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Abstract

We describe the asymptotic behaviour of the minimal heterogeneous d-capacity
of a small set, which we assume to be a ball for simplicity, in a fixed bounded open
set Q C R?, with d > 2. Two parameters are involved: ¢, the radius of the ball, and
0, the length scale of the heterogeneity of the medium. We prove that this capacity
behaves as C|loge|!~9, where C' = C()) is an explicit constant depending on the
parameter A := lim._,o |logd|/|loge].

We determine the I'-limit of oscillating integral functionals subjected to Dirichlet
boundary conditions on periodically perforated domains. Our first result is used to
study the behaviour of the functionals near the perforations which, in this instance,
are balls of radius e. We prove that an additional strange term arises involving

().

Keywords: capacity, homogenization, I'-convergence, perforated domains.
AMS Class: 49J45, 35B27, 31A15.

1 Introduction

A prototypical variational problem in Sobolev spaces involving scaling-invariant func-
tionals concerns the d-capacity of a set E contained in a bounded open set Q C R? with
d > 2. If we assume E having diameter of size ¢ < 1, an explicit computation proves
that the asymptotic behaviour of the capacity equals |loge['~¢, up to a dimensional
factor.

In this paper we introduce a dependence on x, which in the model describes the
heterogeneity of a medium, and we analyse the asymptotic behaviour as ¢ — 0 of the
minimum

Me5 = min{/ f (%,VU(@')) dr :u e Wol’d(Q),u =1on B(z,¢),z € Q}, (1)
Q
where § = () is positive and vanishing as e — 0, and f : R? x R — [0, +00) is a Borel
function with the following properties:



(P) (periodicity) f(-,€) is 1-periodic for every ¢ € R?, i.e., denoting by e; an ele-
ment of the canonical basis

f(z+ex, &) = f(x,€) for every x and € in R, and k =1, ..., d;
(H) (positive d-homogeneity)
f(z,t€) = tif(z,€) for every z and € in R? and t > 0;
(GC) (standard growth conditions of order d) there exist «, 5 such that
0<a<pB and of|?< f(x,€) < Bl for every z and € in RY.

In light of the assumptions (P) and (H), the minimum defined in (1) stands for the
minimal heterogeneous capacity of a small set (which is not restrictive to assume to be
a ball) of size e, while § is the period of the heterogeneity modelled by oscillating terms.
The assumption (GC) is technical since it allows to apply a classical homogenization
result. By a relaxation argument, we may also assume f being convex in the second
variable so that the associated functional is W% (2)-weakly lower semicontinuous and
(1) actually is a minimum.

The first result we achieve is the asymptotic estimate of (1). To this end, we work
along subsequences (not relabeled) for which it exists

T A1 eo,1]. (2)

We introduce a function describing the asymptotic concentration of the heterogeneous
capacity at a point z € R? given by

®(z) := lim (log R)4! min{/ f(z,Vu(z))dx :u € Wol’d(B(O,R)),
R—r+oo B(0,R)\B(0,1)

u=1on B(O,l)};

then we define a constant portraying the effect of homogenization

Chom = lim (log R)4™1 min{/ fhom(Vu(x))dx :u € Wol’d(B(O,R)),
R—rtoo B(0,R)\B(0,1)

(4)
u =1 on B(0, 1)},

where fhom 1s the positively d-homogeneous continuous function determined by the
above mentioned homogenization result as

from(@ =min{ [ 7.6+ Vo) dy s o € WY, o 1periodich.  (5)
(0,1)4
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Note that the terms (3) and (4) are well defined as a consequence of [17, Proposition
5.1]. A simplified statement of this fact is presented in this work (Lemma 1.1).
The main result (Theorem 2.3) is the following. Assume there exists a point z¢ €
such that the following hold:

(i) f(2,€) > f(x0,€) for every = € RY, € € RY,

(i) for every v > 0, there exists r, > 0 such that

f(@,8) < f(xo,&) + v[¢|* for every z € B(wo,1,),€ € R
Then

hom

1 q1—d
lim |1og £[*~'m.. 5 = ®(20)Chom AD () 7T + (1 — A)Cd-l] = C(\).  (6)

As an example, we refer to the quadratic case already treated in [5]. If d = 2 and
f(z, &) = a(x)|€]?, where a(x) is a 1-periodic continuous function bounded from below
by a constant «, we can pick xq so that ®(z¢) = 2wa. Denoting the homogenized matrix
by Apom, we obtain Cpom = 27/ det Apom and we eventually find

av/det Apom
T .
Aa+ (1 — A)v/det Apom

Our argument relies on a method elaborated by De Giorgi which allows to impose
boundary conditions on functions with finite energy. In this work, this tool is presented
in a version (Lemma 2.2) which is suitable for our purposes and that is similar to the
one proposed in [2].

The proof of Theorem 2.3 is obtained as an adaptation of the argument leading to the
intermediate result Proposition 2.1. The latter concerns the asymptotic behaviour of

lim |logelm. 5 =2
e—0

s = min{/Qf (%,Vu(x)) dr:u € Wol’d(Q),u =1on B(zg,s)},

where the centres z. are of the form 62+ i, with z being fixed and i. € Z?. The outcome
of the analysis is the same of Theorem 2.3 for the minimum (1), with the constant C'(\)
which is now given by

1 1 q1-d
D(2)Chom [ MO(2) 7T + (1= NCEE]

that is, the same constant of (6) with z in place of xy as a consequence of the periodicity
of the centres of the inclusions.

The second result concerns homogenization on perforated domains. Denoting by B
the open unit ball, and by d(e) a positive vanishing function that is the period of the
perforations, we define a periodically perforated domain as

Q. =0\ U id(e) +eB
i€Zd
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and we describe the asymptotic behaviour of the functionals F. : L4 (Q) — [0, +oc]
given by

/ f (x,Vu(x)> de  ifue W(Q) and u =0 on Q\ Q.
Q d(e)

+00 otherwise.

F.(u) := (7)

Dirichlet problems in varying domains have been originally studied from the point of
view of the equations, e.g., by Marchenko and Khruslov in [16] and by Cioranescu and

Murat in [9]. In these works, it is analysed the homogeneous case f(x,&) = [{[P for
p > 1, and it is provided a critical choice of the period for which the limit is non trivial
in the case p = d, which is d(g) = |loge|(!=9/¢ Moreover, recasting their result in

terms of I'-convergence with respect to the strong convergence in L(f2), it is proved
that

I’—limFg(u):/ |Vu(x)]dd:r+fid/ lu(z)|? da
€ Q Q

for every u € WH4(Q), with x4 a dimensional constant. This shows that internal
boundary conditions disappear with the arising of a so-called strange term obtained by
the analysis of the energy 'near the perforations’.

Afterwards, a compactness result has been achieved by Dal Maso and Murat in [12] for
the family of solutions (u¢) C WO1 P(Q:,R™) of the problems

—diva(z, Vus(x)) =h in D' (2, R™),

where a : Q x R™*4 — R™*4 is a Carathéodory function satisfying a growth condition
of order p — 1 that defines a monotone operator on Wol’p(Q,]Rm), h € W17 (Q,R™)
with p’ the conjugate exponent of p and . C Q is a general open subset.

They proved that, up to subsequences, (u:)e converges to the solution of the problem

—diva(z, Vu(z)) + (JuP"2u)u = h  in D'(Q,R™)

being © a nonnegative Borel measure not charging sets of null p-capacity in (2.
The inhomogeneous variant was studied by Calvo-Jurado and Casado-Diaz in [8] who
considered a more general equation

—divac(z, Vue(x)) + Fe(z,ue) e = he  in D' (Q,R™)

being a., he, pe as above and F; : 2 x R™ — R™ a suitable Carathéodory function. The
same kind of result is achieved for a limit of the same form

—diva(z,Vu(z)) + F(z,u)p = h in D'(Q,R™).

An example of the occurrance of separation of scales was provided by Conca, Murat and
Timofte in [10]. They studied a Signorini’s type problem; that is, a free boundary-value



problem consisting in determining a function u. and two subsets S§ and S7 (disjoint
components of the boundary of the perforations S¢), such that

—div(A:-Vu.) = h in D'(£2.),
ue = 0 on S§, A:Vue -v > 0 on S5,

us >0on ST, A-Vu. -v =0 on S%,

where v is the outer unit normal to S and A.(z) = A(z/¢) is a d x d matrix satisfying a
uniform quadratic growth condition with continuous entries. They detected a different
behaviour at the limit according to the size of the holes: if the radius of the perforation
is infinitesimal compared with the critical value e%/(=2) d > 2, the problem converges
to a homogenized Dirichlet problem on €2; otherwise, if the holes are considerably large,
the limit is seen to be an obstacle problem as a positivity condition is spread over the
domain.

In the past decades, the literature on these problems has been enriched by the
description of the variational counterpart. The nonlinear (vector-valued) homogeneous
case has been studied by Ansini and Braides in [2], while the version at the critical
exponent is due to Sigalotti [17]. In these papers, the I'-limit of the functionals G- :
LY(Q,R™) — [0, +00] defined by

/ f(Vu(z))dz if ue WH(Q,R™) and v =0 on Q\ Q,
Ge(u) == < Ja
400 otherwise,

for f a quasiconvex energy density with p-growth, is proved to be

[ vu@y o+ [ ptute) s

where ¢ is obtained by a capacitary or a homogenization formula, respectively.

In [1], Ansini and Braides take into account a inhomogeneity considering functionals
as in (7) in the subcritical case d > 3, f with quadratic growth and f(x,-) being 2-
homogeneous, and prove that a separation of scales occurs depending on the rate of
vanishing of the parameters ¢, §(¢) and d(e).
If 6(e) < € or §(e) > d(e), the I'-limit is given by

2
/Q From(Vuu(z)) dz + C /Q lu(z)|? do

being fhom as in (5) and C a constant depending on the considered regime; while in
the intermediate cases the I'-limit may exist only along proper subsequences and the

strange term may have the more general form @\u|2da:.
Q
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We prove an analogous statement (Theorem 3.1) at the critical scale p = d for d(e) >
0(e): for simplicity, we assume that d(¢) is an integer multiple of d(¢) so that the
periodicity of the perforation is ’compatible’ with that of the energy. More specifically,
we suppose that

for every £ > 0 there exists a natural number m(e) such that d(e) = m(e)d(e)

and that
d(e)

d(e)

we also assume that for every v > 0, there exists r, > 0 such that

—0ase —0;

|£(0,8) — f(z,8)| < 1/]§|d for every x € B(0,r,),¢ € R,

Then we prove that
P-lim F. (u) — / From(Vu(z)) dz + C(\) / u(z)|* da
€ Q Q
for every u € Wh4(2), where C()\) is given by
1 1 q1-d
D(0)Chom [AP(0)TT + (1= A)Cy ]

and A is defined as in (2).
To study the contribution to the energy due to the regions 'near the perforations’, we
perform the asymptotic analysis of the problems

min{/Bf (W,Vu(x)) dx :u € Wol’d(B),u =1on B(O, %)}

Such asymptotic analysis is made possible by the assumptions d(¢)/d(e) € N and
0(g)/d(e) — 0: in particular, the former exploits the periodicity of f(-, &) and it combines
with the latter in order to apply Proposition 2.1 with the centres of the perforations
fixed at O for every e.

Note that, if the hypothesis d(g)/d(¢) € N is removed, the I'-limit may exist only
upon possibly passing to a subsequence, and, in some special cases, a more involved
description is provided.

As an example, we consider the case studied in [1, Theorem 5.1]; see Remark 3.4 for a
more detailed discussion. Assume that d(e) = (m(e)/T)d(e) with m(e) € N prime and
T € N, then it can be proved that

F—ligan(u):/thom(Vu(:p))da:ﬂ-C/Q\u(x)‘ddx,



where . 4
C=7a > ()
hef{0,..., T—1}d

and C*(z) is given by

. d—1_ . x ) Ld —
;gr%)\loggl mln{/Bf <z+ 5(5),Vu(x)> de:ue Wy®(B),u=1on B(O,g)}.

Note that this function is well defined by Proposition 2.1 applied to the energy density
9(z,8) = f(z+2,9).

We highlight the consistence with the case d(¢)/d(e) € N as we get T' = 1 so that
C = CMN0) = CO(N).

To sketch a complete picture we also comment the cases §(¢) < ¢ and d(g)/d(e) — ¢ €
[0, 00) without further assumptions on the form of d(¢)/d(e). For these we essentially
recover the critical version of the above mentioned results presented in [1, Sections 4,5]
to which we refer for more details:

e §(¢) < e. This instance forces A = 1; our result is obtained with C'(\) = Chom
even if the periodicity (P) may not be immediately exploited. To give a glimpse
on how this is achieved, we observe that for every perforation id(e) there exists a
unique point y;(¢) on the lattice 6(¢)Z? such that id(e) € y;(e) + [0,5(¢))?. Since
d(e) < g, the energy on the ball B(id(¢),eN) for fixed N > 1, is asymptotically
equivalent to the one on the larger ball B(y;(¢),e(N + 1/N)). Hence, we can
reason as if our perforations are centred on the lattice d(¢)Z?, so that the same
argument we present in Section 3 works with some minor adaptations.

e d(e) < d(g). Several perforations are included in the same cell of periodicity;
thus, an averaging effect on the function ® defined in (3) occurs. Specifically, if
we further assume that for every x € {2 and for every v > 0, there exists r, > 0
such that

1f(2,€) — f(y, )| < v|¢|* for every y € B(z, 1), € € RY,

then ® is continuous and we get
P-lim £ (u) — / From(Vau(z)) iz + ( / o(y) dy) / ()| iz
€ Q (0,1)d Q

for every u € Whd(Q).
° % — q € (0,00). In this case A = 0 and the I'-limit does not exist in general.
Assuming ® continuous and again

—




being m(e) € N prime and 7' € N, we recover the above example, and since
C%(x) = ®(x) we obtain

F—ligan(u):/thom(Vu(x))d:cﬂ—C/Q]u(gg)’ddx

with ) b
=7 > 2(3)
he{0,..,.T—1}d

More recent works on the asymptotic behaviour of Dirichlet problems in varying
domains are, e.g., [3, 7], or also [15] for the numerical perspective.

1.1 Preliminaries

In this section and the following ones, let d > 2, Q C R¢ be a bounded open set and
A= lim._,o |log d|/|loge].

We start by justifying the definitions given in (3) and (4) through the following
lemma which takes advantage of a scaling invariance argument; see [17, Proposition 5.1]
for a more general statement.

Lemma 1.1. Let g : R* — R be a Borel function which is positively homogeneous of
degree d and assume there exist positive constants C1 < Cy such that C1[¢|? < g(€) <
Co|€|? for every € € R, Define

mpg = min{/ g(Vu(z))dx :u € Wol’d(B(O,R)),u =1 on B(0, 1)},
B(0,R)\B(0,1)

then it exists lim (log R)"'mpg and this limit is finite.
R—+o00

Proof. Fix S > R and put T := |log S/log R| so that the annuli B(0, R*)\ B(0, R¥~1)
are contained in B(0,S5) \ B(0,1) for every k =1,...,T.
Let u be a solution of the problem

min{/ g(Vu(zx))dr :u € Wol’d(B(O,R)),u =1 on B(0, 1)},
B(0,R)\B(0,1)

for k = 1,...,T define functions u* € W14(B(0, R¥) \ B(0, R¥™1)) as

uk(x) = %U<RZ—1> + T;k7

then put ug € Wol’d(B(O, S)) as

1 if z € B(0,1)
ug(z) == uk(z) ifxe B(O,RY)\ BO,RFY), k=1,..,T
0 if x € B(0,9)\ B(0, RT).



We have

(0g )" tms < (ogs)* [ §(Vus(x)) dz
B(0,5)\B(0,1)

= (log9)% IZ/ g(VuF(z)) dz

B(0,R*)\B(0,R*~1)

= (logS)*~ 12Td/ g(Vu(z)) dz

B(0,R)\B(0,1)

= (log9)*

Tdfl mg

_ log R d—1
< (log$) <log S —log R) MR

hence, if we pass to the limsup as S — 400, and then we pass to the lim inf as R — +o0,
we obtain

limsup (log $)4 tmg < hm inf (log R) 1mp.

S—+o0 —+00

In order to check that the limit is finite, consider the function

log |z|
logR’

u(z) =1- B(0,R) \ B(0,1),

and note that the estimate

x
log R e < / g(Vu(z)) = (log R d_l/ g() dx
( ) B(0,R)\B(0,1) (Vule)) = ) BO,R\B(,1) \—|z[*log R

= (log R)_l/ g( w2> dr < (logR)™ 102/ —d dz = Cyo4-1
B(0,R)\B(0,1) || B(0,R)\B(0,1) 2]

holds, completing the proof. O

We state a slightly modified version of a classical homogenization result (see [4, 6,
11, 14)]).

Theorem 1.2. Let A be a bounded open subset of R with Lipschitz boundary and
(Ty)y>0 € RL Then

I- lim Af <2 —i—Tn,Vu(:c)) dx = /Afhom(Vu(a:))dx,

n—0

for every u € Wh4(A), where the T'-limit is computed with respect to the strong conver-
gence in LU A) and fuom is the function given by (5).



In particular, for every ¢ € WH4(A) we have

lim inf{/ f <j; + Tn,Vu(:v)) dr :u € ¢+ Wolvd(A)}
A

n—0
- min{/A From(Vu(z))dz s u € ¢ + Wol’d(A)} .

Translations (7)), can be taken into account since the function f is periodic in the first
variable. Indeed, this implies that we may assume (7)), to be bounded so that 1, — 0
and we recover the known case 7, = 0.

At this point, assumptions (H), (GC) and Lemma 1.1 make well defined the function

®(z) == lim (logR)%! min{/ f(z,Vu(y))dy :u € Wol’d(B(O,R)),
R—+oo B(0,R)\B(0,1)

u =1 on B(0, 1)};
the constant

Chom = lim_(log R~ min / From(Vu()) da s u € WE(B(0, R)),
R—+o0 B(0,R)\B(0,1)

u =1 on B(0, 1)},

is also well defined by Theorem 1.2: this, combined with the fact that (H) and (GC)
are inherited by the function fom, ensures that the above lemma applies.

2 Asymptotic analysis of minima

We aim at estimating the asymptotic behaviour of the minima with fixed centres modulo
a translation. More precisely, we fix z in 2 and for every € > 0 sufficiently small, we
consider (z.). a family of points in Q of the form z. = §z + di. with (ic). € Z? such
that inf, dist(z.,0€2) > 0. We put

Hes = min{/ﬁf (%,Vu(m)) dr :u € Wol’d(Q),u =1on B(zg,e)}. (8)

and we prove what follows.

Proposition 2.1. Let z € Q be a fized point, and let (z:): be a family of points equal
to z modulo § as above. Assume that for every v > 0, there exists r, > 0 such that

1£(2,6) = f(2,8)| < v[¢]? for every x € B(z,7y), § € R (9)

Then
1-d

hom

1
hH(l) [loge|" e s = ®(2)Chom /\<I>(z:)ﬁ + (1= NC !
E—
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The proof is divided in two parts, the bound from below and the construction of an
optimal sequence. In the first one, the main tool we use is the following lemma which
allows to modify a function in order to attain constant values (in the sense of the trace)
on the boundary of a thin annulus keeping control on the value of the associated energy.

Lemma 2.2. Let g : R x RY — R be a Borel function satisfying (GC). Let z € R?,
R > 0 and define

F(u,A) := /Ag(w,Vu(w))dx

with u € W44(B(z, R)) and A C B(z,R) a Borel subset.
Let n > 0, S := max{s € N : n2° < R} and assume S > 3. Take N natural number
such that 2 < N < S and r positive real number such that r < 7723_N.
Then, for everyu € WH4(B(z, R)) there exists a function v with the following properties:
(i) v e Wh4(B(z, R) \ B(z,7));
(ii) there exists j € {1,..., N — 1} such that

v = on Bz 25 )\ Bz,r) U B(z, ) \ Blz, 257

(iii) for the same j, the function v is constant on OB(z,m2°77). In particular
1 5
V= udr  on 0B(z,1n2°77),
[Aj] Ja

where Aj := B(z,n25771)\ B(2,1257771). Moreover ||v]|oo < ||t|o0;
(iv) there exists a positive constant C depending on «, 8 and the dimension d such
that

F(v, Bz, R)\ B(=,7)) <(1+ %)F(u B(z,R)\ B(z,7)).

Proof. Assume z = 0, if not, center the construction around z and repeat the argument.
For k = 1,...,N — 1, we define annuli A, := B(0,n25~N*tF+1)\ B(0,n25—N+k-1)
and radial cutoff functions

0 if p € [0,n25~N+h—1]

or(p) = % if p € (HQS—NMAWQS,NM]

T % if pe (7725—N+k’n23—N+k+1]
0 if p e (n25—N+ktl R,

then we put ¢, := 1 — ¢y, and define vy, := Ypu + (1 — i )ua,, where we denote by w4,
the integral average of u on Ag. Note that, for every k, the functions v satisfies the
properties (i), (ii), (iii) with j = N — k.
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At each fixed k, taking into account that |¢;x| < 1 and that

1 d
d_ d -
[Vpe|® = [Voy|” < (W) )

we exploit (GC) to have
/ g(z, Vog(x))dx < |Vvk(a:)|d dzx
A A

[V Vu(x) + (u — uAk)Vwk(x)]d dx

A

1 d
d—1 d d
< 52 [/Ak |Vu|®dx + (W> /Ak lu(z) —ua, |*dx|.

(10)

Consider now the following well known scaling property of the Poincaré-Wirtinger in-
equality: given A open, bounded, connected, with Lipschitz boundary and A > 0, it

holds
1

d/ ’u—U)\A|ddl’§P(A)/ \Vu|? dz,
A% Jxa bV

where uy, is the integral average of u on A\A and P(A) is the Poincaré-Wirtinger

constant related to A.

We apply this result with A = B(0,4)\ B(0,1) and A = 725~ N*+*=1 obtaining

u(x) —ug, |“de < P u|® dx,
(nQS—N—Hc—l Ak| (z) il Ak| |

being P := P(A) a constant which does not depend on k.
As a consequence (10) turns into

/ 9(z, Vog(z)) dv < p297 (1 + Pd)/ V| da
Ay,

Ay

< §2d71 (1+ Pd) / g(x, Vu(z)) dz,

Ay

and summing over k, we deduce

Z/A x, Vug(z)) de < C’/ g(z, Vu(z)) dz,

B(0,R)\B(0,r)

where we put C := 32771 (14 P9) /a. It follows that there exists [ € {1,..., N

/ g(x, Vu(z)) dx < ¢ / g(z, Vu(z)) dz,
4 N =1 Jp0,p\B(0)

that

12
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and then it holds

gl V() do = |

(B(O,R)\B(0,r))\A;

g(u—c’)/ 9(z, Vu()) dz,
N =1/ Jpo,r\B(0,)

which concludes the proof picking v =v; and j = N —[. O

g(w,Vu(:L‘))dx—{—/ g(x, Vu(z)) dx

/B(O,R)\B(O,r) A,

In the proof of Proposition 2.1, and in particular in the estimate from below, we
combine the application of this lemma with a preliminary construction: first we subdi-
vide €2 in homothetic annuli having small inner and outer radii, each of order €”; then
we modify u € I/VO1 ’d(Q) on each annulus using the lemma to achieve constant Dirichlet
boundary conditions by (iii). This way, the lower bound is expressed in terms of a sum
of minimum problems that we further estimate with some care in dealing with possibly
different exponential scales described by 7.

The error introduced by the modifications will be negligible since the estimate in (iv)
gets more precise as IV tends to oo, i.e., as € — 0.

2.1 Lower bound

In what follows, we systematically identify a function u € Wol ’d(Q) with the the exten-
sion obtained by setting u = 0 on R?\ €, which belongs to W14(R%).
For simplicity of notation, given A Borel subset of R% and u € Wl’d(Rd), we put

F.(u,A) := /Af (%,Vu(w)) dz

and denote by Rq the maximum among the diameter of 2 and 1, just to ensure that
log Rq is non negative.

We separately consider the cases A = 0, A € (0,1) and A = 1; we obtain for each
instance the same kind of estimate and then we conclude by the same argument.
Estimate from below for A = 0. If A =0, fix A2 € (A, 1) so that

g2

T—>Oass—>0.

For every u € Wol’d(Q) such that u = 1 on B(z,¢), the inclusion 2 C B(z., Rq) leads
to the equality
F.(u,Q) = F.(u, B(z2¢, Rq)),

then we apply Lemma 2.2 to the function u € Wol’d(B(zE, Rq)), with

T

f(x,g):f(g,f),nzs,R:aAQ,NENﬁ <1, {WJ :S) and r = ¢.
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We get a function v € WOLd(B(zE,RQ)) such that v = 1 on B(z.,¢), v = ¢ on
OB(z.,£2577) for some constant ¢ and some index j € {1,..,N — 1}, v = u on

B(z.,Rq) \ B(ze,e™?).
By the estimate provided by (iv) in Lemma 2.2, it holds

<1 + N0—1) Fo(u,Q) = <1 + NC_1> Fe(u, B(ze, Ra))
> FE(U7B(ZE>RQ))
= F.(v, B(2,2°77)) + F.(v, B(2e, Ra) \ B(z.,e2%77)).

Now we set
1 v on B(z,e2%77) 9 ¢ on B(z,e2579)\ B(z,e25N)
w = ) w- = .
¢ on B(z,")\ B(z,e257) v on B(z, Rq) \ B(z,e2°77),

and we note that A
Fs(wl,B(zs,é‘)‘Z)) = Fs(v,B(z€,62S_7))

and
F.(w? B(z,Rq) \ B(z:,e2°N)) = F.(v, B(z, Rq) \ B(z.,2579)).

Thus

<1 n N01> F(u,Q) > F.(v, B(z, Rq))

= Fg(wl,B(ze,s/\Q))
+ F.(w?, B(z, Rq) \ B(zs,a‘?S_N))

> min{F.(¢, B(ze,™?)) : ¢ € WH(B(2e,€?)),¢ = 1 on B(z,¢),( = ¢ on 0B(z.,£?)}
+min{F: (¢, B(z, Ra) \§(25752S_N)) 1€ WLd(B(ZEa Rq) \§(25752S_N))a
¢ =con dB(z,e2° M), =0 on dB(z, Ra)},

where in the last inequality we took advantage of the Dirichlet boundary conditions
satisfied by w!' and w?. Taking into account the transformations

() B ¢y S8

1—c c
and the property (H), we have that the last expression equals
min{Fa(C7B(Zs>€>\2)) QS W()Ld(B(Zag)\Q)),g =1on B(%yg)}‘l - C‘d (11)

min{F(C, Bz, Ro)\ Bz, 225°Y)) £ ¢ € WH(B (2., Ra) \ Bz, e25)),
¢=1on B(z,e2° ), ¢ =0 on dB(z., Ro)}¢|¢.  (12)
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We separately treat the minima (11) and (12).
As z. = 6z + di., by (P) we get

f (§5+ %@) =f (%5%—2,5) for every ¢ € R%,

Note that if z € B(0,e*271), then §|z| < % — 0 as ¢ — 0. Hence, for every v > 0,
given r, as in (9), assuming e sufficiently small it holds that £B(0,e*271) C B(0,r,),
so that we have

F(5e+26) = £z —vig for every € € R,

Combining these observations with (GC) we get

T Ze

/B(Owl) f(SE T3 W(l’)) dr > (1 - g) /B(Ml) f(z, Vo(z)) dz.

Then, also considering the change of variables x := (y — 2.)/¢ and Lemma 1.1 (which
applies since Ay < 1), we obtain the estimate for (11)

min{F. (¢, B(z.,e™)) : ¢ € Wy (B(z:,e™)),¢ = 1 on B(z,€)}1 — ¢[*

- min{L(0’€A21f<§6 + %,VC(Q?)) L ¢ e WH(B(0,6*71)),¢ =1 on B0, 1)}\1 P

)

> min{/B(O’gkzlf(z,VC(x)) (€ Wol’d(B(O,s)‘Q_l)),( =1 on B(0, 1)}\1 — ¢/ <1 — g)

)
®(z) + 0-(1) v
(1 —X2)d=1|loge|d-1 1 (1 B 7) '

To deal with the minimum in (12), we apply once more property (GC) to get

min{ (¢, B(ze, Ra) \ B(2:,e2%7Y)) : ¢ € WH(B(ze, Ra) \ B(ze,e2°7)),
¢ =1on B(2,2°"),( =0 on 9B(z., Ra)}|c|*

- amin{/ V¢(@)|"da : ¢ € Wy (B(zz, Ra)),¢ =1 on B(za,a2S*N)}VC|d
B(ze,Rq)

= aCapy(B(z,e2° ), B(zz, Ra))lc|!
= QA0d—1 |c|d

[log R + |loge| — (S — N)log 2]d-1

Q0d—1 d
§ 14
> [logRQ+)\2|log€]—|-(N+2)10g2]d_1‘61 ) (14)
where in the last inequality we used that S = L%ggogd .

15
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Gathering (13) and (14), and multiplying by |loge|¢~!, we get

¢ d—1 ®(z) + 0:(1) d v
- >~ 7 - 7 — —
<1+N_1>\log5| F.(u,Q) > 1 gt 11— ( a)
aog_1|loge|dt

d
[logRQ + Ag|loge| + (N + 2)log 2]d-1 |e|®.

We recall that, as specified by (iii) in Lemma 2.2, the boundary value ¢ actually
depends on € being the mean value of the function v on an annulus whose radii are
e-dependent. Observe that we can assume that c¢(¢) — ¢ € R. Indeed, by the estimate

Fo(u, Q) > F.((uV0) A 1,9Q) for every u € Wy (),

we may assume that u takes values in [0, 1] so that (c¢(¢)). C [0, 1] as well and it admits
a convergent subsequence to ¢ € [0, 1].

Finally, since u is arbitrary among the admissible functions for the minimization and
since v may be picked arbitrarily small, we pass to the limit as ¢ —+ 0 and as N — +o0
to conclude that

. d—1 d
111{31)161f‘10g5| ,U/E’(; 2 W(l — C) + )\d—l c, (15)

for every Ag € (0,1).
Estimate from below for A € (0,1). If A € (0,1), we introduce a further parameter
A1 € (0,A) so that
v —0ase—0.

el
Our construction relies on the definition of several concentric annuli. To this end, let

A1lloge| + log R
log 2

T :=max{t € N:eM2' < Rg} = |

]

and assume in particular that T is larger than 4 as € is small enough. Then pick a
natural number M € (2,7) and define annuli centered in z. having radii e*12*M with
k=0,1,.., & +1.

This way we have Q C B(z.,eM2(T/MI+ADM). hence, for every u € Wol’d(Q) such that
u =1 on B(z¢), it holds that

F(u, Q) = F(u, B(ze, M 2(T/MIFOM)

= F.(u, B(z, ’\2)) + Fe(u, B(zE,EAl) \B(zg,s)""))
\T/M)+1
+ Z (u, B(ze, ™28 )\ B(z,eM2h=DM)),

16



Apply Lemma 2.2 to the first summand with

f(x7§):f<%7§>777:57R:€/\2,N€Nﬂ (1, LWJ) and r = &

apply Lemma 2.2 to the second summand with

F) =1 (5.6) n= m=e¥ ¥ enin (1, | P2 2UREE ) ng = o

apply Lemma 2.2 to the terms of the third summand for k = 1, ..., |T/M | with

x

fla, &) = f (5,5) n=eM, R=e"12" N e NN (1,kM) and r = M2k—DM

We set for simplicity of notation

S = M and " .— (A2 — A1) loge]
‘ log 2 ' log 2 ’

and we note that since S’, S” and M will get arbitrarily large, we may assume we fixed

the same NN in each of the above applications of the lemma.

We get functions v=! € Wh?(B(z.,e*?)) attaining the constant value ¢_; on dB(z., 2% ~7-1),
00 € WY4(B(z.,e*)\ B(z.,*?)) attaining the constant value ¢y on dB(z, 2% ~70) and

vk € WH(B(z,eM2FM)\ B(z,eM 2= DM)) for k =1, ..., |T/M ]| attaining the constant
value ¢ on 0B(z.,e28M k) with j, € {1,...,N — 1} for k = —1,0,1,..., |T/M]|.

Then we put

v™l on B(z.,e?)

0 on B(z.,eM)\ B(z,£"?)

v* on Bz, eM2FM)\ B(z,eM2k-DMY) =1, |T/M|
u

otherwise,

and note that v € Wol’d(B(zE, M o(UT/MI+1MY) since the modifications provided by the
lemma occur far from the boundary of each annulus; moreover it holds

C _ c A o(|T/M |+1)M
<1—|—N_1>F€(u,(2)— <1+N_1)FE(U,B(Z€,€ 2 )

> F.(v, B(ze, M 2UT/MIA DMy

17



To point out that v attains constant values on proper spheres centered in z., we write

<1 + NC—1>Fs(u, Q) > <1 + NC_1>F€(1,7 Bz, eMo(T/MI+1)y)
= F.(v, B(ze, M 2UT/MI+1)My)
= F.(v, B(2e,2579-1))
+ Fe(v, B(z, €225 79) \ B(z, 25 7971))
 PL(0, Bz, N2V ) \ Bz, 27 ))

\T/M]
+ Z (v, B(ze, eM2FM=ik) \ Bz, Mok-DM k1))

+ Fg(v, B(zg,e’\12(LT/MJ+1)M) \ B(z., 5>\1QLT/MJM—J'LT/MJ))7
(16)

Then we define functions w*, k = —1,0,1,...|T/M|+1 as follows: w™' € WH?4(B(z.,£*?))
is defined as

,
1 v on B(z,e2% 77-1)
' c_1 otherwise,

so that ‘
F.(w™, B(z.,€"?)) = F.(v, B(2e,e2% 77-1)).

Similarly, set

c_1  on B(z,e2577-1))\ B(z.,e25 )
w = { v on B(z.,e*225"=00)\ B(z,,e2571-1))
o on Bleeye™)\ Bz, 425 h),

so that

F.(w°, B(ze, ™)\ B(ze,22% ")) = F.(v, B(2, 225" 770) \ B(2.,2%77-1))

and . B )
co on B(z,e2% 7))\ B(z.,2%5~N))
wh:={{v on B(ze,eM2M=i1)\ B(zE,52S"—J’o))
e on Bz, eM2M)\ Bz, MM,
so that

FE(wl’ B(z, 5>\12M) \ B, 528”_]\[))) = F.(v, B(z, eM 2M_jl) \ B(ze, 525”_”))'
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For k=2,...,|T/M] + 1, we define annuli
AJ\N/[’,C := Bz, ghighM) \ Bz, 5)‘12(k_l)M_N).
For k = 2,...,|T/M|, we define functions w* € Wl’d(A]]y/Lk) as

ck—1 on B(z, eM Q(k—l)M—jkﬂ) \ Bz, post 2(k—1)M—N)
wh = g on B(z.,eM2FM=ik)\ B(z, M 2k-DM—jk-1)
Ck on B(z,z—:’\12kM) \ B(Z,g/\12k?M_jk)7

and for k = |T/M| + 1,

wlT/MI+L . {CLT/MJ on B(257€A12(k71)M*]’k—1) \§(2676A12(k71)M7N)

v otherwise,

so that ' '
Fg(wk, AAN/[’k) = F.(v, B(z,g)‘12kM_]’“) \ B(z,&?)“?(k_l)M_]"*l))
for all k = 2, ..., |T/M] + 1. B
Once we set A%_l = B(z,e™?), A%O = B(z,e™) \ B(z:,e2% V) and A]]y/[,l =
B(ze,eM2M)\ B(z.,e2%"~N), we can rewrite (16) simply as
|T/M]+1

¢ k N
(1"‘]\7_1>F6(’U,7Q) > Z FE(U} 7AM,k)'
k=-—1
As the functions w™!, ..., wlT/MI+1 attain constant value on the components of their
annuli of definition, we exploit (H) and suitable affine transformations (as in the case

A =0) to get
N - I € u’

> min{ FL(¢, B(z,e™)) : ¢ € Wy (B(2:,€™)),{ = 1 on B(ze,e)}|1 — ¢y | (17)
+ min{F.(¢, B(z=,e™) \ B(z,e25 7)) : ¢ € WH(B(2e,e™) \ B(ze, 25 V)),
(=1on 8B(za,€23l*N),C =0 on 9B(z:,e™)}e 1 — col? (18)
+ min{F (¢, Blze, eM2M) \ B(ze, 625 7N)) 1 ¢ € WH(B(ze, eM2M) \ B(z:, e25"7Y)),
(=1on 6B(z5,£2S/I_N),C =0on 6B(z€,€)‘12M)}\c0 — cl\d (19)
|T/M]+1
+ Z min{F.(¢, AN ) : ¢ € WH(AN ), ¢ =1 on 0B (2., et 2h" DM =Ny,
k=2
¢ =0on dB(z,eM 2" epy — x|, (20)
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where we put €T )4 = 0.

M
Since A2 < A, the minimum in (17) is estimated as (13) in the case A = 0, thus it is
greater than or equal to

®(z) +0:(1)
(1 —A2)?1logel|d—1

1%

-l (1-2). (21)

where v may be taken arbitrarily small as € — 0.
The bounds for (18) and (19) follow again by (GC); in particular, recalling how we
defined S’ and S”, we have that (18) is larger than or equal to

Capy(B(z,25 V), B(z.,eM)) > ad-1
o a'pd( (2675 )7 (Z€>€ ))— [(I—Al)llOgE‘—<S,—N)10g2]d_1 -
> aoq—1 ( )
= [0 — A)[Toge] + (N + 1) log 21"
while (19) is larger than or equal to
B 25”7]\/ B /\12M > ao0q—1
oCapa(Blee, &2 ), Blee: £20)) 2 (100 (= ) Toge] - (57— N)log 2141
> ao0d—1
= [Mlog2+ (1 — X2)|loge| + (N + 1)log 2Jd—1 "
(23)

Concerning the summands in (20), fix K = 2,...,|7/M | + 1 and apply the change of
variables z := (y — z.)/eM 2k~ DM=N "o get

min{F.(¢, Ay ) : ¢ € WHI(Aj ), ¢ =1 on OB(z., M 2k-DM-Ny

¢ =0o0n 0B (z, e 2" ) }Hep_y — o]

_ : L Aiok—=1)M-N | ?e .
= min fl=e™2 + —,V{(z)) dz :
{/B(O,2NI+N)\B(O,1) <6 5 ( ))

¢ e Wo(B(0,2"V)),¢ = L on B(0,1) fler-1 — er|?
By A1 < A it follows that

)
o DN —0ase —0;

hence, we can apply Theorem 1.2 with

) Ze

_ M+N\\ B _
A=B0.27"H\B0.1),  n= g
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and ¢ any function in Wh4(B(0,2M+N)\ B(0,1)) such that ¢ = 1 on dB(0,1) and
¢ =0 on 9B(0,2M+N). We get that each of the above minima equals

|:m111{/ Jfrom(V{(x))dx : ¢ € Wl’d(B(O, 2M+N))’
B(0,2M+N)\B(0,1)

¢(=1on B(0,1),( =0o0n 8B(0,2M+N)} + og(l)] e — cx|?,
(24)

where fhom is the d-homogeneous function given by (5), which does not depend on k.
Recalling the definition of the constant Chop given in (4), (24) turns into

Chom + o (1

By the convexity of z +— |z|? and the facts that Z,EZ/QMJH(C;C_l —¢ck) =crand T <
A1|loge|+log Ro

Tog 2 , we obtain
|T/M|+1 i
> ks —el’ 2 A oe?) 1
P (M|loge| + log Ro + M log 2)d-1
and in turn
\T/M]+1
Z min{F. (¢, AR y,) : ¢ € WH(AJ ), ¢ = 1 on 9Bz, M2k DM,
k=2

¢ =0 on dB(z,eM 28"} epy — cp?
(M log 2)?—1
(A|loge| + log R + M log 2)d

> |: Chom+0M(1)
— L

d
M+ N)loga)e1 W) mrlal”. (25)

Gathering (21), (22), (23) and (25), and multiplying by |loge|¢~!, we get

(1 + N(il> llog e|* 1 Fu(u, Q) > Wu — ey (1 . 2)

aog_1|loge|*!

(A2 — A\1)|loge| + (N +1)log2
‘d—l

+

d
]d,1 |C*1 - CO’

aog_1|loge
Mlog2+ (1 — Ag)|loge| 4+ (N + 1) log 2]¢—1
Chom + onr(1 M log2)?=1loge|d—1
+ h OM( )d,1 +05(1) ( og ) ’ Og€| d71|cl‘d-
((M + N)log?2) (A1|loge| + log R + M log 2)

+ [ ’Co—Cﬂd
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We remark that c_1, cg and ¢; depend on € and, arguing as before, they can be picked
inside the interval [0, 1]. This fact leads us to assume that each converges to some finite
limit, say c_1, c¢g and c1, respectively. Moreover, these limits have to coincide; otherwise,
letting A1, Ao = A or Ao — 1, we get a contradiction to the fact

sup|loge|4 1 EL (u, Q) < 0.
€

Eventually, the following estimate holds true:
®(z)
(1 — /\Q)d_1
Chom + 0onr(1) (M log 2)%—1 o
(M + N)log2)d-1 Ad-1 ’

(1 + C> lim inf | log e| ¥ . (u, Q) > (1—c)?
—1 e—0

N

_l’_

and letting M, N — 400, by the arbitrariness of u we achieve

CI)(Z)d_l (1 - C)d + %Cd ) (26)

liminf |log ] e s > —— 2 —
im inf [loge[* p1e 5 > 1= Ni-1

Estimate from below for A = 1. If A = 1, keeping the notation introduced through-
out the proof, define annuli centered in z having radii e 2™ with k=1, ..., L%J + 1.

FOT eVGI‘y function u€ Wolvd(Q)’ U = 1 on B(ZS, 5)7 we have
Fs(’ua Q) = Fg(u’ B(zs, 5>‘12(LT/MJ+1)M))
= Fu(u, Bz, )

\T/M]+1
T Z F.(u, B(ze,eM2"M)\ B(z., M2k DMy)
k=1

(27)

Apply Lemma 2.2 to the terms of the second summand for £ =1, ..., |T'/M | with
x
fa.) =1 (5

Arguing as in the previous instances, with A € [0, 1), we get

<1 + Nc_11>Fg(u, Q) >

5) ,n= 5>\17 R = €>\12ka N eNN(1,kM) and r = crgk—1)M

> min{ (¢, B(z,e™M)) : ¢ € WH(B(ze,eM)),( = 1 on B(z,¢),
¢ =0on dB(z,e")}1 — col® (28)
[T/M]+1
+ > min{F.(¢, AN y) 1 ¢ € WHI(AR ), ¢ =1 on 9B(z, M2~ DMV,
k=1
(=0o0n 83(25,5’\12’“M)}|ck_1 — ck\d, (29)
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where LT 1= 0.
Making use of (GC), (28) is bounded from below by

Qod—1 I
[(1 = A1)[loge[}4—1

acapd(B(Z&‘a8)7B<267€/\1))‘1 _COId: —C(]‘d

as we did for (22) or (23); while (29) can be estimated as in (25) since §/e*t — 0.
At the end, we get the inequality

C _ aog_1
14+ —— )|loge|4 tF(u, Q) > ——2——]1 — ¢g|*
( + N — 1>| 0g8| (U, ) = (1 _Al)dill Co|

|log e|9= (M log 2)9~!
(A1) loge| +log R + M log 2

C’hom + OM(l)
+ [((M+ N)log 2)71

+0:(1) Y1 ol

Recall that we may assume that ¢y = ¢o(g) converges to a finite value ¢ € [0, 1], hence
we let e = 0, M — +00 and N — +00 to obtain

Q0q4—1

C’hom Cd
(1 — )\1)d71 ’

d—1
)‘1

lim inf | log e e 5 > (1—c)+ (30)
e—0 ’

Once we gather (15), (26), (30), we have
(L=t + Sstel i A=0,

.. d—1 D(z) d Chom .d .
11£rgé1f |loge|®  pies > W(l —c)+ %c if A e (0,1),

_a0dot (1 _)d 4 Chomed if )\ =1
aneT (L= )+ 5

for every A\; € (0,A) and X2 € (A, 1).

These expressions can be estimated by the same argument concerning the minimization
of the function a(1 — z)¢ + baz? with = € [0,1] and a,b > 0. Indeed, the minimum is
attained at

with minimum value

In (15), we set
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to achieve

liminf |loge
e—0

]dil,u > aog_q aad_l/)\g_l a1
PP [\ @(2)/(1 = )it

1 1 71—d
— ®(2)aog [(1 — X)) TT + Mg®(2)TT

We conclude passing to the limit as Ay — 0.

In (26), put

(I)(Z) C'hom
—_— d b= ——
TSI Y

a =

(31)

and let A1, Ao — A getting

1-d
Chom

N1

liminf | loge|* p. 5 >
e—0 ’

C’hom/>‘d_1 ﬁ
(@(z)/(l - A)dl) !

hom

1 1 91-d
= &(2)Chom [m(z)ﬂ +(1- A)Cd—l} .

Finally, in (30) let

o 001 gy Chon
(1 —Ap)d1 )‘Cllil 7
to have
—1
liminf | log e|? e g > —1om o 1
iminf [log e[ e 5 > AT | \aoa_r /(1= \) "

1

1 1 41-d
= @0 4—1Chom [)\1 (OzO‘d_l)dfl + (1 — /\1)0}7&;} .

Then, conclude letting Ay — 1.

2.2 Construction of optimal sequences

To finish the proof we find minimizing sequences by suitable capacitary profiles.

Optimal construction for A = 0. If A = 0, take Ay € (A, 1) and let v? be a solution
of the minimum problem

min{/ f(z,Vu(x))de :u € Wol’d(B(O,a)‘Q_l)),u =1 on B(0, 1)} .
B(0,e*2~1)
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For £ < 1, the function u2(z) := v? (£=%) belongs to Wol’d(Q) and it is admissible for

€

the minimum problem defining (8), thus, taking advantage of (H) and (P), we get

(
N /B(zs,ab) f(
[
B(0,e*2—1)

a /B(07€A21) f<55 + 2, Vg (33)) dx.

With the same reasoning used in the bound from below, note that if x € B(0,e*271),

then $|x| < % — 0 as ¢ — 0. Hence, for every v > 0, given 7, as in (9), it holds that
$B(0, e*2~1) C B(0,r,), so that for every ¢ sufficiently small we have

f(x, &) < f(z,8) + V\§|d for every x € B(O,s)‘Q_l) and £ € R,

As a consequence

/ f(fe +z, vvg(x)) dz < / F(2 Vo2(2))dz + 1// V0 (2)|4da
B0, 2-1) \O B(0,r2-1) B(0,e22-1)

which, by (GC), is bounded above by

(1 + g) /B(O,a*zl) f(z, Vol(z)) da.

A=l 5 50 as € — 0, we apply Lemma 1.1 to deduce

Since ¢

P(z) + 0:(1) (1+ u) ’

1— X))@ 1]loge|d1 a

. (32

Hes < (
thus, by the arbitrariness of ¥ > 0 and A2 € (0,1), we conclude that

0]
lim sup | log =[5 < (=)

inf ———— = ®(z).
e—0 A2€(0,1) (1 — Ag)d—1 (2)

Optimal construction for A € (0,1). If A € (0,1), let A; € (0, A), put

A1l log dist(z, 09
T := max{t € N: eM2! < dist(z.,00)} = { 1] log e] + log dist(z., 9 )J

log 2
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and take M € NN (0,7). Since the family of points {z., ¢ > 0} is contained in a ball,
say B, whose closure lays inside 2, we have that dist(z.,9Q) > dist(0B,9) > 0 so
that T is well defined and can be assumed to be greater than 2 for every ¢.

Let v, be a solution of the minimum problem

My = min{ f(z + Tn,Vu(:r)) dv :u € Wol’d(B(O,QM)),u =1 on B(0, 1)}
B(0,2M) n

with 7 a positive vanishing parameter and 7, to be specified, and set
mo := min{/ from(Vu(x))dz :u € Wol’d(B(O,2M)),u =1 on B(0, 1)}
B(0,2M)

By Theorem 1.2, there exists an increasing non negative function w such that
|my —mo| <w(n) and w(n) = 0asn—0;
thus, for k = 1,..., |[T/M ]|, define u¥ € Wh4(B(z., eM28M)\ B(z., et 2= DM)) a5

¢ T — 2 |T/M| —k
<@ = gy (swk—DM) M)

(2 C

for some constant ¢ to be properly selected. Then, considering the same u introduced
in the case A = 0, define

(1—c)ul(z) +¢ if z € B(z,e™)

£

() c if ¥ € B(ze,e™) \ B(ze,e?)

us(z) ==

: uk () if 2 € B(ze,eM28M)\ B(z.,eM2k-DMy | —1 | T/M]
0 if x € Q\ Bz, eM2lT/MIM),

Since the boundary conditions match, u. € Wol’d(Q) and u. = 1 on B(z.,¢); therefore,
it is an admissible function for the minimum problem.
We separately estimate Fi(ue, B(z,e™)) and F.(us, Q\ B(z,e™)).
Making use of (H), by the same computation which led to (32) we get
FE(UEa B(Z€7 5)\1)) = FE(UE7 B(ZE’ 5>\2))
= Fs(u& B(z€,5>‘2))]1 - C‘d

P(z) +o0c(1) d v
= (1= Ao)@1|logeld! 1=l (1 + 5) ’

for an arbitrarily small v.
To estimate F.(u, 2\ B(z:,e)), note that, if we set

_ ) d _ Z
= Xgtk—1)M an =5
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it holds
Fo(uf, Bz, eM25M) \ B(z, M2 D)) —
:/ <£,Vu§(x)> dx
B(ZS7E>\1QkAJ)\B(Zb:’E/\lz(kfl)M) (5

c d/ f{vU<x—z€> dx
{T/MJ B(2e,eM 2EM)\ B(ze,eM 2(k—1)M) 5’ T\ e ok—1)M ’€>\12(k—1)M‘d

d
B L Mok—1)M | %
|T/M | /,9(072M)f(56 2 3 ’W’?(“)) de

c

IN

IA
3.
=

U
N

3

o

+

&
/N
Yo
SN—
N~—

(34)
Hence, by (34) we get

L7/M]
Fe(ue, Q\ B(z:,e™M)) = Z F.(uf, B(z., M 2MM) \ B(z., e 2k=DMY)

k=1 dLTz/J‘:4J <m0+w <£1>> (35)

|l &

= e (v ()

As fhom(0) = 0, by the definition of Clop we have

- Chom +on(1)
07 (Mlog2)&1 '

thus, we substitute in (35) obtaining

cd C om o 1 1)
Fo(ue, Q\ B(z,eM)) < LT/‘M‘Jd_l ( (};\410;2;%9 +w <€M>>

Since T' > (A1|loge| + log dist(0B, 9€2) — log 2)/ log 2, it holds

Chom + o (1) + (Mlog 2)4=1w(§/eM)
(M1]loge| + log dist(9B, 992) — log 2)d-1

F.(ue,Q\ B(ze,eM)) < el (36)
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We gather the estimates (33) and (36) to get

D(z) + o0:(1) d v
S Qo L (1+2)
|log £|4 [Chom + onr(1) + (M log 2)T1w(§/eM)]

(A1 loge| + log dist (0B, 99Q) — log 2)d-1

[log el pie s

Jef .

Since 6% — 0, we let € — 0 and then M — 400 to deduce

)

@(Z d Chom d
He,s < d—1 |1 - C‘ + d—1 |C| )
(1 — )\2) )\1

limsup |log g|[¢!

e—0
then, we let A1, Ay — A to conclude that

Chom + OM(l) ‘ |d

d
|1 —c|®+ T

®(2)
li logeldly, s < —2
1r?jélp| 0g el e < T

. -1
Finally, put ¢ := [(3) Ty 1} , with a = ®(2)/(1 =A%, b= Chom/AL. As we are

exactly in the case discussed in (31) with A = A; = A9, the same computation holds,
leading to

_1
limsup | log |~ 1c 5 < ®(2) Chom | AB(2) 7T + (1 = N)CpL ]

hom
e—0

Optimal construction for A = 1. If A =1 we just set

1 if z € B(z,eM)
us(z) = uf(z) if 2 € Bz, eM2FM)\ B(z., eM2-DMy =1, . |T/M|
0 if € Q\ B(z.,eM2lT/MIM)

Now wu, is an admissible function for the original problem, so the conclusion follows by
(36); in particular

Chom + om(1) + (Mlog2)"w(§/eM)
(M1]loge| + logd — log 2)4—1 ’

F.(ue,Q) = Fo(ue, Q\ B(z,e™M)) <

hence

lim sup | log 5|d*1,u5,5 < inf Chom/)\il_l = Chom-
e—0 A1€(0,1)
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2.3 Proof of the main result about the convergence of minima

As a consequence of the previous section, we prove the main result on the asymptotic
behaviour of the minima defined in (1) by

Mes 1= min{ f (f,Vu(x)> dr:ue Wol’d(Q),u =1on B(z,¢),z € Q},
) Q 5

where also the centre of the small inclusion (a ball) is an argument of the minimization.

Theorem 2.3. Assume there exists a point xy € 2 such that the following hold:

(i) f(2,€) = f(z0,&) for every z € RY, £ € RY;
(ii) for every v > 0, there exists r, > 0 such that

f(2,8) < f(z0,8) +v|¢|* for every x € B(xo, 1), & € R™

Then L o1d
y 11—
lir% | log5|d_1m6,5 = @©(20)Chom [)\‘I)(Io)ﬂ + (1= A)legﬂ :
E—r
Proof. We use the same argument presented in the proof of Proposition 2.1, thus, we

focus on highlighting the main differences, keeping the same notation.

Bound from below. In the case A = 0, we introduce Ay > 0, then we apply Lemma 2.2
to get the inequality

C
1+ —— ) Fo(u, ) >
( +N—1> =(u, ) >
> min{F.(¢, B(z,eM)): ¢ € Wol’d(B(z,a)‘Q)),C =1on B(z,¢e)}1 — ¢
+min{F.((, B(z, Ra) \ B(z,e257)) : ¢ € WH¥(B(2, Rq) \ B(z,2257)),
¢ =1on B(z,e2°N),¢ =0 on dB(z, Rg)}|c|%.
Note that the second summand is estimated exactly as (12); while, for the first summand
we cannot exploit the periodicity (P) since the minimization also involves the centre of

the inclusion. To deal with this term, we consider a minimizer v and we simply apply
(i) to get

min{F.(¢, B(z,e")) : ¢ € Wy (B(z,e™)),¢{ =1 on B(z,€)}1 — ¢/
2 [y T Vil ol = (37)

el
(1 — X2)41|loge|d—1 '

This is the same estimate we obtained in (13), with the point z( in place of the fixed
centre z. Analogously to Proposition 2.1, we conclude that |log 5|d_1m5,5 — D(z0).
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If X € (0,1), we further introduce A; € (0, ) and we achieve the inequality

(1 + C)Fa(u, Q) >

N —1
> min{FE(C,B(zg,s)‘Q)) : C € W&?d(B(Z€’€A2))7C =1on B(Z£75)}|1 - C_lyd (38)
Fin{ (G, Blae, ) \ Blae, 225 ) £ € € WH(B (e, M)\ Blew, 25 V),
¢ =1on8B(2,e2%V),( =0 on 9B(z.,eM)}e_1 — ol (39)

+ min{ F- (¢, B(ze, eM2M) \ B(2,e2% 7)) : ¢ € WH(B(z., eM2M) \ B(z.,22°" 7)),
¢=1o0n0B(z,e25" "), ¢ =0 on B(z., e 2M)}ep — 1| (40)
|T/M|+1

+ > min{F.(¢, Ajy) 1 ¢ € WHI(AR L), ¢ =1 on 9B(z, M2k DMy,

k=2
¢ =0on dB(z,eM 2" ep_y — exl?, (41)
where we put €T )4y = 0.
M

The estimates for the terms (39), (40), (41) are achieved precisely as in (18), (19),
(20) respectively, while (38) is estimated exploiting (i) as in (37). Once more, the
outcome is the same of Proposition 2.1, with x( in place of z.

The case A = 1 is treated exactly as in Proposition 2.1 starting by the estimate in
(27); this might be expected since, at this scale, the only effect in the minimization is due
to the homogenization (and then it does not involve the point in which we concentrate
our inclusion).

Bound frome above. Take z. = dxy modulo § in such a way that this family of points

is contained in a ball B CcC €. Condition (ii) suffices to apply the bound from above
given by Proposition 2.1, then we conclude observing that m. s < pic 5. O

We remark that assumption (i) may be weakened. Note indeed that the key estimate
we need to carry out our proof, and more specifically the bound from below, is

min{FE(C,B(Z,a)‘Q)) (€ Wol’d(B(z,g’\Q)),g =1on B(z,e)}
> /B(Z,EAQ)f(xo,Vu(:c)) dx,

where wu is a minimizer for fixed Ay € (A, 1).

A plausible sufficient condition might seem to be that ® attains its minimum at
the point xy. Yet, note that this requirement is inadequate if ® is not continuous at a
minimum point. For instance, consider the function defined on (0,1)¢ as

%lg\d if x =29 := (%,,%)

€| otherwise

f(a:,{) =
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and then extended by periodicity. We see that (1) reduces to the homogeneous problem,
then X is not involved and |log 5|d_1m5,5 — 041 as € — 0; while ®(xg) = 04-1/2, and
plugging this in (6) with A = 0 we get |loge|? " m. 5 = ®(20) = 04_1/2.

3 Application to perforated domains

In this final section we maintain the setting and notation introduced in the previous ones.
We will make use of Proposition 2.1 to compute the I'-limit of a family of functionals
defined with boundary conditions related to varying domains.

Given (gx)ken a positive sequence converging to 0, define the corresponding sequence
of critical periods as dj, := |log ekl¥ and put z := idy, for every i € Z% .
Consider § = §(¢) the scale which rules the periodic structure of the energy, and define
0k := d(eg) for every k € N, obtaining a further positive sequence vanishing as k — +oc.
In accordance with the previous sections, we will always assume that it exists

N | log oy

= . 42
k—-+oo | log e (42)

Assuming that  is a bounded open subset of R? such that |[0Q| = 0, we define a
periodically perforated domain as

Q= Q\ | Bz}, &),
iezd

and we consider functionals F}, : L4(Q) — [0, +-oc] given by

/ f <;,Vu(x)> de ifue WH(Q) and u =0 on Q\ Q4
Q k

+00 otherwise.

Fy(u) :=

To prove our result, we assume that the perforations are related to the periodic structure
of the heterogeneous medium, in particular we suppose that

for every k there exists a natural number my, such that di = myd, (43)
and that 5
d—k—>0ask:—>—|—oo. (44)
k

Note that conditions (43) and (P) lead to the identity

! <§f:+y’§> -/ (i;i,wy’f) = f(y,€) for every i € 2%, y e RT, L €RL - (45)

In order to apply Proposition 2.1, we add suitable regularity assumptions on f at
the point 0. Our statement reads as follows.
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Theorem 3.1. Assume that for every v > 0, there exists r, > 0 such that

1£(0,6) = f(a,€)| S v[E|? for every x € B(0,7,),€ € RY. (46)

Then
3 — - d
I- h]ian(u) = F(u) = /thom(Vu(x))dm + C()\)/Q\u(xﬂ dz,

for every u € Wh4(Q), where the T-limit is computed with respect to the strong conver-
gence in LY(Q) and C(\) is given by

L 1 +1-d
(I)(O)Chom [A@(O)ﬂ + (1 _ )\)Cdfl:| ’

hom

with @, Chom, frhom and X defined as in (3), (4), (5) and (42), respectively.

We basically prove that, in the I'-limit, internal boundary conditions imposed on

the perforations vanish, being replaced by the additional term C'(X) / lu|?dz.
Q

3.1 The main construction and some auxiliary results

In our proof we will make wide use of Lemma 2.2. We perform the modifications on
homothetic annuli with inner and outer radii proportional to the period dy.

We introduce )
Zy, = {i € 7% : dist(z%, 00) > d},

namely, the set of the centres of those perforations which are uniformly far from the
boundary.

Let M € N, 6 > 0 be such that #2"+1 < 1/2. Given a sequence (uy); in W4(Q), fix
k, and around each point x}i with ¢ € Z, apply Lemma 2.2 to the function u; with

T

F@,6) = £ (5.€), n = 0d, R = 02"H1dy, N = M and r = 0dy. (47)

We obtain a function v attaining constant values u}c on the boundary of the ball
centered at x} with radius §27idy, for some j; € {1,..., M} and i € Zj.

We take advantage of the following result which is a simplified version of the dis-
cretization argument proved by Sigalotti (see [17, Proposition 3.3]).

Proposition 3.2. Let (ug)r be a sequence in WH4(Q) N L>®(Q) strongly converging to
u in L Q) and such that (Vug), C L4(Q) is bounded. For every i € Zy, let ul be the
mean values described above and put

i i di, dy I
Qk = l‘k+ <—2,2> .
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Then

lim
k—o0

|32 iy (@) = )| dz = o
ZEZk

A useful tool to proceed will be the following convergence result which is an appli-
cation of the Riemann-Lebesgue lemma.

Lemma 3.3. The sequence
Xk(2) = Xo\U,ep, Blaide/2)(@), k€N

weakly™ converges to a strictly positive constant ¢ in L>°(2).

3.2 Liminf inequality

We prove that for every u € WhH4(Q) and for every sequence (uz)x in L4(Q2) such
that ux — w in L4(R), it holds liminfy, Fg(ugx) > F(u). Without loss of generality
we may assume that (uy), € W1h4(Q) and supy Fi(ur) < oo. Note that the last
condition, combined with the equi-coerciveness of the functionals (Fj)x, implies that
supy, || Vug | pa(q) < oo, and therefore, that uy — u in Whi(Q).

The first Step of the proof consists in applying the modification lemma as in (47). To
simplify the notation here, we limit ourselves to denote the radii on which the modified
function v attains the constant values “2 by p}; in place of 027idj,.

In a first instance, we also assume that (uy)x is bounded in L>(2).

We aim at estimating

Fi(vg) = / - f <5 Vo (z ) dx —i—Z / ( , Vug(z )) dx. (48)
NUiez, B@g.ri) i€Zy, B(x}.01)
To treat the first term in (48), we perform another modification putting
wy, = vp  on 2\ Uiez,c B(z}, pt)s
u}v on B(m}%,p}%), 1€ Zy.

Note that, according to (iii) of Lemma 2.2, |[v|| oo () < [[ug |l oo (02), hence [[wi || poo (@) <
lug |l oo (), 80 that (wg)y is bounded in L*°(2) and then also bounded in LY(Q).
By the fact that

(1 + MC; 1> Fk(uk) > Fk(l)k) > Fk(wk), (49)

we deduce that (wy,), is bounded in WH4(Q); thus, we may extract a subsequence (wg;);
weakly converging to a certain w in W1h4(Q).

33



As up — u in WH4(Q), we have that Wy, — Ug; — w — u in Wh4(Q); moreover,
wg — ug € Wol’d(Q) for every k so that, by Rellich’s Theorem, wg; — ug; — w — u
in L¥(). Since uyp — u in L4(Q), we deduce that (wy,); actually converges strongly to
w in L4(9).

We claim that such w does not depend on the subsequence and that it coincides with
u. To prove this, note that for every k

kaQ\UiGZk B(aj.dy/2) ~ ukXQ\UieZk B(z},,dy/2)
and also that, by Lemma 3.3 and the previous observations, the following hold
XQ\Uiezk B@Zvdk/z) = ¢ in LOO(Q)’

Up — U in L4(Q
wy; — W in LY(Q

)7
)

These facts imply

N 1 d
XQ\U, 5, Blodi/2)tk = €U in L4(9),
N 1 d
XQ\UiGZk_ B(x;'cj ,dkj/z)wkj cw in L),
J
hence, it follows that u = w in L4(Q) for every subsequence, proving that wy — u in
LYQ).
Since v, = wy on Q\ Uz, B(xi, pt), and since wy, is constant on B(z}, pt) for every

i € Zj, the liminf inequality provided by a classical homogenization theorem (see, e.g.,
[4]); we have

T

liminf/ f (x,Vvk(x)> dx zliminf/ f< ,Vwk(x)> dx
k Q\Uiezk B(m};,p};) 5k k Q 5k

(50)
> /Q Jhom (Vu(zx)) dz.

To estimate the second contribution in (48), fix i € Z;, and let % be a function solving
mln{/ - f <5,VC(3C)> dr : ¢ € up + W&’d(B(mk,pk)),C =0on B(a:k,ek)}.
B(x}v,p}’e) k
Up to extending the function ¢t to the constant u} on B(z%,dy/2)\ B(zi, pi), we have
x x :
/ - f (,Vvk(:c)> dr > / - f (,V@%(x)) dx
B(aipl) " \Ok B(aip) \Ok
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> min{/}3<x27(¥€) f (;,VC) dr : ¢ € ul, + Wol’d(B(aﬁi,dkﬂ)),C =0on B(m};,ak)}

. dix 1d i
:mln{/B@l)f<5k VC)d cel+wri(B (o,1/2),<:oonB(o,gk/dk)}mkw,

where the last equality follows by the change of variables x := (y — z})/dy, the identity
(45) and the combined application of the transformation

(@)

KA
Uy,

((x) =

with (H), assuming without loss of generality that u} is different from 0.
Now put
) log 0}
(5,’6:2—k, 6;6:28—16, N o= 1m’ gf’,
dy, dg k |logel

and rewrite the previous inequality as

/B(x};,pfc)f <5k Voi(@ )> o
Zmin{/B( )f(d, ,VC)d:E el +W01d( ( ,%)),C:OOH B(o,eg)}wd. (51)

|1—1/d ‘1—1/d

Note that ¢} = e;|logey — 0, while 0, = d|logey,
assumption (44); also observe that

— 0 as k — oo by

|log 6, + log |logex|' Y4 |logdk|

)N = = lim =
| log ey, + log [logeg|1=1/d] "k [logeg|

In light of the assumption (46), we are in position to apply Proposition 2.1 (up to the
transformation v — 1 —u) to (51) with Q = B(0,1/2) and z. = 0 for every ¢; we get

min{/ f <5, , V{(x )) dr:(el+ Wol’d(B(O, 1/2)),( =0on B(O,e%)}
B(0,1/2)

- C(A) 4+ o(1) B C(N) 4+ or(1)
- |log g} |1 ~ |logeg|d1 T

Summing over k£ and applying Proposition 3.2, we conclude that

hm inf Z /

=y (Ik,Pk

()
< , Vug(z )> dx > hmmf|lg&(?|dl Z ’Uk’d‘i‘Ok(l)

1€Z), (52)
A) /Q lu(x)|? dz .
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Finally, by (49), (50) and (52), we deduce

(1 + MC; 1) limkinf Fi(ug) > limkiank(vk) 2 /thom(Vu(w)) dz+C(X) /Q Ju)|" da.

Recall that § and M have been chosen so that §2M+1 < 1/2 and, since the reasoning
leading to the above estimate holds true for every 6 > 0, we may let M — +o0o getting
the liminf inequality.

We conclude removing the boundedness assumption on (ug); € L°(2) by a trun-

cation argument: put u? := ((—=T)Vu) AT for fixed T € N and assume that u, — u in
L4(Q). Since f(-,0) = 0, it holds

X X
Lr(5vm) = [ (5 vut) a

for every k,T € N; hence, by the previous instance we have

hminf/f(gc,Vuk) do > hminf/f(x,vu{) da
oo Jo? \ ok Ok

ko Ja
/fhom(vuT($))da7+C(>\)/ |UT(1‘)‘ddZL‘
Q Q

v

for every T € N. Since v — u in WH4(Q) as T — 400, we conclude by dominated
convergence and the continuity of fhom.
3.3 Limsup inequality

The goal of this section is to define a recovery sequence converging in L(Q) to a fixed
function u € WhH4(Q). First we assume that u € L>(€).
Start by a recovery sequence uy — u in L4(§2) related to the functionals

x u(x r ifu ld
o /Qf((sk,v ( >) de it ue WH(Q)
+00 if u e LYQ)\ Whi(Q)

which are known to I'-converge to
FOu) := / Jrhom(Vu(x)) dx
Q

for every u € WhH4(Q) as stated in the already used homogenization theorem. By the
equi-coerciveness of the functionals (F; ,8 )&, we also deduce that uj, — u in Wh9(Q).

It is a known fact that, up to extract a subsequence, we can further assume that
(|Vur|?) is an equi-integrable family (see [13] and [6, Remark C.6]).
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We claim that we can make our recovery sequence bounded in L*°(2). Let 7' :=
|l oo (o) and define uj, := (—(T'+1)Vug)A(TH1). We get a bounded sequence in L>°(£2)
which converges to u in L%(Q2) with the property that (|Vu}|?)s is still equi-integrable
as it is obtained by truncation.

Note that

/ From (Vg () da: — / From (Vith () da
Q Q

< / From(Vun(2))| de
{lug|>T+1}

<p Vup(2))| de < 8 V()| da;
{lul>T+1) {lu—ul>1}

but since uy — v in measure and (]Vuk\d) . is equi-intergable, the last term tends to 0
and the claim is proved.

For every k, define modifications vy by transformations around every point x}c with
i € Zy as we did in (47). We recall the construction for clarity: fix M € N and let § > 0
be such that #2M+1 < 1/2, then apply Lemma 2.2 with

X

fa.) =1 (5

We have that

/Qf (;;,Vvk(x)) iz < <1+ M(i 1) /Qf (;;,Vuk(x)) dz, (53)

and that the function v attains the constant value u}C on 0B (9:}6, p};), where pfC is of the
form 627idy, for some j; € {1,...,M} and i € Zj,.
Since e /d, — 0 as k — 400, we can also assume ¢ < 0dy, for every k; hence, we define

5) , 1 =0dy, R=02""1d,, N = M and r = dj.

v on )\ U@'ezk B(x}, p},)
W = u}C on B(w};,p};) \ B(l‘fwedk)ai € Zy
902 on B(:C’;qaedk)v P € Zy,

where gofc solves the minimum problem

min{/ _ f (‘T’ V((a:)) de:C € UZ + Wol’d(B(:cZ,Gdk)),C =0on B(xi,ak)}
B(ai 0dy) " \Ok

- min{/ f (x vg(@) dz: ¢ €1+ WE(B(0,6)),¢ =0 on B(o,s;)}|u;;|d
B(0,0)

o
_ O + o)

i|d
logeftt "
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and the last equality follows by Proposition 2.1 applied to Q2 = B(0,0) and z. = 0 for
every €.
Introduce the set of indices

Z ={i € 2% : B(al,er) NQ #0,i ¢ Z4},

define radii
Tk ‘= 92M+1dk,

and for every i € Z}, let @Z),i be the solution to the homogeneous capacitary problem

min{/B( - IVC(2)|4da: ¢ € 1+ WHYB(xh, ), ¢ =0 on B(x;,sk)}
Ty, Tk

which is (known to be) equal to oq_1|logrs, — logeg |t~

Up to extending 1} with value 1 on R?\ B(xi, 7)), we set as recovery sequence
wy, = wy H Ui on )
i€y

then we put

= U B($§€,p§€),

1€Z},
and '
Al = U Bz}, k).
i€y,
It holds
hmsup/ f (x,Vw;(x)> de < limsup/ f (x,waﬁ(x)> dx (54)
ko Jaoo \Ok ko Ja, \Ok

+ limsup/ f (x Vw%(x)) dz (55)
k QNAL g
Ok’

k7
+ limsup/ f( , Vwy (x )) dx. (56)
ko Jo\(agual)

We estimate (54) using Proposition 3.2,

limsup/ f<x,Vw§€(x)) dr = hmsupZ/ ( , Vi (a )) dx
k A 5]'9 (xkaedk

1E€EZ)
—l—Ok(l)
= limsu a¢
pZEZZ| k’ \logakld 1
A) /Q lu(z)|? da. (57)
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To estimate (55), we set

and we preliminarily see that

QN Ay < (! < #2400 = | | Qi - 1091 = 0 (58)
i€z, i€Z;,
by assumption.
Now we prove that
limsup/ f (x,Vw;(x)> dz = 0. (59)
ko Jana " \Ok

For every i € Z;, we have

Lo (@) <e [ Sl
QNB(z},,ry) k QNB(z},,r)

— 5 / [ V(w) (@) de
QNB(x},ry)

=8 @) V() + ) V(@) do

QﬁB(m}c,rk)

<250+ fulle@)[ [ (Vuh)de+ Vg ()| de]
B(x},ry) Q

ﬁB(z};,Tk)

< C’[[logrk —log et +/

|Vwg ()| da:}
QﬂB(:p};,rk)

for a positive constant C' which depends only on [|ul[z(q), 3 and the dimension d.
Note that, since ¢ € Z;, by definition of w; we have

/ \Vwk(a:)\dda:: / \Vvk(x)\dda:,
QﬂB(:ci,rk) QﬂB(a:}'c,rk)

and by the property (ii) of Lemma 2.2, which ensures that the modifications on the
starting function occur very close to the prescribed radius, it also holds

/ } \Vvk(:v)]ddx:/ V()| da.
QNB(zl,rk) QNB(z},.rk)

Exploiting the equi-integrability of (|Vuz|?)x, by (58) we infer that

lim sup Z / \Vwy ()| dz =0,

QNB( xk,rk
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and then

limsup/ f (m,Vw;(x)> dx < C'limsup g |log 7 — log ex |4
ko Janag " \ Ok =
k

but since |logri| < |logeg|, we conclude that

lim sup Z |log i — logeg|' ™ = lim sup Z |log ep |~
i€z i€z,

= limsup #Z,(d)? = 0
k

again by (58).
Finally, we deal with (56) taking advantage of (53); it holds

lirnsup/ f <$,Vw§€(a;)> dr = limsup/ f (x,Vvk(a;)> dx
ko Javaguay  \Ok ko Javaway  \Ok
< limsup/ f <$,Vvk(aj)> dz
ko Ja” \Ok
C . x
1) hmksup/ﬂf ((gk,Vuk(x)) dx

< (14 5777) [ rom(Vu(e)) o

< (1
<( 5

(60)

where the last inequality is due to the fact that (uy)x was originally picked as a recovery
sequence to u for the functionals (F; ,9) k-
Gathering (57), (59) and (60), we get

limsup/f(x,Vw;€> dx < <1+ ¢ )/fhom(Vu)dx+C()\)/ lu|%dz,
ko Ja© \dk M—=1)Jo 0

and since we can repeat the argument for every 6 > 0, we are free to set M arbitrarily
large completing the proof of the (approximate) limsup inequality.

We still have to check that w), — u in L), i.e., it actually is a (approximate)
recovery sequence.
Note that limy [{w;, # wi}| = 0 and supy, [|w), — w || e () < [Jurllpe @) < 1+ [Jull o)
imply that w), — wy — 0 in L4(Q), hence, it suffices to prove that wy — u in L4(Q).
Since limg [{wy # v} = 0 and supy, [|w, — vkl o) < llukllze@) < 1+ [[ullpe@), it
holds that wy, — vx — 0 in L4(Q), moreover v, — u in L4(Q) by the same argument we
used in the proof of the liminf inequality based on Lemma 3.3; hence, wy, — u in L4(Q).
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To conclude, we remove the assumption v € L*(€2). Recall that the I'-limsup of
(F})g is defined as

F"(u) := inf{lim supy, F(uz) : ur, — u € LY(Q)}

for every u € WhH4(Q). F” is sequentially lower semicontinuous with respect to the
strong convergence in L%(Q2) and by what we have already shown, it coincides with F
on WhHd(Q) N L>®(9Q).

Hence, given a sequence (ug)r € W14(Q) N L>®(Q) converging to u in W14(Q), it holds

F'"(u) < limkinf F"(ug) = limkian(uk) = F(u)
by the continuity of F with respect to the strong convergence in W4(Q), and this
concludes the proof of the I'-convergence.

Remark 3.4. We comment on dropping the integer condition di/d; € N. As men-
tioned in the introduction, the I'-limit may not exist; we exhibit an instance in which
a limit exists and is explicitly computed along proper subsequences. We focus on the
computation of the strange term coming from the behaviour near the perforations.
We introduce the function C* defined at the point z by

gii\I%J |log e|@~? min{/B f <z + %, VC(:U)) dr :u € W&’d(B),u =1on B(O,e)},

so that the computation of the strange term reduces to studying the limit as £ — oo of
Tt + dw
3 min{/ f <’€6’“,vg) da :
= B(0,3) F

Ce 1+ W (B(0,1/2).¢ = 0 on BO,=y/di) M| = 3 |u};|dC)‘<Z“). (61)

1€Z},
Assuming
mg
with mi € N prime and T € N, we have
: h
?—:ZZJFT for some z € Z*,

and since C* is 1-periodic, as we put

h
M:f+Wm@,
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we obtain that (61) equals
; h
sd( Y
> Yl (z)
he{0,..., T—1}di€ly

We observe that, for fixed h € {0,...,T — 1}d, the sequence

Z C)‘(%>XQ}'€(I'), keN

i€lp

is (T'dy)-periodic, hence it weakly™® converges to its mean value on the unit cube

1 h
7a¢(7)
T4 T
in L>°(R%). Combining this fact with Proposition 3.2, we deduce
: i 1d ﬁ; _ d
Jim Y e (55) = ¢ [ uto)
ZEZk
with ) b
— A
C=m X )
he{0,..., T—1}d
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