongs to C1

δ (E0).
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We now discuss some uniform inequalities involving also “the interiors” of the hypersur-
faces.

4.1. Trace inequalities.
Letting E0, M0, ε > 0 and δ > 0 as above and any E ∈ C1

δ (E0) (with associated smooth
diffeomorphism Ψ : E0 → E), it is well known that, for s > 1/2, the trace of any function
u ∈ Hs(E) (a real function on M = ∂E, which we still simply denote by u, that coincides
with the restriction of u to M , if u ∈ C0(E)) is well defined and that the following trace
inequality holds (see [24, Proposition 4.4.5]),

‖u‖Hs−1/2(M) ≤ CE‖u‖Hs(E) (4.1)

(see also [14, 18]). In particular, for s = 1, we have that for all the function u ∈ H1(E), there
holds

‖u‖2
H1/2(M)

≤ CE
ˆ
E
u2 + |∇u|2 dx ,

which implies

‖u− ũ‖2
H1/2(M)

≤ CE
ˆ
E
|∇u|2 dx ,

where ũ =
ffl
E u dx.

We want to show that these inequalities hold with uniform constants C = C(M0, s, n, δ), for
every E ∈ C1

δ (E0).
As in Section 2, we use the graph representation of the hypersurfaces M ∈ C1

δ(M0) over
M0 in order to pass from a Sobolev norm over M to the same norm over M0, that is, being
‖ψ‖C1(M0) bounded by a constant depending on δ and the second fundamental form of M0,
we have

‖u‖Hs−1/2(M) ≤ C(M0,B0, s, δ)‖u‖Hs−1/2(M0) , (4.2)

where B0 is the second fundamental form of M0. Then, by means of trace inequality (4.1) for
E0 (and M0), we have

‖u‖Hs−1/2(M0) ≤ CE0‖u‖Hs(E0) . (4.3)

Finally, by the boundedness of the Jacobian of Ψ (from both sides) and of ‖Ψ− Id‖C1(E0) by
constants depending on δ, we get

‖u‖Hs(E0) ≤ C(E0, s, δ)‖u‖Hs(E) , (4.4)

hence, putting together inequalities (4.2), (4.3) and (4.4), we have that the constant CE in the
trace inequality (4.1) is uniform, for every E ∈ C1

δ (E0).

4.2. Inequalities for harmonic extensions.
We let E0, M0, ε > 0 and δ > 0 as above and E ∈ C1

δ (E0) (with associated smooth diffeomor-
phism Ψ : E0 → E), with M = ∂E ∈ C1

δ(M0).
We denote by u : E → R the harmonic extension of a function f : M → R in Hs(M), for
s ≥ 1/2. We aim to show that the following inequality (see [24, Proposition 5.1.7])

‖u‖Hs+1/2(E) ≤ CE‖f‖Hs(M) (4.5)
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holds with a uniform constant C = C(E0, s, δ), for every E ∈ C1
δ (E0).

Arguing as above, we end up with the following inequalities:

‖u‖Hs+1/2(E) ≤C(E0, s, δ)‖u‖Hs+1/2(E0) ,

‖u‖Hs+1/2(E0) ≤CE0‖f‖Hs(M0) ,

‖f‖Hs(M0) ≤C(M0,B0, s, δ)‖f‖Hs(M) .

Putting them together, we have that the constant CE in the “extension” inequality (4.5) is
uniform, for every E ∈ C1

δ (E0).
We notice that, in the particular case s = 1/2, we obtain for all f ∈ H1/2(M),ˆ

E
|∇u|2 dx ≤ C(E0, δ)‖f‖2H1/2(M)

,

for every E ∈ C1
δ (E0).

5. SOME REMARKS

We collect here some remarks about the conclusions of the previous sections.
• All the constants depend on the geometric properties of M0, in particular on the

maximal width of a tubular neighbourhood, its volume and its second fundamental
form. Hence, uniformly controlling such quantities gives uniform estimates for larger
families of hypersurfaces, see [7–9, 11, 17] for a deeper and detailed discussion).
• Notice that for Sobolev, Poincaré, interpolation, trace and “harmonic extension” in-

equalities, we do not ask δ > 0 to be small, but just δ < ε, while for the Calderón–
Zygmund–type inequalities, that we worked out in Section 3, a smallness condition
on δ is necessary for the conclusions.
• All the inequalities holds uniformly also for families of immersed–only hypersur-

faces (non necessarily embedded), if they can be expressed as graphs on a fixed com-
pact, smooth hypersurface, possibly immersed–only too.
• It is easy to see that everything we did still works also if the ambient is a flat, complete

Riemannian manifold, in particular in any flat torus Tn. With some effort, the results
can be generalized to graph hypersurfaces in any complete Riemannian manifold,
then the constants also depends on the geometry (in particular, on the curvature) of
such an ambient space.
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