
ON SETS WITH FINITE DISTRIBUTIONAL FRACTIONAL
PERIMETER

GIOVANNI E. COMI AND GIORGIO STEFANI

Abstract. We continue the study of the fine properties of sets having locally finite
distributional fractional perimeter. We refine the characterization of their blow-ups and
prove a Leibniz rule for the intersection of sets with locally finite distributional fractional
perimeter with sets with finite fractional perimeter. As a byproduct, we provide a de-
scription of non-local boundaries associated with the distributional fractional perimeter.

1. Introduction

1.1. The distributional fractional perimeter. Given α ∈ (0, 1), we let

∇αf(x) = µn,α

∫
Rn

(f(y) − f(x))(y − x)
|y − x|n+α+1 dy, x ∈ Rn, (1.1)

be the fractional α-gradient of f ∈ Lipc(Rn) and, analogously,

divαφ(x) = µn,α

∫
Rn

(φ(y) − φ(x)) · (y − x)
|y − x|n+α+1 dy, x ∈ Rn, (1.2)

be the fractional α-divergence of φ ∈ Lipc(Rn;Rn), where

µn,α = 2απ− n
2

Γ
(

n+α+1
2

)
Γ
(

1−α
2

) > 0

is a renormalization constant. The operators (1.1) and (1.2) are dual, in the sense that
they satisfy the fractional integration-by-parts formula∫

Rn
f divαφ dx = −

∫
Rn
φ · ∇αf dx. (1.3)
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For a more detailed account on the operators in (1.1) and (1.2) and on the formula (1.3),
we refer the reader to [15]. In our previous papers [2–8], starting from formula (1.3), we
developed a new theory of distributional fractional Sobolev and BV spaces.

In the present note, we continue the study of fractional BV functions. Let us introduce
the following definition (see [3, Sec. 3.1] for example). Given p ∈ [1,+∞] and an open set
Ω ⊂ Rn, we say that f ∈ BV α,p

loc (Ω) if f ∈ Lp(Rn) and

sup
{∫

Rn
f divαφ dx : φ ∈ C∞

c (Rn;Rn), ∥φ∥L∞(Rn;Rn) ≤ 1, suppφ ⊂ A
}
< +∞

for any open set A ⋐ Ω. A simple application of Riesz’s Representation Theorem (see [3,
Th. 3]) yields that f ∈ BV α,p

loc (Ω) if and only if f ∈ Lp(Rn) and there is a vector-valued
Radon measure Dαf ∈ Mloc(Ω;Rn), called fractional α-variation measure of f , such that∫

Rn
fdivαφ dx = −

∫
Ω
φ · dDαf (1.4)

for all φ ∈ C∞
c (Rn;Rn) with suppφ ⊂ Ω, with

|Dαf |(A) = sup
{∫

Rn
f divαφ dx : φ ∈ C∞

c (Rn;Rn), ∥φ∥L∞(Rn;Rn) ≤ 1, suppφ ⊂ A
}

for any open set A ⋐ Ω. If |Dαf |(Ω) < +∞, then we write f ∈ BV α,p(Ω). We warn
the reader that the subscript ‘loc’ in BV α,p

loc always refers to the local finiteness of the
fractional variation measure only, as BV α,p

loc functions are in Lp(Rn) by default.
If χE ∈ BV α,∞

loc (Rn), then the measure |DαχE| ∈ Mloc(Rn) is called the distribu-
tional fractional (Caccioppoli) α-perimeter of E ⊂ Rn (see [4, Def. 4.1]). We recall that
Wα,1(Rn) ⊂ BV α,1(Rn) with strict inclusion, see [4, Ths. 3.18 and 3.31], so |DαχE| must
not be confused with the fractional α-perimeter Pα(E; · ) relative to Wα,1 sets, defined as

Pα(E; Ω) =
∫

(Rn×Rn)\(Ωc×Ωc)

|χE(x) − χE(y)|
|x− y|n+α

dx dy (1.5)

for E,Ω ⊂ Rn (in particular, if Ω = Rn, then Pα(E) = Pα(E;Rn) = [χE]W α,1(Rn)). In fact,
if Pα(E; Ω) < +∞, then χE ∈ BV α,∞(Ω) with DαχE = ∇αχE L n and ∥∇αχE∥L1(Ω;Rn) ≤
µn,αPα(E; Ω), see [4, Prop. 4.8], but currently we do not know if there exists χE ∈
BV α,∞(Ω) such that Pα(E; Ω) = +∞.

Mimicking the classical theory (see [4, Sec. 4.5]), given χE ∈ BV α,∞
loc (Rn), we say that

x ∈ Rn belongs to the fractional reduced boundary of E, and we write x ∈ F αE, if

x ∈ supp |DαχE| and ∃ lim
r→0+

DαχE(Br(x))
|DαχE|(Br(x)) ∈ Sn−1.

Consequently, we let να
E : F αE → Sn−1,

να
E(x) = lim

r→0+

DαχE(Br(x))
|DαχE|(Br(x)) , x ∈ F αE,

be the (measure theoretic) inner unit fractional normal of E. Hence, (1.4) implies that∫
E

divαφ dx = −
∫

F αE
φ · να

E d|DαχE| (1.6)

for all φ ∈ C∞
c (Rn;Rn).
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1.2. Leibniz rules. A large part of our preceding works [2–8] is dedicated to the study
of fractional Leibniz rules involving the operators (1.1) and (1.2). For f, g ∈ Lipc(Rn) and
φ ∈ Lipc(Rn;Rn), we have

∇α(fg) = f ∇αg + g∇αf + ∇α
NL(f, g) (1.7)

and, analogously,
divα

NL(fφ) = f divαφ+ φ · ∇αf + divα
NL(f, φ), (1.8)

where

∇α
NL(f, g)(x) = µn,α

∫
Rn

(f(y) − f(x))(g(y) − g(x))(y − x)
|y − x|n+α+1 dy, x ∈ Rn, (1.9)

and

divα
NL(f, φ)(x) = µn,α

∫
Rn

(f(y) − f(x))(φ(y) − φ(x)) · (y − x)
|y − x|n+α+1 dy, x ∈ Rn, (1.10)

are the non-local fractional α-gradient and the non-local fractional α-divergence, respec-
tively. The fractional Leibniz rules (1.7) and (1.8), as well as the operators (1.9) and (1.10),
can be extended to less regular functions and vector fields in several ways, see [2–8].

The first main aim of the present note is to achieve some new fractional Leibniz rules.
On the one side, we provide the following product rule for the intersection of BV α,∞

loc sets
with Wα,1 sets, generalizing [6, Th. 1.1]. In fact, the locality property (1.17) was inspired
by an observation recently made in [14, Rem. 3.4]. Here and in the following, Dα

s f denotes
the singular part of the fractional variation measure Dαf of f ∈ BV α,p

loc (Rn). We also let

u⋆(x) = lim
r→0+

−
∫

Br(x)
u(y) dy, x ∈ Rn,

be the precise representative of u ∈ L1
loc(Rn), whenever the limit exists in R. We hence

define the Borel set
Ru = {x ∈ Rn : u⋆(x) exists in R}.

Let us recall that x ∈ Rn is a Lebesgue point of u if x ∈ Ru and

lim
r→0+

−
∫

Br(x)
|u(y) − u⋆(x)| dy = 0.

We note that, if E ⊂ Rn is a measurable set and x ∈ Rn is a Lebesgue point of χE, then
χ⋆

E(x) = χE1(x). Here and below, for t ∈ [0, 1], we let

Et =
{
x ∈ Rn : ∃ lim

r→0+

|E ∩Br(x)|
|Br(x)| = t

}
. (1.11)

Theorem 1.1 (Intersection with Wα,1 set). If χE ∈ BV α,∞
loc (Rn) and Pα(F ) < +∞, then

χE∩F ∈ BV α,∞
loc (Rn), with

DαχE∩F = χF 1DαχE + χE∇αχF L n + ∇α
NL(χE, χF ) L n in Mloc(Rn;Rn), (1.12)

max
{
∥χE∇αχF ∥L1(Rn;Rn), ∥∇α

NL(χE, χF )∥L1(Rn;Rn)
}

≤ µn,αPα(F ) (1.13)
and ∫

Rn
∇α

NL(χE, χF ) dx = 0. (1.14)
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Consequently, we have
DαχE∩F − χF 1DαχE ∈ M (Rn;Rn), (1.15)

|DαχE∩F − χF 1DαχE|(Rn) ≤ µn,αPα(F ) (1.16)
and

Dα
s χE∩F = χF 1Dα

s χE in Mloc(Rn;Rn). (1.17)
In addition, if F is also bounded, then χE∩F ∈ BV α,∞(Rn) ∩ L1(Rn) and∫

F 1
dDαχE = −

∫
E

∇αχF dx. (1.18)

We expect that Theorem 1.1 may be extended to BV α,∞
loc (and even BV α,p

loc ) functions,
but we do not pursue this direction here and leave it to future works.

On the other side, we generalize [6, Rem. 4.6], see Theorem 1.3 below. To state our
result, we need to introduce some notation. In analogy with [6, Def. 4.5], we exploit [6,
Lem. 2.9] to define the measure version of the non-local fractional gradient (1.9) (actually,
we already used this object in [6, Th. 5.1] without providing its explicit definition).

Definition 1.2 (Non-local fractional α-gradient measure). Let p, q ∈ [1,+∞] be such
that 1

p
+ 1

q
≤ 1. Let f ∈ Lp(Rn) and g ∈ Lq(Rn). We say that Dα

NL(f, g) ∈ Mloc(Rn;Rn)
is a non-local fractional α-gradient measure of the pair (f, g) if∫

Rn
f divα

NL(g, φ) dx =
∫
Rn
φ · dDα

NL(f, g) for all φ ∈ C∞
c (Rn;Rn).

Arguing as in [6, Sec. 4.4], we can exploit [6, Cor. 2.7 and Lems. 2.9 and 2.10] to infer
that Definition 1.2 is well posed and that Dα

NL(f, g), if it exists, is unique and symmetric,
and extends the operator (1.9).

Our second result on the Leibniz rule for BV α,∞
loc functions can be stated as follows.

Theorem 1.3 (Conditional Leibniz rule in BV α,∞
loc ). If f, g ∈ BV α,∞

loc (Rn), then
fg ∈ BV α,∞

loc (Rn) ⇐⇒ ∃Dα
NL(f, g) ∈ Mloc(Rn;Rn), (1.19)

and there exist f̄ ∈ L∞(Rn, |Dαg|) and ḡ ∈ L∞(Rn, |Dαf |), with
∥f̄∥L∞(Rn,|Dαg|) ≤ ∥f∥L∞(Rn) and ∥ḡ∥L∞(Rn,|Dαf |) ≤ ∥g∥L∞(Rn), (1.20)

f̄ = f ⋆ |Dαg|-a.e. in Rf and ḡ = g⋆ |Dαf |-a.e. in Rg, (1.21)
such that, provided that fg ∈ BV α,∞

loc (Rn),
Dα(fg) = f̄ Dαg + ḡ Dαf +Dα

NL(f, g) in Mloc(Rn;Rn). (1.22)

At the present moment, we do not know if the measure Dα
NL(f, g) is well defined even in

the case f, g ∈ BV α,∞(Rn)∩L1(Rn) with |Dαf |, |Dαg| ≪ L n, see [6, Rem. 4.6]. However,
in the simplest case f = g = χE ∈ BV α,∞

loc (Rn), we have the following result.

Corollary 1.4 (The measure Dα
NL(χE, χE)). If χE ∈ BV α,∞

loc (Rn), then Dα
NL(χE, χE) ∈

Mloc(Rn;Rn) is well defined and satisfies
Dα

NL(χE, χE) = (1 − 2χE)DαχE in Mloc(Rn;Rn), (1.23)
where χE ∈ L∞(Rn, |DαχE|), with

0 ≤ χE ≤ 1 and χE = χ⋆
E |DαχE|-a.e. in RχE

. (1.24)
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In addition, if χE ∈ BV α,1(Rn), then

Dα
NL(χE, χE)(Rn) =

∫
Rn
χE dDαχE = 0. (1.25)

In the limiting case α = 1, the non-local gradient disappears, hence (1.23) reduces to
(1 − 2χE)DχE = 0, coherently with the fact that χE = χ⋆

E = 1
2 |DχE|-a.e. in Rn.

1.3. Analysis of blow-ups. The main result of our first paper, see [4, Th. 5.8 and
Prop. 5.9], provides the following fractional counterpart of De Giorgi’s Blow-up Theorem
for sets with locally finite perimeter (see [12, Part Two] for a detailed exposition). Here
and in the rest of the paper, for any measurable E ⊂ Rn and x ∈ Rn, we let Tan(E, x)
be the set of all tangent sets to E at x, i.e., all limit points of

{
E−x

r
: r > 0

}
with respect

to the convergence in L1
loc(Rn) as r → 0+.

Theorem 1.5 (Existence and rigidity of blow-ups). If χE ∈ BV α,∞
loc (Rn) and x ∈ F αE,

then Tan(E, x) ̸= ∅ and any F ∈ Tan(E, x) is such that χF ∈ BV α,∞
loc (Rn) with να

F (y) =
να

E(x) for |DαχF |-a.e. y ∈ F αF .

The second main aim of this note is to refine Theorem 1.5. On the one hand, we provide
the following convergence result, which was somehow implicit in the proof of [4, Prop. 5.9].

Theorem 1.6 (Refined convergence). Let χE ∈ BV α,∞
loc (Rn) and x ∈ F αE. If F ∈

Tan(E, x) with χE−x
rk

→ χF in L1
loc(Rn) as rk → 0+, then, up to extracting a subsequence:

(i) DαχE−x
rk

⇀ DαχF in Mloc(Rn;Rn) as rk → 0+;

(ii) |DαχE−x
rk

| ⇀ |DαχF | in Mloc(Rn) as rk → 0+;

(iii) DαχE−x
rk

(BR) → DαχF (BR) and |DαχE−x
rk

|(BR) → |DαχF |(BR) for all R > 0 such
that |DαχF |(∂BR) = 0 (in particular, for a.e. R > 0).

On the other hand, we provide the following characterization of blow-ups, which can be
seen as a first step towards a fractional counterpart of De Giorgi’s Structure Theorem for
sets with locally finite perimeter, see [12, Part 2] for instance. Here and in the following,
we let ∂α = Dα

R denote the fractional variation measure in dimension n = 1 and we let P
be the standard De Giorgi’s perimeter.

Theorem 1.7 (Characterization of blow-ups). Let χE ∈ BV α,∞
loc (Rn), x ∈ F αE and

να
E(x) = en. If F ∈ Tan(E, x), then F = Rn−1 ×M with M ⊂ R such that:
(i) χM ∈ BV α,∞

loc (R) with ∂αχM ≥ 0;
(ii) |M |, |M c| ∈ {0,+∞};

(iii) if |M | = +∞, then ess supM = +∞;
(iv) if M ̸= ∅,R is such that P (M) < +∞, then M = (m,+∞) for some m ∈ R.

Theorem 1.7 shows a quite surprising similarity between the reduced boundary FE for
χE ∈ BVloc(Rn) and the fractional reduced boundary F αE for χE ∈ BV α,∞

loc (Rn), going
in the same direction of De Giorgi’s Blow-up Theorem, see [12, Th. 15.5].

A simple consequence of Theorem 1.7 is that a cone cannot be a blow-up set on the
fractional reduced boundary, unless it is a half-space, Rn or ∅. Such a rigidity of blow-ups
for example implies that no vertex of the square E = [0, 1]2 ⊂ R2 belongs to F αE, for
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any α ∈ (0, 1), in analogy with the case α = 1, see [12, Exam. 15.4]. Similarly, no vertex
of the Koch snowflake (see [11, Sec. 3.3]) belongs to its fractional reduced boundary.

Theorem 1.7 is a consequence of the following two results, which may be interesting on
their own. The first one characterizes BV α,∞

loc functions with zero fractional derivative.

Proposition 1.8 (Null derivative). Let f ∈ BV α,∞
loc (Rn) and let i ∈ {1, . . . , n}. Then,

Dα
i f = 0 if and only if Dif = 0.

The second result allows to factorize the fractional variation measure of a BV α,∞
loc func-

tion which does not depend on certain coordinates.

Proposition 1.9 (Splitting). Let f ∈ BV α,∞
loc (Rn). If D1f = 0, then there exists g ∈

BV α,∞
loc (Rn−1) such that f((t, x)) = g(x) for a.e. t ∈ R and a.e. x ∈ Rn−1 and

(Dα
Rn)if = L 1 ⊗ (Dα

Rn−1)ig in Mloc(Rn) for all i = 2, . . . , n.

Propositions 1.8 and 1.9 may hold for BV α,p
loc functions as well, but we leave this line of

research for forthcoming works, being out of the scopes of the present note.

1.4. Analysis of non-local boundaries. The third and last main aim of this note is
to exploit the above results on blow-ups and Leibniz rules for BV α,∞

loc sets to infer some
properties of non-local boundaries linked with the distributional fractional perimeter.

On the one side, given χE ∈ BV α,∞
loc (Rn), we may decompose the fractional variation

measure of E as DαχE = Dα
acχE + Dα

s χE, where |Dα
acχE| ≪ L n and Dα

s χE ⊥ L n. In
virtue of (1.17) in Theorem 1.1, Dα

s χE has a local nature, in contrast with the non-local
and thus ‘diffuse’ behavior of the measure Dα

acχE. The following result, which is a simple
consequence of Theorem 1.1, gives an idea of the size of the support of the measure Dα

s χE.
Here and in the following, we let

∂−E = {x ∈ Rn : 0 < |E ∩Br(x)| < |Br(x)| for all r > 0}.

Theorem 1.10 (Support of Dα
s χE). If χE ∈ BV α,∞

loc (Rn), then
|Dα

s χE|(F 1) = 0 whenever χF ∈ Wα,1(Rn) with either |E ∩ F | = 0 or |Ec ∩ F | = 0.
In particular, supp |Dα

s χE| ⊂ ∂−E.

Theorem 1.10 has several analogies with classical results. Indeed, it is well-known that,
if χE ∈ BVloc(Rn), then supp |DχE| = ∂−E (see [12, Prop. 12.19] for instance), while, if
E has locally finite fractional perimeter, then

∂−E =
{
x ∈ Rn : PL

α (E;Br(x)) > 0 for all r > 0
}
,

where
PL

α (E;A) =
∫

E∩A

∫
A\E

dx dy
|x− y|n+α

, A ⊂ Rn,

is the local part of the fractional perimeter Pα(E; · ), see [11, Lem. 3.1]. Furthermore,
Theorem 1.10 can be combined with [4, Cor. 5.4] to get the estimate

|Dα
s χE| ≤ cn,αH n−α (F αE ∩ ∂−E).

In particular, if H n−α(F αE ∩ ∂−E) = 0, then |DαχE| ≪ L n. However, we warn the
reader that ∂−E may have positive Lebesgue measure, even for a set with finite perimeter
(see [12, Exam. 12.25] for instance).
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On the other side, in view of Theorems 1.5 and 1.7, we wish to study the set of points
x ∈ F αE for which fractional blow-ups are non-trivial, i.e., such that Tan(E, x) ̸= {∅}
and Tan(E, x) ̸= {Rn}. As well-known, for any E ⊂ Rn measurable and x ∈ Rn, we have

Tan(E, x) = {∅} ⇐⇒ x ∈ E0, Tan(E, x) = {Rn} ⇐⇒ x ∈ E1, (1.26)
where E0 and E1 are as in (1.11) for t = 0, 1. In order to avoid such cases, we consider

∂∗E = Rn \ (E0 ∪ E1).
On the other hand, it is also worth recalling that blow-up limits for χE ∈ BVloc(Rn)
may be not half-spaces and yet not trivial only when considering points x ∈ ∂∗E \ FE.
Moreover, at such points, Tan(E, x) can be very wild. Indeed, as proved in [10, Prop. 2.7],
for n ≥ 2 there exists a measurable set E ⊂ Rn with P (E) < ∞ and such that

Tan(E, 0) ⊃ {F ⊂ Rn measurable : P (F ) < +∞}.
Note that, for such set E, it holds χE ∈ BV α,∞

loc (Rn) for any α ∈ (0, 1) due to [4, Prop. 4.8],
so that 0 ∈ ∂∗E \ F αE by Theorem 1.7.

The equivalences in (1.26) and the example above motivate the following definition.

Definition 1.11 (Effective fractional reduced boundary). Given χE ∈ BV α,∞
loc (Rn), we

let F α
e E = F αE ∩ ∂∗E be the effective fractional reduced boundary of E.

We recall that dimH (F αE) ≥ n− α, see [4, Prop. 5.5], possibly with strict inequality.
In fact, from (1.6), we immediately deduce that, if |DαχE| ≪ L n and |DαχE|(Ω) > 0,
then |Ω ∩ F αE| > 0 as well. Indeed, in this case, we have∫

E
divαφ dx =

∫
Ω∩F αE

φ · dDα
acχE for all φ ∈ C∞

c (Ω;Rn),

so that |Ω ∩ F αE| = 0 implies |DαχE|(Ω) = 0. In particular, this applies to the case
Pα(E,Ω) < +∞, see [4, Rem. 4.9]. The following result refines such statement for the
effective fractional reduced boundary. Here and below, given ν ∈ Sn−1 and x0 ∈ Rn,

H+
ν (x0) = {y ∈ Rn : (y − x0) · ν ≥ 0}, Hν(x0) = {y ∈ Rn : (y − x0) · ν = 0},

with the shorthands H+
ν = H+

ν (0) and Hν = Hν(0).

Theorem 1.12 (Properties of F α
e E).

(i) If χE ∈ BV α,∞
loc (Rn), x ∈ F α

e E and Tan(E, x) = {F}, then F = H+
να

E(x), and

ΣE = {x ∈ F α
e E : E admits a unique blow-up at x}

can be covered by countably many (n− 1)-dimensional Lipschitz graphs.
(ii) If χE ∈ Wα,1

loc (Rn), then H n−α(F α
e E) = 0.

(iii) If χE ∈ BVloc(Rn), then FE ⊂ F α
e E, H n−1(F α

e E\FE) = 0 and να
E = νE on FE.

The proof of Theorem 1.12 combines Definition 1.11 and the properties of the fractional
reduced boundary established so far with several known results concerning blow-ups.
Point (i) is a consequence of Theorem 1.7, [10, Prop. 2.1] and [9, Th. 1.2]. Point (ii)
exploits [13, Prop. 3.1]. Finally, point (iii) follows from well-known properties of sets with
locally finite perimeter as soon as the inclusion FE ⊂ F αE is proved.

In the proof of Theorem 1.12 we exploit the following result, which can be easily deduced
from [7, Prop. 1.8] and in fact provides a notable example for point (iii) in Theorem 1.12.
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Proposition 1.13 (Half-space). If x0 ∈ Rn and ν ∈ Sn−1, then

∇αχH+
ν (x0)(x) = µ1,α

α

ν

|(x− x0) · ν|α
for all x /∈ Hν(x0),

with F αH+
ν (x0) = Rn, F α

e H
+
ν (x0) = Hν(x0) and να

H+
ν (x0) = ν on Rn.

Proposition 1.13, combined with Theorems 1.6 and 1.12(i), implies the following result.

Corollary 1.14 (Refined convergence on ΣE). Let χE ∈ BV α,∞
loc (Rn) and x ∈ ΣE. If

χE−x
rk

→ χH+
να

E
(x)

in L1
loc(Rn) as rk → 0+, then, up to extracting a subsequence, as rk → 0+,

DαχE−x
rk

⇀
µ1,α

α

να
E(x)

|( · ) · να
E(x)|α L n in Mloc(Rn;Rn),

|DαχE−x
rk

| ⇀ µ1,α

α

1
|( · ) · να

E(x)|α L n in Mloc(Rn).

We conclude our paper with the following result, which is a simple consequence of [4,
Th. 3.18] and provides another important example for point (iii) in Theorem 1.12.

Proposition 1.15 (Ball). If x0 ∈ Rn and r > 0, then

∇αχBr(x0)(x) = − µn,α

n+ α− 1

∫
∂Br(x0)

y

|x− y|n+α−1 dH n−1(y) for all x /∈ ∂Br(x0),

with F αBr(x0) = Rn\{x0}, F α
e Br(x0) = ∂Br(x0) and να

Br(x0)(x) = − x−x0
|x−x0| for all x ̸= x0.

2. Proofs of the results

The rest of the paper is devoted to the proofs of our results. Throughout this section,
we let (ϱε) ⊂ C∞

c (Rn) be a family of standard mollifiers, that is, we let ϱε(x) = ε−nϱ(x
ε
)

for x ∈ Rn and ε > 0, where

ϱ ∈ C∞
c (Rn), ϱ ≥ 0, ϱ is radial, supp ϱ ⊂ B1 and

∫
B1
ϱ dx = 1. (2.1)

In addition, for x ∈ Rn and i ∈ {1, . . . , n}, we let x̂i ∈ Rn−1 be defined as

x̂i =


(x2, . . . , xn) if i = 1,
(x1, . . . , xi−1, xi+1, . . . , xn) if i ∈ {2, . . . , n− 1},
(x1, . . . , xn−1) if i = n.

In some of the proofs below, we will invoke the following result (only for p = +∞).

Lemma 2.1 (Smoothing). Let p ∈ [1,+∞]. If f ∈ BV α,p
loc (Rn) and ϱ ∈ C∞

c (Rn), then
ϱ ∗ f ∈ BV α,p

loc (Rn) ∩ C∞(Rn) with ∇α(ϱ ∗ f) = ϱ ∗Dαf in L1
loc(Rn;Rn).

Proof. Clearly, ϱ∗f ∈ W 1,p(Rn), hence ∇α(ϱ∗f) ∈ Lp(Rn;Rn) by [5, Prop. 3.3]. Moreover,
ϱ ∗Dαf ∈ L1

loc(Rn;Rn). Given φ ∈ C∞
c (Rn;Rn), we have ϱ ∗ φ ∈ C∞

c (Rn;Rn) and thus∫
Rn

(ϱ ∗ f) divαφ dx =
∫
Rn
f (ϱ ∗ divαφ) dx =

∫
Rn
f divα(ϱ ∗ φ) dx = −

∫
Rn

(ϱ ∗ φ) dDαf,

thanks to [4, Lem. 3.5], readily yielding ∇α(ϱ ∗ f) = ϱ ∗Dαf in L1
loc(Rn;Rn). □
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2.1. Proof of Theorem 1.1. Given φ ∈ C∞
c (Rn;Rn), since Pα(F ) < +∞, arguing as in

the proof of [6, Lem. 3.2], we can write
divα(φχF ) = χF divαφ+ φ · ∇αχF + divα

NL(χF , φ) in L1(Rn). (2.2)
Let us observe that∣∣∣∣∣

∫
Rn
χE φ · ∇αχF dx

∣∣∣∣∣ ≤ ∥φ∥L∞(Rn;Rn) ∥∇αχF ∥L1(Rn;Rn).

Moreover, by [6, Lem. 2.9], we have∫
Rn
χE divα

NL(χF , φ) dx =
∫
Rn
φ · ∇α

NL(χE, χF ) dx, (2.3)

so that ∣∣∣∣∣
∫
Rn
χE divα

NL(χF , φ) dx
∣∣∣∣∣ ≤ ∥φ∥L∞(Rn;Rn) ∥∇α

NL(χE, χF )∥L1(Rn;Rn).

Recalling the definitions in (1.5) and (1.9), as in [6, Cors. 2.3 and 2.7] (since |χE(x) −
χE(y)| ≤ 1 for x, y ∈ Rn) we can estimate

max
{
∥∇αχF ∥L1(Rn;Rn), ∥∇α

NL(χE, χF )∥L1(Rn;Rn)
}

≤ µn,α Pα(F ),

in particular proving (1.13). A straightforward application of [6, Lem. 2.9] (by taking
p, r = +∞, q = 1, f = χE, g = χF and φ ≡ 1 in that result, and observing that bα

1,1(Rn)
coincides with the space of L1

loc(Rn) functions with finite Wα,1-seminorm, see [6, Sec. 2.1])
gives (1.14). Now, integrating (2.2) and exploiting (2.3), we get∫

Rn
χE∩F divαφ dx =

∫
E

divα(φχF ) dx−
∫

E
φ · ∇αχF dx−

∫
Rn
φ · ∇α

NL(χE, χF ) dx

Now let ψε = ϱε ∗ (φχF ) for all ε > 0. Since ψ ∈ C∞
c (Rn), we can compute∫

E
divαψε dx = −

∫
Rn
ψε · dDαχE

for all ε > 0. Since ψε → φχF in Wα,1(Rn;Rn) as ε → 0+ (see [4, App. A]), we have
divαψε → divα(φχF ) in L1(Rn) as ε → 0+ and thus

lim
ε→0+

∫
E

divαψε dx =
∫

E
divα(φχF ) dx.

Since ψε → φχF 1 H n−α-a.e. in Rn as ε → 0+ by [13, Prop. 3.1] and the fact that
|DαχE| ≪ H n−α F αE due to [4, Cor. 5.4], we also get that

lim
ε→0+

∫
Rn
ψε · dDαχE =

∫
Rn
χF 1φ · dDαχE.

Hence, we get∫
Rn
χE∩F divαφ dx = −

∫
Rn
χF 1φ · dDαχE −

∫
E
φ · ∇αχF dx−

∫
Rn
φ · ∇α

NL(χE, χF ) dx

whenever φ ∈ C∞
c (Rn;Rn), which easily implies (1.12) via a standard approximation ar-

gument. The validity of (1.15), (1.16) and (1.17) is an easy consequence of (1.12). Finally,
if F is bounded, then χE∩F ∈ BV α,1(Rn), so that [6, Lem. 2.5] implies DαχE∩F (Rn) = 0,
and so (1.18) follows by integrating (1.12) over Rn and exploiting (1.14). □
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2.2. Proof of Theorem 1.3. Let φ ∈ C∞
c (Rn;Rn) and set gε = ϱε ∗g for all ε > 0. Since

gε ∈ Lipb(Rn), by [5, Lem. 2.4] we can write
divα(gεφ) = gε divαφ+ φ · ∇αgε + divα

NL(gε, φ) in L1(Rn) ∩ L∞(Rn).
Hence, in virtue of [6, Lem. 2.10] and Lemma 2.1, we have∫

Rn
fgεdivαφ dx =

∫
Rn
f divα(gεφ) dx−

∫
Rn
fφ · ∇αgε dx−

∫
Rn
f divα

NL(gε, φ) dx

= −
∫
Rn
gεφ · dDαf −

∫
Rn
ϱε ∗ (fφ) · dDαg −

∫
Rn
gεdivα

NL(f, φ) dx.
(2.4)

Since divαφ, divα
NL(f, φ) ∈ L1(Rn), by the Dominated Convergence Theorem we have

lim
ε→0+

∫
Rn
fgε divαφ dx =

∫
Rn
fg divαφ dx, (2.5)

lim
ε→0+

∫
Rn
gε divα

NL(f, φ) dx =
∫
Rn
g divα

NL(f, φ) dx. (2.6)

Setting fε = ϱε ∗f for all ε > 0 and letting R > 0 be such that suppφ ⊂ BR, we also have∣∣∣∣∣
∫
Rn
ϱε ∗ (fφ) · dDαg −

∫
Rn
fεφ · dDαg

∣∣∣∣∣ ≤
∫

BR+1
|ϱε ∗ (fφ) − fεφ| d|Dαg|

=
∫

BR+1

∫
Rn
ϱε(x− y)|f(y)||φ(y) − φ(x)| dy d|Dαg|(x)

≤ ∥f∥L∞(Rn)

∫
BR+1

∫
Rn
ϱε(x− y)|φ(y) − φ(x)| dy d|Dαg|(x)

for all ε ∈ (0, 1). Since φ is uniformly continuous on Rn, we thus get that

lim
ε→0+

∫
Rn
ϱε ∗ (fφ) · dDαg = lim

ε→0+

∫
Rn
fεφ · dDαg. (2.7)

Now, since |fε(x)| ≤ ∥f∥L∞(Rn) for each x ∈ Rn and ε > 0, the family (fε)ε>0 is uniformly
bounded in L∞(Rn, |Dαg|). Thus, by Banach–Alaoglu Theorem, we can find a sequence
(fεk

)k∈N and f̄ ∈ L∞(Rn, |Dαg|) such that fεk

∗
⇀ f̄ in L∞(Rn, |Dαg|) as k → +∞.

Similarly (up to subsequences, which we do not relabel), we can also find a sequence
(gεk

)k∈N and ḡ ∈ L∞(Rn, |Dαf |) such that gεk

∗
⇀ ḡ in L∞(Rn, |Dαf |) as k → +∞. In

particular, (1.20) follows by the lower semicontinuity of the L∞ norm with respect to
the weak∗ convergence. Therefore, passing to the limit as k → +∞ in (2.4) along the
sequence (εk)k∈N and recalling (2.5), (2.6) and (2.7), we get∫

Rn
fg divαφ dx = −

∫
Rn
ḡφ · dDαf −

∫
Rn
f̄φ · dDαg −

∫
Rn
g divα

NL(f, φ) dx

whenever φ ∈ C∞
c (Rn;Rn), readily yielding (1.19) thanks to Definition 1.2, and there-

fore (1.22) as long as fg ∈ BV α,∞
loc (Rn). To conclude, we thus just need to prove (1.21).

To this aim, we observe that, by Lemma 2.2 below, fεk
(x) → f ⋆(x) as k → +∞ for all

x ∈ Rf . Hence, by the Dominated Convergence Theorem, we get∫
Rf

f̄ψ · dDαg = lim
k→+∞

∫
Rf

fεk
ψ · dDαg =

∫
Rf

f ⋆ψ · dDαg

for any ψ ∈ Cc(Rn), proving the first half of (1.21). The second half of (1.21) is similar. □
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Lemma 2.2. If u ∈ L1
loc(Rn) and x ∈ Ru, then

u⋆(x) = lim
ε→0+

(ϱε ∗ u)(x).

Proof. In view of (2.1), we can write ϱ(x) = η(|x|) for all x ∈ Rn, where η ∈ C∞
c ([0,+∞))

is such that η ≥ 0 and supp η ⊂ [0, 1). In particular, η is absolutely continuous on [0, 1].
Hence, if η is strictly decreasing on its support, we exploit Cavalieri’s formula to get

(ϱε ∗ u)(x) = ε−n
∫ +∞

0

∫
{y∈Bε : ϱ(y/ε)>t}

u(x− y) dy dt

= −ε−n−1
∫ ε

0
η′
(

s
ε

) ∫
{y∈Bε : η(|y|/ε)>η(s/ε)}

u(x− y) dy ds

= −ε−n−1
∫ ε

0
η′
(

s
ε

) ∫
Bs

u(x− y) dy ds

= −
∫ 1

0
η′(r)ωnr

n −
∫

Brε(x)
u(y) dy dr.

If x ∈ Ru, then we can apply the Dominated Convergence Theorem to get

lim
ε→0+

(ϱε ∗ u)(x) = −
∫ 1

0
η′(r)ωnr

n

(
lim

ε→0+
−
∫

Brε(x)
u(y) dy

)
dr = u⋆(x),

as we easily recognize that

−
∫ 1

0
η′(r)ωnr

n dr = nωn

∫ 1

0
η(r)rn−1 dr =

∫
B1
ϱ(x) dx = 1.

In the general case, since η is absolutely continuous on [0, 1], we can write η = η1 −
η2 on [0, 1], where η1, η2 : [0, 1] → [0,+∞) are strictly decreasing absolutely continuous
functions such that η1(1) = η2(1). The conclusion hence follows by performing analogous
computations involving Cavalieri’s formula on η1 and η2 separately, and then by exploiting
the linearity of the derivative. □

2.3. Proof of Corollary 1.4. The validity of (1.23) immediately follows from (1.22) in
Theorem 1.3, since χE χE = χE ∈ BV α,∞

loc (Rn). In particular, χE ∈ L∞(Rn, |DαχE|) given
by Theorem 1.3 is uniquely determined by (1.23). The validity of (1.24) follows from (1.21)
and by the construction in the proof of Theorem 1.3. Finally, if χE ∈ BV α,1(Rn), then
(1.23) easily implies that Dα

NL(χE, χE) ∈ M (Rn;Rn). We let η ∈ C∞
c (B2) be such that

η ≡ 1 on B1 and set ηk(x) = η
(

x
k

)
for k ∈ N and x ∈ Rn. By Definition 1.2 with φk = ηkej

for j ∈ {1, . . . , n} and [6, Cor. 2.7], we get∣∣∣∣∫
Rn
ηk ej · dDα

NL(χE, χE)
∣∣∣∣ =

∣∣∣∣∫
Rn
χE ej · ∇α

NL(χE, ηk) dx
∣∣∣∣

≤ 2µn,α|E|∥∇α
NL(χE, ηk)∥L∞(Rn;Rn)

≤ 2µn,α|E|[ηk]Bα
∞,1(Rn)

= 2µn,α|E|[η]Bα
∞,1(Rn)k

−α → 0 as k → +∞.

Thus, by the Dominated Convergence Theorem, we obtain

ej ·Dα
NL(χE, χE)(Rn) = lim

k→+∞

∫
Rn
ηkej · dDα

NL(χE, χE) = 0 for all j ∈ {1, . . . , n},
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which implies Dα
NL(χE, χE)(Rn) = 0. Consequently, since DαχE(Rn) = 0 by [6, Lem. 2.5],

we can integrate (1.23) over Rn to get

0 = Dα
NL(χE, χE)(Rn) =

∫
Rn

(1 − 2χE) dDαχE = −2
∫
Rn
χE dDαχE,

proving (1.25) and ending the proof. □

2.4. Proof of Theorem 1.6. We prove (i), (ii) and (iii) separately.
Proof of (i). Up to extracting a subsequence, we can also assume that χE−x

rk

→ χF

a.e. in Rn as rk → 0+. Hence, by the Dominated Convergence Theorem, we get∫
Rn
χE−x

rk

divαφ dx →
∫
Rn
χF divαφ dx as rk → +∞

for any φ ∈ Lipc(Rn;Rn), since divαφ ∈ L1(Rn) by [4, Cor. 2.3]. Thanks to the density
of Lipc(Rn;Rn) into Cc(Rn;Rn) with respect to the uniform convergence, we infer (i).

Proof of (ii). Given φ ∈ Cc(Rn), we can estimate∣∣∣∣∣
∫
Rn
φ d|DαχE−x

rk

| −
∫
Rn
φ d|DαχF |

∣∣∣∣∣ ≤ rα−n
k

∫
Rn

∣∣∣φ (y−x
rk

)∣∣∣ |να
E(y) − να

E(x)| d|DαχE|(y)

+
∣∣∣∣∫

Rn
φ
(
να

E(x) · dDαχE−x
rk

− να
F · dDαχF

)∣∣∣∣
(2.8)

On the one side, since x ∈ F αE, by [4, Th. 5.3] there are An,α > 0 and rx > 0 such that

|DαχE|(Br(x)) ≤ An,αr
n−α for all r ∈ (0, rx). (2.9)

Hence, letting R > 0 be such that suppφ ⊂ BR, we can exploit (2.9) to estimate the first
term in the right-hand side of (2.8) as

rα−n
k

∫
Rn

∣∣∣φ (y−x
rk

)∣∣∣ |να
E(y) − να

E(x)| d|DαχE|(y)

≤ Cn,α,R −
∫

BrkR(x)

∣∣∣φ (y−x
rk

)∣∣∣ |να
E(y) − να

E(x)| d|DαχE|(y)

≤ ∥φ∥L∞(Rn)

(
−
∫

BrkR(x)
|να

E(y) − να
E(x)|2 d|DαχE|(y)

) 1
2

= ∥φ∥L∞(Rn)

(
−
∫

BrkR(x)
2(1 − να

E(y) · να
E(x)) d|DαχE|(y)

) 1
2

(2.10)

for all rk > 0 sufficiently small by Jensen’s inequality, where Cn,α,R > 0 does not depend
on k. Again since x ∈ F αE, we have

να
E(x) = lim

r→0+
−
∫

Br(x)
να

E(y) d|DαχE|(y). (2.11)

Therefore, by combining (2.10) with (2.11), we conclude that

rα−n
k

∫
Rn

∣∣∣φ (y−x
rk

)∣∣∣ |να
E(y) − να

E(x)| d|DαχE|(y) → 0 as rk → 0+. (2.12)
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On the other side, by [4, Prop. 5.9], we have να
F = να

E(x) |DαχF |-a.e. in Rn. Hence, in
virtue of (i), the second term in the right-hand side of (2.8) satisfies∣∣∣∣∣

∫
Rn
φ(y)

(
να

E(x) · dDαχE−x
rk

(y) − να
F (y) · dDαχF (y)

)∣∣∣∣∣
=
∣∣∣∣∫

Rn
φνα

E(x) ·
(

dDαχE−x
rk

− dDαχF

)∣∣∣∣ → 0+ as rk → 0+
(2.13)

possibly passing to a further subsequence. Thus (ii) follows from (2.8), (2.12) and (2.13).
Proof of (iii). Points (i) and (ii) implies (iii) for all R > 0 such that |DαχF |(∂BR) = 0.

Since |DαχF |(∂BR) = 0 for a.e. R > 0 (by [1, Exam. 1.63] for instance), the validity
of (iii) immediately follows. □

2.5. Proof of Proposition 1.8. Assume Dα
i f = 0. Let φ ∈ C∞

c (Rn) and set ψ =
(−∆) 1−α

2 φ. By [4, Lem. 3.28(ii)], we have ψ ∈ Sα,1(Rn) (i.e., ψ ∈ BV α,1(Rn) with
|Dαψ| ≪ L n, see [4, Sec. 3.9] for an account) with ∇αψ = ∇φ. Hence, by [4, Th. 3.23],
we can find (ψk)k∈N ⊂ C∞

c (Rn) such that ψk → ψ in Sα,1(Rn) as k → +∞. Thus, we have∫
Rn
f ∂iφ dx =

∫
Rn
f ∂α

i ψ dx = lim
k→+∞

∫
Rn
f ∂α

i ψk dx = lim
k→+∞

∫
Rn
ψk dDα

i f = 0,

from which we readily get Dif = 0. Viceversa, assume Dif = 0 and suppose f ∈ Lipb(Rn)
at first. Then we can write f(x) = g(x̂i) for all x ∈ Rn for some g ∈ Lipb(Rn−1). Thus,
by [5, Lem. 2.3], we can compute

∇α
i f(x) = µn,α lim

ε→0+

∫
{|y|>ε}

yif(x+ y)
|y|n+α+1 dy

= µn,α lim
ε→0

∫
Rn−1

g(x̂i + ŷi)
∫

{|yi|2>(ε2−|ŷi|2)+}

yi

(y2
i + |ŷi|2)

n+α+1
2

dyi dŷi = 0

for all x ∈ Rn, so that Dα
i f = 0. If now f ∈ BV α,∞

loc (Rn), then fε = ϱε ∗ f ∈ Lipb(Rn) for
all ε > 0. Since Dif = 0 by assumption, also Difε = ϱε ∗Dif = 0 for all ε > 0, and thus∫

Rn
φ dDα

i f = lim
ε→0+

∫
Rn
ϱε ∗ φ dDα

i f = lim
ε→0+

∫
Rn
φ dDα

i fε = 0

by the Dominated Convergence Theorem for all φ ∈ C∞
c (Rn), so that Dα

i f = 0. □

2.6. Proof of Proposition 1.9. Since D1f = 0, there exists g ∈ L∞(Rn−1) such that
f((t, x)) = g(x) for a.e. t ∈ R and a.e. x ∈ Rn−1. Now let us assume that f ∈ Lipb(Rn) at
first, so that also g ∈ Lipb(Rn−1). By [5, Lem. 2.3], we can write

(∇α
Rn−1)ig(x) = µn−1,α

∫
Rn−1

(g(z) − g(x)) (zi − xi)
|z − x|n+α

dz

= µn,α

Γ
(

n+α
2

)√
π

Γ
(

n+α+1
2

) ∫
Rn−1

(g(z) − g(x)) (zi − xi)
|z − x|n+α

dz

= µn,α

∫
Rn−1

(g(z) − g(x)) (zi − xi)
∫
R

1
(t2 + |z − x|2)n+α+1

2
dt dz

= µn,α

∫
Rn−1

∫
R

(f((t+ s, z)) − f((s, x))) (zi − xi)
(t2 + |z − x|2)n+α+1

2
dt dz
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= µn,α

∫
Rn

(f(y) − f((s, x))) (yi − (s, x)i)
|y − (s, x)|n+α+1 dy = (∇α

Rn)if((s, x))

for all x ∈ Rn−1, s ∈ R and i = 2, . . . , n, where ∇α
Rm denotes the operator (1.1) taken

in the ambient space Rm, m ∈ N. In the above chain of equalities, we exploited the fact
that, by the properties of the Gamma and Beta functions, for u = |z − x| and s = n+ α,

us
∫
R

dt
(t2 + u2) s+1

2
= 2

∫ +∞

0

dt
(t2 + 1) s+1

2

[1+t2= 1
r

]
=

∫ 1

0
r

s
2 −1(1 − r) 1

2 −1 dr =
Γ
(

s
2

) √
π

Γ
(

s+1
2

) .

By Proposition 1.8, Dα
1,Rnf = 0, and so D1∇α

Rnf = 0. Now let f ∈ BV α,∞
loc (Rn) and set

fε = ϱε ∗ f for all ε > 0. Then fε ∈ Lipb(Rn) with ∇α
Rnfε = ϱε ∗Dα

Rnf for all ε > 0. Since
D1fε = 0, there is gε ∈ Lipb(Rn−1) such that fε((t, x)) = gε(x) for all t ∈ R and x ∈ Rn−1

and gε → g a.e. in Rn−1 as ε → 0+. Thus
(∇α

Rn−1)igε(x) = (∇α
Rn)ifε((s, x))

for all x ∈ Rn−1, s ∈ R, i ∈ {2, . . . , n} and ε > 0, thanks to Lemma 2.1. Note that
D1D

α
Rnf = 0. Indeed, since D1∇α

Rnfε = 0 for all ε > 0, we have

0 = lim
ε→0+

∫
Rn
D1ψ∇α

Rnfε dx = lim
ε→0+

∫
Rn
ϱε ∗D1ψ dDα

Rnf =
∫
Rn
D1ψ dDα

Rnf

for all ψ ∈ C∞
c (Rn) by the Dominated Convergence Theorem. Now, given φ ∈ C∞

c (Rn−1)
and σ ∈ C∞

c (R), setting ψ(y) = σ(y1)φ(ŷ1) for all y ∈ Rn, we have ψ ∈ C∞
c (Rn) and so(∫

R
σ dt

) ∫
Rn−1

φ (∇α
Rn−1)igε dx =

(∫
R
σ dt

) ∫
Rn−1

φ(x) (∇α
Rn)ifε((0, x)) dx

=
∫
R
σ(t)

∫
Rn−1

φ(x) (∇α
Rn)ifε((0, x)) dx dt

=
∫
R
σ(t)

∫
Rn−1

φ(x) (∇α
Rn)ifε((t, x)) dx dt

=
∫
Rn
σ(y1)φ(ŷ1) (∇α

Rn)ifε(y) dy

=
∫
Rn
ψ (∇α

Rn)ifε dy

for all ε > 0 and i ∈ {2, . . . , n}. By the Dominated Convergence Theorem, we have

lim
ε→0+

∫
Rn−1

φ (∇α
Rn−1)igε dx = − lim

ε→0+

∫
Rn−1

gε (∇α
Rn−1)iφ dx = −

∫
Rn−1

g (∇α
Rn−1)iφ dx

and, similarly,
lim

ε→0+

∫
Rn
ψ (∇α

Rn)ifε dy =
∫
Rn
ψ d(Dα

Rn)if.

We thus conclude that

−
(∫

R
σ dt

) ∫
Rn−1

g (∇α
Rn−1)iφ dx =

∫
Rn
σ(y1)φ(ŷ1) d(Dα

Rn)if(y)

for all i ∈ {2, . . . , n}, φ ∈ C∞
c (Rn) and σ ∈ C∞

c (R). Hence g ∈ BV α,∞
loc (Rn−1), with∫

Rn
σ(y1)φ(ŷ1) d(Dα

Rn)if(y) =
(∫

R
σ dt

)(∫
Rn−1

φ d(Dα
Rn−1)ig

)
for all i ∈ {2, . . . , n}, φ ∈ C∞

c (Rn) and σ ∈ C∞
c (R), yielding the conclusion. □
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2.7. Proof of Theorem 1.7. By [4, Prop. 5.9], we have χF ∈ BV α,∞
loc (Rn) with να

F = en

|DαχF |-a.e. in Rn. Hence Dα
i χF = 0 for all i = 1, . . . , n − 1 and Dα

nχF ≥ 0. By
Proposition 1.8, we infer that also DiχF = 0 for all i = 1, . . . , n − 1. Consequently,
F = Rn−1 ×M for some measurable M ⊂ R. We now prove the properties of the set M .

Proof of (i). By repeatedly applying Proposition 1.9, we get χM ∈ BV α,∞
loc (R), with

(Dα
Rn)nχF = L n−1 ⊗Dα

RχM = L n−1 ⊗ ∂αχM in Mloc(Rn),
from which we readily deduce that ∂αχM ≥ 0.

Proof of (ii). If |M | ∈ (0,+∞) by contradiction, then χM ∈ BV α,1
loc (R) and thus we

obtain u = I1−αχM ∈ BVloc(R) with ∂u = ∂αχM , arguing exactly as in [4, Lem. 3.28(i)].
Hence ∂u ≥ 0 and thus u is a non-negative and non-decreasing function. Moreover, since
|M | < +∞, we have u ∈ Lp(R) for all p ∈

(
1
α
,+∞

)
, which immediately yields u ≡ 0, so

that |M | = 0, a contradiction. Hence |M | ∈ {0,+∞} and, since F c ∈ Tan(Ec, x), we also
get that |M c| ∈ {0,+∞} by a symmetrical argument.

Proof of (iii). Let |M | = +∞ and assume b = ess supM < +∞ by contradiction. Let
Ib = (b, b+ 1). By (i) and (1.18), we can compute

0 ≤ ∂αχM(Ib) = −
∫

M
∇αχIb

dt.

By [4, Exam. 4.11], ∇αχIb
(t) > 0 for all t < b, forcing |M | = 0, which is a contradiction.

Proof of (iv). Let M ̸= ∅,R be such that P (M) < +∞. Then, up to negligible sets,
M = ∪N

k=1Ik for N ∈ N closed intervals Ik ⊂ R with ak = inf Ik < sup Ik = bk, ak, bk ∈
[−∞,+∞] and sup Ik < inf Ik+1 for all k = 1, . . . , N − 1. Let us assume that N ≥ 2.
Since |M | = +∞ by (ii), we must have bN = +∞ by (iii). Since also |M c| = +∞ by (ii),
we must have a1 > −∞. In particular, Ik is a compact interval for all k = 1, . . . , N − 1.
By linearity and in virtue of [4, Exam. 4.11], we have ∂αχM = ∇αχM L 1, with

∇αχM(t) =
N∑

k=1
∇αχIk

= cα

N−1∑
k=1

(
|t− ak|−α − |t− bk|−α

)
+ cα|t− aN |−α

for all t ∈ R with t ̸= a1, b1, . . . , aN−1, bN−1, aN , where cα > 0 depends on α only. Since
N ≥ 2, we have ∇αχM(t) < 0 in an open neighborhood of b1, contradicting (i). We thus
must have N = 1 and so M = (a1,+∞) for some a1 ∈ R, concluding the proof. □

2.8. Proof of Theorem 1.10. Let χF ∈ Wα,1(Rn). By Theorem 1.1, we have χE∩F ∈
BV α,∞

loc (Rn) with Dα
s χE∩F = χF 1Dα

s χE in Mloc(Rn;Rn). If |E∩F | = |F |, then χE∩F = χF

and so χF 1|Dα
s χE| = |Dα

s χE∩F | = |Dα
s χF | = 0. If instead |E ∩F | = 0, then χE∩F = 0 and

so again χF 1|Dα
s χE| = |Dα

s χE∩F | = 0. Therefore |Dα
s χE|(F 1) = 0 whenever |Ec ∩ F | = 0

or |E ∩F | = 0. Taking F = Br(x) for x ∈ Rn and r > 0, we get supp |Dα
s χE| ⊂ ∂−E. □

2.9. Proof of Theorem 1.12. We prove each statement separately.
Proof of (i). Without loss of generality, we may assume that x = 0 and να

E(0) = en.
By [10, Prop. 2.1], we must have F = λF for all λ > 0. Due to Theorem 1.7, this implies
that F = Rn−1×M for some M ⊂ R such that M = λM for all λ > 0. Since 0 ∈ F α

e E, we
must have M ̸= ∅,R. As a consequence, |M | = +∞ by Theorem 1.7(ii). It is now plain
to see that either M = (0,+∞) or M = (−∞, 0), but the latter case is automatically
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excluded by points (iii) and (iv) of Theorem 1.7. We thus get that F = H+
en

(0), as claimed.
The remaining part of the statement is a simple application of [9, Def. 1.1 and Th. 1.2].

Proof of (ii). By [13, Prop. 3.1], we know that H n−α(∂∗E) = 0. Since F α
e E ⊂ ∂∗E

by Definition 1.11, we thus get that H n−α(F α
e E) = 0 as well.

Proof of (iii). Let x ∈ FE. By (iii) in Theorem 1.6 and by Proposition 1.13, we have

lim
r→0+

|DαχE|(BrR(x))
(rR)n−α

= lim
r→0+

|DαχE−x
r

|(BR) = |DαχH+
νE(x)

|(BR) > 0

for all R > 0. Hence, there exists rx > 0 such that
|DαχE|(Bϱ(x)) > 0 for any ϱ ∈ (0, rx). (2.14)

Moreover, by (i) and (ii) in Theorem 1.6 and by Proposition 1.13, we have

lim
r→0+

DαχE(Br(x))
|DαχE|(Br(x)) =

∫
B1

∇αχH+
νE(x)

dy∫
B1

|∇αχH+
νE(x)

| dy
= νE(x). (2.15)

The limits in (2.14) and (2.15) thus imply that x ∈ F αE with να
E = νE on FE.

Since FE ⊂ ∂∗E, we get FE ⊂ F α
e E. The conclusion thus follows by recalling that

H n−1(∂∗E) < +∞ and H n−1(∂∗E \ FE) = 0, see [12, Th. 16.2] for instance. □

2.10. Proof of Proposition 1.15. Without loss of generality, we can assume x0 = 0
and r = 1. By [4, Th. 3.18, Eq. (3.26)] (applied to f = χB1), we have

∇αχB1(x) = − µn,α

n+ α− 1

∫
∂B1

y

|x− y|n+α−1 dH n−1(y)

for all x ∈ Rn \ ∂B1. Changing variables, we easily get that∫
∂B1

y

|x− y|n+α−1 dH n−1(y) = x

|x|

∫
∂B1

y1

||x|e1 − y|n+α−1 dH n−1(y)

for all x ∈ Rn with |x| ≠ 0, 1, since
∫

∂B1

yi

||x|e1 − y|n+α−1 dH n−1(y) = 0 for i ∈ {2, . . . , n}

by symmetry. We also notice that∫
∂B1

y1

||x|e1 − y|n+α−1 dH n−1(y)

=
∫

∂B1∩{y1>0}
y1

(
1

((|x|−y1)2+|ŷ1|2)
n+α−1

2
− 1

((|x|+y1)2+|ŷ1|2)
n+α−1

2

)
dH n−1(y) > 0

for all x ∈ Rn with |x| ≠ 0, 1. Hence, we can write

∇αχB1(x) = − µn,α

n+ α− 1 gn,α(|x|) x

|x|
(2.16)

for all x ∈ Rn with |x| ≠ 0, 1, where

gn,α(t) =
∫

∂B1

y1

|te1 − y|n+α−1 dH n−1(y) > 0

for all t ≥ 0. We now claim that

να
B1(x) = − x

|x|
for all x ̸= 0. (2.17)
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Indeed, since ∣∣∣∣∣∣∣∣∣∣

∫
Br(x)

(
y

|y|
− x

|x|

)
gn,α(|y|) dy∫

Br(x)
gn,α(|y|) dy

∣∣∣∣∣∣∣∣∣∣
≤ sup

y∈Br(x)

∣∣∣∣∣ y|y|
− x

|x|

∣∣∣∣∣ ,
by (2.16) we have

lim
r→0+

∫
Br(x)

∇αχB1(y) dy∫
Br(x)

|∇αχB1(y)| dy
= − lim

r→0

∫
Br(x)

y

|y|
gn,α(|y|) dy∫

Br(x)
gn,α(|y|) dy

= − x

|x|
,

proving (2.17). If x = 0, then
∫

Br

y

|y|
gn,α(|y|) dy = 0 by symmetry, so that

lim
r→0+

∫
Br

∇αχB1(y) dy∫
Br

|∇αχB1(y)| dy
= lim

r→0+

∫
Br

y

|y|
gn,α(|y|) dy∫

Br

gn,α(|y|) dy
= 0.

Consequently, F αB1 = Rn \ {0}, F α
e B1 = ∂B1 = FB1 and να

B1 = νB1 on ∂B1. □
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