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Let S ⊂ Rn be an arbitrary nonempty compact set such that the d-Hausdor� contentHd
∞(S) > 0

for some d ∈ (0, n]. For each p ∈ (max{1, n − d}, n], an almost sharp intrinsic description of the
trace space W 1

p (Rn)|S of the Sobolev space W 1
p (Rn) to the set S is obtained. Furthermore, for each

p ∈ (max{1, n− d}, n] and ε ∈ (0,min{p− (n− d), p− 1}), new bounded linear extension operators
from the trace space W 1

p (Rn)|S into the space W 1
p−ε(Rn) are constructed.
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1 Introduction

The trace problem, i.e., the problem of the sharp intrinsic description of traces of the �rst-order
Sobolev space W 1

p (Rn), p ∈ [1,∞], to di�erent subsets S ⊂ Rn is a classical long-standing problem
in the function space theory. There is an extensive literature devoted to the subject. However,
without any additional regularity assumptions on S the problem becomes extremely complicated
and remains open in the case p ∈ [1, n]. The purpose of the present paper is to pose correctly and
solve a weakened version of this trace problem. Namely, we obtain almost sharp descriptions of the

traces to compact sets S ⊂ Rn of functions in the �rst-order Sobolev spaces W 1
p (Rn) in the case

p ∈ (1, n] without any additional regularity assumptions on S. The case p = 1 is special and will
not be considered in this paper. To precisely pose the above problems we recall some terminology
concerning Sobolev spaces.

As usual, for each p ∈ [1,∞], we let W 1
p (Rn) denote the corresponding Sobolev space of all

equivalence classes of real valued functions F ∈ Lp(Rn) whose distributional partial derivatives
DγF on Rn of order |γ| = 1 belong to Lp(Rn). This space is normed by

∥F |W 1
p (Rn)∥ := ∥F |Lp(Rn)∥+

∑
|γ|=1

∥DγF |Lp(Rn)∥.

We assume that the reader is familiar with the (Bessel) C1,p-capacities (see e.g., Section 2.2 in
[1]), the d-Hausdor� measures Hd and the d-Hausdor� contents Hd

∞ (see e.g., [1], Section 5.1).
Recall (see e.g., [1], Section 6.2) that given p ∈ (1, n], for every element F ∈ W 1

p (Rn) there is a

representative F of F such that F has Lebesgue points C1,p-quasi everywhere, i.e., everywhere on
Rn except a set EF with C1,p(EF ) = 0. Furthermore, according to the Sobolev imbedding theorem
(see e.g., Theorem 1.2.4 in [1]), if p > n, then for every F ∈W 1

p (Rn) there is a unique representative
F of F which is locally (1− n

p )-H�older continuous. In the sequel, given a parameter p ∈ (1,∞), for

each element F ∈W 1
p (Rn) we will call F an (1, p)-good representative of F .
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Clearly, if p ∈ (1, n], then, for each element F ∈ W 1
p (Rn), there are in�nitely many (1, p)-

good representatives F of F . However, any two (1, p)-good representatives F 1, F 2 of F coincide
everywhere except a set of p-capacity zero. As a result, given p ∈ (1, n] and a set S ⊂ Rn with
C1,p(S) > 0, we de�ne the p-sharp trace F |S of each element F ∈ W 1

p (Rn) as the equivalence class
(modulo coincidence everywhere on S except a set of p-capacity zero) of the pointwise restriction
of any (1, p)-good representative F of F to the set S. Since C1,p(S) > 0, the p-sharp trace F |S of
F is well de�ned in this case. If p > n and S is an arbitrary nonempty set in Rn we de�ne the

p-sharp trace F |S of each element F ∈W 1
p (Rn) as the pointwise restriction of a unique continuous

representative F of F to the set S. Given p ∈ (1,∞) and a set S ⊂ Rn, we de�ne the p-sharp trace

space by letting
W 1
p (Rn)|S := {F |S : F ∈W 1

p (Rn)}

and equip this space with the usual quotient-space norm. By Tr |S we denote the corresponding
p-sharp trace operator which takes F ∈W 1

p (Rn) and returns F |S .
Now the problem of the sharp intrinsic description of traces of �rst-order SobolevW 1

p (Rn)-spaces
can be formulated as the following three intimately related questions.

Problem A. Let p ∈ (1,∞] and let S ⊂ Rn be a closed nonempty set with C1,p(S) > 0.
(Q1) Given a Borel function f : S → R, �nd necessary and su�cient conditions for the existence

of a Sobolev extension F of f , i.e., F ∈W 1
p (Rn) and F |S = f .

(Q2) Using only geometry of the set S and values of the function f , compute the trace norm

∥f |W 1
p (Rn)|S∥ up to some universal constants.

(Q3) Does there exist a bounded linear operator ExtS,p : W 1
p (Rn)|S → W 1

p (Rn) such that

Tr |S ◦ ExtS,p = Id on W 1
p (Rn)|S?

Typically, if one can answer some of the above questions, then one has a key to the other
questions. Informally speaking, the essence of questions (Q1)�(Q3) can be formulated as follows:
�nd an equivalent intrinsically de�ned norm in the sharp trace space W 1

p (Rn)|S and �nd a linear
procedure of an almost optimal extension. As we have already mentioned, if S is not assumed to
have any additional regularity properties, Problem A is very di�cult and still unsolved in the range
p ∈ (1, n]. Below we present a brief historical overview of the results related to Problem A.

(H0) In the case p = ∞, the Sobolev space W 1
∞(Rn) can be identi�ed with the space LIP(Rn)

of Lipschitz functions on Rn. Moreover, it is known (see the McShane-Whitney extension lemma
in Section 4.1 of [15]) that for any closed set S ⊂ Rn the restriction LIP(Rn)|S coincides with the
space LIP(S) of Lipschitz functions on S and that, furthermore, the classical Whitney extension
operator linearly and continuously maps the space LIP(S) into the space LIP(Rn) (see e.g., [26],
Chapter 6).

(H1) In the case p ∈ (1,∞) the pioneering investigations go back to Gagliardo [11], where for
each p ∈ (1,∞), the trace problem was solved when S is a graph of a Lipschitz function. Note that
this work extended the earlier results by Aronszajn [2] and Slobodetskii and Babich [5] concerning
the case p = 2. It should be mentioned that the case S = Rd with d ∈ [1, n − 1] ∩ N was covered
by Besov in the fundamental paper [6]. Furthermore, the trace problems for higher-order Sobolev
spaces were �rstly considered in [6].

(H2) Recall [17] (see Chapter 2 therein) that, given a parameter d ∈ (0, n], a closed set S ⊂ Rn
is said to be d-set if there are constants cS,1, cS,2 > 0 such that

cS,1l
d ≤ Hd(Ql(x) ∩ S) ≤ cS,2l

d for all x ∈ S and all l ∈ (0, 1], (1.1)

where Ql(x) :=
∏n
i=1[xi−

l
2 , xi+

l
2 ] is a closed cube centered in x = (x1, ..., xn) with side length l. In

the literature d-sets are also known as Ahlfors�David d-regular sets (see, e.g., [16]); condition (1.1)
is often called the Ahlfors�David d-regularity condition. The problems of characterization of traces
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of the Besov spaces Bs
p,q(Rn) [16, 17, 24], the Bessel potential spaces Lsp(Rn) [17], and the Lizorkin�

Triebel spaces F sp,q(Rn) [16, 24] on d-sets were considered. The detailed analysis of these results
is beyond the scope of our paper. Recall that L1

p(Rn) = F 1
p,2(Rn) = W 1

p (Rn) for any p ∈ (1,∞).
Hence, given a closed d-set S ⊂ Rn with d ∈ (0, n] and p ∈ (max{1, n−d},∞), the results obtained
in [16, 17, 24] give sharp descriptions of the traces to the set S of functions F ∈W 1

p (Rn).
(H3) In the case p ∈ (n,∞), Shvartsman [25] completely solved Problem A. More precisely, for

each p ∈ (n,∞) he found several equivalent intrinsic descriptions of the sharp trace spaceW 1
p (Rn)|S

to arbitrary closed sets S ⊂ Rn. It is interesting to note that in that case the classical Whitney
extension operator gives an almost optimal Sobolev extension. Furthermore, the criteria presented
in Theorems 1.2 and 1.4 in [25] do not use (explicitly) any geometrical properties of S.

(H4) Recall [21] that given a parameter d ∈ [0, n], a set S ⊂ Rn is said to be d-thick if there is
a constant cS,3 > 0 such that

cS,3l
d ≤ Hd

∞(Ql(x) ∩ S) for all x ∈ S and all l ∈ (0, 1].

Recently some interesting geometric properties of d-thick sets were studied in the papers [3], [4],
where they were called d-lower content regular sets. It should be noted that the class of all d-sets
is strictly contained in the class of all d-thick sets, but the latter is much wider. One can �nd
several interesting examples [29] demonstrating the huge di�erence between the concepts of d-sets
and d-thick sets, respectively. For example, one can show [29] that every path-connected set in Rn
containing more than one point is 1-thick. Recently [29], given a number d ∈ [0, n] and a closed
d-thick set S ⊂ Rn, Problem A was solved for each p ∈ (max{1, n − d},∞). Furthermore, a new
linear extension operator was constructed. Very recently [30] the criterion obtained in [29] was
essentially simpli�ed and clari�ed for the case when S = Γ ⊂ R2 is a planar recti�able curve of
positive length and without self-intersections. It should be noted that V. Rychkov considered in [21]
trace problems for the Besov Bs

p,q(Rn)-spaces and the Lizorkin�Triebel F sp,q(Rn)-spaces on d-thick
sets. However, some extra restrictions on parameters n, d, s, p, q were imposed. In particular, for
s ∈ N it was assumed additionally that d ∈ (n− 1, n]. Hence, even the results described in [30] do
not fall into the scope of [21]. Note that using the same technics as in [29] one can obtain solutions
to similar problems for the case of weighted Sobolev spaces with Muckenhoupt weights [28].

(H5) We should mention recent investigations concerned with problems of exact descriptions of
traces of Sobolev W 1

p (X)-spaces to closed subsets S of general metric measure spaces X [7, 18, 22].
However, some extra regularity constraints on S were imposed.

As a result, Problem A was completely solved in the case p ∈ (n,∞] only. The case p ∈ (1, n]
is much more di�cult, the elegant machinery developed in [25] does not work. Indeed, in this case
the geometry of a given closed set S ⊂ Rn plays a crucial role and has an in�uence not only on the
corresponding trace criterion but also to the constructions of the corresponding extension operators.
In particular, the classical extension method of H. Whitney does not work. As far as we know, in
the case p ∈ (1, n] the most general results available so far were obtained in [29].

In the present paper we make a next relatively big step towards the solution of Problem A
by solving a weakened version of this problem. First of all, we introduce a little bit more rough
de�nition of the trace of a given Sobolev function. For this purpose, we recall that if p ∈ (1, n] and
d ∈ (n − p, n] then for any given set S ⊂ Rn the condition C1,p(S) = 0 implies Hd(S) = 0. On
the other hand, given p ∈ (1, n] and S ⊂ Rn, the condition Hn−p(S) < +∞ implies C1,p(S) = 0.
As a result, if p ∈ (1, n], d ∈ (n − p, n] and S ⊂ Rn is an arbitrary set with Hd

∞(S) > 0 we de�ne
the d-trace of any element F ∈ W 1

p (Rn) to the set S as the class of all Borel functions f : S → R
that coincide Hd-a.e. on S with the pointwise restriction to S of any (1, p)-good representative F
of F ; we denote it by F |dS . By W 1

p (Rn)|dS we denote the corresponding d-trace space, i.e., the linear
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space consisting of d-traces F |dS of all elements F ∈W 1
p (Rn) equipped with the usual quotient-space

norm. Finally, Tr |dS :W 1
p (Rn) →W 1

p (Rn)|dS denotes the corresponding d-trace operator.

In the present paper we obtain a solution to the following problem of an almost sharp intrinsic

description of traces of W 1
p (Rn)-spaces to arbitrary compact sets. In analogy with Problem A, we

formulate it as the following closely related questions. We adopt the following notation. Given a
closed set S ⊂ Rn and a measure m with suppm = S, we denote by Im the m-forgetting map that
takes a Borel function f : S → R and returnes the m-equivalence class [f ]m of f .

Problem B. Let p ∈ (1, n], d∗ ∈ (n− p, n] and ε∗ := min{p− (n− d∗), p− 1}. Let S ⊂ Rn be

an arbitrary compact set with Hd∗
∞(S) > 0.

(q1) Given ε ∈ (0, ε∗), �nd a linear normed space Xε(S) = X(S, p, d∗, ε) of Borel functions

f : S → R equipped with an intrinsically de�ned norm such that

W 1
p (Rn)|S ⊂ Xε(S) ⊂W 1

p−ε(Rn)|d
∗
S (1.2)

and for some constant C = C(p, n, d∗, ε) > 0

∥ IHd∗⌊S (f)|W
1
p−ε(Rn)|d

∗
S ∥ ≤ C∥f |Xε(S)∥ for all f ∈ Xε(S),

∥f |Xε(S)∥ ≤ C∥f |W 1
p (Rn)|S∥ for all f ∈W 1

p (Rn)|S . (1.3)

(q2) Given ε ∈ (0, ε∗), does there exist a bounded linear operator

Ext = Ext(S, d∗, ε) : Xε(S) →W 1
p−ε(Rn) (1.4)

such that Tr |d∗S ◦ Ext(f) = IHd∗⌊S (f) for every f ∈ Xε(S)?
We should make several important remarks concerning the statement of the problem.
(R0) Using methods introduced in this paper one could attack an analog of Problem B posed for

arbitrary unbounded closed sets S ⊂ Rn. It would be ideologically similar but much more technical;
(R1) By an intrinsically de�ned norm in the space Xε(S) we mean a norm whose expression

contains a computationally explicit procedure exploiting only values of a given function f : S → R
and geometric properties of the set S;

(R2) Since the set S is compact it is easy to show that W 1
p (Rn)|S ⊂ W 1

p−ε(Rn)|d
∗
S , in the sense

that IHd∗⌊S (W
1
p (Rn)|S) ⊂W 1

p−ε(Rn)|d
∗
S . Hence, (q1) makes sense;

(R3) Since 0 < ε < ε∗ ≤ p we get p− ε > n− d∗. Hence, the operator Tr |d∗S is well de�ned on
the space W 1

p−ε(Rn) and the composition Tr |d∗S ◦ Ext(S, d∗, ε) makes sense;
(R4) By (1.2) and (1.3) the trace space W 1

p (Rn)|S is continuously imbedded in the space Xε(S).
Hence, any bounded linear operator Ext(S, d∗, ε) : Xε(S) →W 1

p−ε(Rn)mapsW 1
p (Rn)|S toW 1

p−ε(Rn)
linearly and continuously.

Note that the term �almost sharp� in the title of our paper can be informally justi�ed as follows.
There exists an arbitrary small ε-gap between the d∗-trace space W 1

p (Rn)|d
∗
S and the space Xε(S).

If we could formally put ε = 0 in Problem B, then we would obtain in fact Problem A up to a
slightly rougher de�nition of the trace.

To the best of our knowledge, the results of the present paper are the �rst to have been obtained
for the range p ∈ (1, n] in such a high generality. In [13] a similar problem was considered under
the additional assumption that the set S ⊂ Rn is Ahlfors�David d∗-regular.

In this paper we introduce several methods and techniques which were never used before. Despite
the fact that our machinery does not allow to solve Problem A, we strongly believe that our new
ideas and tools will provide a fundament for further investigations. Moreover, they could be useful
in solving similar extension problems in the context of other spaces of smooth functions.

Structure of the paper. The paper is organized as follows.
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Section 2 contains the necessary preliminaries concerning Hasudor� measures, Sobolev spaces,
and Frostman-type measures.

In Section 3 we recall basic results of our recent paper [31]. In particular, for any given set S
with Hd

∞(S) > 0, those results allow one to built a specially ordered sequence of families of dyadic
cubes. Every such a family consists of �thick with respect to S� noneoverlapping dyadic cubes and
covers the set S up to a set of Hd

∞-zero content. The sequence of families of cubes will play a
role of a skeleton for an extension operator constructed in Section 5. Furthermore, in Section 3
we introduce several new combinatorial concepts that can be of independent interest. Namely, we
introduce (d, λ, c)-covering cubes, (d, λ, c)-shadows, and (d, λ, c)-icebergs. Furthermore, we introduce
hollow cubes which will be natural substitutions for porous cubes. Those concepts will be keystone
tools in proving a direct trace theorem in Section 7.

In Section 4 we introduce far-reaching generalizations of the Calder�on-type maximal functions
and establish some elementary properties of them. They will be keystone tools in derivation of
estimates for the gradients of extensions of functions from S to Rn. Furthermore, we introduce
some function spaces needed in solving Problem B.

In Section 5 we built a new extension operator. We think that our construction is the most
interesting part of the present paper. It provides a far-reaching generalization of the classical
extension operator introduced by H. Whitney. Roughly speaking, in contrast to the previously used
extension methods, the new operator exploits only those values of the trace function which are
concentrated on the �thick with respect to S� dyadic cubes. Namely, the cubes from the families
constructed in Section 3 do the job.

Section 6 contains the so-called reverse trace theorem. The proof depends heavily on estimates
of Section 5 and the re�exivity of the classical Sobolev spaces W 1

p (Rn) for p ∈ (1,∞).
Section 7 is devoted to the so-called direct trace theorem with a detailed proof. The proof

is based on the tools introduced in Section 3. Furthermore, the section contains some lemmas of
independent interest.

Finally, in Section 8 we present a complete solution to Problem B.

2 Preliminaries

Throughout the paper, C,C1, C2, ... will be generic positive constants. These constants can change
even in a single string of estimates. The dependence of a constant on certain parameters is expressed,
for example, by the notation C = C(n, p, k). We write A ≈ B if there is a constant C ≥ 1 such
that A/C ≤ B ≤ CA. For any c ∈ R we denote by [c] the integer part of c, i.e.,

[c] := max{k ∈ Z : k ≤ c}.

We use notation N0 := N∪{0}. By Rn we denote the linear space of all strings x = (x1, ..., xn) of
real numbers equipped with the uniform norm ∥·∥ := ∥·∥∞, i.e., ∥x∥ := ∥x∥∞ := max{|x1|, ..., |xn|}.
Given a set E ⊂ Rn, we denote by clE, intE and Ec the closure, the interior, and the complement
(in Rn) of E, respectively. Given a set E ⊂ Rn, we denote by χE the characteristic function of E
and by #E we denote the cardinality of E.

Given a family G of subsets of Rn, byM(G) we denote its covering multiplicity, i.e., the minimal
M ′ ∈ N0 such that every point x ∈ Rn belongs to at most M ′ sets from G. Let G = {Gα}α∈I be a
family of subsets of Rn and let U ⊂ Rn be a set. We de�ne the restriction of the family G to the
set U by letting

G|U := {G ∈ G : G ⊂ U}. (2.1)

We say that a family G of subsets of Rn is nonoverlapping if di�erent sets in G have disjoint interiors.
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In what follows, by a measure we will mean only a nonnegative Borel regular (outer) measure
on Rn. By Ln we denote the classical n-dimensional Lebesgue measure in Rn. We say that a set
E ⊂ Rn is measurable if it is Ln-measurable. Given a measurable set E ⊂ Rn, by L0(E) we denote
the linear space of all equivalence classes of measurable functions f : E → [−∞,+∞]. Given a
Borel set E ⊂ Rn, by B(E) we denote the set of all Borel functions f : E → [−∞,+∞]. If m is
a measure and f ∈ B(suppm), then by the symbol [f ]m we will denote the m-equivalence class of
f and by Im we denote the m-forgetting map, i.e. Im(f) = [f ]m for each f ∈ B(suppm). Given a
measure m and a nonempty Borel set S ⊂ Rn, the restriction of m to S is the measure de�ned by

m⌊S(G) := m(G ∩ S) for any Borel set G ⊂ Rn.

Given a measure m and p ∈ [1,∞), there is a natural isomorphism between the spaces Lp(Rn,m)
and Lp(suppm,m) respectively. Keeping in mind this fact we will use the symbol Lp(m) to denote
any of that spaces. Similarly, we identify Llocp (Rn,m) and Llocp (m).

Given f ∈ Lloc
1 (m) and a Borel set G ⊂ Rn with m(G) < +∞, we put

fG,m :=

 

G

f(x) dm(x) :=


1

m(G)

�
G

f(x) dm(x) if m(G) > 0;

0 if m(G) = 0.
(2.2)

Let {mk} := {mk}k∈N0 be a sequence of Borel measures. We say that {mk} is an admissible sequence

of measures if for each k ∈ N0 the measure mk is absolutely continuous with respect to mj for any
j ∈ N0. Given p ∈ [1,∞) and an admissible sequence of measures {mk}, we put

Lp({mk}) :=
∞⋂
k=0

Lp(mk). (2.3)

Furthermore, given a set S ⊃ ∩∞
k=0 suppmk, by B(S)∩Lp({mk}) we mean a linear subspace of B(S)

composed of all Borel functions whose m0-equivalence classes belong to Lp({mk}). As a result, given
f ∈ B(S) ∩ Lp({mk}), we have [f ]m0 ∈ Lp({mk}).

Throughout this paper, the word �cube� will always mean a closed cube in Rn whose sides are
parallel to the coordinate axes. We let Ql(x) denote the cube in Rn centered at x with side length
l, i.e., Ql(x) :=

∏n
i=1[xi −

l
2 , xi +

l
2 ]. Given c > 0 and a cube Q, we let cQ denote the dilation of Q

with respect to its center by a factor of c, i.e., cQl(x) := Qcl(x). Given a cube Q we will denote by
l(Q) the diameter of Q computed in the ∥ · ∥∞-norm, i.e., its side length.

By a dyadic cube we mean an arbitrary closed cube Qk,m :=
∏n
i=1[

mi

2k
, mi+1

2k
] with k ∈ Z and

m = (m1, ...,mn) ∈ Zn. For each k ∈ Z, by Dk we denote the family of all closed dyadic cubes of
side lengths 2−k. We set

D :=
⋃
k∈Z

Dk, D+ :=
⋃
k∈N0

Dk.

For each c ≥ 1 and k ∈ Z, we set

cDk := {cQk,m : m ∈ Zn}.

Given k ∈ Z and m ∈ Zn, we de�ne the set of k-neighboring indices for m by letting

nk(m) := {m′ ∈ Zn : Qk,m′ ⊂ 3Qk,m}.

Furthermore, given a cube Q ∈ Dk, the family of all neighboring cubes for Q is de�ned as

n(Q) := {Q′ ∈ Dk|Q′ ∩Q ̸= ∅}.
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We will also need the following simple facts. We omit the elementary proofs.
Proposition 2.1. Let c ≥ 1 and k ∈ Z. Let cubes Q,Q′ ∈ Dk be such that cQ ∩Q′ ̸= ∅. Then

[c]Q ∩Q′ ̸= ∅.
Proposition 2.2. Let c ≥ 1 and k ∈ Z. Then M(cDk) ≤ ([c] + 2)n.
Given parameters σ ∈ [1,∞), s ∈ [0, n] and a scale R ∈ (0,+∞], for any function f ∈ Lloc

σ (Rn)
we de�ne the restricted fractional Hardy�Littlewood maximal function of f by the formula

MR
σ,s[f ](x) := sup

l∈(0,R)

(
ls

 

Ql(x)

|f(y)|σ dy
) 1

σ
, x ∈ Rn. (2.4)

In the case s = 0 we write MR
σ [f ] instead of MR

σ,0[f ]. Furthermore, we put Mσ[f ] := M+∞
σ [f ]. We

recall the classical fact, which is an immediate consequence of Theorem 1 from Chapter 1 in [26].
Proposition 2.3. Let 1 ≤ σ < p <∞. Then there is a constant C = C(n, σ, p) > 0 such that,

for any R ∈ (0,+∞],

�

Rn

(
MR

σ [f ](x)
)p
dx ≤ C

�

Rn

|f(x)|p dx for all f ∈ Lp(Rn). (2.5)

Sometimes it will be convenient to use maximal functions to estimate from above the average
values of functions.

Proposition 2.4. Let p, σ ∈ [1,∞). Let Q = Ql(x) be a cube with l > 0 and Ω ⊂ Q be a Borel

set. Then

Ln(Ω)
( 
Q

|f(x)|σ dx
) p

σ ≤ 2
np
σ

�

Ω

(
Mσ[f ](x)

)p
dx for all f ∈ Lloc

σ (Rn). (2.6)

Proof. Note that Q ⊂ Q2l(y) for every y ∈ Ω. This and (2.4) gives

( 
Q

|f(x)|σ dx
) 1

σ ≤ 2
n
σ

(  

Q2l(y)

|f(x)|σ dx
) 1

σ ≤ 2
n
σMσ[f ](y) for all y ∈ Ω.

Hence, using this observation we obtain the required estimate

Ln(Ω)
( 
Q

|f(x)|σ dx
) p

σ ≤ 2
np
σ Ln(Ω) inf

y∈Ω

(
Mσ[f ](y)

)p
≤ 2

np
σ

�

Ω

(
Mσ[f ](x)

)p
dx.

In proving the main results of this paper we will use a quite delicate fact, which in turn is a
particular case of a remarkable result by Sawyer [23].

Theorem A. Let d ∈ [0, n], s ∈ [0, n), R ∈ (0,+∞] and q ∈ (1,∞). Let m be a Radon measure

on Rn such that, for some (universal) positive constant C(m, R) > 0,

m(Ql(x)) ≤ C(m)ld for all x ∈ Rn, l ∈ (0, R).

If qs ≥ n − d, then the operator MR
1,s is bounded from Lq(Rn) into Lq(Rn,m). Furthermore, the

operator norm depends only on n, d, q, s and C(m, R).
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The following fact is elementary. We omit the proof.
Proposition 2.5. Let m be a measure on Rn and f ∈ L1(m). Let {Eα}α∈I be an at most

countable family of subsets of Rn such that M({Eα}α∈I) < +∞. Then∑
α∈I

�

Eα

f(x) dm(x) ≤M({Eα}α∈I)
�

E

f(x) dm(x), (2.7)

where we set E := ∪α∈IEα.

2.1 Coverings

In what follows, we will use the following notation. Given a family of cubes {Qα}α∈I in Rn, we put

lα := diamQα = l(Qα), α ∈ I.

Given two nonoverlapping families Q := {Qα}α∈I and Q′ := {Qα′}α∈I′ of dyadic cubes (with
I, I ′ ⊂ Z× Zn) we write Q ⪰ Q′ provided that for every α′ ∈ I ′ there exists a unique α ∈ I such
that Qα ⊃ Qα′ . If, in addition, lα > lα′ for all such α and α′, we write Q ≻ Q′. We say that
two families of dyadic nonoverlapping cubes Q := {Qα}α∈I and Q′ := {Qα′}α′∈I′ are comparable

provided that
either Q ⪰ Q′ or Q′ ⪰ Q.

Otherwise we call the corresponding families incomparable.

Given a set E ⊂ Rn, by a covering of E we mean any family {Uβ}β∈J of subsets of Rn such
that E ⊂ ∪β∈JUβ . Any nonoverlapping family Q ⊂ D that covers E will be called a dyadic

nonoverlapping covering of E.

2.2 Hausdor� contents and Hausdor� measures

In this paper instead of the classical Hausdor� measures and Hausdor� contents, it will be convenient
to work with their corresponding dyadic analogs.

Given a nonempty set E ⊂ Rn and d ∈ [0, n], we set, for any δ ∈ (0,∞],

Hd
δ(E) := inf

∑
α∈I

(lα)
d, (2.8)

where the in�mum is taken over all dyadic nonoverlapping coverings {Qα}α∈I of the set E such
that lα < δ for all α ∈ I. The value Hd

∞(E) is called the d-Hausdor� content of the set E. We
de�ne the d-Hausdor� measure of E by the formula Hd(E) := limδ→0Hd

δ(E).
Remark 2.1. It is easy to show that the d-Hausdor� contents and the d-Hausdor� measures

de�ned above coincide, up to some universal constants, with their classical predecessors.
Combining this observation with Lemma 4.6 in [19] we get Hd(E) = 0 ⇐⇒ Hd

δ(E) = 0 for every
δ ∈ (0,+∞].

In the sequel, we will deal not only with coverings but also with some families which, for a given
set E, cover E with some small error. More precisely, we introduce the following concept.

De�nition 2.1. Let E ⊂ Rn be an arbitrary set. Given d ∈ [0, n], we say that a family {Uβ}β∈J
is a d-almost covering of E if there exists a set E′ ⊂ E with Hd

∞(E′) = 0 such that {Uβ}β∈J is a
covering of E \ E′.

Recall a simple fact (for an elementary proof see [10], Section 2.4.3).
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Proposition 2.6. Let d ∈ [0, n) and F ∈ Lloc
1 (Rn). Then there exists a set EF with Hd(EF ) = 0

such that

lim
l→0

1

ld

�

Ql(x)

|F (y)| dy = 0, for every x ∈ Rn \ EF .

Given p ∈ (1,∞), recall the notion of C1,p-capacity (see e.g., [1], Section 2.1). In what follows,
we say that some property holds (1, p)-quasieverywhere ((1, p)-q.e. for short) if it holds everywhere
except a set E ⊂ Rn with C1,p(E) = 0. The following proposition summarizes some connections
between the C1,p-capacities and the d-Hausdor� measures (see Theorems 5.1.9, 5.1.13 of [1] for
details).

Proposition 2.7. Let p ∈ (1, n] and let E ⊂ Rn. If Hn−p(E) < +∞ then C1,p(E) = 0. If

C1,p(E) = 0, then Hd(E) = 0 for every d > n− p.

2.3 Thick sets and Frostman-type measures

As we brie�y mentioned in the introduction, cubes whose intersections with a given closed set
S ⊂ Rn are �massive� enough will be important for the construction of our extension operator in
Section 5. We formalize this as follows.

Given a nonempty set E ⊂ Rn and numbers d ∈ (0, n], λ ∈ (0, 1], we say that a cube Q with

l(Q) ∈ (0, 1] is (d, λ)-thick with respect to the set E if

Hd
∞(Q ∩ E) ≥ λ(l(Q))d. (2.9)

We say that a cube Q with l(Q) ∈ (0, 1] is (d, λ)-thin with respect to the set E if

Hd
∞(Q ∩ E) < λ(l(Q))d. (2.10)

We also de�ne the family

FE(d, λ) := {Q : Q is (d, λ)-thick w.r.t. E}. (2.11)

For the construction of the extension operator we will need a very special sequence of measures.
De�nition 2.2. Let d ∈ (0, n] and let S ⊂ Rn be a closed set with Hd

∞(S) > 0. We say that a
sequence of measures {mk} = {mk}k∈N0 is d-Frostman on S if the following conditions hold:

(M1) for every k ∈ N0,
suppmk = S; (2.12)

(M2) there exists a constant C1 > 0 such that, for each k ∈ N0,

mk(Ql(x)) ≤ C1l
d for every x ∈ Rn and every l ∈ (0, 2−k]; (2.13)

(M3) there exists a constant C2 > 0 such that, for each k ∈ N0,

mk(Qk,m ∩ S) ≥ C2Hd
∞(Qk,m ∩ S) for every m ∈ Zn; (2.14)

(M4) mk = wkm0 with wk ∈ L∞(m0) for every k ∈ N0 and there exists a constant C3 > 0 such
that, for all k ∈ N0 and j ∈ N,

1

C3
2(d−n)jwk+j(x) ≤ wk(x) ≤ C3wk+j(x) for m0 − a.e. x ∈ S. (2.15)

The class of sequences of measures, which are d-Frostman on S will be denoted by Md(S).
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Remark 2.2. It is easy to see that there exist smallest constants C1 > 0 and C3 > 0 for which
(2.13) and (2.15) hold. We denote them by C{mk},1 and C{mk},3, respectively. Similarly, there exists
largest constant C2 > 0 for which (2.14) holds, we denote it by C{mk},2. □

Example 2.1. Let d∗ ∈ (0, n] and let S ⊂ Rn be a closed Ahlfors�David d∗-regular set. It is
easy to see that, given d ∈ (0, d∗), letting mk := 2k(d

∗−d)Hd∗⌊S , k ∈ N0 we obtain a sequence of
measures {mk} ∈ Md(S).

The following obvious observation will be currently used in the sequel.
Remark 2.3. Let S ⊂ Rn be a closed set with Hd

∞(S) > 0 for some d ∈ (0, n]. Let {mk} ∈
Md(S). By (2.15) it is easy to see that, given p ∈ [1,∞), f ∈ Lp(mk0) for some �xed k0 ∈ N0 if and
only if f ∈ Lp(mk) for all k ∈ N0. Hence, Lp({mk}) = Lp(mk0) for each k0 ∈ N0.

If S ⊂ Rn is a compact set, then an application H�older's inequality gives for any 1 < q < p <∞,

∥f |Lq(m0)∥ ≤
(
m0(S)

) p−q
p ∥f |Lp(m0)∥ for all f ∈ Lp({mk}). (2.16)

Now we recall a variant of the classical Frostman-type theorem formulated in the form adapted
for our purposes (compare with Theorem 5.1.12 in [1]). We will often use it in the sequel. One can
�nd the detailed proof in Section 3.4 of [29].

Theorem B. Let d ∈ (0, n] and let S ⊂ Rn be a closed set with Hd
∞(S) > 0. Then Md(S) ̸= ∅.

2.4 Sobolev spaces

Recall that, given parameters p ∈ [1,∞], n ∈ N and an open set G ⊂ Rn, the Sobolev space
W 1
p (G) is the linear space of all (equivalence classes of) real-valued functions F ∈ Lp(G) whose

distributional partial derivatives DγF , |γ| = 1 on G belong to Lp(G). This space is equipped with
the norm

∥F |W 1
p (G)∥ := ∥F |Lp(G)∥+

∑
|γ|=1

∥DγF |Lp(G)∥. (2.17)

Given p ∈ [1,∞], by W 1,loc
p (G) we denote the linear space of all (equivalence classes of) real-valued

functions F ∈ Lloc
p (G) whose distributional partial derivatives DγF , |γ| = 1 on G belong to Lloc

p (G).
We will use the following notation. Given an element F ∈ W 1

p (G), we will denote by ∇F its
distributional gradient on G and we put

∥∇F (x)∥ := ∥∇F (x)∥∞ := max
|γ|=1

{|DγF (x)|}, x ∈ G.

De�nition 2.3. Let p ∈ (1, n]. Given F ∈ Lloc
1 (Rn), we say that a Borel function F is a (1, p)-

good representative of F if the function F has Lebesgue points everywhere except a set EF ⊂ Rn
with C1,p(EF ) = 0.

The following property is a very particular case of Theorem 6.2.1 of [1].
Proposition 2.8. Given p ∈ (1, n], for each F ∈W 1

p (Rn) there exists a (1, p)-good representa-

tive F of F .
As we have already mentioned in the present paper, we consider almost sharp intrinsic descrip-

tions of traces of W 1
p (Rn)-spaces. This motivates us to introduce the following concept.

De�nition 2.4. Let p ∈ (1, n], d ∈ (n− p, n] and let S ⊂ Rn be a Borel set with Hd
∞(S) > 0.

Given F ∈W 1
p (Rn), we de�ne the d-trace F |dS of the element F to the set S as the equivalence class

[F ]d of the pointwise restriction to S of any (1, p)-good representative F of F modulo coincideness
Hd-a.e., i.e.,

F |dS := {f̃ ∈ B(S) : f̃(x) = F (x) for Hd-a.e. x ∈ S}.
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We de�ne the d-trace space W 1
p (Rn)|dS as the linear space of d-traces f = F |dS of all elements

F ∈W 1
p (Rn) to the set S equipped with the quotient-space norm, i.e., for each f ∈W 1

p (Rn)|dS ,

∥f |W 1
p (Rn)|dS∥ := inf{∥F |W 1

p (Rn)∥ : F ∈W 1
p (Rn) and f = F |dS}. (2.18)

We also de�ne the corresponding d-trace operator Tr |dS :W 1
p (Rn) →W 1

p (Rn)|dS by letting

Tr |dS [F ] := F |dS for every F ∈W 1
p (Rn). (2.19)

Remark 2.4. Note that De�nition 2.4 is correct. Indeed, by Proposition 2.7 if p ∈ (1, n],
d ∈ (n − p, n] and Hd

∞(S) > 0, then C1,p(S) > 0. Hence, given a Sobolev element F ∈ W 1
p (Rn),

the restriction F |S of any (1, p)-good representative of F to the set S is well de�ned. Furthermore,
it follows from Proposition 2.7 that the d-trace F |dS does not depend on the choice of a (1, p)-good
representative F of F .

Clearly, the d-trace operator Tr |dS is a linear and bounded mapping fromW 1
p (Rn) toW 1

p (Rn)|dS .
Remark 2.5. By the H�older's inequality W 1,loc

p (Rn) ⊂ W 1,loc
q (Rn) for all 1 ≤ q ≤ p < ∞.

Hence, given parameters p ∈ (1, n], d ∈ (n − p, n], and a compact set S ⊂ Rn with Hd
∞(S) > 0, it

is easy to show using smooth cut-o� functions that, for each ε ∈ (0,min{p− (n− d), p− 1}),

W 1
p (Rn)|dS ⊂W 1

p−ε(Rn)|dS

and the operator Tr |dS is well de�ned on W 1
p−ε(Rn).

Remarks 2.4, 2.5 justify the following de�nition.
De�nition 2.5. Let p ∈ (1, n], d ∈ (n− p, n], and ε ∈ [0,min{p− (n− d), p− 1}). Let S ⊂ Rn

be a compact set with Hd
∞(S) > 0. By E(S, p, d, ε) we denote the linear space of all mappings

Ext :W 1
p (Rn)|dS →W 1

p−ε(Rn) such that:
(E1) Ext is linear and bounded;
(E2) Ext is the right inverse of the d-trace operator, i.e., Tr |dS ◦ Ext = Id on W 1

p (Rn)|dS .
Now we make a simple but nontrivial observation.
Proposition 2.9. Let p ∈ (1, n], d ∈ (n− p, n]. Let S ⊂ Rn be a compact set with Hd

∞(S) > 0.
Then the space W 1

p (Rn)|dS is a Banach space.

Proof. It is su�cient to show that the space W 1
p (Rn)|dS is complete. Due to the standard facts

from the Banach-space theory it is su�cient to show that Nd := {F ∈ W 1
p (Rn) : F |dS = 0} is a

closed linear subspace of W 1
p (Rn). Indeed, we �x F ∈ W 1

p (Rn) and a sequence {Fk} ⊂ Nd such
that ∥F − Fk|W 1

p (Rn)∥ → 0, k → ∞. Combing Proposition 7.3.1 and Theorem 7.4.5 from [15] we

conclude that there is a (1, p)-good representative F of F and there exist (1, p)-good representatives
F k of Fk, k ∈ N such that for some strictly increasing sequence {ks} ⊂ N, for some set E1 with
C1,p(E1) = 0 we have F ks(x) → F (x), s→ ∞ for each x ∈ S \E1. On the other hand, there is a set
E2 ⊂ S such that Hd(E2) = 0 and F k(x) = 0 for each x ∈ S \ E2 for all k ∈ N. As a result, taking
into account Proposition 2.7 we deduce that Hd(E1 ∪ E2) = 0 and F (x) = lims→∞ F ks(x) = 0 for
all x ∈ S \ (E1 ∪ E2). This gives F ∈ Nd. The proof is complete.

The following proposition is a minor modi�cation of the classical Poincar�e-type inequality.
Proposition 2.10. For every c, c′ ≥ 1 there exists a constant C = C(n, c, c′) > 0 such that, for

any cubes Q1 := Ql(x1), Q2 := Qcl(x2) with l > 0 and ∥x1 − x2∥ ≤ c′l, 

Q1

 

Q2

|F (y)− F (z)| dz dy ≤ Cl

 

(2c′+c)Q1

∥∇F (y)∥ dy for all F ∈W 1,loc
1 (Rn). (2.20)
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Proof. Fix cubes Q1, Q2 satisfying the assumptions of the lemma. Recall the classical Poincar�e-type
inequality (see (7.45) in [12]). More precisely, there exists a constant C ′ = C ′(n) > 0 such that, for
any cube Q, the following inequality

 

Q

∣∣∣F (y)−  

Q

F (z) dz
∣∣∣ dy ≤ C ′(n)l

 

Q

∥∇F (y)∥ dy (2.21)

holds for all F ∈W 1,loc
1 (Rn).

Now we �x an arbitrary F ∈W 1,loc
1 (Rn). Since ∥x1−x2∥ ≤ c′l we clearly have (2c′+c)Q1 ⊃ Q2.

Hence by (2.21),

 

Q1

 

Q2

|F (y)− F (z)| dy dz

≤ (2c′ + c)2n
 

(2c′+c)Q1

 

(2c′+c)Q1

∣∣∣F (y)−  

(2c′+c)Q1

F (x) dx+

 

(2c′+c)Q1

F (x) dx− F (z)
∣∣∣ dy dz

≤ 2(2c′ + c)2n
 

(2c′+c)Q1

∣∣∣F (y)−  

(2c′+c)Q1

F (x) dx
∣∣∣ dy

≤ 2C ′(n)(2c′ + c)2nl

 

(2c′+c)Q1

∥∇F (y)∥ dy. (2.22)

This gives (2.20) with C(n) = 2C ′(n)(2c′ + c)2n.

Now we recall the key analytical feature of Frostman-type measures. Namely, given a parameter
d ∈ (0, n], for each cube Q and any F ∈W 1,loc

σ (Rn), for any large enough σ we can control e�ectively
how close are the average value of F over Q calculated with respect to a d-Frostman measure m
and the average value of F over Q calculated with respect to the classical Lebesgue measures Ln.
More precisely, the following result was established in [29]. Given l > 0 we set k(l) := [log2(

1
l )].

Theorem C. Let d ∈ (0, n], λ ∈ (0, 1], σ ∈ (max{1, n− d}, n]. Let S ⊂ Rn be a closed set with

Hd
∞(S) > 0 and {mk} ∈ Md(S). Then there exists a constant C > 0 depending only on C{mk},i,

i = 1, 2, 3 and parameters n, d, λ, σ (but independent of a construction of the sequence {mk}) such
that the following inequality

 

Q∩S

∣∣∣F |dS(y)−  

Q

F (z) dz
∣∣∣ dmk(l)(y) ≤ Cl

( 
Q

∑
|γ|=1

|DγF (t)|σ dt
) 1

σ
(2.23)

holds for each cube Q = Ql(x) ∈ FS(d, λ) with l ∈ (0, 1] and any F ∈W 1,loc
σ (Rn).

Remark 2.6.We should note that Theorem C is in fact an easy consequence of the correspond-
ing beautiful trace theorem for the Riesz potentials [9]. □

Proposition 2.11. Let d ∈ (0, n] and p ∈ (max{1, n − d},∞). Let S ⊂ Q0,0 be a compact set

with Hd
∞(S) > 0 and {mk} ∈ Md(S). If F ∈ W 1,loc

p (Rn) then f = F |dS ∈ Lp({mk}). Furthermore,

there exists a constant C > 0 depending only on n, d, p and Cmk,i, i = 1, 2, 3 such that the following

inequality

∥f |Lp(m0)∥ ≤ C∥F |W 1
p (3Q0,0)∥ (2.24)

holds for all F ∈W 1,loc
p (Rn) with f = F |dS.
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Proof. We �x a parameter p ∈ (max{1, n − d},∞) and an element F ∈ W 1
p (Rn). By Remark

2.4, the d-trace f := F |dS is well de�ned. Furthermore, the measure m0 is absolutely continuous
with respect to Hd⌊S . Hence, using classical estimates (see, for example, Section 2 in [14]) and
telescoping arguments it is easy to see that, for each δ ∈ (0, 1), there is C > 0 (independent on F )
such that∣∣∣f(x)−  

Q0,0

F (y) dy
∣∣∣ ≤ C

�

Q0,0

∥∇F (y)∥
∥x− y∥n−1

dy ≤ CM1
1,1−δ[∥∇F∥](x) for m0 − a.e. x ∈ S.

Now we �x δ ∈ (0, 1) so small that p(1 − δ) > n − d and recall that S ⊂ Q0,0. An application of
Theorem A with m = m0 and s = 1− δ in combination with H�older's inequality gives

�

S

|f(x)|p dm0(x) ≤
�

S

∣∣∣f(x)−  

Q0,0

F (y) dy
∣∣∣p dm0(x) +

∣∣∣  
Q0,0

F (y) dy
∣∣∣p

≤ C
( �

Q0,0

(
M1

1,1−δ[∥∇F∥](x)
)p
dm0(x)

) 1
p
+
( �

Q0,0

|F (y)|p dy
) 1

p ≤ C∥F |W 1
p (3Q0,0)∥ < +∞.

The proposition is proved.

3 Combinatorial and measure-theoretic tools

In this section we built combinatorial and geometric measure theory foundations needed for our
purposes. Based on the machinery developed in this section we introduce new Calder�on-type max-
imal functions in Section 4 and present a new construction of the extension operator in Section 5.
Throughout the whole section, we �x d∗ ∈ (0, n] and a closed set S ⊂ Q0,0 with Hd∗

∞(S) > 0.

3.1 Admissible sequences of coverings

Most of the de�nitions and results of this subsection are borrowed from our recent paper [31], where
the reader can �nd all necessary details.

In the construction of the extension operator we will need to work with the family of all (d, λ)-
dyadically thick dyadic cubes. Such family gives a �skeleton� for the construction. This motivates
us to introduce the following concept (recall notation FS(d, λ) given in (2.11)).

De�nition 3.1. Let λ ∈ (0, 1] and let d ∈ (0, n] be such that Hd
∞(S) > 0. We de�ne the

(d, λ)-keystone (for S) family by letting

DF(d, λ) := DFS(d, λ) := D+

⋂
FS(d, λ). (3.1)

The corresponding index set A(d, λ) := AS(d, λ) ⊂ N0 × Zn is called the (d, λ)-keystone (for S)
index set, i.e.,

DF(d, λ) = {Qα}α∈A(d,λ).

Clearly, it is di�cult to work with the whole family DF(d, λ). Given d ∈ (0, n] and λ ∈ (0, 1],
we need a natural decomposition of the (d, λ)-keystone family DF(d, λ) in analogy with a natural
decomposition of the family D+ into subfamilies Dk, k ∈ N0. Based on Netrusov's ideas [20] such a
decomposition was recently obtained in [31] and is given by the following theorem.
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Theorem 3.1. Let λ ∈ (0, 1) and d ∈ (0, n] be such that Hd
∞(S) > 0. Then there exists a unique

sequence of families {Qj(d, λ)}j∈N, called the canonical decomposition of DF(d, λ), satisfying the

following conditions:

(F1) DF(d, λ) = ∪j∈NQj(d, λ);
(F2) for each j ∈ N, the family Qj(d, λ) is a dyadic nonoverlapping d-almost covering of S;
(F3) Qj(d, λ) ≻ Qj+1(d, λ) for every j ∈ N.

Remark 3.1. It follows immediately from conditions (F1)�(F3) that if, for some cubes Q ∈
Qj(d, λ) and Q ∈ Qj+1(d, λ), there is a dyadic cube Q ∈ D+ such that

Q ⊂ Q ⊂ Q and l(Q) ∈ (l(Q), l(Q)),

then Q /∈ DF(d, λ). □
The following result re�ects the fundamental combinatorial property of the families Qj(d, λ),

j ∈ N. Informally speaking, each family Qj(d, λ) satis�es a some sort of Carleson packing condition.

We recall notation (2.1).
Theorem 3.2. Let λ1, λ2 ∈ (0, 1) and let d ∈ (0, n] be such that Hd

∞(S) > 0. Let {Qj(d, λ1)}j∈N
and {Qj(d, λ2)}j∈N be the canonical decompositions of DF(d, λ1) and DF(d, λ2), respectively. Given
a cube Q ∈ D+, let

j0 := j(Q) := min{j ∈ N0 : {Q} ≻ Qj(d, λ1)|Q}.

Then the following inequality

∑
{(l(Q′))d : Q′ ∈ C} ≤

{
2n−d (l(Q))d

λ2
, Q ∈ DF(d, 1),

(l(Q))d

λ2
, Q /∈ DF(d, 1),

(3.2)

holds for any family C ⊂ DF(d, λ2) such that:

(1) intQ′′ ∩ intQ′ = ∅ for any Q′, Q′′ ∈ C with Q′ ̸= Q′′;
(2) {Q} ⪰ C ⪰ Qj0(d, λ1)|Q.
Sometimes it will be convenient to work with projections of (d, λ)-keystone families to kth

�dyadic levels�. Hence, we introduce the following concept.
De�nition 3.2. Let λ ∈ (0, 1] and let d ∈ (0, n] be such that Hd

∞(S) > 0. For each k ∈ N0 we
de�ne the families

DFk(d, λ) := DFS,k(d, λ) := DF(d, λ) ∩ Dk;

D̃Fk(d, λ) := D̃FS,k(d, λ) := {Q ∈ Dk : there is Q′ ∈ n(Q) ∩ DFk(d, λ)}. (3.3)

The corresponding index sets will be denoted by Ak(d, λ) := AS,k(d, λ) and Ãk(d, λ) := ÃS,k(d, λ),
respectively, i.e.,

DFk(d, λ) := {Qk,m|m ∈ Ak(d, λ)}, D̃Fk(d, λ) := {Qk,m̃|m̃ ∈ Ãk(d, λ)}.

De�nition 3.3. Let λ ∈ (0, 1) and let d ∈ (0, n] be such that Hd
∞(S) > 0. Let {Qj(d, λ)}j∈N

be the canonical decomposition of the family DF(d, λ). We de�ne the (d, λ)-essential part of S by

S(d, λ) :=
⋂
j∈N

⋃
{Q : Q ∈ Qj(d, λ)}. (3.4)
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Sometimes it will be important to collect all dyadic cubes which are (d, λ)-thick with respect to
a given set S ⊂ Rn and whose dilations contain a given cube Q. From the intuitive point of view,
such a family looks like a �tower� of cubes.

De�nition 3.4. Let d ∈ (0, n] be such that Hd
∞(S) > 0. Let λ ∈ (0, 1] and c ≥ 1. Given a cube

Q ⊂ Rn, we de�ne the (d, λ, c)-tower of Q by

Td,λ,c(Q) := {Q′ : Q′ ∈ DF(d, λ) and Q ⊂ cQ′}.

In the case c = 1, we write Td,λ(Q) instead of Td,λ,1(Q), and we call the family Td,λ(Q) simply the

(d, λ)-tower of Q.
Remark 3.2. Note that De�nition 3.4 admits the case when a cube Q has side length l(Q) = 0,

i.e., Q = {x} for some x ∈ Rn. Hence, one can consider the (d, λ, c)-tower of x, which will be denoted
by Td,λ,c(x).

Proposition 3.1. Let d ∈ (0, n] be such that Hd
∞(S) > 0. Let λ ∈ (0, 1) and c ≥ 1. Then the

following properties hold true:

(1) S(d, λ) ⊂ S;
(2) Hd

∞(S \ S(d, λ)) = 0;
(3) #Td,λ,c(x) = +∞ for any x ∈ S(d, λ).

Proof. To prove (1), we note that the following inclusion (given δ > 0, by Uδ(S) we denote the
δ-neighborhood of S) ⋃

{Q : Q ∈ Qj(d, λ)} ⊂ U2−j+1(S)

holds for any j ∈ N and take into account that the set S is closed.
To prove (2) we combine the assertion (F2) of Theorem 3.1 with (3.4).
By (3.4) for each x ∈ S(d, λ) for every j ∈ N there is a cube Qj ∈ Qj

S(d, λ) containing x.
Combining this with assertion (F3) of Theorem 3.1 we get (3).

3.2 Covering cubes

As far as we know, the concepts introduced in this section have been never explicitly used in the
literature. Recall that the set S was �xed at the beginning of the section. Recall De�nition 3.1 and
the notation DF(d, λ).

De�nition 3.5. Let d ∈ (0, n] be such that Hd
∞(S) > 0. Let λ ∈ (0, 1], c ≥ 1. Given a cube

Q ∈ D+, we say that a cube Q ∈ D+ is a (d, λ, c)-covering for Q if the following conditions hold:
(C1) l(Q) ≥ l(Q) and Q ⊂ cQ;
(C2) Q ∈ DF(d, λ);
(C3) if Q′ ∈ D+, Q ⊂ Q′ and l(Q′) ∈ (l(Q), l(Q)) then Q′ /∈ DF(d, λ).
Given a cube Q ∈ D+, we denote by Kd,λ,c(Q) the family (perhaps empty) of all (d, λ, c)-covering

for Q cubes. By Kd,λ,c we also mean a set-valued mapping which with each cube Q ∈ D+ associates
the set (perhaps empty) Kd,λ,c(Q).

We will also need some special selections of set-valued mappings Kd,λ,c.
De�nition 3.6. Let d ∈ (0, n] be such that Hd

∞(S) > 0. Let λ ∈ (0, 1], c ≥ 1. A selection of

Kd,λ,c with a domain D ⊂ D+ is a mapping κd,λ,c : D → DF(d, λ) such that:
(Sel1) Kd,λ,c(Q) ̸= ∅ for all Q ∈ D;
(Sel2) κd,λ,c(Q) ∈ Kd,λ,c(Q) for all Q ∈ D.
De�nition 3.7. Let d ∈ (0, n] be such that λ = Hd

∞(S) > 0. Let λ ∈ (0, 1], c ≥ 1. Given a
dyadic cube Q ⊂ Q0,0 with l(Q) < 1, we say that K(Q) ∈ D+ is a strongly (d, λ)-covering cube for

Q if it is (d, λ, 1)-covering and l(K(Q)) > l(Q).
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Remark 3.3. Note that in the sequel De�nition 3.7 will be used in the range λ ∈ (0, λ] because
in this case we have Q0,0 ∈ DF(d, λ) and hence, Kd,λ,1(Q) ̸= ∅ for any Q ∈ D+ such that Q ⊂ Q0,0.
The requirement l(Q) < 1 allows one to �nd a unique cube K(Q) ∈ Kd,λ,1(Q) with l(K(Q)) > l(Q).
□

Remark 3.4. Let d, λ, c be the same as in De�nition 3.5. Given a cube Q ∈ D+, it is clear that
there can exist several (d, λ, c)-covering dyadic cubes for Q. However, it is easy to see that there is
a constant C = C(n, c) > 0 such that

#Kd,λ,c(Q) ∩ Dk ≤ C for every k ∈ N0.

□
De�nition 3.8. Let d ∈ (0, n] be such that Hd

∞(S) > 0. Let λ ∈ (0, 1] and c ≥ 1. Given a cube
Q ∈ DF(d, λ), we de�ne the (d, λ, c)-shadow family of Q by letting

SHd,λ,c(Q) := {Q ∈ DF(d, λ) : l(Q) < l(Q) and Q ∈ Kd,λ,c(Q)}.

The following proposition collects elementary properties of (d, λ, c)-shadow families of cubes.
We recall notation (2.1).

Proposition 3.2. Let d ∈ (0, n] be such that Hd
∞(S) > 0. Let λ ∈ (0, 1) and c ≥ 1. Then, for

each cube Q ∈ DF(d, λ), the following properties hold:

(1) SHd,λ,c(Q) ̸= ∅;
(2) the family SHd,λ,c(Q) is nonoverlapping.

Proof. To prove the �rst claim we �x a cube Q ∈ DF(d, λ). Note that there is a number j ∈ N0

such that Q ∈ Qj(d, λ). Since Hd
∞(Q) ≥ λ(l(Q))d > 0 and the family Qj+1(d, λ) is a dyadic

nonoverlapping d-almost covering of the set S, we deduce that Qj+1(d, λ)|Q ̸= ∅. By property (F3)

of Theorem 3.1 we have Qj+1(d, λ)|Q ≺ Q. Combining these observations with De�nitions 3.5, 3.8

and Remark 3.1 we obtain Qj+1(d, λ)|Q ⊂ SHd,λ,c(Q) which proves (1).

To prove the second claim we �x a cube Q ∈ DF(d, λ) and two di�erent cubes Q
1
, Q

2
∈

SHd,λ,c(Q). Since the cubes Q
1
and Q

2
are dyadic, there are only two possible cases. In the �rst

case, the cubes have disjoint interiors, in the second case one of them is contained in the other
one. We claim that the second case is never realised. Indeed, assume the contrary. Without loss of
generality we may assume that Q

1
⊂ Q

2
. Since Q

1
̸= Q

2
we have l(Q

1
) ≤ 1

2 l(Q2
). Furthermore, by

De�nition 3.8 it follows that l(Q
2
) ≤ 1

2 l(Q). Hence, l(Q
2
) ∈ (l(Q

1
), l(Q)). According to condition

(3) of De�nition 3.5 this implies that Q
2
/∈ DF(d, λ). On the other hand, by De�nition 3.8 the

cubes Q
1
, Q

2
∈ DF(d, λ). This contradiction proves the claim. The proof is complete.

Given a cube Q ∈ Dk with k ∈ N0, we set

Γc(Q) := {Q′ ∈ Dk : Q
′ ∩ cQ ̸= ∅}. (3.5)

Remark 3.5. By Proposition 2.1, if Q′ ∈ Γc(Q), then [c]Q ∩ Q′ ̸= ∅. Hence, Q′ ⊂ ([c] + 2)Q.
Since di�erent cubes in Γc(Q) have disjoint interiors and equal side lengths, we get

#Γc(Q) ≤ Ln(([c] + 2)Q)

Ln(Q′)
≤ ([c] + 2)n.

□
The following concept will be extremely useful in proving the direct trace theorem in Section 7.
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De�nition 3.9. Let d ∈ (0, n] be such that Hd
∞(S) > 0. Let λ ∈ (0, 1) and c ≥ 1. Given a cube

Q ∈ DF(d, λ), we de�ne the (d, λ, c)-iceberg ICd,λ,c(Q) of the cube Q as the family of all dyadic
cubes Q′ ∈ D+ satisfying the following conditions:

(I1) Q′ /∈ SHd,λ,c(Q);
(I2) l(Q′) ≤ l(Q);
(I3) there exists Q′ ∈ SHd,λ,c(Q) such that Q′ ⊂ Q′.

Remark 3.6. It follows immediately from De�nition 3.9 that if Q ∈ ICd,λ,c(Q) and Q′ ⊃ Q is
such that l(Q′) ≤ l(Q), then Q′ ∈ ICd,λ,c(Q). Roughly speaking, in order to imagine ICd,λ,c(Q),
given Q ∈ SHd,λ,c(Q), one should built a tower composed of nested cubes whose side lengths grow
up to the length l(Q). The term �iceberg� was chosen due to the following reasons. On the one
hand, we will see below that the �top of a given iceberg� ICd,λ,c(Q), i.e., the cube Q, contains useful
information about the behavior of a given function f : S → R. On the other hand, cubes from
the �invisible part� of ICd,λ,c(Q), i.e., all cubes from ICd,λ,c(Q) whose side lengths are smaller than
l(Q) do not contain some useful information for the extension of a given function. □

The following proposition re�ects basic geometric properties of (d, λ, c)-icebergs.
Proposition 3.3. Let d ∈ (0, n] be such that Hd

∞(S) > 0. Let λ ∈ (0, 1) and c ≥ 1. Given a

cube Q ∈ DF(d, λ), the following properties hold:

(1) if Q ∈ ICd,λ,c(Q) and l(Q) < l(Q), then Q /∈ DF(d, λ);
(2) if Q′′ ∈ D+ and l(Q′′) = l(Q), then Q′′ ∈ Γc(Q)∩ICd,λ,c(Q) if and only if SHd,λ,c(Q)|Q′′ ̸= ∅.

Proof. To prove the �rst claim, note that by conditions (I1), (I3) of De�nition 3.9, given a cube
Q ∈ ICd,λ,c(Q), there is a cube Q ∈ SHd,λ,c(Q) such that Q ⊂ Q and l(Q) < l(Q). On the other

hand, by De�nition 3.8 we have Q ∈ Kd,λ,c(Q). Hence, condition (C3) of De�nition 3.5 gives the
claim.

If Q′′ ∈ D+, l(Q
′′) = l(Q) and Q′′ ∈ Γc(Q) ∩ ICd,λ,c(Q), then SHd,λ,c(Q)|Q′′ ̸= ∅ by condition

(I3) in De�nition 3.9. Conversely, suppose that SHd,λ,c(Q)|Q′′ ̸= ∅ for some Q′′ ∈ D+ such that
l(Q′′) = l(Q). Clearly, conditions (I2) and (I3) of De�nition 3.9 are hold true with Q′ replaced
by Q′′. On the other hand, by De�nition 3.8, l(Q′) < l(Q′′) for all Q′ ∈ SHd,λ,c(Q)|Q′′ and hence
condition (I1) holds true with Q′ replaced by Q′′. This shows that Q′′ ∈ ICd,λ,c(Q). Finally, by
(C1) of De�nition 3.5 and De�nition 3.8,the condition SHd,λ,c(Q)|Q′′ ̸= ∅ implies the existence of
a cube Q ∈ DF(d, λ) such that Q ⊂ Q′′ and Q ⊂ cQ, Hence, by (3.5) it follows that Q′′ ∈ Γc(Q).
This proves the second claim.

Now we show that any (d, λ, c)-shadow family satis�es a certain Carleson packing condition.

This will be a key tool in proving the main results of Section 7.
Proposition 3.4. Let d ∈ (0, n] be such that Hd

∞(S) > 0. Let λ ∈ (0, 1) and c ≥ 1. Then, for
each Q ∈ DF(d, λ) and any Q ∈ ICd,λ,c(Q),

∑
{(l(Q′))d̃ : Q′ ∈ SHd,λ,c(Q)|Q} ≤ 2n−d̃

λ
(l(Q))d̃ for all d̃ ∈ [d, n]. (3.6)

Furthermore,

∑
{(l(Q′))d̃ : Q′ ∈ SHd,λ,c(Q)} ≤ ([c] + 2)n

2n−d̃

λ
(l(Q))d̃ for all d̃ ∈ [d, n]. (3.7)
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Proof. We �x arbitrary cubes Q ∈ DF(d, λ) and Q ∈ ICd,λ,c(Q), and de�ne

j0 := min{j ∈ N0 : {Q} ≻ Qj(d, λ)|Q}.

By Remark 3.6, the �rst assertion of Proposition 3.3, and (C3) of De�nition 3.5, ifQ′ ∈ SHd,λ,c(Q)|Q
and Q′ ∈ Kd,λ,1(Q

′), then Q′ ⊃ Q, and, furthermore, l(Q′) ≥ l(Q). Hence, by De�nition 3.8 we
conclude that Q′ ∈ Qj0(d, λ)|Q. As a result, an application of Theorem 3.2 with λ1 = λ2 = λ gives∑

{(l(Q′))d̃|Q′ ∈ SHd,λ,c(Q)|Q}

≤
∑

{(1
2
)d̃−d(l(Q))d̃−d(l(Q′))d|Q′ ∈ Qj0(d, λ)|Q} ≤ 2n−d̃

λ
(l(Q))d̃.

This proves the �rst claim.
Now we prove (3.7). In view of the second assertion of Proposition 3.3 it is su�cient to sum

estimate (3.6) over all cubes Q ∈ Γc(Q) ∩ ICd,λ,c(Q). Taking into account Remark 3.5 we get, for

any d̃ ∈ [d, n], the required inequality∑
{(l(Q′))d̃ : Q′ ∈ SHd,λ,c(Q)} =

∑
Q∈Γc(Q)∩ICd,λ,c(Q)

∑
{(l(Q′))d̃ : Q′ ∈ SHd,λ,c(Q)|Q}

≤ #Γc(Q)
2n−d̃

λ
(l(Q))d̃ ≤ ([c] + 2)n

2n−d̃

λ
(l(Q))d̃.

3.3 Whitney-type cavities and hollow cubes

Due to the great importance of this subsection in our further analysis, we would like to describe
informally the main ideas underlying in the core of the concepts introduced below. Recall that the
set S was �xed at the beginning of the section. In addition, we �x in this subsection a number
d ∈ (0, n) such that Hd

∞(S) > 0 and a parameter λ ∈ (0, 1].
Recall that, given τ ∈ (0, 1], a cube Ql(x) is said to be (S, τ)-porous if there is a point y(x) ∈

Ql(x) such that
Qτl(y(x)) ⊂ Ql(x) \ S.

Recall also [26], Ch.6 that (since S is closed, nonempty and S ̸= Rn) there is a nonempty
nonoverlapping familyWS ⊂ D (called the Whitney decomposition, or, sometimesWhitney covering)
such that Rn \ S = ∪{Q : Q ∈ WS} and

dist(Q,S) ≤ l(Q) ≤ 4 dist(Q,S).

Cubes Q from the family WS are called Whitney cubes.
It should be noted that (S, τ)-porous cubes and Whitney cubes are indispensable tools in di�er-

ent topics dealing with extensions of functions [16, 25, 27, 29]. These two concepts are intimately
related to each other. Indeed, given a cube Q = Ql(x) ∈ WS one can �nd a cube Q̃ = Q̃l(x̃) whose
center x̃ is the metric projection of x to S such that Q ⊂ cQ̃ for some universal constant c ≥ 1.
This proves that the cube cQ̃ is (S, 1c )-porous. Conversely, given an (S, τ)-porous cube Q̃, one can

�nd a Whitney cube Q such that Q ⊂ c̃Q̃ for some universal constant c̃ ≥ 1 and l(Q) ≈ l(Q̃).
Let us informally describe why the notions of Whitney cubes and porous cubes are so useful.

If either p ∈ (1, n] and S is regular enough or p > n and S is arbitrary, one can e�ectively absorb
the information about the behavior of a given function f : S → R from any porous with respect to
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S cube Q̃ and then, in some sense, transfer this information to the corresponding Whitney cube Q
with comparable side length. This gives the rough idea of the classical Whitney extension operator.
Unfortunately, in the case 1 < p ≤ n and without any additional regularity assumptions on the set
S, only few cubes Q̃ with Q̃∩S ̸= ∅ can be e�ectively used for gathering information about a given
function f : S → R. One cannot hope that these cubes are porous in general. Instead of Whitney
cubes and (S, τ)-porous cubes, we introduce the special cavities.

De�nition 3.10. Let c ≥ 1 and κ ∈ N. Given a cube Q ∈ D+, we de�ne the special cavity

Ωc,κ(Q) := Ωd,λ,c,κ(Q) := cQ \
⋃

{cQ′ : Q′ ∈ DF(d, λ) and l(Q′) ≤ 2−κl(Q)}. (3.8)

Recall that at the beginning of this subsection we �xed S, d ∈ (0, n) and λ ∈ (0, 1). The
following result was established in [31] (see Theorem 4.2 therein).

Theorem D. For each c ≥ 1, there exist constants τ = τ(n, d) > 0 and κ = κ(n, d, λ, c) ∈ N
such that

Ln(Ωc,κ(Q)) ≥ τ(l(Q))n (3.9)

for each cube Q ∈ D+ \ DF(d, λ) and any κ > κ.
The �rst nice property of special cavities is that they do not intersect �too much�.
Proposition 3.5. Let c ≥ 1 and κ ∈ N. Then there is a constant C = C(n, c,κ) > 0 such that

M({Ωc,κ(Q) : Q ∈ DF(d, λ)}) ≤ C. (3.10)

Proof. Fix dyadic cubesQ1 = Qk1,m1 ∈ DFk1(d, λ) andQ2 = Qk2,m2 ∈ DFk2(d, λ) with k1, k2 ∈ N0.
By (3.8) we have

Ωc,κ(Qk,m) ⊂ cQk,m. (3.11)

Hence,
Ωc,κ(Qk1,m1) ∩ Ωc,κ(Qk2,m2) ̸= ∅ implies cQk1,m1 ∩ cQk2,m2 ̸= ∅.

By (3.8) this gives |k1 − k2| ≤ κ provided that Ωc,κ(Qk1,m1)∩Ωc,κ(Qk2,m2) ̸= ∅. Hence, if for some
point x ∈ Rn there are k(x) ∈ N0 and m(x) ∈ Zn such that x ∈ Ωc,κ(Qk(x),m(x)), then we get

{j ∈ N0 : there is m ∈ Zn s.t. Ωc,κ(Qj,m) ∋ x} ⊂ [k(x)− κ, k(x) + κ] ∩ N0. (3.12)

We use (3.11), (3.12), and apply Proposition 2.2. This gives

∑
Q∈D+

χΩc,κ(Q)(x) ≤
k(x)+κ∑

k=k(x)−κ

∑
m∈Zn

χcQk,m
(x) ≤ 2κ([c] + 2)n for all x ∈ Rn.

The proof is complete.

Fix c ≥ 1 and let κ be the same as in Theorem D. Consider the family

P(c) := PS(d, λ, c)

:=
{
Q ∈ DF(d, λ) : cQ ⊃ Q′ for some Q′ ∈ D+ \ DF(d, λ) with l(Q′) ≥ l(Q)

4

}
. (3.13)

We will see below that in the case of essentially irregular sets S ⊂ Rn the role of the family of cubes
P(c) for the extension of functions is essentially the same as that of the family of all (S, τ)-porous
cubes in the case of su�ciently regular sets S ⊂ Rn.
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4 Calder�on-type maximal functions and new function spaces

In this section we introduce a far-reaching generalization of the Calder�on-type maximal function
introduced in [29]. The latter generalizes the classical Calder�on maximal function [8].

Let {mk} be an admissible sequence of measures on Rn and f ∈ L1({mk}). Given dyadic cubes
Q1 ∈ Dk1 , Q2 ∈ Dk2 with k1, k2 ∈ N0, we recall (2.2) and put

Φf,{mk}(Q1, Q2) := Φf,{mk}(Q2, Q1)

:=
1

min{l(Q1), l(Q2)}

 

Q1

 

Q2

|f(x)− f(y)| dmk1(x) dmk2(y). (4.1)

By (2.2) and (4.1) it is easy to see that

 

Q1

∣∣∣f(y)−  

Q2

f(x) dmk2(x)
∣∣∣ dmk1(y) ≤ min{l(Q1), l(Q2)}Φf,{mk}(Q1, Q2). (4.2)

Proposition 4.1. Let {mk} be an admissible sequence of measures on Rn and f ∈ L1({mk}).
Then, the following inequality

min{l(Q1), l(Q3)}Φf,{mk}(Q1, Q3)

≤ min{l(Q1), l(Q2)}Φf,{mk}(Q1, Q2) + min{l(Q2), l(Q3)}Φf,{mk}(Q2, Q3) (4.3)

holds for any cubes Qi ∈ D+ with mki(Qi) ̸= 0, i = 1, 2, 3.

Proof. Let Qi ∈ Dki , i = 1, 2, 3 with k1, k2, k3 ∈ N0. Hence, by (4.1) and (4.2) we have

min{l(Q1), l(Q3)}Φf,{mk}(Q1, Q3)

=

 

Q1

 

Q2

∣∣∣f(x)−  

Q3

f(z) dmk3(z) +

 

Q3

f(z) dmk3(z)− f(y)
∣∣∣ dmk2(y) dmk1(x)

≤
 

Q1

∣∣∣f(x)−  

Q3

f(z) dmk3(z)
∣∣∣ dmk1(x) +

 

Q3

∣∣∣f(y)−  

Q2

f(y) dmk2(z)
∣∣∣ dmk3(y)

≤ min{l(Q1), l(Q2)}Φf,{mk}(Q1, Q2) + min{l(Q2), l(Q3)}Φf,{mk}(Q2, Q3). (4.4)

The proof is complete.

Now we de�ne the dyadic generalized Calder�on-type maximal function. It will be an indispens-
able tool in our further analysis. We recall De�nitions 2.2 and 3.5.

De�nition 4.1. Let d ∈ (0, n] and let S ⊂ Q0,0 be a compact set with Hd
∞(S) > 0. Let

λ ∈ (0, 1] and c ≥ 1. Let {mk} ∈ Md(S) and f ∈ L1({mk}). Given a point x ∈ Rn, we de�ne

f ♮{mk},λ,c(x) := supΦf,{mk}(Q,Q), (4.5)

where the supremum is taken over all pairs of cubes Q,Q satisfying the following conditions:

(f1) x ∈ cQ and Q,Q ∈ DFS(d, λ);

(f2) 0 < l(Q) ≤ l(Q) ≤ 1;

(f3) Q ∈ Kd,λ,c(Q).
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If there are no pairs Q,Q satisfying conditions (f1)�(f3), we put f ♮{mk},λ,c(x) := 0. The mapping

x→ f ♮{mk},λ,c(x) is called the dyadic generalized Calder�on-type maximal function.
The dyadic generalized Calder�on-type maximal functions have some straightforward monotonic-

ity properties, which follow immediately from De�nition 4.1. We omit an elementary proof.
Proposition 4.2. Let d ∈ (0, n] and let S ⊂ Q0,0 be a compact set with Hd

∞(S) > 0. Let

{mk} ∈ Md(S) and f ∈ L1({mk}). Then, given a parameter λ ∈ (0, 1] and a point x ∈ Rn,

f ♮{mk},λ,c1(x) ≤ f ♮{mk},λ,c2(x) for any 1 ≤ c1 ≤ c2 <∞.

De�nition 4.2. Let d ∈ (0, n] and let S ⊂ Q0,0 be a compact set with Hd
∞(S) > 0. Given

f ∈ B(S)∩Lloc1 ({mk}), we say that x ∈ S is a d-regular point of f and write x ∈ Sf (d) if, for each
sequence {m̃k} ∈ Md(S),

lim
k→∞

max
Q∈Td,λ,c(x)∩Dk

 

Q

|f(x)− f(y)| dm̃k(y) = 0 for any c ≥ 1 and any λ ∈ (0, 1). (4.6)

If, for some k ∈ N0, the set Td,λ,c(x) ∩ Dk = ∅, the corresponding maximum is de�ned to be zero.
By Sf (d) we denote the set of all d-regular points of f .

Now we are ready to introduce the function spaces, which will play the role of intermediate
spaces between trace spaces of Sobolev spaces.

De�nition 4.3. Let d∗ ∈ (0, n] and let S ⊂ Q0,0 be a compact set with λ∗ := Hd∗
∞(S) > 0.

Let λ ∈ (0, 1] and c ≥ 1 be some �xed constants. Let d ∈ (0, d∗] and let {mk} ∈ Md(S). Given

p ∈ (1,∞), we say that f ∈ L1({mk}) belongs to X̃
d∗

p,d,{mk}(S) if the following conditions are satis�ed:

(1) Hd∗(S \ Sf (d′)) = 0 for all d′ ∈ [d, d∗];

(2) Ñp,λ,{mk},c(f) < +∞, where we put

Np,{mk},λ,c(f) := ∥f ♮{mk},λ,c|Lp(R
n)∥, Ñp,λ,{mk},c(f) := ∥f |Lp(m0)∥+Np,{mk},λ,c(f). (4.7)

We de�ne the space Xd
∗

p,d,{mk}(S) as the quotient space, i.e.,

Xd
∗

p,d,{mk}(S) := X̃
d∗

p,d,{mk}(S)/{f ∈ X̃
d∗

p,d,{mk}(S) : Ñp,{mk},λ,c(f) = 0}.

We equip the space Xd
∗

p,d,{mk}(S) with the norm given by the functional Ñp,{mk},λ,c, i.e., given a class

of equivalent functions [f ] ∈ Xd
∗

p,d,{mk}(S), we put

∥[f ]|Xd∗p,d,{mk}(S)∥ := Ñp,{mk},λ,c(f). (4.8)

Remark 4.1. In what follows, we will identify the class of equivalent functions [f ] ∈ Xd
∗

p,d,{mk}(S)

with its arbitrary representative f . It should be remarked that the structure of the class [f ] is not
so straightforward.

Indeed, let S = S1 ∪ S2 and S1 ∩ S2 = ∅. Assume that d ∈ (0, d∗), S1 is a closed Ahlfors�David
d-regular set, and S2 is a closed Ahlfors�David d∗-regular set. Then, keeping in mind Example 2.1,
it is easy to see that changing a given f : S → R on an Hd∗-null set we can violate condition (2) of
De�nition 4.3.

On the other hand, keeping in mind Example 2.1, it is easy to see that if S is an Ahlfors�David
n-regular set and d∗ ∈ (0, n), then changing a given f : S → R on an m0-null set we can violate
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condition (1) of the de�nition (because in this case m0 coincides, up to some constant, with the
measure Ln⌊S).

In fact, the above de�nition of the space Xd
∗

p,d,{mk}(S) depends on the choice of parameters λ,
c. Typically, these parameters are always �xed and hence, we omit them from the corresponding
notation. □

Remark 4.2. Let us verify that De�nition 4.3 is correct, i.e., that Xd
∗

p,d,{mk}(S) is a normed

linear space. First of all, we note that, for each d′ ∈ [d, d∗],

Sf1+f2(d
′) ⊃ Sf1(d

′) ∩ Sf2(d′).

Hence, it remains to verify the triangle inequality. To this end, it su�ces to verify that

Ñp,{mk},λ,c(f1 + f2) ≤ Ñp,{mk},λ,c(f1) + Ñp,{mk},λ,c(f2). (4.9)

holds for any f1, f2 ∈ L1({mk}). Indeed, by (4.1) and the triangle inequality, it is easy to see that,
for any cubes Q1, Q2 ∈ D+ and any f1, f2 ∈ L1({mk}),

Φf1+f2,{mk}(Q1, Q2) ≤ Φf1,{mk}(Q1, Q2) + Φf2,{mk}(Q1, Q2).

Using this inequality we get by De�nition 4.1

(f1 + f2)
♮
{mk},λ,c(x) ≤ (f1)

♮
{mk},λ,c(x) + (f2)

♮
{mk},λ,c(x), x ∈ Rn. (4.10)

Combining (4.10) with the triangle inequalities for the Lp(Rn)-norm and for the Lp(m0)-norm,
respectively, we obtain (4.9) and complete the proof.

Remark 4.3. We prove in Section 8 that the space Xd
∗

p,d,{mk}(S) is a Banach space provided

that p ∈ (1,∞), d∗ > n− p, d ∈ (n− p, d∗] and {mk} ∈ Md(S).

5 Extension operators

The extension operator which will be constructed in this section is the most challenging part of the
present paper. In all previously known studies concerned with extension problems for the �rst-order
Sobolev-spaces W 1

p (Rn) [24], [25], [29] the authors basically used the classical Whitney extension
operator with minor modi�cations. Surprisingly, it perfectly worked. However, in our case we
should introduce completely new extension operators.

Throughout the section we �x the following data:

(D.5.1) a parameter d ∈ (0, n] and a compact set S ⊂ Q0,0 with λ := Hd
∞(S) > 0;

(D.5.2) an arbitrary parameter λ ∈ (0, λ) ;
(D.5.3) an arbitrary sequence of measures {mk} ∈ Md(S).
Since the parameters d, λ and the set S are �xed, we will use the following simpli�ed notation.

We set DF := DFS(d, λ), and for each k ∈ N0, we set DFk := DFS,k(d, λ), D̃Fk := D̃FS,k(d, λ),

Ak := AS,k(d, λ), Ãk := ÃS,k(d, λ). Furthermore, we recall De�nition 3.3 and set S := S(d, λ) for
brevity. Note that in accordance with our notation if a function g : Rn → R is di�erentiable at
some point y ∈ Rn, then

∥∇g(y)∥ := ∥∇g(y)∥∞ := max
{∣∣∣ ∂g
∂x1

(y)
∣∣∣, ..., ∣∣∣ ∂g

∂xn
(y)

∣∣∣}.
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5.1 Construction of the extension operator

First of all, we present a formal construction of the new extension operator and then informally
describe the driving ideas of our construction.

Let a function ψ̃0 ∈ C∞
0 (R) be such that:

(i) χ[ 1
10
, 9
10

](·) ≤ ψ̃0(·) ≤ χ[− 1
10
, 11
10

](·) and ψ̃0(·) > 0 on the interval (−1/10, 11/10);

(ii)
∑
m∈Z

ψ̃0(· −m) ≡ 1 on R.

We set

C
ψ̃0

:= max
t∈R

|dψ̃0

dt
(t)|.

We de�ne a function ψ0 ∈ C∞
0 (Rn) by

ψ0(x) :=

n∏
i=1

ψ̃0(xi) for every x = (x1, ..., xn) ∈ Rn

and set ψk,m(·) := ψ0(2
k(· −m)) for every (k,m) ∈ N0 ×Zn. Clearly, the following properties hold:

(i) for each k ∈ N0 and any m ∈ Zn,

χ 4
5
Qk,m

(·) ≤ ψk,m(·) ≤ χ 6
5
Qk,m

(·) and ψk,m(·) > 0 on int(
6

5
Qk,m); (5.1)

(ii) for each k ∈ N0, ∑
m∈Zn

ψk,m(·) ≡ 1 on Rn. (5.2)

(iii) for each k ∈ N0, ∑
m∈Zn

∥∇ψk,m(y)∥ ≤ C(n)C
ψ̃0
2k for all y ∈ Rn. (5.3)

Recall notation nk(m) (see Section 2) and de�ne

ck,m := #(nk(m) ∩ Ak), (k,m) ∈ N0 × Zn. (5.4)

Remark 5.1. By De�nition 3.2 and (5.4), it readily follows that ck,m̃ ̸= 0, for all m̃ ∈ Ãk.
Given f ∈ L1({mk}), we set

fk,m :=


1

ck,m

∑
m′∈nk(m)∩Ak

�
Qk,m′

f(x)dmk(x), ck,m ̸= 0;

0, ck,m = 0.

(5.5)

Now we are going to de�ne inductively the special sequence of functions which play the role of
an approximating sequence for the extension. Note that since S ⊂ Q0,0 and Hd

∞(S) > 0 we have

f0,0 =

 

Q0,0

f(x) dm0(x).

This observation justi�es the following de�nition.

23



De�nition 5.1. Given f ∈ L1({mk}), we de�ne the special approximating sequence {fk} :=
{fk}({mk}) for f inductively. At the zero step we set (note that by (D.5.1) we have f0,m = f0,0
for any cube Q0,m ⊂ 3Q0,0)

f0(x) :=
∑

Q0,m⊂3Q0,0

ψ0,m(x)f0,0, x ∈ Rn.

Assume that, for some k ∈ N, we have already constructed functions f0, ..., fk−1. We set

fk(x) := fk−1(x) +
∑
m̃∈Ãk

ψk,m̃(x)(fk,m̃ − fk−1(x)), x ∈ Rn. (5.6)

Remark 5.2. Clearly, the sequence {fk} := {fk}({mk}) is well de�ned, i.e., does not depend on
the choice of representatives f of f . Hence, in what follows, if f ∈ B(S) is such that the equivalence
class f of f belongs to L1({mk}), then by the special approximating sequence for f we always mean
the special approximating sequence {fk} := {fk}({mk}) for f .

De�nition 5.2. For each y ∈ Rn, we de�ne the lower and the upper supporting index sets,
respectively, by letting

K(y) := Kd,λ(y) := {k ∈ N0 : there exists m ∈ Ak such that y ∈ 14

5
Qk,m};

K(y) := Kd,λ(y) := {k ∈ N0 : there exists m̃ ∈ Ãk such that ψk,m̃(y) ̸= 0}.

Remark 5.3. By Proposition 3.1 we have

#K(y) = #K(y) = +∞ for all y ∈ S. (5.7)

Furthermore, by (5.1) and De�nition 5.2 we clearly have

K(y) = ∅ ⇐⇒ y /∈ 14

5
Q0,0 and K(y) = ∅ ⇐⇒ y /∈ 16

5
intQ0,0.

The following proposition collects the basic properties of the lower and the upper supporting
index sets.

Proposition 5.1. The lower and the upper supporting index sets have the following properties:

(1) 0 ∈ K(y) for each y ∈ 14
5 Q0,0 \ S;

(2) 0 ∈ K(y) for each y ∈ 16
5 Q0,0 \ S;

(3) K(y) ⊂ K(y) for each y ∈ Rn;
(4) #K(y) ≤ #K(y) < +∞ for each y ∈ 16

5 Q0,0 \ S.

Proof. Note that Q0,0 ∈ DF0 because S ⊂ Q0,0 and Hd
∞(S) = λ > λ according to our assumptions.

Hence, by (5.1) and De�nition 5.2 we get properties (1) and (2).
Property (3) follows directly from (5.1) and De�nitions 3.2, 5.2.
To prove property (4) it is su�cient to show that #K(y) < +∞ for every y ∈ 16

5 Q0,0 \S because
the inequality #K(y) ≤ #K(y) follows directly from property (3) just proved. By (3.4) it follows
that, for each y ∈ 16

5 Q0,0 \ S, there exists j(y) ∈ N such that

y /∈
⋃

{Q : Q ∈ Qj(y)(d, λ)}.
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Combining this fact with property (F3) of Theorem 3.1 we deduce that in fact

y /∈
⋃

j≥j(y)

⋃
{Q : Q ∈ Qj(d, λ)}.

This gives the required claim.

Proposition 5.1 justi�es the following concept.
De�nition 5.3.We de�ne the lower supporting index k(y) and the upper supporting index k(y),

respectively, by letting

k(y) := max{k : k ∈ K(y)} for each y ∈ 14

5
Q0,0 \ S;

k(y) := max{k : k ∈ K(y)} for each y ∈ 16

5
Q0,0 \ S. (5.8)

Proposition 5.2. Let f ∈ L1(mk) and let {fk} be the special approximating sequence for f .
Then, for each point y ∈ 14

5 Q0,0 \ S, the following properties hold true:

(1) for every k ∈ K(y),
ck,m̃ ̸= 0 if y ∈ Qk,m̃; (5.9)

(2) for every k ∈ K(y), ∑
m̃∈Ãk

ψk,m̃(y) = 1; (5.10)

(3) k(y) ≤ k(y) < +∞ and

fk(y) = fk(y)(y) for any k > k(y). (5.11)

Proof. By De�nition 5.2 if k ∈ K(y), then y ∈ 14
5 Qk,m for some m ∈ Ak. Hence, if in addition

y ∈ Qk,m̃, then m̃ ∈ Ãk ∩ nk(m). Consequently, De�nition 3.2 and (5.4) implies that ck,m̃ ̸= 0.
To prove (5.10) it is su�cient to combine De�nitions 3.2, 5.2 with (5.1) and (5.2).
The inequality k(y) ≤ k(y) is an immediate consequence of property (3) of Proposition 5.1. The

inequality k(y) < +∞ follows from property (4) of Proposition 5.1. Finally, by De�nition 5.3 we
have ψk,m̃(y) = 0 for each k > k(y) and any m̃ ∈ Ãk. Now property (3) follows from (5.6).

Now having at our disposal Proposition 5.2 and property (1) of Proposition 3.1 we can built the
desirable extension operator.

De�nition 5.4. Given f ∈ B(S) ∩ L1({mk}), let {fk} be the special approximating for f . We
de�ne

ExtS,{mk},λ(f)(x) := Ext(f)(x) :=

{
f(x), x ∈ S;

lim
k→∞

fk(x), x ∈ Rn \ S. (5.12)

The following obvious observation is an immediate consequence of De�nition 5.4.
Proposition 5.3. The operator Ext de�ned by (5.12) is a linear mapping from B(S)∩L1({mk})

into B(Rn).
Since the construction of our extension operator is quite tricky, we would like to describe the

driving ideas informally.
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The �rst idea consists in using only cubes from the family DF to extract some useful information
about the behavior of a given function f ∈ L1({mk}). Informally speaking, the family DF gives
some sort of a skeleton for the extension operator. Indeed, Theorem C allows us to hope that
averaging over these cubes with respect to measures mk, k ∈ N0 is necessary in constructions of
almost optimal Sobolev extensions.

The second idea looks a little bit technical. Nevertheless, it is quite important. Recall (see
Subsection 3.3) that by WS we denote the Whitney decomposition of Rn \S. In the majority of the
available investigations the family WS plays a crucial role in constructions of extension operators.
It allowed one in some sense to transfer the information about a given function f : S → R from S
into Rn \ S. In contrast, our approach uses the family ∪k∈N0D̃Fk \DF . In the case when either S
is regular enough or p > n, then this innovation gives nothing new in comparison with the classical
approach of H. Whitney. If S is highly irregular and p ∈ (1, n], the modi�cation becomes essential.
It helps to avoid the study of the complicated combinatorial structure of the family WS . Informally
speaking, it is di�cult to built a �nice tree� associated with the family WS .

The third idea involves an additional averaging over neighboring cubes in (5.5). This simple
trick together with the use of families DFk, k ∈ N0 helps one to avoid large derivatives. Roughly
speaking, given f ∈ L1({mk}), pointwise estimates of Ext(f) from above will contain only terms
like ∣∣∣  

Qk,m

f(y) dmk(y)−
 

Ql,m′

f(y) dml(y)
∣∣∣,

where Ql,m′ ∈ Kd,λ,c(Qk,m) for some c > 1. This is crucial in proving the optimality of the extension.
We should note that the roots of the above ideas go back to the paper of V. Rychkov [21].

However, in this paper only d-thick sets were considered. In the case when S is d-thick, the analysis
of the pointwise behavior of special approximating sequences is much more simple and transparent.

5.2 Fine properties of the special approximating sequence

In this subsection, given f ∈ L1({mk}), we investigate a pointwise behavior of ExtS,d,λ(f).
We start with a technical observation, which will be commonly used.
Proposition 5.4. Let f ∈ L1({mk}) and c ∈ R. Then, for each k ∈ N0 and any m̃k ∈ Ãk,

|fk,m̃k − c| ≤ max
mk∈nk(m̃k)∩Ak

 

Q
k,mk

|f(x)− c|dmk(x). (5.13)

Furthermore, for each k, j ∈ N0 and any m̃k ∈ Ãk, m̃
j ∈ Ãj,

|fk,m̃k − fj,m̃j | ≤ max

 

Q
k,mk

 

Q
j,mj

|f(x)− f(y)| dmj(y)dmk(x) (5.14)

where the maximum is taken over all mk ∈ nk(m̃
k) ∩ Ak and all mj ∈ nj(m̃

j) ∩ Aj.

Proof. To prove (5.13) we �x k ∈ N0 and m̃k ∈ Ãk. By Remark 5.1, we have ck,m̃k > 0. Hence,

1 =
1

ck,m̃k

∑
mk∈nk(m̃k)∩Ak

1. (5.15)
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Using this observation and (5.5), we deduce the required estimate

|fk,m̃k − c| =
∣∣∣ 1

ck,m̃k

∑
mk∈nk(m̃k)∩Ak

 

Q
k,mk

f(x)dmk(x)−
1

ck,m̃k

∑
mk∈nk(m̃k)∩Ak

c
∣∣∣

≤ max
mk∈nk(m̃k)∩Ak

∣∣∣  

Q
k,mk

f(x)dmk(x)− c
∣∣∣ ≤ max

mk∈nk(m̃k)∩Ak

 

Q
k,mk

|f(x)− c|dmk(x). (5.16)

Now we �x arbitrary k, j ∈ N0 and m̃k ∈ Ãk, m̃
j ∈ Ãj . We �rstly apply (5.13) with c = fj,m̃j

and then, for mk-a.e. y ∈ S, we apply (5.13) with c = f(y). This gives

|fk,m̃k − fj,m̃j | ≤ max
mk∈nk(m̃k)∩Ak

 

Q
k,mk

|f(y)− fj,m̃j |dmk(y)

≤ max
mk∈nk(m̃k)∩Ak

 

Q
k,mk

(
max

mj∈nj(m̃j)∩Aj

 

Q
j,mj

|f(y)− f(x)| dmj(x)
)
dmk(y)

≤ max

 

Q
k,mk

 

Q
j,mj

|f(y)− f(x)| dmj(x)dmk(y), (5.17)

where the maximum is taken over all mk ∈ nk(m̃
k) ∩ Ak and all mj ∈ nj(m̃

j) ∩ Aj .
The proof is complete.

Now we introduce the keystone tool of this section. More precisely, given f ∈ L1({mk}), the
inductive de�nition of the sequence {fk}k∈N0 , as given in (5.6), is not so useful for practical com-
putations. In view of this, we present an explicit formula for functions fk, k ∈ N0.

Lemma 5.1. Let f ∈ L1(mk) and let {fk} be the special approximating sequence for f . Then,
for every i, k ∈ N0 with k > i,

fk(x) = fi(x) +

k∑
j=i+1

Sji,k(x), x ∈ Rn, (5.18)

where, for each j ∈ {i+ 1, ..., k} and every x ∈ Rn, we set

Sji,k(x) :=


∑

m̃j∈Ãj

ψj,m̃j (x)
( k∏
r=j+1

( ∑
m̃r∈Zn\Ãr

ψr,m̃r(x)
))

(fj,m̃j − fi(x)), j ∈ {i+ 1, ..., k − 1};∑
m̃k∈Ãk

ψk,m̃k(x)(fk,m̃k − fi(x)), j = k.

(5.19)

The corresponding product in (5.19) disappears for k < i+ 2.

Proof. Given a �xed i ∈ N0, we prove (5.18) by induction.
The base. For k = i+ 1, the statement is obvious in view of our construction.
The induction step. Suppose that (5.18) is proved for some k = l ∈ N, l > i. We show that

(5.18) holds true with k = l + 1.
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Indeed, �rst of all, we note that by (5.19), for each j = i+ 1, ..., l, we have(
1−

∑
m̃l+1∈Ãl+1

ψl+1,m̃l+1(x)
)
Sji,l(x)

=
∑

m̃l+1∈Zn\Ãl+1

ψl+1,m̃l+1(x)S
j
i,l(x) = Sji,l+1(x), x ∈ Rn. (5.20)

On the other hand, by (5.19)

Sl+1
i,l+1(x) =

∑
m̃l+1∈Ãl+1

ψl+1,m̃l+1(x)(fl+1,m̃l+1 − fi(x)), x ∈ Rn. (5.21)

Now we plug (5.18) with k = l into (5.6) and use (5.20), (5.21). This gives the required identity

fl+1(x) = fi(x) +
l∑

j=i+1

Sji,l(x) +
∑

m̃l+1∈Ãl+1

ψl+1,m̃l+1(x)
(
fl+1,m̃l+1 − fi(x)−

l∑
j=i+1

Sji,l(x)
)

= fi(x) +
l∑

j=i+1

(
1−

∑
m̃l+1∈Ãl+1

ψl+1,m̃l+1(x)
)
Sji,l(x)+

+
∑

m̃l+1∈Ãl+1

ψl+1,m̃l+1(x)(fl+1,m̃l+1 − fi(x)) = fi(x) +

l+1∑
j=i+1

Sji,l+1(x), x ∈ Rn.

(5.22)

The lemma is proved.

Remark 5.4. By Lemma 5.1 applied with i = 0 and (5.10) we have

fk(y) =
∑
m̃∈Ãk

ψk,m̃(y)fk,m̃ for each y ∈ 14

5
Q0,0 for every k ∈ K(y). (5.23)

This nice reproducing formula will simplify some intermediate computations in the proof of the
forthcoming assertions. □

By Proposition 5.1, we can pass to the limit in fk(x) for every x ∈ Rn \ S. This is not the case
for an arbitrary x ∈ S. However, if a given function f : S → R is su�ciently regular we can extract
convergent subsequences {fks(x)} for appropriate points x ∈ Rn.

Lemma 5.2. Given f ∈ B(S) ∩ L1({mk}), for every point x ∈ S ∩ Sf (d), there exists an

increasing sequence {ks} = {ks(x)}s∈N0 ⊂ N0 such that

lim
s→∞

fks(x) = f(x).

Proof. Fix a point x ∈ S ∩ Sf (d). By Remark 5.3, the set K(x) is in�nite and can be written as a
strictly increasing sequence {ks} = {ks(x)}s∈N0 ⊂ N0. Hence, by (5.5), (5.23) and (4.6), we get

|f(x)− fks(x)| ≤
∑

m∈Aks

x∈ 14
5
Qks,m

 

Qks,m

|f(x)− f(y)| dmks(y)

≤ C max
m∈Aks

x∈ 14
5
Qks,m

 

Qks,m

|f(x)− f(y)| dmks(y) → 0, s→ ∞. (5.24)
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The lemma is proved.

The following technical assertion will be important in proving the main results of this section.
Proposition 5.5. Let s ∈ N and {ki}si=1 ⊂ N0 be such that k1 < .... < ks. Then

1−
s−1∑
j=1

∑
m̃kj∈Ãkj

ψ
kj ,m̃

kj (x)
s∏

r=j+1

( ∑
m̃kr∈Zn\Ãkr

ψkr,m̃kr (x)
)
−

∑
m̃ks∈Ãks

ψks,m̃ks (x)

=
s∏
j=1

( ∑
m̃kj∈Zn\Ãkj

ψ
kj ,m̃

kj (x)
)

for all x ∈ Rn, (5.25)

where the �rst sum in the left-hand side of (5.25) is zero in the case s = 1.

Proof. We prove (5.25) by induction.
The base. For s = 1, this is obvious because the second term in the left-hand side of (5.25) is

zero by de�nition.
The induction step. Suppose that we have proved (5.25) for some s0 ∈ N and arbitrary nonneg-

ative integer numbers k′1 < ... < k′s0 (in place of {ki}si=1). To make the induction step, we take an
arbitrary k1 < ... < ks0+1 and apply (5.25) with k′i = ki+1, i = 1, ..., s0. This gives

1−
s0∑
j=1

∑
m̃kj∈Ãkj

ψ
kj ,m̃

kj (x)

s0+1∏
r=j+1

( ∑
m̃kr∈Zn\Ãkr

ψkr,m̃kr (x)
)
−

∑
m̃

ks0+1∈Ãks0+1

ψ
ks0+1,m̃

ks0+1 (x)

=

s0+1∏
j=2

( ∑
m̃kj∈Zn\Ãkj

ψ
kj ,m̃

kj (x)
)
−

∑
m̃k1∈Ãk1

ψk1,m̃k1 (x)

s0+1∏
j=2

( ∑
m̃kj∈Zn\Ãkj

ψ
kj ,m̃

kj (x)
)

=
(
1−

∑
m̃k1∈Ak1

ψk1,mk1 (x)
) s0+1∏
j=2

( ∑
m̃kj∈Zn\Ãkj

ψ
kj ,m̃

kj (x)
)
=

s0+1∏
j=1

( ∑
m̃kj∈Zn\Ãkj

ψ
kj ,m̃

kj (x)
)
. (5.26)

Remark 5.5. By (5.1) and Proposition 5.5, for each s ∈ N ∩ [2,+∞), we have

0 ≤
s−1∑
j=1

∑
m̃kj∈Ãkj

ψ
kj ,m̃

kj (x)
s∏

r=j+1

( ∑
m̃kr∈Zn\Ãkr

ψkr,m̃kr (x)
)
≤ 1 (5.27)

for any {ki}si=1 ⊂ N0 with k1 < .... < ks. □
Now we formulate the main result of this section. This result contains an important computation,

which will be an indispensable tool in proving some pointwise estimates in Section 6. We recall
De�nition 5.2.

Theorem 5.1. There exists a constant C > 0 depending only on C
ψ̃0

and n such that, for each

f ∈ L1({mk}), for every y ∈ 14
5 Q0,0 \ S and k∗ ∈ K(y),

∥∇fk(y)∥ ≤ CMk,c(y) for all k ≥ k∗ and all c ∈ R, (5.28)

where

Mk,c(y) := 2kmax

 

Qj,m

|f(x)− c| dmj(x), (5.29)

the maximum in (5.29) is taken over all j ∈ {k∗, ..., k} and all m ∈ Aj with χ 16
5
Qj,m

(y) ̸= 0.
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Proof. We �x arbitrary k ≥ k∗ and c ∈ R. An application of Lemma 5.1 with i = k∗ gives (below
we assume that the corresponding sum is zero if k = k∗)

∇fk(y) = ∇fk∗(y) +
k∑

j=k∗+1

∇Sjk∗,k(y). (5.30)

Without loss of generality we will assume that k > k∗ because the case k = k∗ is much simpler. We
split the proof into several steps.

Step 1. Since k∗ ∈ K(y) by (5.10) and Remark 5.4 we have

∇fk∗(y) =
∑

m̃∈Ãk∗

∇ψk∗,m̃(y)fk∗,m̃ =
∑

m̃∈Ãk∗

∇ψk∗,m̃(y)(fk∗,m̃ − c). (5.31)

Hence, by (5.1)�(5.3) we get

∥∇fk∗(y)∥ ≤ C2k
∗ ∑
m̃∈Ãk∗

χ 6
5
Qk∗,m̃

(y)|fk∗,m̃ − c|. (5.32)

Consequently, by (5.13) and (5.32) we obtain

∥∇fk∗(y)∥ ≤ C2k
∗ ∑
m̃∈Ãk∗

χ 6
5
Qk∗,m̃

(y) max
m∈nk∗ (m̃)∩Ak∗

 

Qk∗,m

|f(x)− c| dmk∗(x)

≤ C
( ∑
m∈Zn

χ 6
5
Qk∗,m̃

(y)
)
Mk,c(y) ≤ CMk,c(y). (5.33)

Step 2. By (5.19) we get, for each j ∈ {k∗ + 1, ..., k− 1} (the corresponding product disappears
when k < k∗ + 2),

∇Sjk∗,k(y) =
∑

m̃j∈Ãj

∇
(
ψj,m̃j (y)

k∏
r=j+1

( ∑
m̃r∈Zn\Ãr

ψr,m̃r(y)
))

(fj,m̃j − c+ c− fk∗(y))

−
∑

m̃j∈Ãj

ψj,m̃j (y)

k∏
r=j+1

( ∑
m̃r∈Zn\Ãr

ψr,m̃r(y)
)
∇fk∗(y).

(5.34)

We also have

∇Skk∗,k(y) =
∑

m̃k∈Ãk

∇ψk,m̃k(y)(fk,m̃k − c+ c− fk∗(y))−
∑

m̃k∈Ãk

ψk,m̃k(y)∇fk∗(y).
(5.35)

Step 3. For each j ∈ {k∗ + 1, ..., k − 1} we use the Leibniz rule. Using (5.1) � (5.3), we obtain
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(the corresponding product in the last string disappears if k ≤ k∗ + 2)

Σjk(y) :=
∑

m̃j∈Ãj

∥∥∥∇(
ψj,mj (y)

k∏
r=j+1

( ∑
m̃r∈Zn\Ãr

ψr,m̃r(y)
))∥∥∥

≤
∑

m̃j∈Ãj

∥∇ψj,m̃j (y)∥
k∏

r=j+1

( ∑
m̃r∈Zn\Ãr

ψr,m̃r(y)
)

+
∑

m̃j∈Ãj

ψj,m̃j (y)
∥∥∥∇( k∏

r=j+1

( ∑
m̃r∈Zn\Ãr

ψr,m̃r(y)
))∥∥∥

≤ C2j +
( ∑
m̃j∈Ãj

ψj,m̃j (y)
) k∑
r′=j+1

C2r
′

k∏
r=j+1
r ̸=r′

( ∑
m̃r∈Zn\Ãr

ψr,m̃r(y)
))
. (5.36)

We use, for each r′ ∈ {k∗ + 2, ..., k}, Remark 5.5 with s = k − k∗ − 1 and with

k1 := k∗ + 1, ..., kr′−k∗−1 := r′ − 1 and kr′−k∗ := r′ + 1, ..., ks := k.

This gives (we assume that k > k∗ + 2) the crucial estimate

r′−1∑
j=k∗+1

( ∑
m̃j∈Ãj

ψj,m̃j (y)
) k∏
r=j+1
r ̸=r′

( ∑
m̃r∈Zn\Ãr

ψr,m̃r(y)
)

≤
k−1∑

j=k∗+1
j ̸=r′

( ∑
m̃j∈Ãj

ψj,m̃j (y)
) k∏
r=j+1
r ̸=r′

( ∑
m̃r∈Zn\Ãr

ψr,m̃r(y)
)
≤ 1.

Hence, using (5.36) and changing the order of summing, we get (the corresponding product below
disappears if k = k∗ + 2)

k−1∑
j=k∗+1

Σjk(y)

≤ C
(
2k +

k∑
r′=k∗+2

2r
′

r′−1∑
j=k∗+1

( ∑
m̃j∈Ãj

ψj,m̃j (y)
) k∏
r=j+1
r ̸=r′

( ∑
m̃r∈Zn\Ãr

ψr,m̃r(y)
))

≤ C2k. (5.37)

Furthermore, by (5.3) we have

Σkk(y) :=
∑

m̃k∈Ãk

∥∇ψk,m̃k(y)∥ ≤ C2k. (5.38)

Step 4. Now we plug (5.31), (5.34), (5.35) into (5.30). This gives

∥∇fk(y)∥ ≤
7∑
i=1

Rik(y). (5.39)
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In the right-hand side of (5.39) we put

R1
k(y) := ∥∇fk∗(y)∥, R7

k(y) :=
∑

m̃k∈Ãk

ψk,m̃k(y)∥∇fk∗(y)∥

R4
k(y) :=

k−1∑
j=k∗+1

∑
m̃j∈Ãj

ψj,m̃j (y)

k∏
r=j+1

( ∑
m̃r∈Zn\Ãr

ψr,m̃r(y)
)
∥∇fk∗(y)∥,

R3
k(y) :=

k−1∑
j=k∗+1

Σjk(y)|c− fk∗(y)|, R6
k(y) :=

∑
m̃k∈Ãk

∥∇ψk,m̃k(y)∥|c− fk∗(y)|,

R2
k(y) :=

k−1∑
j=k∗+1

Σjk(y)
∑

m̃j∈Ãj

χ 6
5
Q

j,m̃j
(y)|fj,m̃j − c|, R5

k(y) :=
∑

m̃k∈Ãk

∥∇ψk,m̃k(y)∥|fk,m̃k − c|.

(5.40)

Step 5. By (5.2) and (5.33) we have

R7
k(y) ≤ R1

k(y) ≤ CMk,c(y). (5.41)

Step 6. By Remark 5.5 and (5.33) we obtain

R4
k(y) ≤ ∥∇fk∗(y)∥ = R1

k(y) ≤ CMk,c(y). (5.42)

Step 7. By (5.37) and (5.38) we clearly get

R3
k(y) ≤ C2k|c− fk∗(y)|, R6

k(y) ≤ C2k|c− fk∗(y)|.

Hence, using arguments similar to those used in step 1, we deduce

R3
k(y) +R6

k(y) ≤ CMk,c(y). (5.43)

Step 8. Finally, we use Proposition 5.4 and take into account (5.29), (5.37), (5.38). This leads
us to the estimates

R2
k(y) ≤ CMk,c(y), R5

k(y) ≤ CMk,c(y). (5.44)

Step 9. Collecting (5.39)�(5.44), we deduce (5.28) and complete the proof.

6 The reverse trace theorem

In this section we prove the so-called reverse trace theorem. More precisely, given a nonempty
compact set S ⊂ Q0,0 and a function f ∈ B(S), we �nd conditions su�cient for the existence of a
Sobolev extension F of f .

Throughout the section we �x the following data:

(D.6.1) parameters d∗ ∈ (0, n], d ∈ (0, d∗] and a compact set S ⊂ Q0,0 with λ := Hd∗
∞(S) > 0;

(D.6.2) an arbitrary parameter λ ∈ (0, λ) ;
(D.6.3) an arbitrary sequence of measures {mk} ∈ Md(S).
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As a result, we simplify our notation. More precisely, we set DF := DFS(d, λ), S := S(d, λ),

Sf := Sf (d). For each k ∈ N0 we set DFk := DFS,k(d, λ) and D̃Fk := D̃FS,k(d, λ). Given c ≥ 1,
we put Tc(Q) := Td,λ,c(Q), Kc(Q) := Kd,λ,c(Q). We recall De�nition 5.2 and, for any given y ∈ Rn,
we put K(y) := Kd,λ(y) and K(y) := Kd,λ(y). We also use the symbol Ext instead of ExtS,{mk},λ
to denote the corresponding extension operator constructed in Section 5.1. Finally, throughout the
section we put f ♮c := f ♮{mk},λ,c.

The following elementary combinatorial fact will be a keystone in proving the main results of
this section. We recall Remark 5.3.

Lemma 6.1. Let y ∈ 14
5 Q0,0. Let k1, k2 ∈ N0 and j1, j2 ∈ K(y) be such that:

(1) k1 ≤ j1 ≤ j2 ≤ k2;
(2) (k1, k2) ∩K(y) = ∅.
Then Qj1,m1 ∈ K7(Qj2,m2) for any Qji,mi ∈ DF ji , i = 1, 2 satisfying y ∈ 16

5 Qj1,m1 ∩ 16
5 Qj2,m2.

Proof. Let Qji,mi ∈ DF ji , i = 1, 2 be such that y ∈ 16
5 Qj1,m1 ∩ 16

5 Qj2,m2 .
Fix a dyadic cube Q ⊃ Qj2,m2 with l(Q) ∈ (2−j2 , 2−j1). We claim that Q /∈ DF . Indeed, assume

the contrary. On the one hand, by the construction

− log2 l(Q) ∈ (j1, j2) ⊂ (k1, k2). (6.1)

On the other hand, since Q ∈ D+ we have l(Q) ≥ 2l(Qj2,m2). Hence, taking into account that
y ∈ 16

5 Qj2,m2 it is easy to see that y ∈ 14
5 Q. This implies that

− log2 l(Q) ∈ K(y). (6.2)

By (6.1) and (6.2) we have (k1, k2) ∩K(y) ̸= ∅, which contradicts the assumptions of the lemma.
This proves the claim.

Since y ∈ 16
5 Qj1,m1 ∩ 16

5 Qj2,m2 we clearly have dist(Qj1,m1 , Qj2,m2) ≤ 11
5 2

−j1 . Since the cubes
are dyadic by Proposition 2.1 we get dist(Qj1,m1 , Qj2,m2) ≤ 21−j1 . Hence, Qj2,m2 ⊂ 7Qj1,m1 .

The proof is complete.

Having at our disposal Lemma 6.1 we can establish an important estimate.
Lemma 6.2. For each f ∈ L1({mk}), for every y ∈ 14

5 Q0,0, the following holds. If k1, k2 ∈ N0

and j1, j2 ∈ K(y) satisfy the assumptions of Lemma 6.1, then

|fj1,m̃1
− fj2,m̃2

| ≤ 2−max{j1,j2}f ♯7(y) (6.3)

for any Qji,m̃i
∈ D̃F ji , i = 1, 2 satisfying y ∈ 6

5Qj1,m̃1
∩ 6

5Qj2,m̃2
.

Proof. Given f ∈ L1({mk}) and y ∈ 14
5 Q0,0, we �x k1, k2 ∈ N0 and j1, j2 ∈ K(y) satisfy-

ing the assumptions of Lemma 6.1. Furthermore, we �x Qji,m̃i
∈ D̃F ji , i = 1, 2 such that

y ∈ 6
5Qj1,m̃1

∩ 6
5Qj2,m̃2

. It is clear that, for any mi ∈ nji(m̃i), i = 1, 2, we have

y ∈ 16

5
Qj1,m1 ∩

16

5
Qj2,m2 (6.4)

We use Proposition 5.4, take into account (6.4), and apply Lemma 6.1. This gives

|fj1,m̃1
− fj2,m̃2

|

≤ max
i=1,2

mi∈nji (m̃i)∩Aji

 

Qj1
,m1

 

Qj2
,m2

|f(x)− f(y)| dmj1(x)dmj2(y) ≤ 2−max{j1,j2}f ♯7(y). (6.5)

The proof is complete.
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We recall De�nitions 5.1 and 5.2. Given f ∈ L1({mk}), we establish a useful pointwise estimate
of the functions fk − fl for any k, l ∈ N. This is crucial to deduce convergence properties of the
special approximating sequence {fk}.

Theorem 6.1. Let f ∈ L1({mk}) and y ∈ 14
5 Q0,0. Let {fk} be the special approximating sequence

for f . Then, for any k, s ∈ N0 with s ≥ k,

|fk(y)− fs(y)| ≤ 2−k(y,k)+3f ♮7(y), (6.6)

where k(y, k) = max{k′ ∈ K(y) : k′ ≤ k}.

Proof. We �x k, s ∈ N0 with s ≥ k and split the proof into several steps.
Step 1. By Remark 5.3, we have K(y) ̸= ∅. We write the set K(y) in an increasing order, i.e.,

K(y) = {kl} where {kl} = {kl}Nl=1, N ∈ N ∪ +∞ is an increasing sequence or a �nite family of
numbers taken in an increasing order. We put

l := max{l : kl ≤ k} and l := max{l : kl ≤ s}. (6.7)

We clearly have (the second sum disappears in the case l = l)

|fk(y)− fs(y)| ≤ |fk(y)− fkl(y)|+
l−1∑
l=l

|fkl(y)− fkl+1
(y)|+ |fs(y)− fkl(y)|. (6.8)

Step 2. Since {kl} ⊂ K(y), by Remark 5.4 we get

fkl(y) =
∑

m̃kl∈Ãkl

ψkl,m̃kl (y)fkl,m̃kl for each l ∈ N. (6.9)

By (6.9), for each l ∈ {l, ..., l − 1}, we obtain

|fkl(y)− fkl+1
(y)| ≤

∑
m̃kl∈Ãkl

∑
m̃kl+1∈Ãkl+1

ψkl,m̃kl (y)ψkl+1,m̃
kl+1 (y)|fkl,m̃kl − f

kl+1,m̃
kl+1 |. (6.10)

The crucial observation is that, given l ∈ {l, ..., l− 1}, we have (kl, kl+1)∩K(y) = ∅. Hence, an
application of Lemma 6.2 with k1 = j1 = kl and k2 = j2 = kl+1 gives

|fkl,m̃kl − f
kl+1,m̃

kl+1 | ≤ 2−kl+1f ♮7(y) (6.11)

for every l ∈ {l, ..., l − 1} and any indexes m̃kl ∈ Ãkl , m̃
kl+1 ∈ Ãkl+1

satisfying ψkl,m̃kl (y) ̸= 0 and
ψ
kl+1,m̃

kl+1 (y) ̸= 0.

As a result, we plug (6.11) into (6.10) and take into account (5.2). We obtain

|fkl,m̃kl − f
kl+1,m̃

kl+1 |

≤ 2−kl+1f ♮7(y)
∑

m̃kl∈Ãkl

∑
m̃kl+1∈Ãkl+1

ψkl,m̃kl (y)ψkl+1,m̃
kl+1 (y) ≤ 2−kl+1f ♮7(y). (6.12)

Step 3. We assume that k > kl because otherwise fk(y)− fkl(y) = 0. An application of Lemma
5.1 with i = kl gives

|fk(y)− fkl(y)| ≤
k∑

r=kl+1

Srkl,k(y). (6.13)
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If k − kl ≥ 2, then by (5.10), (5.19) and (6.9), for each r ∈ {kl + 1, ..., k − 1} (the corresponding
product below disappears for k = kk + 2),

Srkl,k(y) ≤
∑

m̃r∈Ãr

ψr,m̃r(y)
( k∏
r′=r+1

( ∑
m̃r′∈Zn\Ãr′

ψr′,m̃r′ (y)
)) ∑

m̃
kl∈Ãkl

ψ
kl,m̃

kl (y)|fr,m̃r − f
kl,m̃

kl |.

(6.14)

Similarly,

Skkl,k(y) ≤
∑

m̃k∈Ãk

ψk,m̃k(y)
∑

m̃
kl∈Ãkl

ψ
kl,m̃

kl (y)|fk,m̃k − f
kl,m̃

kl |. (6.15)

The crucial observation is that by (6.7) we have (kl, k)∩K(y) = ∅. Hence, given r ∈ {kl+1, ..., k},
applying Lemma 6.2 with k1 = j1 = kl and k2 = k, j2 = r we obtain

|fr,m̃r − f
kl,m̃

kl | ≤ 2−rf ♮7(y) (6.16)

for any indices m̃r ∈ Ãr, m̃
kl ∈ Ãkl satisfying ψr,m̃r(y) ̸= 0 and ψ

kl,m̃
kl (y) ̸= 0.

As a result, collecting (6.13)�(6.16) and taking into account Remark 5.5 we obtain

|fk(y)− fkl(y)| ≤ f ♮7(y)
k−1∑

r=kl+1

2−r
∑

m̃r∈Ãr

ψr,m̃r(y)
( k∏
r′=r+1

( ∑
m̃r′∈Zn\Ãr′

ψr′,m̃r′ (y)
))

+ 2−kf ♮7(y) ≤ 2−kl+1f ♮7(y). (6.17)

Step 4. Repeating the arguments of the previous step, we get

|fs(y)− fkl(y)| ≤ 2−kl+1f ♮7(y). (6.18)

It remains to combine (6.8), (6.12), (6.17), (6.18) and take into account that 2−kl ≤ 2−k(y,k) for
all l ∈ {l, ..., l}. As a result, we deduce (6.6) and complete the proof.

Corollary 6.1. Let p ∈ (1,∞) and f ∈ X̃
d∗

p,d,{mk}(S). Let {fk} be the special approximating

sequence for f . Then the equivalence class [Ext(f)] of Ext(f) belongs to Lp(Rn) and the sequence

{fk} converges to [Ext(f)] in Lp(Rn)-sense.

Proof. Given y ∈ 14
5 Q0,0 and k ∈ N0, we put k(y, k) := max{k′ : k′ ∈ K(y) and k′ ≤ k}. By Lemma

5.1, it is easy to see that, for any k, s ∈ N0 with s > k,

supp(fk − fs) ⊂
⋃
j≥k

⋃
{4Qj,m : m ∈ Aj} ⊂ U 4

2k
(S).

Hence, by Theorem 6.1 we have, for such k, s,

�

Rn

|fk(y)− fs(y)|p dy ≤
�

U 4
2k

(S)

2(3−k(y,k))p(f ♮7(y))
p dy.
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As a result, by absolute continuity of the Lebesgue integral we obtain

lim
k,s→∞

�

Rn

|fk(y)− fs(y)|p dy ≤ lim
k→∞

�

S

2(3−k(y,k))p(f ♮7(y))
p dy. (6.19)

To prove that {fk} is a Cauchy sequence, it is su�cient to show that the right-hand side of
(6.19) is zero. To show this, we proceed as follows. First of all, by (5.7), Proposition 3.1, and the
absolute continuity of the Lebesgue measure Ln with respect to the Hausdor� measure Hd, we have

lim
k→∞

k(y, k) = +∞ for Ln − a.e. y ∈ S.

Since 2(3−k(y,k))p(f ♮(y))p ≤ (8f ♮(y))p for all y ∈ Rn, an application of the Lebesgue dominated
convergence theorem proves the claim.

Since {fk} is a Cauchy sequence in the Banach space Lp(Rn), we get the existence of g ∈ Lp(Rn)
such that ∥g − fk|Lp(Rn)∥ → 0, k → ∞. Hence, there is a subsequence {fks} converging Ln-a.e. to
g. Combining this fact with De�nition 5.4, Lemma 5.2 and Proposition 3.1, we have g(x) = f(x) =
Ext(f)(x) for Ln-a.e. x ∈ S. This completes the proof.

The following fact is a folklore. Nevertheless, we present the proof for the completeness.
Proposition 6.1. Given p ∈ (1,∞) and c > 0, there exists a constant C > 0 such that if

F ∈ Lloc1 (Rn) is such that suppF ⊂ cQ0,0 and the distributional gradient ∇F ∈ Lp(Rn,Rn), then
�

Rn

|F (x)|p dx ≤ C

�

cQ0,0

∥∇F (y)∥p dy. (6.20)

Proof. It is well known [14] that there is a constant C > 0 such that, for any given F ∈ Lloc1 (Rn)
with ∥∇F∥ ∈ Lloc1 (Rn), there is a set EF with Ln(Rn \ EF ) = 0 such that

|F (x)− F (y)| ≤ C∥x− y∥
(
M∥x−y∥

1 [∥∇F∥](x) +M∥x−y∥
1 [∥∇F∥](y)

)
for all x, y ∈ Rn \ EF .

If, an addition, suppF ⊂ cQ0,0, then an application of H�older's inequality gives, for any point
x ∈ cQ0,0 \ EF ,

|F (x)|p ≤
(  

2cQ0,0\cQ0,0

|F (x)− F (y)| dy
)p

≤ C

 

2cQ0,0\cQ0,0

|F (x)− F (y)|p dy

≤ C
(
M5c

1 [∥∇F∥](x)
)p

+ C

 

2cQ0,0\cQ0,0

(
M5c

1 [∥∇F∥](y)
)p
dy.

As a result, applying Proposition 2.3 with σ = 1 and R = 5c, we have

�

cQ0,0

|F (x)|p dx ≤ C

�

2cQ0,0

(
M5c

1 [∥∇F∥](y)
)p
dy ≤ C

�

cQ0,0

∥∇F (y)∥p dy. (6.21)

The proof is complete.
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The following assertion is a keystone result of this section.
Theorem 6.2. There exists a constant C > 0 depending only on n, C

ψ̃
, C{mk},2 and λ such

that, for each f ∈ L1({mk}), for every k ∈ N0,

∥∇fk(x)∥ ≤ C
(
(f ♮7(x) + ∥f |L1(m0)∥

)
for Ln-a.e. x ∈ Rn. (6.22)

Proof. We �x an element f ∈ L1({mk}) and a number k ∈ N0. Consider an open set (recall that
all the cubes are assumed to be closed)

Gk := Rn \
( k⋃
j=0

⋃
Q∈Dj

(
16

5
Q \ int 16

5
Q)

)
. (6.23)

We �x a point y ∈ 14
5 Q0,0 ∩Gk and split the proof into several steps.

Step 1. By (D.6.1), (D.6.2) and Proposition 5.1, we have 0 ∈ K(y) ∩K(y). We put

k∗ := max{k′ ∈ K(y) : k′ ≤ k}, k
∗
:= max{k′ ∈ K(y) : k′ ≤ k}. (6.24)

Hence, by De�nition 5.2, (6.24) and (5.1), there exists a cube

Q ∈ DFk
∗ such that y ∈ int

16

5
Q. (6.25)

Step 2. Now we make a key observation. By (6.23), it is easy to see that, for any j ∈ [k
∗
, k]∩N

and any Q′ ∈ Dj , we have (recall that all cubes are closed)

either y ∈ int
16

5
Q′ or y ∈ Rn \ 16

5
Q′. (6.26)

Hence, there exists a small δ = δ(y, k) > 0 such that k
∗
= max{k′ ∈ K(y′) : k′ ≤ k}. This implies

that fk(y
′) = fk∗(y

′) for all y′ ∈ Qδ(y). As a result,

∇fk(y) = ∇fk∗(y). (6.27)

Step 3. Assume that k
∗
> k∗ because the case k

∗
= k∗ is based on the same idea, but technically

simpler. Let j ∈ [k∗, k
∗
] ∩ N0 and Qj,m ∈ DF j be such that

y ∈ 16

5
Qj,m. (6.28)

By (6.25), (6.28) we have dist(Q,Qj,m) ≤ 11
5 2

−j . Since j ≤ k
∗
and Q,Qj,m ∈ D+ by Proposition

2.1 we get
Q ⊂ 7Qj,m. (6.29)

Let Q′ ∈ D+ be such that Q′ ⊃ Q and l(Q′) ∈ (l(Q), 2−j) (recall that 2−j ≥ l(Q)). Since
l(Q′) ≥ 2l(Q) by (6.25) we have

14

5
Q′ ∋ y and l(Q′) < 2−j ≤ 2−k

∗
.

This implies that Q′ /∈ DF because otherwise we would immediately get a contradiction with the
maximality of k∗. As a result, by (6.29) and De�nition 3.5 we have

Qj,m ∈ K7(Q). (6.30)
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Step 4. We apply Theorem 5.1 with k∗ = k∗, with k replaced by k
∗
, and with c =

�
Q f(t) dµk∗(t).

Then we use (6.27) and get

∥∇fk(y)∥ = ∥∇fk∗(y)∥ ≤ C2k
∗
max

∣∣∣  
Qj,m

f(t) dmj(t)−
 

Q

f(t) dmk
∗(t)

∣∣∣,
where the maximum is taken over all j ∈ {k∗, ..., k∗} and all m ∈ Aj such that y ∈ 16

5 Qj,m. Hence,
by (6.25), (6.30) and De�nition 4.1 we obtain

∥∇fk(y)∥ ≤ Cf ♮7(y). (6.31)

Step 5. Given z ∈ Rn \ 14
5 Q0,0, by De�nition 5.1 we have fk(z) = f0(z) for all k ∈ N. As a

result, taking into account that m0(Q0,0) = m0(S) ≥ λC{mk},2 we obtain

∥∇fk(z)∥ = ∥∇f0(z)∥ ≤ C

 

Q0,0

|f(x)| dm0(x)

≤ C

�

Q0,0

|f(x)| dm0(x) for all z ∈ Rn \ 14

5
Q0,0 and all k ∈ N0. (6.32)

Note that all the constants C > 0 in Steps 1�5 depend only on n, C
ψ̃
, C{mk},2 and λ. Further-

more, it is obvious that Ln(Rn \Gk) = 0. Hence, combining (6.31), (6.32) and taking into account
that y ∈ 14

5 Q0,0 ∩Gk was chosen arbitrarily we obtain (6.22) and complete the proof.

Now we are ready to present the main result of this section.

Theorem 6.3. Let p ∈ (1,∞), c ≥ 7 and f ∈ X̃
d∗

p,d,{mk}(S). Then the Ln-equivalence class

[Ext(f)] of the function Ext(f) belongs toW 1
p (Rn). Furthermore, the special approximating sequence

{fk} contains a subsequence {fkl} such that the sequence of Ln-equivalence classes {[fkl ]} converges

weakly in W 1
p (Rn) to [Ext(f)] and there exists a constant C > 0 depending only on the parameters

p, d, n, λ, c and the constants C{mk},i, i = 1, 2, 3 such that

∥[Ext(f)]|W 1
p (Rn)∥ ≤ CÑp,{mk},λ,c(f) for every f ∈ L1({mk}). (6.33)

Proof. It is clear that fk ∈ C∞(Rn) and supp fk ⊂ 4Q0,0 for all k ∈ N. Hence, the class [fk] belongs
to L1(Rn) for all k ∈ N. Applying Proposition 6.1, Theorem 6.2 and using (2.13), (2.16), (4.7), we
deduce that [fk] ∈W 1

p (Rn) for all k ∈ N and, furthermore,

∥[fk]|W 1
p (Rn)∥ ≤ CÑp,{mk},λ,c(f), (6.34)

where the constant C > 0 does not depend on f and k. Hence, the sequence {[fk]} is bounded in
W 1
p (Rn). By re�exivity of W 1

p (Rn), this gives the existence of a subsequence {[fkl ]} that converges
weakly in W 1

p (Rn) to some element G ∈ W 1
p (Rn). On the other hand, by Corollary 6.1, we clearly

have G = Ext(f). Furthermore, using the standard arguments from the theory of weakly convergent
sequences in combination with (6.34) we get the required estimate

∥[Ext(f)]|W 1
p (Rn)∥ ≤ lim

l→∞
∥[fkl ]|W

1
p (Rn)∥ ≤ CÑp,{mk},λ,c(f). (6.35)
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7 The direct trace theorem

Throughout the section we �x the following data:
(D.7.1) a parameter d ∈ (0, n− 1) and a compact set S ⊂ Q0,0 with λ = Hd

∞(S) > 0;
(D.7.2) an arbitrary parameter λ ∈ (0, λ);
(D.7.3) a sequence of measures {mk} ∈ Md(S).
The aim of this section is the proof of the so-called direct trace theorem. In other words, we

establish that the trace functional Ñq,{mk},λ,c is bounded on the d-trace space W 1
p (Rn)|dS for each

p ∈ (max{1, n− d},∞) and any q ∈ (1, n− d).
For the reader's convenience we recall again some notation introduced in the present paper

earlier. Given a cube Q ⊂ Rn, we set kQ := [− log2 l(Q)]. Recall De�nitions 3.8 and 3.9. Since the
set S and the parameters d, λ are �xed during the section, we set F := FS(d, λ), DF := DFS(d, λ),
A := AS(d, λ). Furthermore, given a cube Q ∈ DF and a parameter c ≥ 1, we set Kc(Q) :=
Kd,λ,c(Q), SHc(Q) := SHd,λ,c(Q), ICc(Q) := ICd,λ,c(Q) and Tc(Q) := Td,λ,c(Q) for brevity. We
recall (3.13) and put P(c) := PS(d, λ, c). Since the sequence {mk} was also �xed we will write
Φf (Q1, Q2) instead of Φf,{mk}(Q1, Q2) for each f ∈ L1({mk}) and any Q1, Q2 ∈ D+. Finally, we

put f ♮c := f ♮{mk},λ,c.
We formulate the following useful technical estimate.
Lemma 7.1. Let σ ∈ (max{1, n − d}, n], q ∈ (1,∞), c ≥ 1 and ε > 0. Then there exists a

constant C = C(n, d, λ, σ, q, ε) > 0 such that

Φf (Q1, Q2) ≤ C
( 
Q1

∥∇F (x)∥σ dx
) 1

σ
+ C

l(Q2)

l(Q1)

(  

3cQ2

∥∇F (x)∥σ dx
) 1

σ

+
C

(l(Q1))1+ε

( N∑
i=1

(l(Qi))q+qε
( 
Qi

∥∇F (x)∥ dx
)q) 1

q
, (7.1)

for any F ∈ W 1
σ (Rn) with f = Tr |dS [F ] and any cubes Q1, Q2 ∈ DF such that Q2 ∈ Kc(Q1). In

(7.1) the family {Qi}Ni=0 is uniquely determined by the following conditions:

(1) {Qi}Ni=0 ⊂ D+;

(2) Q0 := Q1 ⊂ ... ⊂ QN ;
(3) l(Qi+1) = 2l(Qi) for every i ∈ {0, ..., N − 1} and l(QN ) = l(Q2).

Proof. Clearly Q1 ∈ DFk1 and Q2 ∈ DFk2 for some k1, k2 ∈ N0 with k2 ≤ k1. Using the triangle
inequality several times, we obtain

l(Q1)Φf (Q1, Q2) ≤
 

Q1

∣∣∣f(z)−  

Q1

F (x) dx
∣∣∣ dmk1(z) +

∣∣∣ 
Q1

F (x) dx−
 

QN

F (w) dw
∣∣∣

+
∣∣∣ 
QN

F (w) dw −
 

Q2

F (y) dy
∣∣∣+  

Q2

∣∣∣f(t)−  

Q2

F (y) dy
∣∣∣ dmk2(t) =:

4∑
j=1

l(Q1)Φj .

(7.2)

Since f = F |dS , σ ∈ (max{1, n− d}, n] and Q1, Q2 ∈ DF by Theorem C

Φ1 ≤ C
( 
Q1

∥∇F (x)∥σ dx
) 1

σ
, Φ4 ≤ C

l(Q2)

l(Q1)

( 
Q2

∥∇F (x)∥σ dx
) 1

σ
. (7.3)
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Note that Q1 ⊂ cQ2 by (C1) of De�nition 3.5. Hence, Using Proposition 2.10 with c′ = c and then
applying H�older's inequality, we get

Φ3 ≤ C
l(Q2)

l(Q1)

 

3cQ2

∥∇F (x)∥ dx ≤ C
l(Q2)

l(Q1)

(  

3cQ2

∥∇F (x)∥σ dx
) 1

σ
. (7.4)

To estimate Φ2, we apply Proposition 2.10 and then use H�older's inequality for sums. This gives

l(Q1)Φ2 ≤
N−1∑
i=0

∣∣∣ 
Qi

F (x) dx−
 

Qi+1

F (y) dy
∣∣∣ ≤ C

N∑
i=1

 

Qi

 

Qi

|F (x)− F (y)| dx dy

≤ C

N∑
i=1

l(Qi)

 

Qi

∥∇F (τ)∥ dτ = C
( N∑
i=1

(l(Qi))ε+1

(l(Qi))ε

 

Qi

∥∇F (τ)∥ dτ
) q

q

≤ C

(l(Q0))ε

( N∑
i=1

(l(Qi))q+qε
( 
Qi

∥∇F (x)∥ dx
)q) 1

q
. (7.5)

Combining estimates (7.2)�(7.5) we obtain (7.1) and complete the proof.

Given a function f ∈ L1({mk}) and a constant c > 0, we de�ne for each t > 0, the superlevel set

of f ♮c by letting
Uc,t(f) := {x ∈ Rn : f ♮c (x) > t}. (7.6)

De�nition 7.1. Let f ∈ L1({mk}) and c ≥ 1. For each t > 0 we de�ne the good part Ugc,t(f)
of the set Uc,t(f) as the set of all points x ∈ Rn for each of which there exist cubes Q(x), Q(x)
satisfying the following conditions:

(1) Q(x) ∈ Tc(x) and Q(x) ∈ DF ;

(2) Q(x) ∈ Kc(Q(x));

(3) Φf (Q(x), Q(x)) > t;

(4) l(Q(x)) ≥ 2−1l(Q(x)).

We de�ne the bad part Ubc,t(f) of the set Uc,t(f) by letting Ubc,t(f) := Uc,t(f) \ Ugc,t(f). Finally,
we put Ugc (f) := ∪t>0Ugc,t(f), Ubc (f) := ∪t>0Ubc,t(f).

Remark 7.1. Given f ∈ L1({mk}) and c ≥ 1, it is clear that {x : f ♮c (x) > 0} = Ugc (f)∪U bc (f).
The following characteristic property is an immediate consequence of De�nition 7.1.
Proposition 7.1. Let f ∈ L1({mk}) and c ≥ 1. For each t > 0, a point x ∈ Ubc,t(f) if and only

if x ∈ Uc,t(f) and
l(Q(x)) ≤ 1

4
l(Q(x))

for any pair of cubes Q(x), Q(x) satisfying the following conditions:

(1) Q(x) ∈ Tc(x) and Q(x) ∈ DF ;

(2) Q(x) ∈ Kc(Q(x));

(3) Φf (Q(x), Q(x)) > t.
Given a parameter σ ∈ [1,∞) and an element F ∈W 1

σ (Rn), we de�ne, for each t > 0,

Vσ,t(F ) := {x ∈ Rn : Mσ[∥∇F∥](x) > t}.
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Lemma 7.2. Let σ ∈ (max{1, n− d},∞) and c ≥ 1. Let F ∈ W 1
σ (Rn) and f := Tr |dSF . Then

there exists a constant C = C(n, d, λ, σ, c) > 0 such that

Ugc,t(f) ⊂ Vσ, t
C
(F ) for every t > 0. (7.7)

In particular, for each p ∈ (σ,∞), there exists a constant C ′ = C ′(n, d, λ, p, σ, c) > 0 such that

�

Ug
c (f)

(
f ♮c (x)

)p
dx ≤ C ′

�

Rn

∥∇F (x)∥p dx. (7.8)

Proof. We �x a number t > 0. To prove the �rst claim we recall De�nition 7.1 and �nd cubes
Q(x) ∈ Tc(x), Q(x) ∈ DF such that Q(x) ∈ Kc(Q(x)), l(Q) ≥ 1

2 l(Q(x)) and

Φf (Q(x), Q(x)) > t. (7.9)

By Lemma 7.1 and (2.4) it is easy to see that

Φf (Q(x), Q(x)) ≤ C
(  

3cQ(x)

∥∇F (y)∥σ dy
) 1

σ ≤ CMσ[∥∇F∥](x). (7.10)

Combining (7.9) and (7.10) we get (7.7).
To prove (7.8) we use (7.7) and then apply Proposition 2.3. We have

�

Ug
c (f)

(
f ♮(x)

)p
dx = p

∞�

0

tp−1Ln(Ugc,t(f)) dt ≤ p

∞�

0

tp−1Ln(Vσ, t
C
(F )) dt

≤ C

∞�

0

tp−1Ln(Vσ,t(F )) dt = C

�

Rn

(
Mσ[∥∇F∥](x)

)p
dx ≤ C

�

Rn

∥∇F (x)∥p dx. (7.11)

The proof is complete.

We introduce some notation which will be useful below. Recall Proposition 3.2. Given a param-
eter c ≥ 1 and a cube Q ∈ DF , we set

µc(Q) := inf{l(Q′) : Q′ ∈ SHc(Q)}, Nc(Q) := log2

( l(Q)

µc(Q)

)
∈ N0 ∪ {+∞}.

Given a parameter c ≥ 1 and a cube Q ∈ DF , for each j ∈ N0 ∩ [0,Nc(Q)) we de�ne the jth layer

of the iceberg ICc(Q) by

Ljc(Q) := {Q′ ∈ ICc(Q) : l(Q′) = 2−jl(Q)}.

Furthermore, it will be convenient to put formally L
Nc(Q)
c (Q) := ∅.

Remark 7.2. It is easy to verify that the following properties of the sets Ljc(Q):
(1) Ljc(Q) ∩ Lj

′
c (Q) = ∅ for j ̸= j′;

(2) ICc(Q) = ∪Nc(Q)
j=0 Ljc(Q).

□
The following assertion is a technical heart of this section. We recall Remark 3.6.
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Lemma 7.3. Suppose we are given a number c ≥ 1 and a selection κc of Kc with a domain

D ⊂ DF such that:

(1) Kc(Q) ∩ P(c) ̸= ∅ for all Q ∈ D;

(2) κc(Q) ∈ P(c) and l(κc(Q)) > l(Q) for all Q ∈ D.

Then, for each p > max{1, n− d}, q ∈ (1, n− d) and τ ∈ (1, n−dq ), there exists a constant C > 0
depending only on n, d, λ, p, q, τ, c such that the following inequality

Rp,q,τ [g] :=
∑
Q∈D

(l(Q))n−qτ
∑
Q′⊃Q

Q′∈ICc(κc(Q))

(l(Q′))qτ
( 
Q′

g(x) dx
)q

≤ C
(�
Rn

gp(x) dx
) q

p
(7.12)

holds for any nonnegative function g ∈ Lp(Rn).

Proof. We �x parameters p, q, τ satisfying the assumptions of the lemma. We also �x a parameter
σ ∈ (q, p) and an arbitrary nonnegative g ∈ Lp(Rn). We split the proof into several steps.

Step 1. Since l(κc(Q)) > l(Q) for all Q ∈ D ⊂ DF by the assumption (2) of the lemma it follows
from De�nitions 3.8, 3.9 that if Q ∈ D, Q′ ∈ ICc(κc(Q)) and Q′ ⊃ Q then Q ∈ SHc(κc(Q))|Q′ .
Hence, we change the order of summation in the de�nition of Rp,q,τ [g], use Remark 7.2, and take
into account that κc(Q) ∈ P(c) for all Q ∈ D by the assumption (2) of the lemma. This gives

Rp,q,τ [g] ≤
∑

Q∈P(c)

Nc(Q)∑
j=0

∑
Q′∈Lj

c(Q)

tQ(Q
′)
( 
Q′

g(x) dx
)q
, (7.13)

where, for each Q ∈ P(c), every number j ∈ N0 ∩ [0,Nc(Q)) and any cube Q′ ∈ Ljc(Q), we put

tQ(Q
′) := (l(Q′))qτ

( ∑
Q′′∈SHc(Q)|Q′

(l(Q′′))n−qτ
)
, (7.14)

and in the case Nc(Q) < +∞ we formally put tQ(Q
′) = 0 for all Q′ ∈ L

Nc(Q)
c (Q) (recall that

L
Nc(Q)
c (Q) = ∅ in this case).
Step 2. Note that n − qτ > d by the assumptions of the lemma. Hence, using (3.6) with

d̃ = n− qτ we get
tQ(Q

′) ≤ C(l(Q′))n. (7.15)

Furthermore, using (3.7) with d̃ = n−qτ we obtain, for each Q ∈ P(c) and every j ∈ N0∩[0,Nc(Q)),∑
Q′∈Lj

c(Q)

tQ(Q
′) =

∑
Q′∈Lj

c(Q)

(l(Q′))qτ
( ∑
Q′′∈SHc(Q)|Q′

(l(Q′′))n−qτ
)

≤
( l(Q)

2j

)qτ ∑
Q′∈Lj

c(Q)

∑
Q′′∈SHc(Q)|Q′

(l(Q′′))n−qτ

≤
( l(Q)

2j

)qτ ∑
Q′′∈SHc(Q)

(l(Q′′))n−qτ ≤ C
( l(Q)

2j

)qτ
(l(Q))n−qτ ≤ C

2jqτ
(l(Q))n. (7.16)

Step 3. An application of H�older's inequality for sums with exponents σ
q and

(
σ
q

)′
= σ

σ−q gives,
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for each cube Q ∈ P(c) and every j ∈ N0 ∩ [0,Nc(Q)),∑
Q′∈Lj

c(Q)

(
tQ(Q

′)
) q

σ
+( q

σ
)′( 

Q′

g(x) dx
)q

≤ C
( ∑
Q′∈Lj

c(Q)

tQ(Q
′)
)σ−q

σ
( ∑
Q′∈Lj

c(Q)

tQ(Q
′)
( 
Q′

g(x) dx
)σ) q

σ
.

(7.17)

Step 4. Using (7.15) and applying Proposition 2.4 with Ω = Q = Q′, we have∑
Q′∈Lj

c(Q)

tQ(Q
′)
( 
Q′

g(x) dx
)σ

≤ C
∑

Q′∈Lj
c(Q)

(l(Q′))n
( 
Q′

g(x) dx
)σ

≤ C
∑

Q′∈Lj
c(Q)

�

Q′

(
M[g](x)

)σ
dx. (7.18)

Step 5. We set θ := qτ σ−qσ > 0. Now we plug (7.18) and (7.16) into (7.17). This gives us, for
each Q ∈ P(c) and any j ∈ N0 ∩ [0,Nc(Q)),∑

Q′∈Lj
c(Q)

tQ(Q
′)
( 
Q′

g(x) dx
)q

≤ C

2jθ
(l(Q))n

( 
cQ

(
M[g](x)

)σ
dx

) q
σ
. (7.19)

Let κ = κ(n, d, λ, c) be the same as in Theorem D. We put κ := κ + 3. We recall (3.13) and
apply Theorem D. This gives

Ln(Ωc,κ(Q)) ≥ C(l(Q))n for each cube Q ∈ P(c). (7.20)

Finally, for each Q ∈ P(c) and every j ∈ N0 ∩ [0,Nc(Q)) we combine (7.19), (7.20) and apply
Proposition 2.4 with Ω = Ωc,κ(Q), Q = Q. We obtain∑

Q′∈Lj
c(Q)

tQ(Q
′)
( 
Q′

g(x) dx
)q

≤ C

2jθ
Ln(Ωc,κ(Q))

( 
cQ

(
M[g](x)

)σ
dx

) q
σ

≤ C

2jθ

�

Ωc,κ(Q)

(
Mσ[M[g]](x)

)q
dx for each cube Q ∈ P(c) and every j ∈ N0 ∩ [0,Nc(Q)).

(7.21)

Step 6. We plug (7.21) into (7.13) and take into account that θ > 0. This gives

Rp,q,τ [g] ≤ C
∑

Q∈P(c)

Nc(Q)∑
j=0

1

2jθ

�

Ωc,κ(Q)

(
Mσ[M[g]](x)

)q
dx

≤ C
∑

Q∈P(c)

�

Ωc,κ(Q)

(
Mσ[M[g]](x)

)q
dx.

It is clear that Ωc,κ(Q) ⊂ cQ0,0 for all Q ∈ P(c). Furthermore, by Proposition 3.5 we have
M({Ωc,κ(Q) : Q ∈ P(c)}) ≤ C with a constant C > 0 depending only on n, d, λ, c. Using these
observations and applying Proposition 2.5 we continue the previous estimate and get

Rp,q,τ [g] ≤ C

�

cQ0,0

(
Mσ[M[g]](x)

)q
dx. (7.22)
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Step 7. Finally, we use H�older's inequality for integrals with exponents p
q ,

p
p−q . Then we apply

Proposition 2.3 twice. This allows us to continue (7.22) and deduce

Rp,q,τ [g] ≤ C
( �

cQ0,0

(
Mσ[M[g]](x)

)p
dx

) q
p

≤ C
( �

cQ0,0

(
M[g](x)

)p
dx

) q
p ≤ C

(�
Rn

gp(x) dx
) q

p
. (7.23)

The lemma is proved.

Now we formulate the key lemma, which will be the cornerstone in proving the main result of
this section.

Lemma 7.4. Let p ∈ (max{1, n− d}, n], q ∈ (1, n− d) and c ≥ 1. Let a selection κc of Kc with

a domain D ⊂ DF be such that:

(1) Kc(Q) ∩ P(c) ̸= ∅ for all Q ∈ D;

(2) κc(Q) ∈ P(c) and l(κc(Q)) > l(Q) for all Q ∈ D.

Then there exists a constant C > 0 depending only on p, q, n, d, λ, c such that∑
Q∈D

(l(Q))n
(
Φf (Q, κc(Q))

)q
≤ C

(∑
|γ|=1

∥DγF |Lp(Rn)∥
)q

(7.24)

for any F ∈W 1
p (Rn) with f = Tr |dS [F ].

Proof. We �x an arbitrary element F ∈ W 1
p (Rn) and set f = Tr |dS [F ]. Furthermore, we �x a

parameter σ ∈ (max{1, n − d}, p). By the assumptions of the lemma and De�nitions 3.6, 3.8, it is
clear that

κ−1
c (Q) ⊂ SHc(Q) for each Q ∈ P(c). (7.25)

We split the proof into several steps.
Step 1. By Remark 3.6, we see that if Q ∈ D, Q ⊂ Q′ and l(Q′) ∈ (l(Q), l(κc(Q))], then

Q′ ∈ ICc(κc(Q)). Hence, an application of Lemma 7.1 gives, for any su�ciently small ε > 0 to be
speci�ed later,∑

Q∈D
(l(Q))n(Φf (Q, κc(Q))q ≤ C

∑
Q∈D

(l(Q))n
( 
Q

∥∇F (x)∥σ dx
) q

σ

+ C
∑
Q∈D

(l(Q))n−q(l(κc(Q)))q
(  

3cκc(Q)

∥∇F (y)∥σ dy
) q

σ

+ C
∑
Q∈D

(l(Q))n−q−qε
∑
Q′⊃Q

Q′∈ICc(κc(Q))

(l(Q′))q+qε
( 
Q′

∥∇F (z)∥ dz
)q

=: R1 +R2 +R3. (7.26)

Step 2. Let κ = κ(n, d, λ, c) be the same as in Theorem D. We put κ := κ + 3. An application
of Theorem D gives

Ln(Ωc,κ(Q)) ≥ C(l(Q))n for each cube Q ∈ P(c). (7.27)
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On the other hand, given a cube Q ∈ P(c) with κ−1
c (Q) ̸= ∅, we use (7.25), apply Proposition 3.2

and then apply Theorem D. This gives∑
Q∈κ−1

c (Q)

(l(Q))n ≤
∑

Q∈SHc(Q)

(l(Q))n ≤ (l(cQ))n ≤ CLn(Ωc,κ(Q)). (7.28)

Step 3. Now we use H�older's inequality for sums with exponents σ
q and σ

σ−q . Then we take into
account (7.25), (7.27) and (7.28). We obtain∑

Q∈κ−1
c (Q)

(l(Q))n
( 
Q

∥∇F (x)∥σ dx
) q

σ
=

∑
Q∈κ−1

c (Q)

(l(Q))n(1−
q
σ
)
(�
Q

∥∇F (x)∥σ dx
) q

σ

≤ C
(
Ln(Ωκ,c(Q))

)1− q
σ
(�
cQ

∥∇F (x)∥σ dx
) q

σ ≤ CLn(Ωc,κ(Q))
( 
cQ

∥∇F (x)∥σ dx
) q

σ
. (7.29)

Step 4. To estimate R1 from above, we use (7.29), apply Proposition 2.4 with Ω = Ωc,κ(Q) and
also use the obvious inclusion Ωc,κ(Q) ⊂ cQ. This gives

R1 ≤
∑

Q∈P(c)

∑
Q∈κ−1

c (Q)

(l(Q))n
( 
Q

∥∇F (x)∥σ dx
) q

σ

≤ C
∑

Q∈P(c)

Ln(Ωc,κ(Q))
( 
cQ

∥∇F (x)∥σ dx
) q

σ ≤ C
∑

Q∈P(c)

�

Ωc,κ(Q)

(
Mσ[∥∇F∥](x)

)q
dx.

(7.30)

To continue (7.30), we combine Proposition 2.5 with Proposition 3.5, apply H�older's inequality for
integrals with exponents p

q ,
p
p−q , and �nally use Proposition 2.3. We get

(R1)
p
q ≤ C

( �

cQ0,0

(
Mσ[∥∇F∥](x)

)q
dx

) p
q

≤ C

�

cQ0,0

(
Mσ[∥∇F∥](x)

)p
dx ≤ C

�

cQ0,0

∥∇F (x)∥p dx. (7.31)

Step 5. For each Q ∈ P(c) we apply Proposition 3.4 with d̃ = n− q > d, then we use (7.27) and
apply Proposition 2.4 with Ω = Ωc,κ(Q). This gives( ∑

Q∈SHc(Q)

(l(Q))n−q
)
(l(Q))q

(  
3cQ

∥∇F (y)∥σ dy
) q

σ ≤ C(l(Q))n
(  
3cQ

∥∇F (y)∥σ dy
) q

σ

≤ CLn(Ωc,κ(Q))
(  
3cQ

∥∇F (y)∥σ dy
) q

σ ≤ C

�

Ωc,κ(Q)

(
Mσ[∥∇F∥](x)

)q
dx. (7.32)

By (7.25), (7.32) and Proposition 3.5 we obtain

R2 ≤
∑

Q∈P(c)

κ−1
c (Q)̸=∅

( ∑
Q∈SHc(Q)

(l(Q))n−q
)
(l(Q))q

(  
3cQ

∥∇F (y)∥σ dy
) q

σ

≤ C
∑

Q∈P(c)

�

Ωc,κ(Q)

(
Mσ[∥∇F∥](x)

)q
dx ≤

�

cQ0,0

(
Mσ[∥∇F∥](x)

)q
dx. (7.33)
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The same arguments as in (7.31) allow us continue (7.33) and get

R2 ≤ C
( �

cQ0,0

∥∇F (x)∥p dx
) q

p
. (7.34)

Step 6. We �x an arbitrary ε > 0 such that τ := (1 + ε) ∈ (1, n−dq ). In this case we can apply
Lemma 7.3 with g = ∥∇F∥ and deduce

R3 ≤
(�
Rn

∥∇F (x)∥p dx
) q

p
. (7.35)

Step 7. We combine estimates (7.26), (7.31), (7.34), (7.35) and take into account that, for some
C > 0 depending only on p and n,

1

C

�

Rn

∥∇F (x)∥p dx ≤
(∑
|γ|=1

∥DγF |Lp(Rn)∥
)p

≤ C

�

Rn

∥∇F (x)∥p dx.

As a result, we get (7.24) and complete the proof.

The following lemma is an easy consequence of the corresponding de�nitions.
Lemma 7.5. Let f ∈ L1({mk}), t > 0 and c ≥ 1 be such that Ubc,t(f) ̸= ∅. Then there exist a

family Dc,t(f) ⊂ DF and a selection κc,t(f) of Kc with the domain Dc,t(f) such that:

(1) Ubc,t(f) ⊂ ∪{cQ : Q ∈ Dc,t(f)};
(2) Dc,t(f) is nonoverlapping;
(3) κc,t(f)(Q) ∈ P(c) for any Q ∈ Dc,t(f);
(4) l(κc,t(f)(Q)) ≥ 4l(Q);
(5) Φf (Q, κc,t(f)(Q)) > t for any Q ∈ Dc,t(f).

Proof. Given a point x ∈ Ubc,t(f), let F(x) be the family of all cubes Q ∈ DF for each of which

there exists a cube Q ∈ DF such that:
(i) Q ∈ Tc(x);

(ii) l(Q) ≥ 4l(Q);

(iii) Q ∈ Kc(Q);

(iv) Φf (Q,Q) > t.

By Proposition 7.1, the family F(x) is nonempty for each x ∈ Ubc,t(f). We set

M(x) := max{l(Q) : Q ∈ F(x)}, x ∈ Ubc,t(f).

For each x ∈ Ubc,t(f) we �x an arbitrary cube Q(x) ∈ F(x) with l(Q(x)) = M(x). Now we de�ne

Dc,t(f) := {Q(x) : x ∈ Ubc,t(f)}.

By condition (i) we conclude that property (1) of the lemma holds true.
Since the family Dc,t(f) is composed of dyadic cubes there are only two possible cases: either

di�erent cubes from Dc,t(f) have disjoint interiors or one of them contains another one. Hence, in
order to establish property (2) we assume on the contrary that there exist cubes Q

1
, Q

2
∈ Dc,t(f)

such that Q
1
⊂ Q

2
and l(Q

2
) > l(Q

1
). By the construction, there is a point x ∈ Ubc,t(f) such

that Q(x) = Q
1
. Thus, the inclusion Q

1
⊂ Q

2
implies that x ∈ cQ

2
and thus Q

2
∈ F(x) because
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Q
2
∈ Dc,t(f). On the other hand, the inequality l(Q

2
) > l(Q

1
) is in contradiction with the

maximality of the side length of Q(x).

For any Q ∈ Dc,t(f) by κc,t(f)(Q) we denote an arbitrary cube Q ∈ Kc(Q) for which conditions
(ii)�(iv) above hold. As a result, we built a family Dc,t(f) and a selection κc,t(f) of Kc with the
domain Dc,t(f) such that properties (4) and (5) hold.

Fix an arbitrary cube Q ∈ Dc,t(f). By the construction κc,t(f)(Q) ∈ Kc(Q) and l(κc(Q)) ≥
4l(Q). This fact together with condition (C3) of De�nition 3.5 implies the existence of a cube

Q ∈ D+ \ DF such that Q ⊂ Q ⊂ c(κc,t(f)(Q)) and l(Q) = 1
2 l(κc(Q)). Coupling this observation

with (3.13) we see that property (3) of the lemma holds true.
The proof is complete.

Lemma 7.6. Let p ∈ (max{1, n− d}, n] and q ∈ (1, n− d). Then, for each c ≥ 1 there exists a

constant C > 0 depending only on parameters p, q, n, d, λ, c such that∑
ν∈Z

2νqLn(Ubc,2ν (f) \ Ubc,2ν+1(f)) ≤ C
(∑
|γ|=1

∥DγF |Lp(Rn)∥
)q

(7.36)

for any F ∈W 1
p (Rn) with f = Tr |dS [F ].

Proof. Fix a constant c ≥ 1. Given t ∈ (0,∞), we �x a family Dc,t(f) ⊂ DF and a selection κc,t(f)
of Kc with the domain Dc,t(f) such that properties (1)�(5) of Lemma 7.5 hold.

Given ν ∈ Z, we put

Uν := Ubc,2ν (f) \ Ubc,2ν+1(f), Dν := {Q ∈ Dc,2ν (f) : cQ ∩ Uν ̸= ∅}. (7.37)

By property (1) in Lemma 7.5 we have Ubc,2ν (f) ⊂
⋃
{cQ ∩ Ubc,2ν (f) : Q ∈ Dc,2ν (f)}. As a result,

using (7.37) we obtain

Uν ⊂
⋃

{cQ ∩ Uν : Q ∈ Dc,2ν (f)} ⊂
⋃

{cQ ∩ Uν : Q ∈ Dν} ⊂
⋃

{cQ : Q ∈ Dν}. (7.38)

We claim that
Dν ∩Dν′ = ∅ for ν ̸= ν ′. (7.39)

Indeed, assume that there are ν, ν ′ ∈ Z such that ν < ν ′ and there is a cube Q ∈ Dν ∩ Dν′ .
Since Q ∈ Dν , by (7.37) we can �nd a �x a point x ∈ Uν ∩ cQ. On the other hand, since
Q ∈ Dν′ ⊂ Dc,2ν′ (f) and x ∈ cQ we have (we recall that our selection κc,2ν′ satis�es condition (5)

of Lemma 7.5 with t = 2ν
′
)

f ♮c (x) ≥ Φf (Q, κc,2ν′ (Q)) > 2ν
′ ≥ 2ν+1.

This immediately implies that x ∈ Ub
c,2ν′

(f) and, consequently, x /∈ Uν . This contradiction proves

the claim.
Now, having at our disposal (7.39) we put

D :=
⋃
ν∈Z

Dν (7.40)

and obtain a well de�ned selection κc of the set-valued mapping Kc with the domain D by letting

κc(Q) := κc,2ν (f)(Q) if Q ∈ Dν . (7.41)
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By property (3) of Lemma 7.5 and (7.41) it follows that

κc(Q) ∈ P(c) for every Q ∈ D. (7.42)

Combining (7.38) and (7.39) we have∑
ν∈Z

2νqLn(Uν) ≤ cn
∑
ν∈Z

2νq
∑

{(l(Q))n : Q ∈ Dν}

≤ cn
∑
ν∈Z

∑
Q∈Dν

(l(Q))n(Φf (Q, κc(Q)))q ≤ cn
∑
Q∈D

(l(Q))n(Φf (Q, κc(Q)))q. (7.43)

By (7.37), (7.40), (7.42), the family D and the map κc satisfy all the assumptions of Lemma 7.4.
Hence, we can continue estimate (7.43) and get∑

ν∈Z
2νqLn(Uν) ≤ C

(∑
|γ|=1

∥DγF |Lp(Rn)∥
)q
. (7.44)

The proof is complete.

The main result of this section reads as follows.
Theorem 7.1. Let p ∈ (max{1, n−d}, n], q ∈ (1, n−d) and c ≥ 1. Then there exists a constant

C > 0 depending only on parameters p, q, n, λ, d, c such that

Ñq,{mk},λ,c(f) ≤ C∥F |W 1
p (Rn)∥ (7.45)

for any F ∈W 1
p (Rn) with f = Tr |dS [F ].

Proof. By Remark 7.1 it is clear that

�

Rn

(f ♮c (x))
q dx =

�

Ub
c (f)

(f ♮c (x))
q dx+

�

Ug
c (f)

(f ♮c (x))
q dx. (7.46)

It is easy to see that

�

Ub
c (f)

(f ♮c (x))
q dx ≤ 2q

∑
ν∈Z

2qνLn(Ubc,2ν (f) \ Ubc,2ν+1(f)). (7.47)

Combining (7.46), (7.47) and Lemmas 7.2, 7.6 we obtain

�

Rn

(f ♮c (x))
q dx ≤ C

(∑
|γ|=1

∥DγF |Lp(Rn)∥
)q
. (7.48)

By (2.13) we have m0(S) ≤ C{mk},1. Hence, by Proposition 2.11 and (2.16) we get

∥f |Lq(m0)∥ ≤ C∥F |W 1
p (Rn)∥. (7.49)

By (7.48) and (7.49) we obtain (7.45) and complete the proof.
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8 The main results

In this section we prove the main result of the present paper. Namely, we give a complete solution
to Problem B. To this aim we recall De�nitions 2.4, 2.5, 4.3.

First of all, we show that the operator ExtS,{mk},λ de�ned in (5.12) is an extension operator.
More precisely, the following result holds.

Theorem 8.1. Let q ∈ (1, n], d∗ ∈ (n− q, n], d ∈ (0, n− q). Let S ⊂ Q0,0 be a compact set with

λ∗ := Hd∗
∞(S) > 0 and {mk} ∈ Md(S). Let c ≥ 7 and λ ∈ (0, λ∗) be some �xed constants. Then

Tr |d∗S ◦ ExtS,{mk},λ(f) = IHd∗⌊S (f) for every f ∈ X̃
d∗

q,d,{mk}(S). (8.1)

Proof. We �x f ∈ X̃
d∗

q,d,{mk}(S) and put F = ExtS,{mk},λ(f). We split the proof into several steps.
Step 1. We �x for a moment x ∈ S(d, λ) ∩ Sf (d). Keeping in mind Lemma 5.2 we �x a strictly

increasing sequence {ks} = {ks(x)} of natural numbers such that fks(x) → f(x), s → ∞. By the
triangle inequality for any l, s ∈ N we have (by Ql(x) we denote the ball in the ∥ · ∥∞-norm centered
at x with radius 2−l)

 

Ql(x)

|f(x)− F (y)| dy ≤ |f(x)− fks(x)|+
∣∣∣fks(x)−  

Ql(x)

fks(y) dy
∣∣∣

+

 

Ql(x)

|fks(y)− F (y)| dy =: R1
s,l(x) +R2

s,l(x) +R3
s,l(x). (8.2)

Step 2. It is clear that lims→∞R1
s,l(x) = 0 for each l ∈ N and any x ∈ S(d, λ) ∩ Sf (d). Since

d∗ > d taking into account (1) in De�nition 4.3 we get

lim
l→∞

lim
s→∞

R1
s,l(x) = 0 for Hd∗-a.e. x ∈ S. (8.3)

Step 3. Given δ ∈ (0, 1), using the standard telescopic arguments, taking into account the
smoothness of fk, k ∈ N, and, �nally, using Theorem 6.2 we obtain

R2
s,l(x) ≤ C

∞∑
j=l

2−j
 

Qj(x)

∥∇fks(y)∥ dy ≤ C

∞∑
j=l

2−j
(  

Qj(x)

f ♮7(y) dy + ∥f |L1(m0)∥
)

≤ C2−l∥f |L1(m0)∥+ C2−lδ sup
j≥l

2−j(1−δ)
 

Qj(x)

f ♮7(y) dy for any s, l ∈ N. (8.4)

By the H�older inequality we obviously have

sup
j≥l

2−jq(1−δ)
(  

Qj(x)

f ♮7(y) dy
)q

≤ sup
j≥l

2−jq(1−δ)
 

Qj(x)

(f ♮7(y))
q dy. (8.5)

Now we �x δ ∈ (0, 1) so small that q(1 − δ) > n − d∗. Then using (8.5) and Proposition 2.6 we
conclude that

lim
l→∞

sup
j≥l

2−j(1−δ)
 

Qj(x)

f ♮7(y) dy = 0 for Hd∗-a.e. x ∈ Rn. (8.6)
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As a result, it follows from (8.4) that

lim
l→∞

lim
s→∞

R2
s,l(x) = 0 for Hd∗-a.e. x ∈ S(d, λ) ∩ Sf (d). (8.7)

Step 4. Using Corollary 6.1 and H�older's inequality with exponents p and p′ it is easy to see
that

lim
s→∞

R3
s,l(x) = 0 for each l ∈ N and every x ∈ Sf (d) ∩ S(d, λ). (8.8)

Step 5. As a result, using de�nitions of the operators Tr |d∗S , IHd∗⌊S and collecting estimates
(8.2), (8.3), (8.7) and (8.8) we deduce (8.1) and complete the proof.

The following lemma is very similar in spirit to Lemma 4.3 from [29]. We present the detailed
proof for the completeness. Recall De�nition 4.2.

Lemma 8.1. Let p ∈ (1, n], d∗ ∈ (n− p, n] and let S ⊂ Q0,0 be a compact set with Hd∗
∞(S) > 0.

Then, for each element [f ] ∈W 1
p (Rn)|S, for any Borel f ∈ [f ] the equality Hd′(S \Sf (d

′)) = 0 holds

for each d′ ∈ (n− p, d∗].

Proof. We set λ∗ := Hd∗
∞(S) and �x arbitrary d′ ∈ (n− p, d∗], λ′ ∈ (0, λ∗), c′ ≥ 1. We also �x

[f ] ∈W 1
p (Rn)|S and F ∈W 1

p (Rn) with F |S = [f ]. (8.9)

Finally, we �x {m′
k} ∈ Md′(S). Using Proposition 2.8, we �nd and �x a (1, p)-good representative

F of F . Since Hd′⌊S is absolutely continuous with respect to C1,p-capacity we may assume without
loss of generality that f = F |S .

Now let S′ ⊂ S be the intersection of the following three sets: the set S(d′, λ′), the set of all

Lebesgue points of the function F , and the set
{
x ∈ S : limr→0 r

p−n �
Qr(x)

∑
|γ|=1 |DγF |(x) dx = 0

}
.

Using Propositions 2.6, 2.7, 3.1 and De�nition 2.3 we obtain

Hd′(S \ S′) = 0. (8.10)

Given a point x ∈ S′ and a cube Q ∈ Td′,λ′,c′(x) ∩ Dk, by the triangle inequality we have

 

Q∩S

|f(x)− f(z)| dm′
k(z) ≤

∣∣∣F (x)−  

Q

F (y) dy
∣∣∣

+

 

Q∩S

∣∣∣f(z)−  

Q

F (y) dy
∣∣∣ dm′

k(z) =: J1(Q) + J2(Q). (8.11)

If x ∈ c′Q for some Q ∈ Dk with k ∈ N0 then Q ⊂ Q 2c′
2k
(x). Hence, we have

max
Q∈Td′,λ′,c′ (x)∩Dk

J1(Q) ≤ C

 

Q 2c′
2k

(x)

|F (x)− F (y)| dy.

By the construction of S′, we have

lim
k→∞

max
Q∈Td′,λ′,c′ (x)∩Dk

J1(Q) = 0 for every x ∈ S′. (8.12)
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Applying Theorem C with σ = p and d = d′ for each x ∈ S′, we get

max
Q∈Td′,λ′,c′ (x)∩Dk

(J2(Q))p ≤ C max
Q∈Td′,λ′,c′ (x)∩Dk

(l(Q))p−n
∑
|γ|=1

�

Q

|DγF (z)|p dz

≤ C
∑
|γ|=1

( 2k

2c′

)n−p �

Q 2c
2k

(x)

|DγF (z)|p dz.

By de�nition of the set S′ we clearly have

lim
k→∞

max
Q∈Td′,λ′,c′ (x)∩Dk

J2(Q) = 0 for every x ∈ S′. (8.13)

Combining (8.10) with (8.11)�(8.13) we obtain Hd′(S \Sf (d
′)) = 0 and complete the proof.

Now present the main result of this paper. This gives a solution to Problem B.
Theorem 8.2. Let p ∈ (1, n], d∗ ∈ (n− p, n] and ε∗ := min{p− (n− d∗), p− 1}. Let S ⊂ Q0,0

be a compact set with λ∗ := Hd∗
∞(S) > 0. Let λ ∈ (0, λ∗) and c ≥ 7 be some �xed constants. Then,

for each ε ∈ (0, ε∗),
W 1
p (Rn)|S ⊂ Xd

∗

p−ε,d,{mk}(S) ⊂W 1
p−ε(Rn)|d

∗
S (8.14)

for any d ∈ (n− p, n− p+ ε) and {mk} ∈ Md(S).
Furthermore, for every ε ∈ (0, ε∗), d ∈ (n − p, n − p + ε) and {mk} ∈ Md(S), there exists a

constant C > 0 depending only on p, ε, n, d, λ, c and Cmk,i, i = 1, 2, 3 such that

∥f |Xd∗p−ε,d,{mk} ∥ ≤ C∥f |W 1
p (Rn)|S∥ for all f ∈W 1

p (Rn)|S ,

∥ IHd∗⌊S (f)|W
1
p−ε(Rn)|d

∗
S ∥ ≤ C∥f |Xd∗p−ε,d,{mk} ∥ for all f ∈ Xd

∗

p−ε,d,{mk} . (8.15)

The operator ExtS,{mk},λ is a bounded linear map from Xd
∗

p−ε,d,{mk}(S) to W 1
p−ε(Rn) and

Tr |d∗S ◦ ExtS,{mk},λ(f) = IHd∗⌊S (f), f ∈ Xd
∗

p−ε,d,{mk}(S). In particular, ExtS,{mk},λ ∈ E(S, d∗, p, ε).

Proof. We �x arbitrary ε ∈ (0, ε∗), d ∈ (n− p, n− p+ ε) and {mk} ∈ Md(S). Given f ∈W 1
p (Rn)|S ,

we apply Lemma 8.1 and then use Theorem 7.1 with q = p−ε. We conclude that f ∈ Xd
∗

p−ε,d,{mk}(S)
and furthermore, there is a constant C > 0 depending only on the parameters n, p, ε, d, λ, c and the
constants C{mk},i, i = 1, 2, 3, such that

Ñp−ε,{mk},λ,c(f) ≤ C∥F |W 1
p (Rn)∥ for all F ∈W 1

p (Rn) with f = F |S .

This observation in combination with (2.18) proves the �rst inclusion in (8.14) and the �rst inequality
in (8.15).

Conversely, let f ∈ Xd
∗

p−ε,d,{mk}(S) and F = ExtS,{mk},λ(f). By Theorem 6.3 we conclude that

the Ln-equivalence class [F ] of F belongs to W 1
p−ε(Rn), and furthermore, there exists a constant

C > 0 depending only on the parameters n, p, ε, d, λ, c and C{mk},i, i = 1, 2, 3 such that

∥[F ]|W 1
p−ε(Rn)∥ ≤ C∥f |Xd∗p−ε,d,{mk} ∥. (8.16)

We apply Theorem 8.1 with q = p−ε and then take into account De�nition 2.4. As a result, we have
IHd∗⌊S (f) ∈W 1

p−ε(Rn)|d
∗
S . This proves the second inclusion in (8.14). Finally, the second inequality

in (8.15) follows from (2.18) and (8.16).
The theorem is proved.
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Finally, having at our disposal the above results we can establish the following result.
Lemma 8.2. Let d∗ ∈ (0, n] and let S ⊂ Q0,0 be a compact set with λ∗ := Hd∗

∞(S) > 0. Let

λ ∈ (0, 1] and c ≥ 1 be some �xed constants. If p ∈ (1,∞), d∗ > n − p, d ∈ (n − p, d∗] and
{mk} ∈ Md(S), then Xd

∗

p,d,{mk}(S) is a Banach space.

Proof. In view of Remark 4.2, it is su�cient to show that the space Xd
∗

p,d,{mk}(S) is complete. We �x

an arbitrary Cauchy sequence {fj} ⊂ Xd
∗

p,d,{mk}(S). This implies that the sequence {[fj ]m0} of m0-

equivalence classes of fj , j ∈ N is a Cauchy sequence in Lp(m0). By the arguments from the second
part of the proof of Theorem 8.2 it follows that the sequence {[fj ]d∗} of Hd∗-equivalence classes of
fj , j ∈ N0 is a Cauchy sequence in the space W 1

p (Rn)|d
∗
S . Using the completeness of Lp(m0) and

W 1
p (Rn)|d

∗
S (recall that the later follows from Proposition 2.9) in combination with Theorem 8.2 we

deduce existence g1 ∈ Lp(m0) and g2 ∈ W 1
p (Rn)|d

∗
S such that [fj ]m0 → g1, j → ∞ in Lp(m0)-sense

and [fj ]d∗ → g2, j → ∞ in W 1
p (Rn)|d

∗
S -sense. The crucial observation is that using arguments from

the proof of Proposition 2.9 one can deduce that there exists a subsequence {fjl} of {fj} such that
fjl(x) → g1(x), l → ∞ for m0-a.e. x ∈ S and fjl(x) → g2(x), l → ∞ for Hd∗-a.e. x ∈ S. As a
result, we have g1 = [f ]m0 and g2 = [f ]d∗ for some f ∈ B(S). Furthermore, arguing as in the proof
of Lemma 8.1 we have Hd∗(S \ Sf (d′)) = 0 for all d′ ∈ [d, d∗].

Taking into account Remark 2.3, given x ∈ Rn and Q,Q ∈ D+ satisfying conditions (f1)�(f3)
of De�nition 4.1, we can pass to the limit and deduce that

lim
i→∞

Φfi−fj ,{mk}(Q,Q) = Φf−fj ,{mk}(Q,Q).

Taking the corresponding supremum we �nd that, for each j ∈ N0,

(f − fj)
♮
{mk},λ,c(x) ≤ lim

i→∞
(fi − fj)

♮
{mk},λ,c(x) for all x ∈ Rn.

Using Fatou's lemma and the fact that {fj} is a Cauchy sequence in Xd
∗

p,d,{mk}(S), we obtain

∥(f − fj)
♮
{mk},λ,c|Lp(R

n)∥ ≤ lim
i→∞

∥(fi − fj)
♮
{mk},λ,c|Lp(R

n)∥ → 0, j → ∞. (8.17)

Combining the above observations with Remark 4.2 we �nd that f ∈ Xd
∗

p,d,{mk}(S) and fj → f ,

j → ∞ in the space Xd
∗

p,d,{mk}(S). This completes the proof.

Concluding remarks. Unfortunately, Lemma 8.2 does not allow to show that our intermediate
space Xd

∗

p−ε,d,{mk}(S) arising in Theorem 8.2 is complete. Indeed, in that case d < n − p + ε. This

obstacle does not allow to keep the delicate condition (1) in De�nition 4.3 after passing to the limit
with respect to the �rough norm� in the space Xd

∗

p−ε,d,{mk}(S).
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