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Abstract

We compute the relaxed Cartesian area in the strict BV -convergence on a class of piecewise
Lipschitz maps from the plane to the plane, having jump made of several curves allowed to meet
at a finite number of junction points. We show that the domain of this relaxed area is strictly
contained in the domain of the classical L1-relaxed area.
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1 Introduction

Let Ω ⊂ R2 be an open bounded set. Given v ∈ C1(Ω;R2), the area functional is defined as

A(v,Ω) :=

∫
Ω

√
1 + |∇v|2 + |Jv|2 dx =

∫
Ω
|M(∇v)| dx, (1.1)

where M(∇v) = (1,∇v1,∇v2, Jv) and Jv = ∂v1
∂x1

∂v2
∂x2

− ∂v2
∂x1

∂v1
∂x2

is the Jacobian determinant of v.
The value A(v,Ω) is the 2-dimensional Hausdorff measure of the graph

Gv := {(x, y) ∈ Ω× R2 : y = v(x)}

of v. In order to extend the area functional to a more general class of maps one is led to consider
the relaxation of (1.1): Namely, for all u ∈ L1(Ω;R2) one chooses a convergence, for instance the
L1-convergence, and sets

AL1(u,Ω) := inf

{
lim inf
k→+∞

A(uk,Ω), uk ∈ C1(Ω;R2), uk → u in L1(Ω;R2)

}
. (1.2)

In contrast with the case of real valued maps, for which the L1-relaxed area is well-understood,
in higher dimension, including the case of R2-valued maps considered here, the analysis of AL1
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has been shown to be very challenging and a lot of questions remain open. For instance, it is
known that the domain Dom(AL1(·,Ω)) of AL1(·,Ω) is strictly included in BV (Ω;R2), but its
complete description is, so far, not available. The main difficulty to treat AL1 is due to its non-
local behaviour: Indeed, for general maps u with the only exception of very trivial cases, the set
function E ⊆ Ω 7→ AL1(u,E) is not subadditive, and this excludes to represent (1.2) in integral
form. As a consequence, the explicit value of AL1(u,Ω) is, at the moment, known only for very
specific non-smooth maps u enjoying a high degree of symmetry [5, 7, 25].

A useful simplification in the relaxation analysis of A is to consider some variants of (1.2), for
example modifying the convergence of vk to u (see [8,9,13,17]). Even if the L1-convergence seems
to be natural also with respect to the application to the non-parametric Plateau problem, one
can replace the L1-topology with different ones. In some recent works [3, 22], instead of relaxing
with respect to the L1-topology, the authors have considered relaxation with respect to the strict
convergence in BV (Ω;R2) (shortly BV -relaxed area). Namely, one defines

ABV (u,Ω) := inf

{
lim inf
k→+∞

A(uk,Ω), uk ∈ C1(Ω;R2), uk → u strictly BV (Ω;R2)

}
. (1.3)

Although the analysis of ABV seems quite more treatable, a complete picture and description of
its behaviour is still missing. It is straightforward that for any u ∈ BV (Ω;R2)

ABV (u,Ω) ≥ AL1(u,Ω),

so Dom(ABV (·,Ω)) ⊂ Dom(AL1(·,Ω)), and the inclusion is strict as Example 4.1 below shows.
Strictly related to the area functional is the Jacobian total variation functional, namely

TV J(v,Ω) :=

∫
Ω
|Jv| dx,

valid for all v ∈ C1(Ω;R2). Also in this case, to extend TV J to a larger class of functions, a
relaxation procedure is in order. However, the choice of the L1-convergence is in some cases not
interesting: for instance, if u ∈ W 1,1(Ω; S1), with Ω simply connected, the corresponding relaxed
functional trivializes and becomes constantly null (see [10, Cor. 5]). On the other hand, the notion
of strict convergence in BV gives rise to a nontrivial relaxed functional which shows to play a
crucial role in the analysis of ABV . Specifically, for u ∈ BV (Ω;R2) we consider

TV JBV (u,Ω) := inf

{
lim inf
k→+∞

TV J(vk,Ω), vk ∈ C1(Ω;R2), vk → u strictly BV (Ω;R2)

}
. (1.4)

In the present paper we compute the value of ABV (u,Ω) for some particular piecewise Lipschitz
maps u which are allowed to jump on curves in turn meeting at junction points. We refer to
Definition 5.2 for the details on these maps, and we summarize here their features: Let Ω ⊂ R2

be a bounded open set of class C1 and {Ωk}k=1,...,N a finite partition of Ω made of Lipschitz sets.
Suppose that Σ := ∪N

k=1∂Ωk is the support of a finite family of C2-curves αℓ : Iℓ → Ω, ℓ = 1, . . . , n,
Iℓ = (aℓ, bℓ). We suppose that the curves αℓ, arc-length parametrized on Iℓ, are injective on Iℓ,
αℓ(Iℓ) ⊂ Ω, and of class C2 up to aℓ and bℓ (namely α̇ℓ and α̈ℓ are continuous on Iℓ). Furthermore,
we assume that αℓ(Iℓ) and αh(Ih), for ℓ ̸= h, may intersect only at the endpoints. Endpoints of αl

are allowed to belong to ∂Ω, and we assume such endpoints to be distinct for different curves.
A map u ∈ BV (Ω;R2) is called piecewise Lipschitz if its restriction to any Ωk is Lipschitz. Notice

that if pi is a junction point and Ωi
k (k = 1, . . . , Ni) are the connected components of Ω \Σ having

pi as boundary point, then there exists the limit βik := limx→pi
x∈Ωi

k

u(x). For the sake of simplicity, we

assume that the enumeration k = 1, . . . , Ni respects the counterclockwise order of Ωi
k’s around pi.
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To introduce our main result, we have to consider also a planar Plateau problem for Lipschitz
curves: Given a Lipschitz curve φ : S1 = ∂B1 → R2 we consider the quantity

P (φ) := inf

{∫
B1

|Jv| dx : v ∈ Lip(B1;R2) : v|∂B1
= φ

}
. (1.5)

For all i = 1, . . . ,m we denote by γ̃i a Lipschitz curve which parametrizes on S1 the polygon in
R2 with vertices βi1, β

i
2, . . . , β

i
Ni
, in the order (see Fig. 3). Notice carefully that this curve may

self-intersect. Also, P (φ) is invariant under reparametrizations of φ (Proposition 2.9). Finally, set
I = [0, 1]. The main result of the paper is the following

Theorem 1.1 (Relaxation for piecewise Lipschitz maps). Let u : Ω → R2 be a piecewise
Lipschitz map. Then

ABV (u,Ω) =

∫
Ω\Σ

|M(∇u)| dx+
n∑

ℓ=1

∫
[aℓ,bℓ]×I

|∂tXaff
(ℓ) ∧ ∂sXaff

(ℓ)|dtds+
m∑
i=1

P (γ̃i), (1.6)

where, for any ℓ = 1, . . . , n,

Xaff
(ℓ)(t, s) := (t, su+ℓ (t) + (1− s)u−ℓ (t)) ∀(t, s) ∈ [aℓ, bℓ]× I, (1.7)

and u±ℓ are the traces of u on the support αℓ(Iℓ) of αℓ.

One of the main features of expression (1.6) is the presence of two singular contributions: a 0-
dimensional term due to the concentration of the Jacobian determinants of a recovery sequence (vk)
for ABV (u,Ω) around the junction points (namely, the term involving the minimum of the Plateau
problems P (γ̃i)), and a 1-dimensional term, which essentially takes into account the concentration
of the gradients and of the Jacobian determinants of vk along the jump set Σ. So, we can interpret
(1.6) as a non-trivial generalization of [3, Theorem 1.3], valid for the triple point map uT (see
also Theorem 4.4), and of [3, Theorem 1.1], valid for 0-homogeneous maps of the form φ (x/|x|)
with φ : S1 → S1 Lipschitz. Indeed, in the first case the 1-dimensional term was simply the total
variation of uT (consisting of the area of three vertical walls over Σ) and the 0-dimensional one was
the area of the target triangle, which is a trivial minimum of (1.5), while in the second case we had
no 1-dimensional contribution and the 0-dimensional one was the solution of (1.5) with this special
φ, that reduces to P (φ) = π|deg(φ)|. In other words, the relaxed area of a more general map u
as in (1.1) is still a measure (if we regard it as a function of Ω), which has the same dimensional
structure, but with a more involved and rich expression.

We observe that for this special kind of maps it always holds ABV (u,Ω) < +∞, because the
contributions of the Plateau problem P (γ̃i) is always finite, since one can construct a Lipschitz
competitor for (1.5). On the other hand, the presence of a finite number of junction points is
crucial, because, as Example 4.1 shows, we can build a piecewise constant map whose BV -relaxed
area is infinite. It is here remarkable that the same map can be seen to have finite L1-relaxed area
(compare with (4.2)). This in particular shows the proper inclusion

Dom(ABV (·,Ω)) ⊊ Dom(AL1(·,Ω)).

We divide the proof of Theorem 1.1 in several steps, and in particular we first focus on the re-
laxation on piecewise Lipschitz maps u without junction points. In this case we show in Corollary
3.12 (consequence of Theorems 3.7 and 3.11) that the relaxation provides as singular contribution
the integral over the jump set Su of u of the area spanned by the affine map Xaff . The main issue
is the proof of Proposition 3.4, the lower bound for the relaxed area of maps jumping on the central
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horizontal segment of the rectangle R = [a, b] × [−1, 1]. Here, we need to use some tools from
the theory of integer multiplicity currents, in particular slicing arguments and the isoperimetric
inequality, in order to show that over the jump segment the graph of the elements of an approxi-
mating smooth sequence (vk) have area bounded below by the area of Xaff . The properties of the
strict convergence (Lemmas 2.3 and 2.7) enter at the level of vertical slices of the graph of vk in a
neighbourhood of the jump segment, but these results only are not enough to pass to the limit in
the area of the graph of vk. For this purpose, the idea is to make a decomposition of the graph of
vk and of the surface Xaff in several tiny strips, and notice that, when the number of these strips
is very high, the boundaries of these two little pieces of surfaces are uniformly close together, as a
consequence of the strict convergence and, at the same time, the strips which decompose Xaff are
very close to a minimal mass current having the same boundary.

In [9], the authors compute the relaxed area AL∞(u,Ω) with respect to the local uniform con-
vergence out of the jump, for u as in Proposition 3.4. They obtain, as singular contribution,
the area of the minimal semicartesian1 surface spanning the graphs of the two traces. In par-
ticular, since Xaff is semicartesian and spans graph(u±) as well (see [9, Definition 2.4]), we have
AL∞(u,R) ≤ ABV (u,R). In general, this inequality holds strictly, even if graph(u±) are coplanar.
We can find an example in [9, Remark 8.5], where one can notice that in order to minimize the area
of the spanning surface, the approximating sequence needs not keep the total variation of the limit
map, which instead is forced to be preserved under strict convergence. Moreover, it is important to
notice that AL∞(u, ·) is not subadditive (see [9, Thm. 8.1]), while ABV (u, ·) is clearly a measure.

In a second step we instead consider the case of maps u which are piecewise constant but whose
jump might have junction points. Specifically, in Theorem 4.4 we see that the relaxation on a
n-uple point map (i.e., whose jump consists of n radii of the same ball Br(0)) provides as singular
contribution, besides the total variation of u, the number P (γ̃), where γ̃ is the piecewise affine
curve which parametrizes the perimeter of the polygon whose vertices are the values of u around 0.

Finally, in Section 5, we use Corollary 3.12 and Theorem 4.4 to complete the proof of Theorem
1.1.

We point out that, to our best knowledge, it is not yet known, in general, whether the BV -relaxed
area is subadditive if considered as a set function and, further, if it gives rise to a measure. We
expect such a subadditivity for BV -maps u from the plane to the plane, being motivated by relevant
examples with explicit computations, and also because of the presence of a unique cartesian current
with minimal completely vertical lifting associated to u (as recently shown in [23]). Unfortunately,
this uniqueness result fails in higher codimension, where in addition we have less explicit examples.

2 Preliminaries

We start by collecting some tools needed in the proof of the main theorems. For an integer M ≥ 2,
set SM−1 := {x ∈ RM : |x| = 1}. In what follows, Ω ⊂ R2 is a bounded open set.

2.1 Some consequences of the strict convergence

Theorem 2.1 (Reshetnyak). Let µh, µ be (finite) Radon measures in Ω, taking values in RM .

Suppose that µh
∗
⇀ µ and |µh|(Ω) → |µ|(Ω). Then

lim
h→+∞

∫
Ω
f

(
x,

µh
|µh|

(x)

)
d|µh|(x) =

∫
Ω
f

(
x,

µ

|µ|
(x)

)
d|µ|(x)

for any continuous bounded function f : Ω× SM−1 → R.
1A map having the identity as the first component.
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Proof. See for instance [2, Theorem 2.39].

For any u ∈ BV (Ω;R2), we recall that the distributional derivative Du is a Radon measure
valued in R2×2. SBV (Ω) stands for the space of special functions of bounded variation on Ω [2].
The symbol |Du|(Ω) stands for the total variation of Du (see [2, Definition 3.4, pag. 119]) with | · |
the Frobenius norm. We denote by Su the jump set of u.

Definition 2.2 (Strict convergence). Let u ∈ BV (Ω;R2) and (uk) ⊂ BV (Ω;R2). We say that
(uk) converges to u strictly BV , if

uk
L1

−→ u and |Duk|(Ω) → |Du|(Ω).

Let R = [a, b]× [−1, 1]. For (t, σ) ∈ R, set

Rx1
t := {(x1, x2) ∈ R : x1 = t}, Rx2

σ := {(x1, x2) ∈ R : x2 = σ}.

If u ∈ BV (R;R2), by Lebesgue differentiation theorem and Fubini theorem, for almost every
t ∈ [a, b], the restriction u Rx1

t of u on the vertical segment Rx1
t coincides with the trace of u

at H1-almost every point of Rx1
t . So, for almost every t ∈ [a, b], the map u Rx1

t is well defined
because it is independent of the representative of u. The same argument holds in Rx2

σ for almost
every σ ∈ [−1, 1].

Lemma 2.3 (Inheritance of strict convergence to slices). Let u ∈ BV (R;R2). Suppose
that (vk) ⊂ C1(R;R2) is a sequence converging to u strictly BV (R;R2). Then for almost every
(t, σ) ∈ R, there exists a subsequence (vkh) ⊂ (vk), depending on t and σ, such that

vkh Rx1
t → u Rx1

t strictly BV (Rx1
t ;R2), (2.1)

vkh Rx2
σ → u Rx2

σ strictly BV (Rx2
σ ;R2). (2.2)

Proof. For almost every t ∈ [a, b], in view of the definition of Rx1
t , we can define the total variation

of u Rx1
t as

|D(u Rx1
t )|(Rx1

t ) = sup

{
−
∫ 1

−1
u(t, x2) · g′(x2)dx2; g ∈ C1

c ((−1, 1);B1(0))

}
, (2.3)

where B1(0) = {(ξ, η) ∈ R2 : ξ2 + η2 ≤ 1}. Let us show that

|D2u|(R) =
∫ b

a
|D(u Rx1

t )|(Rx1
t )dt, (2.4)

where D2u := Due2 is a Radon measure on R valued in R2 with finite total variation. Since, for
almost every t ∈ [a, b], vk Rx1

t → u Rx1
t in L1(Rx1

t ;R2), we have, using (2.3),

|D(u Rx1
t )|(Rx1

t ) ≤ lim inf
k→+∞

∫
R

x1
t

|∂2vk(t, x2)|dx2. (2.5)

Then, using Fatou lemma and Fubini theorem,∫ b

a
|D(u Rx1

t )|(Rx1
t )dt ≤

∫ b

a
lim inf
k→+∞

∫
R

x1
t

|∂2vk(t, x2)|dx2dt (2.6)

≤ lim inf
k→+∞

∫
R
|∂2vk(t, x2)|dtdx2 = |D2u|(R),
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where in the last equality we used Theorem 2.1 with f(x, ν) =
√
ν23 + ν24 , for every x ∈ R, ν ∈

S3 ⊂ R4 = R2 × R2, with

ν =

(
ν1 ν3
ν2 ν4

)
.

The converse inequality in (2.4) is standard2. So, (2.4) is proved and (2.6) holds as an equality,
which implies that also (2.5) holds as an equality, namely

|D(u Rx1
t )|(Rx1

t ) = lim inf
k→+∞

∫
R

x1
t

|∂2vk(t, x2)|dx2.

Extracting a subsequence (vkh) ⊂ (vk) depending on t, we get

vkh Rx1
t → u Rx1

t strictly BV (Rx1
t ;R2).

Finally, repeating the same argument for vkh on the horizontal slices {Rx2
σ }, we get (2.1) for a (not

relabeled) sub-subsequence.

Now, let Bl be the disk of R2 centered at the origin of radius l > 0. We want to prove the
analogue of Lemma 2.3 in Bl, by slicing with concentric circumferences. If u ∈ BV (Bl;R2), as in
the previous case, for almost every r ∈ (0, l) the restriction u ∂Br is well-defined and independent
of the representative of u. In particular, for almost every r ∈ (0, l), we can define the total variation
of u ∂Br as

|D(u ∂Br)|(∂Br) := sup

{
−
∫ 2π

0
ū(r, θ) · f ′(θ)dθ; f ∈ C1([0, 2π];B1(0)), f(0)=f(2π), f

′(0)=f ′(2π)

}
(2.7)

which turns out to be finite (see Lemma 2.5), giving that u ∂Br ∈ BV (∂Br;R2), for almost every
r ∈ (0, l). Here

ū(r, θ) := u(r cos θ, r sin θ), r ∈ (0, l], θ ∈ [0, 2π).

We want to relate this quantity with the notion of tangential total variation.

Definition 2.4. For x = (x1, x2) ∈ R2 \ {(0, 0)}, set τ(x) = 1
|x|(−x2, x1). Let 0 < l < L and

AL,l := BL(0) \ Bl(0) be an annulus around 0. We define the tangential total variation of u ∈
BV (AL,l;R2) as the total variation of the Radon measure Dτu := Duτ , namely

|Dτu|(AL,l) = |Duτ |(AL,l) = sup
{
−
∫
AL,l

u · (∇gτ) dx : g ∈ C1
c (AL,l;B1(0))

}
. (2.8)

The last equality in (2.8) is justified since τ ∈ C∞(AL,l;R2) satisfies divτ = 0 everywhere, so for
any g = (g1, g2) ∈ C1

c (AL,l;R2) we have

−
∫
AL,l

u · (∇gτ) dx = −
∫
AL,l

u1∇g1 · τ dx−
∫
AL,l

u2∇g2 · τ dx

= −
∫
AL,l

u1div(g1τ) dx−
∫
AL,l

u2div(g2τ) dx

=

∫
AL,l

g1τ · dDu1 +
∫
AL,l

g2τ · dDu2 =
∫
AL,l

g · (dDu)τ = ⟨Duτ, g⟩.

2We recall that

|D2u|(R) = sup

{
−
∫
R

u · ∂x2g dx : g ∈ C1
c (R;B1(0))

}
.

Now, for g ∈ C1
c (R;B1(0)),

∫
R
u · ∂x2g dx =

∫ b

a

(∫ 1

−1
u(t, x2) · ∂x2g(t, x2)dx2

)
dt ≤

∫ b

a
|D(u Rx1

t )|(Rx1
t )dt, so

|D2u|(R) ≤
∫ b

a
|D(u Rx1

t )|(Rx1
t )dt.
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This computation shows that |Dτu|(AL,l) ≤ |Du|(AL,l), since |τ | ≤ 1, and also that (2.8) is com-
patible with the case u ∈ W 1,1(AL,l;R2), where simply |Dτu|(AL,l) =

∫
AL,l

|∇uτ | dx. Moreover,

Du = Du
|Du| |Du| by polar decomposition, so that

⟨Duτ, g⟩ =
∫
AL,l

g·(dDu)τ =

∫
AL,l

g·
(
Du

|Du|
d|Du|

)
τ =

∫
AL,l

g·
(
Du

|Du|
τ

)
d|Du| ∀g ∈ C1

c (Bl;R2),

giving that

Dτu = Duτ =
Du

|Du|
τ |Du|. (2.9)

Lemma 2.5 (Inheritance of strict convergence to circumferences). Let u ∈ BV (BR;R2)
and (vk) ⊂ C1(BR;R2) be a sequence converging to u strictly BV (BR;R2). Then, for almost every
r ∈ (0, R), there exists a subsequence (vkh) ⊂ (vk), depending on r, such that

vkh ∂Br → u ∂Br strictly BV (∂Br;R2) as h→ +∞. (2.10)

Proof. For almost every r ∈ (0, R), by Fatou lemma and Fubini theorem, up to extracting a
subsequence, we may assume that the restriction vk ∂Br has equi-bounded variation w.r.t. k.
Moreover, we may also assume that (vk) converges to u almost everywhere in BR, so that, for
almost every r ∈ (0, R),

vk ∂Br → u ∂Br H 1-a.e. in ∂Br. (2.11)

Now, let r ∈ (0, R) be such that vk ∂Br has equi-bounded variation and (2.11) holds. Then, there
exists a subsequence (vkh) ⊂ (vk) depending on r such that

vkh ∂Br
∗
⇀ u ∂Br w*−BV (∂Br;R2).

By lower semicontinuity of the variation, we infer that for almost every r ∈ (0, R), u ∂Br ∈
BV (∂Br;R2) and

|D(u ∂Br)|(∂Br) ≤ lim inf
h→+∞

∫
∂Br

|∇vkhτ | dH
1. (2.12)

Let 0 < l < L ≤ R be such that vk → u strictly BV (AL,l,R2) where, as in Definition 2.4,

AL,l := BL(0) \Bl(0) (notice that this holds for a.e. l and L); by integration, we get∫ L

l
|D(u ∂Br)|(∂Br) dr ≤

∫ L

l

(
lim inf
h→+∞

∫
∂Br

|∇vkhτ | dH
1

)
dr

≤ lim inf
h→+∞

∫ L

l

∫
∂Br

|∇vkhτ | dH
1dr = lim inf

h→+∞

∫
AL,l

|∇vkhτ | dx.
(2.13)

Thanks to Theorem 2.1, with the choices M = 4, S3 ⊂ R4 = R2×2, f ∈ Cb(AL,l × S3),

f(x, ν) :=
√
|νhor · τ(x)|2 + |νvert · τ(x)|2,

where ν ∈ S3 and νhor := (ν1, ν3), νvert := (ν2, ν4), we obtain

lim
k→+∞

∫
AL,l

|∇vkτ | dx =

∫
AL,l

∣∣∣∣ Du|Du|
τ

∣∣∣∣ d|Du| = |Dτu|(AL,l), (2.14)
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where in the last equality we have used (2.9). So we get

|Dτu|(AL,l) ≥
∫ L

l
|D(u ∂Br)|(∂Br) dr.

In order to prove the converse inequality, let g ∈ C1
c (AL,l;B1(0)). Then, in polar coordinates, by

definition (2.7),∫
AL,l

u · ∇gτ dx =

∫ L

l

∫ 2π

0
ū(ρ, θ) · ∂θḡ(ρ, θ) dρdθ ≤

∫ L

l
|D(u ∂Bρ)|(∂Bρ) dρ,

where ḡ(ρ, θ) := g(ρ cos θ, ρ sin θ), for any ρ ∈ (0, l], θ ∈ [0, 2π). So, we have proved that

|Dτu|(AL,l) =

∫ L

l
|D(u ∂Br)|(∂Br) dr.

In particular, we deduce that (2.13) is a chain of equalities. Then, (2.12) holds as an equality and
there exists a subsequence (vkh) ⊂ (vk), depending on r, which achieves the full limit. Since l and
L are arbitrary, we get the thesis.

2.2 Further properties in dimension 1

In [3, Proposition 2.4] the following is proved:

Lemma 2.6. Let (γk) ⊂ W 1,1((a, b);R2) be a sequence converging strictly BV ((a, b);R2) to γ ∈
W 1,1((a, b);R2). Then γk → γ uniformly in (a, b).

For our purposes, we need an improvement of Lemma 2.6, where discontinuous functions γ at a
single point, or at a finite number of points, are allowed; we start with one point discontinuity.

Lemma 2.7. Let I− := [−1, 0), I+ := (0, 1]. Suppose that (γk) ⊂ W 1,1([−1, 1];R2) is a sequence
converging strictly BV ([−1, 1];R2) to γ ∈ BV ([−1, 1];R2) ∩ W 1,1(I−;R2) ∩ W 1,1(I+;R2), with
γ+(0) ̸= γ−(0). Let S : [−1/3, 1/3] → R2 be defined by

S(τ) :=
3

2

(
(1/3 + τ) γ+(0) + (1/3− τ) γ−(0)

)
, τ ∈ [−1/3, 1/3].

Let γ̃− (resp. γ̃+) be the reparametrization of γ|I− (resp. γ|I+) on [−1,−1
3) (resp. (13 , 1]) defined

by the composition with the increasing linear function taking [−1,−1/3] onto [−1, 0] (resp. [1/3, 1]
onto [0, 1]). Define

γ̃ : [−1, 1] → R2, γ̃ :=


γ̃− in [−1,−1/3)

S in [−1/3, 1/3]

γ̃+ in (1/3, 1].

(2.15)

Then there exist:

(a) a Lipschitz strictly increasing surjective function h : [−1, 1] → [−1, 1],

(b) a subsequence (kj) and Lipschitz strictly increasing surjective functions hkj : [−1, 1] → [−1, 1]

for any j ∈ N, with supj ∥ḣkj∥∞ < +∞,

such that

lim
j→+∞

γkj ◦ hkj = γ̃ ◦ h uniformly in [−1, 1]. (2.16)
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Proof. The lengths Lk of γk and L of γ are given by

Lk =

∫ 1

−1
|γ̇k| dτ,

L = |γ̇|([−1, 1]) =

∫ 0

−1
|γ̇| dτ + |γ+(0)− γ−(0)|+

∫ 1

0
|γ̇| dτ.

Since, by assumption, γk → γ strictly BV ([−1, 1];R2), we have that Lk → L as k → +∞. Fix
η > 0 and for all k ∈ N define the function3

sk : [−1, 1] → [0, L+ η], sk(t) :=
L+ η

Lk + η

∫ t

−1

(
|γ̇k(τ)|+

η

2

)
dτ, (2.17)

with Lipschitz inverse αk := s−1
k : [0, L+ η] → [−1, 1]. Define

γ̂k : [0, L+ η] → R2, γ̂k(s) := γk(αk(s)) ∀s ∈ [0, L+ η]. (2.18)

Since from (2.17)∣∣∣∣dγ̂kds (s)

∣∣∣∣ ≤ |γ̇k(αk(s))|
|ṡk(αk(s))|

≤ Lk + η

L+ η
≤ C for a.e. s ∈ [0, L+ η],

for some constant C > 0 independent of k, the sequence (γ̂k) is bounded in W 1,∞([0, L + η];R2).
Thus, up to a (not relabeled) subsequence, we may assume that there exists γ̂ ∈W 1,∞([0, L+η];R2)
such that

γ̂k ⇀ γ̂ weakly* in W 1,∞([0, L+ η];R2) and uniformly in [0, L+ η]. (2.19)

We observe that for any open interval J ⊆ [0, L+ η],∫
J
| ˙̂γ|ds ≤ lim inf

k→+∞

∫
J
| ˙̂γk|ds ≤ |J | lim inf

k→+∞

Lk + η

L+ η
= |J |,

and thus
| ˙̂γ| ≤ 1 a.e. in [0, L+ η]. (2.20)

Now, in order to conclude the proof, we need to show that γ̂ is a reparametrization of γ̃. Then the
thesis of the lemma will follow by reparametrizing both γ̂k and γ̂ on [−1, 1].

Using that (γk) strictly converges BV ([−1, 1];R2) to γ ∈W 1,1(I−;R2)∩W 1,1(I+;R2), by Lemma
2.6 and a diagonal process, we can find an infinitesimal sequence (δkj ) ⊂ (0, 1] such that

∥γkj − γ∥L∞([−1,1]\(−δkj ,δkj ))
→ 0 (2.21)

and ∫ −δkj

−1
|γ̇kj (τ)| dτ →

∫ 0

−1
|γ̇(τ)| dτ,

∫ 1

δkj

|γ̇kj (τ)| dτ →
∫ 1

0
|γ̇(τ)| dτ

as j → +∞. In particular,

lim
j→+∞

γkj (±δkj ) = γ±(0) (2.22)

3We need η, since in principle γ̇k could vanish somewhere.
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and, setting

r−kj :=skj (−δkj ) =
L+ η

Lkj + η

∫ −δkj

−1

(
|γ̇kj |+

η

2

)
dτ,

r+kj :=skj (δkj ) =
L+ η

Lkj + η

[∫ 1

−1

(
|γ̇kj |+

η

2

)
dτ −

∫ 1

δkj

(
|γ̇kj |+

η

2

)
dτ

]
,

we have

lim
j→+∞

r−kj =
η

2
+

∫ 0

−1
|γ̇| dτ =: r−,

lim
j→+∞

r+kj =
η

2
+

∫ 0

−1
|γ̇| dτ + |γ+(0)− γ−(0)| =: r+.

(2.23)

As a consequence of (2.19), (2.22), and (2.23) we get

γkj (αkj (r
±
kj
)) = γ̂kj (r

±
kj
) → γ̂(r±) = γ±(0).

Therefore the curve γ̂ maps the segment [r−, r+] into a curve joining γ−(0) and γ+(0). Now,
since r+ − r− = |γ+(0) − γ−(0)|, from (2.20) we conclude that γ̂ coincides with the unit-speed
parametrization of the segment joining γ−(0) and γ+(0) on [r−, r+]. Hence we have shown that

γkj ◦ αkj → S ◦ α̃ uniformly in [r−, r+] as j → +∞, (2.24)

for the affine increasing reparametrization α̃ : [r−, r+] → [−1/3, 1/3].
We now check that γ̂ = γ ◦ α on [0, r−] for some increasing bijection α : [0, r−] → [−1, 0], and

similarly γ̂ = γ ◦ β on [r+, L+ η] for some increasing bijection β : [r+, L+ η] → [0, 1].
Indeed, the functions αk : [0, L+ η] → [−1, 1] are strictly increasing and satisfy

|α̇k(sk(t))| =
Lk + η

(L+ η)(|γ̇k(t)|+ η
2 )

≤ C

η
,

so that we may assume (up to extracting a further not relabeled subsequence) that

αkj ⇀ α weakly* in W 1,∞([0, L+ η]) and uniformly in [0, L+ η],

for some nondecreasing map α ∈W 1,∞([0, L+ η]). Hence, using (2.21), we find out

γ̂kj (s) = γkj (αkj (s)) → γ(α(s)) for all s ∈ [0, r−).

This, together with (2.19), implies

γ̂(s) = γ ◦ α(s) for all s ∈ [0, r−).

A similar argument shows that this also holds for all s ∈ (r+, L+ η].
Finally, we observe that α is strictly increasing on [0, r−) ∪ (r+, L+ η]. For, if α is constant on

some interval [s1, s2] ⊂ [0, r−), we have limj→+∞ αkj (s1) = limh→+∞ αkj (s2) and hence

0 = lim
j→+∞

∫ s2

s1

α̇kj (s)ds = lim
j→+∞

∫ tkj,2

tkj,1

dτ = lim
j→+∞

(tkj ,2 − tkj ,1), (2.25)

where tkj ,i are defined by skj (tkj ,1) = s1 and skj (tkj ,2) = s2. By definition (2.17) of skj we have

0 < s2 − s1 =

∫ tkj,2

tkj,1

(
|γ̇kj (τ)|+

η

2

)
dτ. (2.26)
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Possibly passing to a (not relabeled) subsequence and using (2.25), let t ∈ [−1, 0] be the limit of
(tkj ,1) and (tkj ,2). If t ̸= 0, for any open neighborhood J ⊂ (−1, 0) of t, using (2.26), we get∫

J
|γ̇| dτ = lim

h→+∞

∫
J
|γ̇kj | dτ ≥ s2 − s1,

which contradicts the inclusion γ̇ ∈ L1((−1, 0);R2). The same argument holds if t = 0, for J a left
neighbourhood of 0 in (−1, 0). We conclude that α is strictly increasing.

Let hkj be a rescaling of αkj on [−1, 1]; rescaling also α from [0, r−] to [−1,−1/3], and then from
[r+, L+ η] to [1/3, 1], using also α̃ in (2.24), we construct a reparametrization h : [−1, 1] → [−1, 1]
such that (2.16) holds, and the lemma is proved.

Lemma 2.7 can be readily extended to curves γ with finitely many jump points:

Corollary 2.8. Let (γk) ⊂ W 1,1([0, 2π];R2) be a sequence converging strictly BV ([0, 2π];R2) to a
map γ ∈ SBV ([0, 2π];R2) having finitely many jump points 0 < z1 < z2 < · · · < zn < 2π. Let
θ0 > 0 be such that the intervals (zi − θ0, zi + θ0) ⊂ (0, 2π) are disjoint, and for all i = 1, . . . , n let
Si : [zi − θ0, zi + θ0] → R2 be defined by

Si(τ) :=
1

2θ0

(
(τ − zi + θ0) γ

+(zi) + (zi + θ0 − τ) γ−(zi)
)
, τ ∈ [zi − θ0, zi + θ0].

Setting z0 := 0 and zn+1 := 2π, for all i = 0, . . . , n let γ̃i : [zi + θ0, zi+1 − θ0] → R2 be a rescaled
reparametrization of γ : [zi, zi+1] → R2. Finally, let γ̃ : [0, 2π] → R2 be the Lipschitz curve defined
as

γ̃ := γ̃0 ⋆ S1 ⋆ γ̃1 ⋆ S2 ⋆ γ̃2 ⋆ · · · ⋆ Sn ⋆ γ̃n, (2.27)

where ⋆ denotes the arc composition. Then there exist a subsequence (kj) and Lipschitz increasing
surjective functions h, hkj : [0, 2π] → [0, 2π] such that

lim
j→+∞

γkj ◦ hkj = γ̃ ◦ h uniformly in [0, 2π]. (2.28)

Proof. We skecth the proof which is a direct consequence of the arguments used to prove Lemma
2.7. Choose points wi, i = 1, . . . , n−1 so that zi+θ0 < wi < zi+1−θ0, and let w0 = 0 and wn = 2π.
Then we can apply Lemma 2.7 to any interval [wi, wi+1], and taking a suitable subsequence and
concatenating the obtained maps one can easily construct the desired parametrizations.

2.3 Planar Plateau-type problem

Let φ : S1 → R2 be a possibly self-intersecting Lipschitz curve. Let us consider, as in [24] (see
also [14]), the planar Plateau-type problem (1.5) spanning φ. Notice that the class of competitors

is non-empty, since it contains the map v(x) = |x|φ
(

x
|x|

)
for x ̸= 0, and v(0) = 0. We first observe

that P is independent of the radius of the domain of integration. Specifically, for any r > 0, let

φr(y) := φ
(y
r

)
for all y ∈ ∂Br. (2.29)

Setting y := rx, y ∈ Br and vr(y) := v(yr ), we have∫
B1

|Jv| dx =

∫
Br

|Jvr|dy ∀v ∈ Lip(B1;R2). (2.30)
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In particular, for any r > 0,

P (φ) = inf

{∫
Br

|Jv| dx : v ∈ Lip(Br;R2), v|∂Br
= φr

}
. (2.31)

In the next proposition we show that P (·) is invariant under Lipschitz reparameterizations of φ.

Proposition 2.9 (Invariance). Let φ ∈ Lip(S1;R2) and h be a Lipschitz homeomorphism of S1.
Then

P (φ ◦ h) = P (φ).

Proof. Since h and the identity map id : S1 → S1 have the same degree, they are homotopic in S1
by Hopf Theorem (see [21, pag. 51]), namely there exists a Lipschitz map4 K : [0, 1] × S1 → S1
such that

K(0, ·) = id, K(1, ·) = h.

Define H : [0, 1]× S1 → R2 as H(t, ν) = φ(K(t, ν)). Then H is Lipschitz and

H(0, ·) = φ, H(1, ·) = φ ◦ h.

Now, suppose vk ∈ Lip(B1;R2) is such that vk = φ on ∂B1 and

lim
k→+∞

∫
B1

|Jvk| dx→ P (φ).

Define the map ṽk : B1 → R2 as

ṽk(x) =


vk(kx) for x ∈ B 1

k
,

H
(
k|x| − 1, x

|x|

)
for x ∈ B 2

k
\B 1

k
,

φ ◦ h
(

x
|x|

)
for x ∈ B1 \B 2

k
.

(2.32)

Then ṽk ∈ Lip(B1;R2) and ṽk = φ ◦ h on ∂B1. Moreover, since H and φ ◦ h take values in φ(S1)
which is 1-dimensional, by the area formula and (2.30) we have∫

B1

|Jṽk(x)| dx =

∫
B 1

k

|Jvk(kx)| dx =

∫
B1

|Jvk| dx→ P (φ)

as k → +∞. In particular P (φ ◦ h) ≤ P (φ). Exchanging the role of φ and φ ◦ h, we obtain the
converse inequality.

Lemma 2.10. Let φ1, φ2 ∈ Lip(S1;R2). Then

|P (φ1)− P (φ2)| ≤ 2∥φ1 − φ2∥∞
(
∥φ̇1∥1 + ∥φ̇2∥1

)
. (2.33)

Proof. Let v ∈ Lip(B1;R2) be such that v = φ2 on S1. We define

w(x) =

v 1
2
(x) = v(2x) if |x| < 1

2 ,

2(1− |x|)φ2

(
x
|x|

)
+ 2

(
|x| − 1

2

)
φ1

(
x
|x|

)
if 1

2 ≤ |x| ≤ 1.
(2.34)

4The construction of a Lipschitz homotopy between h and id can be done at the level of liftings, by considering
the affine interpolation map (for more details, see for instance [3, Proposition 3.4]).
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Then w ∈ Lip(B1;R2), w(x) = φ2(x/|x|) if x ∈ ∂B 1
2
and w = φ1 on ∂B1. Let us estimate∫

B1\B 1
2

|Jw| dx.

Writing w in polar coordinates in the annulus B1 \B 1
2
, ρ ∈ (12 , 1), θ ∈ [0, 2π),

w̄(ρ, θ) := w(ρ cos θ, ρ sin θ) = 2(1− ρ)φ̄2(θ) + 2

(
ρ− 1

2

)
φ̄1(θ),

where φ̄i(θ) := φi(cos θ, sin θ), i = 1, 2. Then

|∂ρw̄ ∧ ∂θw̄| = 4

∣∣∣∣(φ̄1(θ)− φ̄2(θ)) ∧
(
(1− ρ) ˙̄φ2(θ) +

(
ρ− 1

2

)
˙̄φ1(θ)

)∣∣∣∣
≤ 4 |φ̄1(θ)− φ̄2(θ)|

∣∣∣∣(1− ρ) ˙̄φ2(θ) +

(
ρ− 1

2

)
˙̄φ1(θ)

∣∣∣∣
≤ 4∥φ1 − φ2∥∞ (| ˙̄φ2(θ)|+ | ˙̄φ1(θ)|) .

Thus, integrating on B1 \B 1
2
, by the change of variable formula,

∫
B1\B 1

2

|Jw(x)| dx =

∫ 1

1
2

∫ 2π

0
ρ

∣∣∣∣∂ρw̄ ∧ ∂θw̄

ρ

∣∣∣∣ dρdθ (2.35)

≤ 2∥φ1 − φ2∥∞
∫ 2π

0
(| ˙̄φ2(θ)|+ | ˙̄φ1(θ)|) dθ (2.36)

= 2∥φ1 − φ2∥∞ (∥φ̇1∥1 + ∥φ̇2∥1) . (2.37)

Hence

P (φ1) ≤
∫
B1

|Jw| dx ≤
∫
B 1

2

|Jv 1
2
| dx+ 2∥φ1 − φ2∥∞ (∥φ̇1∥1 + ∥φ̇2∥1) . (2.38)

Since v is a Lipschitz map such that (with the notation in (2.29)) v 1
2
= (φ2) 1

2
on ∂B 1

2
, using (2.31)

with r = 1
2 we can take the infimum in (2.38) on these maps v and get

P (φ1)− P (φ2) ≤ 2∥φ1 − φ2∥∞ (∥φ̇1∥1 + ∥φ̇2∥1) .

Exchanging the role of φ1 and φ2 we find that also P (φ2) − P (φ1) is bounded by the right-hand
side of the previous expression. This concludes the proof.

Remark 2.11. With a similar argument used in the proof of Lemma 2.10 it is immediate to obtain
that if [a, b] ⊂ R is a bounded interval and γ1, γ2 : [a, b] → R2 are Lipschitz curves, then the following
holds: Let Φ : [a, b] × [0, 1] → R2 be the affine interpolation map Φ(t, s) := sγ1(t) + (1 − s)γ2(t).
Then, as in (2.35), ∫

[a,b]×[0,1]
|Φt ∧ Φs| dtds ≤ ∥γ1 − γ2∥∞(∥γ̇1∥1 + ∥γ̇2∥1). (2.39)

Using Lemma 2.10 we readily obtain the following continuity property for the minimum of the
Plateau-type problem (1.5).
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Corollary 2.12 (Continuity of P ). Let φ ∈ Lip(S1;R2) and suppose that (φk)k ⊂ Lip(S1;R2) is
such that

φk → φ uniformly and sup
k∈N

∥φ̇k∥1 < +∞.

Then P (φk) → P (φ) as k → +∞.

In what follows it is convenient to consider the relaxation

P (γ) := inf

{
lim inf
k→+∞

P (φk) : φk ∈ Lip(S1;R2), φk → γ strictly BV (S1;R2)

}
∀γ ∈ BV (S1;R2)

(2.40)

of P with respect to the strict convergence in BV of the boundary datum. It is well known that
the infimum in (2.40) is taken on a non-empty class of approximation maps. Moreover, by (2.30),
also P is invariant by rescaling, i.e. P (γ) = P (γr).

Lemma 2.13. Let φ ∈ Lip(S1;R2). Then P (φ) = P (φ).

Proof. If (φk) ⊂ Lip(S1;R2) is a sequence converging to φ strictly BV (S1;R2), then by Lemma 2.6
φk → φ uniformly on S1 as k → +∞. Moreover, the strict convergence guarantees that the total
variations of φk are equibounded. So, thanks to Corollary 2.12,

P (φk) → P (φ) (2.41)

as k → +∞. Since this holds for any sequence (φk) as above, the thesis follows.

Lemma 2.14. Let γ ∈ SBV (S1;R2) have a finite number of jump points zi ∈ S1, i = 1, . . . , n. Let
γ̃ : S1 → R2 be the Lipschitz map in (2.27) (with S1 identified with [0, 2π]). Then

P (γ) = P (γ̃). (2.42)

Proof. Let (φk)k ⊂ Lip(S1;R2) be a sequence converging strictly to γ. Let us consider a not-
relabeled subsequence of (φk)k; by Corollary 2.8 there are a further subsequence (φkj )j and Lipschitz
reparametrizations γkj = φkj ◦ hkj ∈ Lip(S1;R2) of φkj such that γkj → γ̃ ◦ h uniformly as
j → +∞, for some Lipschitz homeomorphism h : S1 → S1. Moreover, since by Lemma 2.7(b)
the reparametrization maps hkj can be chosen with uniformly bounded Lipschitz constants, it
follows that γkj have uniformly bounded total variations. Hence it follows from Corollary 2.12 that
P (γkj ) → P (γ̃ ◦h) as j → +∞. On the other hand, by Proposition 2.9 we also have P (φkj ) → P (γ̃)
as j → +∞. Finally, since this argument holds for any subsequence of (φk), we conclude that the
whole sequence satisfies P (φk) → P (γ̃), and therefore P (γ) = P (γ̃).

As a consequence of the argument in the proof of Lemma 2.14, we easily infer the following
continuity property:

Corollary 2.15. Let γ ∈ SBV (S1;R2) and γ̃ be as in Corollary 2.8, and assume that (φk)k ⊂
Lip(S1;R2) is a sequence converging strictly to γ. Then

lim
k→+∞

P (φk) = P (γ) = P (γ̃).

Furthermore, we can refine the previous corollary as follows:

Corollary 2.16. Let γ, γk ∈ SBV (S1;R2), k ≥ 1, be maps as in Corollary 2.8. Assume that (γk)
converges to γ strictly BV (S1;R2). Then

lim
k→+∞

P (γk) = P (γ).
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Proof. By Corollary 2.15 and the density of Lip(S1;R2) in BV (S1;R2) with respect to the strict
convergence, for all k ≥ 1 we can find φk ∈ Lip(S1;R2) such that

∥γk − φk∥1 +
∣∣|φ̇k|(S1)− |γ̇k|(S1)

∣∣+ ∣∣P (φk)− P (γk)
∣∣ ≤ 1

k
.

Hence the sequence (φk) converges to γ strictly BV (S1;R2), and by the triangle inequality and
Corollary 2.15 we conclude

lim
k→+∞

P (γk) = P (γ).

3 Relaxation on piecewise Lipschitz maps jumping on a curve

Recalling that R = [a, b]× [−1, 1], consider R+ = {(x1, x2) ∈ R : x2 > 0} and R− = {(x1, x2) ∈ R :
x2 < 0}.

Definition 3.1 (Piecewise Lipschitz map). We say that a map u : R→ R2 is piecewise Lipschitz
if u ∈ BV (R;R2) and u ∈ Lip(R−;R2) ∩ Lip(R+;R2).

Thus Su ⊆ [a, b]× {0}; we denote u± : [a, b]× {0} → R2 the traces of u|R± , which are Lipschitz

maps. Set I = [0, 1] and define Xaff : [a, b]× I → R3 to be the affine interpolation surface spanning
graph(u±) = {(t, u±(t)) : t ∈ [a, b]} ⊂ R× R2 = R3, namely

Xaff(t, s) = (t, su+(t) + (1− s)u−(t)) =: (t, X̂(t, s)) ∀(t, s) ∈ [a, b]× I. (3.1)

Remark 3.2. For a (semicartesian) map Φ : [a, b]× [c, d] → R3 of the form Φ(t, σ) = (t, ϕ(t, σ)) =
(t, ϕ1(t, σ), ϕ2(t, σ)), the area integrand is given by

|∂tΦ ∧ ∂σΦ| =
√
|∂σϕ1|2 + |∂σϕ2|2 + (∂tϕ1∂σϕ2 − ∂σϕ1∂tϕ2)2 =

√
|∂σϕ|2 + |Jϕ|2.

The main result of this section is the following:

Theorem 3.3 (Relaxed area of piecewise Lipschitz maps: straight jump). Let u : R→ R2

be a piecewise Lipschitz map. Then

ABV (u,R) = A(u,R+) +A(u,R−) +

∫
[a,b]×I

|∂tXaff ∧ ∂sXaff | dtds. (3.2)

Notice that the Lipschitz regularity of u on R± ensures that the area functional has the classical
expression

A(u,R±) =

∫
R±

√
1 + |∇u|2 + |det∇u|2 dx;

therefore, the singular contribution produced by the relaxation in (3.2) is given by the area of Xaff .
We divide the proof of (3.2) in two parts: the lower bound (Proposition 3.4) and the upper

bound (Proposition 3.5).

Proposition 3.4 (Lower bound for (3.2)). Let u : R → R2 be a piecewise Lipschitz map, and
(vk) ⊂ C1(R;R2) ∩BV (R;R2) be a sequence converging to u strictly BV (R;R2). Then

lim inf
k→+∞

A(vk, R) ≥ A(u,R+) +A(u,R−) +

∫
[a,b]×I

|∂tXaff ∧ ∂sXaff | dtds. (3.3)
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Proof. Fix ε ∈ (0, 1). We have

lim inf
k→+∞

A(vk, R) ≥ lim inf
k→+∞

A(vk, R \ ([a, b]× [−ε, ε])) + lim inf
k→+∞

A(vk, [a, b]× [−ε, ε])

≥ A(u,R \ ([a, b]× [−ε, ε])) + lim inf
k→+∞

A(vk, [a, b]× [−ε, ε]),

where in the last inequality we used [1, Theorem 3.7]. Sending ε to 0+, by dominated convergence
it follows A(u,R \ ([a, b] × [−ε, ε])) → A(u,R+) + A(u,R−), so (3.3) will be proven provided we
show that

lim
ε→0+

lim inf
k→+∞

A(vk, [a, b]× [−ε, ε]) ≥
∫
[a,b]×I

|∂tXaff ∧ ∂sXaff | dtds. (3.4)

Consider the maps
V ε
k : R→ R3, V ε

k (t, σ) = (t, vk(t, εσ)),

and the associated integer multiplicity 2-currents in R3

Vε
k = V ε

k ♯[[R]].

Notice that, neglecting the term 1 + |∂x1vk|2, we get

A(vk, [a, b]× [−ε, ε]) ≥
∫
[a,b]×[−ε,ε]

√
|∂x2vk|2 + |Jvk|2 dx

=

∫
R
|∂tV ε

k ∧ ∂σV ε
k | dtdσ = |Vε

k|,
(3.5)

where we used Remark 3.2, and | · | stands for the mass current. Consider also the maps

U ε
± : R± → R3, U ε

±(t, σ) = (t, u(t, εσ)), (3.6)

and the current

Sε = Xaff
♯ [[[a, b]× I]] + U ε

+♯
[[R+]] + U ε

−♯
[[R−]], (3.7)

see Fig. 1. We want now prove the following crucial inequality:

lim inf
k→+∞

|Vε
k| ≥ |Sε|. (3.8)

To show (3.8) we prove that Vε
k are close to suitable currents Mε

n independent of k (see (3.19))
which converge to Sε as n→ +∞.

For any n ∈ N, n ≥ 1, consider a partition {t0 = a, t1, . . . , tn+1 = b} of [a, b] in (n+ 1) intervals
[ti−1, ti), with

ti − ti−1 ∈
(
b− a

2n
, 2

(b− a)

n

)
. (3.9)

Moreover, set

Ri = [ti−1, ti)× [−1, 1], R+
i = [ti−1, ti)× (0, 1], R−

i = [ti−1, ti)× [−1, 0),

and define the currents

Vε
k,i = V ε

k ♯[[Ri]], Sε,i = Xaff
♯ [[[ti−1, ti)× I]] + U ε

+♯
[[R+

i ]] + U ε
−♯
[[R−

i ]], (3.10)
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see Fig. 1. By definition, we have

Vε
k =

n+1∑
i=1

Vε
k,i and H2(sptVε

k,i ∩ sptVε
k,j) = 0 for i ̸= j,

Sε =

n+1∑
i=1

Sε,i and H2(sptSε,i ∩ sptSε,j) = 0 for i ̸= j.

(3.11)

Furthermore,

∂Sε,i =−
(
U ε
−♯
[[{ti−1} × [−1, 0)]] +Xaff

♯ [[{ti−1} × I]] + U ε
+♯
[[{ti−1} × (0, 1]]]

)
− U ε

+♯
[[(ti−1, ti)× {1}]]

+
(
U ε
−♯
[[{ti} × [−1, 0)]] +Xaff

♯ [[{ti} × I]] + U ε
+♯
[[{ti} × (0, 1]]]

)
+ U ε

−♯
[[(ti−1, ti)× {−1}]].

(3.12)

Now, for fixed i ∈ {1, . . . , n}, set

γu,ε−,i(σ) = u(ti, εσ) ∀σ ∈ [−1, 0),

γu,ε+,i(σ) = u(ti, εσ) ∀σ ∈ (0, 1],

γ0i (s) = su+(ti) + (1− s)u−(ti) ∀s ∈ I,

Λ±,ε
u,i (t) = (t, u(t,±ε)) ∀t ∈ [ti−1, ti],

and define γu,εi : [−1, 1] → R2 as in (2.15) where γ̃−, S, and γ̃+ are replaced by γu,ε−,i, γ
0
i and γu,ε+,i

in the order, after a rescaling on
[
−1,−1

3

]
,
[
−1

3 ,
1
3

]
, and

[
1
3 , 1
]
, respectively, as in the statement of

Lemma 2.7. Also, define Γu,ε
i : [−1, 1] → ({ti} × R2) as

Γu,ε
i (σ) := (ti, γ

u,ε
i (σ)) ∀σ ∈ [−1, 1].

Using the definition of U ε
± and Xaff , by (3.12) we infer

∂Sε,i = −Γu,ε
i−1♯

[[[−1, 1]]]− Λ+,ε
u,i ♯

[[(ti−1, ti)]] + Γu,ε
i ♯[[[−1, 1]]] + Λ−,ε

u,i ♯
[[(ti−1, ti)]]. (3.13)

Moreover, set

γεk,i(σ) = vk(ti, εσ), Γε
k,i(σ) = (ti, γ

ε
k,i(σ)) ∀σ ∈ [−1, 1],

Λ±,ε
k,i (t) = (t, vk(t,±ε)) ∀t ∈ [ti−1, ti].

By definition of Vε
k,i in (3.10), we also have

∂Vε
k,i = −Γε

k,i−1♯
[[[−1, 1]]]− Λ+,ε

k,i ♯
[[(ti−1, ti)]] + Γε

k,i♯
[[[−1, 1]]] + Λ−,ε

k,i ♯
[[(ti−1, ti)]]. (3.14)

We now define F ε
k,i ∈ D2(R3) as a suitable affine interpolation between ∂Vε

k,i and ∂Sε,i, see Fig. 1.
First observe that by Lemma 2.3, we can suppose that, for our choice of ε and {t1, . . . , tn}, there
exists a (not relabeled) subsequence of (vk)k, such that

vk(ti, ε·) → u(ti, ε·) strictly BV ([−1, 1];R2) ∀i = 1, . . . , n, (3.15)

vk(·,±ε) → u(·,±ε) strictly BV ([a, b];R2). (3.16)
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In particular, by Lemma 2.7, we know that there are increasing Lipschitz bijections hεk,i, h
ε
i :

[−1, 1] → [−1, 1] such that γεk,i ◦ hεk,i → γu,εi ◦ hεi uniformly in [−1, 1] as k → +∞.
For i = 1, . . . , n, we define

Φε
k,i(σ, s) := s(Γε

k,i ◦ hεk,i(σ)) + (1− s)(Γu,ε
i ◦ hεi (σ)), (σ, s) ∈ [−1, 1]× I,

Ψ±,ε
k,i (t, s) := sΛ±,ε

k,i (t) + (1− s)Λ±,ε
u,i (t), (t, s) ∈ [ti−1, ti]× I.

Therefore we set
F ε
k,i =− Φε

k,i−1♯
[[[−1, 1]× I]]−Ψ+,ε

k,i ♯
[[[ti−1, ti]× I]]

+ Φε
k,i♯

[[[−1, 1]× I]] + Ψ−,ε
k,i ♯

[[[ti−1, ti]× I]].
(3.17)

In particular, from (3.13) and (3.14), a direct check shows that

∂F ε
k,i = ∂Vε

k,i − ∂Sε,i. (3.18)

Eventually, we let Mε,i be an integer multiplicity 2-current of R3 with minimal mass and boundary
∂Sε,i (the existence of Mε,i is guaranteed, for instance, by [19, Theorem 8.3.3]) and set

Mε
n :=

n∑
i=2

Mε,i. (3.19)

Note carefully that we do not sum over i from 1 to n + 1, but only from 2 to n. In particular,
setting Sn

ε = Sε − Sε,1 − Sε,n+1, we have

∂Mε
n = ∂Sn

ε = −Γu,ε
1 ♯[[[−1, 1]]] + Γu,ε

n ♯[[[−1, 1]]]− Λ+,ε
u ♯[[[t1, tn]]] + Λ−,ε

u ♯[[[t1, tn]]], (3.20)

where
Λ±,ε
u (t) := (t, u(t,±ε)), t ∈ (t1, tn).

Thus, we have

|Vε
k,i| ≥ |Vε

k,i − F ε
k,i| − |F ε

k,i| ≥ |Mε,i| − |F ε
k,i| for i = 2, . . . ,n,

where we used the minimality of Mε,i and (3.18). By summing up, using (3.11), we get5

|Vε
k| =

n+1∑
i=1

|Vε
k,i| ≥

n∑
i=2

|Vε
k,i| ≥

n∑
i=2

|Mε,i| −
n∑

i=2

|F ε
k,i| ≥ |Mε

n| −
n∑

i=2

|F ε
k,i|. (3.21)

Therefore,

lim inf
k→+∞

|Vε
k| ≥ |Mε

n| −
n∑

i=2

lim sup
k→+∞

|F ε
k,i|. (3.22)

In order to obtain (3.8), we have to prove that:

(i) |F ε
k,i| → 0 as k → +∞ for every i = 2, . . . , n;

(ii) Mε
n ⇀ Sε as n→ +∞,

so that (3.8) would follow by lower semicontinuity of the mass and (3.22).
(i). Since γεk,i◦hεk,i → γu,εi ◦hεi uniformly in [−1, 1] as k → +∞, also Γε

k,i◦hεk,i → Γu,ε
i ◦hεi uniformly;

moreover, by Lemma 2.6 and thanks to (3.16), vk(·,±ε) → u(·,±ε) uniformly in [ti−1, ti], and the
same holds for Λ±,ε

k,i and Λ±,ε
u,i . Finally, by (3.15) and (3.16), and recalling also Lemma 2.7 (b), the
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Figure 1: Here S = Xaff
♯ [[[a, b] × I]], Sε

± = U ε
±♯[[R

±]]. The horizontal and vertical axes span the

target space R2. The approximating current Vε
k is depicted in bold, as well as the boundary of

its restriction to Ri, i.e. the current ∂Vε
k,i. The current ∂Sε,i is depicted with the oriented dotted

straight segments, while F ε
k,i is the oriented surface obtained as the union of the short segments

connecting ∂Vε
k,i and ∂Sε,i. Finally, for simplicity, we depict with straight segments the graph of

u± and the (semi)graph of u on {(t, σ) : σ = ±ε}, but it is worth to remember that they are graph
of Lipschitz maps.

L1-norm of the derivative of Γε
k,i ◦ hεk,i and of Λ±,ε

k,i is uniformly bounded with respect to k. Hence
(i) readily follows from the definition of F ε

k,i in (3.17) and Remark 2.11.
(ii). First observe that ∂Mε

n has mass uniformly bounded with respect to n. Indeed by (3.20)

|∂Mε
n| = |∂Sn

ε | ≤ |γ̇u,ε1 |([−1, 1]) + |γ̇u,εn |([−1, 1]) +

∫ b

a

√
1 + |∂tu(t, ε)|2dt+

∫ b

a

√
1 + |∂tu(t,−ε)|2dt

≤ C(ε, ∥u∥∞, lip(u|R+), lip(u|R−)).

Moreover, by minimality of Mε
n and (3.11), |Mε

n| ≤ |Sn
ε | ≤ |Sε|, hence the sequence

(
Mε

n

)
n
is

compactly supported in R3 and has bounded mass and bounded boundary mass. Then, by [19,
Theorem 8.2.1], we have

Mε
n ⇀ Sε ⇐⇒ ∥Mε

n − Sε∥F → 0 as n→ +∞,

5In (3.21) we had to remove the first and last term of the sum, because condition (i) can be false for i = 1 and
i = n+ 1, since the strict convergence is inherited only on almost every line, as stated in Lemma 2.3.
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where ∥ · ∥F stands for the flat norm. Then, we are reduced to show that ∥Mε
n − Sε∥F → 0 as

n→ +∞. Notice that

∥Mε
n − Sε∥F ≤

n∑
i=2

∥Mε,i − Sε,i∥F + ∥Sε,1∥F + ∥Sε,n+1∥F , (3.23)

where, by definition of flat norm (see [15, Sec. 5.1.3]),

∥Mε,i − Sε,i∥F ≤ inf{|Gε
i | : Gε

i integer multiplicity 3-current s.t. ∂Gε
i =Mε,i − Sε,i}.

Observe that the class of competitors in the above minimum problem is non empty, since it contains
the affine interpolation current between Mε,i and Sε,i. So, pick a 3-current Gε

i such that ∂Gε
i =

Mε,i − Sε,i; then

|Gε
i | ≤ C|∂Gε

i |
3
2

by the isoperimetric inequality [19, Theorem 7.9.1], for an absolute positive constant C > 0. For
i = 2, . . . , n, we have

∥Mε,i − Sε,i∥F ≤ |Gε
i | ≤ C|∂Gε

i |
3
2 = C|Mε,i − Sε,i|

3
2 ≤ C

(
|Mε,i|

3
2 + |Sε,i|

3
2

)
≤ 2C|Sε,i|

3
2 , (3.24)

where in the last inequality we used the minimality of Mε,i. Now let us prove that |Sε,i| ≤ C
n for

every i = 1, . . . , n+ 1, where C is a constant independent of n. We start observing that

|Xaff
♯ [[[ti−1, ti)× I]]| =

∫
[ti−1,ti]×I

|∂tXaff ∧ ∂sXaff | dtds

=

∫ ti

ti−1

∫
I
|(1, su̇+ + (1− s)u̇−) ∧ (0, u+ − u−)| dtds

≤
∫ ti

ti−1

∫
I

(
|u+ − u−|+

∣∣(su̇+1 + (1− s)u̇−1 )(u
+
2 − u−2 )− (su̇+2 + (1− s)u̇−2 )(u

+
1 − u−1 )

∣∣) dtds
≤ C1

n
∥u+ − u−∥L∞(a,b) +

C2

n
∥u+ − u−∥L∞(a,b)

(
∥u̇+∥L∞(a,b) + ∥u̇−∥L∞(a,b)

)
=
C

n
,

where we used (3.9). Moreover, recalling (3.6), we have

|U ε
±♯
[[R±

i ]]| =
∫
R±

i

|∂tU ε
± ∧ ∂σU ε

±| dtdσ

=

∫
R±

i

|(1, ∂tu(t, εσ)) ∧ (0, ε∂σu(t, εσ))| dtdσ

≤ ε

∫
R±

i

|∂σu(t, εσ)| dtdσ + ε

∫
R±

i

|∂tu1(t, εσ)∂σu2(t, εσ)− ∂tu2(t, εσ)∂σu1(t, εσ)| dtdσ

≤ ε
C3

n

(
∥∇u∥L∞(R±) + ∥∇u∥2L∞(R±)

)
=
Cε

n
.

(3.25)

Thus,

|Sε,i| ≤ |Xaff
♯ [[[ti−1, ti)× I]]|+ |U ε

+♯
[[R+

i ]]|+ |U ε
−♯
[[R−

i ]]| ≤
C

n
,
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as claimed. Finally, by definition of flat norm and the isoperimetric inequality, ∥Sε,i∥F ≤ |Sε,i|
3
2

for i = 1, . . . , n+ 1, so that, from (3.24) and (3.23), we obtain

∥Mε
n − Sε∥F ≤ C(n− 1)

1

n
3
2

+
C

n
3
2

≤ C

n
1
2

+
C

n
3
2

→ 0

as n→ +∞. This concludes the proof of (ii) and hence of (3.8).

We are now in a position to show (3.4). From (3.5) and (3.8),

lim inf
k→+∞

A(vk, [a, b]× [−ε, ε]) ≥ lim inf
k→+∞

|Vε
k| ≥ |Sε|. (3.26)

As in (3.25), we have

|U ε
±♯
[[R±]]| ≤ ε

(
∥∇u∥L∞(R±) + ∥∇u∥2L∞(R±)

)
→ 0 as ε→ 0+,

so, from (3.26) and (3.7), we conclude

lim
ε→0+

lim inf
k→+∞

A(vk, [a, b]× [−ε, ε]) ≥ lim
ε→0+

|Sε| = |Xaff
♯ [[[a, b]× I]]| =

∫
[a,b]×I

|∂tXaff ∧ ∂sXaff | dtds.

Proposition 3.5 (Upper bound for (3.2)). Let u : R→ R2 be a piecewise Lipschitz map. Then
there exists a sequence (vk)k ⊂ C1(R;R2) converging to u strictly BV (R;R2) such that

lim sup
k→+∞

A(vk, R) ≤ A(u,R+) +A(u,R−) +

∫
[a,b]×I

|∂tXaff ∧ ∂sXaff | dtds. (3.27)

Proof. Although vk needs to be of class C1, we claim that it suffices to build vk just Lipschitz
continuous. Indeed, assume that (vk)k ⊂ W 1,∞(R;R2) converges to u strictly BV (R;R2) and
(3.27) holds. Consider, for all k ∈ N, a sequence

(
vkh
)
h
⊂ C1(R;R2) approaching vk in W 1,2(R;R2)

as h → +∞. In particular, we get the L1-convergence of all minors of ∇vkh to the corresponding
ones of ∇vk. Then, by dominated convergence,

lim
h→+∞

A(vkh, R) = A(vk, R). (3.28)

Hence, by a diagonal argument, we find a sequence
(
vkhk

)
k
converging to u strictly BV (R;R2) such

that (3.27) holds for vkhk
in place of vk.

Set for simplicity ε = εk = 1
k , and define the sequence (vε) ⊂ Lip(R;R2) as

vε(t, σ) :=

{
u(t, σ) (t, σ) ∈ R \ ([a, b]× [−ε, ε]),
ε+σ
2ε u(t, ε) +

ε−σ
2ε u(t,−ε) (t, σ) ∈ [a, b]× (−ε, ε).

(3.29)

First, let us check that vε → u strictly BV (R;R2) as ε→ 0+. Clearly, vε → u in L1(R;R2). Hence,
by lower semicontinuity of the total variation, it is enough to show that

lim sup
ε→0+

∫
R
|∇vε|dtdσ ≤ |Du|(R),

which in turn reduces to prove

lim sup
ε→0+

∫
[a,b]×[−ε,ε]

|∇vε|dtdσ ≤ |Du|([a, b]× {0}),
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since∫
R\([a,b]×[−ε,ε])

|∇vε|dtdσ =

∫
R\([a,b]×[−ε,ε])

|∇u|dtdσ →
∫
R+

|∇u|dtdσ +

∫
R−

|∇u|dtdσ as ε→ 0+.

For almost every t ∈ [a, b] and every σ ∈ [−ε, ε], one has

∂tvε(t, σ) =
ε+ σ

2ε
∂tu(t, ε) +

ε− σ

2ε
∂tu(t,−ε), ∂σvε(t, σ) =

1

2ε
(u(t, ε)− u(t,−ε)).

Thus, setting M := max{lip(u|R−), lip(u|R+)}, we get∫
[a,b]×[−ε,ε]

|∇vε| dtdσ ≤
∫
[a,b]×[−ε,ε]

|∂tvε(t, σ)| dtdσ +

∫
[a,b]×[−ε,ε]

|∂σvε(t, σ)| dtdσ

≤M
∫
[a,b]×[−ε,ε]

dtdσ +

∫
[a,b]×[−ε,ε]

1

2ε
|u(t, ε)− u(t,−ε)| dtdσ

=M(b− a)2ε+

∫ b

a
|u(t, ε)− u(t,−ε)| dt

ε→0+−→
∫ b

a
|u+(t)− u−(t)| dt = |Du|([a, b]× {0}).

Furthermore, since u is piecewise Lipschitz, we have

A(vε, R \ [a, b]× [−ε, ε]) = A(u,R \ [a, b]× [−ε, ε]) → A(u,R+) +A(u,R−) as ε→ 0+.

So it remains to prove that

lim sup
ε→0+

A(vε, [a, b]× [−ε, ε]) ≤
∫
[a,b]×I

|∂tXaff ∧ ∂sXaff | dtds. (3.30)

Let us linearly reparametrize Xaff on R = [a, b] × [−1, 1], namely consider Y , having the same
image as Xaff , given by

Y (t, σ) = (t, Ŷ (t, σ)) =

(
t,
1 + σ

2
u+(t) +

1− σ

2
u−(t)

)
, (t, σ) ∈ R.

Now, using the trivial inequality
√
1 + a2 + b2 + c2 ≤ 1 + |a|+

√
b2 + c2, we find

A(vε, [a, b]× [−ε, ε]) ≤
∫
[a,b]×[−ε,ε]

dtdσ +

∫
[a,b]×[−ε,ε]

|∂tvε| dtdσ +

∫
[a,b]×[−ε,ε]

√
|∂σvε|2 + |Jvε|2dtdσ

= 2ε(b− a) + 2ε

∫
R
|∂tṽε| dtdσ +

∫
R

√
|∂σṽε|2 + |Jṽε|2 dtdσ, (3.31)

where ṽε : R→ R2 is defined as ṽε(t, σ) = vε(t, εσ). A direct computation based in (3.29) gives

∂tṽε(t, σ) =
1 + σ

2
∂tu(t, ε) +

1− σ

2
∂tu(t,−ε) for a.e. t ∈ [a, b] ∀σ ∈ [−1, 1]

∂σṽε(t, σ) = ε∂σvε(t, εσ) =
u(t, ε)− u(t,−ε)

2
for a.e. t ∈ [a, b] ∀σ ∈ [−1, 1].

Then we have

∂tṽε(t, σ) →
1 + σ

2
u̇+(t) +

1− σ

2
u̇−(t) = ∂tŶ (t, σ) a.e. in R,

∂σṽε(t, σ) →
u+(t)− u−(t)

2
= ∂σŶ (t, σ) a.e. in R.

Since ∂σŶ and ∂tŶ are in L∞(R;R2), by dominated convergence we can pass to the limit in (3.31)
as ε→ 0+, so that, using Remark 3.2, we obtain (3.30).
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Remark 3.6. After having proved the upper bound inequality in Proposition 3.5, we readily infer
that ABV (u,R) < +∞. Hence Proposition 3.4 can be deduced from an argument independently
developed in [23], based on the theory of Cartesian currents [16]. Indeed, consider Tu := Gu + S,
where Gu is the 2-current on R × R2 carried by the graph of u and S is the 2-current on R × R2

given by S := X̃♯[[[a, b]× I]], where

X̃(t, s) := (t, 0, X̂(t, s)) = (t, 0, su+(t) + (1− s)u−(t)), t ∈ [a, b], s ∈ I.

Clearly, the mass ot Tu is given by

|Tu| = |Gu|+ |S| = A(u,R+) +A(u,R−) +

∫
[a,b]×I

|∂tX̃ ∧ ∂sX̃| dtds

= A(u,R+) +A(u,R−) +

∫
[a,b]×I

|∂tXaff ∧ ∂sXaff | dtds.

Now we claim that Tu is the unique Cartesian current on R×R2 with minimal completely vertical
lifting associated to u, according to [23, Definition 3.1]. Borrowing the notation from [23], this
definition is given by imposing that the mixed components of Tu are the minimal lifting measures
µji [u] associated to u in the sense of Jerrard and Jung [18]. Once the claim is proven, by the lower
semicontinuity of the mass and the continuity of the lifting measures with respect to the strict
convergence (see [18, Theorem 1.1]), we deduce

|Tu| ≤ ABV (u,R),

i.e., inequality (3.3).
In order to show the claim, we start to prove that Tu ∈ cart(R,R2). For this, it is enough to see

that (∂Tu) (R× R2) = 0: We get

(∂Gu) (R× R2) = X̂−
♯ [[[a, b]]]− X̂+

♯ [[[a, b]]] = −∂X̃♯[[[a, b]× I]] = −(∂S) (R× R2),

where X̂±(t) := (t, 0, u±(t)), t ∈ [a, b]. Next, what remains to prove is that the vertical component
of Tu is the minimal completely vertical lifting associated to u. To this purpose, denote by x =
(x1, x2) the (horizontal) variable of R, y = (y1, y2) the vertical variable of R2 and u = (u1, u2) the
components of u. We have to check that

µji [Tu] = µji [u] ∀i, j = 1, 2, (3.32)

where µji [Tu] := Tu ((−1)idxī ∧ dyj). By [18, Theorem 2.2], for every f ∈ C∞
c (R× R2),∫

R×R2

f(x, y)dµij [u] =

∫
R+∪R−

f(x, u(x))∂iu
jdx+

∫ b

a

(∫ 1

0
f(t, 0, X̂(t, s))ds

)
(uj

+ − uj
−
)δi2 dt,

where δij is the Kronecker symbol. On the other hand, setting ω(x, y) := (−1)if(x, y)dxī ∧ dyj , we
have ∫

R×R2

f(x, y)dµij [Tu] =

∫
R+∪R−

f(x, u(x))∂iu
jdx+

∫
X̃([a,b]×I)

ω

=

∫
R+∪R−

f(x, u(x))∂iu
jdx+

∫
[a,b]×I

ω(X̃(t, s))dX̃ īj ,
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where, if X̃ = (X̃1
1 , X̃

1
2 , X̃

2
1 , X̃

2
2 ), then dX̃ īj = dX̃ ī

1 ∧ dX̃j
2 . Notice that dX̃ īj = 0 if ī = 2 and

dX̃1j = (uj
+ − uj

−
) dt ∧ ds, so we get∫

[a,b]×I
ω(X̃(t, s))dX̃ īj =

∫
[a,b]×I

(−1)if(X̃(t, s))(uj
+ − uj

−
)δi2 dt ∧ ds

=

∫ b

a

(∫ 1

0
f(t, 0, X̂(t, s))ds

)
(uj

+ − uj
−
)δi2 dt,

and (3.32) follows.

3.1 Extension of Theorem 3.3

The validity of Theorem 3.3 is guaranteed also when the two traces u± of u on [a, b]×{0} coincide
on some subset of [a, b]×{0}. In particular, (3.2) extends to maps u whose jump set Su is a subset
of [a, b] × {0}. However, the situation is different when the jump set is curvilineous. Specifically,
assume Ω ⊂ R2 is a bounded open and connected set, and:

(H1) Σ = α([a, b]) ⊂ Ω is a simple curve, arc-length parametrized by α : [a, b] → Ω of class C2 and
injective in [a, b);

(H2) If α(a) = α(b), then α̇(a+) = α̇(b−) and α̈(a+) = α̈(b−);

(H3) u ∈ W 1,∞(Ω \ Σ;R2); as usual, we denote by u± the traces of u on Σ, satisfying u± ∈
Lip(Σ;R2).

Again, we introduce the affine interpolation surface Xaff : [a, b]× I → R3 spanning graph(u±) =
{(t, u±(α(t))) : t ∈ [a, b]} ⊂ R× R2 = R3, namely

Xaff(t, s) = (t, su+(α(t)) + (1− s)u−(α(t))) ∀(t, s) ∈ [a, b]× I. (3.33)

Theorem 3.7 (Relaxed area of piecewise Lipschitz maps: curved jump). Suppose
(H1)-(H3). Then

ABV (u,Ω) =

∫
Ω\Σ

|M(∇u)| dx+

∫
[a,b]×I

|∂tXaff ∧ ∂sXaff | dtds. (3.34)

Remark 3.8. The image of the map Xaff sits in R3 and it is not exactly the interpolation surface
which closes the holes in the graph of u, which is instead given by

Ψ(t, s) = (α(t), su+(α(t)) + (1− s)u−(α(t))) ∈ R4 ∀t ∈ [a, b]× I. (3.35)

However, since |α̇| = 1,∫
[a,b]×I

|∂tΨ ∧ ∂sΨ| dtds =
∫
[a,b]×I

|∂tXaff ∧ ∂sXaff | dtds. (3.36)

To prove Theorem 3.7, we borrow from [8] some notation. We denote by x = (x1, x2) coordinates
in Ω and by (t, σ) coordinates in R = [a, b]× [−1, 1]. Since Σ is simple and of class C2, we can find
δ > 0 and a C1-diffeomorphism Λ : Rδ → Λ(Rδ), where Rδ = [a, b] × [−δ, δ] and Λ(Rδ) ⊂ Ω is a
curvilineous strip containing Σ of width 2δ. Explicitly we have

Λ(t, σ) = α(t) + σα̇(t)⊥ ∀(t, σ) ∈ Rδ, (3.37)

with α̇(t)⊥ the counter-clockwise π
2 -rotation of α̇(t). For (x1, x2) ∈ Λ(Rδ), we can write the inverse

Λ−1(x1, x2) = (t(x1, x2), σ(x1, x2)), where:
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� σ(x1, x2) = dΣ(x1, x2) is the signed distance6 of (x1, x2) from Σ;

� t(x1, x2) is the unique number in [a, b] such that α(t(x1, x2)) = πΣ(x1, x2), where πΣ(x1, x2) =
(x1, x2)− dΣ(x1, x2)∇dΣ(x1, x2) is the orthogonal projection on Σ.

Since α is of class C2, we have that σ is of class C2 as well and t is of class C1 on Λ(Rδ). Moreover,
for (x1, x2) ∈ Λ(Rδ), we have

|∇σ(x1, x2)| = |∇dΣ(x1, x2)| = 1, (3.38)

|∇t(x1, x2)| = 1 + δ∥∇dΣ∥∞ ≤ 1 + Cδ. (3.39)

We divide the proof of Theorem 3.3 in two parts, the lower and the upper bound inequalities.

Proposition 3.9 (Lower bound for (3.34)). Let u : Ω → R2 as in Theorem 3.7 and (vk) ⊂
C1(Ω;R2) be a sequence converging to u strictly BV (Ω;R2). Then (3.3) holds with Xaff in (3.33).

Proof. It is enough to show that

lim
ε→0+

lim inf
k→+∞

A(vk,Λ([a, b]× [−ε, ε])) ≥
∫
[a,b]×I

|∂tXaff ∧ ∂sXaff | dtds. (3.40)

We start by defining the maps Ψε
k : R→ R4 and Ψε

± : R± → R4 given by

Ψε
k(t, σ) = (Λ(t, εσ), vk(Λ(t, εσ))), Ψε

±(t, σ) = (Λ(t, εσ), u(Λ(t, εσ))).

Introduce the following integer multiplicity 2-currents in R4:

Vε
k = Ψε

k♯[[R]], Sε = Ψ♯[[[a, b]× I]] + Ψε
−♯
[[R−]] + Ψε

+♯
[[R+]],

where Ψ is defined in (3.35). Using that Av ∧ Aw = detAv ∧ w for any A ∈ R2×2 and v, w ∈ R2,
by direct computation, we have

|∂tΨε
k ∧ ∂σΨε

k|2 = ε2|∂tΛ(t, εσ) ∧ ∂σΛ(t, εσ)|2
[
1 + |∇vk(Λ(t, εσ))|2 + |Jvk(Λ(t, εσ))|2

]
.

Hence, making the change of variable x = Λ(t, εσ), we obtain

A(vk,Λ([a, b]× [−ε, ε])) =
∫
Λ([a,b]×[−ε,ε])

|M(∇vk)| dx =

∫
R
|∂tΨε

k ∧ ∂σΨε
k| dtdσ = |Vε

k|.

We notice that |Ψε
±♯
[[R±]]| → 0 as ε → 0+, as in (3.25), where ∥∇u∥L∞(R±) is replaced with

∥u∥W 1,∞(Ω) and it is used that |α̈| ≤ C. Therefore, recalling also (3.36),

lim
ε→0+

|Sε| = |Ψ♯[[[a, b]× I]]| =
∫
[a,b]×I

|∂tΨ ∧ ∂sΨ| dtds =
∫
[a,b]×I

|∂tXaff ∧ ∂sXaff | dtds.

So it is enough to show lim infk→+∞ |Vε
k| ≥ |Sε|, which can be proved proceeding as in the proof of

Proposition 3.4, once we have checked that vk ◦Λ(·, ε·) → u ◦Λ(·, ε·) strictly BV (R;R2). This is a
straightforward computation, and we omit the details.

Proposition 3.10 (Upper bound for (3.34)). Let u : Ω → R2 be as in Theorem 3.7. Then, there
exists a sequence (vk) ⊂ C1(Ω;R2) converging to u strictly BV (Ω;R2) and such that (3.27) holds
with Xaff in (3.33).

6The sign of dΣ is determined by the orientation induced on Σ by α, so that dΣ > 0 in the part of Λ(Rδ) which
is pointed by α̇⊥.
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Proof. For simplicity, we assume that α(a) ̸= α(b) (the case of closed curves is simpler and the
following proof can be straightforwardly adapted). We start by fixing η > 0 small enough and we
extend the curve α to [a − η, b + η] in a C2-way, so that Ση := α([a − η, b + η]) ⊂ Ω, keeping the
validity of (H1) on Ση . With this extension, we can assume (by choosing a different δ if necessary)
that Λ in (3.37) is defined on Rη := [a− η, b+ η]× [−δ, δ]. We observe that

u+(α(t)) = u−(α(t)) for all t ∈ [a− η, a] ∪ [b, b+ η]. (3.41)

Now, set ε = 1
k and, for k large enough,

∆a
ε := {x ∈ Λ([a− ε, a]× [−ε, ε]) : |σ(x)| ≤ t(x)− a+ ε},

∆b
ε := {x ∈ Λ([b, b+ ε]× [−ε, ε]) : |σ(x)| ≤ b+ ε− t(x)}.

We define the recovery sequence (vε) ⊂ Lip(Ω;R2) as

vε(x) =

{
ε+σ(x)

2ε u
(
Λ(t(x), ε)

)
+ ε−σ(x)

2ε u
(
Λ(t(x),−ε)

)
in Λ([a, b]× [−ε, ε]),

u(x) in Ω \
(
Λ([a, b]× [−ε, ε])) ∪∆

a
ε ∪∆

b
ε

)
.

(3.42)
In order to define vε in ∆a

ε ∪∆b
ε it is sufficient to observe that, by (3.41), the restriction of vε on

∂∆a
ε and ∂∆b

ε is Lipschitz continuous with Lipschitz constant bounded by ∥u∥W 1,∞ . Hence, we can
take a Lipschitz extension of vε in ∆a

ε ∪ ∆b
ε keeping the Lipschitz constant (up to a dimensional

factor independent of ε). Thus∫
∆a

ε∪∆b
ε

|M(∇vε)| dx→ 0 as ε→ 0+. (3.43)

Let us check that vε → u strictly BV (Ω;R2) as ε → 0+. Clearly, vε → u in L1(Ω;R2), since
|Λ([a, b] × [−ε, ε])| → 0 and |∆a

ε ∪∆b
ε| → 0. So, by (3.43), as in the proof of Proposition 3.5, it is

enough to show that

lim sup
ε→0+

∫
Λ([a,b]×[−ε,ε])

|∇vε| dx ≤ |Du|(Σ) =
∫ b

a
|u+(α(t))− u−(α(t))| dt.

Almost everywhere in Λ([a, b]× [−ε, ε]), we have

∇vε =
ε+ σ

2ε
∇u(Λ(t, ε))∂tΛ(t, ε)⊗∇t+ ε− σ

2ε
∇u(Λ(t,−ε))∂tΛ(t,−ε)⊗∇t

+
1

2ε
∇σ ⊗ (u(Λ(t, ε))− u(Λ(t,−ε))).

Therefore,

|∇vε| ≤
1

2ε

[
(ε+ σ)∥∂tΛ∥∞|∇u(Λ(t,−ε))||∇t|+ (ε− σ)∥∂tΛ∥∞|∇u(Λ(t, ε))||∇t|

+ |∇σ||u(Λ(t, ε))− u(Λ(t,−ε))|
]

≤ 1

2ε

[
2ε∥u∥W 1,∞∥∂tΛ∥∞(1 + Cε) + |u(Λ(t, ε))− u(Λ(t,−ε))|

]
,

where we used (3.38) and(3.39) with ε in place of δ. Thus, we get∫
Λ([a,b]×[−ε,ε])

|∇vε| dx ≤C(δ)(1 + Cε)|Λ([a, b]× [−ε, ε])|

+
1

2ε

∫
Λ([a,b]×[−ε,ε])

|u(Λ(t, ε))− u(Λ(t,−ε))| dx

=oε(1) +
1

2ε

∫
Λ([a,b]×[−ε,ε])

|u(Λ(t, ε))− u(Λ(t,−ε))|dx,
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where oε(1) is infinitesimal as ε→ 0+. Consider the last integral and perform the change of variable
x = (x1, x2) = Λ(t, σ), with

|det∇Λ(t, σ)| = |∂tΛ ∧ ∂σΛ| = |1 + σα̈ ∧ α̇| = |1− κΣσ|,

where κΣ is the curvature of Σ. We get

1

2ε

∫
Λ([a,b]×[−ε,ε])

|u(Λ(t, ε))− u(Λ(t,−ε))|dx =
1

2ε

∫
[a,b]×[−ε,ε]

|u(Λ(t, ε))− u(Λ(t,−ε))||1− κΣσ|dtdσ

≤ 1

2ε

∫ b

a

∫ ε

−ε
|u(Λ(t, ε))− u(Λ(t,−ε))| dtdσ + oε(1) =

∫ b

a
|u(Λ(t, ε))− u(Λ(t,−ε))| dt+ oε(1)

−→
∫ b

a
|u+(α(t))− u−(α(t))| dt as ε→ 0+.

It remains to prove (3.27) with Xaff in (3.33). To this purpose it is enough to show that

lim inf
ε→0+

A(vε; Λ([a, b]× [−ε, ε])) ≤
∫
[a,b]×I

|∂tXaff ∧ ∂sXaff | dtds.

Let us define φε : R→ R2 as

φε(t, σ) :=
1 + σ

2
u(Λ(t, ε)) +

1− σ

2
u(Λ((t,−ε))).

Thus, for x ∈ Λ([a, b]× [−ε, ε])

vε(x) = φε

(
t(x),

σ(x)

ε

)
and, almost everywhere in Λ([a, b]× [−ε, ε]),

∇vε = ∂tφε∇t+
1

ε
∂σφε∇σ, Jvε =

1

ε
|∂tφε ∧ ∂σφε||∇t ∧∇σ|,

where from now on,∇t and∇σ are evaluated at x, while ∂tφε and ∂σφε are evaluated at
(
t(x), σ(x)ε

)
.

Then, we get

|M(∇vε)|2 = 1 + |∂tφε|2|∇t|2 +
2

ε
∂tφε · ∂σφε∇t · ∇σ +

1

ε2

[
|∂σφε|2|∇σ|2 + |∂tφε ∧ ∂σφε|2|∇t ∧∇σ|2

]
≤ 1 + |∂tφε|2(1 + oε(1)) +

2

ε
|∂tφε · ∂σφε|(1 + oε(1))

+
1

ε2

[
|∂σφε|2 + |∂tφε ∧ ∂σφε|2(1 + oε(1))

]
,

where we used (3.38) and(3.39) with ε in place of δ. Now, since oε(1) ∼ ε and φε is Lipschitz with
Lipschitz constant independent of ε, we obtain

A(vε,Λ([a, b]× [−ε, ε]))

≤
∫
Λ([a,b]×[−ε,ε])

√
1 + |∂tφε|2 +

2

ε
|∂tφε · ∂σφε|+

1

ε2

[
|∂σφε|2 + |∂tφε ∧ ∂σφε|2(1 + oε(1))

]
dx+ oε(1)

≤
∫
[a,b]×[−ε,ε]

√
1 + |∂tφε|2 +

2

ε
|∂tφε · ∂σφε|+

1

ε2

[
|∂σφε|2 + |∂tφε ∧ ∂σφε|2(1 + oε(1))

]
|1− κΣσ| dtdσ

+ oε(1),
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where we made the change of variable x = Λ(t, σ), and so ∂tφε and ∂σφε are computed at
(
t, σε
)
.

Finally, by the change of variable σ
ε → σ, we get

A(vε,Λ([a, b]× [−ε, ε]))

≤
∫
R

√
oε(1) + |∂σφε(t, σ)|2 + |∂tφε(t, σ) ∧ ∂σφε(t, σ)|2(1 + oε(1))|1− κΣεσ| dtdσ

+ oε(1) −→
∫
[a,b]×I

|∂tXaff ∧ ∂sXaff | dtds,

where, to pass to the limit as ε → 0+, we apply the dominated convergence theorem (as in the
proof of Proposition 3.5).

We observe that Theorem 3.7 can be easily extended to the case of curves with one endpoint or
both endpoints on ∂Ω. Write:

(H4) Ω is of class C1, α : [a, b] → Ω is injective, arc-length parametrized, of class C2, α((a, b)) ⊂ Ω,
and α hits ∂Ω transversally at α(a), α(b).

Theorem 3.11. Suppose (H3) and (H4). Then (3.34) holds with Xaff in (3.33).

Proof. Lower bound: let (vk) ⊂ C1(Ω;R2) be a sequence converging to u strictly BV (Ω;R2). Fix
0 < ρ < b−a

2 and notice that Λ([a + ρ, b − ρ] × [−ε, ε]) ⊂ Ω, for ε > 0 small enough. Then it is
sufficient to show that

lim
ε→0+

lim inf
k→+∞

A
(
vk,Λ([a, b]× [−ε, ε]) ∩ Ω

)
≥
∫
[a+ρ,b−ρ]×I

|∂tXaff ∧ ∂sXaff | dtds; (3.44)

since the lower bound will follow by the arbitrariness of ρ > 0. After writing A(vk,Λ([a, b] ×
[−ε, ε]) ∩ Ω) ≥ A(vk,Λ([a+ ρ, b− ρ]× [−ε, ε])), the proof of (3.44) is identical to that of (3.40).

Upper bound: let us fix η > 0 small enough so that B2η(α(a)) and B2η(α(b)) are disjoint, and
consider Ωη := Ω∪B2η(α(a))∪B2η(α(b)). We extend the curve α (still calling α the extension) in
Ωη\Ω in such a way that it satisfies (H4) in Ωη, and so that it reaches the boundary of B2η(α(a))\Ω
and of B2η(α(b)) \Ω splitting both B2η(α(a)) \Ω and B2η(α(b)) \Ω in two connected components.
If α is now defined on an interval of the form [a − δ, b + δ] with δ = δ(η) > η, and if we set
Σδ = α([a − δ, b + δ]), we prescribe the traces u+ and u− on Σδ in such a way that they are
Lipschitz continuous and u+ ◦α = u− ◦α on [a− δ, a−η]∪ [b+η, b+ δ]. Finally we take a Lipschitz
extension uη of u on the four connected components of B2η(α(a))\Ω\Σδ and of B2η(α(b))\Ω\Σδ.
It turns out that uη ∈W 1,∞((B2η(α(a))∪B2η(α(b))) \Ση;R2

)
, where Ση = α([a− η, b+ η]) ⊂ Ωη.

Since the definition of (uη)± is arbitrary, we can assume that

(uη)±(α(t)) = u±(α(a))
(
1− a− t

η

)
for t ∈ [a− η, a],

(uη)±(α(t)) = u±(α(b))
(
1− t− b

η

)
for t ∈ [b, b+ η].

For ε > 0 small enough, we see that Λε := Λ([a − η, b + η] × [−ε, ε]) ⊂ Ωη. Hence we define vk as
in the proof of Proposition 3.10 with Ω replaced by Ωη and u replaced by uη (in particular, vε = u
on Ω \ Λε). Finally, let us fix ρ ∈ (0, η). We can write

ABV (u,Ω) ≤ lim inf
ε→0+

A(vε,Ω)

≤ lim
ε→0+

∫
Ω\Λε

|M(∇u)| dx+ lim inf
ε→0+

∫
Λ([a−ρ,b+ρ]×[−ε,ε])

|M(∇vε)| dx

=

∫
Ω
|M(∇u)| dx+

∫
[a−ρ,b+ρ]×I

|∂tXaff ∧ ∂sXaff | dtds,
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Figure 2: The source disc B1(0) and the values {α, β, γ} of u, with infinitely many triple points.

where we use that Ω ⊂
(
(Ω \ Λε) ∪ Λ([a − ρ, b + ρ] × [−ε, ε])

)
for ε > 0 small enough. The upper

bound then follows by the arbitrariness of ρ.

Finally, with straightforward modifications of the previous arguments one can show the following:

Corollary 3.12. Let Ω have C1-boundary, let n ∈ N and αi : [ai, bi] → Ω, i = 1, . . . , n, be curves
satisfying either (H1)-(H2), or (H4). Assume that Σi := αi([ai, bi]) ⊂ Ω are mutually disjoint, and
let u ∈W 1,∞(Ω \ Σ;R2) satisfy (H3), where Σ := ∪n

i=1Σi. Then

ABV (u,Ω) =

∫
Ω
|M(∇u)| dx+

n∑
i=1

∫
[ai,bi]×I

|∂tXaff
(i) ∧ ∂sX

aff
(i) | dtds.

where Xaff
(i) : [ai, bi]× I → R3 is the map Xaff

(i) (t, s) = (t, su+(αi(t)) + (1− s)u−(αi(t))).

4 Piecewise constant maps

In this section we study the relaxed area (1.3) and the relaxed total variation (1.4), on certain
piecewise constant maps. We start by exhibiting a BV map taking three values having infinite
relaxed total variation of the Jacobian (and hence infinite BV -relaxed area), but finite L1-relaxed
area.

Example 4.1. (BV -relaxed area and L1-relaxed area) Let α, β, γ ∈ R2 be three non-collinear
vectors. Consider the map u : B1(0) ⊂ R2 → {α, β, γ} in Fig. 2, obtained by the following
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procedure: divide the source equilateral triangle TA0OB0 in two regions with a vertical segment
connecting A1 and B1, the middle points of the oblique sides of the triangle; assign the value β
and γ on the right and on the left as in the figure, and repeat this construction on the equilateral
triangle TA1OB1 , and then repeat the argument iteratively on all smaller triangles; finally set u = α
in B1(0) \ TA0OB0 . In this way we get an infinite collection of triple points located at {Ai, Bi}i≥1.
Then, u ∈ BV (B1(0); {α, β, γ}), since

|Du|(B1(0)) =

(
1 + 2(1−

+∞∑
i=1

2−2i)

)
|β − α|+ 2

+∞∑
i=1

2−2i|α− γ|+
+∞∑
i=1

2−i|β − γ|

=
7

3
|β − α|+ 2

3
|α− γ|+ |β − γ|.

On the other hand, consider an infinitesimal sequence (ri)i≥1 of radii with 0 < ri < 2−(i+1). With
an argument similar to [3, Theorem 1.3], we have

TV JBV (u,Bri(Ai)) = |Tαβγ |,

|Tαβγ | denoting the Lebesgue measure of the target triangle with vertices α, β, γ, and thus, for
every N ∈ N,

TV JBV (u,B1(0)) ≥ TV JBV (u,∪N
i=1Bri(Ai)) ≥

N∑
i=1

|Tαβγ | = N |Tαβγ |.

Whence

ABV (u,B1(0)) ≥ TV JBV (u,B1(0)) = +∞. (4.1)

On the other hand, we claim that

AL1(u,B1(0)) < +∞. (4.2)

Indeed, we can construct a sequence (vε) of piecewise constant maps on B1(0), taking values
in {α, β, γ}, with uniformly bounded L1-relaxed area and converging to u in L1(B1(0);R2): Let
ε ∈ (0, 1) and consider the intersection with TA00B0 of a tubular neighbourhood of the segment
AiBi of diameter ε2−(i+1), for every i ∈ N. Then, the map vε is obtained by modifying u on these
strips in the triangle, by assigning the value α. Now, vε is a piecewise constant map valued in
{α, β, γ} without triple points, hence, by [1, Theorem 3.14],

AL1(vε, B1(0)) = |B1(0)|+ |Dvε|(B1(0))

≤π +
7

3
|β − α|+ 2

3
|α− γ|+

(
1 +

ε

2

) +∞∑
i=1

2−i(|β − α|+ |α− γ|)

≤π +
23

6
|β − α|+ 13

6
|α− γ|.

Clearly, vε → u in L1(B1(0);R2) as ε→ 0+, so by lower semicontinuity

AL1(u,B1(0)) ≤ π +
23

6
|β − α|+ 13

6
|α− γ| < +∞.

In particular

Dom
(
ABV

(·, B1(0))
)
⊊ Dom

(
AL1

(·, B1(0))
)
.
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Remark 4.2. Following the notation of [23], one can show (4.1) also by considering the measure
µJw defined for every w ∈ BV (B1(0);R2) as

⟨µJw, g⟩ =
1

2

∫
Sw

(w1−w2+ − w1+w2−)∂τgdH1 ∀g ∈ C∞
c (B1(0)),

where τ = ν⊥ and ν is the unit normal to Sw, so that Dw Sw = (w+ − w−)⊗ νH1 Sw.
If ABV (w,B1(0)) is finite, we can consider the unique cartesian current Tw ∈ cart(B1(0);R2)

associated to w defined in [23, Theorem 3.5], whose vertical part is by definition equal to the
minimal completely vertical lifting µv[w] associated to w, according to [23, Definition 3.1]. Then,
since |µv[w]| is lower semicontinuous with respect to the weak convergence of measures and, for v
smooth, |µv[v]|(B1(0)× R2) = TV J(v,B1(0)) (see [23, Theorem 6.2]), we get

|µv[w]|(B1(0)× R2) ≤ TV JBV (w,B1(0)).

In particular, if w ∈ BV (B1(0);R2) is piecewise constant, we have

|µJw|(B1(0)) ≤ |µv[w]|(B1(0)× R2) ≤ TV JBV (w,B1(0)), (4.3)

where the first inequality is a consequence of [23, Corollary 4.3].
Now, if by contradiction ABV (u,B1(0)) is finite for the map u in Example 4.1 we have

µJu =

+∞∑
i=1

|Tαβγ |(δAi − δBi).

In particular |µJu |(B1(0)) = +∞, and (4.1) follows from (4.3). In Example 4.6, we construct a
piecewise constant map u ∈ BV (B1(0);R2) taking only five values in R2 with TV JBV (u,B1(0)) =
+∞ and µJu = 0. In that case, one can see even that µv[u] = 0, whence a maximal gap phenomenon
occurs between the mass of the current Tu (which is finite and without a vertical contribution) and
ABV (u,B1(0)) (which is infinite as well).

4.1 Piecewise constant homogeneous maps

We need some tools that allow us to characterize (and compute in some cases) the relaxed func-
tionals for n−uple point maps with n ≥ 3. Thus, for r > 0, we consider maps u : Br := Br(0) → R2

of the form

u(x) = γ

(
x

|x|

)
for a.e. x ∈ Br, (4.4)

where γ : S1 → {α1, . . . , αn} is piecewise constant and takes the (not necessarily distinct) values
α1, . . . , αn ∈ R2 on the arcs C1, . . . , Cn in the order (see Fig. 3 for n = 5). So, u is an n−uple point
map with one n−uple junction at the origin. Now, we can consider the broken line curve γ̃ ⊂ R2

(an example of which is in Fig. 3) made of the segments connecting α1 to α2, α2 to α3 and so on,
closing up by connecting αn to α1. The curve γ̃ can be parametrized as in (2.27), and the curves
γ̃i are constant. Denoting by L(γ) the length of γ̃, we have

L(γ) =

n∑
i=1

|αi+1 − αi| = |γ̇|(S1) = sup

{
m−1∑
i=1

|γ(νi+1)− γ(νi)| : m ∈ N, {ν1, . . . , νm} ⊂ S1
}
, (4.5)

with the convention αn+1 := α1, Clearly, by definition of u, we have
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Figure 3: An n-uple point map and the corresponding curve γ, for n = 5.

|Du|(Br) = r|γ̇|(S1) = rL(γ).

Thanks to Lemma 2.14, for P (γ) as in (2.40) we know that

P (γ) = P (γ̃). (4.6)

For a general γ the computation of P (γ) seems not immediate. For the configuration in Fig. 3, we
expect it to be the area of the region enclosed by γ̃, with the small internal quadrilateral counted
twice.

Theorem 4.3 (Relaxation of TVJ on piecewise constant maps). Let {α1, . . . , αn} ⊂ R2,
γ ∈ BV (S1; {α1, . . . , αn}) be a function with a finite number of jump points, and let u be as in
(4.4). Then

TV JBV (u,Br) = P (γ).

Proof. Lower bound: Assume that (vk) ⊂ C1(Br;R2) converges to u strictly BV (Br;R2) and

lim
k→+∞

∫
Br

|Jvk| dx = TV JBV (u,Br).

By Lemma 2.5, we can fix ε ∈ (0, r) and a not-relabeled subsequence depending on ε, such that
vk ∂Bε → u ∂Bε strictly BV (∂Bε;R2). Thus, using Corollary 2.15 and the rescaling invariance
of (2.40), we can estimate

TV JBV (u,Br) ≥ lim inf
k→+∞

∫
Bε

|Jvk| dx ≥ lim inf
k→+∞

P (vk ∂Bε) = P (u ∂Bε) = P (γ). (4.7)

Upper bound: By an argument similar to the one at the beginning of the proof of Proposition
3.5, it will be enough to construct a recovery sequence (uk) ⊂ Lip(Br;R2). Let γ̃ be as above. We
start by building a sequence (γk)k of Lipschitz reparameterizations of γ̃ which converges strictly
BV (S1;R2) to γ. Let us denote by a1, . . . , an ∈ [0, 2π) the angular coordinates of the extremal
points of C1, . . . , Cn, and assume without loss of generality 0 = a1 < a2 < · · · < an. Then

n⋃
i=1

[ai, ai+1] = [0, 2π],
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with the convention an+1 = 2π. Let (δk)k be an infinitesimal sequence with 0 < δk < max{|ai+1 −
ai|, i = 1, . . . , n}, for instance δk = 2

k , k large enough. We define the piecewise affine map γk :
[0, 2π] → R2 as

γk(t) =

αi if t ∈ [ai + δk/2, ai+1 − δk/2],
ai+1 + δk/2− t

δk
αi +

t− ai+1 + δk/2

δk
αi+1 if t ∈ [ai+1 − δk/2, ai+1 + δk/2],

i = 1, . . . , n.

(4.8)
Then γk → γ strictly BV (S1;R2) (actually a direct computation shows that |γ̇k|(S1) = |γ̇|(S1)),
γk are uniformly bounded in L∞, and converge almost everywhere to γ. As a consequence, from
Corollary 2.15,

P (γk) → P (γ) as k → +∞. (4.9)

Therefore, by (1.5) we choose, for all k > 1 large enough, a map vk ∈ Lip(B1;R2) such that

vk S1 = γk,

∣∣∣∣P (γk)− ∫
B1

|Jvk| dx
∣∣∣∣ ≤ 1

k
. (4.10)

Let ck > 0 be the Lipschitz constant of vk. Defining vk,ρ ∈ Lip(Bρ;R2) as vk,ρ(y) := vk(
y
ρ) for any

ρ > 0, it is straightforward that the Lipschitz constant of vk,ρ is ck/ρ.
We now choose an infinitesimal sequence (ρk) ⊂ (0, r) in such a way that limk→+∞ ckρk = 0. As

a consequence we get ∫
Bρk

|∇vk,ρk | dx ≤ πckρk → 0 as k → +∞. (4.11)

We are now in a position to introduce our recovery sequence: We define uk ∈ Lip(Br;R2) as

uk(x) :=

{
γk

(
x
|x|

)
∀x ∈ Br \Bρk ,

vk,ρk(x) ∀x ∈ Bρk .
(4.12)

Using that γk → γ strictly BV (S1;R2) and (4.11) we see that uk → u strictly BV (Br;R2). Finally,
since in Br \ Bρk the map uk depends only on the angular coordinate, its Jacobian determinant
vanishes in Br \Bρk . Hence

lim inf
k→+∞

∫
Br

|Juk| dx = lim inf
k→+∞

∫
Bρk

|Jvk,ρk | dx = P (γ), (4.13)

the convergence being a consequence of (2.30), (4.10), and (4.9).

As a consequence of Theorem 4.3 we deduce:

Theorem 4.4 (Relaxation of A on piecewise constant maps). Let γ and u be as in Theorem
4.3. Then, for any r > 0, we have

ABV (u,Br) = πr2 + rL(γ) + P (γ). (4.14)

Proof. Lower bound: Suppose that vk ∈ C1(Br;R2) is such that

vk → u strictly BV (Br;R2) and lim
k→+∞

A(vk, Br) = lim inf
k→+∞

A(vk, Br).
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Now, let ε ∈ (0, r) and write A(vk, Br) = A(vk, Br \Bε)+A(vk, Bε) ≥ A(vk, Br \Bε)+
∫
Bε

|Jvk| dx,
so that, by [1, Theorem 3.7],

lim
k→+∞

A(vk, Br) ≥ lim inf
k→+∞

A(vk, Br \Bε) + lim inf
k→+∞

∫
Bϵ

|Jvk| dx

≥ |Br \Bε|+ (r − ε)L(γ) + lim inf
k→+∞

∫
Bϵ

|Jvk| dx

≥ |Br \Bε|+ (r − ε)L(γ) + P (γ),

where in the last line we have applied Theorem 4.3 with r replaced by ε. We now pass to the limit
as ε→ 0+ to get the lower bound ABV (u,Br) ≥ πr2 + rL(γ) + P (γ) in (4.14).

Upper bound: It is sufficient to consider the sequence (uk)k defined in (4.12), for which

ABV (u,Br) ≤ lim sup
k→+∞

A(uk, B1) ≤ |Br|+ lim
k→+∞

∫
Br

|∇uk| dx+ lim
k→+∞

∫
Br

|Juk| dx

= πr2 + rL(γ) + P (γ).

Now, we are in the position to show an example of a piecewise constant map u ∈ BV (B1;R2) with
infinite relaxed Jacobian total variation but vanishing associated minimal vertical lifting measure
µv[u]. This map is constructed in Example 4.6, while the Example 4.5 is preparatory.

Example 4.5. We want to show here how singular topological phenomena related to the double-
eight map [20], [15], [22], [24], [13] arise also among piecewise constant maps. In particular, as
pointed out in [23], for the homogeneous extension of the double-eight map, a gap phenomenon oc-
curs between the minimal vertical lifting measure and the relaxed Jacobian total variation. We show
now that we find such a gap also among piecewise constant maps, by exhibiting a piecewise con-
stant map with vanishing minimal vertical lifting measure but with finite non-zero TV J . Namely,
we are going to define a map u : B1 → R2 assuming five distinct values, for which the resulting
closed curve γ̃ has zero degree, but is homotopically non-trivial, since it is, in fact, homeomorphic
to the double-eight curve. Let {α1, α2, α3, α4, α5} ⊂ R2 be the vertices of two (equilateral for
simplicity) triangles with a common vertex, say α1 (see Figure 4). Fix a partition of S1 in twelve
disjoint non-empty arcs C1, . . . , C12 (not necessarily of the same length), with extremal points
a1, . . . , a12 in counter-clockwise order. Then, define γ : S1 → {α1, α2, α3, α4, α5} to be constant
on the arcs C1, . . . , C12, precisely equal to, in the order, α1, α2, α3, α1, α4, α5, α1, α3, α2, α1, α5, α4.
Then, the broken line curve γ̃ runs consecutively the triangles T123 := Tα1α2α3 and T145 := Tα1α4α5

twice, and every time with different orientation. Define u as in (4.4), obtaining a 12-point map.
Now, by applying Theorem 4.3 and computing the minimum of the Plateau problem (1.5) for γ̃ as
in [24, Theorem 5], we obtain

TV JBV (u,B1) = P (γ) = P (γ̃) = 2min{|T123|, |T145|}. (4.15)

Moreover, it is not difficult to see that

µJu = (|T123|+ |T145| − |T123| − |T145|)δ0 = 0.

In this case, we have also µv[u] = 0, indeed we can prove that the unique current Tu with minimal
completely vertical lifting associated to u is given by

Tu = Gu + S =

12∑
l=1

[[Ĉl]]× [[cl]] +

12∑
l=1

[[0, al]]× [[cl−1, cl]], (4.16)
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Figure 4: The map u and the broken line curve γ̃ of Example 4.5.

where Ĉl is the circular sector corresponding to Cl and cl is the assigned value of γ on Cl for
l = 1, . . . , 12 (we used the convention c0 = c12). Let us show (4.16). One checks that µji [Tu] = µji [u]
for i, j = 1, 2 by proceeding as in Remark 3.6. So, it remains to prove that Tu ∈ cart(B1;R2): it is
enough to check that (∂Tu) B1 × R2 = 0. Compute

∂S =
12∑
l=1

∂ ([[0, al]]× [[cl−1, cl]]) =
12∑
l=1

(−[[0]]× [[cl−1, cl]] + [[0, al]]× [[cl]]− [[0, al]]× [[cl−1]]) .

Now, since by convention a13 = a1,

∂Gu =
12∑
l=1

([[0, al+1]]× [[cl]]− [[0, al]]× [[cl]]) = −
12∑
l=1

([[0, al]]× [[cl]]− [[0, al]]× [[cl−1]]) .

Moreover, by the choice of {cl},
12∑
l=1

[[0]]× [[cl−1, cl]] = [[0]]× [[α1, α2]] + [[0]]× [[α2, α3]] + . . .+ [[0]]× [[α4, α1]] = 0.

Therefore, ∂Gu = −∂S.
Notice that the action of Tu against 2-forms with only vertical differentials is 0, which means that
Tu does not have completely vertical part and so µv[u] = 0. Roughly, due to cancellations in the
part of the boundary of Tu in correspondence to the origin, the current Tu is not able to detect the
hole upon the origin in the graph of u, generated by the presence of the multiple junction.

Example 4.6. This example is an adaptation of [22, Theorem 1.3] to the case of piecewise constant
maps. Indeed, we construct a piecewise constant map u, taking only five values of R2, such that

µv[u] = 0 and TV JBV (u,B1) = +∞.

The idea is to replicate the map of Example 4.5 infinitely many times on a sequence {Di}i∈N ⊂ B1

of disjoint balls, whose measures form an infinitesimal sequence (see Figure 5). So, for i ∈ N, set

Di := Bri(xi), with xi :=

−1 +

i−1∑
j=0

2−j , 0

 , ri := 2−i−1.
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Figure 5: The sequence {Di} ⊂ B1 of disks of Example 4.6.

Let {α1, α2, α3, α4, α5} ⊂ R2 and γ : S1 → {α1, α2, α3, α4, α5} be as in Example 4.5. Now, define
the map γ̂ : S1 → {α1, α2, α3, α4, α5} in the same way as γ, but with different order of the values, in
a symmetric way with respect to the vertical axis through α1, namely, in the same arcs C1, . . . , C12,
γ̂ is equal to α1, α5, α4, α1, α3, α2, α1, α4, α5, α1, α2, α3. Then, for i ∈ N, define u|Di

:= u(i) as

u(i)(x) =


γ

(
x− xi
|x− xi|

)
if i is odd,

γ̂

(
x− xi
|x− xi|

)
if i is even.

It remains to define u in B1 \ ∪i∈NDi. Start by considering, for every i ∈ N, the square Qi that

circumscribes Di and extend u(i) to Qi to be constant along horizontal lines. Now, denote by L
(1)
i

and L
(2)
i the vertical left and right sides of ∂Qi, then extend u to the convex hull of L

(2)
i and L

(1)
i+1

to be constant along straight lines which interpolate pointwise the two sides. Finally, extend u in

the strip that connects L
(1)
1 to ∂B1 to be constant along horizontal lines and set u = α1 in the

rest of B1. (see Figure 5). It is not difficult to see that u ∈ BV (B1;R2), by the choice of the
infinitesimal sequence (ri). Thus, assuming by contradiction that ABV (u,B1) be finite, one can
define the current Tu = Gu + S in a similar way as in Example 4.5, that is to say, by setting S to
be the trivial affine interpolation surface on the jump segments of u. One can prove in the same
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way that Tu is the current with minimal completely vertical lifting associated to u and µv[u] = 0.
In particular, Tu ∈ cart(B1;R2) and has finite mass. On the other hand,

TV JBV (u,B1) ≥
+∞∑
i=1

TV JBV (u,Di) =

+∞∑
i=1

2min{|Tα1α2α3 |, |Tα1α4α5 |} = +∞.

In particular ABV (u,B1) = +∞ as well.

5 Piecewise Lipschitz maps

In this last section we combine the results of the previous sections and compute the BV -relaxed
area for an interesting class of maps that we call piecewise Lipschitz maps, quickly mentioned in
the Introduction. As stated in our main result (Theorem 1.1), the relaxed area turns out to be
composed by a regular term and a singular one, that interestingly further splits into two non-trivial
pieces, respectively related to the 1-dimensional and 0-dimensional singularities.
Let Ω ⊂ R2 be a connected bounded open set with boundary of class C1. We say that a collection
{Ω1, . . . ,ΩN} of disjoint nonempty open sets is a Lipschitz partition of Ω if Ω = ∪N

k=1Ωk and for
each k = 1, . . . , N , Ωk is connected and Lipschitz.

For a given Lipschitz partition of Ω we can consider its interface Σ := ∪N
k=1∂Ωk. Also, we can

define the (possibly empty) set of interior junction points {pi}mi=1, i.e. points pi ∈ Ω such that there
exist r > 0 and an integer Ni with 3 ≤ Ni ≤ N , such that Br(pi) ⊂ Ω and Bs(pi) has nonempty
intersection with exactly Ni connected components of Ω, for every s ∈ (0, r].

We shall consider Lipschitz partitions whose interface is a network in the following sense:

Definition 5.1 (Network). The interface Σ of a Lipschitz partition of Ω is a network if

Σ :=
n⋃

ℓ=1

J ℓ, Jℓ = αℓ(Iℓ), Iℓ = (aℓ, bℓ), (5.1)

where the curves αℓ : Iℓ := [aℓ, bℓ] → Ω, ℓ = 1, . . . , n, satisfy the following properties:

- αℓ is of class C2, injective with |α̇ℓ| ≡ 1 on Iℓ, and Jℓ ⊂ Ω;

- ℓ1 ̸= ℓ2 ⇒ Jℓ1 ∩ Jℓ2 = ∅;

- αℓ({aℓ, bℓ}) ⊂ {p1, . . . , pm} ∪ ∂Ω for all ℓ = 1, . . . , n such that αℓ(aℓ) ̸= αℓ(bℓ);

- if x ∈ J ℓ ∩ ∂Ω, αℓ is transversal to ∂Ω at x;

- ℓ1 ̸= ℓ2 ⇒ J ℓ1 ∩ J ℓ2 ⊂ {p1, . . . , pm}.

From the last condition it follows that if two curves have endpoints on ∂Ω, then these points are
distinct.

Definition 5.2 (Piecewise Lipschitz map). Let {Ωk}Nk=1 be a Lipschitz partition of Ω whose
interface Σ is a network. We say that u ∈ BV (Ω;R2) is a piecewise Lipschitz map if its jump set
Su coincides with Σ and u Ωk ∈ Lip(Ωk;R2) for any k = 1, . . . , N .

Since u Ωk ∈ Lip(Ωk;R2), the trace of u on ∂Ωk is also Lipschitz. In particular, for any
i ∈ {1, . . . ,m} such that pi ∈ ∂Ωk,

∃ lim
x→pi
x∈Ωk

u(x) =: βki ∈ R2.
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Let ρ > 0 be sufficiently small so that Bρ(pi) ⊂ Ω for i ∈ {1, . . . ,m}. Let ℓ ∈ {1, . . . , n} be such
that pi is an endpoint of J ℓ; since αℓ is of class C

2, for ρ small enough the intersection J ℓ∩∂Bρ(pi)
consists either of a single point, or of two points if αℓ(aℓ) = αℓ(bℓ) = pi. Hence, the map u ∂Bρ(pi)
is piecewise Lipschitz and jumps at any point of Σ ∩ ∂Bρ(pi). In particular, the number of these
jump points is, by definition of junction point,

Ni = ♯
(
Σ ∩ ∂Bρ(pi)

)
≥ 3, i = 1, . . . ,m.

For i = 1, . . . ,m, we denote by Ωi
1, . . . ,Ω

i
Ni

the connected components of Ω \ Σ whose closure
contains pi, chosen in counterclockwise order around pi. Since Ωk is Lipschitz for every k = 1, . . . , N ,
any Ωi

k has a corner at pi whose aperture is a positive angle θki ∈ (0, 2π).

Lemma 5.3 (Circular slices). Let i ∈ {1, . . . ,m} be fixed and let ρ > 0 be as above. Then the
maps γiρ ∈ BV (S1;R2) defined by γiρ(ν) := u(pi + ρν) converge strictly BV (S1;R2), as ρ → 0+, to

a piecewise constant map γi : S1 → R2 taking, in counterclockwise order, the values β1i , β
2
i , . . . , β

Ni
i

on arcs of size θ1i , θ
2
i , . . . , θ

Ni
i , respectively.

The map γi has Ni jumps on S1 whose angular coordinates are denoted by a1i , a
2
i , . . . , a

Ni
i (where7

aji − aj−1
i = θji , for j = 1, . . . , Ni + 1).

Proof. It is easy to see that (γiρ) converges to γ
i almost everywhere on S1 as ρ→ 0+. Moreover, γiρ,

for ρ small enough, has exactly Ni jumps at points aji,ρ of amplitude |u+(pi+ρaji,ρ)−u−(pi+ρa
j
i,ρ)|

which tend, by continuity of u in Bρ(pi) \ Σ, to |βji − βj+1
i |. Also, on the arcs between aji,ρ and

aj+1
i,ρ , |γ̇iρ| ≤ Lρ, where L is the maximum of the Lipschitz constants of u on the sectors Ωi

k. Hence

|γ̇iρ|(S1) → |γ̇i|(S1) and the thesis follows straightforwardly.

For ℓ = 1, . . . , n, we denote by u±(ℓ) the two traces of u on Jℓ, and consider the affine interpolation

surface Xaff
(ℓ) : [aℓ, bℓ]× I → R3 spanning the graphs of u−(ℓ) and u(ℓ+), given by (1.7):

Xaff
(ℓ)(t, s) = (t, su+(ℓ)(t) + (1− s)u−(ℓ)(t)), (t, s) ∈ [aℓ, bℓ]× I. (5.2)

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Lower bound: Consider a sequence (vk) ⊂ C1(Ω;R2) converging to u strictly
BV (Ω;R2). For any ρ > 0 small enough, we take a family of mutually disjoint balls Bρ(pi) ⊂ Ω,
i = 1, . . . ,m. By Lemma 2.5, there exists a subsequence (vkh) ⊂ (vk) depending on ρ such that
for i = 1, . . . ,m

vkh ∂Bρ(pi) → u ∂Bρ(pi) strictly BV (∂Bρ(pi);R2). (5.3)

We may also assume that for i = 1, . . . ,m

lim inf
k→+∞

∫
Bρ(pi)

|Jvk| dx = lim
h→+∞

∫
Bρ(pi)

|Jvkh | dx.

Then

A(vkh ,Ω) = A(vkh ,Ω\∪
m
i=1Bρ(pi))+

m∑
i=1

A(vkh , Bρ(pi)) ≥ A(vkh ,Ω\∪
m
i=1Bρ(pi))+

m∑
i=1

∫
Bρ(pi)

|Jvkh |dx.

7With the convention Ni + 1 = 1.
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By Corollary 3.12, we get

lim inf
h→+∞

A(vkh ,Ω \ ∪m
i=1Bρ(pi)) ≥ABV (u,Ω \ ∪m

i=1Bρ(pi))

=

∫
Ω\∪m

i=1Bρ(pi)
|M(∇u)|dx+

n∑
ℓ=1

∫
[aρℓ ,b

ρ
ℓ ]×I

|∂tXaff
(ℓ) ∧ ∂sXaff

(ℓ)| dtds

−→
∫
Ω
|M(∇u)|dx+

n∑
ℓ=1

∫
[aℓ,bℓ]×I

|∂tXaff
(ℓ) ∧ ∂sXaff

(ℓ)|dtds as ρ→ 0+,

where (aρℓ ), (b
ρ
ℓ ) ⊂ [aℓ, bℓ] are respectively a decreasing and increasing sequence of numbers satisfying

aρℓ → aℓ and b
ρ
ℓ → bℓ as ρ→ 0+ and αℓ([a

ρ
ℓ , b

ρ
ℓ ]) = αℓ([aℓ, bℓ]) \ ∪m

i=1Bρ(pi).
Let us recall that, by Lemma 2.14, P (γ̃i) = P (γi), with γi as in Lemma 5.3. So, it remains to

show that

lim inf
ρ→0+

lim
h→+∞

∫
Bρ(pi)

|Jvkh | dx ≥ P (γi) ∀i = 1, . . . ,m. (5.4)

By definition (2.40), using (2.31) and (5.3), we readily conclude that

lim
h→+∞

∫
Bρ(pi)

|Jvkh | dx ≥ P (γiρ),

where γiρ is defined in Lemma 5.3. Then, since γiρ converge to γi strictly BV (S1;R2) as ρ → 0+,
(5.4) follows, thanks to Lemma 5.3 and Corollary 2.16.

Upper bound: Fix r > 0 small enough and consider mutually disjoint balls Br(pi) ⊂ Ω, i =
1, . . . ,m, such that, for every ℓ ∈ {1, . . . , n}, Jℓ ∩ ∂Bs(pi), if nonempty, consists either of a single
point, or of two points if αℓ(aℓ) = αℓ(bℓ) = pi, for every s ∈ (0, r].

Clearly, the difficulty of the proof is concentrated around the junction points pi. The idea is to
modify u on ∪m

i=1Br(pi) by constructing a new map ur (see (5.8) and (5.20)), which coincides with
u out of ∪m

i=1Br(pi) and converges to u strictly BV (Ω;R2) as r tends to 0+. The map ur will be
again a piecewise Lipschitz map with the same set {pi} of junction points, but different jump set
Σr, with Σr ∩Br/2(pi) made of segments, i.e. ur is of the form (4.4) in Br/2(pi). The difficult point
will be to provide that Σr is still a union of (pairwise disjoint up to the endpoints) C2-curves α̂ℓ, in
particular that each on e hits ∂Br/2(pi) with vanishing second derivative. At the end, we will apply
Theorem 4.4 to ur in ∪m

i=1Br/2(pi) and Corollary 3.12 to ur in Ω \ (∪m
i=1Br/2(pi)), and conclude by

lower semicontinuity of ABV (·,Ω).
We start by considering a smooth strictly increasing surjective function ψr : [ r2 ,+∞) → [0,+∞)
with 8

ψr(ρ) = ρ ∀ρ ≥ r, ψr(ρ) =
(
ρ− r

2

)3
in a right neighborhood of

r

2
, |ψ′

r| ≤ C in
(r
2
, r
)
(5.5)

with C > 0 independent of r. We define the radial map Φr : R2 \B r
2
(0) → R2 \ {0} as

Φr(x) = ψr(|x|)
x

|x|
,

whose inverse is Φ−1
r (y) = fr(|y|) y

|y| , where fr := ψ−1
r , and set

ûr(x) := u(pi +Φr(x− pi)) for x ∈ Br(pi) \B r
2
(pi), i = 1, . . . ,m. (5.6)

8The exponent must be chosen greater than 2 in order to ensure (5.19).
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The jump set of ûr in Br(pi) \Br/2(pi) is parametrized by the curves

α̂ℓ := pi +Φ−1
r (αℓ − pi) ∀ℓ = 1, . . . , n. (5.7)

Notice carefully that α̂ℓ is parametrized on the same parameter interval of αℓ, but this is not an
arc length parametrization for α̂ℓ. Moreover, thanks to the regularity of Φr, the map

ur :=

{
u in Ω \ (∪m

i=1Br(pi))

ûr in Br(pi) \B r
2
(pi), i = 1, . . . ,m,

(5.8)

has jump set Σr which is parametrized by the curves α̂ℓ, whose supports Ĵℓ are pairwise disjoint
and in turn coincide with the ones of αℓ in Ω \ (∪m

i=1Br(pi)).

Step 1 : Let us first check that the length of α̂ℓ in ∪m
i=1(Br(pi) \ Br/2(pi)) is controlled, more

precisely, we will show that for each i and ℓ, the length of α̂ℓ in Br(pi) \ Br/2(pi) goes to 0 as
r → 0+. We suppose that Jℓ ∩ ∂Bs(pi), for every s ≤ r, consists of a single point, because the
argument adapts also if αℓ has two arcs exiting from pi, simply by considering them separately.
To this aim, fix i and ℓ and denote αℓ = α, Jℓ = J . Without loss of generality, assume pi = 0,
Br(0) = Br, and suppose that J ∩ Br is parametrized by arc length on [0, R], with α(0) = 0 and
α(R) ∈ ∂Br, where R(r) = R = H1(J ∩Br). We can express the gradient of Φ−1

r as follows:

∇Φ−1
r (y) = f ′r(|y|)

y

|y|
⊗ y

|y|
+ fr(|y|)∇

(
y

|y|

)
= f ′r(|y|)

y

|y|
⊗ y

|y|
+
fr(|y|)
|y|

Π(y), (5.9)

where

Π(y) := Id− y ⊗ y

|y|2
,

and we used that

∇
(
y

|y|

)
=

1

|y|
Π(y). (5.10)

From (5.7), we have ˙̂α = ∇Φ−1
r (α)α̇, and using (5.9) and |α̇| = 1,

| ˙̂α| ≤ f ′r(|α|) +
fr(|α|)
|α|

|Π(α)α̇| . (5.11)

Notice that if r is small, the function t 7→ |α(t)| =: σ(t) is C1 and invertible from [0, R] to [0, r].

Moreover, σ′(t) = α(t)
|α(t)| · α̇(t) →

α̇(0)
|α̇(0)| · α̇(0) = |α̇(0)| = 1 as t → 0+. Let us integrate on [0, R] the

term f ′r(|α|): performing the change of variable σ(t) = ρ, we get∫ R

0
f ′r(|α(t)|)dt =

∫ R

0
f ′r (σ(t)) dt =

∫ r

0
f ′r(ρ)

dρ

σ′(σ−1(ρ))
≤ 2

∫ r

0
f ′r(ρ)dρ,

where in the last inequality we used that, for small r, σ′(σ−1(ρ)) ≥ 1
2 for every ρ ∈ [0, r]. Sending

r to 0+, we have that
∫ R
0 f ′r(|α(t)|)dt→ 0 by integrability of f ′ near to the origin.

In order to estimate the second term on the right hand side of (5.11), we can use a Taylor expan-

sion of α around 0, writing α(t) = vt+wt2+o(t2), with v = α̇(0), w = α̈(0)
2 , and limt→0+ o(t

p)/tp = 0.
We have

Π(α)α̇ = Π(vt+ wt2 + o(t2))(v + 2wt+ o2(t)) = Π(v + wt+ o1(t))(v + 2wt+ o2(t)),
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where o1(t) = o(t2)/t and o2(t) = o(t). Writing v+2wt+o2(t) = v+wt+o1(t)+wt+o2(t)−o1(t),
we get

Π(α)α̇ = Π(v + wt+ o1(t))(v + wt+ o1(t)) + Π(v + wt+ o1(t))(wt+ o2(t)− o1(t)).

The first term on the right hand side is 0 and the norm of the second term can be estimated from
above by |w|t + o(t). Now, by definition of arc length parameter, R = H1(sptα ∩ Br(0)) → 0 as
r → 0+. Moreover, by Taylor expansion, |α(t)| > t

2 for t small enough. Therefore, since fr(0) =
r
2 ,

for r small enough we have fr(|α(t)|)
|α(t)| ≤ 2r

t on [0, R]. So, integrating on [0, R] the second term on the

right hand side of (5.11),∫ R

0

fr(|α(t)|)
|α(t)|

|Π(α(t))α̇(t)| dt ≤
∫ R

0

2r

t
(|w|t+ o(t))dt→ 0 as r → 0+.

Step 2 : Let Ĵ = Ĵℓ be the support of α̂; let us show that there is a parametrization of Ĵ∩(Br \Br/2)

on an interval [0, L], which is of class C2 up to 0 and with vanishing second derivative at 0. Indeed,
set L := H1(Ĵ ∩ (Br \Br/2)) and consider the arc-length parameter s ∈ [0, L] given by

s(t) =

∫ t

0
|Vr(α(τ))|dτ,

where
Vr(α) := ∇Φ−1

r (α)α̇.

We compute

d2

ds2
α̂(t) =

d

ds

(
Vr(α)

|Vr(α)|

)
= Π(Vr(α))

(
∇2Φ−1

r (α) : (α̇⊗ α̇) +∇Φ−1
r (α)α̈

|Vr(α)|2

)
. (5.12)

Here and in what follows, α is evaluated at t = t(s) and α̇ and α̈ denote the first and second
derivative of α with respect to t. The operation : between a tensor T = (Tijk) ∈ R2×2×2 and a
matrixM = (Mij) ∈ R2×2 is defined as the vector T :M ∈ R2 with components (T :M)k = TijkMij

for k = 1, 2.
We get ∣∣∣∣ d2ds2 α̂(t)

∣∣∣∣ ≤ ∣∣∣∣Π(Vr(α))(∇2Φ−1
r (α) : (α̇⊗ α̇)

|Vr(α)|2

)∣∣∣∣+ |∇Φ−1
r (α)α̈|

|Vr(α)|2

≤
∣∣∣∣Π(Vr(α))(∇2Φ−1

r (α) : (α̇⊗ α̇)

|Vr(α)|2

)∣∣∣∣+ C
f ′r(|α|) +

fr(|α|)
|α|

|Vr(α)|2
. (5.13)

where we have used (5.9) and that α̈ is bounded.
The Hessian of Φ−1

r can be computed as

∇2Φ−1
r (y) =f ′′r (|y|)

y

|y|
⊗ y

|y|
⊗ y

|y|
+ f ′r(|y|)∇

(
y

|y|
⊗ y

|y|

)
+

+ f ′r(|y|)
y

|y|
⊗ ∇

(
y

|y|

)
+ fr(|y|)∇2

(
y

|y|

)
=f ′′r (|y|)

y

|y|
⊗ y

|y|
⊗ y

|y|
+ f ′r(|y|)∇

(
y

|y|

)
⊗ y

|y|
+

+ 2f ′r(|y|)
y

|y|
⊗ ∇

(
y

|y|

)
+ fr(|y|)∇

(
∇
(
y

|y|

))
.
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Then, by (5.10), we have

∇2Φ−1
r (α) =f ′′r (|α|)

α

|α|
⊗ α

|α|
⊗ α

|α|
+

(
f ′r(|α|)
|α|

− 2
fr(|α|)
|α|2

)
Π(α)⊗ α

|α|

+

(
2
f ′r(|α|)
|α|

− fr(|α|)
|α|2

)
α

|α|
⊗Π(α).

So, for k = 1, 2, we have(
∇2Φ−1

r (α) : (α̇⊗ α̇)
)
k

=f ′′r (|α|)
((

α

|α|
⊗ α

|α|
⊗ α

|α|

)
: (α̇⊗ α̇)

)
k

+

(
f ′r(|α|)
|α|

− 2
fr(|α|)
|α|2

)((
Π(α)⊗ α

|α|

)
: (α̇⊗ α̇)

)
k

(5.14)

+

(
2
f ′r(|α|)
|α|

− fr(|α|)
|α|2

)((
α

|α|
⊗Π(α)

)
: (α̇⊗ α̇)

)
k

. (5.15)

Notice that, since Π(α) is symmetric,

Π(α)ijαj = 0, Π(α)ijαi = 0, (5.16)

where we sum on repeated indeces. So, using (5.16) and that, from Taylor expansion, α̇(t) =

v + 2wt+ o(t) = α(t)
t + wt+ o(t), we have((

Π(α)⊗ α

|α|

)
: (α̇⊗ α̇)

)
k

= Π(α)ijα̇iα̇j
αk

|α|
= Π(α)ij

(αi

t
+ wit+ o(t)

)
α̇j
αk

|α|
=

= Π(α)ij (wit+ o(t)) α̇j
αk

|α|
;

((
α

|α|
⊗Π(α)

)
: (α̇⊗ α̇)

)
k

=
αi

|α|
Π(α)jkα̇iα̇j =

αi

|α|
Π(α)jk

(αj

t
+ wjt+ o(t)

)
α̇i

=
αi

|α|
Π(α)jk (wjt+ o(t)) α̇i.

So, the norm of the sum of (5.14) and (5.15) can be easily estimated by

3

(
f ′r(|α|)
|α|

+
fr(|α|)
|α|2

)
(|w|t+ o(t)) ≤ C

(
f ′r(|α|) +

fr(|α|)
|α|

)
,

where we used that, for t small, |α(t)| ≥ t
2 .

Therefore, (5.13) becomes∣∣∣∣ d2ds2 α̂(t)
∣∣∣∣ ≤ ∣∣f ′′r (|α|)∣∣

∣∣∣∣∣Π(Vr(α))
(

α
|α| ⊗

α
|α| ⊗

α
|α| : (α̇⊗ α̇)

|Vr(α)|2

)∣∣∣∣∣+ C
f ′r(|α|) +

fr(|α|)
|α|

|Vr(α)|2
. (5.17)

Now we treat the first term of the right hand side of (5.17). For j = 1, 2, by definition of Vr(α),
using Taylor expansion and (5.16), we have

(Vr)j(α) = f ′r(|α|)
αiαj

|α|2
α̇i + fr(|α|)Π(α)ijα̇i

= f ′r(|α|)
αiαj

|α|2
(αi

t
+ wit+ o(t)

)
+ fr(|α|)Π(α)ij

(αi

t
+ wit+ o(t)

)
= f ′r(|α|)

(
αj

t
+
αiαj

|α|2
wit+ o(t)

)
+ fr(|α|)Π(α)ij (wit+ o(t))

= f ′r(|α|)
(αj

t
+ o(t)

)
+ fr(|α|)Oj(t),

(5.18)
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where in the last equality we used that αiwi = o(t), since viwi = 0 because |α̇| = 1, and we setted
Oj(t) := Π(α)ij(wit+ o(t)), meaning that limt→0+ |Oj(t)|/t < +∞. Then, we get

α = t

(
Vr(α)−O(t)

f ′r(|α|)
+ o(t)

)
.

So,

Π(Vr(α))

α
|α| ⊗

α
|α| ⊗

α
|α| : (α̇⊗ α̇)

|Vr(α)|2
=
αiαj

|α|2
α̇iα̇jΠ(Vr(α))

α
|α|

|Vr(α)|2

=
αiαj

|α|2
α̇iα̇j

t

|α|
Π(Vr(α))

(
Vr(α)−O(t)

f ′
r(|α|)

+ o(t)
)

|Vr(α)|2

=
αiαj

|α|2
α̇iα̇j

t

|α|
Π(Vr(α))

(
O(t)

f ′
r(|α|)

+ o(t)
)

|Vr(α)|2
,

where we used that Π(Vr(α))Vr(α) = 0. For t small, we get∣∣∣∣∣Π(Vr(α))
α
|α| ⊗

α
|α| ⊗

α
|α| : (α̇⊗ α̇)

|Vr(α)|2

∣∣∣∣∣ ≤ 2

O(t)
f ′
r(|α|)

+ o(t)

|Vr(α)|2
.

Finally, from (5.17), we obtain∣∣∣∣ d2ds2 α̂(t)
∣∣∣∣ ≤ ∣∣f ′′r (|α|)∣∣ O(t)

f ′
r(|α|)

+ o(t)

|Vr(α)|2
+ C

f ′r(|α|) +
fr(|α|)
|α|

|Vr(α)|2
.

From the definition of fr, we have that fr(|α(t)|) = r
2 + t

1
3 + o(t

1
3 ) for t near to 0. So, by (5.18),

we have |Vr(α(t))| ≥ Cf ′r(|α(t)|) = Ct−
2
3 + o(t−

2
3 ). Then, since |f ′′r (|α(t)|)| = Ct−

5
3 + o(t−

5
3 ), a

straightforward check shows that

d2

ds2
α̂(t) → 0 as t→ 0+. (5.19)

We conclude that the curve α̂ is C2 up to 0 with vanishing second derivative, and hence can be
extended on the interval (− r

2 , 0) to a (not relabeled) curve α̂ whose support is a straight segment
connecting α̂(0) to 0 (namely a radius of Br/2(0)). Going back to the curves α̂ℓ, we have just
proved that we can extend them in Br/2(pi) with C2-regularity using a segment along a radius,
reaching pi. In particular, the new supports of α̂ℓ’s form a N i-junction point around pi in Br/2(pi),

whose circular sectors Ĉi
j (j = 1, . . . , Ni) have amplitudes θ1i , . . . , θ

Ni
i (according to Lemma 5.3).

Up to a reparametrization by arc-length of α̂ℓ, we will suppose that α̂ℓ : [âℓ, b̂ℓ] → R2 have always
derivative of modulus 1.

Step 3 : We are ready to extend the map ur in Br/2(pi). We observe that, from (5.8), ur(x) =

γi
(
2
r (x− pi)

)
on ∂Br/2(pi) (see Lemma 5.3), and hence it is constant on any arc with angular

coordinate in (aj−1
i , aji ). Hence we define

ur(x) := γi
(
x− pi
|x− pi|

)
x ∈ B r

2
(pi). (5.20)

Now, ur satisfies the hypotheses of Corollary 3.12 in Ωr := Ω \ (∪m
i=1Br/4(pi)), where all the curves

α̂j satisfy hypotheses (H3), and they run on a straight segment (along a radius of Br/2(pi)) inside
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Br/2(pi)\Br/4(pi). Then we introduce a sequence of Lipschitz maps ṽk : Ωr → R2 which are defined

as in (3.42), where, we recall, ε = 1
k , with ur in place of u and Λ = id; in particular, for k large

enough, the trace of ṽk on ∂Br/3(pi) is a piecewise affine map coinciding with γk in (4.8), with βi
in place of αi. Thus, if we introduce also the sequence of Lipschitz maps v̂k : Br/2(pi) → R2 as in
(4.12) (with Br replaced by Br/2(pi)) we see that ṽk = v̂k on ∂Br/3(pi). Therefore we define

vrk :=

{
ṽk in Ω \ (∪m

i=1Br/3(pi))

v̂k in ∪m
i=1 Br/3(pi),

(5.21)

and we readily see that vrk → ur strictly BV (Ω;R2).

Since the supports of αℓ and α̂ℓ coincide out of ∪iBr(pi), there exist ârℓ , b̂
r
ℓ ∈ [âℓ, b̂ℓ], â

r
ℓ < b̂rℓ , and

arℓ , b
r
ℓ ∈ [aℓ, bℓ], a

r
ℓ < brℓ , such that

α̂ℓ([â
r
ℓ , b̂

r
ℓ ]) = αℓ([a

r
ℓ , b

r
ℓ ]), α̂ℓ(â

r
ℓ) = αℓ(a

r
ℓ), α̂ℓ(̂b

r
ℓ) = αℓ(b

r
ℓ).

In particular, b̂rℓ − ârℓ = brℓ − arℓ , so up to a translation of the parameter interval of [âℓ, b̂ℓ], we can

suppose ârℓ = arℓ and b̂rℓ = brℓ . Clearly, arℓ → aℓ non increasingly and brℓ → bℓ non decreasingly as
r → 0+.
In view of Corollary 3.12 and Theorem 4.4 we conclude

ABV (ur,Ω) ≤ lim
k→+∞

A(vrk,Ω) =

∫
Ω\(∪m

i=1Br(pi))
|M(∇u)| dx+

n∑
ℓ=1

∫
[âℓ ,̂bℓ]×I

|∂tXaff
ℓ,r ∧ ∂sXaff

ℓ,r | dtds

+

∫
∪m
i=1(Br(pi)\Br/3(pi))

|M(∇ur)| dx+m
πr2

9
+

m∑
i=1

P (γi)

=

∫
Ω\(∪m

i=1Br(pi))
|M(∇u)| dx+

n∑
ℓ=1

∫
[arℓ ,b

r
ℓ ]×I

|∂tXaff
ℓ ∧ ∂sXaff

ℓ | dtds+
m∑
i=1

P (γi)

+

∫
∪m
i=1(Br(pi)\Br/3(pi))

|M(∇ur)| dx+

n∑
ℓ=1

∫
([â

r/3
ℓ ,arℓ ]∪[b

r
ℓ ,̂b

r/3
ℓ ])×I

|∂tXaff
ℓ,r ∧ ∂sXaff

ℓ,r | dtds

+
r

3

m∑
i=1

Ni∑
j=1

|βji − βj+1
i |+m

πr2

9
, (5.22)

where for all ℓ = 1, . . . , n we have âℓ ≤ â
r/3
ℓ ≤ arℓ < brℓ ≤ b̂

r/3
ℓ ≤ b̂ℓ, where α̂ℓ(â

r
3
ℓ ) ∈ ∂Br/3(pi),

α̂ℓ(̂b
r
3
ℓ ) ∈ ∂Br/3(pj) for some i, j ∈ {1, . . . ,m}, unless one of them belongs to ∂Ω, and where Xaff

ℓ,r is

defined as Xaff
ℓ with ur replacing u.

Now, since by (5.5) |ψ′
r| ≤ C, ur is still a piecewise Lipschitz map on Ω, hence, by Step 1, the

last four terms in (5.22) are negligible as r → 0+. We then conclude, provided that ur → u strictly
BV (Ω;R2), that

ABV (u,Ω) ≤ lim inf
r→0+

ABV (ur,Ω) ≤
∫
Ω
|M(∇u)| dx+

n∑
ℓ=1

∫
[aℓ,bℓ]×I

|∂tXaff
ℓ ∧ ∂sXaff

ℓ | dtds+
m∑
i=1

P (γi),

that is the thesis. In order to check that ur → u strictly BV (Ω;R2) it is sufficient to observe that
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u = ur outside ∪m
i=1Br(pi) and that

lim sup
r→0+

|Dur|(∪m
i=1Br(pi))

≤ lim sup
r→0+

lim sup
k→+∞

∫
∪m
i=1Br(pi)

√
1 + |∇vrk|2 dx

≤ lim sup
r→0+

lim
k→+∞

A(vrk,∪m
i=1Br(pi))

= lim sup
r→0+

(∫
∪m
i=1(Br(pi)\Br/3(pi))

|M(∇ur)| dx+m
πr2

9

+

n∑
ℓ=1

∫
([â

r/3
ℓ ,ârℓ ]∪[̂b

r
ℓ ,̂b

r/3
ℓ ])×I

|∂tXaff
ℓ,r ∧ ∂sXaff

ℓ,r | dtds+
r

3

m∑
i=1

Ni∑
j=1

|αi
j − αi

j+1|
)
= 0.

The proof is complete.
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