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Abstract

We describe the asymptotic behaviour of the minimal heterogeneous d-capacity
of a small set, which we assume to be a ball for simplicity, in a fixed bounded open
set Ω ⊆ Rd, with d ≥ 2. Two parameters are involved: ε, the radius of the ball, and
δ, the length scale of the heterogeneity of the medium. We prove that this capacity
behaves as C| log ε|1−d, where C = C(λ) is an explicit constant depending on the
parameter λ := limε→0 | log δ|/| log ε|.

We determine the Γ-limit of oscillating integral functionals subjected to Dirichlet
boundary conditions on periodically perforated domains. Our first result is used to
study the behaviour of the functionals near the perforations which, in this instance,
are balls of radius ε. We prove that an additional strange term arises involving
C(λ).

Keywords: capacity, homogenization, Γ-convergence, perforated domains.
AMS Class: 49J45, 35B27, 31A15.

1 Introduction

A prototypical variational problem in Sobolev spaces involving scaling-invariant func-
tionals concerns the d-capacity of a set E contained in a bounded open set Ω ⊆ Rd with
d ≥ 2. If we assume E having diameter of size ε ≪ 1, an explicit computation proves
that the asymptotic behaviour of the capacity equals | log ε|1−d, up to a dimensional
factor.

In this paper we introduce a dependence on x, which in the model describes the
heterogeneity of a medium, and we analyse the asymptotic behaviour as ε → 0 of the
minimum

mε,δ := min
{∫

Ω
f
(x
δ
,∇u(x)

)
dx : u ∈W 1,d

0 (Ω), u = 1 on B(z, ε), z ∈ Ω
}
, (1)

where δ = δ(ε) is positive and vanishing as ε→ 0, and f : Rd×Rd → [0,+∞) is a Borel
function with the following properties:
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(P) (periodicity) f(·, ξ) is 1-periodic for every ξ ∈ Rd, i.e., denoting by ek an ele-
ment of the canonical basis

f(x+ ek, ξ) = f(x, ξ) for every x and ξ in Rd, and k = 1, ..., d;

(H) (positive d-homogeneity)

f(x, tξ) = tdf(x, ξ) for every x and ξ in Rd and t > 0;

(GC) (standard growth conditions of order d) there exist α, β such that

0 < α < β and α|ξ|d ≤ f(x, ξ) ≤ β|ξ|d for every x and ξ in Rd.

In light of the assumptions (P) and (H), the minimum defined in (1) stands for the
minimal heterogeneous capacity of a small set (which is not restrictive to assume to be
a ball) of size ε, while δ is the period of the heterogeneity modelled by oscillating terms.
The assumption (GC) is technical since it allows to apply a classical homogenization
result. By a relaxation argument, we may also assume f being convex in the second
variable so that the associated functional is W 1,d(Ω)-weakly lower semicontinuous and
(1) actually is a minimum.

The first result we achieve is the asymptotic estimate of (1). To this end, we work
along subsequences (not relabeled) for which it exists

λ := lim
ε→0

| log δ|
| log ε|

∧ 1 ∈ [0, 1]. (2)

We introduce a function describing the asymptotic concentration of the heterogeneous
capacity at a point z ∈ Rd given by

Φ(z) := lim
R→+∞

(logR)d−1min
{∫

B(0,R)\B(0,1)
f(z,∇u(x)) dx :u ∈W 1,d

0 (B(0, R)),

u = 1 on B(0, 1)
}
;

(3)

then we define a constant portraying the effect of homogenization

Chom := lim
R→+∞

(logR)d−1min
{∫

B(0,R)\B(0,1)
fhom(∇u(x)) dx :u ∈W 1,d

0 (B(0, R)),

u = 1 on B(0, 1)
}
,

(4)

where fhom is the positively d-homogeneous continuous function determined by the
above mentioned homogenization result as

fhom(ξ) = min
{∫

(0,1)d
f(y, ξ +∇φ(y)) dy : φ ∈W 1,d

loc (R
d), φ 1-periodic

}
. (5)
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Note that the terms (3) and (4) are well defined as a consequence of [17, Proposition
5.1]. A simplified statement of this fact is presented in this work (Lemma 1.1).
The main result (Theorem 2.3) is the following. Assume there exists a point x0 ∈ Ω
such that the following hold:

(i) f(x, ξ) ≥ f(x0, ξ) for every x ∈ Rd, ξ ∈ Rd;
(ii) for every ν > 0, there exists rν > 0 such that

f(x, ξ) ≤ f(x0, ξ) + ν|ξ|d for every x ∈ B(x0, rν), ξ ∈ Rd.

Then

lim
ε→0

| log ε|d−1mε,δ = Φ(x0)Chom

[
λΦ(x0)

1
d−1 + (1− λ)C

1
d−1

hom

]1−d
=: C(λ). (6)

As an example, we refer to the quadratic case already treated in [5]. If d = 2 and
f(x, ξ) = a(x)|ξ|2, where a(x) is a 1-periodic continuous function bounded from below
by a constant α, we can pick x0 so that Φ(x0) = 2πα. Denoting the homogenized matrix
by Ahom, we obtain Chom = 2π

√
detAhom and we eventually find

lim
ε→0

| log ε|mε,δ = 2π
α
√
detAhom

λα+ (1− λ)
√
detAhom

.

Our argument relies on a method elaborated by De Giorgi which allows to impose
boundary conditions on functions with finite energy. In this work, this tool is presented
in a version (Lemma 2.2) which is suitable for our purposes and that is similar to the
one proposed in [2].
The proof of Theorem 2.3 is obtained as an adaptation of the argument leading to the
intermediate result Proposition 2.1. The latter concerns the asymptotic behaviour of

µε,δ = min
{∫

Ω
f
(x
δ
,∇u(x)

)
dx : u ∈W 1,d

0 (Ω), u = 1 on B(zε, ε)
}
,

where the centres zε are of the form δz+δiε with z being fixed and iε ∈ Zd. The outcome
of the analysis is the same of Theorem 2.3 for the minimum (1), with the constant C(λ)
which is now given by

Φ(z)Chom

[
λΦ(z)

1
d−1 + (1− λ)C

1
d−1

hom

]1−d
;

that is, the same constant of (6) with z in place of x0 as a consequence of the periodicity
of the centres of the inclusions.

The second result concerns homogenization on perforated domains. Denoting by B
the open unit ball, and by d(ε) a positive vanishing function that is the period of the
perforations, we define a periodically perforated domain as

Ωε := Ω \
⋃
i∈Zd

id(ε) + εB
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and we describe the asymptotic behaviour of the functionals Fε : Ld(Ω) → [0,+∞]
given by

Fε(u) :=


∫
Ω
f

(
x

δ(ε)
,∇u(x)

)
dx if u ∈W 1,d(Ω) and u = 0 on Ω \ Ωε,

+∞ otherwise.
(7)

Dirichlet problems in varying domains have been originally studied from the point of
view of the equations, e.g., by Marchenko and Khruslov in [16] and by Cioranescu and
Murat in [9]. In these works, it is analysed the homogeneous case f(x, ξ) = |ξ|p for
p > 1, and it is provided a critical choice of the period for which the limit is non trivial
in the case p = d, which is d(ε) = | log ε|(1−d)/d. Moreover, recasting their result in
terms of Γ-convergence with respect to the strong convergence in Ld(Ω), it is proved
that

Γ- lim
ε
Fε(u) =

∫
Ω
|∇u(x)|d dx+ κd

∫
Ω
|u(x)|d dx

for every u ∈ W 1,d(Ω), with κd a dimensional constant. This shows that internal
boundary conditions disappear with the arising of a so-called strange term obtained by
the analysis of the energy ’near the perforations’.
Afterwards, a compactness result has been achieved by Dal Maso and Murat in [12] for
the family of solutions (uε) ⊆W 1,p

0 (Ωε,Rm) of the problems

−div a(x,∇uε(x)) = h in D′(Ωε,Rm),

where a : Ω× Rm×d → Rm×d is a Carathéodory function satisfying a growth condition
of order p − 1 that defines a monotone operator on W 1,p

0 (Ω,Rm), h ∈ W−1,p′(Ω,Rm)
with p′ the conjugate exponent of p and Ωε ⊂ Ω is a general open subset.
They proved that, up to subsequences, (uε)ε converges to the solution of the problem

−div a(x,∇u(x)) + (|u|p−2u)µ = h in D′(Ω,Rm)

being µ a nonnegative Borel measure not charging sets of null p-capacity in Ω.
The inhomogeneous variant was studied by Calvo-Jurado and Casado-Dı́az in [8] who
considered a more general equation

−div aε(x,∇uε(x)) + Fε(x, uε)µε = hε in D′(Ωε,Rm)

being aε, hε, µε as above and Fε : Ω×Rm → Rm a suitable Carathéodory function. The
same kind of result is achieved for a limit of the same form

−div a(x,∇u(x)) + F (x, u)µ = h in D′(Ω,Rm).

An example of the occurrance of separation of scales was provided by Conca, Murat and
Timofte in [10]. They studied a Signorini’s type problem; that is, a free boundary-value
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problem consisting in determining a function uε and two subsets Sε
0 and Sε

+ (disjoint
components of the boundary of the perforations Sε), such that

−div(Aε∇uε) = h in D′(Ωε),

uε = 0 on Sε
0, Aε∇uε · ν ≥ 0 on Sε

0,

uε > 0 on Sε
+, Aε∇uε · ν = 0 on Sε

+,

where ν is the outer unit normal to Sε and Aε(x) = A(x/ε) is a d×d matrix satisfying a
uniform quadratic growth condition with continuous entries. They detected a different
behaviour at the limit according to the size of the holes: if the radius of the perforation
is infinitesimal compared with the critical value εd/(d−2), d > 2, the problem converges
to a homogenized Dirichlet problem on Ω; otherwise, if the holes are considerably large,
the limit is seen to be an obstacle problem as a positivity condition is spread over the
domain.

In the past decades, the literature on these problems has been enriched by the
description of the variational counterpart. The nonlinear (vector-valued) homogeneous
case has been studied by Ansini and Braides in [2], while the version at the critical
exponent is due to Sigalotti [17]. In these papers, the Γ-limit of the functionals Gε :
Ld(Ω,Rm) → [0,+∞] defined by

Gε(u) :=


∫
Ω
f(∇u(x)) dx if u ∈W 1,d(Ω,Rm) and u = 0 on Ω \ Ωε,

+∞ otherwise,

for f a quasiconvex energy density with p-growth, is proved to be∫
Ω
f(∇u(x)) dx+

∫
Ω
φ(u(x)) dx,

where φ is obtained by a capacitary or a homogenization formula, respectively.
In [1], Ansini and Braides take into account a inhomogeneity considering functionals

as in (7) in the subcritical case d ≥ 3, f with quadratic growth and f(x, ·) being 2-
homogeneous, and prove that a separation of scales occurs depending on the rate of
vanishing of the parameters ε, δ(ε) and d(ε).
If δ(ε) ≪ ε or δ(ε) ≫ d(ε), the Γ-limit is given by∫

Ω
fhom(∇u(x)) dx+ C

∫
Ω
|u(x)|2 dx

being fhom as in (5) and C a constant depending on the considered regime; while in
the intermediate cases the Γ-limit may exist only along proper subsequences and the

strange term may have the more general form

∫
Ω
φ|u|2dx.
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We prove an analogous statement (Theorem 3.1) at the critical scale p = d for d(ε) ≫
δ(ε): for simplicity, we assume that d(ε) is an integer multiple of δ(ε) so that the
periodicity of the perforation is ’compatible’ with that of the energy. More specifically,
we suppose that

for every ε > 0 there exists a natural number m(ε) such that d(ε) = m(ε)δ(ε)

and that
δ(ε)

d(ε)
→ 0 as ε→ 0;

we also assume that for every ν > 0, there exists rν > 0 such that

|f(0, ξ)− f(x, ξ)| ≤ ν|ξ|d for every x ∈ B(0, rν), ξ ∈ Rd.

Then we prove that

Γ- lim
ε
Fε(u) =

∫
Ω
fhom(∇u(x)) dx+ C(λ)

∫
Ω
|u(x)|d dx

for every u ∈W 1,d(Ω), where C(λ) is given by

Φ(0)Chom

[
λΦ(0)

1
d−1 + (1− λ)C

1
d−1

hom

]1−d

and λ is defined as in (2).
To study the contribution to the energy due to the regions ’near the perforations’, we
perform the asymptotic analysis of the problems

min
{∫

B
f

(
x

δ(ε)/d(ε)
,∇u(x)

)
dx : u ∈W 1,d

0 (B), u = 1 on B
(
0,

ε

d(ε)

)}
.

Such asymptotic analysis is made possible by the assumptions d(ε)/δ(ε) ∈ N and
δ(ε)/d(ε) → 0: in particular, the former exploits the periodicity of f(·, ξ) and it combines
with the latter in order to apply Proposition 2.1 with the centres of the perforations
fixed at 0 for every ε.
Note that, if the hypothesis d(ε)/δ(ε) ∈ N is removed, the Γ-limit may exist only
upon possibly passing to a subsequence, and, in some special cases, a more involved
description is provided.
As an example, we consider the case studied in [1, Theorem 5.1]; see Remark 3.4 for a
more detailed discussion. Assume that d(ε) = (m(ε)/T )δ(ε) with m(ε) ∈ N prime and
T ∈ N, then it can be proved that

Γ- lim
ε
Fε(u) =

∫
Ω
fhom(∇u(x)) dx+ C

∫
Ω
|u(x)|d dx,
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where

C =
1

T d

∑
h∈{0,...,T−1}d

Cλ
( h
T

)
and Cλ(z) is given by

lim
ε→0

| log ε|d−1min
{∫

B
f

(
z +

x

δ(ε)
,∇u(x)

)
dx : u ∈W 1,d

0 (B), u = 1 on B(0, ε)
}
.

Note that this function is well defined by Proposition 2.1 applied to the energy density
g(x, ξ) := f(x+ z, ξ).
We highlight the consistence with the case d(ε)/δ(ε) ∈ N as we get T = 1 so that
C = Cλ(0) = C(λ).

To sketch a complete picture we also comment the cases δ(ε) ≪ ε and d(ε)/δ(ε) → q ∈
[0,∞) without further assumptions on the form of d(ε)/δ(ε). For these we essentially
recover the critical version of the above mentioned results presented in [1, Sections 4,5]
to which we refer for more details:

• δ(ε) ≪ ε. This instance forces λ = 1; our result is obtained with C(λ) = Chom

even if the periodicity (P) may not be immediately exploited. To give a glimpse
on how this is achieved, we observe that for every perforation id(ε) there exists a
unique point yi(ε) on the lattice δ(ε)Zd such that id(ε) ∈ yi(ε) + [0, δ(ε))d. Since
δ(ε) ≪ ε, the energy on the ball B(id(ε), εN) for fixed N > 1, is asymptotically
equivalent to the one on the larger ball B(yi(ε), ε(N + 1/N)). Hence, we can
reason as if our perforations are centred on the lattice δ(ε)Zd, so that the same
argument we present in Section 3 works with some minor adaptations.

• d(ε) ≪ δ(ε). Several perforations are included in the same cell of periodicity;
thus, an averaging effect on the function Φ defined in (3) occurs. Specifically, if
we further assume that for every x ∈ Ω and for every ν > 0, there exists rν > 0
such that

|f(x, ξ)− f(y, ξ)| ≤ ν|ξ|d for every y ∈ B(x, rν), ξ ∈ Rd,

then Φ is continuous and we get

Γ- lim
ε
Fε(u) =

∫
Ω
fhom(∇u(x)) dx+

(∫
(0,1)d

Φ(y) dy
)∫

Ω
|u(x)|d dx

for every u ∈W 1,d(Ω).

• d(ε)
δ(ε) → q ∈ (0,∞). In this case λ = 0 and the Γ-limit does not exist in general.
Assuming Φ continuous and again

d(ε) =
m(ε)

T
δ(ε)
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being m(ε) ∈ N prime and T ∈ N, we recover the above example, and since
C0(x) = Φ(x) we obtain

Γ- lim
ε
Fε(u) =

∫
Ω
fhom(∇u(x)) dx+ C

∫
Ω
|u(x)|d dx

with

C =
1

T d

∑
h∈{0,...,T−1}d

Φ
( h
T

)
.

More recent works on the asymptotic behaviour of Dirichlet problems in varying
domains are, e.g., [3, 7], or also [15] for the numerical perspective.

1.1 Preliminaries

In this section and the following ones, let d ≥ 2, Ω ⊆ Rd be a bounded open set and
λ := limε→0 | log δ|/| log ε|.

We start by justifying the definitions given in (3) and (4) through the following
lemma which takes advantage of a scaling invariance argument; see [17, Proposition 5.1]
for a more general statement.

Lemma 1.1. Let g : Rd → R be a Borel function which is positively homogeneous of
degree d and assume there exist positive constants C1 < C2 such that C1|ξ|d ≤ g(ξ) ≤
C2|ξ|d for every ξ ∈ Rd. Define

mR := min
{∫

B(0,R)\B(0,1)
g(∇u(x)) dx : u ∈W 1,d

0 (B(0, R)), u = 1 on B(0, 1)
}
,

then it exists lim
R→+∞

(logR)d−1mR and this limit is finite.

Proof. Fix S > R and put T := ⌊logS/ logR⌋ so that the annuli B(0, Rk) \B(0, Rk−1)
are contained in B(0, S) \B(0, 1) for every k = 1, ..., T .
Let u be a solution of the problem

min
{∫

B(0,R)\B(0,1)
g(∇u(x)) dx : u ∈W 1,d

0 (B(0, R)), u = 1 on B(0, 1)
}
,

for k = 1, ..., T define functions uk ∈W 1,d(B(0, Rk) \B(0, Rk−1)) as

uk(x) :=
1

T
u
( x

Rk−1

)
+
T − k

T
,

then put uS ∈W 1,d
0 (B(0, S)) as

uS(x) :=


1 if x ∈ B(0, 1)

uk(x) if x ∈ B(0, Rk) \B(0, Rk−1), k = 1, ..., T

0 if x ∈ B(0, S) \B(0, RT ).
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We have

(logS)d−1mS ≤ (logS)d−1

∫
B(0,S)\B(0,1)

g(∇uS(x)) dx

= (logS)d−1
T∑

k=1

∫
B(0,Rk)\B(0,Rk−1)

g(∇uk(x)) dx

= (logS)d−1
T∑

k=1

1

T d

∫
B(0,R)\B(0,1)

g(∇u(x)) dx

= (logS)d−1 1

T d−1
mR

≤ (logS)d−1
( logR

logS − logR

)d−1
mR,

hence, if we pass to the lim sup as S → +∞, and then we pass to the lim inf as R→ +∞,
we obtain

lim sup
S→+∞

(logS)d−1mS ≤ lim inf
R→+∞

(logR)d−1mR.

In order to check that the limit is finite, consider the function

u(x) := 1− log |x|
logR

, x ∈ B(0, R) \B(0, 1),

and note that the estimate

(logR)d−1mR ≤
∫
B(0,R)\B(0,1)

g(∇u(x)) = (logR)d−1

∫
B(0,R)\B(0,1)

g

(
x

−|x|2 logR

)
dx

= (logR)−1

∫
B(0,R)\B(0,1)

g

(
− x

|x|2

)
dx ≤ (logR)−1C2

∫
B(0,R)\B(0,1)

1

|x|d
dx = C2σd−1

holds, completing the proof.

We state a slightly modified version of a classical homogenization result (see [4, 6,
11, 14]).

Theorem 1.2. Let A be a bounded open subset of Rd with Lipschitz boundary and
(τη)η>0 ⊆ Rd. Then

Γ- lim
η→0

∫
A
f

(
x

η
+ τη,∇u(x)

)
dx =

∫
A
fhom(∇u(x)) dx ,

for every u ∈W 1,d(A), where the Γ-limit is computed with respect to the strong conver-
gence in Ld(A) and fhom is the function given by (5).
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In particular, for every ϕ ∈W 1,d(A) we have

lim
η→0

inf
{∫

A
f

(
x

η
+ τη,∇u(x)

)
dx : u ∈ ϕ+W 1,d

0 (A)
}

= min
{∫

A
fhom(∇u(x)) dx : u ∈ ϕ+W 1,d

0 (A)
}
.

Translations (τη)η can be taken into account since the function f is periodic in the first
variable. Indeed, this implies that we may assume (τη)η to be bounded so that ητη → 0
and we recover the known case τη = 0.

At this point, assumptions (H), (GC) and Lemma 1.1 make well defined the function

Φ(z) := lim
R→+∞

(logR)d−1min
{∫

B(0,R)\B(0,1)
f(z,∇u(y)) dy :u ∈W 1,d

0 (B(0, R)),

u = 1 on B(0, 1)
}
;

the constant

Chom := lim
R→+∞

(logR)d−1min
{∫

B(0,R)\B(0,1)
fhom(∇u(x)) dx :u ∈W 1,d

0 (B(0, R)),

u = 1 on B(0, 1)
}
,

is also well defined by Theorem 1.2: this, combined with the fact that (H) and (GC)
are inherited by the function fhom, ensures that the above lemma applies.

2 Asymptotic analysis of minima

We aim at estimating the asymptotic behaviour of the minima with fixed centres modulo
a translation. More precisely, we fix z in Ω and for every ε > 0 sufficiently small, we
consider (zε)ε a family of points in Ω of the form zε = δz + δiε with (iε)ε ⊆ Zd such
that infε dist(zε, ∂Ω) > 0. We put

µε,δ = min
{∫

Ω
f
(x
δ
,∇u(x)

)
dx : u ∈W 1,d

0 (Ω), u = 1 on B(zε, ε)
}
. (8)

and we prove what follows.

Proposition 2.1. Let z ∈ Ω be a fixed point, and let (zε)ε be a family of points equal
to z modulo δ as above. Assume that for every ν > 0, there exists rν > 0 such that

|f(z, ξ)− f(x, ξ)| ≤ ν|ξ|d for every x ∈ B(z, rν), ξ ∈ Rd. (9)

Then

lim
ε→0

| log ε|d−1µε,δ = Φ(z)Chom

[
λΦ(z)

1
d−1 + (1− λ)C

1
d−1

hom

]1−d
.
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The proof is divided in two parts, the bound from below and the construction of an
optimal sequence. In the first one, the main tool we use is the following lemma which
allows to modify a function in order to attain constant values (in the sense of the trace)
on the boundary of a thin annulus keeping control on the value of the associated energy.

Lemma 2.2. Let g : Rd × Rd → R be a Borel function satisfying (GC). Let z ∈ Rd,
R > 0 and define

F (u,A) :=

∫
A
g(x,∇u(x)) dx

with u ∈W 1,d(B(z,R)) and A ⊆ B(z,R) a Borel subset.
Let η > 0, S := max {s ∈ N : η2s ≤ R} and assume S ≥ 3. Take N natural number
such that 2 ≤ N < S and r positive real number such that r ≤ η2S−N .
Then, for every u ∈W 1,d(B(z,R)) there exists a function v with the following properties:

(i) v ∈W 1,d(B(z,R) \B(z, r));
(ii) there exists j ∈ {1, ..., N − 1} such that

v = u on B(z, η2S−j−1) \B(z, r)) ∪B(z,R) \B(z, η2S−j+1);

(iii) for the same j, the function v is constant on ∂B(z, η2S−j). In particular

v =
1

|Aj |

∫
Aj

u dx on ∂B(z, η2S−j),

where Aj := B(z, η2S−j+1) \B(z, η2S−j−1). Moreover ∥v∥∞ ≤ ∥u∥∞;
(iv) there exists a positive constant C depending on α, β and the dimension d such

that

F (v,B(z,R) \B(z, r)) ≤
(
1 +

C

N − 1

)
F (u,B(z,R) \B(z, r)).

Proof. Assume z = 0, if not, center the construction around z and repeat the argument.
For k = 1, ..., N − 1, we define annuli Ak := B(0, η2S−N+k+1) \ B(0, η2S−N+k−1)

and radial cutoff functions

ϕk(ρ) :=



0 if ρ ∈ [0, η2S−N+k−1]

ρ−η2S−N+k−1

η2S−N+k−1 if ρ ∈ (η2S−N+k−1, η2S−N+k]

η2S−N+k+1−ρ
η2S−N+k if ρ ∈ (η2S−N+k, η2S−N+k+1]

0 if ρ ∈ (η2S−N+k+1, R],

then we put ψk := 1− ϕk and define vk := ψku+ (1− ψk)uAk
, where we denote by uAk

the integral average of u on Ak. Note that, for every k, the functions vk satisfies the
properties (i), (ii), (iii) with j = N − k.
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At each fixed k, taking into account that |ψk| ≤ 1 and that

|∇ψk|d = |∇ϕk|d ≤
( 1

η2S−N+k−1

)d
,

we exploit (GC) to have∫
Ak

g(x,∇vk(x)) dx ≤ β

∫
Ak

|∇vk(x)|d dx

= β

∫
Ak

|ψk∇u(x) + (u− uAk
)∇ψk(x)|d dx

≤ β2d−1
[∫

Ak

|∇u|d dx+
( 1

η2S−N+k−1

)d ∫
Ak

|u(x)− uAk
|d dx

]
.

(10)

Consider now the following well known scaling property of the Poincaré-Wirtinger in-
equality: given A open, bounded, connected, with Lipschitz boundary and λ > 0, it
holds

1

λd

∫
λA

|u− uλA|d dx ≤ P (A)

∫
λA

|∇u|d dx,

where uλA is the integral average of u on λA and P (A) is the Poincaré-Wirtinger
constant related to A.
We apply this result with A = B(0, 4) \B(0, 1) and λ = η2S−N+k−1, obtaining( 1

η2S−N+k−1

)d ∫
Ak

|u(x)− uAk
|d dx ≤ P d

∫
Ak

|∇u|d dx,

being P := P (A) a constant which does not depend on k.
As a consequence (10) turns into∫

Ak

g(x,∇vk(x)) dx ≤ β2d−1
(
1 + P d

) ∫
Ak

|∇u|d dx

≤ β

α
2d−1

(
1 + P d

) ∫
Ak

g(x,∇u(x)) dx,

and summing over k, we deduce

N−1∑
k=1

∫
Ak

g(x,∇vk(x)) dx ≤ C

∫
B(0,R)\B(0,r)

g(x,∇u(x)) dx,

where we put C := β2d−1
(
1+P d

)
/α. It follows that there exists l ∈ {1, ..., N − 1} such

that ∫
Al

g(x,∇vl(x)) dx ≤ C

N − 1

∫
B(0,R)\B(0,r)

g(x,∇u(x)) dx,

12



and then it holds∫
B(0,R)\B(0,r)

g(x,∇vl(x)) dx =

∫
(B(0,R)\B(0,r))\Al

g(x,∇u(x)) dx+

∫
Al

g(x,∇vl(x)) dx

≤
(
1 +

C

N − 1

)∫
B(0,R)\B(0,r)

g(x,∇u(x)) dx,

which concludes the proof picking v = vl and j = N − l.

In the proof of Proposition 2.1, and in particular in the estimate from below, we
combine the application of this lemma with a preliminary construction: first we subdi-
vide Ω in homothetic annuli having small inner and outer radii, each of order εη; then
we modify u ∈W 1,d

0 (Ω) on each annulus using the lemma to achieve constant Dirichlet
boundary conditions by (iii). This way, the lower bound is expressed in terms of a sum
of minimum problems that we further estimate with some care in dealing with possibly
different exponential scales described by η.
The error introduced by the modifications will be negligible since the estimate in (iv)
gets more precise as N tends to ∞, i.e., as ε→ 0.

2.1 Lower bound

In what follows, we systematically identify a function u ∈W 1,d
0 (Ω) with the the exten-

sion obtained by setting u = 0 on Rd \ Ω, which belongs to W 1,d(Rd).
For simplicity of notation, given A Borel subset of Rd and u ∈W 1,d(Rd), we put

Fε(u,A) :=

∫
A
f
(x
δ
,∇u(x)

)
dx

and denote by RΩ the maximum among the diameter of Ω and 1, just to ensure that
logRΩ is non negative.

We separately consider the cases λ = 0, λ ∈ (0, 1) and λ = 1; we obtain for each
instance the same kind of estimate and then we conclude by the same argument.

Estimate from below for λ = 0. If λ = 0, fix λ2 ∈ (λ, 1) so that

ελ2

δ
→ 0 as ε→ 0.

For every u ∈ W 1,d
0 (Ω) such that u = 1 on B(zε, ε), the inclusion Ω ⊆ B(zε, RΩ) leads

to the equality
Fε(u,Ω) = Fε(u,B(zε, RΩ)),

then we apply Lemma 2.2 to the function u ∈W 1,d
0 (B(zε, RΩ)), with

f(x, ξ) = f
(x
δ
, ξ
)
, η = ε, R = ελ2 , N ∈ N ∩

(
1,

⌊
(1− λ2)| log ε|

log 2

⌋
= S

)
and r = ε.

13



We get a function v ∈ W 1,d
0 (B(zε, RΩ)) such that v = 1 on B(zε, ε), v = c on

∂B(zε, ε2
S−j) for some constant c and some index j ∈ {1, ..., N − 1}, v = u on

B(zε, RΩ) \B(zε, ε
λ2).

By the estimate provided by (iv) in Lemma 2.2, it holds(
1 +

C

N − 1

)
Fε(u,Ω) =

(
1 +

C

N − 1

)
Fε(u,B(zε, RΩ))

≥ Fε(v,B(zε, RΩ))

= Fε(v,B(zε, ε2
S−j)) + Fε(v,B(zε, RΩ) \B(zε, ε2

S−j)).

Now we set

w1 :=

{
v on B(zε, ε2

S−j)

c on B(zε, ε
λ2) \B(zε, ε2

S−j)
w2 :=

{
c on B(zε, ε2

S−j) \B(zε, ε2
S−N )

v on B(zε, RΩ) \B(zε, ε2
S−j),

and we note that
Fε(w

1, B(zε, ε
λ2)) = Fε(v,B(zε, ε2

S−j))

and
Fε(w

2, B(zε, RΩ) \B(zε, ε2
S−N )) = Fε(v,B(zε, RΩ) \B(zε, ε2

S−j)).

Thus (
1 +

C

N − 1

)
Fε(u,Ω) ≥ Fε(v,B(zε, RΩ))

= Fε(w
1, B(zε, ε

λ2))

+ Fε(w
2, B(zε, RΩ) \B(zε, ε2

S−N ))

≥ min{Fε(ζ,B(zε, ε
λ2)) : ζ ∈W 1,d(B(zε, ε

λ2)), ζ = 1 on B(zε, ε), ζ = c on ∂B(zε, ε
λ2)}

+min{Fε(ζ,B(zε, RΩ) \B(zε, ε2
S−N )) : ζ ∈W 1,d(B(zε, RΩ) \B(zε, ε2

S−N )),

ζ = c on ∂B(zε, ε2
S−N ), ζ = 0 on ∂B(zε, RΩ)},

where in the last inequality we took advantage of the Dirichlet boundary conditions
satisfied by w1 and w2. Taking into account the transformations

ζ(x) 7→ ζ(x)− c

1− c
, ζ(x) 7→ ζ(x)

c
,

and the property (H), we have that the last expression equals

min{Fε(ζ,B(zε, ε
λ2)) : ζ ∈W 1,d

0 (B(zε, ε
λ2)), ζ = 1 on B(zε, ε)}|1− c|d (11)

+min{Fε(ζ,B(zε, RΩ) \B(zε, ε2
S−N )) : ζ ∈W 1,d(B(zε, RΩ) \B(zε, ε2

S−N )),

ζ = 1 on B(zε, ε2
S−N ), ζ = 0 on ∂B(zε, RΩ)}|c|d. (12)
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We separately treat the minima (11) and (12).
As zε = δz + δiε, by (P) we get

f
(x
δ
ε+

zε
δ
, ξ
)
= f

(x
δ
ε+ z, ξ

)
for every ξ ∈ Rd.

Note that if x ∈ B(0, ελ2−1), then ε
δ |x| <

ελ2
δ → 0 as ε → 0. Hence, for every ν > 0,

given rν as in (9), assuming ε sufficiently small it holds that ε
δB(0, ελ2−1) ⊆ B(0, rν),

so that we have

f
(x
δ
ε+ z, ξ

)
≥ f(z, ξ)− ν|ξ|d for every ξ ∈ Rd.

Combining these observations with (GC) we get∫
B(0,ελ2−1)

f
(x
δ
ε+

zε
δ
,∇v(x)

)
dx ≥

(
1− ν

α

)∫
B(0,ελ2−1)

f(z,∇v(x)) dx.

Then, also considering the change of variables x := (y − zε)/ε and Lemma 1.1 (which
applies since λ2 < 1), we obtain the estimate for (11)

min{Fε(ζ,B(zε, ε
λ2)) : ζ ∈W 1,d

0 (B(zε, ε
λ2)), ζ = 1 on B(zε, ε)}|1− c|d

= min
{∫

B(0,ελ2−1)
f
(x
δ
ε+

zε
δ
,∇ζ(x)

)
: ζ ∈W 1,d

0 (B(0, ελ2−1)), ζ = 1 on B(0, 1)
}
|1− c|d

≥ min
{∫

B(0,ελ2−1)
f(z,∇ζ(x)) : ζ ∈W 1,d

0 (B(0, ελ2−1)), ζ = 1 on B(0, 1)
}
|1− c|d

(
1− ν

α

)
=

Φ(z) + oε(1)

(1− λ2)d−1| log ε|d−1
|1− c|d

(
1− ν

α

)
. (13)

To deal with the minimum in (12), we apply once more property (GC) to get

min{Fε(ζ,B(zε, RΩ) \B(zε, ε2
S−N )) : ζ ∈W 1,d(B(zε, RΩ) \B(zε, ε2

S−N )),

ζ = 1 on B(zε, ε2
S−N ), ζ = 0 on ∂B(zε, RΩ)}|c|d

≥ αmin
{∫

B(zε,RΩ)
|∇ζ(x)|ddx : ζ ∈W 1,d

0 (B(zε, RΩ)), ζ = 1 on B(zε, ε2
S−N )

}
|c|d

= αCapd(B(zε, ε2
S−N ), B(zε, RΩ))|c|d

=
ασd−1

[logRΩ + | log ε| − (S −N) log 2]d−1
|c|d

≥ ασd−1

[logRΩ + λ2| log ε|+ (N + 2) log 2]d−1
|c|d, (14)

where in the last inequality we used that S = ⌊ (1−λ2)| log ε|
log 2 ⌋.
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Gathering (13) and (14), and multiplying by | log ε|d−1, we get(
1 +

C

N − 1

)
| log ε|d−1Fε(u,Ω) ≥

Φ(z) + oε(1)

(1− λ2)d−1
|1− c|d

(
1− ν

α

)
+

ασd−1| log ε|d−1

[logRΩ + λ2| log ε|+ (N + 2) log 2]d−1
|c|d .

We recall that, as specified by (iii) in Lemma 2.2, the boundary value c actually
depends on ε being the mean value of the function u on an annulus whose radii are
ε-dependent. Observe that we can assume that c(ε) → c ∈ R. Indeed, by the estimate

Fε(u,Ω) ≥ Fε((u ∨ 0) ∧ 1,Ω) for every u ∈W 1,d
0 (Ω),

we may assume that u takes values in [0, 1] so that (c(ε))ε ⊆ [0, 1] as well and it admits
a convergent subsequence to c ∈ [0, 1].
Finally, since u is arbitrary among the admissible functions for the minimization and
since ν may be picked arbitrarily small, we pass to the limit as ε→ 0 and as N → +∞
to conclude that

lim inf
ε→0

| log ε|d−1µε,δ ≥
Φ(z)

(1− λ2)d−1
(1− c)d +

ασd−1

λd−1
2

cd , (15)

for every λ2 ∈ (0, 1).

Estimate from below for λ ∈ (0,1). If λ ∈ (0, 1), we introduce a further parameter
λ1 ∈ (0, λ) so that

δ

ελ1
→ 0 as ε→ 0.

Our construction relies on the definition of several concentric annuli. To this end, let

T := max {t ∈ N : ελ12t ≤ RΩ} = ⌊λ1| log ε|+ logRΩ

log 2
⌋

and assume in particular that T is larger than 4 as ε is small enough. Then pick a
natural number M ∈ (2, T ) and define annuli centered in zε having radii ελ12kM , with
k = 0, 1, ..., ⌊ T

M ⌋+ 1.

This way we have Ω ⊆ B(zε, ε
λ12(⌊T/M⌋+1)M ); hence, for every u ∈ W 1,d

0 (Ω) such that
u = 1 on B(zε, ε), it holds that

Fε(u,Ω) = Fε(u,B(zε, ε
λ12(⌊T/M⌋+1)M ))

= Fε(u,B(zε, ε
λ2)) + Fε(u,B(zε, ε

λ1) \B(zε, ε
λ2))

+

⌊T/M⌋+1∑
k=1

Fε(u,B(zε, ε
λ12kM ) \B(zε, ε

λ12(k−1)M)).

16



Apply Lemma 2.2 to the first summand with

f(x, ξ) = f
(x
δ
, ξ
)
, η = ε, R = ελ2 , N ∈ N ∩

(
1,

⌊
(1− λ2)| log ε|

log 2

⌋)
and r = ε;

apply Lemma 2.2 to the second summand with

f(x, ξ) = f
(x
δ
, ξ
)
, η = ελ2 , R = ελ1 , N ∈ N ∩

(
1,

⌊
(λ2 − λ1)| log ε|

log 2

⌋)
and r = ελ2 ;

apply Lemma 2.2 to the terms of the third summand for k = 1, ..., ⌊T/M⌋ with

f(x, ξ) = f
(x
δ
, ξ
)
, η = ελ1 , R = ελ12kM , N ∈ N ∩ (1, kM) and r = ελ12(k−1)M .

We set for simplicity of notation

S′ :=

⌊
(1− λ2)| log ε|

log 2

⌋
and S′′ :=

⌊
(λ2 − λ1)| log ε|

log 2

⌋
,

and we note that since S′, S′′ and M will get arbitrarily large, we may assume we fixed
the same N in each of the above applications of the lemma.
We get functions v−1 ∈W 1,d(B(zε, ε

λ2)) attaining the constant value c−1 on ∂B(zε, ε2
S′−j−1),

v0 ∈W 1,d(B(zε, ε
λ1)\B(zε, ε

λ2)) attaining the constant value c0 on ∂B(zε, ε2
S′′−j0) and

vk ∈W 1,d(B(z, ελ12kM ) \B(z, ελ12(k−1)M )) for k = 1, ..., ⌊T/M⌋ attaining the constant
value ck on ∂B(zε, ε2

kM−jk) with jk ∈ {1, ..., N − 1} for k = −1, 0, 1, ..., ⌊T/M⌋.
Then we put

v :=


v−1 on B(zε, ε

λ2)

v0 on B(zε, ε
λ1) \B(zε, ε

λ2)

vk on B(zε, ε
λ12kM ) \B(zε, ε

λ12(k−1)M ), k = 1, ..., ⌊T/M⌋
u otherwise,

and note that v ∈W 1,d
0 (B(zε, ε

λ12(⌊T/M⌋+1)M )) since the modifications provided by the
lemma occur far from the boundary of each annulus; moreover it holds(

1 +
C

N − 1

)
Fε(u,Ω) =

(
1 +

C

N − 1

)
Fε(u,B(zε, ε

λ12(⌊T/M⌋+1)M ))

≥ Fε(v,B(zε, ε
λ12(⌊T/M⌋+1)M )).
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To point out that v attains constant values on proper spheres centered in zε, we write(
1 +

C

N − 1

)
Fε(u,Ω) ≥

(
1 +

C

N − 1

)
Fε(v,B(zε, ε

λ12(⌊T/M⌋+1)M ))

= Fε(v,B(zε, ε
λ12(⌊T/M⌋+1)M ))

= Fε(v,B(zε, ε2
S′−j−1))

+ Fε(v,B(zε, ε
λ22S

′′−j0) \B(zε, ε2
S′−j−1))

+ Fε(v,B(zε, ε
λ12M−j1) \B(zε, ε

λ22S
′′−j0))

+

⌊T/M⌋∑
k=2

Fε(v,B(zε, ε
λ12kM−jk) \B(zε, ε

λ12(k−1)M−jk−1))

+ Fε(v,B(zε, ε
λ12(⌊T/M⌋+1)M ) \B(zε, ε

λ12⌊T/M⌋M−j⌊T/M⌋)),

(16)

Then we define functions wk, k = −1, 0, 1, ...⌊T/M⌋+1 as follows: w−1 ∈W 1,d(B(zε, ε
λ2))

is defined as

w−1 :=

{
v on B(zε, ε2

S′−j−1)

c−1 otherwise,

so that
Fε(w

−1, B(zε, ε
λ2)) = Fε(v,B(zε, ε2

S′−j−1)).

Similarly, set

w0 :=


c−1 on B(zε, ε2

S′−j−1)) \B(zε, ε2
S′−N ))

v on B(zε, ε
λ22S

′′−j0) \B(zε, ε2
S′−j−1))

c0 on B(zε, ε
λ1) \B(zε, ε

λ22S
′′−j0),

so that

Fε(w
0, B(zε, ε

λ1) \B(zε, ε2
S′−N ))) = Fε(v,B(zε, ε

λ22S
′′−j0) \B(zε, ε2

S′−j−1))

and

w1 :=


c0 on B(zε, ε2

S′′−j0) \B(zε, ε2
S′′−N ))

v on B(zε, ε
λ12M−j1) \B(zε, ε2

S′′−j0))

c1 on B(zε, ε
λ12M )) \B(zε, ε

λ12M−j1),

so that

Fε(w
1, B(zε, ε

λ12M ) \B(zε, ε2
S′′−N ))) = Fε(v,B(zε, ε

λ12M−j1) \B(zε, ε2
S′′−j0)).
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For k = 2, ..., ⌊T/M⌋+ 1, we define annuli

AN
M,k := B(zε, ε

λ12kM ) \B(zε, ε
λ12(k−1)M−N ).

For k = 2, ..., ⌊T/M⌋, we define functions wk ∈W 1,d(AN
M,k) as

wk :=


ck−1 on B(zε, ε

λ12(k−1)M−jk−1) \B(zε, ε
λ12(k−1)M−N )

v on B(zε, ε
λ12kM−jk) \B(z, ελ12(k−1)M−jk−1)

ck on B(z, ελ12kM ) \B(z, ελ12kM−jk),

and for k = ⌊T/M⌋+ 1,

w⌊T/M⌋+1 :=

{
c⌊T/M⌋ on B(zε, ε

λ12(k−1)M−jk−1) \B(zε, ε
λ12(k−1)M−N )

v otherwise,

so that
Fε(w

k, AN
M,k) = Fε(v,B(z, ελ12kM−jk) \B(z, ελ12(k−1)M−jk−1))

for all k = 2, ..., ⌊T/M⌋+ 1.
Once we set AN

M,−1 := B(zε, ε
λ2), AN

M,0 := B(zε, ε
λ1) \ B(zε, ε2

S′−N ) and AN
M,1 :=

B(zε, ε
λ12M ) \B(zε, ε2

S′′−N ), we can rewrite (16) simply as(
1 +

C

N − 1

)
Fε(u,Ω) ≥

⌊T/M⌋+1∑
k=−1

Fε(w
k, AN

M,k).

As the functions w−1, ..., w⌊T/M⌋+1 attain constant value on the components of their
annuli of definition, we exploit (H) and suitable affine transformations (as in the case
λ = 0) to get (

1 +
C

N − 1

)
Fε(u,Ω) ≥

≥ min{Fε(ζ,B(zε, ε
λ2)) : ζ ∈W 1,d

0 (B(zε, ε
λ2)), ζ = 1 on B(zε, ε)}|1− c−1|d (17)

+ min{Fε(ζ,B(zε, ε
λ1) \B(zε, ε2

S′−N )) : ζ ∈W 1,d(B(zε, ε
λ1) \B(zε, ε2

S′−N )),

ζ = 1 on ∂B(zε, ε2
S′−N ), ζ = 0 on ∂B(zε, ε

λ1)}|c−1 − c0|d (18)

+ min{Fε(ζ,B(zε, ε
λ12M ) \B(zε, ε2

S′′−N )) : ζ ∈W 1,d(B(zε, ε
λ12M ) \B(zε, ε2

S′′−N )),

ζ = 1 on ∂B(zε, ε2
S′′−N ), ζ = 0 on ∂B(zε, ε

λ12M )}|c0 − c1|d (19)

+

⌊T/M⌋+1∑
k=2

min{Fε(ζ,A
N
M,k) : ζ ∈W 1,d(AN

M,k), ζ = 1 on ∂B(zε, ε
λ12(k−1)M−N ),

ζ = 0 on ∂B(zε, ε
λ12kM )}|ck−1 − ck|d , (20)
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where we put c⌊ T
M

⌋+1 := 0.

Since λ2 < λ, the minimum in (17) is estimated as (13) in the case λ = 0, thus it is
greater than or equal to

Φ(z) + oε(1)

(1− λ2)d−1| log ε|d−1
|1− c−1|d

(
1− ν

α

)
, (21)

where ν may be taken arbitrarily small as ε→ 0.
The bounds for (18) and (19) follow again by (GC); in particular, recalling how we
defined S′ and S′′, we have that (18) is larger than or equal to

αCapd(B(zε, ε2
S′−N ), B(zε, ε

λ1)) ≥ ασd−1

[(1− λ1)| log ε| − (S′ −N) log 2]d−1

≥ ασd−1

[(λ2 − λ1)| log ε|+ (N + 1) log 2]d−1
,

(22)

while (19) is larger than or equal to

αCapd(B(zε, ε2
S′′−N ), B(zε, ε

λ12M )) ≥ ασd−1

[M log 2 + (1− λ1)| log ε| − (S′′ −N) log 2]d−1

≥ ασd−1

[M log 2 + (1− λ2)| log ε|+ (N + 1) log 2]d−1
.

(23)

Concerning the summands in (20), fix k = 2, ..., ⌊T/M⌋ + 1 and apply the change of
variables x := (y − zε)/ε

λ12(k−1)M−N , we get

min{Fε(ζ,A
N
M,k) : ζ ∈W 1,d(AN

M,k), ζ = 1 on ∂B(zε, ε
λ12(k−1)M−N ),

ζ = 0 on ∂B(zε, ε
λ12kM )}|ck−1 − ck|d

= min
{∫

B(0,2M+N )\B(0,1)
f
(x
δ
ελ12(k−1)M−N +

zε
δ
,∇ζ(x)

)
dx :

ζ ∈W 1,d
0 (B(0, 2M+N )), ζ = 1 on B(0, 1)

}
|ck−1 − ck|d.

By λ1 < λ it follows that

δ

ελ12(k−1)M−N
→ 0 as ε→ 0;

hence, we can apply Theorem 1.2 with

A = B(0, 2M+N ) \B(0, 1) , η =
δ

ελ12(k−1)M−N
, τη =

zε
δ
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and ϕ any function in W 1,d(B(0, 2M+N ) \ B(0, 1)) such that ϕ = 1 on ∂B(0, 1) and
ϕ = 0 on ∂B(0, 2M+N ). We get that each of the above minima equals[
min

{∫
B(0,2M+N )\B(0,1)

fhom(∇ζ(x)) dx : ζ ∈W 1,d(B(0, 2M+N )),

ζ = 1 on B(0, 1), ζ = 0 on ∂B(0, 2M+N )
}
+ oε(1)

]
|ck−1 − ck|d,

(24)

where fhom is the d-homogeneous function given by (5), which does not depend on k.
Recalling the definition of the constant Chom given in (4), (24) turns into[

Chom + oM (1)

((M +N) log 2)d−1
+ oε(1)

]
|ck−1 − ck|d.

By the convexity of x 7→ |x|d and the facts that
∑⌊T/M⌋+1

k=2 (ck−1 − ck) = c1 and T ≤
λ1| log ε|+logRΩ

log 2 , we obtain

⌊T/M⌋+1∑
k=2

|ck−1 − ck|d ≥ (M log 2)d−1

(λ1| log ε|+ logRΩ +M log 2)d−1
|c1|d,

and in turn

⌊T/M⌋+1∑
k=2

min{Fε(ζ,A
N
M,k) : ζ ∈W 1,d(AN

M,k), ζ = 1 on ∂B(zε, ε
λ12(k−1)M−N ),

ζ = 0 on ∂B(zε, ε
λ12kM )}|ck−1 − ck|d

≥
[

Chom + oM (1)

((M +N) log 2)d−1
+ oε(1)

]
(M log 2)d−1

(λ1| log ε|+ logRΩ +M log 2)d−1
|c1|d . (25)

Gathering (21), (22), (23) and (25), and multiplying by | log ε|d−1, we get(
1 +

C

N − 1

)
| log ε|d−1Fε(u,Ω) ≥

Φ(z) + oε(1)

(1− λ2)d−1
|1− c−1|d

(
1− ν

α

)
+

ασd−1| log ε|d−1

[(λ2 − λ1)| log ε|+ (N + 1) log 2]d−1
|c−1 − c0|d

+
ασd−1| log ε|d−1

[M log 2 + (1− λ2)| log ε|+ (N + 1) log 2]d−1
|c0 − c1|d

+

[
Chom + oM (1)

((M +N) log 2)d−1
+ oε(1)

]
(M log 2)d−1| log ε|d−1

(λ1| log ε|+ logRΩ +M log 2)d−1
|c1|d .
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We remark that c−1, c0 and c1 depend on ε and, arguing as before, they can be picked
inside the interval [0, 1]. This fact leads us to assume that each converges to some finite
limit, say c−1, c0 and c1, respectively. Moreover, these limits have to coincide; otherwise,
letting λ1, λ2 → λ or λ2 → 1, we get a contradiction to the fact

sup
ε

| log ε|d−1Fε(u,Ω) <∞.

Eventually, the following estimate holds true:(
1 +

C

N − 1

)
lim inf
ε→0

| log ε|d−1Fε(u,Ω) ≥
Φ(z)

(1− λ2)d−1
(1− c)d

+

[
Chom + oM (1)

((M +N) log 2)d−1

]
(M log 2)d−1

λd−1
1

cd,

and letting M,N → +∞, by the arbitrariness of u we achieve

lim inf
ε→0

| log ε|d−1µε,δ ≥
Φ(z)

(1− λ2)d−1
(1− c)d +

Chom

λd−1
1

cd . (26)

Estimate from below for λ = 1. If λ = 1, keeping the notation introduced through-
out the proof, define annuli centered in zε having radii ελ12kM , with k = 1, ..., ⌊ T

M ⌋+1.

For every function u ∈W 1,d
0 (Ω), u = 1 on B(zε, ε), we have

Fε(u,Ω) = Fε(u,B(zε, ε
λ12(⌊T/M⌋+1)M ))

= Fε(u,B(zε, ε
λ1))

+

⌊T/M⌋+1∑
k=1

Fε(u,B(zε, ε
λ12kM ) \B(zε, ε

λ12(k−1)M )).

(27)

Apply Lemma 2.2 to the terms of the second summand for k = 1, ..., ⌊T/M⌋ with

f(x, ξ) = f
(x
δ
, ξ
)
, η = ελ1 , R = ελ12kM , N ∈ N ∩ (1, kM) and r = ελ12(k−1)M .

Arguing as in the previous instances, with λ ∈ [0, 1), we get(
1 +

C

N − 1

)
Fε(u,Ω) ≥

≥ min{Fε(ζ,B(zε, ε
λ1)) : ζ ∈W 1,d(B(zε, ε

λ1)), ζ = 1 on B(zε, ε),

ζ = 0 on ∂B(zε, ε
λ1)}|1− c0|d (28)

+

⌊T/M⌋+1∑
k=1

min{Fε(ζ,A
N
M,k) : ζ ∈W 1,d(AN

M,k), ζ = 1 on ∂B(zε, ε
λ12(k−1)M−N ),

ζ = 0 on ∂B(zε, ε
λ12kM )}|ck−1 − ck|d , (29)
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where c⌊ T
M

⌋+1 := 0.

Making use of (GC), (28) is bounded from below by

αCapd(B(zε, ε), B(zε, ε
λ1))|1− c0|d =

ασd−1

[(1− λ1)| log ε|]d−1
|1− c0|d

as we did for (22) or (23); while (29) can be estimated as in (25) since δ/ελ1 → 0.
At the end, we get the inequality(

1 +
C

N − 1

)
| log ε|d−1Fε(u,Ω) ≥

ασd−1

(1− λ1)d−1
|1− c0|d

+

[
Chom + oM (1)

((M +N) log 2)d−1
+ oε(1)

]
| log ε|d−1(M log 2)d−1

(λ1| log ε|+ logRΩ +M log 2)d−1
|c0|d .

Recall that we may assume that c0 = c0(ε) converges to a finite value c ∈ [0, 1], hence
we let ε→ 0,M → +∞ and N → +∞ to obtain

lim inf
ε→0

| log ε|d−1µε,δ ≥
ασd−1

(1− λ1)d−1
(1− c)d +

Chom

λd−1
1

cd . (30)

Once we gather (15), (26), (30), we have

lim inf
ε→0

| log ε|d−1µε,δ ≥


Φ(z)

(1−λ2)d−1 (1− c)d +
ασd−1

λd−1
2

cd if λ = 0,

Φ(z)
(1−λ2)d−1 (1− c)d + Chom

λd−1
1

cd if λ ∈ (0, 1),

ασd−1

(1−λ1)d−1 (1− c)d + Chom

λd−1
1

cd if λ = 1

for every λ1 ∈ (0, λ) and λ2 ∈ (λ, 1).
These expressions can be estimated by the same argument concerning the minimization
of the function a(1 − x)d + bxd with x ∈ [0, 1] and a, b > 0. Indeed, the minimum is
attained at

x =

[( b
a

) 1
d−1

+ 1

]−1

with minimum value

b

[( b
a

) 1
d−1

+ 1

]1−d

.

In (15), we set

a =
Φ(z)

(1− λ2)d−1
and b =

ασd−1

λd−1
2

,
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to achieve

lim inf
ε→0

| log ε|d−1µε,δ ≥
ασd−1

λd−1
2

( ασd−1/λ
d−1
2

Φ(z)/(1− λ2)d−1

) 1
d−1

+ 1

1−d

= Φ(z)ασd−1

[
(1− λ2)(ασd−1)

1
d−1 + λ2Φ(z)

1
d−1

]1−d
.

We conclude passing to the limit as λ2 → 0.
In (26), put

a =
Φ(z)

(1− λ2)d−1
and b =

Chom

λd−1
1

, (31)

and let λ1, λ2 → λ getting

lim inf
ε→0

| log ε|d−1µε,δ ≥
Chom

λd−1

[(
Chom/λ

d−1

Φ(z)/(1− λ)d−1

) 1
d−1

+ 1

]1−d

= Φ(z)Chom

[
λΦ(z)

1
d−1 + (1− λ)C

1
d−1

hom

]1−d
.

Finally, in (30) let

a =
ασd−1

(1− λ1)d−1
and b =

Chom

λd−1
1

,

to have

lim inf
ε→0

| log ε|d−1µε,δ ≥
Chom

λd−1
1

[(
Chom/λ1

ασd−1/(1− λ1)

) 1
d−1

+ 1

]1−d

= ασd−1Chom

[
λ1(ασd−1)

1
d−1 + (1− λ1)C

1
d−1

hom

]1−d
.

Then, conclude letting λ1 → 1.

2.2 Construction of optimal sequences

To finish the proof we find minimizing sequences by suitable capacitary profiles.

Optimal construction for λ = 0. If λ = 0, take λ2 ∈ (λ, 1) and let v0ε be a solution
of the minimum problem

min
{∫

B(0,ελ2−1)
f(z,∇u(x)) dx : u ∈W 1,d

0 (B(0, ελ2−1)), u = 1 on B(0, 1)
}
.
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For ε ≪ 1, the function u0ε(x) := v0ε
(
x−zε
ε

)
belongs to W 1,d

0 (Ω) and it is admissible for
the minimum problem defining (8), thus, taking advantage of (H) and (P), we get

µε,δ ≤ Fε(u
0
ε,Ω) = Fε(u

0
ε, B(zε, ε

λ2))

=

∫
B(zε,ελ2 )

f
(x
δ
,∇u0ε(x)

)
dx

=

∫
B(zε,ελ2 )

f
(x
δ
,∇v0ε

(x− zε
ε

)) 1

εd
dx

=

∫
B(0,ελ2−1)

f
(x
δ
ε+

zε
δ
,∇v0ε(x)

)
dx

=

∫
B(0,ελ2−1)

f
(x
δ
ε+ z,∇v0ε(x)

)
dx.

With the same reasoning used in the bound from below, note that if x ∈ B(0, ελ2−1),

then ε
δ |x| <

ελ2
δ → 0 as ε → 0. Hence, for every ν > 0, given rν as in (9), it holds that

ε
δB(0, ελ2−1) ⊆ B(0, rν), so that for every ε sufficiently small we have

f(x, ξ) ≤ f(z, ξ) + ν|ξ|d for every x ∈ B(0, ελ2−1) and ξ ∈ Rd.

As a consequence∫
B(0,ελ2−1)

f
(x
δ
ε+ z,∇v0ε(x)

)
dx ≤

∫
B(0,ελ2−1)

f(z,∇v0ε(x))dx+ ν

∫
B(0,ελ2−1)

|∇v0ε(x)|ddx

which, by (GC), is bounded above by(
1 +

ν

α

)∫
B(0,ελ2−1)

f(z,∇v0ε(x)) dx.

Since ελ2−1 → ∞ as ε→ 0, we apply Lemma 1.1 to deduce

µε,δ ≤
Φ(z) + oε(1)

(1− λ2)d−1| log ε|d−1

(
1 +

ν

α

)
, (32)

thus, by the arbitrariness of ν > 0 and λ2 ∈ (0, 1), we conclude that

lim sup
ε→0

| log ε|d−1µε,δ ≤ inf
λ2∈(0,1)

Φ(z)

(1− λ2)d−1
= Φ(z).

Optimal construction for λ ∈ (0,1). If λ ∈ (0, 1), let λ1 ∈ (0, λ), put

T := max{t ∈ N : ελ12t ≤ dist(zε, ∂Ω)} =

⌊
λ1| log ε|+ log dist(zε, ∂Ω)

log 2

⌋
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and take M ∈ N ∩ (0, T ). Since the family of points {zε, ε > 0} is contained in a ball,
say B, whose closure lays inside Ω, we have that dist(zε, ∂Ω) ≥ dist(∂B, ∂Ω) > 0 so
that T is well defined and can be assumed to be greater than 2 for every ε.

Let vη be a solution of the minimum problem

mη := min
{∫

B(0,2M )
f
(x
η
+ τη,∇u(x)

)
dx : u ∈W 1,d

0 (B(0, 2M )), u = 1 on B(0, 1)
}

with η a positive vanishing parameter and τη to be specified, and set

m0 := min
{∫

B(0,2M )
fhom(∇u(x)) dx : u ∈W 1,d

0 (B(0, 2M )), u = 1 on B(0, 1)
}
.

By Theorem 1.2, there exists an increasing non negative function ω such that

|mη −m0| ≤ ω(η) and ω(η) → 0 as η → 0;

thus, for k = 1, ..., ⌊T/M⌋, define ukε ∈W 1,d(B(zε, ε
λ12kM ) \B(zε, ε

λ12(k−1)M )) as

ukε(x) :=
c

⌊T/M⌋
vη

(
x− zε

ελ12(k−1)M

)
+

⌊T/M⌋ − k

⌊T/M⌋
c

for some constant c to be properly selected. Then, considering the same u0ε introduced
in the case λ = 0, define

uε(x) :=


(1− c)u0ε(x) + c if x ∈ B(zε, ε

λ2)

c if x ∈ B(zε, ε
λ1) \B(zε, ε

λ2)

ukε(x) if x ∈ B(zε, ε
λ12kM ) \B(zε, ε

λ12(k−1)M ) , k = 1, ..., ⌊T/M⌋
0 if x ∈ Ω \B(zε, ε

λ12⌊T/M⌋M ).

Since the boundary conditions match, uε ∈ W 1,d
0 (Ω) and uε = 1 on B(zε, ε); therefore,

it is an admissible function for the minimum problem.
We separately estimate Fε(uε, B(zε, ε

λ1)) and Fε(uε,Ω \B(zε, ε
λ1)).

Making use of (H), by the same computation which led to (32) we get

Fε(uε, B(zε, ε
λ1)) = Fε(uε, B(zε, ε

λ2))

= Fε(u
0
ε, B(zε, ε

λ2))|1− c|d

≤ Φ(z) + oε(1)

(1− λ2)d−1| log ε|d−1
|1− c|d

(
1 +

ν

α

)
,

(33)

for an arbitrarily small ν.
To estimate Fε(uε,Ω \B(zε, ε

λ1)), note that, if we set

η =
δ

ελ12(k−1)M
and τη =

zε
δ
,
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it holds

Fε(u
k
ε , B(zε, ε

λ12kM ) \B(zε, ε
λ12(k−1)M )) =

=

∫
B(zε,ελ12kM )\B(zε,ελ12(k−1)M )

f
(x
δ
,∇ukε(x)

)
dx

=

∣∣∣∣ c

⌊T/M⌋

∣∣∣∣d ∫
B(zε,ελ12kM )\B(zε,ελ12(k−1)M )

f

(
x

δ
,∇vη

( x− zε

ελ12(k−1)M

)) dx

|ελ12(k−1)M |d

=

∣∣∣∣ c

⌊T/M⌋

∣∣∣∣d ∫
B(0,2M )

f
(x
δ
ελ12(k−1)M +

zε
δ
,∇vη(x)

)
dx

=

∣∣∣∣ c

⌊T/M⌋

∣∣∣∣dmη

≤
∣∣∣∣ c

⌊T/M⌋

∣∣∣∣d (m0 + ω(η))

≤
∣∣∣∣ c

⌊T/M⌋

∣∣∣∣d(m0 + ω

(
δ

ελ1

))
.

(34)

Hence, by (34) we get

Fε(uε,Ω \B(zε, ε
λ1)) =

⌊T/M⌋∑
k=1

Fε(u
k
ε , B(zε, ε

λ12kM ) \B(zε, ε
λ12(k−1)M ))

≤
∣∣∣∣ c

⌊T/M⌋

∣∣∣∣d ⌊T/M⌋∑
k=1

(
m0 + ω

(
δ

ελ1

))
=

|c|d

⌊T/M⌋d−1

(
m0 + ω

(
δ

ελ1

))
.

(35)

As fhom(0) = 0, by the definition of Chom we have

m0 =
Chom + oM (1)

(M log 2)d−1
;

thus, we substitute in (35) obtaining

Fε(uε,Ω \B(zε, ε
λ1)) ≤ |c|d

⌊T/M⌋d−1

(
Chom + oM (1)

(M log 2)d−1
+ ω

(
δ

ελ1

))
.

Since T ≥ (λ1| log ε|+ log dist(∂B, ∂Ω)− log 2)/ log 2, it holds

Fε(uε,Ω \B(zε, ε
λ1)) ≤ Chom + oM (1) + (M log 2)d−1ω(δ/ελ1)

(λ1| log ε|+ log dist(∂B, ∂Ω)− log 2)d−1
|c|d. (36)
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We gather the estimates (33) and (36) to get

| log ε|d−1µε,δ ≤ Φ(z) + oε(1)

(1− λ2)d−1
|1− c|d

(
1 +

ν

α

)
+

| log ε|d−1[Chom + oM (1) + (M log 2)d−1ω(δ/ελ1)]

(λ1| log ε|+ log dist(∂B, ∂Ω)− log 2)d−1
|c|d.

Since δ
ελ1

→ 0, we let ε→ 0 and then M → +∞ to deduce

lim sup
ε→0

| log ε|d−1µε,δ ≤
Φ(z)

(1− λ2)d−1
|1− c|d + Chom

λd−1
1

|c|d ;

then, we let λ1, λ2 → λ to conclude that

lim sup
ε→0

| log ε|d−1µε,δ ≤
Φ(z)

(1− λ)d−1
|1− c|d + Chom + oM (1)

λd−1
|c|d.

Finally, put c :=
[(

b
a

) 1
d−1

+1
]−1

, with a = Φ(z)/(1−λ)d−1, b = Chom/λ
d−1. As we are

exactly in the case discussed in (31) with λ = λ1 = λ2, the same computation holds,
leading to

lim sup
ε→0

| log ε|d−1µε,δ ≤ Φ(z)Chom

[
λΦ(z)

1
d−1 + (1− λ)C

1
d−1

hom

]1−d
.

Optimal construction for λ = 1. If λ = 1 we just set

uε(x) :=


1 if x ∈ B(zε, ε

λ1)

ukε(x) if x ∈ B(zε, ε
λ12kM ) \B(zε, ε

λ12(k−1)M ), k = 1, ..., ⌊T/M⌋
0 if x ∈ Ω \B(zε, ε

λ12⌊T/M⌋M ).

Now uε is an admissible function for the original problem, so the conclusion follows by
(36); in particular

Fε(uε,Ω) = Fε(uε,Ω \B(zε, ε
λ1)) ≤ Chom + oM (1) + (M log 2)d−1ω(δ/ελ1)

(λ1| log ε|+ log d− log 2)d−1
;

hence
lim sup

ε→0
| log ε|d−1µε,δ ≤ inf

λ1∈(0,1)
Chom/λ

d−1
1 = Chom.
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2.3 Proof of the main result about the convergence of minima

As a consequence of the previous section, we prove the main result on the asymptotic
behaviour of the minima defined in (1) by

mε,δ := min
{∫

Ω
f
(x
δ
,∇u(x)

)
dx : u ∈W 1,d

0 (Ω), u = 1 on B(z, ε), z ∈ Ω
}
,

where also the centre of the small inclusion (a ball) is an argument of the minimization.

Theorem 2.3. Assume there exists a point x0 ∈ Ω such that the following hold:
(i) f(x, ξ) ≥ f(x0, ξ) for every x ∈ Rd, ξ ∈ Rd;
(ii) for every ν > 0, there exists rν > 0 such that

f(x, ξ) ≤ f(x0, ξ) + ν|ξ|d for every x ∈ B(x0, rν), ξ ∈ Rd.

Then

lim
ε→0

| log ε|d−1mε,δ = Φ(x0)Chom

[
λΦ(x0)

1
d−1 + (1− λ)C

1
d−1

hom

]1−d
.

Proof. We use the same argument presented in the proof of Proposition 2.1, thus, we
focus on highlighting the main differences, keeping the same notation.

Bound from below. In the case λ = 0, we introduce λ2 > 0, then we apply Lemma 2.2
to get the inequality (

1 +
C

N − 1

)
Fε(u,Ω) ≥

≥ min{Fε(ζ,B(z, ελ2)) : ζ ∈W 1,d
0 (B(z, ελ2)), ζ = 1 on B(z, ε)}|1− c|d

+min{Fε(ζ,B(z,RΩ) \B(z, ε2S−N )) : ζ ∈W 1,d(B(z,RΩ) \B(z, ελ22S−N )),

ζ = 1 on B(z, ε2S−N ), ζ = 0 on ∂B(z,RΩ)}|c|d.

Note that the second summand is estimated exactly as (12); while, for the first summand
we cannot exploit the periodicity (P) since the minimization also involves the centre of
the inclusion. To deal with this term, we consider a minimizer u and we simply apply
(i) to get

min{Fε(ζ,B(z, ελ2)) : ζ ∈W 1,d
0 (B(z, ελ2)), ζ = 1 on B(z, ε)}|1− c|d

≥
∫
B(z,ελ2 )

f(x0,∇u(x)) dx |1− c|d

=
Φ(x0) + oε(1)

(1− λ2)d−1| log ε|d−1
|1− c|d.

(37)

This is the same estimate we obtained in (13), with the point x0 in place of the fixed
centre z. Analogously to Proposition 2.1, we conclude that | log ε|d−1mε,δ → Φ(x0).

29



If λ ∈ (0, 1), we further introduce λ1 ∈ (0, λ) and we achieve the inequality(
1 +

C

N − 1

)
Fε(u,Ω) ≥

≥ min{Fε(ζ,B(zε, ε
λ2)) : ζ ∈W 1,d

0 (B(zε, ε
λ2)), ζ = 1 on B(zε, ε)}|1− c−1|d (38)

+ min{Fε(ζ,B(zε, ε
λ1) \B(zε, ε2

S′−N )) : ζ ∈W 1,d(B(zε, ε
λ1) \B(zε, ε2

S′−N )),

ζ = 1 on ∂B(zε, ε2
S′−N ), ζ = 0 on ∂B(zε, ε

λ1)}|c−1 − c0|d (39)

+ min{Fε(ζ,B(zε, ε
λ12M ) \B(zε, ε2

S′′−N )) : ζ ∈W 1,d(B(zε, ε
λ12M ) \B(zε, ε2

S′′−N )),

ζ = 1 on ∂B(zε, ε2
S′′−N ), ζ = 0 on ∂B(zε, ε

λ12M )}|c0 − c1|d (40)

+

⌊T/M⌋+1∑
k=2

min{Fε(ζ,A
N
M,k) : ζ ∈W 1,d(AN

M,k), ζ = 1 on ∂B(zε, ε
λ12(k−1)M−N ),

ζ = 0 on ∂B(zε, ε
λ12kM )}|ck−1 − ck|d , (41)

where we put c⌊ T
M

⌋+1 := 0.

The estimates for the terms (39), (40), (41) are achieved precisely as in (18), (19),
(20) respectively, while (38) is estimated exploiting (i) as in (37). Once more, the
outcome is the same of Proposition 2.1, with x0 in place of z.

The case λ = 1 is treated exactly as in Proposition 2.1 starting by the estimate in
(27); this might be expected since, at this scale, the only effect in the minimization is due
to the homogenization (and then it does not involve the point in which we concentrate
our inclusion).

Bound frome above. Take zε = δx0 modulo δ in such a way that this family of points
is contained in a ball B ⊂⊂ Ω. Condition (ii) suffices to apply the bound from above
given by Proposition 2.1, then we conclude observing that mε,δ ≤ µε,δ.

We remark that assumption (i) may be weakened. Note indeed that the key estimate
we need to carry out our proof, and more specifically the bound from below, is

min{Fε(ζ,B(z, ελ2)) : ζ ∈W 1,d
0 (B(z, ελ2)), ζ = 1 on B(z, ε)}

≥
∫
B(z,ελ2 )

f(x0,∇u(x)) dx,

where u is a minimizer for fixed λ2 ∈ (λ, 1).
A plausible sufficient condition might seem to be that Φ attains its minimum at

the point x0. Yet, note that this requirement is inadequate if Φ is not continuous at a
minimum point. For instance, consider the function defined on (0, 1)d as

f(x, ξ) :=


1
2 |ξ|

d if x = x0 :=
(
1
2 , ...,

1
2

)
|ξ|d otherwise
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and then extended by periodicity. We see that (1) reduces to the homogeneous problem,
then λ is not involved and | log ε|d−1mε,δ → σd−1 as ε → 0; while Φ(x0) = σd−1/2, and
plugging this in (6) with λ = 0 we get | log ε|d−1mε,δ = Φ(x0) = σd−1/2.

3 Application to perforated domains

In this final section we maintain the setting and notation introduced in the previous ones.
We will make use of Proposition 2.1 to compute the Γ-limit of a family of functionals
defined with boundary conditions related to varying domains.

Given (εk)k∈N a positive sequence converging to 0, define the corresponding sequence

of critical periods as dk := | log εk|
1−d
d and put xik := idk for every i ∈ Zd .

Consider δ = δ(ε) the scale which rules the periodic structure of the energy, and define
δk := δ(εk) for every k ∈ N, obtaining a further positive sequence vanishing as k → +∞.
In accordance with the previous sections, we will always assume that it exists

λ := lim
k→+∞

| log δk|
| log εk|

∧ 1. (42)

Assuming that Ω is a bounded open subset of Rd such that |∂Ω| = 0, we define a
periodically perforated domain as

Ωk := Ω \
⋃
i∈Zd

B(xik, εk),

and we consider functionals Fk : Ld(Ω) → [0,+∞] given by

Fk(u) :=


∫
Ω
f

(
x

δk
,∇u(x)

)
dx if u ∈W 1,d(Ω) and u = 0 on Ω \ Ωk

+∞ otherwise.

To prove our result, we assume that the perforations are related to the periodic structure
of the heterogeneous medium, in particular we suppose that

for every k there exists a natural number mk such that dk = mkδk (43)

and that
δk
dk

→ 0 as k → +∞. (44)

Note that conditions (43) and (P) lead to the identity

f

(
xik
δk

+ y, ξ

)
= f

(
idk
δk

+ y, ξ

)
= f(y, ξ) for every i ∈ Zd, y ∈ Rd, ξ ∈ Rd. (45)

In order to apply Proposition 2.1, we add suitable regularity assumptions on f at
the point 0. Our statement reads as follows.
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Theorem 3.1. Assume that for every ν > 0, there exists rν > 0 such that

|f(0, ξ)− f(x, ξ)| ≤ ν|ξ|d for every x ∈ B(0, rν), ξ ∈ Rd. (46)

Then

Γ- lim
k
Fk(u) = F (u) :=

∫
Ω
fhom(∇u(x)) dx+ C(λ)

∫
Ω
|u(x)|d dx,

for every u ∈W 1,d(Ω), where the Γ-limit is computed with respect to the strong conver-
gence in Ld(Ω) and C(λ) is given by

Φ(0)Chom

[
λΦ(0)

1
d−1 + (1− λ)C

1
d−1

hom

]1−d
,

with Φ, Chom, fhom and λ defined as in (3), (4), (5) and (42), respectively.

We basically prove that, in the Γ-limit, internal boundary conditions imposed on

the perforations vanish, being replaced by the additional term C(λ)

∫
Ω
|u|ddx.

3.1 The main construction and some auxiliary results

In our proof we will make wide use of Lemma 2.2. We perform the modifications on
homothetic annuli with inner and outer radii proportional to the period dk.

We introduce
Zk := {i ∈ Zd : dist(xik, ∂Ω) > dk},

namely, the set of the centres of those perforations which are uniformly far from the
boundary.
Let M ∈ N, θ > 0 be such that θ2M+1 < 1/2. Given a sequence (uk)k in W 1,d(Ω), fix
k, and around each point xik with i ∈ Zk apply Lemma 2.2 to the function uk with

f(x, ξ) = f
(x
δ
, ξ
)
, η = θdk, R = θ2M+1dk, N =M and r = θdk. (47)

We obtain a function vk attaining constant values uik on the boundary of the ball
centered at xik with radius θ2jidk for some ji ∈ {1, ...,M} and i ∈ Zk.

We take advantage of the following result which is a simplified version of the dis-
cretization argument proved by Sigalotti (see [17, Proposition 3.3]).

Proposition 3.2. Let (uk)k be a sequence in W 1,d(Ω) ∩ L∞(Ω) strongly converging to
u in Ld(Ω) and such that (∇uk)k ⊆ Ld(Ω) is bounded. For every i ∈ Zk, let u

i
k be the

mean values described above and put

Qi
k := xik +

(
−dk

2
,
dk
2

)d

.
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Then

lim
k→∞

∫
Ω

∣∣∣∣∣∑
i∈Zk

|uik|dχQi
k
(x)− |u(x)|d

∣∣∣∣∣ dx = 0.

A useful tool to proceed will be the following convergence result which is an appli-
cation of the Riemann-Lebesgue lemma.

Lemma 3.3. The sequence

χk(x) := χΩ\
⋃

i∈Zk
B(xi

k,dk/2)
(x) , k ∈ N

weakly* converges to a strictly positive constant c in L∞(Ω).

3.2 Liminf inequality

We prove that for every u ∈ W 1,d(Ω) and for every sequence (uk)k in Ld(Ω) such
that uk → u in Ld(Ω), it holds lim infk Fk(uk) ≥ F (u). Without loss of generality
we may assume that (uk)k ⊆ W 1,d(Ω) and supk Fk(uk) < ∞. Note that the last
condition, combined with the equi-coerciveness of the functionals (Fk)k, implies that
supk ∥∇uk∥Ld(Ω) <∞, and therefore, that uk ⇀ u in W 1,d(Ω).

The first step of the proof consists in applying the modification lemma as in (47). To
simplify the notation here, we limit ourselves to denote the radii on which the modified
function vk attains the constant values uik by ρik in place of θ2jidk.

In a first instance, we also assume that (uk)k is bounded in L∞(Ω).
We aim at estimating

Fk(vk) =

∫
Ω\

⋃
i∈Zk

B(xi
k,ρ

i
k)
f

(
x

δk
,∇vk(x)

)
dx+

∑
i∈Zk

∫
B(xi

k,ρ
i
k)
f

(
x

δk
,∇vk(x)

)
dx. (48)

To treat the first term in (48), we perform another modification putting

wk :=

{
vk on Ω \

⋃
i∈Zk

B(xik, ρ
i
k),

uik on B(xik, ρ
i
k), i ∈ Zk.

Note that, according to (iii) of Lemma 2.2, ∥vk∥L∞(Ω) ≤ ∥uk∥L∞(Ω), hence ∥wk∥L∞(Ω) ≤
∥uk∥L∞(Ω), so that (wk)k is bounded in L∞(Ω) and then also bounded in Ld(Ω).
By the fact that (

1 +
C

M − 1

)
Fk(uk) ≥ Fk(vk) ≥ Fk(wk), (49)

we deduce that (wk)k is bounded inW 1,d(Ω); thus, we may extract a subsequence (wkj )j
weakly converging to a certain w in W 1,d(Ω).
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As uk ⇀ u in W 1,d(Ω), we have that wkj − ukj ⇀ w − u in W 1,d(Ω); moreover,

wk − uk ∈ W 1,d
0 (Ω) for every k so that, by Rellich’s Theorem, wkj − ukj → w − u

in Ld(Ω). Since uk → u in Ld(Ω), we deduce that (wkj )j actually converges strongly to

w in Ld(Ω).
We claim that such w does not depend on the subsequence and that it coincides with
u. To prove this, note that for every k

wkχΩ\
⋃

i∈Zk
B(xi

k,dk/2)
= ukχΩ\

⋃
i∈Zk

B(xi
k,dk/2)

and also that, by Lemma 3.3 and the previous observations, the following hold
χΩ\

⋃
i∈Zk

B(xi
k,dk/2)

∗
⇀ c in L∞(Ω),

uk → u in Ld(Ω),

wkj → w in Ld(Ω).

These facts imply χΩ\
⋃

i∈Zk
B(xi

k,dk/2)
uk ⇀ cu in Ld(Ω),

χΩ\
⋃

i∈Zkj
B(xi

kj
,dkj /2)

wkj ⇀ cw in Ld(Ω),

hence, it follows that u = w in Ld(Ω) for every subsequence, proving that wk → u in
Ld(Ω).
Since vk = wk on Ω \

⋃
i∈Zk

B(xik, ρ
i
k), and since wk is constant on B(xik, ρ

i
k) for every

i ∈ Zk, the liminf inequality provided by a classical homogenization theorem (see, e.g.,
[4]); we have

lim inf
k

∫
Ω\

⋃
i∈Zk

B(xi
k,ρ

i
k)
f

(
x

δk
,∇vk(x)

)
dx = lim inf

k

∫
Ω
f

(
x

δk
,∇wk(x)

)
dx

≥
∫
Ω
fhom(∇u(x)) dx.

(50)

To estimate the second contribution in (48), fix i ∈ Zk and let φi
k be a function solving

min
{∫

B(xi
k,ρ

i
k)
f

(
x

δk
,∇ζ(x)

)
dx : ζ ∈ uik +W 1,d

0 (B(xik, ρ
i
k)), ζ = 0 on B(xik, εk)

}
.

Up to extending the function φi
k to the constant uik on B(xik, dk/2) \B(xik, ρ

i
k), we have∫

B(xi
k,ρ

i
k)
f

(
x

δk
,∇vk(x)

)
dx ≥

∫
B(xi

k,ρ
i
k)
f

(
x

δk
,∇φi

k(x)

)
dx
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≥ min
{∫

B
(
xi
k,

dk
2

) f
(
x

δk
,∇ζ

)
dx : ζ ∈ uik +W 1,d

0 (B(xik, dk/2)), ζ = 0 on B(xik, εk)
}

= min
{∫

B(0, 12)
f

(
dkx

δk
,∇ζ

)
dx : ζ ∈ 1 +W 1,d

0 (B(0, 1/2), ζ = 0 on B(0, εk/dk)
}
|uik|d,

where the last equality follows by the change of variables x := (y− xik)/dk, the identity
(45) and the combined application of the transformation

ζ(x) 7→ ζ(x)

uik

with (H), assuming without loss of generality that uik is different from 0.
Now put

δ′k :=
δk
dk
, ε′k :=

εk
dk
, λ′ := lim

k

| log δ′k|
| log ε′k|

,

and rewrite the previous inequality as∫
B(xi

k,ρ
i
k)
f

(
x

δk
,∇vk(x)

)
dx

≥min
{∫

B(0, 12)
f
( x
δ′k
,∇ζ

)
dx: ζ ∈1 +W 1,d

0

(
B
(
0,

1

2

))
, ζ = 0 on B(0, ε′k)

}
|uik|d. (51)

Note that ε′k = εk| log εk|1−1/d → 0, while δ′k = δk| log εk|1−1/d → 0 as k → ∞ by
assumption (44); also observe that

λ′ = lim
k

| log δk + log | log εk|1−1/d|
| log εk + log | log εk|1−1/d|

= lim
k

| log δk|
| log εk|

= λ.

In light of the assumption (46), we are in position to apply Proposition 2.1 (up to the
transformation u 7→ 1− u) to (51) with Ω = B(0, 1/2) and zε = 0 for every ε; we get

min
{∫

B(0,1/2)
f

(
x

δ′k
,∇ζ(x)

)
dx : ζ ∈ 1 +W 1,d

0 (B(0, 1/2)), ζ = 0 on B(0, ε′k)
}

=
C(λ) + ok(1)

| log ε′k|d−1
=
C(λ) + ok(1)

| log εk|d−1
.

Summing over k and applying Proposition 3.2, we conclude that

lim inf
k

∑
i∈Zk

∫
B(xi

k,ρ
i
k)
f

(
x

δk
,∇vk(x)

)
dx ≥ lim inf

k

C(λ)

| log εk|d−1

∑
i∈Zk

|uik|d + ok(1)

= C(λ)

∫
Ω
|u(x)|d dx .

(52)
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Finally, by (49), (50) and (52), we deduce(
1 +

C

M − 1

)
lim inf

k
Fk(uk) ≥ lim inf

k
Fk(vk) ≥

∫
Ω
fhom(∇u(x)) dx+C(λ)

∫
Ω
|u(x)|d dx.

Recall that θ and M have been chosen so that θ2M+1 < 1/2 and, since the reasoning
leading to the above estimate holds true for every θ > 0, we may let M → +∞ getting
the liminf inequality.

We conclude removing the boundedness assumption on (uk)k ⊆ L∞(Ω) by a trun-
cation argument: put uT := ((−T )∨ u)∧ T for fixed T ∈ N and assume that uk → u in
Ld(Ω). Since f(·, 0) = 0, it holds∫

Ω
f

(
x

δk
,∇uk

)
dx ≥

∫
Ω
f

(
x

δk
,∇uTk

)
dx

for every k, T ∈ N; hence, by the previous instance we have

lim inf
k

∫
Ω
f

(
x

δk
,∇uk

)
dx ≥ lim inf

k

∫
Ω
f

(
x

δk
,∇uTk

)
dx

≥
∫
Ω
fhom(∇uT (x)) dx+ C(λ)

∫
Ω
|uT (x)|d dx.

for every T ∈ N. Since uT → u in W 1,d(Ω) as T → +∞, we conclude by dominated
convergence and the continuity of fhom.

3.3 Limsup inequality

The goal of this section is to define a recovery sequence converging in Ld(Ω) to a fixed
function u ∈W 1,d(Ω). First we assume that u ∈ L∞(Ω).

Start by a recovery sequence uk → u in Ld(Ω) related to the functionals

F 0
k (u) :=


∫
Ω
f

(
x

δk
,∇u(x)

)
dx if u ∈W 1,d(Ω),

+∞ if u ∈ Ld(Ω) \W 1,d(Ω)

which are known to Γ-converge to

F 0(u) :=

∫
Ω
fhom(∇u(x)) dx

for every u ∈ W 1,d(Ω) as stated in the already used homogenization theorem. By the
equi-coerciveness of the functionals (F 0

k )k, we also deduce that uk ⇀ u in W 1,d(Ω).
It is a known fact that, up to extract a subsequence, we can further assume that
(|∇uk|d)k is an equi-integrable family (see [13] and [6, Remark C.6]).
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We claim that we can make our recovery sequence bounded in L∞(Ω). Let T :=
∥u∥L∞(Ω) and define u′k := (−(T+1)∨uk)∧(T+1). We get a bounded sequence in L∞(Ω)

which converges to u in Ld(Ω) with the property that (|∇u′k|d)k is still equi-integrable
as it is obtained by truncation.
Note that∣∣∣∣∫

Ω
fhom(∇uk(x)) dx−

∫
Ω
fhom(∇u′k(x)) dx

∣∣∣∣ ≤ ∫
{|uk|>T+1}

|fhom(∇uk(x))| dx

≤ β

∫
{|uk|>T+1}

|∇uk(x))|d dx ≤ β

∫
{|uk−u|>1}

|∇uk(x))|d dx ;

but since uk → u in measure and (|∇uk|d)k is equi-intergable, the last term tends to 0
and the claim is proved.

For every k, define modifications vk by transformations around every point xik with
i ∈ Zk as we did in (47). We recall the construction for clarity: fix M ∈ N and let θ > 0
be such that θ2M+1 < 1/2, then apply Lemma 2.2 with

f(x, ξ) = f
(x
δ
, ξ
)
, η = θdk, R = θ2M+1dk, N =M and r = θdk.

We have that∫
Ω
f

(
x

δk
,∇vk(x)

)
dx ≤

(
1 +

C

M − 1

)∫
Ω
f

(
x

δk
,∇uk(x)

)
dx , (53)

and that the function vk attains the constant value uik on ∂B(xik, ρ
i
k), where ρ

i
k is of the

form θ2jidk for some ji ∈ {1, ...,M} and i ∈ Zk.
Since εk/dk → 0 as k → +∞, we can also assume εk < θdk for every k; hence, we define

wk :=


vk on Ω \

⋃
i∈Zk

B(xik, ρ
i
k)

uik on B(xik, ρ
i
k) \B(xik, θdk), i ∈ Zk

φi
k on B(xik, θdk), i ∈ Zk,

where φi
k solves the minimum problem

min
{∫

B(xi
k,θdk)

f

(
x

δk
,∇ζ(x)

)
dx : ζ ∈ uik +W 1,d

0 (B(xik, θdk)), ζ = 0 on B(xik, εk)
}

= min
{∫

B(0,θ)
f

(
x

δ′k
,∇ζ(x)

)
dx : ζ ∈ 1 +W 1,d

0 (B(0, θ)), ζ = 0 on B(0, ε′k)
}
|uik|d

=
C(λ) + ok(1)

| log εk|d−1
|uik|d ,
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and the last equality follows by Proposition 2.1 applied to Ω = B(0, θ) and zε = 0 for
every ε.
Introduce the set of indices

Z ′
k := {i ∈ Zd : B(xik, εk) ∩ Ω ̸= ∅, i /∈ Zk},

define radii
rk := θ2M+1dk,

and for every i ∈ Z ′
k, let ψ

i
k be the solution to the homogeneous capacitary problem

min
{∫

B(xi
k,rk)

|∇ζ(x)|d dx : ζ ∈ 1 +W 1,d
0 (B(xik, rk)), ζ = 0 on B(xik, εk)

}
which is (known to be) equal to σd−1| log rk − log εk|1−d.
Up to extending ψi

k with value 1 on Rd \B(xik, rk), we set as recovery sequence

w′
k := wk

∏
i∈Z′

k

ψi
k on Ω;

then we put

Ak :=
⋃
i∈Zk

B(xik, ρ
i
k),

and
A′

k :=
⋃
i∈Z′

k

B(xik, rk).

It holds

lim sup
k

∫
Ω
f

(
x

δk
,∇w′

k(x)

)
dx ≤ lim sup

k

∫
Ak

f

(
x

δk
,∇w′

k(x)

)
dx (54)

+ lim sup
k

∫
Ω∩A′

k

f

(
x

δk
,∇w′

k(x)

)
dx (55)

+ lim sup
k

∫
Ω\(Ak∪A′

k)
f

(
x

δk
,∇w′

k(x)

)
dx. (56)

We estimate (54) using Proposition 3.2,

lim sup
k

∫
Ak

f

(
x

δk
,∇w′

k(x)

)
dx = lim sup

k

∑
i∈Zk

∫
B(xi

k,θdk)
f

(
x

δk
,∇φi

k(x)

)
dx

= lim sup
k

∑
i∈Zk

|uik|d
C(λ) + ok(1)

| log εk|d−1

= C(λ)

∫
Ω
|u(x)|d dx. (57)
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To estimate (55), we set

Qi
k := xik +

(
−dk

2
,
dk
2

)
,

and we preliminarily see that

|Ω ∩A′
k| ≤

∑
i∈Z′

k

(rk)
d ≤ #Z ′

k(dk)
d =

∣∣∣∣ ⋃
i∈Z′

k

Qi
k

∣∣∣∣→ |∂Ω| = 0 (58)

by assumption.
Now we prove that

lim sup
k

∫
Ω∩A′

k

f

(
x

δk
,∇w′

k(x)

)
dx = 0. (59)

For every i ∈ Z ′
k, we have∫

Ω∩B(xi
k,rk)

f

(
x

δk
,∇w′

k(x)

)
≤ β

∫
Ω∩B(xi

k,rk)
|∇w′

k(x)|d dx

= β

∫
Ω∩B(xi

k,rk)
|∇(wkψ

i
k)(x)|d dx

= β

∫
Ω∩B(xi

k,rk)
|ψi

k(x)∇wk(x) + wk(x)∇ψi
k(x)|d dx

≤ 2d−1β(1 + ∥u∥L∞(Ω))
d
[∫

B(xi
k,rk)

|∇ψi
k(x)|d dx+

∫
Ω∩B(xi

k,rk)
|∇wk(x)|d dx

]
≤ C

[
| log rk − log εk|1−d +

∫
Ω∩B(xi

k,rk)
|∇wk(x)|d dx

]
for a positive constant C which depends only on ∥u∥L∞(Ω), β and the dimension d.
Note that, since i ∈ Z ′

k, by definition of wk we have∫
Ω∩B(xi

k,rk)
|∇wk(x)|d dx =

∫
Ω∩B(xi

k,rk)
|∇vk(x)|d dx ,

and by the property (ii) of Lemma 2.2, which ensures that the modifications on the
starting function occur very close to the prescribed radius, it also holds∫

Ω∩B(xi
k,rk)

|∇vk(x)|d dx =

∫
Ω∩B(xi

k,rk)
|∇uk(x)|d dx.

Exploiting the equi-integrability of (|∇uk|d)k, by (58) we infer that

lim sup
k

∑
i∈Z′

k

∫
Ω∩B(xi

k,rk)
|∇wk(x)|d dx = 0,
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and then

lim sup
k

∫
Ω∩A′

k

f

(
x

δk
,∇w′

k(x)

)
dx ≤ C lim sup

k

∑
i∈Z′

k

| log rk − log εk|1−d;

but since | log rk| ≪ | log εk|, we conclude that

lim sup
k

∑
i∈Z′

k

| log rk − log εk|1−d = lim sup
k

∑
i∈Z′

k

| log εk|1−d

= lim sup
k

#Z ′
k(dk)

d = 0

again by (58).
Finally, we deal with (56) taking advantage of (53); it holds

lim sup
k

∫
Ω\(Ak∪A′

k)
f

(
x

δk
,∇w′

k(x)

)
dx = lim sup

k

∫
Ω\(Ak∪A′

k)
f

(
x

δk
,∇vk(x)

)
dx

≤ lim sup
k

∫
Ω
f

(
x

δk
,∇vk(x)

)
dx

≤
(
1 +

C

M − 1

)
lim sup

k

∫
Ω
f

(
x

δk
,∇uk(x)

)
dx

≤
(
1 +

C

M − 1

)∫
Ω
fhom(∇u(x)) dx,

(60)

where the last inequality is due to the fact that (uk)k was originally picked as a recovery
sequence to u for the functionals (F 0

k )k.
Gathering (57), (59) and (60), we get

lim sup
k

∫
Ω
f

(
x

δk
,∇w′

k

)
dx ≤

(
1 +

C

M − 1

)∫
Ω
fhom(∇u)dx+ C(λ)

∫
Ω
|u|ddx,

and since we can repeat the argument for every θ > 0, we are free to set M arbitrarily
large completing the proof of the (approximate) limsup inequality.

We still have to check that w′
k → u in Ld(Ω), i.e., it actually is a (approximate)

recovery sequence.
Note that limk |{w′

k ̸= wk}| = 0 and supk ∥w′
k −wk∥L∞(Ω) ≤ ∥uk∥L∞(Ω) ≤ 1 + ∥u∥L∞(Ω)

imply that w′
k − wk → 0 in Ld(Ω), hence, it suffices to prove that wk → u in Ld(Ω).

Since limk |{wk ̸= vk}| = 0 and supk ∥wk − vk∥L∞(Ω) ≤ ∥uk∥L∞(Ω) ≤ 1 + ∥u∥L∞(Ω), it

holds that wk − vk → 0 in Ld(Ω), moreover vk → u in Ld(Ω) by the same argument we
used in the proof of the liminf inequality based on Lemma 3.3; hence, wk → u in Ld(Ω).
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To conclude, we remove the assumption u ∈ L∞(Ω). Recall that the Γ-limsup of
(Fk)k is defined as

F ′′(u) := inf{lim supk Fk(uk) : uk → u ∈ Ld(Ω)}

for every u ∈ W 1,d(Ω). F ′′ is sequentially lower semicontinuous with respect to the
strong convergence in Ld(Ω) and by what we have already shown, it coincides with F
on W 1,d(Ω) ∩ L∞(Ω).
Hence, given a sequence (uk)k ⊆W 1,d(Ω)∩L∞(Ω) converging to u in W 1,d(Ω), it holds

F ′′(u) ≤ lim inf
k

F ′′(uk) = lim inf
k

F (uk) = F (u)

by the continuity of F with respect to the strong convergence in W 1,d(Ω), and this
concludes the proof of the Γ-convergence.

Remark 3.4. We comment on dropping the integer condition dk/δk ∈ N. As men-
tioned in the introduction, the Γ-limit may not exist; we exhibit an instance in which
a limit exists and is explicitly computed along proper subsequences. We focus on the
computation of the strange term coming from the behaviour near the perforations.
We introduce the function Cλ defined at the point z by

lim
ε→0

| log ε|d−1min
{∫

B
f

(
z +

x

δ(ε)
,∇ζ(x)

)
dx : u ∈W 1,d

0 (B), u = 1 on B(0, ε)
}
,

so that the computation of the strange term reduces to studying the limit as k → ∞ of

∑
i∈Zk

min
{∫

B(0, 12)
f

(
xik + dkx

δk
,∇ζ

)
dx :

ζ ∈ 1 +W 1,d
0 (B(0, 1/2), ζ = 0 on B(0, εk/dk)

}
|uik|d =

∑
i∈Zk

|uik|dCλ
(xik
δk

)
. (61)

Assuming

dk =
mk

T
δk

with mk ∈ N prime and T ∈ N, we have

xik
δk

= z +
h

T
for some z ∈ Zd,

and since Cλ is 1-periodic, as we put

Ih =
h

T
+ Zd ∩ Zk,
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we obtain that (61) equals ∑
h∈{0,...,T−1}d

∑
i∈Ih

|uik|dCλ
( h
T

)
.

We observe that, for fixed h ∈ {0, ..., T − 1}d, the sequence∑
i∈Ih

Cλ
( h
T

)
χQi

k
(x), k ∈ N

is (Tdk)-periodic, hence it weakly* converges to its mean value on the unit cube

1

T d
Cλ
( h
T

)
in L∞(Rd). Combining this fact with Proposition 3.2, we deduce

lim
k→∞

∑
i∈Zk

|uik|dCλ
(xik
δk

)
= C

∫
Ω
|u(x)|d

with

C =
1

T d

∑
h∈{0,...,T−1}d

Cλ
( h
T

)
.
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