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Abstract

This article is devoted to the convergence analysis of the diffusive approximation of the
measure-valued solutions to the so-called aggregation equation, which is now widely used to
model collective motion of a population directed by an interaction potential. We prove, over
the whole space in any dimension, a uniform-in-time convergence in Wasserstein distance in all
finite-time intervals, in the general framework of Lipschitz continuous potentials, and provide a
Op

?
εq rate, where ε is the diffusion parameter, when the potential is λ´convex. We give an

extension to some repulsive potentials and prove sharp convergence rates of the steady states
towards the Dirac mass, under some uniform attractiveness assumptions.

1 Introduction

This paper addresses the vanishing viscosity limit ε Ñ 0 for the following aggregation-diffusion
problem on the whole space Rd, in any dimension d:

Btρ
ε ` ∇ ¨ parρεsρεq “ ε∆ρε, (1.1a)

arρεs “ ´∇W ˚ ρε, (1.1b)
ρεp0, ¨q “ ρε0, (1.1c)

where ε ą 0, W : Rd Ñ R is a given interaction potential and the sequence of initial data pρε0qεą0

belongs to P2pRdq the set of probability measures with finite second order moment, and converges
as ε goes to 0 towards a given ρini P P2pRdq.

Equation (1.1a)–(1.1b) is often used in population dynamics to describe the collective motion of a
population subject to Brownian diffusion and interacting through the interaction potential W . The
term ∇W ˚ ρεpxq models the combined contribution of the interaction of a particle located at point
x with particles at all other points. These equations appear in several applications arising from
physics and biology to model, for instance, swarming, chemotaxis, crowd motion, bird flocks, or fish
schools, see, e.g., [29, 6, 42, 41, 15, 20]. The potential W depends on the model we consider. For
example, the celebrated parabolic-elliptic Patlak-Keller-Segel model [24, 25] for chemotaxis with an
adequate set of parameters corresponds to the aggregation-diffusion equation in dimension d “ 2 for
the logarithmic potential W pxq “ 1

2π lnp|x|q.

In this work, we assume that the interaction potential W satisfies the following properties:
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(A0) For all x P Rd, W pxq “ W p´xq and W p0q “ 0,

(A1) W P C1pRdzt0uq,

(A2) W is a8-Lipschitz continuous, for some constant a8 ě 0 (nevertheless this assumption is not
done in Section 5).

In addition, some of our results only hold under one of the following supplementary assumptions:

(A3) W is λ´convex for some λ ď 0, that is, x ÞÝÑ W pxq ´ λ
2 |x|2 is convex,

(A4´p) There exists a constant C ą 0 such that, for all x P Rd, ∇W pxq ¨ x ě C|x|p,

where p ě 1. Potentials satisfying assumptions (A0)-(A1)-(A2)-(A3) but not differentiable at the
origin are often referred to as pointy [11, 13, 27]. These hypothesis exclude the Patlak-Keller-Segel
system from the analysis above, system in which the singularities are much more complicate to
understand (and can appear also for ε ą 0).

Remark 1.1. Note that assumption (A2) is incompatible with assumption (A4´p) whenever p ą 1,
thus when the latter is done, it is done instead of (A2). This is the reason why we only consider λ ď 0
in (A3), since (A3) with λ ą 0 implies (A4-2) (incompatible with (A2)). Still, when studying well-
posedness of inviscid aggregation equations, the case λ ą 0 can be tackled considering compactly
supported data for, in that case, the support decreases in time (see [13] Theorem 2.1 and [9] Remark
2.14): as a consequence only the local behavior of W matters. When ε ą 0, it is not clear however
that we can reproduce this argument.

When the potential is pointy, finite time blowup of weak solutions occurs [2, 3] for the inviscid
problem:

Btρ` ∇ ¨ parρsρq “ 0, (1.2a)
arρs “ ´∇W ˚ ρ, (1.2b)

ρp0, ¨q “ ρini, (1.2c)

After blowup time, the solutions being possibly singular measures, the product arρsρ is no longer well-
defined. For λ´convex potentials, the continuation of weak solutions valued in P2pRdq has therefore
been studied through three different approaches: gradient flow solutions in the Wasserstein space
[9], duality solutions à la Bouchut-James [21, 20] in one dimension of space and Filippov solutions
[11, 27]. These notions of solutions turn out to be equivalent to that of solutions in the sense of
distributions provided the velocity field arρs is replaced by:

parρspxq “ ´

ż

y‰x
∇W px´ yqρpdyq “ ´z∇W ˚ ρpxq (1.3)

where z∇W is defined as
z∇W pxq “

"

∇W pxq if x P Rdzt0u,
0 if x “ 0.

(1.4)

Our objective in this paper is to study the convergence of the viscous solutions pρεqεą0 towards
such a weak measure solution to (1.2). When W is λ´convex, these asymptotics had previously
been mentioned in [8], where the authors explain how to use the techniques for the Γ´convergence
of gradient flows developed by Serfaty in [36]. Our method basically relies on the same arguments
which actually do not require the λ´convexity of the potential but only its Lipschitz continuity –
along with the standard assumptions (A0)-(A1) (for other works with potentials that are Lipschitz
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continuous but not λ-convex, called repulsive, see for example [32] and reference therein). Starting
from the so-called Energy Dissipation Equality (EDE) for the viscous problem (1.1), we prove
lower bounds of lower semicontinuity-type on each term of the EDE. This amounts to verifying
the assumptions of Theorem 2 in [36]; if, in addition, the initial data is well-prepared, then we meet
all the hypotheses of this theorem. However, we deliberately pass to the limit by hand, so as not to
invoke abstract gradient flow arguments. Therefore, our proof is self-contained for the reader with
minimal background regarding optimal transport. In particular, in our Theorem 3.1 we recover, at
the limit ε Ñ 0, the right definition of the velocity field for (1.2) as defined in (1.3).

We generalize this result in Corollary 3.4 to arbitrary P2pRdq initial data converging in Wasserstein
distance towards the initial datum ρini of the inviscid problem, when W is, in addition, λ´convex.
This is done by smoothing out the initial data and estimating the distance to the modified solutions
at time t, which is possible since the interaction energy is λ´geodesically convex. We then provide
a convergence rate based on the differentiation formula of the Wasserstein distance between two
absolutely continous curves on the Wasserstein space. Note that, for the Newtonian potential, the
vanishing viscosity limit had been established in [12] in dimension d ě 2 and up to the time of
existence of weak solutions in L1 XL8 but, to the best of our knowledge, without convergence rates.

This article is structured as follows.
In Section 2 we recall some useful results and definitions regarding optimal transport and func-

tionals defined over the Wasserstein spaces.
The main results concerning the convergence as ε tends to 0 for the evolutive equation are con-

tained in Sections 3 and 4.

• In Section 3, in the framework of Lipschitz potentials, we begin with the general convergence
result of the diffusive solutions pρεqεą0 towards a solution ρ to the inviscid problem (1.2) for
well-prepared initial data. We then relax some of our assumptions on the initial data and focus
on λ´convex potentials, for which we prove that convergence still holds for arbitrary initial
data pρε0qεą0 converging towards ρini.

• We then prove that convergence occurs at rate Op
?
εq in Wasserstein distance. This is done

with two different methods. The first relies on differentiating in time the distance W2 between
two smooth solutions and exploits the previously proven unquantified convergence. The second
is based on the convergence estimates of an upwind-type scheme for the inviscid problem due
to the first author with Delarue and Vauchelet [14, 13].

• Later, in Section 4, we show that convergence (without convergence rate) still holds, up to an
extraction, for repulsive potentials that behave like W pxq “ ´|x|. The idea is to estimate, as
in the λ´convex case, the distance between solutions associated with smoothed out initial data
and solutions associated with a fixed initial datum ρini. This is done by differentiating the
Wasserstein distance between solutions and proving appropriate estimates on the aggregation
velocity field using an additional integrability assumption on ∇2W .

Section 5 is devoted to the study of the stationary problem and, in particular, we provide higher
convergence rates for the viscous steady states towards the unique steady state of the aggregation
equation, that is, up to translations, the Dirac mass, when the interaction potential satisfies the key
assumption (A4-1) but is not necessarily Lipschitz continuous. Under assumption (A4´p) for an
arbitrary p ě 1, estimates are also obtained and proved to be sharp for p “ 2.

We eventually illustrate our convergence results in Section 6 and observe all the proven convergence
rates.

Acknowledgments: The authors are indebted to Benoît Fabrèges for crucial help with the
numerical code. FS acknowledges the support of the Lagrange Mathematics and Computation
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Research Center project on Optimal Transportation and of the European Union via the ERC AdG
101054420 EYAWKAJKOS project.

2 Preliminaries

2.1 Notations

We denote by CpRdq the space of continuous functions from Rd to R, and by C0pRdq (resp. CbpRdq,
CcpRdq) the subspace of continuous functions vanishing at 8 (resp. of bounded continuous functions,
of continuous and compactly supported functions). We also denote by MbpRdq the space of Borel
signed measures with finite total variation, equipped with the weak topology σpMbpRdq, C0pRdqq.
For a sequence pρnqnPN P MbpRdqN and ρ P MbpRdq, we denote the weak convergence of pρnqnPN
towards ρ by ρn

˚
á

nÑ8
ρ.

For ρ P MbpRdq and r P r0,`8q, we also denote by Mrpρq the r´th moment of ρ, given by
Mrpρq “

ş

Rd |x|rρpdxq, where | ¨ | is the Euclidean norm. For ρ P MbpRdq and Z a measurable map,
we denote by Z#ρ the pushforward measure of ρ by Z, which satisfies, for any φ P CbpRdq,

ż

φpxqZ#ρpdxq “

ż

φpZpxqq ρpdxq.

Note that, in the above equality as in the whole article, whenever the integration domain is not
specified, the integrals are considered over the whole space (which is Rd here). If µ P MbpRdq is a
positive measure, we also note ρ ! µ whenever ρ is absolutely continuous with respect to µ.

We call PpRdq the subset of MbpRdq of probability measures and we denote, for p P r1,`8q,
PppRdq :“

␣

ρ P PpRdq, Mppρq ă `8
(

. For µ, ν P PppRdq, we define the Wasserstein distance of
order p between µ and ν by (see [1, 35, 43]):

Wppµ, νq :“ inf
γPΓpµ,νq

"
ĳ

|x´ y|p γpdx, dyq

*1{p

(2.1)

where Γpµ, νq is the set of measures on Rd ˆ Rd with marginals µ and ν, i.e.

Γpµ, νq “

!

γ P PppRd ˆ Rdq; @ ξ P C0pRdq,

ż

ξpxqγpdx, dyq “

ż

ξpxqµpdxq,

ż

ξpyqγpdx, dyq “

ż

ξpyqνpdyq

*

.

Any measure that realizes the minimum in the definition (2.1) of Wp is called an optimal plan, and
the set of optimal plans is denoted by Γ0pµ, νq. The space PppRdq equipped with the distance Wp is
called Wasserstein space of order p and denoted WppRdq.

We recall that the Wasserstein distance Wp metrizes the weak convergence of measures in the
sense that, for pρnqnPN P PppRdqN and ρ P PppRdq, Wppρn, ρq ÝÑ

nÑ`8
0 if and only if ρn

˚
á

nÑ`8
ρ and

Mppρnq ÝÑ
nÑ`8

Mppρq (see [43], Theorem 7.12).

We shall also denote the conjugate exponent of p by p1 P r1,`8s defined by
1

p
`

1

p1
“ 1, with the

usual convention 11 “ `8 and 81 “ 1. For α P R, the positive and negative part of α are denoted
by α` :“ maxp0, αq and α´ :“ maxp0,´αq. With that convention, both α` and α´ are always
nonnegative.

Throughout this paper, we will use the same notation C to denote any positive constant.
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2.2 Curves and functionals over the Wasserstein space

Let p P r1,`8q and T ą 0. We call curve on the metric space WppRdq any continuous function
ρ P Cpr0, T s,WppRdqq. We say that ρ is an absolutely continuous curve if there exists b P L1pr0, T sq

such that Wppρs, ρtq ď
şt
s bpτqdτ for every 0 ď s ă t ď T , and we denote ACpr0, T s,WppRdqq the set

of absolutely continuous curves on WppRdq. We also define for t P r0, T s, the metric derivative of ρ
at time t as:

|ρ1
t| :“ lim

hÑ0

Wppρt`h, ρtq

h
. (2.2)

If ρ is a Lipschitz curve on WppRdq, then the above limit exists for a.e. t P r0, T s. Now, up to a
reparametrization in time, any absolutely continuous curve can become Lipschitz continuous and
therefore admits a metric derivative for almost every time.

The fundamental property of absolutely continuous curves in WppRdq is the link with a continuity
equation:

Theorem 2.1 ([1], Theorem 8.3.1). Let p P p1,`8q and T ą 0. Let ρ P ACpr0, T s,WppRdqq. Then,
for a.e. t P r0, T s there exists a vector field vt P Lppρt,Rdq such that:

• the continuity equation Btρ` ∇ ¨ pρvq “ 0 is satisfied in the sense of distributions

• for a.e. t P r0, T s, }vt}Lppρtq ď |ρ1
t|.

Conversely, if we take a curve ρ P Cpr0, T s,WppRdqq such that, for each t P r0, T s, there exists a
vector field vt P Lppρt,Rdq with

şT
0 }vt}Lppρtqdt ă `8 solving the continuity equation Btρ`∇ ¨ρv “ 0,

then ρ P ACpr0, T s,WppRdqq and for a.e. t P r0, T s, we have |ρ1
t| ď }vt}Lppρtq.

As a consequence, the velocity field v introduced in the first part of the statement actually satisfies
}vt}Lppρtq “ |ρ1

t| for a.e. t P r0, T s.

We now recall the definition of the first variation of a functional defined over probability measures.

Definition 2.2. Let F : PpRdq ÝÑ R Y t`8u. Assume that ρ P PpRdq is such that:

@δ P r0, 1s, @µ P PpRdq X L8
c pRdq, F pp1 ´ δqρ` δµq ă `8,

then we call first variation of F at ρ, denoted δF
δρ pρq, any measurable function g such that:

dF pρ` δχq

dδ

ˇ

ˇ

ˇ

δ“0
“

ż

gdχ,

whenever χ “ µ ´ ρ for some µ P PpRdq X L8
c pRdq, where L8

c pRdq denotes the set of compactly
supported functions in L8pRdq. If it exists, the first variation is defined up to an additive constant.

We now introduce two functionals that are essential to our study, the interaction energy W and
the entropy U , defined on PpRdq by:

Wpρq “
1

2

ĳ

W px´ yqρpdxqρpdyq, (2.3)

Upρq “

#

ş

ρ lnpρq, if ρ ! Leb
`8 otherwise,

(2.4)

where Leb is the Lebesgue measure on Rd. Note that, under assumption (A2), the interaction
energy Wpρq is finite whenever ρ P P1pRdq. For ε ě 0, we shall also define the energy functional as
F ε “ W ` εU . One can easily show that δW

δρ pρq “ W ˚ ρ and δU
δρ pρq “ ln ρ` 1.

A key point in our proofs will be the lower semicontinuity (l.s.c) of the above functionals so that
minimization arguments apply.
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Lemma 2.3.

(1) If W is l.s.c on Rd and bounded from below, then the interaction energy W is l.s.c for the weak
convergence.

(2) If W is Lipschitz continuous, then the interaction energy W is Lipschitz continuous for the
W1 distance.

Proof. The first claim is contained in [35, Proposition 7.2].
For the second claim, we will prove

|Wpρq ´ Wpµq| ď LippW qW1pρ, µq.

Indeed, we can write Wpρq “ 1
2

ş

pW ˚ ρqdρ, so that we have

Wpρq ´ Wpµq “
1

2

ż

pW ˚ ρqdpρ´ µq `
1

2

ż

pW ˚ pµ´ ρqqdµ.

We then use
ˇ

ˇ

ˇ

ż

pW ˚ ρqdpρ´ µq

ˇ

ˇ

ˇ
ď LippW ˚ ρqW1pρ, µq

together with LippW ˚ ρq ď LippW q, and

|pW ˚ pµ´ ρqqpxq| “

ˇ

ˇ

ˇ

ż

W px´ yqpρ´ µqpdyq

ˇ

ˇ

ˇ
ď LippW px´ ¨qqW1pρ, µq

together with LippW px´ ¨qq “ LippW q.

The following lemma is proven in [34], Proposition 2.1. Recall that Mppρq is the p-th moment of
ρ.

Lemma 2.4. There exists a constant C only depending on d such that the entropy functional U
satisfies Upρq ě ´CpM1pρq1{2 ` 1q. Moreover, if pρnqn P PpRdq is a sequence weakly converging
towards some ρ P PpRdq such that M1pρnq is bounded, then we have Upρq ď lim inf

nÑ`8
Upρnq.

In particular, this means that the entropy is l.s.c for the Wq distance for all q ě 1.

In order to obtain convergence of the moments of a weakly converging sequence of probability
measures, we will often make use of the following lemma, which is a particular case of [1, Proposition
7.1.5], since our assumption implies uniform integrability of the p-moment:

Lemma 2.5. Let 1 ď p ă `8 and pρnqnPN be a sequence of probability measures in PppRdq. Assume
that, for some constant C ą 0, we have for all n P N, Mppρnq ď C. Then, there exist a subsequence
of pρnqnPN converging towards some ρ P PppRdq in Wq distance for all q P r1, pq.

We finally define one last functional that will be useful in our proofs. Let p P p1,`8q. We set
Kp “

!

pa, bq P R ˆ Rd | a` 1
p1 |b|p

1

ď 0
)

and, for pt, xq P R` ˆ Rd,

fppt, xq “

$

’

&

’

%

1
p

|x|p

tp´1 , if t ą 0,

0, if t “ 0, x “ 0,

`8, if t “ 0, x ‰ 0.
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Then, for X a measurable space and for pρ,Eq P MbpXq ˆ MbpXqd, we define the p´Benamou-
Brenier functional by:

Bppρ,Eq “ sup

"
ż

adρ`

ż

b ¨ dE ; pa, bq P CbpX,Kpq

*

.

The Benamou-Brenier functional satisfies the following properties (see [35], Proposition 5.18):

Lemma 2.6.

(i) Bp is convex and l.s.c on PpXq ˆ MpXqd for the weak convergence,

(ii) If ρ and E are absolutely continuous with respect to a positive measure µ, then Bppρ,Eq “
ş

fppρ,Eqdµ,

(iii) Bppρ,Eq ă `8 only if E ! ρ,

(iv) In that case, if we denote by v the density of E with respect to ρ, that is E “ ρv, then

Bppρ,Eq “

ż

|v|p

p
dρ.

We also have the following symmetrization lemma, which we will repeatedly use for V “ ∇W :

Lemma 2.7. Let V be a bounded odd vector field on Rd, ρ P PpRdq and v a vector field on Rd such
that v ¨ pV ˚ ρq is integrable with respect to ρ. Then, one has:

ż

vpxq ¨ pV ˚ ρqpxqρpdxq “
1

2

ĳ

V px´ yq ¨ pvpxq ´ vpyqqρpdxqρpdyq.

Proof. Using the fact that V is odd, we can write thanks to the change of variables x Ø y:
ĳ

V px´ yq ¨ vpxqρpdxqρpdyq “ ´

ĳ

V px´ yq ¨ vpyqρpdxqρpdyq.

Therefore, taking the half sum of the two quantities above:
ż

vpxq ¨ pV ˚ ρqpxqρpdxq “

ĳ

V px´ yq ¨ vpxqρpdxqρpdyq

“
1

2

ˆ
ĳ

V px´ yq ¨ vpxqρpdxqρpdyq ´

ĳ

V px´ yq ¨ vpyqρpdxqρpdyq

˙

“
1

2

ĳ

V px´ yq ¨ pvpxq ´ vpyqqρpdxqρpdyq.

We finish with a computation of the derivative of W along a curve satisfying a continuity equation:

Lemma 2.8. Let ρ be a curve on PpRdq that solves in the weak sense Btρ`∇¨ρv “ 0 with vt P L2pρtq

for a.e. t P r0, T s and
şT
0 }vt}

2
L2pρtq

dt ă `8. Then:

@t P r0, T s, Wpρtq ´ Wpρ0q “

ż t

0

ż

pz∇W ˚ ρsq ¨ vsdρs. (2.5)
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Proof. Let pW δqδą0 be an approximation of W such that W δ P C1pRdq, W δ ÝÑ
δÑ0

W uniformly on

Rd, W δ is even, ∇W δ is bounded by a8, and ∇W δ ÝÑ
δÑ0

∇W pointwise on Rdzt0u.

We necessarily have ∇W δp0q “ 0 for all δ ą 0 and therefore ∇W δ ÝÑ
δÑ0

z∇W pointwise on Rd. On

the other hand, for δ ą 0, since W δ P C1pRdq and W δ is even, we have, for t P r0, T s:

1

2

ĳ

W δpx´yqρtpdxqρtpdyq´
1

2

ĳ

W δpx´yqρ0pdxqρ0pdyq “

ż t

0

ĳ

∇W δpx´yq¨vspxqρspdxqρspdyqds.

(2.6)
Now, we can bound the integrand on the right-hand side writing |∇W δpx ´ yq ¨ vspxq| ď a8|vs|.
Noting that we have

ż t

0

ĳ

|vspxq|ρspdxqρspdyqds “

ż t

0
}vs}L1pρsqds ď

?
T
´

ż T

0
}vs}2L2pρsqds

¯1{2
ă `8,

we can then use Lebesgue’s dominated convergence theorem w.r.t. ρspdxqρspdyqds to get that the

right-hand side in equation (2.6) converges to
ż t

0

ĳ

z∇W px´yq ¨vspxqρspdxqρspdyqds, which is equal

to
ż t

0

ż

pz∇W ˚ ρsq ¨ vsdρs. The uniform convergence of W δ towards W ensures convergence of the

left-hand side, which concludes the proof.

2.3 Preliminary results

We recall the following result of existence of a characteristic flow and well-posedness of measure-
valued solutions to (1.2):

Theorem 2.9 ([9] Theorems 2.12 and 2.13, [11] Theorems 2.5 and 2.9). Assume W satisfies hy-
potheses (A0)-(A1)-(A2)-(A3) and let ρini be given in P2pRdq. Then, there exists a unique solution
ρ P Cpr0,`8q,W2pRdqq satisfying, in the sense of distributions, the aggregation problem (1.2) where
arρs is replaced by parρs as defined in (1.3).

This solution may be represented as the family of pushforward measures pρt :“ Zρpt, ¨q#ρ
iniqtě0

where pZρpt, ¨qqtě0 is the unique Filippov characteristic flow associated with the one-sided Lipschitz
velocity field parρs. Besides, if ρ and µ are the respective solutions to (1.2) with ρini and µini as
initial conditions in P2pRdq, then, for all t ě 0,

W2pρt, µtq ď e´λtW2pρini, µiniq. (2.7)

In [10], Carrillo, Gómez-Castro, Yao and Zeng proved the following well-posedness and regular-
ity Theorem for aggregation-diffusion equations with Lipschitz symmetric potentials. They prove
existence and uniqueness through a fixed-point argument and regularity applying a bootstrap ar-
gument in adequate fractional Sobolev spaces. The solutions they define are mild solutions, which
are stronger than our definition of solutions, which is in the sense of distributions. We recall the
definition of the heat kernel used in the mild formulation:

Gtpxq “
1

p4πtqd{2
e´

|x|2

4t

Theorem 2.10 ([10], Theorems 1.1, 2.1 and 2.2). Assume that W satisfies assumptions (A0)-(A1)-
(A2). Let ε ą 0 and ρε0 P PpRdq.
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(1) For all T ą 0, there exists a unique solution ρε P Cpr0, T s,PpRdqq to the aggregation-diffusion
problem (1.1) in the sense that:

@t P r0, T s, ρεt “ Gεt ˚ ρε0 `

ż t

0

`

∇Gεpt´sq

˘

˚
`

p∇W ˚ ρεsqρεs
˘

ds.

(2) This solution is actually a classical solution that belongs, for all T ą 0, to Cpp0, T s,W k,ppRdqq

for all k P N and p P r1,`8s in the general case, and to Cpr0, T s,W s,ppRdqq for all s ě 0 and
p P r1,`8s if we assume that ρε0 P W s,ppRdq.

Remark 2.11. In [10], the authors state the second item of the above Theorem under the assumption
that W P W1,8pRdq and assuming that the initial datum belongs to L1

`pRdq with total unit mass
instead of PpRdq. It seems to us that W P L8 is only required to obtain sharp decay of the energy
functional and that the L1 assumption on ρε0 is only useful to simplify the notations.

In the above Theorem, we actually have ρε P Cpr0,`8r,W2pRdqq. Indeed, as we will see in the
proof of our Theorem 3.1 (see equation (3.7)), 1

2 -Hölder continuity in time follows automatically
from a uniform bound with respect to t P r0, T s on M2pρεt q. This in turn comes from the following
computations, where we use, first, integration by parts, and, second, the symmetrization Lemma
2.7:
$

’

&

’

%

d

dt
M2pρεt q “

ż

|x|2Btρ
ε
t “

ż

|x|2∇ ¨
`

p∇W ˚ ρεt qρεt
˘

` ε

ż

|x|2∆ρεt “ ´2

ż

x ¨ p∇W ˚ ρεt qdρεt ` 2εd,

´2

ż

x ¨ p∇W ˚ ρεt qdρεt “ ´

ĳ

∇W px´ yq ¨ px´ yqρεt pdxqρεt pdyq ď 2a8M1pρεt q ď 2a8

b

M2pρεt q.

We thus get
d

dt
M2pρεt q ď 2a8

b

M2pρεt q ` 2εd which implies, using a nonlinear Grönwall Lemma,
that M2pρεt q is bounded over a finite horizon.

We finish by mentioning the special case of the dimension d “ 1, with potentials of the form
W pxq “ a|x| for a P Rzt0u, for which the vanishing viscosity limit can be obtained using the
correspondence with Burgers’ equation. Indeed, let us set, for ε ě 0, uεpt, xq “ a

`

1´ 2f εptq
˘

, where
f εptq is the cumulative distribution function of ρεt . One can show that ρε solves (1.1a) if and only if
uε solves the viscous Burgers equation:

Btu
ε ` Bx

puεq2

2
“ εBxxu

ε, (2.8)

and, similarly, ρ solves the aggregation equation (1.2a) with the correct velocity field parρs if and only
if u solves Burgers’ equation (see [5, 16, 22]). Using the fact that, in dimension d “ 1, we have the
representation W1pρεt , ρtq “ }f εptq ´ fptq}L1pRq and combining with Kuznetsov’s estimate hereafter
for the viscous Burgers equation (see [26]):

}uεptq ´ uptq}L1pRq ď CTVpu0q
?
εt,

where TV denotes the total variation and C is a positive constant, we deduce the following propo-
sition:

Proposition 2.12. Assume d “ 1 and W pxq “ a|x| for some constant a P Rzt0u. Let ρini P P2pRq,
set ρε0 “ ρini for all ε ą 0 and let pρεqεą0 be the sequence of weak solutions to (1.1).

Then, for all T ą 0, pρεqεą0 converges in W1 distance and uniformly on r0, T s, towards a solution
ρ P Cpr0, T s,W2pRqq to (1.2) with the velocity field arρs being replaced by parρs as defined in (1.3).
More precisely, we have:

@t P r0, T s, W1pρεt , ρtq ď C
?
εt,

where the constant C ą 0 depends on a8 only.

9



In the case of one initial Dirac mass ρini “ δ0, one can even obtain convergence of ρε towards
ρ at order 1 with respect to ε using simple scaling arguments. The initial data to the Burgers
problem is uini “ 1 ´ 2H0pxq, and the solution to the inviscid Burgers problem is stationary, given
by uptq “ uini. One can also show that there exists a stationary solution to equation (2.8) of the
form vεpt, xq “ V

`

x
ε

˘

, with V p´8q “ 1, V p`8q “ ´1 and V 1p˘8 “ 0q. We then have using a
contraction property of the viscous Burgers equation and the stationarity of vε and u:

}uεptq ´ uptq}L1 ď }uεptq ´ vεptq}L1
looooooooomooooooooon

ď}uini´vεp0q}L1

` }vεptq ´ uptq}L1
loooooooomoooooooon

“}vεp0q´uini}L1

ď 2

ż

ˇ

ˇ

ˇ
uini

´x

ε

¯

´ V
´x

ε

¯
ˇ

ˇ

ˇ
dx ď 2ε

ż

ˇ

ˇ

ˇ
uini ´ V

ˇ

ˇ

ˇ
,

which gives W1pρεt , ρtq ď Cε with C ą 0 independent of time. This result can be extended to the
case of a finite sum of Dirac masses as initial datum, using the arguments of Teng and Zhang [40] to
compare shocks with traveling waves. We also refer to [38, 37, 39] for generalizations of this result.

3 Opε1{2q convergence rate when the potential is λ´convex

In this section, we assume that W satisfies assumptions (A0)-(A1)-(A2)-(A3).

3.1 Method 1: computing d
dt
W 2

2 pρεt , ρtq

So as to make integration by parts rigorous, we actually compute d
dtW

2
2 pρεt , ρ

δ
t q for ε, δ ą 0 so that

ρε and ρδ are regular (see Theorem 2.10), and then we let δ Ñ 0. We therefore need to know that
ρδt converges in the sense of measures towards ρt.

3.1.1 Convergence in Cpr0, T s,W1pRdqq without convergence rate

Let T ą 0 and let ρε P Cpr0, T s,W2pRdqq be the solution to the aggregation-diffusion problem (1.1)
on r0, T sˆRd, as given by Theorem 2.10. Let us denote vε “ ´∇W ˚ρε´ε∇ρε

ρε so that the continuity
equation Btρ

ε `∇ ¨ρεvε “ 0 is satisfied in the sense of distributions. We formally have, by definition
of the first variation and then by integration by parts:

d

dt
F εpρεt q “

ż

δF ε

δρ
pρεt qBtρ

ε
t “

ż

∇δF ε

δρ
pρεt q ¨ vεt dρ

ε
t “ ´

ż

ˇ

ˇ

ˇ
∇δF ε

δρ
pρεt q

ˇ

ˇ

ˇ

2
dρεt , (3.1)

where, in the last equality, we used the identity δF ε

δρ pρq “ W ˚ ρ ` εpln ρ ` 1q to deduce that vεt is

nothing else than ´∇δF ε

δρ
pρεt q. Proving rigorously (3.1) can be made using an easy adaptation of

Lemma 2.8. Integrating (3.1) over time then yields:

@t P r0, T s, F εpρε0q “ F εpρεt q `

ż t

0

ż

ˇ

ˇ

ˇ
∇δF ε

δρ
pρεsq

ˇ

ˇ

ˇ

2
dρεsds.

Let us only use this equality as an inequality as it will turn out sufficient for passing to the limit, and

let us write
ˇ

ˇ

ˇ
∇δF ε

δρ
pρεsq

ˇ

ˇ

ˇ

2
as the half-sum

1

2

ˆ

|vεs|2 `

ˇ

ˇ

ˇ
∇δF ε

δρ
pρεsq

ˇ

ˇ

ˇ

2
˙

so as to recover a link between

the velocity v and the functional F at the limit ε Ñ 0. This way, we recover the so-called energy
dissipation equality (EDE, that we use as an inequality in our paper):

@t P r0, T s, F εpρε0q ě F εpρεt q `
1

2

ż t

0

ż

|vεs|2dρεsds`
1

2

ż t

0

ż

ˇ

ˇ

ˇ
∇δF ε

δρ
pρεsq

ˇ

ˇ

ˇ

2
dρεsds, (3.2)
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Showing a sort of lower semicontinuity, when ε Ñ 0, of each term in (3.2), we will prove that up
to successive extractions, pρεqεą0 converges towards a measure ρ that satisfies a continuity equation
and an EDE. Combining both, we will prove that ρ solves the aggregation problem (1.2). In case
the solution to such a Cauchy problem is unique, the whole sequence pρεqεą0 converges towards ρ.
This method does not require the λ´convexity but only the Lipschitz continuity of the potential W .

Theorem 3.1. Assume W satisfies assumptions (A0)-(A1)-(A2). Let ρini P P2pRdq, and let pρεqεą0

be a sequence of weak solutions to (1.1).
Assume that the sequence of initial data pρε0qεą0 satisfies the following assumptions:

lim sup
εÑ0

F εpρε0q ď F pρiniq, (3.3a)

lim
εÑ0

W2pρε0, ρ
iniq “ 0, (3.3b)

Then, for all T ą 0, pρεqεą0 converges up to a subsequence, in W1 distance and uniformly on r0, T s,
towards a solution ρ P Cpr0, T s,W2pRdqq to (1.2) with the velocity field arρs being replaced by parρs as
defined in (1.3):

sup
tPr0,T s

W1pρεt , ρtq ÝÑ
εÑ0

0.

If the solution to (1.2) is unique, then the whole sequence pρεqεą0 converges towards ρ.

Remark 3.2. Note that assumptions (3.3) are automatically satisfied if the entropy Upρε0q is uniformly
bounded w.r.t. ε ą 0. In case we take ρε0 “ ρini, this corresponds to ρini having finite entropy.

The following lemma shows that it is possible to construct such a sequence of initial data:

Lemma 3.3. Recall that ρini is given in P2pRdq. For all p ě 1 such that ρini P PppRdq and for all
α P p´1, 0q, there exists a sequence pµε0qεą0 in PppRdq satisfying:

lim inf
εÑ0

F εpµε0q ď F pρiniq, (3.4a)

Wppµε0, ρ
iniq ď Ce´εα (3.4b)

where the constant C ą 0 depends on p but not on ε.

Proof. Let α P p´1, 0q and let p ě 1 such that ρini P PppRdq. Let prεqεą0 be a sequence of
positive real numbers to be specified later in the proof. Let η P L1pRdq be a nonnegative function
supported on Bp0, 1q, with unit total mass, such that η ln η and |x|pηpxq are integrable on Rd. We
then set ηεpxq “ r´d

ε η
´

x
rε

¯

and µε0 “ ηε ˚ ρini. Because of the compact support of η we have

Mppηε ˚ ρiniq ď CpMppρiniq `Mppηεqq ď C, so that, in particular, µε0 P PppRdq for all ε ą 0.
Firstly, let us choose rε so that εUpηεq goes to 0 as ε Ñ 0. Since ηε ! Leb, we have Upηεq “

ş

ηε ln ηε. Therefore, using the change of variables x “ rεy, one has:

Upηεq “ r´d
ε

ż

η
´ x

rε

¯

ln

˜

r´d
ε η

´ x

rε

¯

¸

dx “

ż

ηpyq ln
´

r´d
ε ηpyq

¯

dy “

ż

ηpyq ln ηpyqdy´d ln rε. (3.5)

Based on the above computation, we choose rε “ e´hε{ε for some positive sequence phεqεą0 such
that lim

εÑ0
hε “ 0. More precisely, we set hε “ εα`1, that is rε “ e´εα .

Now, using the convexity and the invariance under translation of U , we have Upηε ˚ρiniq ď Upηεq,
and therefore F εpµε0q ď Wpµε0q ` εUpηεq. Since W is continuous on W1pRdq thanks to Lemma 2.3,
we just need the convergence µε0 Ñ ρini in W1pRdq in order to have Wpµε0q Ñ Wpρiniq and hence
limεÑ0Wpµε0q ` εUpηεq “ Wpρiniq “ F pρiniq. Then, (3.4a) will immediately follow.
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We now use

W p
p pµε0, ρ

iniq “ W p
p pηε ˚ ρini, δ0 ˚ ρiniq ď W p

p pηε, δ0q “ Mppηεq Ñ 0,

where the last limit is justified by Mppηεq “ rpεMppηq “ Ce´pεα . This proves (3.4b) since α ă 0,
and in turn (3.4a).

Relaxing assumption 3.3a can only be done under additional assumptions on the potential. In the
case W satisfies assumption (A3), replacing the original initial data ρε0 by a smoothed out initial
data µε0 that verifies assumptions (3.3) and using the λ´convexity of the potential to estimate the
distance between ρε and the new sequence of viscous solutions µε, we obtain as a byproduct of
Theorem 3.1 the following corollary:

Corollary 3.4. Assume W satisfies assumptions (A0)-(A1)-(A2)-(A3). Let ρini P P2pRdq, and let
pρεqεą0 be the sequence of weak solutions to (1.1). Assume that the sequence of initial data pρε0qεą0

converges in W2pRdq to ρini as ε Ñ 0.
Then, for all T ą 0, the whole sequence pρεqεą0 converges in W1 distance, uniformly on r0, T s,

towards the unique solution ρ P Cpr0, T s,W2pRdqq of (1.2) with the velocity field arρs being replaced
with parρs as defined in (1.3): suptPr0,T s W1pρεt , ρtq Ñ 0.

Proof of Theorem 3.1. First of all, let us extract from pρεqεą0 a converging subsequence. For ε ą 0,
recall that the continuity equation Btρ

ε `∇ ¨ ρεvε “ 0 is satisfied. Moreover, let us rewrite equation

(3.2) using the identity ∇δF ε

δρ
pρq “ ∇W ˚ ρ` ε

∇ρ
ρ

and split it into three terms:

@t P r0, T s, F εpρε0q ě F εpρεt q`
1

2

ż t

0

ż

|vεs|2dρεsds`
1

2

ż t

0

ż

ˇ

ˇ

ˇ
∇W ˚ρεs`ε

∇ρεs
ρεs

ˇ

ˇ

ˇ

2
dρεsds “ Dε

1`Dε
2`Dε

3,

(3.6)
where Dε

1, Dε
2, Dε

3 are the 3 terms in the above right-hand side, in the same order. Note that, if
M2pρεt q is uniformly bounded, then Dε

1 is uniformly bounded from below thanks to the estimate in
Lemma 2.4. In that case, using the fact that Dε

3 is nonnegative and the fact that F εpρε0q is bounded
from above thanks to assumption (3.3a) on the initial data, we can deduce that

şT
0

ş

|vεs|2dρεsds ď C
for some constant C ą 0 independent of ε and t. In particular, for all t P r0, T s, vεt P L2pρεt q and
şT
0

ş

|vεs|2dρεsds ă `8. Using Theorem 2.1, we obtain that ρε P ACpr0, T s,W2pRdqq and that its
metric derivative exists and is bounded by the L2 norm of vεs: |pρεq1

s| ď }vεs}L2pρεsq for all s P r0, T s.
We deduce the following bound, that is uniform with respect to ε, by integration over time:

ż T

0
|pρεq1

s|2ds ď C.

Then, using a Cauchy-Schwarz inequality, we get:

@0 ď s ď t ď T, W2pρεt , ρ
ε
sq ď

ż t

s
|pρεq1

τ |dτ ď

´

ż t

s
|pρεq1

τ |2dτ
¯1{2?

t´ s ď
a

Cpt´ sq, (3.7)

which gives equicontinuity of pρεqεą0 in W2 distance (and therefore in W1 distance). If we still
assume that M2pρεt q is uniformly bounded, then the set tρεt , ε ą 0u is relatively compact in W1pRdq

in virtue of Lemma 2.5. We can therefore apply Ascoli-Arzelà theorem in the space Cpr0, T s,W1pRdqq

to extract from pρεqεą0 a subsequence converging in W1pRdq, uniformly in t P r0, T s, towards some
ρ P Cpr0, T s,W1pRdqq. We still denote this subsequence pρεqεą0. Moreover, the l.s.c of the W2

distance along with the weak convergence ρεt
˚

á
εÑ0

ρt for all t P r0, T s allows to pass to the lim inf
εÑ0

in
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(3.7) to show that ρ P Cpr0, T s,W2pRdqq. The limit ρ is actually 1{2´Hölder in time and satifies the
same estimate as ρε:

@0 ď s ď t ď T, W2pρt, ρsq ď
a

Cpt´ sq.

Let us come back to the boundedness ofM2pρεt q. This bound can actually be obtained from inequality
(3.6). Indeed, from (3.6) and assumption (3.3a), we get, since Dε

3 ě 0:

F εpρεt q `
1

2

ż t

0

ż

|vεs|2dρεsds ď C. (3.8)

Let us show that the second term controls M2pρεt q if t P r0, T s. Differentiating M2pρεt q in time and
integrating by parts, we have:

d

dt
M2pρεt q “ 2

ż

x ¨ vεt pxqρεt pdxq ď 2M2pρεt q1{2

ˆ
ż

|vεt |2dρεt

˙1{2

,

using Cauchy-Schwarz inequality. Applying a Grönwall Lemma, this implies, for all t P r0, T s,

M2pρεt q1{2 ď M2pρε0q1{2 `

ż t

0

ˆ
ż

|vεs|2dρεs

˙1{2

ds ď M2pρε0q1{2 `
?
T

ˆ
ż t

0

ż

|vεs|2dρεsds

˙1{2

,

where we used Jensen’s inequality w.r.t. the measure ds
t . Finally, we get:

ż t

0

ż

|vεs|2dρεs ě
1

T

`

M2pρεt q ´M2pρε0q
˘

.

Plugging this inequality into (3.8) and using the estimate in Lemma 2.4 one obtains:

´a8M2pρεt q1{2 ´ εpM2pρεt q1{4 ` Cq `
1

2T

`

M2pρεt q ´M2pρε0q
˘

ď C,

which provides a uniform bound on M2pρεt q for t P r0, T s.

The point is now, for every t P r0, T s, to show l.s.c of each term Dε
i , i “ 1, 2, 3, with respect to

the W1 convergence of pρεt qεą0 towards ρt that we just proved.

˚ Dealing with Dε
1 “ F εpρεt q.

Using Lemma 2.3, the W1´convergence of pρεt qεą0 towards ρt ensures that lim
εÑ0

Wpρεt q “ Wpρtq.

Besides, thanks to Lemma 2.4, we have for the entropy lim inf
εÑ0

Upρεt q ě Upρtq, and we deduce in turn

lim inf
εÑ0

εUpρεt q ě 0. Therefore:

lim inf
εÑ0

F εpρεt q ě F pρtq.

˚ Dealing with Dε
2 “

1

2

ż t

0

ż

|vεs|2dρεsds.

For ε ą 0, letting Eε “ ρεvε, a Cauchy-Schwarz inequality shows that the total variation of Eε is
uniformly bounded with respect to ε ą 0:

|Eε|pr0, ts ˆ Rdq “

ż t

0

ż

|vεs|dρεsds ď
?
t

ˆ
ż t

0

ż

|vεs|2dρεsds

˙1{2

ď
?
CT,

Thus, up to another extraction, we can assume that Eε ˚
á
εÑ0

E for some E P Mbpr0, ts ˆ Rdqd. Now,

since ρε and Eε are absolutely continuous with respect to the Lebesgue measure on r0, ts ˆ Rd as
long as ε ą 0, Lemma 2.6 ensures that Dε

2 rewrites as follows:

Dε
2 “

ż t

0

ż

f2pρεs, E
ε
sqdxds “ B2pρε, Eεq.
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Then the lower semicontinuity of B2 on Mbpr0, ts ˆ Rdq ˆ Mbpr0, ts ˆ Rdqd yields:

lim inf
εÑ0

Dε
2 ě B2pρ,Eq,

which, in turn, implies that B2pρ,Eq is finite and therefore gives the existence of a vector-valued
density v verifying E “ ρv. Using Lemma 2.6 (iv), the above inequality rewrites:

lim inf
εÑ0

Dε
2 ě

1

2

ż t

0

ż

|vs|2dρsds.

In addition, this transformation also allows to pass to the limit in the continuity equation Btρ
ε `

∇ ¨ Eε “ 0, which is now linear. Indeed, letting ε Ñ 0 in the weak formulation, one easily gets
Btρ ` ∇ ¨ pρvq “ 0. This shows that the limit density ρ is still a solution to a continuity equation,
and the link between the velocity field v and the functional F will be made thorough when passing
to the limit ε Ñ 0 in the EDE (3.2).

˚ Dealing with Dε
3 “

1

2

ż t

0

ż

ˇ

ˇ

ˇ
∇W ˚ ρεs ` ε

∇ρεs
ρεs

ˇ

ˇ

ˇ

2
dρεsds.

As it is standard when dealing with terms belonging to L2pρεsq, we set Gε “ p∇W ˚ ρεqρε ` ε∇ρε

ρε ρ
ε,

so that Dε
3 “ B2pρε, Gεq.

We deduce from (3.6) that Dε
3 is uniformly bounded w.r.t. ε, which implies that Gε is uniformly

bounded in Mbpr0, ts ˆ Rdqd. Therefore, up to another extraction, we can assume that Gε ˚
á
εÑ0

G

for some G P Mbpr0, ts ˆ Rdqd. Since W is Lipschitz, we have
ż t

0

ż

ˇ

ˇ∇W ˚ ρεs
ˇ

ˇdρεsds ď a8t thus

p∇W ˚ ρεqρε is uniformly bounded too in Mbpr0, ts ˆ Rdqd.
As a consequence, the difference ε∇ρε

ρε ρ
ε is also uniformly bounded in Mbpr0, ts ˆ Rdqd. Now,

its limit when ε Ñ 0 is 0 in the sense of distributions. Indeed, for ξ P C8
c pRdq, xε∇ρε, ξy “

´ε

ż t

0

ż

∇ξdρε which can be bounded, for instance, by εt}∇ξ}L8 and therefore goes to 0 as ε Ñ 0.

We deduce that ε∇ρε

ρε ρ
ε actually converges in the sense of measures towards 0, hence the limit, in

the sense of measures, of Gε is that of p∇W ˚ ρεqρε.

: Limit in the sense of measures of p∇W ˚ ρεqρε.

Let ξ P C0pr0, ts ˆ Rdq and let us consider the duality bracket xp∇W ˚ ρεqρε, ξy as ε goes to 0.
That quantity equals, using Lemma 2.7 applied to the even vector field ∇W :
ż t

0

ĳ

∇W px´ yq ¨ ξps, xqρεspdxqρεspdyqds “
1

2

ż t

0

ĳ

∇W px´ yq ¨ pξps, xq ´ ξps, yqq ρεspdxqρεspdyqds.

(3.9)
Now, since W is Lipschitz, ∇W is bounded, therefore the map

ps, x, yq ÞÝÑ ∇W px´ yq ¨
`

ξps, xq ´ ξps, yq
˘

is continuous and the weak convergence ρε bρε
˚

á
εÑ0

ρbρ (which is equivalent to narrow convergence

since we deal with probability measures) allows to pass to the limit ε Ñ 0 in the above quantity to
obtain:

lim
εÑ0

ż t

0

ĳ

∇W px´yq¨ξps, xqρεspdxqρεspdyqds “
1

2

ż t

0

ĳ

∇W px´yq¨pξps, xq ´ ξps, yqq ρspdxqρspdyqds.

(3.10)
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Note that, until now, the value of ∇W p0q does not matter. Actually, all the integrals when ε ą 0
hold w.r.t. to the Lebesgue measure and therefore the diagonal tx “ yu can be avoided. We therefore
only need ∇W pzq “ ´∇W p´zq for nonzero z to apply Lemma 2.7, and this do not impose any value
to ∇W p0q.

Now, to come back to some duality bracket tested against ξ, one needs to unsymmetrize the
resulting expression by writing:

1

2

ż t

0

ĳ

∇W px´ yq ¨ pξps, xq ´ ξps, yqq ρspdxqρspdyqds (3.11)

“
1

2

˜

ż t

0

ĳ

z∇W px´ yq ¨ ξps, xqρspdxqρspdyqds´

ż t

0

ĳ

z∇W px´ yq ¨ ξps, yqρspdxqρspdyqds

¸

“
1

2

˜

ż t

0

ĳ

z∇W px´ yq ¨ ξps, xqρspdxqρspdyqds`

ż t

0

ĳ

z∇W px´ yq ¨ ξps, xqρspdxqρspdyqds

¸

“

ż t

0

ĳ

z∇W px´ yq ¨ ξps, xqρspdxqρspdyqds,

where we used the fact that z∇W pzq “ ´z∇W p´zq for all z P Rd, which now imposes z∇W p0q “ 0.
Remark 3.5. These computations could hold against a test function ξ that is only Lipschitz on
r0, ts ˆ Rd provided ∇W pzq ď C{|z|1´β for some β ą 0. Indeed, the map ps, x, yq ÞÝÑ ∇W px ´ yq ¨

pξps, xq ´ ξps, yqq would be continuous on the diagonal and hence everywhere on r0, ts ˆ pRdq2. This
could provide a way to deal with the non Lipschitz potentials W pxq “ |x|β for 0 ă β ă 1, that are
more singular than the Lipschitz potentials but are still less singular than the logarithmic potential.
However, extra difficulties arise for the limit analysis when W is not Lipschitz.

We finally get that G “ pz∇W ˚ ρqρ and therefore B2pρ,Gq “
1

2

ż t

0

ż

|z∇W ˚ ρs|2dρsds. Using the

l.s.c of B2 we finally get:

lim inf
εÑ0

Dε
3 ě

ż t

0

ż

|z∇W ˚ ρs|2dρsds.

˚ Passing to the lim inf
εÑ0

to recover a limit EDE.

We can now pass to the lim inf
εÑ0

in (3.2) using the assumption (3.3a) for the left-hand side to get

the following EDE (which, once again is written as an inequality):

F pρiniq ě F pρtq `
1

2

ż t

0

ż

|vs|2dρsds`
1

2

ż t

0

ż

ˇ

ˇ

ˇ

z∇W ˚ ρs

ˇ

ˇ

ˇ

2
dρsds. (3.12)

Recall that ρ still solves the continuity equation Btρ ` ∇ ¨ ρv “ 0 in the sense of distributions.
Identifying the velocity v is made through Lemma 2.8 which gives:

@t P r0, T s, F pρtq ´ F pρ0q “

ż t

0

ż

pz∇W ˚ ρsq ¨ vsdρs.

Since pρε0qεą0 converges to both ρ0 and ρini in W1pRdq, we have ρ0 “ ρini. Plugging the above
identity into (3.12) then yields:

1

2

ż t

0

ż

ˇ

ˇ

ˇ
vs ` z∇W ˚ ρs

ˇ

ˇ

ˇ

2
dρsds ď 0,

so that v “ ´z∇W ˚ ρ “ parρs almost everywhere. We deduce that ρ solves the aggregation equation
(1.2) in the sense of distributions with the correct velocity field parρs, which concludes the proof.
Incidentally, the identity v “ ´z∇W ˚ρ confirms that the limit EDE (3.12) is actually an equality.
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Proof of Corollary 3.4. We now come back to the case of arbitrary initial data ρε0 i.e. we do not
assume anymore that assumptions (3.3) hold. However, we still assume that W2pρε0, ρ

iniq ÝÑ
εÑ0

0 and
in addition, we now assume W to be λ´convex.

Let pµε0qεą0 be a sequence of smoothed out initial data for which W2pµε0, ρ
iniq ÝÑ

εÑ0
0 and the

assumptions (3.3) hold on pµε0qεą0. We denote by µε a solution to (1.1) for the modified initial data
µε0. Applying Theorem 3.1, we know that µε converges in Cpr0, T s,W1pRdqq towards ρ solution to
(1.2) as ε Ñ 0, up to a subsequence. But since W satisfies the assumptions of Theorem 2.9, such a
solution is unique and we deduce that the whole sequence pµεqεą0 converges towards ρ.

It remains to show that W2pρεt , µ
ε
t q goes to 0 as ε Ñ 0 by estimating this quantity thanks to the

λ´convexity of W , which is encapsulated in the following lemma.

Lemma 3.6. Assume W satisfies assumptions (A0)-(A1)-(A2)-(A3). Let ρ, µ P P2pRdq and denote
pφ,ψq a pair of Kantorovitch potentials from ρ to µ for the quadratic cost cpx, yq “ 1

2 |x ´ y|2. In
addition, we assume that ρ or µ is an absolutely continuous measure. Then,

ż

∇φ ¨ arρsdρ`

ż

∇ψ ¨ arµsdµ ď ´λW 2
2 pρ, µq. (3.13)

Remark 3.7.

(1) In particular, we recover the last estimate in Theorem 2.9: if ρ, µ P AClocpr0,`8q,W2pRdqq are
solution to (1.2) with initial data ρini, µini P P2pRdq and if ρt or µt is an absolutely continuous
measure, the following inequality holds:

d

dt
W 2

2 pρt, µtq ď ´2λW 2
2 pρt, µtq. (3.14)

Indeed, this is a direct consequence of Lemma 3.6 and of the following computation (see [35]
Theorem 5.25 or [1] Theorem 8.4.7)

d

dt

1

2
W 2

2 pρt, µtq “

ż

∇φt ¨ vtdρt `

ż

∇ψt ¨ wtdµt, (3.15)

whenever ρ, µ satisfy the continuity equations Btρ ` ∇ ¨ ρv “ 0, Btµ ` ∇ ¨ µw “ 0. Inequality
(3.14) then yields the aforementioned estimate using a Grönwall Lemma:

W2pρt, µtq ď e´λtW2pρini, µiniq. (3.16)

Relaxing the assumptions that either ρt or µt is an absolutely continuous measure can be done
replacing ρt by ρεt for instance, and passing to the limit ε Ñ 0 in the resulting estimate, thanks
to Corollary 3.4.

(2) Another way of proving Lemma 3.6 can be found in [33], Lemma 4.12.

Proof. Assume ρ is an absolutely continuous measure. Then, there exists an optimal map from ρ to
µ for the cost cpx, yq “ 1

2 |x´ y|2, which we denote T . Since ∇ψ ˝ T “ ´∇φ, using µ “ T#ρ yields:
ż

∇φ ¨ arρsdρ`

ż

∇ψ ¨ arµsdµ “

ż

∇φ ¨ parρs ´ arµs ˝ T qdρ

“ ´

ĳ

∇φpxq ¨ ∇W px´ yqρpdyqρpdxq `

ĳ

∇φpxq ¨ ∇W pT pxq ´ yqµpdyqρpdxq

“ ´

ĳ

∇φpxq ¨

´

∇W px´ yq ´ ∇W
`

T pxq ´ T pyq
˘

¯

ρpdyqρpdxq,
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where we used once more µ “ T#ρ. Symmetrizing the above integral as in Lemma 2.7, since ∇W is
odd, and using ∇φ “ id ´ T , we get:
ż

∇φ ¨ arρsdρ`

ż

∇ψ ¨ arµsdµ “ ´
1

2

ĳ

`

∇φpxq ´ ∇φpyq
˘

¨

´

∇W px´ yq ´ ∇W
`

T pxq ´ T pyq
˘

¯

ρpdyqρpdxq

“ ´
1

2

ĳ

´

x´ y ´
`

T pxq ´ T pyq
˘

¯

¨

´

∇W px´ yq ´ ∇W
`

T pxq ´ T pyq
˘

¯

ρpdyqρpdxq

ď ´
λ

2

ĳ

|x´ T pxq ´ py ´ T pyqq|2ρpdyqρpdxq,

where we used the λ´convexity of W . We then expand the square to obtain:
ĳ

|x´T pxq´py´T pyqq|2ρpdyqρpdxq “ 2

ż

|x´T pxq|2ρpdxq´2

ˆ
ĳ

`

x´ T pxq
˘

ρpdxq

˙2

ď 2W 2
2 pρ, µq,

which concludes the proof, as we assumed in (A3) that λ ď 0.

We now come back to the proof of Corollary 3.4. Denoting pφε
t , ψ

ε
t q a pair of Kantorovitch

potentials from ρεt to µεt , and using Lemma 3.6 along with equation (3.15), we get:

d

dt

1

2
W 2

2 pρεt , µ
ε
t q ď ´λW 2

2 pρεt , µ
ε
t q ´ ε

ż

p∇φε
t ¨ ∇ρεt ` ∇ψε

t ¨ ∇µεt q.

The last term above being nonpositive (see [35] exercise 66 for instance), we obtain, using a Grönwall
lemma, that W2pρεt , µ

ε
t q ď e´λtW2pρε0, µ

ε
0q. We then write, for t P r0, T s,

W1pρεt , ρtq ď W1pρεt , µ
ε
t q `W1pµεt , ρtq ď e´λTW2pρε0, µ

ε
0q ` sup

sPr0,T s

W1pµεs, ρsq,

where we used the fact that W1 ď W2. Since both sequences pρε0qεą0 and pµε0qεą0 converge in W2pRdq

to the same limit, W2pρε0, µ
ε
0q goes to 0 as ε Ñ 0. Moreover, pµεqεą0 converges to ρ in W1 distance

uniformly in r0, T s. These two facts along with the above inequality show that pρεqεą0 also converges
to ρ in Cpr0, T s,W1pRdqq, which ends the proof of the corollary.

3.1.2 Convergence rate under the λ-convexity assumption

We are now in position to prove the following theorem:

Theorem 3.8. Assume W satisfies assumptions (A0)-(A1)-(A2)-(A3). Let ρini P P2pRdq, and let
pρεqεą0 be the sequence of weak solutions to (1.1). Here, we assume that pρε0qεą0 is an arbitrary
sequence in P2pRdq.

Denoting ρ P Cpr0,`8q,W2pRdqq the unique solution of (1.2) with arρs being replaced by parρs as
defined in (1.3), we have the following estimate:

@t ą 0, W2pρεt , ρtq ď e´λtW2pρε0, ρ
iniq `

c

1 ´ e´2λt

λ

?
dε. (3.17)

Please note that in the above estimate λ ď 0. If λ ă 0, 1 ´ e´2λt and λ are negative numbers so
the ratio is positive and for λ “ 0 the expression should be extended by continuity.

Remark 3.9. In dimension d “ 1 with the Newtonian potential W pxq “ |x|, the correspondence with
Burgers’ equation stated in Proposition 2.12, gives convergence at rate

?
εt in W1 distance. Due to

W being 0´convex, our estimate leads to the same estimate but in W2 distance, since taking λ “ 0
in (3.17) gives W2pρεt , ρtq ď

?
2dεt for any t ą 0.
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If assumption (A4´p) is satified for some p ě 1 instead of assumption (A3) and if ρε0 “ δ0 for all
ε ą 0, one can also obtain the exact same estimate using a direct computation. Indeed, in that case,
ρt “ δ0 for all t ě 0 and we have, using integration by parts and Lemma 2.7:

d

dt
W 2

2 pρεt , δ0q “
d

dt

ż

|x|2ρεt pdxq “ ´

ĳ

∇W px´ yq ¨ px´ yqρεt pdxqρεt pdyq ` 2ε

ż

ρεt pdxq

ď ´C

ĳ

|x´ y|pρεt pdxqρεt pdyq ` 2εd, using assumption (A4 ´ pq,

ď 2εd.

Hence W2pρεt , δ0q ď
?
2dεt for all t ě 0.

Proof. Take a sequence of initial data pµε0qεą0 converging in W2pRdq to ρini as ε Ñ 0 and denote
pµεqεą0 the sequence of solutions to (1.1) with such initial data. Let ε ą 0. For all δ ą 0, using
Lemma 3.6 along with equation (3.15), we have, denoting pφt, ψtq a pair of Kantorovitch potentials
for the quadratic cost from ρεt to ρδt and integrating by parts:

d

dt

1

2
W 2

2 pρεt , µ
δ
t q ď ´λW 2

2 pρεt , µ
δ
t q´ε

ż

∇φt¨∇ρεt´δ

ż

∇ψt¨∇µδt ď ´λW 2
2 pρεt , µ

δ
t q`ε

ż

∆φt ρ
ε
t`δ

ż

∆ψt µ
δ
t .

The map x ÞÝÑ φtpxq ´
|x|2

2 being concave, ∇2φt ď Id, hence ∆φt ď d and the same holds for ψt.
Therefore:

d

dt
W 2

2 pρεt , µ
δ
t q ď ´2λW 2

2 pρεt , µ
δ
t q ` 2pε` δqd,

which gives the result after using a Grönwall lemma and passing to the limit δ Ñ 0 thanks to
Corollary 3.4.

3.2 Method 2: using a numerical scheme

We now turn to a different proof of the previous result. This alternate proof will also allow to
illustrate the results and the behavior of solutions with numerical results. Our main idea is to let,
for a fixed ε ą 0, ρε∆x be a suitable numerical approximation of the viscous solution ρε to the problem
(1.1) with fixed initial data ρε0 “ ρini, and then use the formalism of [13] to estimate the distance
from this discretized solution to the solution ρ to the aggregation problem (1.2) in terms of ε:

@n P N, W2pρε,n∆x, ρtnq ď Cptnq
?
∆x` ε,

under suitable stability conditions for the numerical scheme, and where ∆t ą 0 is the time step,
tn “ n∆t and ∆x ą 0 denotes the maximal space step. Proving the convergence of the scheme with
fixed ε beforehand using compactness arguments and a Lax-Wendroff-type theorem, then letting
∆x Ñ 0, we shall deduce:

@t ą 0, W2pρεt , ρtq ď Cptq
?
ε,

where we shall specify the constant Cptq. Note that our method also allows to deal with the case of
arbitrary P2pRdq initial data ρε0 as in Theorem 3.8, but we choose to present it with initial data not
depending on ε for the sake of clarity.

Let us be more specific. We consider a Cartesian mesh of Rd where the space step in the ith
direction is denoted by ∆xi ą 0. The nodes of the mesh are denoted by xJ “ pJ1∆x1, . . . , Jd∆xdq

for any J “ pJ1, . . . , Jdq P Zd, and the cell centered on xJ is denoted by CJ :“ rpJ1 ´ 1
2q∆x1, pJ1 `

1
2q∆x1s ˆ . . . ˆ rpJd ´ 1

2q∆xd, pJd ` 1
2q∆xds. We also denote by ei the ith vector of the canonical

basis of Rd. We initialize our discretization with:

ρ0J :“

ż

CJ

ρinipdxq ě 0, J P Zd, (3.18)
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and we consider an upwind type discretization for the aggregative part [14, 27, 13] and an explicit
discretization for the diffusive part. It writes, for n P N,

ρn`1
J “ ρnJ ´

d
ÿ

i“1

∆t

∆xi

´

pai
n
Jq`ρnJ ´ pai

n
J`eiq

´ρnJ`ei ´ pai
n
J´eiq

`ρnJ´ei ` pai
n
Jq´ρnJ

¯

`ε
d
ÿ

i“1

∆t

∆x2i

`

ρnJ`ei ´ 2ρnJ ` ρnJ´ei

˘

,

(3.19)

where the discrete velocity is defined by:

ai
n
J :“ ´

ÿ

KPZd

ρnK DiW
K
J , where DiW

K
J :“ {BxiW

`

xJ ´ xK
˘

. (3.20)

Note that, for the sake of simplicity, we drop, in this section, the superscripts ε when it comes
to the discrete unknowns pρnJqJPZd,nPN but these unknowns always solve numerical schemes for the
aggregation equation with viscosity ε ą 0.

Since W is even, we also have DiW
K
J “ ´DiW

J
K for all J,K P Zd and i “ 1, . . . , d. Using a

symmetrization argument as in the continuous setting, we deduce the discrete equivalent of Lemma
2.7:

Lemma 3.10. Denote, for J,K P Zd, DWK
J “ pD1W

K
j , . . . , DdW

K
J q and whenever pvJqJPZd is a

discrete vector field on the mesh, vJ “ pv1J , . . . , vdJq P Rd. For any pvJqJPZd , we have:

@i “ 1, . . . , d,
ÿ

JPZd

viJ ai
n
J ρ

n
J “

1

2

ÿ

JPZd

ÿ

KPZd

DiW
K
J pviJ ´ viKq ρnJ ρ

n
K ,

and therefore:
ÿ

JPZd

vJ ¨ anJ ρ
n
J “

1

2

ÿ

JPZd

ÿ

KPZd

DWK
J ¨ pvJ ´ vKq ρnJ ρ

n
K .

Proof. Using the definition of the macroscopic velocity and the fact that DiW
K
J “ ´DiW

J
K , we

have:
ÿ

JPZd

viJ ai
n
J ρ

n
J “ ´

ÿ

JPZd

ÿ

KPZd

DiW
K
J viJ ρ

n
J ρ

n
K “

ÿ

JPZd

ÿ

KPZd

DiW
J
K viJ ρ

n
J ρ

n
K

“
ÿ

JPZd

ÿ

KPZd

DiW
K
J viK ρnJ ρ

n
K ,

thanks to exchanging K and J in the latter sum. Taking the half sum of the first sum and the latter,
we obtain:

ÿ

JPZd

viJ ai
n
J ρ

n
J “

1

2

ÿ

JPZd

ÿ

KPZd

DiW
K
J pviJ ´ viKq ρnJ ρ

n
K .

Summing over i “ 1, . . . , d concludes the proof.

It is also natural to consider, instead of the explicit discretization of the Laplacian, an implicit
discretization:

ρn`1
J “ ρnJ ´

d
ÿ

i“1

∆t

∆xi

´

pai
n
Jq`ρnJ ´ pai

n
J`eiq

´ρnJ`ei ´ pai
n
J´eiq

`ρnJ´ei ` pai
n
Jq´ρnJ

¯

`ε
d
ÿ

i“1

∆t

∆x2i

´

ρn`1
J`ei

´ 2ρn`1
J ` ρn`1

J´ei

¯

,

(3.21)
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However, for the sake of simplicity, we only provide the proof of our convergence estimate for the
explicit scheme (3.19), although our method would also works for the implicit discretization (3.21)
but the computations are a bit more involved. Naturally, both schemes are asymptotic-preserving
in the limit ε Ñ 0 since they degenerate towards the upwind-type scheme of [13] when ε goes to 0.

One could also consider the θ´scheme, for θ P r0, 1s, defined by:

ρn`1
J “ ρnJ ´

d
ÿ

i“1

∆t

∆xi

´

pai
n
Jq`ρnJ ´ pai

n
J`eiq

´ρnJ`ei ´ pai
n
J´eiq

`ρnJ´ei ` pai
n
Jq´ρnJ

¯

`εp1 ´ θq

d
ÿ

i“1

∆t

∆x2i

`

ρnJ`ei ´ 2ρnJ ` ρnJ´ei

˘

` εθ
d
ÿ

i“1

∆t

∆x2i

´

ρn`1
J`ei

´ 2ρn`1
J ` ρn`1

J´ei

¯

,

(3.22)

The point of defining such a scheme comes from the fact that, for the heat equation Btρ “ ε∆ρ, under

a parabolic CFL condition ε
d
ÿ

i“1

∆t

∆x2i
ď

1

2p1 ´ 2θq
if θ P r0, 1{2q and unconditionally if θ P r1{2, 1s,

the θ´scheme is known to be convergent in L2 norm at rate Op∆t`∆x2q. Moreover, for θ “ 1{2, one
obtains the so-called Crank-Nicolson scheme, which is convergent at rate Op∆t2 ` ∆x2q. However,
the convergence order of the θ´scheme (3.22) for the aggregation-diffusion equation (1.1a) will
anyway be limited by the order of the upwind scheme. Also, the positivity of the density can only

be guaranteed if the more restrictive parabolic CFL condition a8

d
ÿ

i“1

∆t

∆xi
` 2εp1 ´ θq

d
ÿ

i“1

∆t

∆x2i
ď 1

holds. Preserving a hyperbolic CFL condition thus imposes taking θ “ 1, which corresponds to the
implicit scheme (3.21).

Proposition 3.11. Assume W satisfies assumptions (A0)-(A1)-(A2)-(A3) and let ρ P Cpr0,`8q,W2pRdqq

be the unique measure solution to the aggregation equation (1.2) with initial data ρini P P2pRdq as
given by Theorem 2.9. Assume in addition that the following strict CFL condition holds:

d
ÿ

i“1

ˆ

a8

∆t

∆xi
` 2ε

∆t

∆x2i

˙

ă
1

2
. (3.23)

Denote also the reconstruction:
ρε,n∆x :“

ÿ

JPZd

ρnJδxJ , n P N.

where pρnJqJPZd,nPN is defined through the explicit discretization (3.18)–(3.19)–(3.20). Then, there
exists a constant C ą 0, depending only on a8 and d, such that, for all n P N˚,

W2pρtn , ρ
ε,n
∆xq ď C

c

1 ´ e´4λtn

λ

?
∆x` ε` e´2λtn∆x. (3.24)

Remark 3.12. In estimate (3.24), the
?
∆x` ε term corresponds to the error induced by the scheme

(3.19) and the ∆x term corresponds to the finite volume discretization of the initial data (3.18). As
in [13], one can also improve the prefactor in the exponentials to get the slightly better estimate:

W2pρtn , ρ
ε,n
∆xq ď C

c

1 ´ e´2λtn

λ

?
∆x` ε` e´λtn∆x.

which is similar to the estimates of the continuous setting, for instance (2.7), when ∆t is small.
In the above proposition as in the whole paper, we do as if our discrete reconstructions pρε∆xq∆xą0

depended only on ∆x. Rigorously speaking, they also depend on ∆t, but under the CFL condition
(3.23) ∆t goes to 0 as ∆x goes to 0. Setting ∆t to be an adequate function of ∆x, we can therefore
consider pρε∆xq∆xą0 as sequence labeled by ∆x only.
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Theorem 3.13. Assume W satisfies assumptions (A0)-(A1)-(A2)-(A3). Let ρ P Cpr0,`8q,W2pRdqq

be the unique measure solution to the aggregation equation (1.2) with initial data ρini P P2pRdq as
given by Theorem 2.9 and let pρεqεą0 be the sequence of weak solutions to (1.1) with initial data
ρε0 “ ρini.

Then, there exists a constant C ą 0, depending only on a8 and d, such that, for all t ą 0 the
following estimate holds:

W2pρεt , ρtq ď C

c

1 ´ e´4λt

λ

?
ε, (3.25)

Remark 3.14. The estimate above is slightly worse than the estimate (3.17) that we obtain using
gradient flow arguments. Although, as in the previous remark, the exponential factor can be im-
proved to e´2λt with a bit more technical computations, we do not manage to obtain the same
constant C “

?
d. Nevertheless the important fact is that the dependence with respect to ε is the

same in both proofs. The advantage of the numerical proof is that it confirms the convergence of
the numerical scheme and its asymtptotic preserving property.

3.2.1 Properties of the scheme

Lemma 3.15. As in the continuous setting, our discretization (3.19) preserves

(1) total mass:
@n P N,

ÿ

JPZd

ρnJ “ 1; (3.26)

(2) positivity of the density and the bound on the velocity field:

@pn, Jq P N ˆ Zd, @i “ 1, . . . , d, ρnJ ě 0, |ai
n
J | ď a8,

under the CFL condition:
d
ÿ

i“1

ˆ

a8

∆t

∆xi
` 2ε

∆t

∆x2i

˙

ď 1; (3.27)

(3) the center of mass:

@n P N˚, ρε,n∆x P P1pRdqand
ÿ

JPZd

xJρ
n
J “

ÿ

JPZd

xJρ
0
J .

Proof. The first item comes from summing equation (3.19) over J P Zd. Moreover, using the
following rewriting of ρn`1

J as a positive combination of ρJ and ρJ˘ei , i “ 1, . . . , d:

ρn`1
J “ ρnJ

«

1 ´

d
ÿ

i“1

ˆ

∆t

∆xi
|ai

n
J | `

2ε∆t

∆x2i

˙

ff

`

d
ÿ

i“1

ρnJ`ei

ˆ

∆t

∆xi
pai

n
J`eiq

´ `
ε∆t

∆x2i

˙

(3.28)

`

d
ÿ

i“1

ρnJ´ei

ˆ

∆t

∆xi
pai

n
J´eiq

` `
ε∆t

∆x2i

˙

,

it is classical to prove the second item by induction on n P N, under the CFL condition (3.27) under
which ρn`1

J is a convex combination of the ρnK , see [28] for example.
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Let us now focus on the third item. One has
ÿ

JPZd

|xJ |ρn`1
J “

ÿ

JPZd

|xJ | rρnJ

´
řd

i“1
∆t
∆xi

´

pai
n
Jq`ρnJ ´ pai

n
J`ei

q´ρnJ`ei
´ pai

n
J´ei

q`ρnJ´ei
` pai

n
Jq´ρnJ

¯

`ε
řd

i“1
∆t
∆x2

i

`

ρnJ`ei
´ 2ρnJ ` ρnJ´ei

˘

ı

,

thus

ÿ

JPZd

|xJ |ρn`1
J ď

ÿ

JPZd

|xJ |ρnJ

˜

1 `

d
ÿ

i“1

pa8

∆t

∆xi
` 2ε

∆t

∆x2i
q

¸

`

d
ÿ

i“1

ÿ

JPZd

|xJ`ei |ρ
n
J`eipa8

∆t

∆xi
` ε

∆t

∆x2i
q `

d
ÿ

i“1

ÿ

JPZd

∆xiρ
n
J`eipa8

∆t

∆xi
` ε

∆t

∆x2i
q

`

d
ÿ

i“1

ÿ

JPZd

|xJ´ei |ρ
n
J´eipa8

∆t

∆xi
` ε

∆t

∆x2i
q `

d
ÿ

i“1

ÿ

JPZd

∆xiρ
n
J´eipa8

∆t

∆xi
` ε

∆t

∆x2i
q,

which shows by induction that ρε,n∆x P P1pRdq if ρε,0∆x P P1pRdq. Now more precisely, using the
discretization (3.19) together with a discrete integration by parts, we have:

ÿ

JPZd

xJρ
n`1
J “

ÿ

JPZd

xJρ
n
J ´

d
ÿ

i“1

∆t

∆xi

ÿ

JPZd

`

pai
n
Jq` ρnJ

`

xJ ´ xJ`ei

˘

´ pai
n
Jq´ ρnJ

`

xJ´ei ´ xJ
˘˘

`ε
d
ÿ

i“1

∆t

∆x2i

ÿ

JPZd

`

xJ´ei ´ xJ
˘`

ρnJ`ei ´ ρnJ
˘

.

By definition of xJ , we have xJ´ei ´ xJ “ ´∆xi. Hence, we deduce:

ÿ

JPZd

xJρ
n`1
J “

ÿ

JPZd

xJρ
n
J`∆t

d
ÿ

i“1

ÿ

JPZd

ai
n
J ρ

n
J´ε

d
ÿ

i“1

∆t

∆xi

ÿ

JPZd

`

ρnJ`ei´ρ
n
J

˘

“
ÿ

JPZd

xJρ
n
J`∆t

d
ÿ

i“1

ÿ

JPZd

ai
n
J ρ

n
J .

Applying the symmetrization Lemma 3.10 to the constant vector field given by vJ “ p1, . . . , 1q P Rd

for all J P Zd, we have
ÿ

JPZd

ai
n
J ρ

n
J “ 0 for all i “ 1, . . . , d, hence the result.

The following lemma ensures that M2pρε,n∆xq remains bounded over finite time. It turns out nec-
essary for the proof of convergence of the scheme by compactness, in order to extract a converging
subsequence.

Lemma 3.16 (Bound on the second moment). For all n P N˚, the following estimate holds:

Mn
2,∆x :“

ÿ

JPZd

|xJ |2ρnJ ď e´4λtn
´

M0
2,∆x ` a8t

n
d
ÿ

i“1

∆xi ` 2dεtn
¯

.

Proof. Using (3.19) and a discrete integration by parts, one can write:
ÿ

JPZd

|xJ |2ρn`1
J “

ÿ

JPZd

|xJ |2ρnJ

´

d
ÿ

i“1

∆t

∆xi

ÿ

JPZd

”

pai
n
Jq` ρnJ

`

|xJ |2 ´ |xJ`ei |
2
˘

´ pai
n
Jq´ ρnJ

`

|xJ´ei |
2 ´ |xJ |2

˘

ı

`ε
d
ÿ

i“1

∆t

∆xi

ÿ

JPZd

`

|xJ´ei |
2 ´ |xJ |2

˘`

ρJ`ei ´ ρJ
˘

.
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By definition of xJ , |xJ |2 ´ |xJ`ei |
2 “ ´2Ji∆x

2
i ´ ∆x2i and |xJ´ei |

2 ´ |xJ |2 “ ´2Ji∆x
2
i ` ∆x2i .

Therefore, we get:

ÿ

JPZd

|xJ |2ρn`1
J “

ÿ

JPZd

|xJ |2ρnJ ` 2∆t
d
ÿ

i“1

ÿ

JPZd

Ji∆xi ai
n
J ρ

n
J ` ∆t

d
ÿ

i“1

∆xi
ÿ

JPZd

ρnJ |ai
n
J |

` ε∆t
d
ÿ

i“1

ÿ

JPZd

p´2Ji ` 1q∆xi
`

ρJ`ei ´ ρJ
˘

.

As a consequence of Lemma 3.15, we have |ai
n
J | ď a8. Using, in addition, the mass conservation,

we deduce that the penultimate term is bounded by a8∆t
řd

i“1∆xi. As for the last term, another
integration by parts shows that the last term equals 2dε∆t. Finally, Lemma 3.10 applied to the
discrete vector field given by vJ “ xJ yields:

2∆t
d
ÿ

i“1

ÿ

JPZd

Ji∆xi ai
n
J ρ

n
J “ 2∆t

ÿ

JPZd

xJ ¨ anj ρ
n
J “ ´∆t

ÿ

J,KPZd

DWK
J ¨ pxJ ´ xKqρnJρ

n
K

ď ´λ∆t
ÿ

J,KPZd

|xJ ´ xK |2ρnJρ
n
K

ď ´4λ∆t
ÿ

JPZd

|xJ |2ρnJ ,

where we used the λ´convexity of W and the inequality |xJ ´ xK |2 ď 2p|xJ |2 ` |xK |2q along with
the fact that λ is nonpositive. We obtain

ÿ

JPZd

|xJ |2ρn`1
J ď

´

1 ´ 4λ∆t
¯

ÿ

JPZd

|xJ |2ρnJ ` a8∆t
d
ÿ

i“1

∆xi ` 2dε∆t.

We conclude the proof using a discrete version of Grönwall’s lemma.

3.2.2 Proof of Proposition 3.11

Before going through the proof of Proposition 3.11, let us introduce, for J P Zd and y P Rd the
following coefficients:

αJpyq “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

1 ´

d
ÿ

i“1

ˆ

|xy ´ xJ , eiy|

∆xi
´

2ε∆t

∆x2i

˙

when y P CJ ,

1

∆xi

`

xy ´ xJ´ei , eiy
˘`

`
ε∆t

∆x2i
when y P CJ´ei , for i “ 1, . . . , d,

1

∆xi

`

xy ´ xJ`ei , eiy
˘´

`
ε∆t

∆x2i
when y P CJ`ei , for i “ 1, . . . , d,

0 otherwise.

(3.29)
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It then holds that, for any J, L P Zd,

αJ

`

xL ` ∆tanL
˘

“

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

1 ´

d
ÿ

i“1

ˆ

|ai
n
J |

∆t

∆xi
´

2ε∆t

∆x2i

˙

when L “ J,

∆t

∆xi

`

ai
n
J´ei

˘`
`
ε∆t

∆x2i
when L “ J ´ ei, for i “ 1, . . . , d,

∆t

∆xi

`

ai
n
J`ei

˘´
`
ε∆t

∆x2i
when L “ J ` ei, for i “ 1, . . . , d,

0 otherwise,

(3.30)

so that we have the key identity:

@ J P Zd, ρn`1
J “

ÿ

LPZd

ρnLαJ

`

xL ` ∆tanL
˘

, (3.31)

Lemma 3.17. For any y P Rd, we have
ÿ

LPZd

αLpyq “ 1 and
ÿ

LPZd

xLαLpyq “ y.

Proof. Let J P Zd such that y P CJ . To prove the first claim, we just use the definition of αLpyq:

ÿ

LPZd

αLpyq “ αJpyq `

d
ÿ

i“1

`

αJ`eipyq ` αJ´eipyq
˘

“ 1 ´

d
ÿ

i“1

ˆ

|xy ´ xL, eiy|

∆xi
´

2ε∆t

∆x2i

˙

`

d
ÿ

i“1

1

∆xi

`

xy ´ xJ , eiy
˘`

`
`

xy ´ xJ , eiy
˘´

` 2
d
ÿ

i“1

ε∆t

∆x2i
“ 1.

As for the preservation of the barycenter, we once again using the definition of the coefficients αLpyq:

ÿ

LPZd

xLαLpyq “ xJαJpyq `

d
ÿ

i“1

xJ`eiαJ`eipyq `

d
ÿ

i“1

xJ´eiαJ´eipyq

“ xJ

«

1 ´

d
ÿ

i“1

ˆ

|xy ´ xJ , eiy|

∆xi
´

2ε∆t

∆x2i

˙

ff

`

d
ÿ

i“1

xJ

ˆ

1

∆xi

`

xy ´ xJ , eiy
˘`

`
ε∆t

∆x2i

˙

`

d
ÿ

i“1

xJ

ˆ

1

∆xi

`

xy ´ xJ , eiy
˘´

`
ε∆t

∆x2i

˙

“ xJ

«

1 `

d
ÿ

i“1

ˆ

´
|xy ´ xJ , eiy|

∆xi
`

1

∆xi

`

xy ´ xJ , eiy
˘`

`
1

∆xi

`

xy ´ xJ , eiy
˘´

˙

ff

`

d
ÿ

i“1

ei

´

`

xy ´ xJ , eiy
˘`

´
`

xy ´ xJ , eiy
˘´

¯

“ xJ `

d
ÿ

i“1

xy ´ xJ , eiyei

“ y.
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We now turn to the proof of Proposition 3.11.
For n P N˚, we denote Dn :“ W2

`

ρtn , ρ
ε,n
∆x

˘

. The point is, roughly speaking, to obtain an estimate
of the type D2

n`1 ď D2
n ` C∆tp∆t ` ∆x ` εq and then use a discrete Grönwall lemma to obtain

estimate (3.24).

Let γ be an optimal transport plan between ρtn and ρε,n∆x, so that D2
n “

ĳ

|x´ y|2γpdx, dyq. We

also let an∆x be any continuous reconstruction of the discrete velocity defined in (3.20), for instance
piecewise affine, such that an∆xpxJq “ anJ for all J P Zd.

To construct an adequate coupling γ1 P Γ
`

ρtn`1 , ρε,n`1
∆x

˘

, recall that Theorem 2.9 gives ρtn`1 “

Zptn`1, tn, ¨q#ρtn , where Z is the Filippov characteristic flow associated to parρs given by Theorem
2.9, except that here the second variable of Z denotes the time of the Cauchy data (which is the
third variable) whereas in Theorem 2.9 it was omitted as it was 0. If the discrete measure ρε,n`1

∆x

was a pushforward measure of ρε,n∆x, we would also define γ1 as a pushforward of γ, but it is not the
case in general as we are dealing with atomic measures. Instead, if we denote by ν the kernel on
pRd,BpRdqq given by:

@py,Bq P Rd ˆ BpRdq, νpy,Bq “
ÿ

JPZd

αJpy ` ∆tan∆x
pyqqδxJ pBq,

we have the kernel representation:

@B P BpRdq, ρε,n`1
∆x pBq “

ż

νpy,Bqρε,n∆xpdyq.

The pushforward ρtn`1 “ Zptn`1, tn, ¨q#ρtn can also be seen as a kernel representation. Indeed,
setting µpx,Aq “ δZptn`1,tn,xqpAq for px,Aq P Rd ˆ BpRdq, we have:

@A P BpRdq, ρtn`1pAq “

ż

1ApZptn`1, tn, xqqρtnpdxq “

ż

δZptn`1,tn,xqpAqρtnpdxq “

ż

µpx,Aqρtnpdxq.

We now define the product kernel K on
`

Rd ˆ Rd
˘

ˆ B
`

Rd ˆ Rd
˘

by:

K
`

px, yq, AˆB
˘

“ µpx,Aqνpy,Bq “ δZptn`1,tn,xqpAq
ÿ

LPZd

αL

`

y ` ∆tan∆xpyq
˘

δxLpBq

and then set γ1pA ˆ Bq “

ĳ

RdˆRd

K
`

px, yq, A ˆ B
˘

γpdx, dyq. Equivalently, for any θ P CbpRd ˆ Rdq,

we have:
ĳ

θpx, yqγ1pdx, dyq “

żżżż

θpx1, y1qµpx, dx1qνpy, dy1qγpdx, dyq

“

ĳ
„

ÿ

LPZd

θ
`

Zptn`1; tn, xq, xL
˘

αL

`

y ` ∆tan∆xpyq
˘

ȷ

γpdx, dyq.

One can show as in [13] that the marginals of γ1 are ρtn`1 and ρε,n`1
∆x . In particular, we have:

D2
n`1 ď

ĳ

|x´ y|2γ1pdx, dyq.

Using the definition of γ1, we get:

D2
n`1 ď

ĳ

ÿ

LPZd

ˇ

ˇZptn`1; tn, xq ´ xL
ˇ

ˇ

2
αL

`

y ` ∆tan∆xpyq
˘

γpdx, dyq. (3.32)
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Writing Zptn`1; tn, xq´xL “ Zptn`1; tn, xq´py`∆tan∆xpyqq´
`

xL ´py`∆tan∆xpyqq
˘

and expanding
the square, we obtain:

ÿ

LPZd

ˇ

ˇZptn`1; tn, xq ´ xL
ˇ

ˇ

2
αL

`

y ` ∆tan∆xpyq
˘

“
ˇ

ˇZptn`1; tn, xq ´ y ´ ∆tan∆xpyq
ˇ

ˇ

2
`

ÿ

LPZd

ˇ

ˇxL ´ y ´ ∆tan∆xpyq
ˇ

ˇ

2
αL

`

y ` ∆tan∆xpyq
˘

´ 2

ˆ

Zptn`1; tn, xq ´ y ´ ∆tan∆xpyq

˙

¨

ˆ

ÿ

LPZd

`

xL ´ y ´ ∆tan∆xpyq
˘

αL

`

y ` ∆tan∆xpyq

˙

. (3.33)

Now, the last term in scalar product vanishes as we have, using Lemma 3.17,
ÿ

LPZd

`

xL ´ y ´ ∆tan∆xpyq
˘

αL

`

y ` ∆tan∆xpyq
˘

“ y ` ∆tan∆xpyq ´
`

y ` ∆tan∆xpyq
˘

“ 0.

Plugging (3.33) into (3.32), we therefore deduce, using the fact that ρε,n∆x is the second marginal of
γ:

D2
n`1 ď

ĳ

ˇ

ˇZptn`1; tn, xq ´ y ´ ∆tan∆xpyq
ˇ

ˇ

2
γpdx, dyq

`

ż

ÿ

LPZd

ˇ

ˇxL ´ y ´ ∆tan∆xpyq
ˇ

ˇ

2
αL

`

y ` ∆tan∆xpyq
˘

ρε,n∆xpdyq, (3.34)

Let us deal with the last term in the above inequality. We have ρε,n∆xpyq “
ř

JPZd ρnJδxJ pyq, therefore:
ÿ

LPZd

ż

ˇ

ˇxL ´ y ´ ∆tan∆xpyq
ˇ

ˇ

2
αL

`

y ` ∆tan∆xpyq
˘

ρε,n∆xpdyq

“
ÿ

JPZd

ÿ

LPZd

ˇ

ˇxL ´ xJ ´ ∆tanJ
ˇ

ˇ

2
αL

`

xJ ` ∆tanJ
˘

ρnJ .

Moreover, using the definition of αL in (3.29), we compute:

ÿ

LPZd

ˇ

ˇxL ´ xJ ´ ∆tanJ
ˇ

ˇ

2
αL

`

xJ ` ∆tanJ
˘

“ ∆t2|anJ |2

˜

1 ´

d
ÿ

i“1

∆t

∆xi
|ai

n
J | ´

d
ÿ

i“1

2ε∆t

∆x2i

¸

`

d
ÿ

i“1

ˆ

ˇ

ˇ∆xiei ´ ∆tanJ
ˇ

ˇ

2
´ ∆t

∆xi
pai

n
Jq` `

ε∆t

∆x2i

¯

`
ˇ

ˇ∆xiei ` ∆tanJ
ˇ

ˇ

2
´ ∆t

∆xi
pai

n
Jq´ `

ε∆t

∆x2i

¯

˙

ď C∆tp∆t` ∆x` εq,

where we used, for the last inequality, the CFL condition (3.23) and the fact that the velocity anJ is
uniformly bounded. Multiplying by ρnJ , summing over J P Zd, and injecting into (3.34) yields:

D2
n`1 ď

ĳ

ˇ

ˇZptn`1; tn, xq ´ y ´ ∆tan∆xpyq
ˇ

ˇ

2
γpdx, dyq ` C∆tp∆t` ∆x` εq. (3.35)

Dealing with the first term amounts to estimating the distance between the exact characteristics
Zptn`1; tn, xq and the forward Euler discretization y ` ∆tan∆xpyq. To this end, we write, on the one
hand, using the definition of the Filippov characteristics [17, 31]:

Zptn`1; tn, xq “ x`

ż tn`1

tn
paρ
`

s, Zps; tn, xq
˘

ds

“ x´

ż tn`1

tn

ż

z∇W
`

Zps; tn, xq ´ Zps; tn, ξq
˘

ρtnpdξqds.
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On the other hand, we have, whenever y is a node of the mesh,

y ` ∆tan∆xpyq “ y ´ ∆t

ż

z∇W py ´ ζqρn∆xpdζ
˘

.

Thus, still for y a node of the mesh, we have:
ˇ

ˇZptn`1; tn, xq ´ y ´ ∆tan∆xpyq
ˇ

ˇ

2
ď |x´ y|2

´ 2

ż tn`1

tn

ĳ

´

x´ y
¯

¨

´

z∇W
`

Zps; tn, xq ´ Zps; tn, ξq
˘

´ z∇W py ´ ζq

¯

ρtnpdξqρε,n∆xpdζq ` C∆t2.

Since γ P Γpρtn , ρ
ε,n
∆xq and since the above integral can be decoupled using the linearity of the scalar

product, we also have:
ĳ

´

x´ y
¯

¨

´

z∇W
`

Zps; tn, xq ´ Zps; tn, ξq
˘

´ z∇W py ´ ζq

¯

ρtnpdξqρε,n∆xpdζq

“

ĳ

´

x´ y
¯

¨

´

z∇W
`

Zps; tn, xq ´ Zps; tn, ξq
˘

´ z∇W py ´ ζq

¯

γpdξ, dζq.

Injecting into (3.35), we get:

D2
n`1 ď D2

n ` C∆tp∆t` ∆x` εq

´ 2

ż tn`1

tn

żżżż

´

x´ y
¯

¨

´

z∇W
`

Zps; tn, xq ´ Zps; tn, ξq
˘

´ z∇W py ´ ζq

¯

γpdξ, dζqγpdx, dyq.

Decomposing x ´ y “ x ´ Zps; tn, xq ` Zps; tn, xq ´ y and using the fact that |Zps; tn, xq ´ x| ď

a8|s´ tn|, we get:

D2
n`1 ď D2

n ` C∆tp∆t` ∆x` εq

´ 2

ż tn`1

tn

żżżż

´

Zps; tn, xq ´ y
¯

¨

´

z∇W
`

Zps; tn, xq ´ Zps; tn, ξq
˘

´ z∇W py ´ ζq

¯

γpdξ, dζqγpdx, dyq.

Using the fact that W is even to symmetrize the last term as in Lemma 2.7, we obtain:

D2
n`1 ď D2

n ` C∆tp∆t` ∆x` εq

´

ż tn`1

tn

żżżż

´

Zps; tn, xq ´ Zps; tn, ξq ´ y ` ζ
¯

¨

´

z∇W
`

Zps; tn, xq ´ Zps; tn, ξq
˘

´ z∇W py ´ ζq

¯

γpdξ, dζqγpdx, dyq.

The λ-convexity of W then yields:

D2
n`1 ď D2

n `C∆tp∆t`∆x` εq ´λ

ż tn`1

tn

żżżż

ˇ

ˇZps; tn, xq ´ y´Zps; tn, ξq ` ζ
ˇ

ˇ

2
γpdξ, dζqγpdx, dyq.

Expanding the last term gives:

D2
n`1 ď D2

n ` C∆tp∆t` ∆x` εq ´ 2λ

ż tn`1

tn

ĳ

ˇ

ˇZps; tn, xq ´ y
ˇ

ˇ

2
γpdx, dyq

` 2λ

ż tn`1

tn

ˇ

ˇ

ˇ

ˇ

ĳ

`

Zps; tn, xq ´ y
˘

γpdx, dyq

ˇ

ˇ

ˇ

ˇ

2

. (3.36)
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Now, since λ ď 0, the last term above is nonpositive. It remains to estimate the penultimate term.
Writing:

ˇ

ˇZps; tn, xq ´ y
ˇ

ˇ ď
ˇ

ˇZps; tn, xq ´ x
ˇ

ˇ `
ˇ

ˇx´ y
ˇ

ˇ ď a8

ˇ

ˇs´ tn
ˇ

ˇ `
ˇ

ˇx´ y
ˇ

ˇ,

we deduce:
ˇ

ˇZps; tn, xq ´ y
ˇ

ˇ

2
ď 2

´

a28
ˇ

ˇs´ tn
ˇ

ˇ

2
`
ˇ

ˇx´ y
ˇ

ˇ

2
¯

ď 2a28∆t2 ` 2
ˇ

ˇx´ y
ˇ

ˇ

2
,

whenever s P rtn, tn`1s. Integrating in space with respect to γpdx, dyq and integrating over s P

rtn, tn`1s, we obtain:

´2λ

ż tn`1

tn

ĳ

ˇ

ˇZps; tn, xq ´ y
ˇ

ˇ

2
γpdx, dyq ď ´4λa28∆t3 ´ 4λ∆tD2

n.

Together with (3.36), this yields:

D2
n`1 ď p1 ´ 4λ∆tqD2

n ` C∆tp∆t` ∆x` εq.

Using a discrete Grönwall lemma, we finally get:

D2
n ď e´4λtnD2

0 ` C
1 ´ e´4λtn

4λ
p∆t` ∆x` εq.

Now, one can easily prove that D2
0 “ W 2

2 pρini, ρ0∆xq ď
?
d
2 ∆x2 (see [14]). This, along with the CFL

condition (3.23), which implies that ∆t ď C∆x, gives the desired result.

3.2.3 Proof of Theorem 3.8

We are now in position to prove Theorem 3.8 using estimate (3.24) and passing to the limit ∆x Ñ 0.
To do so, we must verify that, for a given ε ą 0, the approximate solutions given by the numerical
scheme (3.19)–(3.18) converge, say uniformly in time (over a finite horizon) and weakly, in the sense
of measures, in space, towards the solution ρε to the aggregation-diffusion problem (1.1) with initial
datum ρini, as ∆x Ñ 0. In all this section, ε is a fixed positive real number.

Let T ą 0 and let N P N be such that N∆t “ T where ∆t satisfies the CFL condition. We
consider the following piecewise affine reconstruction in time, defined for t P r0, T s by

ρε∆x,t :“
N
ÿ

n“0

ˆ

tn`1 ´ t

∆t
ρε,n∆x `

t´ tn

∆t
ρε,n`1
∆x

˙

1rtn,tn`1rptq, (3.37a)

ρε,n∆x :“
ÿ

JPZd

ρnJδxJ , n “ 0, . . . , N, (3.37b)

where, once again, pρnJq
n“0,...,N
JPZd is given by the explicit discretization (3.19)–(3.18) (it actually de-

pends on ε but we drop this dependence for convenience). Lemmas 3.15 and 3.16 show that, for
all n P t0, . . . , Nu, ρε,n∆x P P2pRdq, hence pρε∆xq∆xą0 is a collection, indexed by ∆x, of curves in
Cpr0, T s,W1pRdqq (they are actually curves on W2pRdq but compactness arguments require to work
in a smaller space).

Outline of the proof. We begin with assuming that ρini P L2pRdq. Then, from pρε∆xq∆xą0,
we shall extract a subsequence, that we still denote pρε∆xq∆xą0, converging in the Cpr0, T s,MbpRdqq

topology towards a limit ρ P Cpr0, T s,W2pRdqq. To do so, we apply the Ascoli-Arzelà Theorem: the
relative compactness assumption follows quite directly from the uniform bound on M2pρε,n∆xq that
we proved in Lemma 3.16 ; the equicontinuity assumption, however, is more involved and requires
discrete H1 estimates (Lemma 3.18) in order to control the diffusive term. Then, using classical
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discrete integration by parts, we show that ρ solves the aggregation-diffusion initial value problem,
the solution of which is unique, hence the whole sequence actually converges. Passing to the limit
∆x Ñ 0 in estimate (3.24) will give us the desired estimate (3.25) for L2pRdq initial datum, and it
will only remain to use a regularization argument to conclude in the case of arbitrary P2pRdq initial
datum.

Lemma 3.18. For all m P t0, . . . , Nu, we have:

∆t
m´1
ÿ

n“0

ÿ

JPZd

d
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

ρnJ`ei
´ ρnJ

∆xi

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď Cpa8, d, ε, T q
ÿ

JPZd

`

ρ0J
˘2

2
,

with Cpa8, d, ε, T q “ 1
2ε

´

1 `
8dTa28

ε

ř

JPZd exp
´

4p1`dqTa28
ε

¯¯

.

Proof. The idea is to perform a discrete version of the following rationale. If ρε solves (1.1) with
L2pRdq initial data, we have:

d

dt

ż

`

ρεt
˘2

2
“ ´

ż

∇ρεt ¨ p∇W ˚ ρεt qρεt ´ ε

ż

|∇ρεt |2. (3.38)

First, using an adequate Young inequality on the first term along with the fact that ∇W is bounded
allows to absorb the |∇ρεt |2 term into the last one, getting:

d

dt

ż

`

ρεt
˘2

2
ď ´

ε

2

ż

|∇ρεt |2 `
a28
ε

ż

`

ρεt
˘2

2
ď
a28
ε

ż

`

ρεt
˘2

2
.

A Grönwall Lemma then ensures that
ż

`

ρεt
˘2

2
remains bounded over finite time, where the bound

depends on ε, but ε is fixed. Second, plugging back this bound into the above estimate gives a
bound on

şT
0 |∇ρεt |2

H1pRdq
dt. Let us reproduce these computations in the discrete setting.

Step 1: bound on
ÿ

JPZd

`

ρnJ
˘2

2
.

For the sake of compactness, let us note Fn
J`

ei
2

“ pai
n
Jq`ρnJ ´ pai

n
J`ei

q´ρnJ`ei
. Using twice the

definition of the explicit scheme (3.19), we have:

ÿ

JPZd

`

ρn`1
J

˘2
´
`

ρnJ
˘2

2
“

ÿ

JPZd

ρn`1
J ` ρnJ

2

`

ρn`1
J ´ ρnJ

˘

“
ÿ

JPZd

ρn`1
J ` ρnJ

2

˜

´

d
ÿ

i“1

∆t

∆xi

´

Fn
J`

ei
2

´ Fn
J´

ei
2

¯

` ε
d
ÿ

i“1

∆t

∆x2i

`

ρnJ`ei ´ 2ρnJ ` ρnJ´ei

˘

¸

“ ´
ÿ

JPZd

d
ÿ

i“1

∆t

∆xi

´

Fn
J`

ei
2

´ Fn
J´

ei
2

¯

ρnJ ` ε
ÿ

JPZd

d
ÿ

i“1

∆t

∆x2i

`

ρnJ`ei ´ 2ρnJ ` ρnJ´ei

˘

ρnJ

`
1

2

ÿ

JPZd

˜

´

d
ÿ

i“1

∆t

∆xi

´

Fn
J`

ei
2

´ Fn
J´

ei
2

¯

` ε
d
ÿ

i“1

∆t

∆x2i

`

ρnJ`ei ´ 2ρnJ ` ρnJ´ei

˘

¸2

:“ Sn
1 ` Sn

2 .
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Performing discrete integrations by parts and using Young’s inequality |ab| ď a2

2ε ` εb2

2 with a “ Fn
J`

ei
2

and b “
ρnJ`ei

´ρnJ
∆xi

, we can estimate Sn
1 as follows:

Sn
1 “

ÿ

JPZd

d
ÿ

i“1

∆t

∆xi
Fn
J`

ei
2

´

ρnJ`ei ´ ρnJ

¯

´ ε
ÿ

JPZd

d
ÿ

i“1

∆t

∆x2i

ˇ

ˇ

ˇ
ρnJ`ei ´ ρnJ

ˇ

ˇ

ˇ

2

ď
ÿ

JPZd

d
ÿ

i“1

∆t

˜

´

Fn
J`

ei
2

¯2

2ε
`
ε

2

ˇ

ˇ

ˇ

ˇ

ˇ

ρnJ`ei
´ ρnJ

∆xi

ˇ

ˇ

ˇ

ˇ

ˇ

2¸

´ ε
ÿ

JPZd

d
ÿ

i“1

∆t

∆x2i

ˇ

ˇ

ˇ
ρnJ`ei ´ ρnJ

ˇ

ˇ

ˇ

2

ď
ÿ

JPZd

d
ÿ

i“1

∆t

´

Fn
J`

ei
2

¯2

2ε
´
ε

2

ÿ

JPZd

d
ÿ

i“1

∆t

∆x2i

ˇ

ˇ

ˇ
ρnJ`ei ´ ρnJ

ˇ

ˇ

ˇ

2

As for Sn
2 , straightforward computations and the repeated use of pa˘ bq2 ď 2a2 ` 2b2 lead to:

Sn
2 ď

d
ÿ

i“1

4d∆t2

∆x2i

ÿ

JPZd

´

Fn
J`

ei
2

¯2
`

d
ÿ

i“1

4d

ˆ

ε∆t

∆x2i

˙2
ÿ

JPZd

ˇ

ˇ

ˇ
ρnJ`ei ´ ρnJ

ˇ

ˇ

ˇ

2
.

Using the fact that:
´

Fn
J`

ei
2

¯2
ď
`

a8ρ
n
J ` a8ρ

n
J`ei

˘2
ď 2a28

´

`

ρnJ
˘2

`
`

ρnJ`ei

˘2
¯

we deduce that
ř

JPZd

´

Fn
J`

ei
2

¯2
ď 4a28

ř

JPZd

`

ρnJ
˘2. Reporting in both estimates we found on Sn

1

and Sn
2 , and summing both, we obtain:

ÿ

JPZd

`

ρn`1
J

˘2
´
`

ρnJ
˘2

2
ď

˜

4d∆ta28
ε

`

d
ÿ

i“1

32da28∆t2

∆x2i

¸

ÿ

JPZd

`

ρnJ
˘2

2
(3.39)

`

d
ÿ

i“1

˜

´
ε∆t

2∆x2i
` 4d

ˆ

ε∆t

∆x2i

˙2
¸

ÿ

JPZd

ˇ

ˇ

ˇ
ρnJ`ei ´ ρnJ

ˇ

ˇ

ˇ

2
.

Under the Courant-Friedrichs-Lewy (CFL) condition

εd
∆t

∆x2i
ď

1

8
for any i,

the last term in the above estimate is nonpositive, thus we get

ÿ

JPZd

`

ρn`1
J

˘2
´
`

ρnJ
˘2

2
ď

4d∆ta28
ε

˜

1 `

d
ÿ

i“1

8ε∆t

∆x2i

¸

ÿ

JPZd

`

ρnJ
˘2

2

ď
4d∆ta28

ε

ˆ

1 `
1

d

˙

ÿ

JPZd

`

ρnJ
˘2

2
“

4∆ta28
ε

p1 ` dq
ÿ

JPZd

`

ρnJ
˘2

2
.

Using a discrete Grönwall Lemma, we deduce the following bound on the discrete L2 norm of ρε,n∆x:

ÿ

JPZd

`

ρnJ
˘2

2
ď exp

ˆ

4p1 ` dqtna28
ε

˙

ÿ

JPZd

`

ρ0J
˘2

2
.
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Step 2: discrete H1 bound.
Assume a stricter CFL condition: there exists δ such that

εd
∆t

∆x2i
ď δ ă

1

8
for any i. (3.40)

Then, for any i,

4d

ˆ

ε∆t

∆x2i

˙2

´
ε∆t

2∆x2i
“

ε∆t

2∆x2i

ˆ

8d
ε∆t

∆x2i
´ 1

˙

ď
δ

d
p8δ ´ 1q ă 0.

Thus, thanks to 3.39,

d
ÿ

i“1

ÿ

JPZd

ˇ

ˇ

ˇ
ρnJ`ei ´ ρnJ

ˇ

ˇ

ˇ

2

ď
d

δp1 ´ 8δq

˜˜

4d∆ta28
ε

`

d
ÿ

i“1

32da28∆t2

∆x2i

¸

ÿ

JPZd

`

ρnJ
˘2

2
´

ÿ

JPZd

`

ρn`1
J

˘2
´
`

ρnJ
˘2

2

¸

ď
d

δp1 ´ 8δq

˜˜

4d∆ta28
ε

`

d
ÿ

i“1

4a28∆t

ε

¸

ÿ

JPZd

`

ρnJ
˘2

2
´

ÿ

JPZd

`

ρn`1
J

˘2
´
`

ρnJ
˘2

2

¸

which implies, thanks to the L2 estimate,

d
ÿ

i“1

ÿ

JPZd

ˇ

ˇ

ˇ
ρnJ`ei´ρ

n
J

ˇ

ˇ

ˇ

2
ď

d

δp1 ´ 8δq

˜

8d∆ta28
ε

exp

ˆ

4p1 ` dqtna28
ε

˙

ÿ

JPZd

`

ρ0J
˘2

2
´

ÿ

JPZd

`

ρn`1
J

˘2
´
`

ρnJ
˘2

2

¸

Summing over n “ 0, . . . ,m´ 1 yields

m´1
ÿ

n“0

d
ÿ

i“1

ÿ

JPZd

ˇ

ˇ

ˇ
ρnJ`ei ´ ρnJ

ˇ

ˇ

ˇ

2
ď

d

δp1 ´ 8δq

˜

8dTa28
ε

exp

ˆ

4p1 ` dqTa28
ε

˙

ÿ

JPZd

`

ρ0J
˘2

2

´
ÿ

JPZd

`

ρmJ
˘2

2
`

ÿ

JPZd

`

ρ0J
˘2

2

¸

.

Finally

m´1
ÿ

n“0

d
ÿ

i“1

ÿ

JPZd

ˇ

ˇ

ˇ
ρnJ`ei ´ ρnJ

ˇ

ˇ

ˇ

2
ď

d

δp1 ´ 8δq

˜

1 `
8dTa28
ε

ÿ

JPZd

exp

ˆ

4p1 ` dqTa28
ε

˙

¸

ÿ

JPZd

`

ρ0J
˘2

2
.

This is the desired result choosing δ “ 1{16.

We now resume the proof of Theorem 3.13. From now on, we always assume condition (3.40) to
hold.

Step 1: Ascoli-Arzelà Theorem. Let us denote, for K Ă Rd any compact set, LipK :“
CcpKq X W 1,8pRdq the space of Lipschitz continuous functions supported in K and } ¨ }Lip the
Lipschitz seminorm. We then introduce the pseudo-distance defined in duality with } ¨ }Lip by:

@µ, ν P P1pRdq, W1,Kpµ, νq :“ sup
ϕPLipK , }ϕ}Lipď1

ż

ϕdpµ´ νq,
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For 0 ď s ă t ď T , we have, thanks to the Cauchy-Schwarz inequality:

W1,K

`

ρε∆x,t, ρ
ε
∆x,s

˘

“

ż t

s

ˇ

ˇpρε∆x,τ q1
ˇ

ˇdτ ď
?
t´ s

d

ż t

s

ˇ

ˇpρε∆x,τ q1
ˇ

ˇ

2
dτ. (3.41)

Here, the metric derivative is the one associated to the pseudo-distance W1,K . Since we chose ρε∆x

to be the piecewise affine reconstruction of the ρε,n∆x for n “ 0, . . . N , we have, for τ P rtn, tn`1r,
ˇ

ˇpρε∆x,τ q1
ˇ

ˇ “ 1
∆tW1,Kpρε,n∆x, ρ

ε,n`1
∆x q. Indeed, ρε∆x is a constant-speed geodesic in W1pKq from ρε,n∆x to

ρε,n`1
∆x (recall (3.37a) and the fact that linear interpolations are geodesic for the W1 distance, which

is a norm), hence its length on rtn, tn`1r equals ∆t
ˇ

ˇpρε∆x,τ q1
ˇ

ˇ by definition and W1,Kpρε,n∆x, ρ
ε,n`1
∆x q by

the Benamou-Brenier formula. Therefore:
ż t

s

ˇ

ˇpρε∆x,τ q1
ˇ

ˇ

2
dτ ď

ż T

0

ˇ

ˇpρε∆x,τ q1
ˇ

ˇ

2
dτ “

N´1
ÿ

k“0

ż tn`1

tn

ˇ

ˇpρε∆x,τ q1
ˇ

ˇ

2
dτ “

N´1
ÿ

k“0

W 2
1,Kpρε,n∆x, ρ

ε,n`1
∆x q

∆t
. (3.42)

Now, let ϕ P LipK such that }ϕ}Lip ď 1. We have, denoting ϕJ “ ϕpxJq and using the definition of
the scheme (3.19) along with discrete integrations by parts in space:
ż

ϕd
`

ρε,n`1
∆x ´ ρε,n∆x

˘

“
ÿ

JPZd

ϕJ
`

ρn`1
J ´ ρnJ

˘

“
ÿ

JPZd

d
ÿ

i“1

∆t

∆xi
Fn
J`

ei
2

´

ϕJ`ei ´ ϕJ

¯

´ ε
ÿ

JPZd

d
ÿ

i“1

∆t

∆x2i

`

ρnJ`ei ´ ρnJ
˘

´

ϕJ`ei ´ ϕJ

¯

ď 2da8∆t` ε∆t
ÿ

JPZd

d
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

ρnJ`ei
´ ρnJ

∆xi

ˇ

ˇ

ˇ

ˇ

ˇ

.

Taking the supremum over ϕ and using pa` bq2 ď 2a2 ` 2b2, we get:

W 2
1,Kpρε,n∆x, ρ

ε,n`1
∆x q ď 8d2a28∆t2 ` 2ε2∆t2

˜

ÿ

JPZd

d
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

ρnJ`ei
´ ρnJ

∆xi

ˇ

ˇ

ˇ

ˇ

ˇ

¸2

ď 8d2a28∆t2 ` 2ε2∆t2
dLebpKq
śd

i“1∆xi

ÿ

JPZd

d
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

ρnJ`ei
´ ρnJ

∆xi

ˇ

ˇ

ˇ

ˇ

ˇ

2

,

where we used a discrete Cauchy-Schwarz inequality so as to use the discrete H1 estimate we proved
in Lemma 3.18: indeed, summing for n “ 0, . . . , N ´ 1 and plugging into (3.42), we obtain, using
the aforementioned Lemma:

ż t

s

ˇ

ˇpρε∆x,τ q1
ˇ

ˇ

2
dτ ď 8d2a28T ` 2dε2

LebpKq
śd

i“1∆xi
∆t

N´1
ÿ

n“0

ÿ

JPZd

d
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

ρnJ`ei
´ ρnJ

∆xi

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď Cpa8, d, ε, T,Kq

˜

1 `
1

śd
i“1∆xi

ÿ

JPZd

`

ρ0J
˘2

¸

. (3.43)

Now, since we assumed that ρini P L2pRdq, the term 1
śd

i“1 ∆xi

ř

JPZd

`

ρ0J
˘2 is bounded with respect

to ∆x. Indeed, a Cauchy-Schwarz inequality along with our initialization of the scheme (3.18) yield:
ÿ

JPZd

`

ρ0J
˘2

“
ÿ

JPZd

ˆ
ż

CJ

ρini
˙2

ď
ÿ

JPZd

LebpCJq

ż

CJ

`

ρini
˘2

“

´

d
ź

i“1

∆xi

¯

ÿ

JPZd

ż

CJ

`

ρini
˘2

“

´

d
ź

i“1

∆xi

¯

}ρini}L2 .

32



Reporting into (3.43), we obtain a bound on
şt
s

ˇ

ˇpρε∆x,τ q1
ˇ

ˇ

2
dτ that is uniform with respect to s, t

and ∆x. Combining with (3.41), we deduce that pρε∆xq∆xą0 is equi-12 -Hölder and in particular,
equicontinuous in Cpr0, T s, pLipKq1q. Lemma 3.16 ensures, in addition, that M2

`

ρε∆x,t

˘

is uniformly
bounded with respect to t P r0, T s and ∆x ą 0. Using Lemma 2.5, we deduce that pρε∆x,tq∆xą0 lies
in a relatively compact set for all t P r0, T s and ∆x ą 0. We can therefore apply the Ascoli-Arzelà
Theorem along with a diagonal extraction to extract a subsequence, that we still denote pρε∆xq∆xą0,
converging in Cpr0, T s,W1pRdqq.

Step 2: ρε solves (1.1).
Using discrete integrations by parts as in [11, 27], we can prove that ρε∆x satisfies the following

approximate weak form of (1.1), for any ϕ P Cpr0, T rˆRdq:
ż T

0

ż

Btϕpt, xqρε∆x,tpdxqdt`

ż t

0

ż

parρε∆x,ts¨∇ϕpt, xqρε∆x,tpdxqdt`

ż

ϕp0, xqρinipdxq

“ ε

ż T

0

ż

∆ϕpt, xqρε∆x,tpdxq `Op∆xq `Op∆tq. (3.44)

Passing to the limit ∆x Ñ 0 in (3.44) is straightforward for the linear terms since ρε∆x,t
˚

á
∆xÑ0

ρεt

uniformly in time. For the nonlinear term, this convergence also ensures that ρε∆x,t b ρε∆x,t
˚

á
∆xÑ0

ρεt b ρεt . Then, passing to the limit is done using a symmetrization argument as in equations (3.9)-
(3.10)-(3.11) using the fact that W is Lipschitz and even.

We deduce that ρε solves in the sense of distributions the aggregation-diffusion problem (1.1) with
initial datum ρε0 “ ρini. Since such a solution is unique (see Theorem 2.10), we deduce that actually
the whole initial sequence pρε∆xq∆xą0 converges towards ρε.

Step 3: passing to the limit in (3.24) and relaxing the assumption ρini P L2pRdq.
Now, let t ą 0 and let n P t0, . . . , Nu such that t P rtn, tn`1r. Estimate (3.24) gives:

W2pρt, ρ
ε
∆x,tq ď C

c

1 ´ e´4λt

λ

?
∆x` ε` e´2λt∆x.

Passing to the limit ∆x Ñ 0 in the above estimate using the semicontinuity of W2 then gives the
desired estimate (3.25), hence proving Theorem 3.13 in case of L2pRdq initial datum. The general
case can be obtained by approximation, using Assumption (A3) which guarantees stability of the
solutions for both ε “ 0 and ε ą 0. This ends the proof of Theorem 3.13.

Remark 3.19. As a byproduct of this proof, we obtain uniform in time convergence in W1 distance in
space of the numerical scheme (3.19)–(3.18) towards the Cpr0, T s,W2pRdqq distributional solution to
the aggregation-diffusion initial value problem, in case of L2pRdq initial datum, and under 1{6-CFL
condition. In fact, we expect this convergence result to hold for arbitrary P2pRdq initial datum and
under the standard CFL condition:

d
ÿ

i“1

ˆ

a8

∆t

∆xi
` 2ε

∆t

∆x2i

˙

ď
1

6
.

4 Convergence for repulsive potentials such that ∆W ď 0 and
∇2W P Lp0pRdq

For any Lipschitz potential satifying assumptions (A0)-(A1)-(A2), Theorem 3.1 guarantees the con-
vergence of ρε towards a solution ρ to the aggregation equation up to a subsequence if the initial
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data satisfies the assumptions (3.3). Then, Corollary 3.4 extended this result to arbitrary initial
data by an approximation procedure, and using λ´convexity to estimate the distance between two
solutions. The goal of this section is to proceed similarly in the case of repulsive potentials, typi-
cally W pxq “ ´|x|, where λ´convexity will be replaced by some intergability of the Hessian. More
precisely, we focus on initial data equal to ρini, for which we only assume finiteness of moments.

The outline of the proof is the same as that of Corollary 3.4. However, we can no more use the
λ´convexity of W but, using the additional assumption ∇2W P Lp0pRdq for a suitable p0, we still
manage to estimate the distance between ρεt and a sequence of viscous solutions associated with
smoothed out initial data. More precisely, we obtain the following result:

Theorem 4.1. Let W be an interaction potential satisfying assumptions (A0)-(A1)-(A2) along with
the additional assumption:

pA5q : ∆W ď 0 and ∇2W P Lp0pRdq for some p0 ą max
´d

2
, 1
¯

,

and let ρini be an initial datum belonging to P P2pRdq. Denote pρεqεą0 the sequence of weak solutions
to (1.1) where the initial data is set to ρε0 :“ ρini for all ε ą 0.

Then, for all T ą 0, the sequence pρεqεą0 converges in Cpr0, T s,W1pRdqq, up to an extraction,
towards a solution ρ P Cpr0, T s,W2pRdqq to equation (1.2) with the velocity field arρs being replaced
by parρs as defined in (1.3).

If, in addition, ρini P Lp1
0pRdqXL

p0
p0´p pRdq, then there exists a unique solution in Cpr0, T s,W2pRdqqX

L8pr0, T s, Lp1
0pRdq X L

p0
p0´p pRdqq to (1.2) and actually the whole sequence pρεqεą0 converges.

Remark 4.2.

(1) For W pxq “ ´|x|, this result cannot be applied in dimension d “ 1, since ∇2W “ ´δ0 is not

integrable. When d ą 1, we have ∇2W pxq “

x
|x|

b x
|x|

´ Id

|x|
„

1

|x|
, hence ∇2W P Lp0 if and

only if p0 ă d (up to cutting off the potential at infinity) and therefore we can find p0 P

´

d
2 , d

¯

so as to apply our result.

(2) In dimension d “ 1, for W pxq “ ´|x|, Proposition 2.12 shows that the whole sequence pρεqεą0

converges in Cpr0, T s,W1pRqq towards a solution to the aggregation equation that can be
obtained as the derivative of the entropy solution to a Burgers-type equation since entropy
solutions and viscosity solutions coincide for scalar conservation laws.

(3) As a byproduct of our result, one obtains existence of a solution in Cpr0, T s,W2pRdqq to the
aggregation problem (1.2) for potentials satisfying (A0)-(A1)-(A2)-(A5).

Proof. Let T ą 0. As in the proof of Corollary 3.4, for ε ą 0, we introduce µε P Cpr0, T s,W2pRdqq

solution to (1.1) with smoothed out initial data µε0, that we now assume to satisfy assumptions (3.4)
for some α P p´1, 0q. In particular, pµε0qεą0 satisfies assumptions (3.3) and Theorem 3.1 applies to
pµεqεą0 and guarantees convergence of a subsequence, in Cpr0, T s,W1pRdqq, towards a solution to
the aggregation equation (1.2). As for Corollary 3.4, the key ingredient is now to prove that the
distance Wppρεt , µ

ε
t q goes to 0 as ε Ñ 0, for some p ą 1 that will be specified later.

For the sake of clarity, let us drop the superscripts ε for the remaining of this section.
Denoting pφt, ψtq a pair of Kantorovitch potentials from ρt to µt for the cost 1

p |x ´ y|p, we can
formally write (see Theorem 5.24 in [35] or Theorem 8.4.7. in [1])

1

p

d

dt
W p

p pρt, µtq “

ż

∇φt ¨ arρtsdρt `

ż

∇ψt ¨ arµtsdµt ´ ε

ż

´

∇φt ¨ ∇ρt ` ∇ψt ¨ ∇µt
¯

dx.
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The last term above is nonnegative thanks to the so-called five (actually four) gradients inequality
proven in [7] for the Wp case with p ą 1. Actually, [7] proves the inequality in a compact setting
and a full treatment of this last term would require a suitable approximation procedure. Yet, the
inequality we need, i.e.

1

p

d

dt
W p

p pρt, µtq ď

ż

∇φt ¨ arρtsdρt `

ż

∇ψt ¨ arµtsdµt

can also be justified in many different ways, for instance by the stochastic interpretation of ρt and
µt as laws of the solutions of suitable SDE where the choice of a common Brownian motion would
allow to get rid of the term coming from diffusion (see, for instance, [4]); since the diffusion effect of
the Laplacian in the equation could also be handled using convolution with the heat kernel, another
possible way to prove the same inequality would be to approximate the solutions by a splitting
method, alternating convolutions (which decrease the Wp distance) and transport (which lets the
other term appear).

We thus get, using a triangle inequality along with the fact that ∇φtpxq “ |x´Ttpxq|p´1p {x´ Ttpxqq “

´∇ψtpxq, where Tt is the optimal transport map from ρt to µt (which exists since ρt ! Leb whenever
ε ą 0):

1

p

d

dt
W p

p pρt, µtq ď |I1| ` |I2|, (4.1a)

I1 “

ż

|x´ Ttpxq|p´1p {x´ Ttpxqq ¨ parρtspxq ´ arρts ˝ Ttpxqqρtpdxq, (4.1b)

I2 “

ż

|x´ Ttpxq|p´1p {x´ Ttpxqq ¨ parρts ˝ Ttpxq ´ arµts ˝ Ttpxqqρtpdxq. (4.1c)

To estimate I1, we use the following bound on the Lipschitz constant of arρts:

Lipparρtsq “ }∇2W ˚ ρt}L8 ď }∇2W }Lp0 }ρt}Lp1
0
.

We deduce:

|I1| ď Lipparρtsq

ż

|x´ Ttpxq|pρtpdxq ď }∇2W }Lp0 }ρt}Lp1
0
W p

p pρt, µtq.

To estimate I2, we first apply a Hölder inequality w.r.t. the measure ρtpdxq and with the exponents
pp1, pq. We get, since p1pp´ 1q “ p:

|I2| ď

˜

ż

|x´ Ttpxq|pρtpdxq

¸1{p1˜
ż

ˇ

ˇ

ˇ
arρts ˝ Ttpxq ´ arµts ˝ Ttpxq

ˇ

ˇ

ˇ

p
ρtpdxq

¸1{p

. (4.2)

We recognize that the first factor equals W p´1
p pρt, µtq since p

p1 “ p´ 1.
Let us deal with the second one. We consider νs :“ pp1 ´ sqid ` sTtq# ρt the constant-speed

geodesic from ρt to µt. Note that this curve implicitly depends on t. We also denote by bs P Lppνsq

the velocity field associated with ν P ACpr0, 1s,WppRdqq, as given by Theorem 2.1. We have as a
consequence of the Benamou-Brenier formula Bsνs`∇¨pbsνsq “ 0 and }bs}Lppνsq “ |pνsq1| “ Wppρt, µtq
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for a.e. s P r0, 1s. Therefore, for any y P Rd, one has:

arρtspyq ´ arµtspyq “ ´

ż

∇W py ´ zqpρtpzq ´ µtpzqqdz

“ ´

ż 1

0

ż

∇W py ´ zqBsνspzqdzds

“

ż 1

0

ż

∇W py ´ zq∇ ¨ pbspzqνspzqqdzds

“

ż 1

0

ż

∇2W py ´ zqbspzqνspdzqds,

so that the inequality (4.2) rewrites:

|I2| ď W p´1
p pρt, µtq

˜

ż

ˇ

ˇ

ˇ

ˇ

ˇ

ż 1

0
ds

ż

∇2W pTtpxq ´ zqbspzqνspdzqds

ˇ

ˇ

ˇ

ˇ

ˇ

p

ρtpdxq

¸1{p

.

Besides, using a Jensen inequality w.r.t. the measure νspdzqds for the convex function | ¨ |p, we have:

ż

ˇ

ˇ

ˇ

ˇ

ˇ

ż 1

0
ds

ż

∇2W pTtpxq ´ zqbspzqνspdzqds

ˇ

ˇ

ˇ

ˇ

ˇ

p

ρtpdxq ď

ż ż 1

0

ż

|∇2W pTtpxq ´ zq|p|bspzq|pνspdzqdsρtpdxq

ď

ż 1

0

ż

|bspzq|p
ż

|∇2W pTtpxq ´ zq|pρtpdxqνspdzqds

Now, since µt “ Tt#ρt, we have
ş

|∇2W pTtpxq ´ zq|pρtpdxq “
ş

|∇2W py ´ zq|pµtpyqdy. Applying a
Hölder inequality w.r.t. dy and the exponents pq, q1q, where we will specify q right afterwards, we
get:

ż

|∇2W py ´ zq|pdµpyq ď

˜

ż

|∇2W py ´ zq|pq
1

dy

¸1{q1˜
ż

|µtpyq|qdy

¸1{q

“ }∇2W }
p

Lpq1 }µt}Lq .

We therefore have to take q such that pq1 “ p0, so that }∇2W }Lpq1 remains finite. This requires that
we choose p such that p ď p0, which imposes p0 ą 1 since we also needed p ą 1. We also need to
choose p such that ρini P Pp, which means p ď 2. Using

ş1
0

ş

|bspzq|pνspdzqds “ W p
p pρt, µtq, we finally

obtain:
|I2| ď }∇2W }Lp0 }µt}

1{p
Lq W

p
p pρt, µtq, for q “

p0
p0 ´ p

,

where the value of q is computed so that we have q1 “
p0
p . We therefore have the following Grönwall

inequality on W p
p pρt, µtq:

1

p

d

dt
W p

p pρt, µtq ď }∇2W }Lp0

´

}ρt}Lp1
0

` }µt}
1{p
Lq

¯

W p
p pρt, µtq, (4.3)

Now, we need a bound on }ρt}Lr . The following lemma implies that, if the interaction potential W
satisfies ∆W ď 0, then the bound on ρt is not worse than the one we would obtain if ρ solved the
sole heat equation and does not depend on the initial datum.

Lemma 4.3. Let p P p1,`8q, ε ą 0 and let ρ solve the following Fokker-Planck equation on the
whole space Rd:

Btρ` ∇ ¨ pρ∇V q “ ε∆ρ, (4.4)
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where the potential V might depend on ρ and satisfies ∆V ě 0. Assume that ρt is smooth for any
t ą 0, and that is has unit total mass. Then one has:

}ρt}Lp ď Cpεtq´d{2p1

,

for a positive constant C “ Cpp, dq depending on p only and not on the initial datum ρ0.

Proof. In the following, Cppq stands for any positive constant depending only on p. For t ą 0,
testing equation (4.4) against ρp´1

t and integrating by parts yields:

d

dt

1

p

ż

ρpt “ ´
p´ 1

p

ż

ρpt∆V ´ 4ε
p´ 1

p2

ż

|∇ρp{2
t |2 ď ´4ε

p´ 1

p2

ż

|∇ρp{2
t |2,

since ∆V ě 0. Using the following Gagliardo-Nirenberg-Sobolev inequality [19, 30]:
ż

ρp` 2
d ď Cppq

ż

|∇ρp{2
t |2,

and interpolating the Lp norm between the L1 and Lp` 2
d norms, we deduce that yt :“

ş

ρpt verifies
the following nonlinear Grönwall inequality:

y1 ´ εCppqy
1` 2

dpp´1q ď 0.

Integrating this inequality on rs, ts for 0 ă s ă t, we get:

y
´2{dpp´1q

t ě y´2{dpp´1q
s ` εCppq ě εCppq,

and therefore }ρt}Lp “ y
1{p
t ď Cppqpεtq´dpp´1q{2 “ pεtq´d{2p1 . This is the bound one would obtain

using a Lp ˆ L1 convolution inequality if ρ solved the sole heat equation on the whole space, that
is, if we had ρt “ Gεt ˚ ρ0 where Gt denotes the heat kernel.

Using Lemma 4.3 with the potential V “ ´W ˚ ρ which has a positive Laplacian under the
assumption ∆W ď 0, we get }ρt}Lp1

0
`}µt}

1{p
Lq ď Cpd, p0qpεtq´d{2p0 which, in turn, yields the Grönwall

inequality:
d

dt
W p

p pρt, µtq ď Cpεtq´d{2p0W p
p pρt, µtq,

where C is a positive constant that depends on p, p0 and }∇2W }Lp0 only. We deduce:

W p
p pρt, µtq ď W p

p pρ0, µ0qe
şt
0 Cpετq´d{2p0dτ ,

provided p0 ą d
2 so that τ´d{2p0 is integrable on p0, ts. Under this assumption, using Lemma 3.3

along with the fact that ρ0 “ ρini, we get, for some constant C ą 0 depending on d, p, p0 and
}∇2W }Lp0 only:

@t P r0, T s, W p
p pρt, µtq ď Ce´C

`

εα´ε´d{2p0

˘

eCt1´d{2p0
ď Ce´C

`

εα`ε´d{2p0

˘

eCT 1´d{2p0
,

which goes to 0 uniformly in t P r0, T s, as ε Ñ 0, provided α ă ´d{2p0. Since ´d{2p0 ą ´1, it is
possible make such a choice while guaranteeing α P p´1, 0q. To finish, we conclude the proof as in
that of Corollary 3.4.

Now, note that ∆W ď 0 ensures that any Lp norm of solutions to (1.2) is nonincreasing in time.
Therefore, when the initial datum belong to Lp1

0pRdq X L
p0

p0´p pRdq, estimate (4.3) still holds for
ε “ 0 between any two solutions to (1.2) and gives uniqueness of the solution among the class of
Cpr0, T s,W2pRdqq X L8pr0, T s, Lp1

0pRdq X L
p0

p0´p pRdqq solutions.
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5 Higher convergence rate for steady states under assumptions
(A0)-(A1)-(A4-p)

In this section, we compare stationary solutions to the aggregation-diffusion equation (1.1a) for a
given ε ą 0 with stationary solutions to the aggregation equation (1.2). We discard, in this section,
the assumptions of λ´convexity and Lipschitz continuity on W but still assume that assumptions
(A0) and (A1) hold. In addition, we require the potential to satisfy assumption (A4´p), that is, to
be at least as attractive as |x|p, for some p P r1,8q. These stationary solutions are in many cases
long-time limits of the corresponding evolving solutions, but we will not insist on these aspects that
are usually studied by λ-convexity techniques, and we discarded such an assumption in this section.

Note that this assumption along with (A0) implies W pxq ě C |x|p

p for all x P Rd. If, in addition,
W satisfies assumption (A1) then W is l.s.c on Rd and this implies that W is l.s.c for the weak
convergence thanks to Lemma 2.3.

Also, without loss of generality, we only consider measures with 0 center of mass, that is, measures
ρ P PpRdq verifying:

ż

xρpdxq “ 0.

We define steady states for the aggregation-diffusion equation in the spirit of [23]:

Definition 5.1. Let ε ě 0. A steady state for the aggregation-diffusion equation (1.1a) is a proba-
bility measure ρ P P1pRdq such that:

if ε “ 0, z∇W ˚ ρ “ 0, on supppρq,

and, if ε ą 0:
$

&

%

∇W ˚ ρ` ε
∇ρ
ρ

“ 0 on Rd,

ρ ą 0 on Rd.

One can prove that this definition is equivalent to that of stationary solutions, in the sense of
distributions, to equation (1.1). Besides, if ε ą 0, one can show that a distributional solution to the
elliptic problem ´∇ ¨ p∇W ˚ρqρ “ ε∆ρ is necessarily regular and positive on Rd (see Theorem 2.10).

The following lemma justifies why we compare steady states for the aggregation equation to the
Dirac mass.

Lemma 5.2. Under assumptions (A0)-(A1)-(A4´p) for p ě 1, the unique steady state for the
aggregation equation (1.2a) is, up to a translation, the Dirac mass δ0.

Proof. Let ρ be a steady state for (1.2) and assume that ρ is centered. Since z∇W ˚ ρ “ 0 on the
support of ρ, testing against ρx and using Lemma 2.7 with the odd vector field z∇W yields:

ĳ

z∇W px´ yq ¨ px´ yqρpdxqρpdyq “ 0.

Under assumption (A4´p), we therefore have
ť

|x ´ y|pρpdxqρpdyq “ 0. In particular ρ b ρ is
concentrated on the diagonal. Now, if ρ is not a Dirac mass, then there exists disjoint Borel sets A
and B with ρpAq ą 0 and ρpBq ą 0. Then we have, since AˆB is disjoint from the diagonal

0 “ ρb ρpAˆBq “ ρpAqρpBq ą 0,

and this contradiction concludes the proof.

Note that the Dirac mass is actually the only minimizer of the interaction energy W under these
assumptions. Conversely, Proposition 7.20 in [35] ensures that minimizers of the energy F ε are
actually steady states. This provides a way to prove existence of steady states for (1.1a) when ε ą 0.

38



5.1 Existence of minimizers of F ε for ε ą 0

Proposition 5.3. Assume that W satisfies assumptions (A0)-(A1)-(A4-p) for some p ě 1 and let
ε ě 0 be fixed. The functional F ε “ W ` εU admits a minimizer over PpRdq that actually has finite
p-th order moment.

Remark 5.4. We were not able to prove uniqueness of the minimizer under such assumptions on W
but it is likely to hold. Moreover, numerical illustrations will show that, if we remove assumption
(A4-p), multiple steady states can coexist even though ε ą 0 (in case ε “ 0, it is easy to build
explicit counterexamples).

To prove this proposition, we will use that under assumptions (A0) and (A4-p), controlling Wpρq

gives control on
ť

|x´ y|pρpdxqρpdyq, and this latter quantity is equivalent to Mppρq whenever ρ is
centered, thanks to the following lemma:

Lemma 5.5. Let p P r1,8q and ρ P PppRdq. Assume that the center of mass of ρ is 0. Then:

Mppρq ď

ĳ

|x´ y|pρpdxqρpdyq ď 2p´1Mppρq.

Proof. Let upxq “
ş

|x´ y|pρpdyq. Since p ě 1, u is a convex function and therefore, using a Jensen
inequality, we get:

Mppρq “ up0q “ u
´

ż

xρpdxq

¯

ď

ż

upxqρpdxq.

In other terms, Mppρq ď
ť

|x´y|pρpdxqρpdyq. The upper bound comes from the inequality |x´y|p ď

2p´1p|x|p ` |y|pq.

Proof. Let pρnqnPN be a sequence of probability measures that minimize F ε. We can assume that
these measures are centered because F ε is invariant under translation. Up to an extraction, we can
assume that pρnqnPN converges weakly towards some ρ P MbpRdq. To ensure that ρ P PpRdq, we
need to prove tightness of pρnqnPN. To do so, let us find a bound on Mppρnq.

Since pρnqnPN is a minimizing sequence, F εpρnq “ Wpρnq`εUpρnq is bounded from above by some
constant that we still denote C ą 0. Moreover, using assumption (A0) and (A4-p) and Lemma 5.5,
since ρn is centered, we have:

Wpρnq ě
C

2p

ĳ

|x´ y|pρnpdxqρnpdyq ě
C

2p
Mppρnq.

In order to get a lower bound involving Mppρnq on the entropy term, recall that, using a Legendre
transform, y ln y ` ez´1 ě yz for all y ě 0 and z P R. Setting, for x P Rd, y “ ρnpxq and z “ ´|x|αp

for some exponent α ą 0 to be specified later, and integrating over x P Rd, we get:
ż

ρn ln ρn ě ´

ż

p|x|pqαρnpdxq `

ż

e´|x|αp´1dx

Choosing α P p0, 1q so that x ÞÝÑ |x|α is concave, and using a Jensen inequality, we deduce Upρnq ě

´Mppρnqα ` Cpp, αq, where Cpp, αq depends on α and p only. Finally, we obtain:

C

2p
Mppρnq ´ εMppρnqα ` εCpp, αq ď C,

which implies, since α ă 1, that Mppρnq is uniformly bounded with respect to n.
On the one hand, this implies that pρnqnPN is tight, hence ρ P PpRdq. Since Mp is l.s.c on PpRdq

and ρn
˚

á
nÑ`8

ρ, we also get ρ P PppRdq. On the other hand, the uniform bound on Mppρnq along
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with Lemma 2.5 ensures that ρn is compact in Wq and hence we obtain Mqpρnq ÝÑ
nÑ`8

Mqpρq for

any q P p0, pq. Lemma 2.4 then gives Upρq ď lim inf
nÑ`8

Upρnq, and, since W is l.s.c for the weak

convergence, we get F εpρq ď lim inf
nÑ`8

F εpρnq. This proves that ρ minimizes F ε since pρnqnPN is a
minimizing sequence.

5.2 Opεq convergence rate in Wp for potentials such that ∇W pxq ¨ x ě C|x|

In this section, we focus on assumption (A4-1) under which the potential is “really pointy” and the
aggregation compensates the diffusion so that convergence occurs at rate Opεq:

Theorem 5.6. Assume that W satifies assumptions (A0)-(A1)-(A4-1). There exists a constant
C ą 0 depending on d, such that for any ε ą 0 and ρε steady state for (1.1a) which center of mass
is 0, the following estimate holds:

W1pρε, δ0q ď Cε. (5.1)

Proof of Theorem 5.6. Let ε ą 0 and let ρε be a steady state for (1.1), that is:

∇W ˚ ρε ` ε
∇ρε

ρε
“ 0. (5.2)

Testing the above equation against ρεx we obtain:
ż

ρεx ¨ ∇W ˚ ρεdx` ε

ż

x ¨ ∇ρεdx “ 0

Integrating by parts and using Lemma 2.7 with the odd vector field ∇W yields:

1

2

ĳ

∇W px´ yq ¨ px´ yqρεpdxqρεpdyq “ εd.

The desired result then follows from assumption (A4-1) and Lemma 5.5 with p “ 1, sinceW1pρε, δ0q “

M1pρεq.

Note that, from equation (5.2), one has ρε “ Cpεqe´W˚ρε{ε. The value of the constant Cpεq can
be computed by imposing a total mass 1, so that we get ρε “ e´W˚ρε{ε

ş

e´W˚ρε{ε . Using this equality along
with estimate (5.1), we obtain a bound in Wp distance for p P r1,8q provided W is also Lipschitz
continuous:

Theorem 5.7. Assume that W satisfies assumptions (A0)-(A1)-(A2)-(A4-1). For any p P r1,8q

there exists a constant C ą 0 such that for any ε ą 0 and ρε steady state for (1.1a) which center of
mass is 0, the following estimate holds:

Wppρε, δ0q ď Cε. (5.3)

Remark 5.8. At least in dimension one, this result is optimal. Indeed, we can take for W the
Newtonian potential W pxq “ |x|, for which, using the correspondence with Burgers’ equation, ρε

can be written as ρεpxq “ 1
ερ
´

x
ε

¯

, where ρpxq “
1´tanh2px

2 q
4 , and a scaling argument then gives

W p
p pρε, δ0q “ εpMppρq.

Proof. Since

ρε “
e´W˚ρε{ε

ş

e´W˚ρε{ε
,
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we have:

W p
p pρε, δ0q “

ş

|x|pe´W˚ρεpxq{εdx
ş

e´W˚ρε{ε
,

Now, since W is Lipschitz continuous, one has

|W ˚ ρε ´W ˚ δ0| ď a8 sup
Lippφqď1

ż

φdpρε ´ δ0q “ a8W1pρε, δ0q ď Cε,

because of Theorem 5.6. Thus, ´W ˚ ρε ď Cε´W and therefore:
ż

|x|pe´W˚ρεpxq{εdx ď C

ż

|x|pe´W pxq{εdx ď Cεp`d

ż

|y|pe´W pεyq{εdy,

using the change of variables x “ εy. Recall that Assumption (A4-1) ensures W pxq ě C|x| for all
x P Rd. This allows us to bound

ş

|y|pe´W pεyq{εdy uniformly with respect to ε.
On the other hand, since W is a8´Lipschitz continuous, we have W pxq ď a8|x| `W p0q “ a8|x|.

Integrating with respect to ρεpdxq, we deduce W ˚ ρεp0q ď a8W1pρε, δ0q. Besides, W ˚ ρε is also
a8´Lipschitz continuous. Hence,

W ˚ ρεpxq ď W ˚ ρεp0q ` a8|x| ď a8W1pρε, δ0q ` a8|x| ď Cε` a8|x|,

thanks again to estimate (5.1). After another rescaling, we deduce:
ż

e´W˚ρε{ε ě Cεd,

thus getting W p
p pρε, δ0q ď C εp`d

εd
“ Cεp, which concludes the proof.

5.3 Opε1{pq convergence rate in Wp for potentials such that ∇W pxq ¨ x ě C|x|p

Assume W satisfies assumptions (A0), (A1) and (A4-p) for some p P r1,8q. Under this assumption,
a straightforward adaptation of the proof of Theorem 5.6 provides an estimate on Wppρε, δ0q:

Theorem 5.9. Assume that W satifies assumptions (A0)-(A1)-(A4-p) for some p P r1,8q. There
exists a constant C ą 0 such that for any ε ą 0 and ρε steady state for (1.1a) which is centered, the
following estimate holds:

Wppρε, δ0q ď Cε1{p. (5.4)

Remark 5.10. It is possible to prove optimality of this rate for p “ 2. Let us consider the quadratic
potential W pxq “ |x|2, that satisfies assumption (A4-2). Recall that ρε “ e´W˚ρε{ε

ş

e´W˚ρε{ε . Expanding
W px ´ yq “ |x ´ y|2 and using both facts that the total mass of ρ is 1 and that ρε is centered, one
has:

e´W˚ρε{ε “ exp

"

´
1

ε

ˆ
ż

|x|2ρεpyqdy ´ 2x ¨

ż

yρεpyqdy `

ż

|y|2ρεpyqdy

˙*

“ e´|x|2{εe´W 2
2 pρε,δ0q{ε.

Hence, ρεpxq “
e´|x|2{ε

ş

e´|x|2{εdx
, which in turn yields:

W 2
2 pρε, δ0q “

ş

|x|2e´|x|2{εdx
ş

e´|x|2{εdx
.

A change of variables in both integrals then gives W 2
2 pρε, δ0q “ Cε. Note the estimate W p

p pρε, δ0q “

Cεp{2 can be proved in the same way, but is not relevant in the context of Theorem 5.9.
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6 Numerical illustrations

This sections aims to illustrate our convergence results both in the evolutive case and in the sta-
tionary case. The implementation of the schemes has been done in Python and the code is available
at github.com/strantien/aggregation. Tests are conducted on r´1, 1s, with 2J ` 1 cells, and the ve-
locity field is always discretized by (3.20). Wasserstein distances between two arbitrary probability
measures are computed using the POT package (see [18]).

6.1 Evolutive solutions

We begin with the convergence rate in Wasserstein distance of the viscous solutions ρε associated
with a fixed initial datum ρini (not depending on ε). In this subsection ρε∆x is computed using the
implicit discretization (3.21), for which the CFL condition is less restrictive than the parabolic CFL
condition of the explicit scheme. We also implemented no-flux boundary conditions so as to preserve
total mass. This condition is a discretisation of pεBxρ ´ parρsρqpt,´1q “ pεBxρ ´ parρsρqpt, 1q “ 0.
Namely, (3.21) is used for j “ 2, . . . , 2J and the system is closed with (here we omit the index i as
the space dimension is 1, and we recall that θ “ 1)

ρn`1
1 “ ρn1 ´

∆t

∆x

´

pan1 q`ρn1 ´ pan2 q´ρn2

¯

` ε
∆t

∆x2
`

ρn`1
2 ´ ρn`1

1

˘

,

and a similar equation for j “ 2J ` 1. Since in some cases we do not have explicitely a reference
solution for the inviscid equation (ε “ 0), the convergence rate w.r.t. ε is estimated taking ∆x
small enough so that ρε∆x approximates ρε, and computing Wppρ

εi`1

∆x,T , ρ
εi
∆x,T q: this quantity is called

"error" in the y axis on Figures 1, 2 and 3. Actually in the case of Figure 1 the velocity field has
the form ´∇W ˚ ρpxq “ ´x, which would allow for the computation of the reference solution; yet
in order to use the same tools based on the POT package (more suitable for atomic measures) we
do not exploit this property.

In Theorems 3.8 and 3.13, when W satisfies assumptions (A0)-(A1)-(A2)-(A3), we proved con-
vergence at rate Opε1{2q in W2 distance, which is what we recover when W is smooth, as shows
Figure 1. In practice, for this test case, we observe Opε1{2q convergence rate in Wp distance for any
p P r1,`8r. However, in case W has a Lipschitz discontinuity at the origin (Figure 2) we observe
convergence at order 1 in W1 distance. This is the superconvergence phenomenon investigated by
Tang, Teng and Zhang [37, 40] in the framework of scalar conservation laws. In terms of aggregation,
the interpretation is that, when W is singular, the concentration is strong enough to compensate
part of the diffusion. In other Wp distances, convergence seems to occur at order 1 when ε is not
too small, and then degenerates quite clearly towards order 1{p for any p P r1,`8r (see Figure 3
for p “ 3). Note that, in every case, the convergence order is robust with respect to the test case
(be it for smooth or singular initial data, e.g. Dirac masses).

6.2 Steady states

In order to simulate the steady states for ε ą 0, recall that they are characterized, over the whole
space, by the following equation:

ρε “
e´W˚ρε{ε

ş

e´W˚ρε{ε
. (6.1)

We therefore use a fixed-point method on the map sending ρ into e´W˚ρ{ε
ş

e´W˚ρ{ε in order to solve Equation
(6.1). Fixed point algorithm is stopped as soon as the Wp distance between two iterations is below
some tolerance. Numerically, we observe that this method turns two symmetric Gaussian bumps
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Figure 1: Order 1{2 convergence in W2 distance of ρεT towards ρT for ρinipxq “ 2
b

5
πe

´20x2 , W pxq “

|x|2.

Figure 2: Order 1 convergence inW1 distance of ρεT towards ρT for ρinipxq “ 2
b

5
πe

´20x2 , W pxq “ |x|.

almost immediately (after the first iteration) into a centered Gaussian whenever W is attractive and
Lipschitz.

We first investigate the convergence rate towards the Dirac mass, for centered steady states. The
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Figure 3: Order 1{3 convergence in W3 distance, for small ε, of ρεT towards ρT for ρinipxq “

2
b

5
πe

´20x2 , W pxq “ |x|.

Figure 4: Order of convergence in W1 distance of ρε towards δ0, for the non-Lipschitz potential
W pxq “

a

|x| ` |x|. The initial density for the fixed point algorithm is the centered

Gaussian 2
b

5
πe

´20x2 .

error is estimated computing the integral
ş

|x|pρpdxq “ W p
p pρ, δ0q. When W satisfies assumptions
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(A0)-(A1)-(A4-1), we proved Opεq convergence rate in W1 distance, which we do recover in Table
1 for W pxq “ |x|. We also explore the case when W verifies (A0)-(A1)-(A4-1) but is not Lipschitz
continuous, which is the case of W pxq “

a

|x| ` |x|. For this potential, we obtain, in Figure 4
convergence at order 1.82264413 which is slightly less than 2, in W1 distance. This can be linked
to the fact that W satisfies a sort of assumption (A4-12) when |x| ď 1. Under assumptions (A0)-
(A1)-(A2)-(A4-3), we observe convergence at rate 1{3 in W3 distance as we proved in (5.4), as shows
Figure 5. More generally, under assumptions (A0)-(A1)-(A2)-(A4-p), convergence at rate 1{p seems

Figure 5: Opε1{3q convergence in W3 distance of ρε towards δ0, W pxq “ |x|3. The initial density for

the fixed point algorithm is the centered Gaussian 2
b

5
πe

´20x2 .

to occur in any Wq distance, q P r1,`8r, which is what we proved in for p “ 1 or for p “ q. To
illustrate this latter case, we compute the convergence order in Wp distance for W pxq “ |x|p, which
seems indeed to be 1{p, see Table 1 (when p “ 1, since the potential is pointy, one has to refine the
mesh so as to observe proper convergence at order 1).
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p Order J

1 1.00205259 50000
2 0.49999997 2000
3 0.33333333 2000
4 0.25000000 2000
5 0.20000000 2000

Table 1: Convergence order » 1
p of ρε towards δ0 for W pxq “ |x|p, tol “ 10´6, εi “ 2´i, i “ 4, . . . , 16,

initial density 2
b

5
πe

´20x2
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