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Abstract. In this paper we prove a new rigidity results for complete, possibly non-
compact, critical metrics of the quadratic curvature functional S2 =

∫
R2

gdVg: we show
that critical metrics (Mn, g) with finite energy are always scalar flat, i.e. global minima,
provided n ≥ 10.
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1. Introduction

This paper is devoted to the study of critical metrics for the quadratic curvature func-
tional

S2 =

∫
R2

gdVg.

To fix the notation, letMn, n ≥ 2, be a n–dimensional smooth manifold without boundary.
Given a Riemannian metric g onMn, we denote with Riemg,Wg, Ricg and Rg, respectively,
the Riemann curvature tensor, the Weyl tensor, the Ricci tensor and the scalar curvature.
It is well known that a basis for the space of quadratic curvature functionals, defined on
the space of smooth metrics on Mn, is given by

W2 =

∫
|Wg|2dVg , r2 =

∫
|Ricg|2dVg , S2 =

∫
R2

gdVg.

The only quadratic functional in the case n = 2 is given by S2, while in dimension n = 3
one only has S2 and r2. From the standard decomposition of the Riemann tensor, for
every n ≥ 4, one has

R2 =

∫
|Riemg |2dVg =

∫ (
|Wg|2 +

4

n− 2
|Ricg|2 −

2

(n− 1)(n− 2)
R2

g

)
dVg .

Such functionals have attracted a lot of attention from the mathematics’ and physicists’
communities in recent years. In particular, in [5] (see also references therein) we proved
rigidity results for critical metrics of the functional S2 and for the functional

F2
t =

∫
|Ricg|2dVg + t

∫
R2

gdVg ,
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for suitable values of the parameter t ∈ R. As far as the functional S2 is concerned, we
showed that in case n = 2 all critical metrics are flat, and thus they are global minima of
the functional. The same result holds also when n = 3, under the additional hypothesis
that Rg ∈ Lq(M3) for some q ∈ (1,∞). The dimension n = 4 is special, as in this case
critical metrics turn out to have harmonic scalar curvature. Thus, if M4 is compact, then
it is scalar flat, or it has constant scalar curvature and it is Einstein; on the other hand,
if M4 is complete, non-compact and Rg ∈ Lq(M4) for some q ∈ (1,∞), then a classical
result of Yau implies that M4 has constant scalar curvature, and hence it is scalar flat or
Einstein with finite volume. Finally, when n ≥ 5 we showed that there exists q∗ > 2 such
that a critical metric of S2 having scalar curvature Rg which is bounded from below and
satisfying Rg ∈ Lq(Mn) for q ∈ (1, q∗) must be scalar-flat, and thus it is a global minimum
of the functional.

We conjecture however that the condition that Rg is bounded from below in the above
results, when n ≥ 5, is indeed not necessary, i.e.

Conjecture 1.1. Let (Mn, g), n ≥ 5, be a complete critical metric ofS2 with finite energy.
Then (Mn, g) is scalar flat, and thus a global minimum of the functional S2.

We also raise the question whether a finite energy assumption Rg ∈ Lq(Mn) is necessary,
in order to deduce that a complete non-compact critical metric of S2 must be scalar flat,
for n ≥ 3, n ̸= 4.

We recall that the Euler–Lagrange equation for a critical metric of S2 can be computed
by using variations with compact support and is given by

2RRic− 2∇2R + 2∆Rg =
1

2
R2 g ,

or, equivalently,

RRic−∇2R =
3

4(n− 1)
R2 g , (1.1)

∆R =
n− 4

4(n− 1)
R2 , (1.2)

where equation (1.2) is just the trace of (1.1) (see also Proposition 4.66 in Besse’s book
[2]; note that, in Corollary 4.67, Besse restricts the functional S2 to unit-volume metrics).

The main result of this paper is the following Theorem, where we give an affirmative
answer to Conjecture 1.1 in case n ≥ 10, thus improving our [5, Teorem 1.5] in this range
of dimensions: indeed, we have the following

Theorem 1.2. Let (Mn, g), n ≥ 10, be a complete critical metric of S2 with finite energy,
i.e. Rg ∈ L2(Mn). Then (Mn, g) is scalar flat, and thus a global minimum of the functional
S2.

We actually show our result under the slightly weaker assumption that Rg ∈ Lq(M) for
some q ∈ (1, q∗), for a suitable explicit q∗ > 2.
Our proof relies on a preliminary result that guarantees that a critical metric for S2

with Rg ∈ Lq(M) for some q ∈ (1,∞) and n ≥ 5 must have either identically vanishing or
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strictly negative scalar curvature. We explicitly note that there exist no critical metric for
the S2 functional with Rg positive and n ̸= 4; indeed any such metric should have constant
scalar curvature, thus it can exist only when n = 4 and (M, g) is Einstein, see [4]. The
weaker assumption Rg ≥ 0 is enough to conclude, using the strong maximum principle, in
dimensions n ≤ 4. The case when the scalar curvature may change sign, and thus it must
have infinite energy, remains an interesting and completely open problem.

In order to prove our main theorem we show that, under our assumptions, there exists
no critical metric with negative scalar curvature. Indeed, if Rg < 0 we can perform the
conformal change of the metric

g̃ = |Rg|
6

n−4 g (1.3)

to produce a “steady quasi-Einstein structure” (in particular a steady Ricci soliton if
n = 10), i.e. it satisfies

Ricg̃ +∇2
g̃f − n− 10

4(n− 1)
df ⊗ df = 0

with

f =
2(n− 1)

n− 4
log |R|.

Note that n−10
4(n−1)

≥ 0 when n ≥ 10, while it is negative for 5 ≤ n ≤ 9. This “confor-

mal technique” has been used in the literature, for instance by Anderson in the context
of stationary space-times [1], by Fischer–Colbrie [7] to study stable minimal surfaces in
R3 and, more recently, further exploited to study the stable Bernstein problem in R3

by Catino–Mastrolia–Roncoroni [6] or minimally immersed submanifold in the sphere by
Magliaro–Mari–Roing–Savas-Halilaj [8].

Using lower bounds on the scalar curvature of g̃ we are able to deduce a gradient estimate
on Rg, which then allows us to conclude that Rg must actually vanish everywhere if it
belongs to Lq(M) for q ∈ (1, q∗), for a suitable q∗ > 2, similarly as we did in [5]. A key
step in this construction is to show completeness of the conformal metric g̃, that we are
able to obtain when n ≥ 10.
We also explicitly comment on the estimates on the scalar curvature of g̃ that we use to

obtain the gradient estimate on Rg: we rely on results which are already available in the
literature concerning nonnegativity of the scalar curvature for steady Ricci solitons (when
n = 10) and for steady quasi-Einstein manifolds (when n ≥ 11).

Note that Conjecture 1.1 for 5 ≤ n ≤ 9 and the question whether a finite energy
assumption on Rg is necessary in order to prove that a critical metric for S2 must be
scalar flat remain still open.

The rest of the paper is organized as follows. In Section 2 we show that the conformal
change of the metric (1.3) gives rise to a quasi-Einstein manifold (Mn, g̃), while in Section 3
we prove that g̃ is complete under the hypotheses of Theorem 1.2. In Section 4 we provide
the proof of Theorem 1.2
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Probabilità e le loro Applicazioni of Indam. The first and second authors are partially
funded by 2022 PRIN project 20225J97H5 “Differential Geometric Aspects of Manifolds
via Global Analysis”.

2. Conformal quasi-Einstein manifolds

From now on we will drop the subscript g in the notation of geometric objects. First of
all we recall the following Lemma (see Lemma 5.1 in [5]):

Lemma 2.1. Let (Mn, g), n ≥ 5, be a complete, non-compact, critical metric of S2 with
R ∈ Lq(Mn) for some 1 < q <∞. Then (Mn, g) has non-positive scalar curvature.

Now, if n ≥ 5, then by (1.2) R is subharmonic, therefore Lemma 2.1 and the strong
maximum principle imply the following

Corollary 2.2. Let (Mn, g), n ≥ 5, be a complete, non-compact critical metric of S2 with
R ∈ Lq(Mn) for some 1 < q < ∞. Then (Mn, g) is either scalar flat or it has negative
scalar curvature.

From now on we will assume that (Mn, g), n ≥ 5, is a complete, non-compact, critical
metric of S2 with R ∈ Lq(Mn) for some 1 < q < ∞ and with negative scalar curvature.
Let u := −R > 0 on M . From the critical equations, we have

Ric =
∇2u

u
− 3

4(n− 1)
u g , (2.1)

∆u = − n− 4

4(n− 1)
u2 , (2.2)

Proposition 2.3. Let (Mn, g), n ≥ 5, be a critical metric of S2 with negative scalar
curvature. Then, for all R ∋ k ̸= 0, 1

n−2
, the conformal metric

g̃ = |R|2kg = u2kg

satisfies

Ricg̃ +∇2
g̃f − 1 + 2k − (n− 2)k2

[(n− 2)k − 1]2
df ⊗ df =

(n− 4)k − 3

4(n− 1)
e

1−2k
(n−2)k−1

f g̃ (2.3)

with
f = [(n− 2)k − 1] log |R| = [(n− 2)k − 1] log u.

Proof. Since f = [(n− 2)k − 1] log |R| = [(n− 2)k − 1] log u, we have

df = [(n− 2)k − 1]
dR

R
= [(n− 2)k − 1]

du

u
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and

∇2
gf = [(n− 2)k − 1]

(∇2
gu

u
− du⊗ du

u2

)
,

which implies

∆gf = [(n− 2)k − 1]

(
∆gu

u
−

|∇gu|2g
u2

)
.

On the other hand, from the standard formulas for a conformal change of the metric
g̃ = e2φg, φ ∈ C∞(M), φ > 0 we get

Ricg̃ = Ricg − (n− 2)
(
∇2

gφ− dφ⊗ dφ
)
−
[
∆gφ+ (n− 2)|∇gφ|2g

]
g

and

∇2
g̃f = ∇2

gf − (df ⊗ dφ+ dφ⊗ df) + g (∇f,∇φ) g.
Note that, in our case, φ = k log u; now we exploit the fact that u satisfies equations (2.1)
and (2.2) to conclude that

Ricg̃ +∇2
g̃f − 1 + 2k − (n− 2)k2

[(n− 2)k − 1]2
df ⊗ df =

(n− 4)k − 3

4(n− 1)
e

1−2k
(n−2)k−1

f g̃.

□

Corollary 2.4. Let (Mn, g), n ≥ 5, be a critical metric of S2 with negative scalar curva-
ture. Then the conformal metric

g̃ = |R|
6

n−4 g

satisfies

Ricg̃ +∇2
g̃f − n− 10

4(n− 1)
df ⊗ df = 0 (2.4)

with

f =
2(n− 1)

n− 4
log |R|.

3. Completeness of the conformal metric

In this Section we show that, under the hypotheses of Theorem 1.2, if R is negative on
M then the conformal metric

g̃ = |R|
6

n−4 g

is complete on M . We have the following result, which holds for n ≥ 10:

Proposition 3.1. Let (Mn, g), n ≥ 10, be a complete, non-compact, critical metric of S2

with negative scalar curvature. Then, the conformal metric

g̃ = |R|
6

n−4 g

is complete.
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Proof. Let u = −R > 0 and 3
n−4

≤ k < 1. As shown in [7, Theorem 1], given a fixed
reference point o ∈Mn, we can construct a g̃-minimizing geodesic

γ(s) : [0,∞) →Mn,

where s is the g-arclength. For the sake of completeness, we report the argument here.
First of all, for every ρ > 0, we consider the geodesic ball (of g) centered at o of radius ρ,
Bρ(o). Then, we first claim that there exists a g̃-minimizing geodesic joining o to the closest
(in g̃) boundary point of Bρ(o). Indeed, consider uρ := u + η, where η is a non-negative
smooth function such that η ≡ 0 in Bρ(o) and η ≡ 1 on Bc

ρ+1(o). Since uρ is bounded
below away from 0, the metric

g̃ρ = u2kρ g

is complete, and thus there exist g̃ρ-minimizing geodesics joining o to any boundary point
of Bρ(o). Now let ρi > 0 be a sequence of radii monotonically diverging to +∞. For every
ρi > 0, since ∂Bρi(o) is compact, there exists xi ∈ ∂Bρi(o) so that xi is closest (in g̃ρi) to
o. Let γi be the g̃ρi-minimizing geodesic joining o to xi. Note that γi ⊂ Bρi(o), and since
uρi = u in Bρi(o), then γi is a g̃-minimizing geodesic. We parametrize γi with respect to
g-arclength. In particular, since |γ̇i(s)|g = 1 for every s, up to subsequences, the sequence
γ̇i(0) converges to a limit vector as ρi → ∞. Thus, by ODE theory and Ascoli-Arzelà, γi
converge on compact sets of [0,∞) to a limiting curve γ which is a g̃-minimizing geodesic
and is parametrized by g-arclength.

We observe that the completeness of the metric g̃ = u2kg will follow if we can show that
the g̃-length of γ is infinite, i.e. ∫

γ

ds̃ =

∫
γ

uk ds = +∞.

Indeed, by construction, the g̃-length of every other divergent geodesic starting from o (i.e.
its image does not lie in any ball Bρ(o)) must be greater than or equal to that of γ.

Since γ is g̃-minimizing, by the second variation formula one has∫ r̃

0

(n− 1)

(
dφ

ds̃

)2

− R̃11φ
2 ds̃ ≥ 0, (3.1)

for all φ ∈ Vr̃, where we set

Vr̃ = {φ ∈ C0([0,∞)) |φ(s) = φ(0) = 0 ∀s ≥ A, φ ∈ C2([0, A]) for some 0 < A < r̃},

V := V∞ and where r̃ is the length of γ in the metric g̃ and

R̃11 = R̃ic

(
dγ

ds̃
,
dγ

ds̃

)
.

From [9, Appendix], we have

R̃11 = u−2k

{
R11 − k(n− 2)(log u)ss − k

∆u

u
+ k

|∇u|2

u2

}
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where R11 = Ric(e1, e1) = Ric
(
dγ
ds
, dγ
ds

)
. Using the critical equation (2.1) and [9, Appendix]

we obtain

R11 =
∇2

11u

u
− 3

4(n− 1)
u g11

= ∇2
11 log u+ |(log u)s|2 −

3

4(n− 1)
u

= (log u)ss − k|(∇ log u)⊥|2 + |(log u)s|2 −
3

4(n− 1)
u

where (∇ log u)⊥ is the component of ∇ log u perpendicular to dγ
ds
. Therefore, from (2.2),

we get

R̃11 = u−2k

{
[1− (n− 2)k](log u)ss +

(n− 4)k − 3

4(n− 1)
u+ |(log u)s|2 + k|∇ log u|2 − k|(∇ log u)⊥|2

}
= u−2k

{
[1− (n− 2)k](log u)ss +

(n− 4)k − 3

4(n− 1)
u+ (1 + k)|(log u)s|2

}
.

From inequality (3.1), since k ≥ 3
n−4

, we obtain

(n− 1)

∫ +∞

0

(φs)
2u−k ds

≥
∫ +∞

0

φ2u−k

{
[1− (n− 2)k](log u)ss +

(n− 4)k − 3

4(n− 1)
u+ (1 + k)|(log u)s|2

}
ds

≥
∫ +∞

0

φ2u−k
{
[1− (n− 2)k](log u)ss + (1 + k)|(log u)s|2

}
ds,

for all φ ∈ V . Integrating by parts, we obtain∫ +∞

0

φ2u−k(log u)ss ds = −2

∫ +∞

0

φu−k−1φsus ds+ k

∫ +∞

0

φ2u−k−2(us)
2 ds,

and thus

(n− 1)

∫ +∞

0

(φs)
2u−k ds ≥ −2[1− (n− 2)k]

∫ +∞

0

φu−k−1φsus ds

+ [1 + 2k − k2(n− 2)]

∫ +∞

0

φ2u−k−2(us)
2 ds.

Let now φ = ukψ, with ψ ∈ V . We have

φ2u−k = ukψ2,

φs = kψuk−1us + ukψs,

(φs)
2u−k = k2ψ2uk−2(us)

2 + uk(ψs)
2 + 2kψψsu

k−1us,
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and substituting in the previous relation we get

(n− 1)

∫ +∞

0

(ψs)
2uk ds ≥ −2(1 + k)

∫ +∞

0

ψuk−1ψsus ds (3.2)

+ [1− k2]

∫ +∞

0

ψ2uk−2(us)
2 ds.

Integration by parts gives

I :=

∫ +∞

0

ψuk−1ψsus ds = −1

k

∫ +∞

0

(ψs)
2uk ds− 1

k

∫ +∞

0

ψ ψssu
k ds

Moreover, for every t > 1 and, completing the square, for every ε > 0, we have

2(1 + k)I = 2(1 + k)tI + 2(1 + k)(1− t)I

= −2t(1 + k)

k

∫ +∞

0

uk(ψs)
2 ds− 2t(1 + k)

k

∫ +∞

0

ψψssu
k ds

+ 2(1 + k)(1− t)

∫ +∞

0

ψψsu
k−1us ds

= −2t(1 + k)

k

∫ +∞

0

uk(ψs)
2 ds− 2t(1 + k)

k

∫ +∞

0

ψψssu
k ds (3.3)

+ (1 + k)(t− 1)ε

∫ +∞

0

ψ2uk−2(us)
2 ds+

(1 + k)(t− 1)

ε

∫ +∞

0

uk(ψs)
2 ds

+
(1 + k)(1− t)

ε

∫ +∞

0

uk
(
ψs + εu−1usψ

)2
ds.

Since k < 1, choosing

ε :=
1− k

t− 1
we obtain

2(1 + k)I = −2t(1 + k)

k

∫ +∞

0

ψψssu
k ds+ (1− k2)

∫ +∞

0

ψ2uk−2(us)
2 ds

+

[
(1 + k)(t− 1)2

1− k
− 2t(1 + k)

k

] ∫ +∞

0

uk(ψs)
2 ds

− (1 + k)(1− t)2

1− k

∫ +∞

0

uk
(
ψs +

1− k

t− 1
u−1usψ

)2

ds.

Therefore, from (3.2), we obtain

0 ≤
[
(1 + k)(t− 1)2

1− k
− 2t(1 + k)

k
+ (n− 1)

] ∫ +∞

0

uk(ψs)
2 ds− 2t(1 + k)

k

∫ +∞

0

ψψssu
k ds

− (1 + k)(1− t)2

1− k

∫ +∞

0

uk
(
ψs +

1− k

t− 1
u−1usψ

)2

ds (3.4)



UNIQUENESS OF CRITICAL METRICS FOR A QUADRATIC CURVATURE FUNCTIONAL 9

for every t > 1. Let

P (t) :=
(1 + k)(t− 1)2

1− k
− 2t(1 + k)

k
+ (n− 1)

A computation shows that P (t) ≤ 0 for some t > 1 if and only if

(1 + k)(1− k)[1 + 2k − (n− 2)k2] ≥ 0.

Choose k = 3
n−4

.

If n > 10, then (1 + k)(1− k)[1 + 2k− (n− 2)k2] > 0 and thus P (t) < 0 for some t > 1.
Therefore, we deduce

0 ≤ −
∫ +∞

0

uk(ψs)
2 ds− C

∫ +∞

0

ukψψss ds

for some C > 0 and every ψ ∈ V . Now we choose ψ = sη with η smooth with compact
support in [0,+∞): thus

ψs = η + sηs, ψss = 2ηs + sηss,

and we get ∫ +∞

0

ukη2 ds ≤
∫ +∞

0

uk
(
−2(C + 1)sηηs − Cs2ηηss − s2(ηs)

2
)
ds.

Choose η so that η ≡ 1 on [0, R], η ≡ 0 on [2R,+∞) and with |ηs| and |ηss| bounded by
C/R and C/R2, respectively, for R ≤ s ≤ 2R and for some C independent of R. Then∫ R

0

uk ds ≤
∫ +∞

0

ukη2 ds ≤ C

∫ +∞

R

uk ds

for some C > 0 independent of R. We conclude that∫ +∞

0

uk ds = +∞,

i.e. g̃ = u2kg = u
6

n−4 g is complete, if n > 10.

If n = 10, then k = 1/2 and (1 + k)(1 − k)[1 + 2k − (n − 2)k2] = 0. In this case. it is
easy to verify that P (t) = 3(t− 2)2. Choose t = 2. From (3.4), since ε = 1/2, we obtain∫ +∞

0

uk
(
ψs +

1

2
u−1usψ

)2

ds ≤ −C
∫ +∞

0

ukψψss ds

for some C > 0 and for every ψ ∈ V . Assume, by contradiction, that uk is integrable.
Choosing again ψ = sη with η smooth so that η ≡ 1 on [0, R], η ≡ 0 on [2R,+∞) and
with |ηs| and |ηss| bounded by C/R and C/R2, respectively, for R ≤ s ≤ 2R and for some
C independent of R, we get that the right hand side tends to zero as R tends to +∞. By
Fatou’s lemma we obtain su−1us = −2. Therefore, u(s) = Cs−2, which contradicts the
fact that uk = u1/2 is integrable. Therefore g̃ = u2kg = ug is complete also if n = 10. □
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4. Proof of Theorem 1.2

Proof of Theorem 1.2. Let (Mn, g), n ≥ 10, be a complete critical metric of S2 with R ∈
Lq(Mn) for some 1 < q < q∗ = 7n−10

2(n−4)
. First of all, if Mn is compact, then integrating

(1.2) over Mn we get R ≡ 0 on Mn. In case Mn is non-compact, from Corollary 2.2, either
R ≡ 0 or R < 0 on Mn. In the latter case we consider the conformal metric

g̃ = |R|
6

n−4 g,

which is complete by Proposition 3.1 and satisfies (2.4). In particular (Mn, g̃) is a complete
steady gradient Ricci soliton, if n = 10, or a complete steady quasi-Einstein manifold, if
n > 10. In both cases, it is well known (see [3] and [10, Theorem 1.4]) that the scalar
curvature of g̃ must be nonnegative. By the formula for the conformal change, we obtain

0 ≤ R̃ = e−2w
(
R− 2(n− 1)∆w − (n− 1)(n− 2)|∇w|2

)
= u−

6
n−4

(
−u− 6(n− 1)

n− 4

∆u

u
+

6(n− 1)

n− 4

|∇u|2

u2
− 9(n− 1)(n− 2)

(n− 4)2
|∇u|2

u2

)
= u−

6
n−4

(
1

2
u− 3(n− 1)(n+ 2)

(n− 4)2
|∇u|2

u2

)
(4.1)

where we used w = 3
n−4

log u as in the proof of Proposition 2.3, R = −u and (2.2). Thus

|∇u|2 ≤ (n− 4)2

6(n− 1)(n+ 2)
u3. (4.2)

Fixing O ∈Mn, arguing as in [5, Corollary 5.7], from (4.2), we obtain

u(x) ≥ c1
c2 + dg(x,O)2

(4.3)

for every x ∈ Mn and some positive constants ci = ci(n, u(O)), i=1,2. Now the result
follows as in the proof of [5, Theorem 1.5]. For the sake of completeness we include the
proof.

Let η be a smooth cutoff function such that η ≡ 1 on Bs(O), η ≡ 0 on Bc
2s(O), 0 ≤ η ≤ 1

on Mn and |∇η| ≤ c
s
for every s≫ 1 with c > 0 independent of s.

Then, using (2.2) and (4.2) we get

n− 4

4(n− 1)

∫
M

uqη2 dVg = −
∫
M

∆uuq−2η2 dVg

= (q − 2)

∫
M

|∇u|2uq−3η2 dVg + 2

∫
M

uq−2⟨∇u,∇η⟩η dVg

≤ (n− 4)2 max {q − 2, 0}
6(n− 1)(n+ 2)

∫
M

uqη2 dVg +
C

s

∫
B2s(O)\Bs(O)

uq−
1
2 dVg,
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for some C > 0. By (4.3)

n− 4

4(n− 1)

∫
M

uqη2 dVg ≤
(n− 4)2 max {q − 2, 0}

6(n− 1)(n+ 2)

∫
M

uqη2 dVg + C
(1 + s2)

1
2

s

∫
Bc

s(O)

uq dVg.

(4.4)
Thus, if u ∈ Lq(Mn), we obtain

(n− 4)2

6(n− 1)(n+ 2)

[
3(n+ 2)

2(n− 4)
−max {q − 2, 0}

] ∫
M

uqη2 dVg ≤ C
(1 + s2)

1
2

s

∫
Bc

s(O)

uq dVg −→ 0,

as s→ +∞. This yields u ≡ 0, if

1 < q < q∗ = 2 +
3(n+ 2)

2(n− 4)
= 7n−10

2(n−4)
,

which is a contradiction. This concludes the proof of Theorem 1.2. □

Remark 4.1. Note that the gradient estimate (4.2) improves the one in [5, Lemma 5.5] (see
also Remark 5.6 there for the explicit expression of the constant), since it is possible to show

that, for every n ≥ 10, the constant (n−4)2

6(n−1)(n+2)
is always smaller than the corresponding

constant appearing there. As a consequence, we see that the conclusion of Theorem 1.2
follows assuming R ∈ Lq(Mn) with 1 < q < 7n−10

2(n−4)
, thus improving, for n ≥ 10, [5, Theorem

1.5] also in this respect.
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