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Abstract. In this paper we prove a closure result for globally hyperbolic spacetimes satisfying,
at a certain time, natural assumptions on the deceleration, the pressure and the Hubble constant.
The main tool that we use is a general Bonnet-Myers type result.
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1. Introduction

An interesting and fascinating question in cosmology is the following: is the universe closed
(i.e. compact and without boundary) or not and what topology does it have? The picture in
completely clear in the context of the standard model of cosmology given by the Friedmann-
Lemaitre-Robertson-Walker (FLRW) spacetime solutions of the Einstein equation. Indeed, in
this case, the topology of the three-dimensional spatial manifold is fixed a priori since it has
constant sectional curvature K = −1, 0, 1. In particular it is closed provided K = 1. Hence, in
the FLRW cosmologies the closure question is trivial. We mention that a recent analysis in [8]
suggests a closed universe. Motivated by this and the recent results in [11] where the authors
address these questions using a standard tool in differential geometry known as Bonnet-Myers
theorem, in this paper we firstly prove a Bonnet-Myers type result and then we apply it to show
a closure result for general globally hyperbolic spacetimes.

1.1. A Bonnet-Myers type result. We first recall that the classical Bonnet-Myers theorem
states the following: given a complete Riemannian manifold (Mn, g), n ≥ 3, whose Ricci curva-
ture satisfies

Ric ≥ (n− 1)λg ,

for some λ > 0. Then

diam(Mn, g) ≤ π√
λ
. (1.1)

In particular Mn is closed and has finite fundamental group (see e.g. [16, Theorem 6.3.3]). The
Bonnet-Myers theorem has been investigated a lot by the Riemannian geometry community; in
particular a similar result turns out to be true if one replaces the Ricci curvature by the so-called
m−Bakry-Émery Ricci tensor:

Ricmf := Ric +∇2f − 1

m
df ⊗ df ,

where m > 0 and f : M → R is a smooth function called the potential. Indeed, given a complete
Riemannian manifold (Mn, g), n ≥ 3 whose m−Bakry-Émery Ricci tensor satisfies

Ricmf ≥ (n+m− 1)λg , (1.2)
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for some λ > 0, then (1.1) holds (see [17] and also [1, 14, 18]). If one takes f = − log u, for some
smooth and positive function u : M → R, (1.2) reads as follows

Ric ≥ ∇
2u

u
+

(
1 +

1

m

)
du⊗ du
u2

+ (n+m− 1)λg .

It is well known that, if the Ricci (or the m-Bakry-Emery Ricci) tensor is not uniformly positive,
the closeness of the manifold is not guaranteed. However, our first result shows that this is not
the case if the potential u is a positive supersolution to a suitable elliptic PDE. More precisely,
we prove the following:

Theorem 1.1. Let (Mn, g), n ≥ 3, be a complete Riemannian manifold such that

Ric ≥ α∇
2u

u
+ β

du⊗ du
u2

+Q in M , (1.3)

where α, β ∈ R, Q is a symmetric two tensor and u ∈ C∞(M) satisfies

u > 0, −∆u ≥ V u+ γ
|∇u|2

u
in M , (1.4)

where γ ∈ R, V ∈ C∞(M). Assume that, there exists k ∈ R such that for all i = 1, . . . , n,

Qii + kV ≥ (n− 1)λ , (1.5)

for some λ > 0,
k (γ + 1− α) ≥ 0 (1.6)

and

α+ β + k(γ + 1)− (n− 1)
k2

4
> 0 . (1.7)

Then Mn is closed, has finite fundamental group and its diameter satisfies

diam(Mn, g) ≤ π

√√√√√ 1

λ

1 +
[2α− k(n− 3)]2

4(n− 1)
[
α+ β + k(γ + 1)− (n− 1)k

2

4

]
 .

Finally, if in addition V ≥ 0 and γ ≥ 0, then V ≡ 0 on Mn.

Clearly, taking u ≡ const and V ≡ 0 (or α = β = γ = k = 0 and Q = (n− 1)λg), this result
recovers the classical Bonnet-Myers theorem. If V has a sign, the condition (1.5) permits a
negative lower bound on the tensor Q. Being the assumptions of previous theorem very general,
we expect that it can be used in different contexts. An immediate corollary is the following
extension of a classical Cheng’s result:

Corollary 1.2. Let (Mn, g), n ≥ 3, be a complete Riemannian manifold with Ric ≥ −(n− 1).
If there exists a positive solution u ∈ C∞(M) of

−∆u ≥ µu
for some µ > 0, then

µ ≤ (n− 1)2

4
.

This corollary extends the well known upper bound for the first eigenvalue of −∆ obtained
by Cheng [5]. A comparison argument shows that the the previous estimate follows by the
aforementioned Cheng’s result (see [13, Chapter 9]), however our proof does not rely on it (and
actually gives an alternative approach on the problem).

The proof of Theorem 1.1 is based on a conformal change of the metric g via the function u
and is inspired by the proofs of [9, Theorem 1] and of [4, Theorem 1.2], in the context of stable
constant mean curvature hypersurfaces and of finite index minimal hypersurfaces, respectively.
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In this context we recover [4, Corollary 1.3] indeed by taking u the stability function, V = |A|2,
α = β = γ = 0, k = n−1

n and Q = −A2. We refer to [4] for further details.

In the second part of the paper we apply Theorem 1.1 to globally hyperbolic spacetimes.

1.2. Application to General Relativity. A general solution to the Einstein equation, usually
called a spacetime, is a smooth, connected, four-dimensional Lorentzian manifold (X4, γ) with
signature (−,+,+,+) satisfying

Rαβ −
1

2
Rγαβ = Tαβ , (1.8)

where Rαβ, R := γαβRαβ denote the Ricci and the scalar curvature of (X4, γ) and T is a
divergence-free, symmetric two tensor called the total stress-energy tensor. Note that, in stan-
dard notations, the tensor T can be decomposed in the following way

Tαβ =
8πG

c4
Tαβ − Λγαβ ,

where G is the Newtonian constant of gravitation, c the speed of light in vacuum, T is the stress-
energy tensor, and Λ is the cosmological constant. To avoid undesirable pathologies of the causal
structure of the spacetime it is customary to postulate the existence of a Cauchy hypersurface
M3 ⊂ X4, i.e. a hypersurface M3 with the property that any causal curve intersects it at
precisely one point. Spacetimes (X4, γ) with this property are called globally hyperbolic and
are, in particular, stable causal, i.e. they allow the existence of a globally defined differentiable
function t whose gradient is time-like (see [3] and also [7, 2]). We call t a time function and
the foliation given by its level surfaces a t−foliation. Topologically, a spacetime foliated by the
level surfaces of a time function is diffeomorphic to a product manifold I ×M3 where I ⊂ R
and M3 is a three-dimensional smooth manifold without boundary, usually called the slice (see
[6]). Relative to this parametrization the spacetime manifold (X4, γ) takes the form

(X4, γ) = (I ×M3,−N2(t, x)dt2 + gij(t, x)dxidxj) ,

where t = x0 ∈ I and x = (x1, x2, x3) are arbitrary coordinates on the slice and i, j = 1, 2, 3.
The function N(t, x) is called the lapse function of the foliation and gij its first fundamental
form. We will denote by

Mt = {t} ×M3

the leaves of the foliation and by ν the future directed unit normal given by

ν =
∂t
N

:= ∂t .

The second fundamental form h of the foliation is given by

hij = − 1

2N
∂tgij , (1.9)

and we denote with H the mean curvature of the foliation, i.e. H = gijhij . In this notation, it
is useful to introduce the following well known terminology concerning the stress-energy tensor
T :

8πG

c4
Tνν =: ρ,

8πG

c4
Tii =: pi, i = 1, 2, 3,

where ρ and pi are called the energy density and the principal pressures, respectively (see e.g.
[12, Chapter 4.3]).

As already observed in [11, Introduction], in the globally hyperbolic setting Gauss equations
satisfied by the slice M3 ⊂ X4 provide a formula for a weighted version of the Ricci tensor, the
so-called Bakry-Émery Ricci tensor, which relates it to the matter content (T ) and the intrinsic
geometry (h). This allows us to apply Theorem 1.1 in this setting under suitable assumptions
on the leave of the foliation Mt0 at some t0 ∈ I. We refer to Section 3 for further details.
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Before presenting our results, we recall some well-known parameters (actually functions)
which describe the kinematic of cosmological expansion in a FLRW spacetime. In this setting
the metric of the spacetime (X4 = I ×M3, γ) is given by

γ = −dt2 + a(t)2gK (1.10)

where a is a positive smooth function and gK is a metric of constant sectional curvature equal
to K on M3. In the previous notation, we have N ≡ 1, ∂t = ∂t and g = a(t)2gK . The Hubble
parameter and the deceleration parameter are defined as follows

H(t) :=
a′(t)

a(t)
, q(t) := −a

′′(t)a(t)

a′(t)2
.

Note that the Hubble parameter and the mean curvature are related by the following H = −1
3H.

Moreover, given a point x ∈M and a tangent vector V ∈ TxM , we have

|V | :=
√
g(V, V ) = a(t)

√
gk(V, V ) ,

and therefore

|V |′′|V | = −q(|V |′)2.
This simple relation on the FLRW cosmological model motivates the following:

Definition 1.3. Let (X4, γ) = (I ×M3,−N2dt2 + g) be a globally hyperbolic spacetime. We
define

• the deceleration parameter of the spacetime as

q(t) := inf

{
q ∈ R : ∂

2
tt|V ||V | |(t,x) ≤ −q

(
∂t|V |

)2
|(t,x)

,∀x ∈M, ∀V ∈ TxM
}

;

• the Hubble parameter of the spacetime as

H(t) :=
√

inf
Mt

H2.

• the pressure parameter of the spacetime as

P(t) := max
i=1,2,3

(
sup
Mt

pi

)
.

Remark 1.4. We recall that, given a smooth space curve, the length functional is defined as

L(σ) :=

∫
σ
|σ̇| .

We observe that the condition q(t0) = 0 for some t0 ∈ I is equivalent to fact that the length of
all space curves is concave in the proper time, i.e. for all curves σ : J ⊂ R→M3 we have

∂
2
ttL(σ) |t0

=

∫
σ
∂
2
tt|σ̇| |t0 ≤ 0 .

More in general, it can be shown, by using Hölder inequality, that the following differential
inequality holds

L(σ) ∂
2
ttL(σ) ≤ −q(t) ∂tL(σ)2 ∀t ∈ I.

It can be shown that a FLRW metric (1.10) satisfies the Einstein equation (1.8) if and only
if {

a′(t)2

a(t)2
= 1

3Tνν −
K
a(t)2

a′′(t)
a(t) = −1

2Tii −
1
6Tνν
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for all i = 1, 2, 3. Therefore a simple computation shows that

q =
1

2
+
a2Tii +K

2a2H2
=

1

2
+
a2(pi − Λ) +K

2a2H2

for all i = 1, 2, 3, provided H2 > 0. In particular, we have that

q(t0) >
1

2
, pi(t0) ≤ Λ and H(t0)

2 > 0 =⇒ K > 0, (1.11)

that is, the spacetime is closed.
This simple observation motivates the following result which applies to general globally

hyperbolic spacetimes.

Theorem 1.5. Let (X, γ) = (I ×M3,−N2dt2 + g) be a globally hyperbolic spacetime such that

a) q(t0) >
1

2
b) P(t0) ≤ Λ(t0) c) H(t0)

2 > 0 ,

for some t0 ∈ I. Then M3 is compact. In addition, M3 is diffeomorphic to a quotient of S3 and
its diameter satisfies

diam(M3, g |t0
) ≤ π

H(t0)

√
8(10q + 4)

3(2q − 1)(2q + 1)
.

We point out that a), b), c) are the natural generalizations of the assumption in (1.11) that
guarantee the closure result for FLRW spacetime.

An important case in which our result applies is in the context of a perfect fluid spacetime.
In this setting we have a globally hyperbolic spacetime with the tensor T satisfying

Tνν = ρ+ Λ , Tνi = 0 , Tij = (p− Λ) gij , (1.12)

where ρ = ρ(t, x) is the energy density and p = p(t, x) is the pressure of the fluid (in the previous
notation pi = p for all i = 1, 2, 3). It is well known that the pressure of perfect fluids depends
only on time, p = p(t) = P(t). This follows from the Bianchi identity applied to (1.8) (see e.g.
[2, equation (5.2)]). With the previous notations we have the following

Corollary 1.6. Every perfect fluid spacetimes with q(t0) > 1/2, p(t0) ≤ Λ(t0) and H(t0)
2 > 0,

for some t0 ∈ I, is compact.

In general, we can assume that the pressure and the energy density satisfy, for some function
ω = ω(t, x), the following equation of state:

p = ωρ.

Special cases of interest in cosmology are when ω = ω(t, x) is constant; in particular we can
distinguish the following cases: radiation dominated when ω = 1

3 , matter dominated when ω = 0
and vacuum energy dominated when ω = −1. The assumption on the pressure in Corollary 1.6
follows if ω ≤ 0 and Λ ≥ 0.

Finally, we deal also with energy-decelerating spacetimes. Indeed, it is natural to consider,
instead of the length functional, the energy functional of space curves:

E(σ) :=

∫
σ
|σ̇|2 .

This functional measures the kinetic energy of a particle traveling along σ with speed given by
σ̇. In analogy to the definition of the deceleration parameter and to what we said in Remark
1.4, we introduce the following:
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Definition 1.7. Let (X4, γ) = (I ×M3,−N2dt2 + g) be a globally hyperbolic spacetime and let
t0 ∈ I. We say that Mt0 is energy–decelerating in all directions if the energy of all space curves
is concave in the proper time, i.e. for all curves σ : J ⊂ R→M3 we have

∂
2
ttE(σ) |t0

:=

∫
σ
∂
2
tt|σ̇|2|t0

≤ 0,

where | · | :=
√
g(·, ·).

Under this condition, we prove the following:

Theorem 1.8. Let (X, γ) = (I ×M3,−N2dt2 + g) be a globally hyperbolic spacetime with total
stress-energy tensor T . Assume that there exists t0 ∈ I such that,

a) Mt0 is energy–decelerating in all directions;
b) Tii − kTνν − 1+k

2 tr(T ) ≥ 0 on Mt0, for all i = 1, 2, 3 and for some

0.59 '
√

43− 3

6
< k < 1 +

√
3;

c) H(t0)
2 > 0.

Then M3 is compact. In addition, M3 is diffeomorphic to a quotient of S3 and its diameter
satisfies

diam(M3, g |t0
) ≤ 6π

H(t0)

√
(3 + 2k − k2)(4 + 3k)

(2 + 2k − k2)(18k2 + 18k − 17)
.

In particular, in the context of perfect fluid spacetimes, an analogous of Corollary 1.6 can
be proved.

2. A Bonnet-Myers type result: proof of Theorem 1.1 and Corollary 1.2

Proof of Theorem 1.1. Let k > 0 and consider the conformal metric

g̃ = u2kg.

Given a reference point o ∈M and ρ > 0, we want to construct a g̃−minimizing geodesic γ̃ in the
geodesic ball (of g) Bρ(o), joining o to ∂Bρ(o) (see. In order to do this we consider uρ := u+ ηρ,
where ηρ is a smooth function such that ηρ ≡ 1 in Bρ+1(o)

c and ηρ ≡ 0 in Bρ(o). Since Since uρ
is uniformly bounded below away from zero, the metric

g̃ρ = u2kρ g

is complete, and thus there exists a g̃ρ−minimizing geodesic connecting o to ∂Bρ(o). Now, by
compactness of ∂Bρ(o) we can define γ̃ to be the shortest among all the g̃ρ−minimizing geodesics
constructed previously connecting o to ∂Bρ(o). We remark that by construction γ̃ is contained
in Bρ(o), since if γ̃ would escape from Bρ(o) then there would be at least another point on
∂Bρ(o), thus contradicting the previous construction. Finally, since uρ = u in Bρ we have that
γ̃ is g̃−minimizing (this construction appeared in [10]).

Let l be the g−length of γ̃. Then l ≥ ρ and in order to prove the theorem it is enough to
show that

l ≤ C
for some C = C(n, α, β, γ, λ, k) > 0.

Let s and s̃ be the arc lengths with respect to the metric g and g̃, respectively. We denote
with R and R̃ the curvature tensors of M with respect to g and to g̃. We choose a basis{
ẽ1 = ∂γ̃

∂s̃ , ẽ2, . . . , ẽn

}
orthonormal for the metric g̃ such that ẽ2, . . . , ẽn are parallel along γ̃.
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The basis
{
e1 = ∂γ̃

∂s , e2 = ukẽ2, . . . , en = ukẽn

}
is orthonormal for the the metric g. Denote by

R11 and R̃11 the Ricci curvatures in the direction of e1 for the metric g and g̃, respectively.
Since γ̃ is g̃−minimizing, by the second variation formula, one has∫ l̃

0

[
(n− 1)(ϕs̃)

2 − R̃11ϕ
2
]
ds̃ ≥ 0 , (2.1)

for any smooth function ϕ such that ϕ(0) = ϕ(l̃) = 0, where l̃ denotes the g̃-length of γ̃.
As proved in [9, Appendix],

R̃11 = u−2k
{
R11 − k(n− 2)(lnu)ss − k

∆u

u
+ k
|∇u|2

u2

}
. (2.2)

From (1.3) we obtain

R11 ≥ α
∇2

11u

u
+ β

u2s
u2

+Q11 , (2.3)

where ∇2
11u and Q11 denotes the Hessian of u and the tensor Q in the direction e1, respectively.

Actually, (2.3) can be rewritten in the following way

R11 ≥ α∇2
11(lnu) + (α+ β)(lnu)2s +Q11 . (2.4)

From [9, Formula (13)] we deduce that

∇2
11(lnu) = ∇2(lnu)

(
∂γ̃

∂s
,
∂γ̃

∂s

)
= (lnu)ss −

(
∇ ∂γ̃

∂s

∂γ̃

∂s

)
lnu = (lnu)ss − k|(∇ lnu)⊥|2 ,

hence, (2.4) becomes

R11 ≥ α(lnu)ss − αk|(∇ lnu)⊥|2 + (α+ β)(lnu)2s +Q11 . (2.5)

Plugging (2.5) in (2.2) we have

R̃11 ≥ u−2k
{

[α− k(n− 2)] (lnu)ss − αk|∇(lnu)⊥|2 + (α+ β)(lnu)2s +Q11 − k
∆u

u
+ k
|∇u|2

u2

}
.

Furthermore, from (1.4) we have

R̃11 ≥u−2k
{

[α− k(n− 2)] (lnu)ss − αk|∇(lnu)⊥|2 + (α+ β)(lnu)2s +Q11 + kV + k(γ + 1)
|∇u|2

u2

}
≥u−2k

{
[α− k(n− 2)] (lnu)ss − αk|∇(lnu)⊥|2 + (α+ β)(lnu)2s + (n− 1)λ

+k(γ + 1)
[
(lnu)2s + |∇(lnu)⊥|2

]}
≥u−2k

{
[α− k(n− 2)] (lnu)ss + [α+ β + k(γ + 1)] (lnu)2s + (n− 1)λ

}
,

where we used (1.5) and (1.6). Plugging this information in (2.1) we get

(n− 1)

∫ l

0
(ϕs)

2u−k ds ≥ [α− k(n− 2)]

∫ l

0
ϕ2u−k(lnu)ss ds

+ [α+ β + k(γ + 1)]

∫ l

0
ϕ2u−k(lnu)2s ds

+ (n− 1)λ

∫ l

0
ϕ2u−k ds ,
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since l is the g-length of γ̃. Integrating by parts we obtain

(n− 1)

∫ l

0
(ϕs)

2u−k ds ≥− 2 [α− k(n− 2)]

∫ l

0
ϕϕsu

−k−1us ds

+
[
α+ β + k(γ + 1 + α)− (n− 2)k2

] ∫ l

0
ϕ2u−k−2u2s ds

+ (n− 1)λ

∫ l

0
ϕ2u−k ds , (2.6)

for any smooth function ϕ such that ϕ(0) = ϕ(l) = 0. By choosing

ϕ = u
k
2ψ ,

where ψ is a smooth function such that ψ(0) = ψ(l) = 0, in (2.6) we conclude

(n− 1)

∫ l

0
(ψs)

2 ds ≥{−2 [α− k(n− 2)]− k(n− 1)}
∫ l

0
ψψsu

−1us ds

+

[
α+ β + k(γ + 1)− (n− 1)

k2

4

] ∫ l

0
ψ2u−2u2s ds

+ (n− 1)λ

∫ l

0
ψ2 ds . (2.7)

Since (1.7) is in force we can use the fact that a2 + b2 ≥ −2ab, with

a =

√
α+ β + k(γ + 1)− (n− 1)

k2

4
ψ
us
u

and

b =
−2 [α− k(n− 2)]− k(n− 1)

2
√
α+ β + k(γ + 1)− (n− 1)k

2

4

ψs ,

to obtain the following[
α+ β + k(γ + 1)− (n− 1)

k2

4

]
ψ2u−2u2s +

{−2 [α− k(n− 2)]− k(n− 1)}

4
[
α+ β + k(γ + 1)− (n− 1)k

2

4

] (ψs)
2

≥ −{−2 [α− k(n− 2)]− k(n− 1)}ψψsu−1us .

Hence, (2.7) can be rewritten in the following way

A

∫ l

0
(ψs)

2 ds ≥ B
∫ l

0
ψ2 ds ,

where

A = n− 1 +
[2α− k(n− 3)]2

4
[
α+ β + k(γ + 1)− (n− 1)k

2

4

] and B = (n− 1)λ .

Integrating by parts we obtain ∫ l

0

(
Aψψss +Bψ2

)
ds ≤ 0 , (2.8)

for all smooth functions ψ such that ψ(0) = ψ(l) = 0. By taking

ψ(s) = sin
(πs
l

)
, for s ∈ [0, l] ,
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in (2.8) we get (
B − Aπ2

l2

)∫ l

0
sin2

(πs
l

)
ds ≤ 0 ,

i.e.

l ≤ π
√
A

B
= π

√√√√√ 1

λ

1 +
[2α− k(n− 3)]2

4(n− 1)
[
α+ β + k(γ + 1)− (n− 1)k

2

4

]
 .

Therefore (Mn, g) must be compact. Moreover, by applying the same strategy to the universal
cover of Mn, we have that the fundamental group of Mn must be finite. Finally, if in addition
V ≥ 0 and γ ≥ 0, then integrating (1.4) over Mn we obtain V ≡ 0 and this concludes the proof
of Theorem 1.1. �

Proof of Corollary 1.2. Let (Mn, g), n ≥ 3, be a complete Riemannian manifold with Ric ≥
−(n− 1) and let u ∈ C∞(M) be a positive solution of

−∆u ≥ µu

for some µ > 0. In the notation of Theorem 1.1, we have

α = β = γ = 0, Q = −(n− 1)g, V = µ.

Therefore (1.5)-(1.6)-(1.7) read as

− (n− 1) + kµ ≥ (n− 1)λ, k ≥ 0, k

(
1− n− 1

4
k

)
> 0 (2.9)

for some λ > 0. By contradiction, suppose that

µ >
(n− 1)2

4
.

Taking k = 4
n−1 − ε for some ε > 0 small enough, we have that the conditions (2.9) are

satisfied and therefore Mn must be closed. This contradicts the fact that u > 0 and satisfies
−∆u ≥ µu. �

3. Application to General Relativity

In this section we prove Theorem 1.5 and Theorem 1.8 together with Corollary 1.6. We
need the following

Lemma 3.1. Let (X4, γ) = (I ×M3,−N2dt2 + g) be a globally hyperbolic spacetime. Then

• for all tangent vector V one has

1

2N2

(
∂2ttgijV

iV j + 2hijV
iV j∂tN

)
≤ [1− q(t)] |hijV

iV j |2

g(V, V )
∀t ∈ I ;

• Mt0 is energy–decelerating in all directions if and only if

∂2ttgij + 2hij∂tN ≤ 0 ,

in the sense of quadratic forms.
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Proof. By using (1.9) we obtain

∂
2
tt

√
g(V, V ) = ∂

2
tt

√
gijV iV j =

1

N
∂t

(
∂t

√
gijV iV j

)
=

1

N
∂t

[
∂tgijV

iV j

2
√
g(V, V )N

]

=
∂2ttgijV

iV j

2
√
g(V, V )N2

− ∂tgijV
iV j∂tN

2
√
g(V, V )N3

− |∂tgijV
iV j |2

4g(V, V )
3
2N2

=
∂2ttgijV

iV j

2
√
g(V, V )N2

+
hijV

iV j∂tN√
g(V, V )N2

− |hijV
iV j |2

g(V, V )
3
2

.

Thus from the definition of the deceleration parameter we have, for all V ,

∂
2
tt

√
g(V, V ) ≤ −q(t)

(
∂t
√
g(V, V )

)2
√
g(V, V )

= −q(t) |∂tgijV
iV j |2

4g(V, V )
3
2N2

= −q(t) |hijV
iV j |2

g(V, V )
3
2

,

and therefore, from the definition of ∂t,

1

2N2

(
∂2ttgijV

iV j + 2hijV
iV j∂tN

)
≤ [1− q(t)] |hijV

iV j |2

g(V, V )
,

where we used (1.9).

To prove the second estimate, we observe that, by continuity, the condition

∂
2
tt E(σ) |t0

≤ 0 ∀σ : J ⊂ R→M3

is equivalent to

∂
2
ttgij |(t0,x)

≤ 0

in the sense of quadratic forms. A computation similar to the one above gives the result. �

Proof of Theorem 1.5 and Theorem 1.8. By classical formulas given by the immersion of M3 ↪→
X4 (see e.g. [7] and also [2, Formula (3.4)]), the second fundamental form, the lapse function
N and the Ricci curvature of (M3, g) are related to Riemann tensor of (X4, γ). More precisely,
the following equations holds{

N
(
Tij − 1

2T gij
)

= NRij − ∂thij +NHhij − 2Nhilhjl −∇2
ijN

N
(
Tνν + 1

2T
)

= ∂tH −N |h|2 + ∆N ,

i.e. {
Rij =

∇2
ijN

N +
∂thij
N + 2hilhjl −Hhij + Tij − 1

2T gij
−∆N =

(
∂tH
N − |h|2 − Tνν − 1

2T
)
N .

(3.1)

In the notations of Theorem 1.1 we have

n = 3 , α = 1 , β = γ = 0 ,

and

u = N , Qij =
∂thij
N

+ 2hilhjl −Hhij + Tij −
1

2
T gij , V =

∂tH

N
− |h|2 − Tνν −

1

2
T .

To prove the closure result it is sufficient to show that (1.5)-(1.6)-(1.7) hold true. First of all
(1.6) holds immediately. Secondly, in order to fulfill also (1.7) we need

1−
√

3 < k < 1 +
√

3. (3.2)
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Finally, concerning (1.5) we observe the following: by differentiating (1.9) with respect to t we
get

∂2t gij = −2∂tNhij − 2N∂thij ,

i.e.
∂thii
N

= −∂
2
t gii

2N2
− ∂tNhii

N2
. (3.3)

While, tracing (1.9) we get

gij∂tgij = −2Ngijhij = −2NH , (3.4)

and differentiating (3.4) with respect to t, and using

∂tg
ij = 2Nhij ,

which clearly follows from (1.9), yields

−4N2|h|2 + gij∂2t gij = −2∂tNH − 2N∂tH

i.e.
∂tH

N
= 2|h|2 − gij∂2t gij

2N2
− ∂tNH

N2
. (3.5)

Now we can deal with (1.5): for every i = 1, 2, 3

Qii + kV =
∂thii
N

+ 2
∑
j

|hij |2 −Hhii + Tii −
1

2
T + k

∂tH

N
− k|h|2 − kTνν −

k

2
T

=− 1

2N2

(
∂2t gii + kgij∂2t gij

)
− ∂tN

N2
(hii + kH) + 2

∑
j

|hij |2 −Hhii

+ Tii −
1 + k

2
T + k|h|2 − kTνν

= − 1

2N2

(
∂2t gii + 2∂tN hii

)
− k

2N2

(
gij∂2t gij + 2∂tN H

)
+ 2

∑
j

|hij |2 −Hhii + k|h|2

+ Tii − kTνν −
1 + k

2
T ,

where we used (3.3) and (3.5). We diagonalize h and we denote by λj , j = 1, 2, 3 its eigenvalues.

Proof of Theorem 1.5: by using the assumption a), Lemma 3.1 and taking k ≥ 0, we have

− 1

2N2

(
∂2t gii + 2∂tN hii

)
− k

2N2

(
gij∂2t gij + 2∂tN H

)
≥ −(1− q)λ2i − (1− q)k

∑
i

λ2i

= −(1− q)λ2i − (1− q)k|h|2 .
Here and what follows q = q(t0). Therefore,

Qii + kV ≥ −(1− q)λ2i − (1− q)k|h|2 + 2
∑
j

|hij |2 −Hhii + k|h|2 + Tii − kTνν −
1 + k

2
T

= −(1− q)λ2i + qk|h|2 + 2λ2i −Hλi + Tii − kTνν −
1 + k

2
T

= (1 + q)λ2i + qk|h|2 −Hλi + Tii − kTνν −
1 + k

2
T .

Now denoting by µj , j = 1, 2, 3 the eigenvalues of the traceless second fundamental form

h̊ := h− H

3
g ,
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we have

Qii + kV ≥ (1 + q)λ2i + qk|h|2 −Hλi + Tii − kTνν −
1 + k

2
T

= (1 + q)

(
µi +

H

3

)2

+ qk|̊h|2 +
qk

3
H2 −H

(
µi +

H

3

)
+ Tii − kTνν −

1 + k

2
T

≥ 2 + 2q + 3qk

2
µ2i +

q + 3qk − 2

9
H2 +

2q − 1

3
Hµi + Tii − kTνν −

1 + k

2
T ,

for all

0 ≤ k < 1 +
√

3, (3.6)

where we used the fact that

|̊h|2 ≥ 3

2
µ2i ,

which holds true, being h̊ trace free, and the fact that q > 1/2 > 0. We choose q = 1
2 + ε, for

some ε > 0 and k = 1 (which is coherent with (3.6)) in the previous estimate to obtain

Qii + kV ≥
(

9

4
+

5

2
ε

)
µ2i +

4ε

9
H2 +

2ε

3
Hµi + Tii − Tνν − T

≥
(

9

4
+

5

2
ε− εθ

3

)
µ2i +

(
4ε

9
− ε

3θ

)
H2 + Tii − Tνν − T

=
4ε(1 + ε)

9 + 10ε
H2 + Tii − Tνν − T

for all i = 1, 2, 3, where we used Young’s inequality with θ = 3(9+10ε)
4ε . Since

Tii − Tνν − T = Tii − Tνν − (Tii + Tjj + Tkk − Tνν) = −Tjj − Tkk = 2Λ− pj − pk

for all i 6= j 6= k. Thus

Qii + kV ≥ 4ε(1 + ε)

9 + 10ε
H2 + 2Λ− 2P(t0) ≥ (n− 1)λ :=

4ε(1 + ε)

9 + 10ε
H(t0)

2 > 0,

thanks to b) and c). Hence, we conclude that (1.5) holds and so Theorem 1.1 implies that M3

is compact. Computing A and B defined in the proof of Theorem 1.1, we get

A =
8

3
and B = (n− 1)λ =

(2q − 1)(2q + 1)

10q + 4
H(t0)

2,

therefore

diam(M3, g |t0
) ≤ π

H(t0)

√
8(10q + 4)

3(2q − 1)(2q + 1)
.

Moreover, using the uniformization of closed three-dimensional manifolds prove in [15], we con-
clude that M3 must be diffeomorphic to a quotient of S3. This concludes the proof of Theorem
1.5.

�

Proof of Theorem 1.8: by using the assumption that Mt0 is energy–decelerating in all directions
a), Lemma 3.1 and taking k ≥ 0, we have

− 1

2N2

(
∂2t gii + 2∂tN hii

)
− k

2N2

(
gij∂2t gij + 2∂tN H

)
≥ 0.
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Therefore,

Qii + kV ≥ 2
∑
j

|hij |2 −Hhii + k|h|2 + Tii − kTνν −
1 + k

2
T

= 2λ2i −Hλi + k|h|2 + Tii − kTνν −
1 + k

2
T

= 2

(
µi +

H

3

)2

−H
(
µi +

H

3

)
+ k|̊h|2 +

k

3
H2 + Tii − kTνν −

1 + k

2
T

≥
(

2 +
3k

2

)
µ2i +

3k − 1

9
H2 +Hµi + Tii − kTνν −

1 + k

2
T ,

where we used the fact that |̊h|2 ≥ 3
2µ

2
i . Arguing as before with Young’s inequality and using

b), we obtain

Qii + kV ≥ 18k2 + 18k − 17

18(4 + 3k)
H2 + Tii − kTνν −

1 + k

2
T ≥ 18k2 + 18k − 17

18(4 + 3k)
H(t0)

2

for all i = 1, 2, 3, if k >
√
43−3
6 ' 0.59. Thanks to c) , this quantity is uniformly positive. Hence,

we conclude that (1.5) holds and so Theorem 1.1 implies that M3 is compact. Computing A
and B defined in the proof of Theorem 1.1, we get

A =
2(3 + 2k − k2)

2 + 2k − k2
and B = (n− 1)λ =

18k2 + 18k − 17

18(4 + 3k)
H(t0)

2,

therefore

diam(M3, g |t0
) ≤ 6π

H(t0)

√
(3 + 2k − k2)(4 + 3k)

(2 + 2k − k2)(18k2 + 18k − 17)
.

Moreover, as before, we conclude that M3 must be diffeomorphic to a quotient of S3. This
concludes the proof of Theorem 1.8.

�

Proof of Corollary 1.6. Consider a perfect fluid spacetime with q(t0) > 1/2, p(t0) ≤ Λ(t0) and
H(t0) > 0. Since p(t, x) = p(t) = P(t) as already observed in the introduction the conclusion
follows from Theorem 1.5. �
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