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Abstract. A relaxation problem for maps from n-dimensional domains
into the unit 2-sphere is analysed, the energy being given in the smooth
case by the integral of the modulus of the Laplacean vector. For second
order Sobolev maps, a complete explicit formula of the relaxed energy
is obtained. Our proof is based on the following results: minimal energy
computation of maps with fixed degree, Dipole-like problems, density
of maps with small singular sets, lower semicontinuity of the extended
energy, and strong approximation properties on Cartesian currents.

Introduction

First order variational problems for maps taking values into isometrically
embedded Riemannian manifolds N are widely studied, a relevant model
being given by the Dirichlet integral

(0.1) D(u) :=
1

2

∫
Bn
|Du|2 dx

of maps from the unit ball Bn into the p-dimensional unit sphere N = Sp.
When e.g. n = 3 and p = 2, unit vector fields minimizing the Dirichlet

energy (under prescribed boundary conditions) represent a simplified model
for the Ericksen-Leslie theory of liquid crystals, see [23] or [25, Sec. 5.1].

Harmonic maps u with values into the sphere Sp satisfy the Euler-Lagrange
system τ(u) = 0, where

(0.2) τ(u) := ∆u+ |Du|2u

is the intrinsic Laplacean, or tension field, compare [25, Sec. 3.1.1]. More
precisely, viewing the p-sphere as embedded into the Euclidean space Rp+1,
and working with maps u : Bn → Rp+1 such that |u(x)| ≡ 1, then ∆u is
the Laplacean vector in Rp+1, and its normal component to Sp at u(x) is
(∆u)⊥ = −|Du|2 u, whence τ(u) is the tangential component of ∆u, and

(0.3) |∆u|2 = |Du|4 + |τ(u)|2 .
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In dimension n = 2, the Dirichlet integral is conformally invariant. There-
fore, its second order analogous is probably given by the bienergy functional

(0.4) H(u) :=

∫
Bn
|∆u|2 dx

of maps u from Bn into Sp. In dimension n = 4, in fact, the bienergy
functional is conformally invariant. In addition, equation (0.3) implies the
lower bound

H(u) ≥
∫
Bn
|Du|4 dx

where equality holds when τ(u) = 0, i.e., for harmonic maps.
As a consequence, in any dimension n ≥ p ≥ 2, Sobolev maps u from

Bn into Sp with finite bienergy belong to the Sobolev class W 1,4(Bn,Sp).
Moreover, when n = p, by the parallelogram inequality the Jacobian of a
smooth map u from Rp into Sp satisfies the pointwise upper bound

(0.5) Jpu ≤
1

pp/2
|Du|p

where equality holds if and only if u is conformal.
Therefore, when in particular p = 4, it turns out that in any dimension

n the “graph” in Bn × S4 of a Sobolev map u ∈ W 2,1(Bn, S4) with finite
bienergy has finite “area” .

However, in view of analyzing the corresponding relaxation problem, a
nontrivial open question comes into play: finding a bienergy minimizer
among smooth maps from R4 into S4 of degree one, see Sec. 8.

One expects that it is given by the inverse σ−1
4 of the stereographic projec-

tion map from S4 to R4, compare (1.1). In fact, Angelsberg [5] showed that
the energy minimum among degree one maps is attained and it is greater
than 16 · H4(S4), where Hk is the k-dimensional Hausdorff measure. More-
over, recalling that

∫
R4 |∆σ−1

4 |2 dx = 24 · H4(S4), Cooper [15] proved that

σ−1
4 minimizes the bienergy among degree one O(4)-equivariant maps from

R4 into S4.

Laplacean energy. In this paper, we consider the functional

L(u) :=

∫
Bn
|∆u| dx

on maps u : Bn → S2 taking values into the unit 2-sphere of R3. It will be
called Laplacean energy. If u is sufficiently smooth, by (0.3) we get

(0.6) |∆u| ≥ |Du|2

where equality holds for harmonic maps. In addition, by (0.5), where p = 2,
it turns out that the “graph” of u has finite “area” in Bn × S2.

Minimal energy of degree one maps. Differently to the nontrivial
case of the bienergy of maps from R4 into S4, we now see that the minimal
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Laplacean energy among degree one maps from R2 into S2 is attained by the
inverse σ−1

2 of the stereographic map, where

(0.7)

∫
R2

|∆σ−1
2 | dx =

∫
R2

|Dσ−1
2 |

2 dx = 2

∫
R2

J2σ
−1
2 dx = 2H2(S2) = 8π .

More precisely, we denote

(0.8) WL(Rn, S2) := {u ∈W 2,1
loc (Rn, S2) : ∆u ∈ L1(Rn,R3)}

and also

(0.9) L(u,Rn) :=

∫
Rn
|∆u| dx , u ∈WL(Rn,S2) .

If u ∈ WL(Rn,S2), inequality (0.6) holds Ln-a.e. in Bn, where Ln is
the Lebesgue measure, and hence |Du| ∈ L2(Rn). In particular, in low
dimension n = 2, by (0.5), with p = 2, any map u ∈WL(R2, S2) satisfies the
energy lower bound

(0.10) L(u,R2) ≥
∫
R2

|Du|2 dx ≥ 2

∫
R2

J2u dx

where both inequalities are equalities if u is harmonic and conformal, and
that is the case of the inverse σ−1

2 of the stereographic map σ2 : S2 → R2,
compare (1.1). On the other hand, maps u ∈WL(R2, S2) have a well-defined
integer degree, and degree one maps as e.g. u = σ−1

2 satisfy inequality∫
R2 J2u dx ≥ 4π, whence L(u,R2) ≥ 8π = L(σ−1

2 ,R2), by (0.10) and (0.7).

Relaxed energy. Following the classical Lebesgue-Serrin approach, we
introduce in any dimension n ≥ 2 the relaxed energy

(0.11)
L̃(u) := inf

{
lim inf
h→∞

L(uh) | {uh} ⊂ C∞(Bn, S2),

uk → u strongly in L1(Bn,R3)
}

of maps u in L1(Bn,S2). Our first objective is to analyze the explicit formula

of L̃(u) on the class of maps with finite relaxed energy. We thus denote:

(0.12) L(Bn,S2) := {u ∈ L1(Bn,S2) | L̃(u) <∞}

and refer to Sec. 2 for details on the following preliminary discussion.
If u ∈ L(Bn,S2), inequality (0.6) implies that u ∈ W 1,2(Bn,S2), whence

the distributional divergence of the gradient Du is well defined by

(0.13) 〈DivDu;ϕ〉 := −
∫
Bn

tr [Du (Dϕ)t] dx , ϕ ∈ C∞c (Bn,R3)

where A 7→ At is the transpose operator in R3×n and B 7→ trB the trace
operator in R3×3. By lower semicontinuity, we have:

(0.14) L̃(u) ≥ |DivDu|(Bn) ∀u ∈ L(Bn, S2)
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and hence DivDu is a finite R3-valued regular measure. Since moreover

DivDu = ∆uLn Bn ∀u ∈W 2,1(Bn,S2)

the measure DivDu may be called a weak Laplacean.
In the critical dimension n = 2, due to the continuous embedding of

W 1,2(B2) in the class VMO of functions with vanishing mean oscillation, by
Schoen-Uhlenbeck density theorem [33] it turns out that there is no gap:

(0.15) L̃(u) = |DivDu|(B2) ∀u ∈ L(B2,S2) .

In high dimension n ≥ 3, the energy gap is positive, in general, i.e., strict
inequality holds in (0.14). However, for a generic map u ∈ L(Bn, S2), it is
an open problem to find the explicit formula of the relaxed energy (0.11).

This is essentially due to a lack of information concerning the structure
of the measure DivDu. For that reason, in this paper we shall focus on the
more regular subclass of second order Sobolev maps, since

(0.16) |DivDu|(Bn) =

∫
Bn
|∆u| dx =: L(u) ∀u ∈W 2,1(Bn,S2) .

Main Result. For maps u in W 2,1(Bn,S2), when n ≥ 3, we shall see that
the energy gap only depends (up to the constant factor 8π) on the mass
mi,Bn(P(u)) of a minimal connection of the current of the singularities of u.

Referring to Sec. 1 for the precise notation, we only mention here that
the relevant singularities of maps u ∈ W 2,1(Bn,S2) are described by an
integral flat (n − 3)-chain P(u) in Bn. This means that the current P(u) is
the boundary in Bn of an integer multiplicity (say i.m.) rectifiable (n− 2)-
current L, and the integral mass mi,Bn(P(u)) is the mass of a minimizer
among L ∈ Rn−2(Bn) satisfying (∂L) Bn = −P(u).

If e.g. n = 3 and u is the harmonic map u(x) = x/|x|, then |∆u| =
|Du|2 = 2/|x|2, and on account of (1.7) the current of the singularities
is such that −P(u) = δO, the unit Dirac mass at the origin O, whence
mi,B3(P(u)) is equal to the length of a segment connecting O to a point at

the boundary of B3, a so called string in the sense of Brezis-Coron-Lieb [13].

The Main Result of this paper is enclosed in the following theorem, where
we are able to give an explicit formula for the relaxed energy (0.11) of maps
in the Sobolev class W 2,1(Bn, S2).

Theorem 0.1. If u ∈W 2,1(Bn,S2), where n ≥ 3, then

L̃(u) = L(u) + 8π ·mi,Bn(P(u)) <∞ .

In the proof of Theorem 0.1, we rely on the previous observation con-
cerning the minimal Laplacean energy of degree one maps, and we follow a
similar strategy to the one exploited in case of the Dirichlet energy (0.1). In
particular, we make use of tools from the theory of Cartesian currents by
Giaquinta-Modica-Soucěk [24, 25].
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Finally, concerning the wider class

(0.17) LBV (Bn,S2) :=
{
u ∈ L(Bn,S2) | Du ∈ BV(Bn,R3×2)

}
in Sec. 8 we prove in any dimension n ≥ 3 the lower bound

(0.18) L̃(u) ≥ |DivDu|(Bn) + 8π ·mi,Bn(Bn) ∀u ∈ LBV (Bn,S2)

and explain why equality is expected to hold true in the latter formula.

Content of the paper. In Sec. 1, we collect some notation and back-
ground material, focusing in particular on the analogous relaxation problem
for the Dirichlet integral (0.1) of mappings into the 2-sphere.

In Sec. 2, we preliminarily discuss some general properties of maps with
finite relaxed energy, explaining the difficulties that one encounters in the
general case when u 6∈ W 2,1(Bn, S2) and n ≥ 3. We also prove a lower
semicontinuity result in dimension n = 2, Theorem 2.2.

In Sec. 3, we introduce a suitable modification of the inverse to the stere-
ographic map, Proposition 3.1. We then compute the minimal Laplacean
energy among maps u : R2 → S2 with fixed degree, Theorem 3.2, and de-
scribe the related bubbling phenomenon.

In Sec. 4, we extend to the Laplacean energy the classical Dipole problem
of Brezis-Coron-Lieb [13] for the Dirichlet energy in 3D, Theorem 4.1.

In Sec. 5, we find a dense class of maps which are smooth outside a small
singular set, Theorem 5.2. We then provide a cohomological criterion for
strong density of smooth maps, Theorem 5.4.

In Sec. 6, we introduce the class cartL (Bn × S2) of Cartesian currents with
underlying functions in W 2,1(Bn, S2). More precisely, see Definition 6.1, an
element T in cartL (Bn × S2) is given by

T = Gu + L× [[ S2 ]]

where Gu is the graph current of a map u ∈ W 2,1(Bn,S2) and L is an i.m.
rectifiable current in Rn−2(Bn) such that (∂L) Bn = −P(u), if n ≥ 3. We
then extend the Laplacean energy to a functional T 7→ L(T ) on Cartesian
currents, by letting

L(T ) := L(u) + 8π ·M(L) if T = Gu + L× [[ S2 ]]

and prove a weak sequential lower semicontinuity property, Theorem 6.3.
In Sec. 7, we deal with the explicit formula for the relaxed energy (0.11).

The proof of Theorem 0.1 is based on the lower semicontinuity theorem 6.3
and on a strong density result. In Theorem 7.1, in fact, we show that each
current in cartL (Bn × S2) can be approximated weakly and with energy
convergence by a sequence of smooth graphs. A shorter proof of Theorem 7.1
in low dimension n = 3 is given in App. A, whereas in high dimension
we make use of the approximation theorem 7.3, whose proof is reported in
Appendices B and C.

Final remarks and open questions are reported in Sec. 8.
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1. Background material and preliminary results

In this section, we collect some well-known facts about stereographic
maps, divergence-measure fields, and topics from Geometric Measure The-
ory, degree, Cartesian currents, singularities (for which we refer to the trea-
tise [24, 25] or to [28]). We then describe the strong density and relaxation
results for the Dirichlet energy of maps into the 2-sphere.

Let Bn be the open unit ball of dimension n ≥ 2 centered at the origin,
and Ln the Lebesgue measure in Rn. For X = L1, W k,p, or C∞, we denote

X(Bn,S2) := {u ∈ X(Bn,R3) : |u(x)| = 1 for Ln-a.e. x ∈ Bn } .

Stereographic projection. For p ≥ 2 integer, setting

Sp := {(y, z) | y ∈ Rp , z ∈ R , |(y, z)| = 1} ⊂ Rp+1

the stereographic projection from the “South Pole” PS := (0Rp ,−1) is given

by σp(y, z) :=
y

1 + z
. Its inverse σ−1

p : Rp → Sp satisfies

(1.1) σ−1
p (x) =

( 2x

1 + ρ2
,
1− ρ2

1 + ρ2

)
, x ∈ Rp , ρ := |x| .

The map (−1)pσ−1
p is an orientation preserving conformal diffeomorphism

from Rp onto Sp \ {PS}. In fact, denoting by • the scalar product in Rp+1

and by δij the Kronecker symbol, the conformality relations

∂iσ
−1
p • ∂jσ−1

p = δij U
2 ∀ i, j = 1, . . . , p

hold, with scaling factor U(x) :=
2

1 + |x|2
, whence in (0.5) one has

1

pp/2
|Dσ−1

p |p = Jpσ
−1
p = Up

where Jpσ
−1
p is the Jacobian of σ−1

p . As a consequence, concerning the
conformal Dirichlet integral, for any p ≥ 2 integer one obtains:

(1.2)
1

pp/2

∫
Rp

|Dσ−1
p |p dx =

∫
Rp

Jpσ
−1
p dx = Hp(Sp)

where Hk is the k-dimensional Hausdorff measure.
Most importantly, it turns out that the map σ−1

p is harmonic if and only

if p = 2. Therefore, σ−1
2 satisfies the Euler-Lagrange system τ(u) = 0, where

τ(u) is the tension field (0.2). In conclusion, one readily obtains the energy
computation (0.7).

Divergence-measure fields. Let n ≥ 2. The distributional diver-
gence of a vector field F ∈ L2(Bn,Rn) is well defined by:

〈DivF ;φ〉 := −
∫
Bn
F ·Dφdx , φ ∈ C∞c (Bn) .
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Definition 1.1. We call F ∈ L2(Bn,Rn) a divergence-measure field, say
F ∈ DM1,2(Bn), if DivF is a real finite Radon measure on Bn.

If F ∈ DM1,2(Bn), a decomposition into mutually singular measures

DivF = (DivF )a + (DivF )s , (DivF )a = d̃ivF Ln Bn

holds, where d̃ivF ∈ L1(Bn) denotes the Radon-Nikodym derivative of DivF
w.r.t. Ln. Referring to [4] for further details on functions of bounded vari-

ations, we remark that if in addition F ∈ BV(Bn,Rn), the density d̃ivF
agrees with the trace of the approximate gradient matrix ∇F , and that
(DivF )s = 0 if in particular F ∈W 1,1(Bn,Rn).

Šilhavý [34, Thm. 3.2] proved the following absolute continuity property:

Proposition 1.2. If F ∈ DM1,2(Bn), then |DivF |(B) = 0 for each Borel
set B ⊂ Bn with σ-finite Hn−2-measure. In particular, the measure DivF
does not charge any atom.

By the chain rule formula in BV, cf. [4, Thm. 3.96] and [24, p. 487], it
turns out that if v1 ∈W 1,2(Bn)∩L∞(Bn) and v2 ∈ BV(Bn)∩L2(Bn), then

D(v1v2) = v1Dv2 + v2∇v1 Ln Bn .

In this setting, the following version of the Leibnitz-rule is due to Comi [14].

Proposition 1.3. Let F ∈ DM1,2(Bn) and g ∈W 1,2(Bn)∩L∞(Bn). Then,
gF ∈ DM1,2(Bn) and

Div(gF ) = g̃DivF + F · ∇gLn Bn

where g̃ is the precise representative of g.

Integer rectifiable currents. For U ⊂ Rm an open set, and
k = 0, . . . ,m, we denote by Dk(U) the strong dual to the space Dk(U)
of compactly supported smooth k-forms, whence D0(U) is the class of dis-
tributions in U . For any T ∈ Dk(U), we define its mass M(T ) as

M(T ) := sup{〈T ;ω〉 | ω ∈ Dk(U) , ‖ω‖ ≤ 1}
and (for k ≥ 1) its boundary as the (k−1)-current ∂T defined by the relation

〈∂T ; η〉 := 〈T ; dη〉 ∀ η ∈ Dk−1(U)

where dη is the differential of η. The weak convergence Th ⇀ T in the sense
of currents in Dk(U) is defined through the formula

lim
h→∞
〈Th;ω〉 = 〈T ;ω〉 , ∀ω ∈ Dk(U)

and the mass is sequentially weakly lower semicontinuous, i.e.,

M(T ) ≤ lim inf
h→∞

M(Th) if Th ⇀ T .

For k ≥ 1, a k-current T with finite mass is called rectifiable if

〈T ;ω〉 =

∫
M
θ 〈ω; ξ〉 dHk ∀ω ∈ Dk(U)
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with M a k-rectifiable set in U , ξ : M → ΛkRn a Hk M-measurable
function such that ξ(x) is a simple unit k-vector in ΛkRn orienting the
approximate tangent space to M at Hk-a.e. x ∈ M, and θ :M→ [0,+∞)
aHk M-summable non-negative function, so that M(T ) =

∫
M θ dHk <∞.

In that case, the short-hand notation T = [[M, ξ, θ ]] is commonly adopted,
and set (T ) denotes the set of points in M with positive multiplicity.

In addition, if θ is integer-valued, the current T is called integer multi-
plicity (in short i.m.) rectifiable and the corresponding class is denoted by
Rk(U). The usefulness of i.m. rectifiable currents in the Calculus of Varia-
tions stems from Federer-Fleming’s compactness theorem [18]. It states that
if a sequence {Th} ⊂ Rk(U) satisfies suph

(
M(Th) + M((∂Th) U)

)
< ∞,

where denotes restriction, then there exists T ∈ Rk(U) and a (not rela-
beled) subsequence of {Th} such that Th ⇀ T weakly in Dk(U).

Example 1.4. If M is a smooth, oriented, compact k-submanifold of U ,
then [[M ]] is the current in Rk(U) given by integration of k-forms in the
sense of differential geometry, i.e., 〈[[M ]];ω〉 :=

∫
M ω for all ω ∈ Dk(U).

Graph currents. If u is a map in W 1,1(Bn,RN ), where n,N ≥ 2, then

u has a Lusin representative on the subset B̃n of Lebesgue points pertaining

to both u and the gradient Du, where Ln(Bn \ B̃n) = 0. Following [24], the
graph of u is the countably n-rectifiable subset of U = Bn × RN

Gu := {(x, y) ∈ Bn × RN | x ∈ B̃n , y = ũ(x)},
where ũ(x) is the Lebesgue value of u. By the area formula, one has
Hn(Gu) <∞ if in addition all the minors of Du are in L1(Bn). In that case,
u is called a map in A1(Bn,RN ). More precisely, the approximate tangent
n-plane at (x, ũ(x)) is generated by the vectors ti(x) = (ei, ∂iu(x)) ∈ Rn+N ,
for i = 1, . . . , n, where (e1, . . . , en) is the canonical basis in Rn and the par-
tial derivative ∂iu(x) is the i-th column vector of the gradient matrix Du(x)

given by the Lebesgue value of Du at x ∈ B̃n. Therefore, the unit n-vector

ξ(x) :=
t1(x) ∧ · · · ∧ tn(x)

|t1(x) ∧ · · · ∧ tn(x)|
∈ ΛnRn+N , x ∈ B̃n

provides an orientation to Gu, and the graph current Gu = [[Gu, ξ, 1 ]] is i.m.
rectifiable in Rn(Bn × RN ).

The action of Gu can be read (in an approximate Ln-a.e. sense) through
the pull-back of the graph map (Id ./ u)(x) := (x, u(x)) by:

(1.3) 〈Gu;ω〉 =

∫
Bn

(Id ./ u)#ω ∀ω ∈ Dn(Bn × RN ) .

Therefore, the mass of Gu is equal to the graph area A(u), i.e.,

(1.4) M(Gu) = Hn(Gu) = A(u) :=

∫
Bn
|M(Du)| dx <∞

where |M(Du)| is the Jacobian of Id ./ u, so that |M(Du)|2 is equal to 1
plus the sum of the square of all minors of the N × n matrix Du.
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Let now N = 3 and u ∈ W 1,2(Bn, S2). If n ≥ 3, by the area formula
all the 3 × 3 minors of Du are zero Ln-a.e. in Bn. Therefore, for any
n ≥ 2 the Jacobian |M(Du)| is Ln-essentially bounded (up to an absolute
constant factor cn only depending on the dimension n) by 1 + |Du|2, where
Du ∈ L2(Bn,R3×n). Whence, u ∈ A1(Bn,R3) and by (1.4) we get

(1.5) M(Gu) = A(u) ≤ cn
∫
Bn

(1 + |Du|2) dx <∞ .

In addition, by Federer’s flatness theorem, the graph current Gu is an i.m.
rectifiable current in Bn × S2, say Gu ∈ Rn(Bn × S2).

Now, if u ∈W 1,2(Bn, S2) is smooth, we have Gu = [[Gu ]], see (1.4), where
the graph manifold Gu has no “fractures” or “holes”. By Stokes’ theorem,
such a condition is read in terms of the graph current Gu by the property:

(1.6) 〈∂Gu; η〉 := 〈Gu; dη〉 = 0 ∀ η ∈ Dn−1(Bn × S2) .

Remark 1.5. Given u ∈ W 1,2(Bn, S2), assume that there exists a se-
quence of smooth maps {uh} ⊂ C∞(Bn,S2) such that uh → u strongly
in W 1,2(Bn,R3). We recall that this is always the case in the critical dimen-
sion n = 2, by the continuous embedding of W 1,2(B2) in VMO. Strong W 1,2

convergence implies that Guh ⇀ Gu weakly as currents in Dn(Bn × S2), a
convergence that preserves the homological property (1.6). Therefore, we
conclude that the map u satisfies the null-boundary condition (1.6).

Remark 1.6. Condition (1.6) is violated in high dimension n ≥ 3, in gen-
eral. If e.g. n = 3, the 0-homogeneous harmonic map u(x) = x/|x| belongs
to the class W 1,2(B3, S2), and one has (cf. [24, Sec. 3.2.2, Ex. 1])

(1.7) (∂Gu) B3 × S2 = −δO × [[ S2 ]]

where δO is the unit Dirac mass at the origin O. Therefore, one cannot find
a sequence {uh} ⊂ C∞(B3, S2) strongly converging to u in W 1,2(B3,R3).

Remark 1.7. For maps u ∈W 1,1
loc (Rn, S2) with |Du| ∈ L2(Rn), we denote

(1.8) D(u,Rn) :=
1

2

∫
Rn
|Du|2 dx

and notice that this time the graph current Gu is locally i.m. rectifiable in
Rn × S2, i.e., Gu Ω× S2 ∈ Rn(Ω× S2) for each bounded open set Ω ⊂ Rn.

Degree. In dimension n = 2, the degree of maps from R2 into S2 is well
defined provided that u ∈ W 1,1

loc (R2,S2) with |Du| ∈ L2(R2). In fact, by
Remark 1.7 the graph current Gu is locally i.m. rectifiable. In addition, it
satisfies the null-boundary condition

〈∂Gu;ω〉 = 0 ∀ω ∈ D1(R2 × S2) .

Therefore, denoting by Πy(x, y) := y the orthogonal projection onto the
target space S2 ⊂ R3, the image current Πy#Gu is an integral 2-cycle in
S2, i.e., Πy#Gu ∈ R2(S2) with ∂(Πy#Gu) = 0. By the constancy theorem,
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compare [24, Sec. 4.3.1, Thm. 4], we thus have Πy#Gu = d [[ S2 ]] for some
integer d ∈ Z. Moreover, if ω2 denotes the volume 2-form on S2

(1.9) ω2 := y1dy2 ∧ dy3 + y2dy3 ∧ dy1 + y3dy1 ∧ dy2

by the action (1.3) we have∫
R2

u#ω2 = 〈Πy#Gu;ω2〉 = 〈d [[S2 ]];ω2〉 = d

∫
S2
ω2 = d · 4π .

Definition 1.8. Let u ∈ W 1,1
loc (R2, S2) with |Du| ∈ L2(R2). We call degree

deg u of u the integer d ∈ Z given by formula

deg u :=
1

4π

∫
R2

u#ω2 = d .

Notice that the degree is strongly continuous: if {uh} ⊂ W 1,1
loc (R2, S2) is

a sequence converging to u ∈ W 1,1
loc (R2, S2) a.e. in R2, with Duh → Du

strongly in L2(R2,R3×2), by dominated convergence we get

lim
h→∞

1

4π
·
∣∣∣∫

R2

(u#
h ω2 − u#ω2)

∣∣∣ = 0

and hence deg uh = deg u, for h large enough.

Cartesian currents. Let n ≥ 2 and {uh} ⊂ C∞(Bn,S2) be a sequence
of smooth maps with equibounded Dirichlet energies, suphD(uh) < ∞, see
(0.1). The graph currents Guh belong to Rn(Bn× S2) and satisfy condition
(1.6) and suph M(Guh) < ∞, by (1.5). Therefore, Federer-Fleming’s theo-
rem [18] yields that the currents Guh subconverge weakly in Dn(Bn×S2) to
a current T ∈ Rn(Bn × S2) satisfying the null-boundary condition

(1.10) (∂T ) Bn × S2 = 0 .

In addition, compare [24, 28], there exists an i.m. rectifiable current L ∈
Rn−2(Bn) and a map uT ∈W 1,2(Bn, S2) such that

(1.11) T = GuT + L× [[ S2 ]]

where the underlying function uT is given by the weak W 1,2 limit of the
uh’s. Finally, in low dimension n = 2 we also have (∂GuT ) B2 × S2 = 0.
For that reason, Giaquinta-Modica-Souček [21] introduced the following

Definition 1.9. The class cart2,1(Bn × S2) is given by the i.m. rectifiable
currents T ∈ Rn(Bn×S2) satisfying the null-boundary condition (1.10) and
the structure property (1.11) for some Sobolev map uT in W 1,2(Bn, S2) and
some i.m. rectifiable current L ∈ Rn−2(Bn).

The Dirichlet energy of a current T in cart2,1(Bn × S2) is given by

D(T ) :=
1

2

∫
Bn
|DuT |2 dx+ 4π ·M(L) if (1.11) holds .

Since the functional T 7→ D(T ) agrees with the parametric polycon-
vex lower semicontinuous extension of the Dirichlet integral, compare [25,
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Sec. 2.2.4], dealing with currents in cart2,1 (Bn × S2) it turns out that if
Th ⇀ T weakly in Dn(Bn × S2), then

(1.12) D(T ) ≤ lim inf
h→∞

D(Th) .

Finally, a sequential weak closure property holds: if a sequence {Th} ⊂
cart2,1 (Bn × S2) satisfies suphD(Th) < ∞, then there exists a current T
in cart2,1 (Bn × S2) and a (not relabeled) subsequence such that Th ⇀ T
weakly in Dn(Bn × S2).

Current of the singularities. Let u ∈ W 1,2(Bn,S2), where n ≥ 3.
Following [25, Sec. 4.2.5], we denote by P(u) the (n−3)-current in Dn−3(Bn)

(1.13) 〈P(u);ϕ〉 :=
1

4π

∫
Bn
u#ω2 ∧ dϕ , ϕ ∈ Dn−3(Bn)

where ω2 is the volume 2-form (1.9). It turns out that the boundary of the
graph current Gu satisfies equation

(1.14) (∂Gu) Bn × S2 = P(u)× [[ S2 ]] .

Therefore, for a current T ∈ cart2,1 (Bn × S2) as in (1.11), the null boundary
condition (1.10) is equivalent to the following link between P(uT ) and L:

(1.15) (∂L) Bn = −P(uT ) .

Real and integral mass. The latter formula motivates the introduc-
tion of some more notation. Let again n ≥ 3.

Definition 1.10. For any current P ∈ Dn−3(Bn), we denote by

(1.16) mr,Bn(P) := inf{M(D) | D ∈ Dn−2(Bn) , (∂D) Bn = −P}
the real mass of P allowing connections to the boundary. We also define

(1.17) mi,Bn(P) := inf{M(L) | L ∈ Rn−2(Bn) , (∂L) Bn = −P} .

Remark 1.11. By Federer-Fleming’s theorem [18], if there exists an i.m.
rectifiable current L ∈ Rn−2(Bn) such that (∂L) Bn = −P, the minimum
in (1.17) is attained. In that case, mi,Bn(P) is called integral mass, and a
minimizer L a minimal integral connection of P (allowing connections to the
boundary).

Example 1.12. If e.g. u(x) = x/|x|, by (1.7) and (1.14) we get P(u) = −δO,
and hence the integral mass mi,Bn(P(u)) is equal to the length of any line
segment connecting a point at the boundary of B3 to the origin O.

Remark 1.13. In dimension n = 3, Federer’s theorem [17], compare [25,
Sec. 3.1.4, Thm. 8], gives that if mi,B3(P) <∞ for some P ∈ D0(B3), then

(1.18) mi,B3(P) = mr,B3(P) .

This is false in general when n ≥ 4. More precisely, compare [31, 35], for a
current P ∈ Dn−3(Bn) with mi,Bn(P) <∞, it may happen that

mr,Bn(P) < mi,Bn(P) if n ≥ 4 .
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Maps with small singular set. Due to the non-triviality of the
second homotopy group π2(S2) ' Z, in dimension n ≥ 3 it is false that
the class of smooth maps C∞(Bn, S2) is strongly dense in W 1,2(Bn, S2).
However, a wider class of maps with small singular set is dense.

Definition 1.14. For n ≥ 3, we denote by R∞n−3(Bn,S2) the class of maps

u : B̄n → S2 which are smooth on B̄n \ Su, where Su is a finite union of
(n−3)-dimensional smooth sets with smooth boundary (a finite set of points
when n = 3) and such that for every positive integer k there exists a positive
real constant c, depending on u and k, such that the k-th order derivative

|Dku(x)| ≤ c

(dist (x, Su))k
∀x ∈ B̄n \ Su .

The following density property was proved in case n = 3 by Bethuel-Zheng
[10], and extended to high dimension n ≥ 3 by Bethuel [7].

Theorem 1.15. The class R∞n−3(Bn, S2) is strongly dense in W 1,2(Bn, S2).

Point singularities. Let n = 3 and assume that u ∈ W 1,2(B3,S2) is
smooth outside a finite set Su, compare Definition 1.14. For any singular
point a ∈ Su and for r > 0 small, the restriction u|∂B3

r (a) of u to the boundary

of the ball B3
r (a) := a+B3

r is a smooth function. Therefore, arguing as before
it turns out that the degree of u at a is well defined by the integer

(1.19) deg(u, a) :=
1

4π

∫
∂B3

r (a)
u#ω2 = d ∈ Z .

In fact, standard homotopy arguments imply that definition (1.19) does
not depend on the choice of the (small) radius, whence it agrees with the
classical Brouwer degree. Moreover, if Su = {ai}mi=1 and deg(u, ai) = di ,
similarly to [25, Sec. 4.2.1, Prop. 1] we infer:

(∂Gu) B3 × S2 = −
m∑
i=1

di δai × [[ S2 ]] .

Therefore, formula (1.14) implies that the current of the singularities P(u)
is i.m. rectifiable:

P(u) = −
m∑
i=1

di δai ∈ R0(B3) .

As e.g. to the 0-homogeneous map u(x) = x/|x|, one has Su = {O}, the
boundary condition (1.7) holds, P(u) = −δO, and deg(u,O) = 1.

Relaxed Dirichlet energy. Similarly to (0.11), the relaxed Dirichlet
energy of maps u in L1(Bn,S2) is defined by

D̃(u) := inf
{

lim inf
h→∞

D(uh) | {uh} ⊂ C∞(Bn,S2), uk → u in L1(Bn,R3)
}
.



A RELAXATION RESULT FOR A SECOND ORDER ENERGY 13

In dimension n = 2, we clearly have

D̃(u) =

{
D(u) if u ∈W 1,2(Bn,S2)
+∞ if u ∈ L1(Bn, S2) \W 1,2(Bn,S2) .

In dimension n = 3, following Brezis-Coron-Lieb [13], the flat norm L(u)
of u ∈W 1,2(B3,S2) (relative to the boundary) is given by

(1.20) L(u) :=
1

4π
· sup
ξ∈F

∫
B3

D(u) •Dξ dx

where • is the scalar product in R3. In the latter formula, F denotes the class
of smooth test functions ξ : B3 → R such that ‖ξ‖∞ ≤ 1 and ‖Dξ‖∞ ≤ 1,
and D(u) : B3 → R3 the D-field

D(u) :=
(
u • ∂2u× ∂3u, u • ∂3u× ∂1u, u • ∂1u× ∂2u

)
.

Bethuel-Brezis-Coron [8] showed that for any u ∈W 1,2(B3,S2) the relaxed
Dirichlet energy is finite, and it satisfies the explicit formula

D̃(u) = D(u) + 4π · L(u) .

Following Giaquinta-Modica-Souček [22], as distributions of D0(B3) one
gets P(u) = 1

4π DivD(u), i.e.,

〈P(u);ϕ〉 = − 1

4π

∫
B3

D(u) •Dϕdx ∀ϕ ∈ C∞c (B3) .

Equivalently, the current D(u) ∈ D1(B3) given by

〈D(u); η〉 :=
1

4π

∫
B3

u#ω2 ∧ η , η ∈ D1(B3)

is such that (∂D(u)) B3 = P(u) and M(D(u)) < ∞. Moreover, a du-
ality argument yields that the minimal real connection mr,B3(P(u)) of the
singularities agrees with the flat norm L(u), compare [25, Sec. 4.2.5].

Most importantly, in [22] the authors obtained that the flat norm agrees
with the integral mass of the current of the singularities, i.e.,

L(u) = mi,B3(P(u)) <∞ ∀u ∈W 1,2(B3, S2) .

Their argument relies on Theorem 1.15 and on the following result:

Proposition 1.16. Let u ∈ W 1,2(B3,S2) and {uk} ⊂ W 1,2(B3,S2) ∩ R∞0
be such that uk → u strongly in W 1,2. Then, for each k there exists an i.m.
rectifiable current Lk ∈ R1(B3) with (∂Lk) B3 = P(u) − P(uk) such that
M(Lk)→ 0 as k →∞.

Remark 1.17. The proof of Proposition 1.16 makes use of the coarea for-
mula by Almgren-Browder-Lieb [3] and of Federer’s theorem [17], see (1.18).
In high dimension n ≥ 4, even if we knew a priori that mi,Bn(P(u)) < ∞
for some u ∈ W 1,2(Bn,S2), the cited Federer’s theorem doesn’t apply, see
Remark 1.13. Therefore, Proposition 1.16 doesn’t work anymore.
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In [26], using a different approach we extended the explicit formula for
the relaxed Dirichlet energy to any high dimension n ≥ 3. Definitely, for
any map u ∈W 1,2(Bn, S2), it turns out that the (n− 3)-current P(u) of the
singularities satisfies mi,Bn(P(u)) <∞, and we have:

(1.21) D̃(u) = D(u) + 4π ·mi,Bn(P(u)) ∀u ∈W 1,2(Bn,S2) .

2. Maps with finite relaxed Laplacean energy

In this section, we deal with some general properties of maps with finite
relaxed energy (0.11). The case of low dimension n = 2 is discussed, where
a first lower semicontinuity property is also obtained.

Weak Laplacean. Let u ∈ L(Bn,S2), see (0.12), and let {uh} ⊂
C∞(Bn,S2) be such that uh → u in L1(Bn,R3) and suph L(uh) < ∞. By
inequality (0.6) we have suphD(uh) < ∞, see (0.1), so that a (not rela-
beled) subsequence of {uh} converges to u weakly in W 1,2(Bn,R3), and
u ∈ W 1,2(Bn, S2). Since Du ∈ L2(Bn,R3×n), the distributional divergence
of the gradient is well defined by (0.13), and using that

lim
h→∞

∫
Bn

tr [Duh (Dϕ)t] dx =

∫
Bn

tr [Du (Dϕ)t] dx ∀ϕ ∈ C∞c (Bn,R3)

we infer that DivDuh ⇀ DivDu weakly as R3-valued measures in Bn. More
precisely, for Sobolev maps in W 2,1(Bn,S2), integrating by parts we get:

〈DivDu;ϕ〉 =

∫
Bn

∆u • ϕdx ∀ϕ ∈ C∞c (Bn,R3)

whence (0.16) holds true. Therefore, the lower semicontinuity property of
the total variation gives

(2.1) |DivDu|(Bn) ≤ lim inf
h→∞

|DivDuh|(Bn) ≤ sup
h

L(uh) <∞

so that DivDu is a R3-valued finite Radon measure in Bn, and the lower
bound (0.14) follows by lower semicontinuity.

Notice that if u ∈ L(Bn, S2), denoting u = (u1, u2, u3), we have checked
that Du` is a divergence-measure field in DM1,2(Bn) for ` = 1, 2, 3, see
Definition 1.1. Moreover, the decomposition into mutually singular measures

(2.2) DivDu = (DivDu)a + (DivDu)s , (DivDu)a = ∆̃uLn Bn

holds, with density ∆̃u in L1(Bn,R3).

The BV case. Assume now that u ∈ L(Bn,S2) satisfies condition Du ∈
BV(Bn,R3×n), see (0.17). Then, the weak hessian ∇2u` of each compo-

nent u` is a summable function in L1(Bn,Rn×n), and the density ∆̃u in
(2.2) agrees with the approximate Laplacean ∆u = (∆u1,∆u2,∆u3), where
∆u` = tr∇2u`, for ` = 1, 2, 3. In addition, the singular part of the measure
(DivDu)s decomposes into a Jump and a Cantor-type component, the first
one being concentrated on the countably (n−1)-rectifiable discontinuity set
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of the gradient Du, and the second one being equal to zero if Du is a special
function of bounded variation.

As a consequence, in the BV-case we obtain a tangential property con-
cerning the singular component of the distributional divergence.

Proposition 2.1. Let n ≥ 2 and u ∈ LBV (Bn,S2), see (0.17). Then

(2.3) u • (DivDu)s = 0 .

Proof. By applying Proposition 1.3 with F = Du` and g = u`, and by
summating on ` = 1, 2, 3, we obtain

Div(u •Du) = u •DivDu+ |Du|2Ln Bn .

Since moreover |u| ≡ 1, we have 0 = ∂i|u|2 = 2∂iu • u for i = 1, . . . , n,
whence Div(u •Du) = 0 and therefore

(2.4) u •DivDu = −|Du|2Ln Bn .

On the other hand, since Du is in BV, we have u •∆u = −|Du|2 for Ln-a.e.
in Bn, so that

(2.5) u • (DivDu)a = (u •∆u)Ln Bn = −|Du|2 Ln Bn .

Equation (2.3) follows from (2.4) and (2.5), on account of the decomposition

formula (2.2), where ∆̃u = ∆u. �

The low dimension case. In the critical dimension n = 2, due to
the continuous embedding of W 1,2(B2) in VMO, Schoen-Uhlenbeck density
theorem [33] applies. More precisely, by a convolution and projection argu-
ment, we can find a sequence {uh} ⊂ C∞(B2, S2) such that uh → u strongly
in W 1,2(B2,R3), compare e.g. [24, Sec. 5.5.1, Thm. 3] or [28, Thm. 4.14].
Since moreover

L(uh) = |DivDuh|(B2) ≤ |DivDu|(B2) + εh

where εh → 0+ as h → ∞, by the lower semicontinuity inequality (2.1) we
infer that L(uh) → |DivDu|(B2) as h → ∞, whence formula (0.15) holds,
and there is no gap.

Using Proposition 1.2, we also obtain a lower semicontinuity property:

Theorem 2.2. Let {uk} ⊂ C∞(B2,S2) be such that the graph currents Guk
weakly converge in D2(B2 × S2) to the current T = Gu + d δO × [[ S2 ]], for
some map u ∈ L(B2, S2) and some integer d ∈ Z. Then

lim inf
k→∞

L(uk) ≥ |DivDu|(Bn) + 8π |d| .

Proof. For any v ∈W 2,1(B2,S2) and any Borel set B ⊂ B2, we denote

L(v,B) := |DivDv|(B) =

∫
B
|∆v| dx , D(v,B) :=

1

2

∫
B
|Dv|2 dx .
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Let ε > 0. Since by Proposition 1.2 the measure |DivDu| does not charge
any atom, we can choose r > 0 small so that |DivDu|(B̄2

r ) ≤ ε, so that by
lower semicontinuity and additivity

lim inf
k→∞

L(uk, B
2 \ B̄2

r ) ≥ |DivDu|(B2 \ B̄2
r ) ≥ |DivDu|(B2)− ε .

Moreover, by inequality (0.6) we get

lim inf
k→∞

L(uk, B̄
2
r ) ≥ 2 · lim inf

k→∞
D(uk, B

2
r ) .

On the other hand, by weak lower semicontinuity of the Dirichlet energy on
Cartesian currents, see (1.12), using that

Guk B2
r × S2 ⇀ Gu B2

r × S2 + d δO × [[ S2 ]]

weakly in D2(B2
r × S2) we obtain the energy lower bound

lim inf
k→∞

D(uk, B
2
r ) ≥ D(u,B2

r ) + 4π |d| ≥ 4π |d| .

Finally, putting the terms together we obtain

lim inf
k→∞

L(uk, B
2) ≥ lim inf

k→∞
L(uk, B

2 \ B̄2
r ) + lim inf

k→∞
L(uk, B

2
r )

≥ |DivDu|(Bn)− ε+ 8π |d|
for each ε > 0, as required. �

The high dimension case. If u ∈ L(Bn,S2), in general we do not

have enough information concerning both the density ∆̃u and the singular
part (DivDu)s in formula (2.2). More precisely, Proposition 1.2 yields that
|(DivDu)s|(B) = 0 for each Borel set B ⊂ Bn with σ-finite Hn−2-measure.
However, it mat happen that the gradient Du does not belong to the class
BV(Bn,R3×n), so that we cannot conclude e.g. that for ` = 1, 2, 3 the vector
field Du` ∈ L2(Bn,Rn) is approximately differentiable Ln-a.e. in Bn, and
that the trace tr∇Du` agrees Ln-a.e. in Bn with the `-th component of the

Radon-Nikodym derivative ∆̃u of the measure DivDu.

A sufficient condition ensuring both enough regularity of the density ∆̃u
and property (DivDu)s = 0, is the membership of Du to the Sobolev class
W 1,1(Bn,R3×n), so that in particular equation (0.16) holds true. In fact,
the computation of the energy gap for maps in W 2,1(Bn, S2) and in any
dimension n ≥ 3 is the content of our Main Result, Theorem 0.1.

3. Energy concentration

In this section, we define a suitable modification of the inverse to the
stereographic map. We then compute the minimal Laplacean energy among
maps u : R2 → S2 with fixed degree, and describe the bubbling phenomenon.

Modified stereographic projection. Consider the inverse of the
stereographic map (1.1) in case p = 2. Since σ−1

2 #[[R2 ]] = [[S2 ]], one has

deg σ−1
2 = 1, compare Definition 1.8.
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Similarly to e.g. [25, Sec. 4.1.1], we now modify σ−1
2 in such a way that

it is equal to the South Pole PS outside some small disk, by paying a small
amount of Laplacean energy.

Proposition 3.1. For any ε > 0 and δ > 0 sufficiently small, there exists
a smooth and degree one map uε,δ ∈WL(R2,S2), see (0.8), such that:

(1) uε,δ(x) = PS if |x| > δ ;

(2) 4π ≤ D(uε,δ,R2) ≤ 4π +O(ε), see (1.8) ;

(3) 8π ≤ L(uε,δ,R2) ≤ 8π +O(ε), see (0.9)

where O(ε)→ 0 as ε→ 0+.

Proof. Choose a smooth decreasing function Φ : R→ R such that Φ(ρ) = 1
if ρ ≤ −1 and Φ(ρ) = 0 if ρ ≥ 0, and define for k ∈ N large the smooth map
ϕk : R2 → R3 by

ϕk(x) := Φ(|x| − k)σ−1
2 (x) +

(
1− Φ(|x| − k)

)
PS

so that ϕk(x) = σ−1
2 (x) if |x| ≤ k − 1 and ϕk(x) = PS if |x| ≥ k. For σ > 0

small, we also have |ϕk(x)−PS | < σ if |x| ≥ k−1 and k is sufficiently large.
Therefore, letting

ϕ̃k(x) := Π ◦ ϕk(x) , Π(y) :=
y

|y|
, x ∈ R2, y ∈ R3 \ {0}

it turns out that D(ϕ̃k,R2) → D(σ−1
2 ,R2) and L(ϕ̃k,R2) → L(σ−1

2 ,R2) as
k →∞. In addition, by scale invariance of the energy, and setting for δ < 1

ϕ̃k,δ(x) := ϕ̃k

(x
δ

)
, x ∈ R2

for k large we have D(ϕ̃k,δ,R2) = D(ϕ̃k,R2) and L(ϕ̃k,δ,R2) = D(ϕ̃k,R2),
with ϕ̃k,δ(x) = PS if |x| > δ k. Finally, we have ϕ̃k,δ#[[R2 ]] = [[ S2 ]], whence
deg ϕ̃k,δ = 1 for k large and δ small. The claim readily follows. �

Minimal energy of maps with fixed degree. According to (0.8),
if u ∈WL(R2, S2), then |Du| ∈ L2(R2) and hence the degree of u is given by
Definition 1.8. We now compute the minimal energy (0.9) in each class

(3.1) Fd := {u ∈WL(R2, S2) | deg u = d} , d ∈ Z .

We rely on the fact that the analogous problem for the Dirichlet energy
is known. More precisely, denoting

(3.2) Gd := {u ∈W 1,1
loc (R2,S2) | Du ∈ L2(R2,R3×2), deg u = d}

and recalling (1.8), by the lower semicontinuity property (1.12) and Propo-
sition 3.1, it turns out that

(3.3) ∀d ∈ Z , inf
u∈Gd

D(u,R2) = 4π |d| .

Theorem 3.2. For every integer d ∈ Z we have: inf
u∈Fd

L(u,R2) = 8π |d| .
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Proof. When d = 0, the claim is trivial, whereas the case d = 1, and hence
d = −1, has been discussed in the introduction. In fact, by the lower bound
(0.10), any map u in F1 has Laplacean energy at least 8π, and equality holds
for harmonic and conformal maps of degree one, as e.g. u = σ−1

2 , compare
(0.7). Therefore, it clearly suffices to consider the case d ≥ 2.

Since Fd ⊂ Gd, see (3.1) and (3.2), by inequality (0.10) and formula (3.3)

inf
u∈Fd

L(u,R2) ≥ 2 · inf
u∈Fd

D(u,R2) ≥ 2 · inf
u∈Gd

D(u,R2) = 8π d .

We now check the opposite inequality:

(3.4) inf
u∈Fd

L(u,R2) ≤ 8π d .

By Proposition 3.1, for each ε > 0 we find a degree one map uε ∈WL(R2, S2),
equal to PS outside the unit disk B2, and such that

L(uε,R2) =

∫
B2

|∆uε| dx ≤ 8π +
ε

d
.

Denoting e1 := (1, 0), we define wε(x) := uε(x − 3k e1) on the unit disk
centered at 3k e1, for k = 0, 1, . . . ,d− 1, and wε ≡ PS outside the union of
such d disks. The map wε satisfies L(wε,R2) ≤ 8π d + ε and belongs to the
class Fd, whence (3.4) holds true, as required. �

Bubbling-off of spheres. We recall that the maps uε,δ from Propo-
sition 3.1 have degree one. Therefore, letting e.g. ε = δ = 1/h we find a
sequence {uh} ⊂ C∞(R2, S2) of smooth degree one maps weakly converging
in W 1,2 to the constant map PS , and such that

lim
h→∞

L(uh,R2) = L(σ−1
2 ,R2) = 8π .

Furthermore, it turns out that the above convergence is uniform far from
the origin, and that the graph currents Guh weakly converge in D2(R2×S2)
to the Cartesian current

T = GPS + δO × [[ S2 ]]

where GPS is the graph current of the constant map equal to PS on R2.
A bubbling phenomenon occurs, and by Theorem 2.2 we infer that the

minimal Laplacean energy occurring for the formation of a 2-sphere is equal
to 8π. This energy quantization property is detected if one defines the energy

(3.5) L(T ) := 8π , T = GPS + δO × [[ S2 ]] .

We thus have a second order analogous to a similar feature concerning the
conformal Dirichlet integral, where formula (1.2) yields that the minimum
energy cost of a p-sphere is equal to Hp(Sp), for any integer p ≥ 2.
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4. The Dipole problem

The classical Dipole problem by Brezis-Coron-Lieb [13] deals with Sobolev
maps u in W 1,2(R3,S2) which assume a given constant P ∈ S2 at infinity
and which are smooth outside two singular point a±, with

deg(u, a−) = −1 , deg(u, a+) = +1

the degree being given by (1.19).
In [13], it is shown that the minimal Dirichlet energy D(u,R3) in such

class, see (1.8), is equal to the distance |a+ − a−| between the singularities
times the measure 4π of the unit sphere S2, compare [25, Sec. 4.2.3].

In this section, we discuss the Dipole problem for the Laplacean energy
(0.9). We thus denote by E the subclass of maps u as above that in addition
belong to the second order space WL(R3,S2), see (0.8).

Theorem 4.1. We have: inf{L(u,R3) | u ∈ E} = |a+ − a−| · 8π .

Proof. Without loss of generality, we may and do assume P = PS and
a+ = (−r, 0, 0), a− = (r, 0, 0) for some r > 0. The energy upper bound

(4.1) inf{L(u,R3) | u ∈ E} ≤ |a+ − a−| · 8π

is obtained by means of a Dipole insertion argument which is re-adapted by
[25, Sec. 4.2.3], see also [13]. Firstly, by Proposition 3.1 we choose a smooth
map vε ∈ WL(R2,S2) with degree one, equal to the pole PS outside B2

r for
some r < 1, and such that with ẑ = (z2, z3) ∈ R2

(4.2) L(vε, B
2) :=

∫
B2

|∆vε(ẑ)| dẑ ≤ 8π + ε .

In formula (4.6), we wish to obtain a Sobolev map uε ∈ WL(R3,S2),
so that ∆uε ∈ L1(R3,R3). Therefore, we have to replace the Lipschitz-
continuous function t 7→ min{r + t, r − t, δ} on the interval D1

r := (−r, r)
with a function at least of class C1(D1

r). With δ > 0 small, we can choose:

(4.3) ϕδ(t) :=


δ if |t| ≤ r −

√
2 δ√

δ2 −
(
|t| − r +

√
2 δ
)2

if r −
√

2 δ ≤ |t| ≤ r − δ√
2

r − |t| if r − δ√
2
≤ |t| < r .

For x = (x̃, x̂) ∈ R× R2 ' R3 and z = (z̃, ẑ) ∈ D1
r ×B2, we let

(4.4) (x̃, x̂) = Φδ(z̃, ẑ) := (z̃, ϕδ(x̃) x̂)
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and define uε,δ(x) := v̂ε(Φ
−1
δ (x)) for x ∈ Φδ(D

1
r ×B2), where v̂ε(z) := vε(ẑ),

so that (4.2) holds. We then compute:

∆uε,δ(x) =
1

ϕδ(z̃)2
∆v̂ε(z) +

ϕ′δ
2

ϕδ4
(z̃)

3∑
α,β=2

xαxβ∂
2
α,β v̂ε(z)

+
2ϕ′δ

2 − ϕδϕ′′δ
ϕδ3

(z̃)
3∑

α=2

xα∂αv̂ε(z)

where z = Φ−1
δ (x), so that x̃ = z̃, and x̂ = ϕδ(z̃) ẑ. Using that detDΦδ(z) =

ϕδ(z̃)
2, we get:

detDΦδ(z) ·∆uε,δ(x) = ∆vε(ẑ) + ϕ′δ(z̃)
2

3∑
α,β=2

zαzβ∂
2
α,αvε(ẑ)

+(2ϕ′δ
2 − ϕδϕ′′δ )(z̃)

3∑
α=2

zα∂αvε(ẑ) .

Therefore, since ‖ϕ′δ‖∞,D1
r
≤ 1 and ‖2ϕ′δ

2 − ϕδϕ′′δ‖∞,D1
r
≤ 4, by changing

variables z = Φ−1
δ (x) we can estimate:∫

Φδ(D1
r×B2)

|∆uε,δ| dx ≤
∫

(−r,r)×B2

|∆vε(ẑ)| dz̃ dẑ

+ 8

∫
(r−
√

2δ,r)×B2

( 3∑
α,β=2

|zαzβ||∂2
α,βvε(ẑ)|+ |ẑ||∇vε(ẑ)|

)
dz̃ dẑ .

Since moreover vε ∈WL(R2,S2) is smooth, the integral in the second line is
small for δ > 0 small, whence we can find δ(ε) ∈ (0, r/2) such that

(4.5)

∫
Φδ(D1

r×B2)
|∆uε,δ(ε)| dx ≤ 2r · L(vε, B

2) + ε , see (4.2) .

Recall that the map vε is equal to the pole PS in a neighborhood of the
boundary of B2. Therefore, setting δ = δ(ε) and

(4.6) uε(x) :=

{
uε,δ(x) if x ∈ Φδ(D

1
r ×B2)

PS if x ∈ R3 \
(
Φδ(D

1
r ×B2) ∪ {(±r, 0, 0)}

)
it turns out that the map uε belongs to the class E , whereas by (4.5)

L(uε,R3) =

∫
Φδ(D1

r×B2)
|∆uε,δ| dx ≤ 2r · 8π + (2r + 1) ε .

The energy upper bound (4.1) follows by letting ε↘ 0.
We now prove the energy lower bound

inf{L(u,R3) | u ∈ E} ≥ |a+ − a−| · 8π
by means of a slicing argument and of Theorem 3.2, case d = 1. For this
purpose, recalling the notation x = (x̃, x̂) ∈ R × R2 ' R3, and choosing
u ∈ E , for a.e. t ∈ (−r, r) the restriction ut of u to the 2-dimensional space
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R2
t := {x ∈ R3 | x̃ = t} is a function in WL(R2

t , S2) with degree one. This
can be seen by closing the 2-space R2

t “near infinity” around the degree one
singularity a+, by means of a standard homotopy argument. On account of
Theorem 3.2, we thus have L(ut,R2

t ) ≥ 8π for a.e. t ∈ (−r, r), whence

L(u,R3) ≥
∫ r

−r
L(ut,R2

t ) dt ≥ 2r · 8π , 2r = |a+ − a−|

and the proof is complete �

5. Strong density results

In this section, we prove in any dimension n ≥ 3 a strong density property
in W 2,1(Bn, S2) of the class R∞n−3(Bn, S3) from Definition 1.14. We then
prove a cohomological criterion for strong density of smooth maps.

Second order density results. The following density result was
proved in more generality in [19] when n = 3, and then extended by Bousquet-
Ponce-Van Schaftingen [12] in high dimension, see also [30, Lemma 4.5].

Theorem 5.1. The class R∞n−3(Bn,S2) is strongly dense in W 2,1(Bn, S2),
in any dimension n ≥ 3.

As in the Dipole problem previously discussed, one of the main difficulties
in the proof of Theorem 5.1 is to obtain Sobolev regularity of the derivatives
of the functions involved. Therefore, one cannot use the same construction
as the one in the proof of Theorem 1.15. We also have:

Theorem 5.2. Let n ≥ 3 and u ∈ W 2,1(Bn,S2). There exists a se-
quence {uh} ⊂ R∞n−3(Bn, S2) such that uh → u strongly in W 1,2(Bn,R3)
and L(uh)→ L(u).

Proof. We argue as in the proof of [12, Thm. 3], with the following mod-
ifications. Firstly, we let m = n and consider maps defined on the open
unit cube Qn of Rn and taking values in N = S2. The ambient func-
tional space is X := W 1,2 ∩W 2,1(Qn,R3), equipped with the norm ‖u‖X :=
‖u‖W 1,2 + ‖D2u‖L1 . Then, (X, ‖ · ‖X) is a Banach space, and we work with
the induced distance dX(u, v) = ‖u−v‖X . When treating first order deriva-
tives D1u, i.e., for j = 1, we choose the exponent p = 2, whereas for second
order derivatives, i.e., for j = 2, we choose p = 1. Therefore, we have kp = 2.
Condition D1u ∈ L2, that is obtained in [12, pp. 795, 798] by means of the
Gagliardo-Nirenberg interpolation inequality, in our hypotheses follows from
the pointwise inequality |∆u| ≥ |Du|2, that holds true for maps u ∈ X tak-
ing values in N = S2. Moreover, the Poincaré-Wirtinger inequality applied
in [12, p. 795] continues to hold, with kp = 2, since it deals with first order
derivatives. For the sake of brevity, further details are omitted. �

Remark 5.3. We now point out that the opening, smoothening, and thick-
ening arguments from [12] make use of left or right compositions with smooth
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maps. Therefore, if u ∈ W 2,1(Bn, S2) satisfies condition P(u) = 0, in Theo-
rem 5.2 we can approximate u by a sequence {uh} ⊂ R∞n−3(Bn,S2) satisfying
P(uh) = 0 for every h.

A cohomological criterion. Obstructions to strong density of smooth
maps are encoded by the non-triviality of the current of the singularities
P(u) in (1.13). Concerning the Dirichlet energy, this cohomological argu-
ment was firstly proved by Bethuel [6] when n = 3, and then extended in
high dimension and for a wider class of target manifolds in [9].

Theorem 5.4. Let u ∈ W 2,1(Bn, S2) for some n ≥ 3. If P(u) = 0,
there exists a sequence {uh} ⊂ C∞(Bn,S2) such that uh → u strongly in
W 1,2(Bn,R3) and L(uh) → L(u) as h → ∞. Moreover, the converse prop-
erty holds, too.

Proof. If u ∈W 2,1(Bn,S2) is the strong limit of a smooth sequence {uh} in
C∞(Bn,S2), by Remark 1.5 we know that the graph current Gu satisfies the
null-boundary condition (1.6), which yields P(u) = 0, by (1.14).

Assume now that u ∈ W 2,1(Bn,S2) satisfies condition P(u) = 0. We fol-
low the proof of Thm. 1 from [12, Sec. 9]. Their claim on page 812 concerning
a removable singularity property for W 2,1-maps is of topological nature, as
it holds true under the assumption π2(N ) = 0 on the target manifold N .
When N = S2, such a topological condition is not satisfied. However, tak-
ing into account Remark 5.3, when approximating a map u in W 2,1(Bn, S2),
property P(u) = 0 yields a zero degree condition that allows to conclude that
the cited removable singularity argument continues to hold. For that rea-
son, the proof follows by using similar arguments to the ones of [12, Thm. 1],
with the modification that we made in the proof of Theorem 5.2. Further
details are omitted. �

6. The Laplacean energy on Cartesian currents

In this section, we define a Laplacean energy functional on a suitable class
of Cartesian currents in such a way that a weak sequential lower semiconti-
nuity property holds true.

Due to the embedding of W 2,1(Bn, S2) into W 1,2(Bn,S2), according to
Definition 1.9 we introduce the following

Definition 6.1. We denote by cartL(Bn×S2) the class of Cartesian currents
in cart2,1 (Bn × S2) with underlying function uT in W 2,1(Bn, S2).

Remark 6.2. For future use, given a map u ∈W 2,1(Bn,S2) we also denote

(6.1) T L
u := {T ∈ cartL (Bn × S2) such that uT = u in (1.11)

}
.

By the explicit formula (1.21) for the relaxed Dirichlet energy, we infer that
the class T L

u is always non-empty.
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Laplacean energy on currents. Theorems 2.2 and 3.2 suggest to
introduce on the class cartL(Bn × S2) the Laplacean energy functional

(6.2) L(T ) :=

∫
Bn
|∆uT | dx+ 8π ·M(L) if (1.11) holds

so that we have:

(1) L(T ) <∞ for every T ∈ cartL(Bn × S2);
(2) L(Gu) = L(u) if T = Gu for some smooth map u ∈W 2,1(Bn,S2);
(3) when n = 2, formula (3.5) holds true.

Lower semicontinuity. Similarly to what happens for the Laplacean
energy of σ−1

2 among degree one maps, see (0.7), the term 8π ·M(L) in (6.2)
is the optimal energy contribution of the vertical term L× [[ S2 ]] in(1.11). In
fact, making use of Theorem 2.2 we obtain:

Theorem 6.3. Let n ≥ 2 and let {Tk} ⊂ cartL(Bn×S2) be such that Tk ⇀ T
weakly in Dn(Bn × S2) to some T ∈ cartL(Bn × S2). Then, we have:

L(T ) ≤ lim inf
k→∞

L(Tk), see (6.2) .

Proof. As in [27, Thm. 2.12] and [32, Thm. 5.1], we make use of a dimension
reduction argument that goes back to [11], see also [4, Thm. 5.4]. Firstly, we
consider the case n = 2, where we rely on Theorem 2.2, obtaining inequality
(6.3). We then deal with the case n = 3, where we apply the dimension
reduction argument and inequality (6.3) for n = 2. A similar reduction
to the case n − 1 and an induction argument gives the proof in any high
dimension n ≥ 4.

In (1.11), we denote uTk = uk, uT = u∞ and T = T∞, so that for each

k ∈ N := N ∪ {∞} we have Tk = Guk + Lk × [[ S2 ]] and, in case n ≥ 3, also
(∂Lk) Bn = −P(uk). We define the localized energy on open sets A ⊂ Bn

L(Tk, A) := L(uk, A) + 8π ·M(Lk A) , k ∈ N .

The case n = 2: For each k ∈ N, the current LTk is in R0(B2), whence
it is a finite sum of unit Dirac masses with integer coefficients. Therefore,
by a localization and elimination argument, we may and do assume that
LT∞ = d δO for some d ∈ Z, and that for each k ∈ N we have Tk = Guk for
some uk ∈ W 2,1(B2,S2), with supk L(uk) < ∞. Moreover, for each k ∈ N
we can find a sequence {uk,h}h ⊂ C∞(B2,S2) strongly converging to uk in
W 1,2 and such that L(uk,h) → L(uk) as h → ∞. Using that Guk,h ⇀ Guk
weakly in D2(B2 × S2), by a diagonal argument (which holds true since the
weak convergence is metrizable, see Remark 7.2) we deduce that we can
also assume that {uk} ⊂ C∞(B2,S2). In this case, the lower semicontinuity
inequality follows from Theorem 2.2. Finally, in a similar way we obtain for
any open set A ⊂ B2

(6.3) L(T∞, A) ≤ lim inf
k→∞

L(Tk, A) .
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The case n = 3: Let S2
+ := {x ∈ R3 : |x| = 1, x1 ≥ 0}. For a given

direction ν ∈ S2
+, denote by πν the 1D vector space spanned by ν, and by

Aν the orthogonal projection of an open set A ⊂ B3 onto πν . We also fix
an orthonormal basis τ(ν) = (τ1, τ2) of the 2D vector space orthogonal to

πν and for z = (z1, z2) ∈ R2 we let z • τ(ν) :=
∑2

i=1 ziτi. For any y ∈ Aν we
also denote by

Aνy := {z ∈ R2 | y ν + z • τ(ν) ∈ A}
the (non-empty) section of A corresponding to y, and for any y ∈ Aν and
any uk : A ⊂ B3 → S2 we define the sliced function (uk)

ν
y : Aνy → S2

(uk)
ν
y(z) := uk(y ν + z • τ(ν)) .

Taking A = B3, for any k ∈ N the 2-dimensional slice (cf. [24, Sec. 2.2.5])

(Tk)
ν
y := Tk (B3)νy × S2

defines a Cartesian current in cartL((B3)νy×S2) for L1-a.e. y ∈ (B3)ν , where

(Tk)
ν
y = G(uk)νy

+ (Lk (B3)νy)× [[ S2 ]] .

Also, the energy of the sliced current (Tk)
ν
y is given for L1-a.e. y ∈ (B3)ν by

L((Tk)
ν
y , A

ν
y) =

∫
Aνy

|∆(uk)
ν
y(z)| dL2(z) + 8π ·M(Lk Aνy)

for any open set A ⊂ B3. Therefore, setting

L(Tk, A; ν) :=

∫
Aν

L((Tk)
ν
y , A

ν
y) dL1(y) , k ∈ N

by the inequalities∫
A
|∆uk| dx ≥

∫
Aν

∫
Aνy

|∆(uk)
ν
y(z)| dL2(z) dL1(y) ,

M(Lk A) ≥
∫
Aν

M(Lk Any ) dL1(y)

we infer that

(6.4) L(Tk, A) ≥ L(Tk, A; ν) ∀ k ∈ N .
Moreover, for any open set A ⊂ B3, using that

lim
k→∞

∫
πν

∫
Aνy

|(uk)νy − (u∞)νy | dL2(z) dL1(y) = lim
k→∞

∫
A
|uk − u∞| dx = 0

we can find a strictly increasing sequence {k(h)} ⊂ N such that

lim inf
k→∞

L(Tk, A; ν) = lim
h→∞

L(Tk(h), A; ν)

and the sliced currents (Tk(h))
ν
y converge to (T∞)νy weakly in D2(Aνy ×S2) as

h→∞ for L1-a.e. y ∈ Aν . By (6.3), where n = 2, we thus have

(6.5) lim inf
h→∞

L(Tk(h), A
ν
y) ≥ L(T∞, A

ν
y)
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for any such y. Integrating both sides of (6.5) on Aν , using Fatou’s lemma
and (6.4) we thus get for any ν ∈ S2

+ and A ⊂ B3 open

(6.6) lim inf
k→∞

L(Tk, A) ≥ lim inf
h→∞

L(Tk(h), A; ν) ≥ L(T∞, A; ν) .

Consider now the Radon measure λ := L3+θ∞H1 set (L∞), where θ∞ is
the integer-valued density of the current L∞ = LT∞ ∈ R1(B3) corresponding
to T∞, and set (L∞) the 1-rectifiable set of points with positivity density θ∞.

Let {ν(i)}i ⊂ S2
+ be a countable dense sequence. Setting

ϕi(x) :=

{
|∆(u∞)ν

(i)

y (z)| if x ∈ B3 \ set (L∞) , x = y ν(i) + z • τ(ν(i))
8π if x ∈ set (L∞)

we obtain for every i and for each open set A ⊂ B3 :

L(T∞, A; ν(i)) =

∫
A
ϕi dλ .

By the superadditivity of the lim inf operator, using (6.6) we thus get

(6.7) lim inf
k→∞

L(Tk) ≥
∑
i

∫
Ai

ϕi dλ

for any finite family of pairwise disjoint open sets Ai ⊂ B3. We now recall
that by [4, Lemma 2.35]∫

B3

sup
i∈N

ϕi dλ = sup

{∑
i∈I

∫
Ai

ϕi dλ

}
where the supremum ranges over all finite sets of indices I ⊂ N and all
families {Ai}i∈I of pairwise disjoint open sets with compact closure in B3.
By (6.7), we then conclude with

lim inf
k→∞

L(Tk) ≥
∫
B3

sup
i∈N

ϕi dλ = L(T∞) .

Finally, inequality (6.3) is similarly obtained for any open set A ⊂ B3,
and hence the dimension reduction argument from [11] applies. �

7. The explicit formula

In this section, we obtain in any dimension n ≥ 3 the explicit formula for
the relaxed energy (0.11) of Sobolev maps in W 2,1(Bn,S2).

With the notation from (1.13) and (1.17), Theorem 0.1 states:

∀u ∈W 2,1(Bn, S2) , L̃(u) = L(u) + 8π ·mi,Bn(P(u)) <∞ .

In terms of currents, and on account of definition (6.1) and Remark 6.2,
the proof given below implies that the latter formula is equivalent to:

(7.1) L̃(u) = min
{
L(T ) | T ∈ T L

u

}
∀u ∈W 2,1(Bn, S2) .
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Proof of Theorem 0.1. We first prove the lower bound

L̃(u) ≥ L(u) + 8π ·mi,Bn(P(u)) ∀u ∈W 2,1(Bn, S2) .

Assume L̃(u) <∞, and let {uk} ⊂ C∞(Bn,S2) be any sequence converging
to u in L1(Bn,R3) and such that supk L(uk) < ∞. We thus have to show
that

(7.2) lim inf
k→∞

L(uk) ≥ L(u) + 8π ·mi,Bn(P(u)) .

Possibly passing to a (not relabeled) subsequence, we can assume that the
lim inf in the latter formula is a limit. The lower bound (0.10) yields
supk D(uk) < ∞. Therefore, compare Sec. 1, a (not relabeled) subse-
quence of Guk weakly converges in Dn(Bn × S2) to some current T in
cart2,1 (Bn × S2), see Definition 1.9. Moreover, the L1-convergence uk → u
implies that the underlying function uT agrees with u, whence T ∈ T L

u , see
(6.1). Therefore, by (1.15) and (1.17) we infer:

L(T ) := L(u) + 8π ·M(L) ≥ L(u) + 8π ·mi,Bn(P(u)) .

Since moreover L(uk) = L(Guk) for each k, the lower semicontinuity theo-
rem 6.3, where Tk = Guk , gives

lim inf
k→∞

L(uk) ≥ L(T )

and hence inequality (7.2) readily follows, as required.
Thanks to the energy lower bound, for any given u ∈ W 2,1(Bn,S2) we

now have to find a sequence {uk} ⊂ C∞(Bn,S2) such that uk → u strongly
in L1(Bn,R3) and

lim
k→∞

L(uk) = L(u) + 8π ·mi,Bn(P(u)) .

To this aim, we first recall that the class T L
u is non-empty, see Remark 6.2,

whence mi,Bn(P(u)) <∞. Setting then Tu = Gu+Lu× [[ S2 ]], where Lu is a
minimal integral connection of P(u), see Remark 1.11, it turns out that Tu
is an energy minimizing current Tu in the class T L

u , so that in particular

L(Tu) = L(u) + 8π ·mi,Bn(P(u)) <∞ .

Therefore, the requested strong approximation property is given by Theo-
rem 7.1 below, when applied to T = Tu. In particular, equation (7.1) holds
true. �

The density theorem. The following density result concludes the proof
of Theorem 0.1.

Theorem 7.1. Let n ≥ 3 and T ∈ cartL(Bn × S2), see Definition 6.1, so
that (1.11) holds. Then, there exists a sequence {uk} ⊂ C∞(Bn,S2) such
that uk → u strongly in L1(Bn,R3), the currents Guk weakly converge to T
in Dn(Bn × S2), and L(uk)→ L(T ) as k →∞.
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In Appendix A, we give a shorter proof of Theorem 7.1 in low dimension
n = 3. Following arguments from the case of the Dirichlet energy analysed
in [22], we make use of Proposition 1.16.

In dimension n ≥ 4, we are not able to extend Proposition 1.16, see
Remark 1.17, whereas the strategy from [26] doesn’t apply, since it is based
on a partial regularity result for the Dirichlet energy. Therefore, making
use of an idea by M. Giaquinta from [27], we have to proceed by means of
Theorem 7.3 below. Some further notation is in order.

For currents T ∈ Dn(Bn × S2), we denote by F(T ) the flat norm

F(T ) := sup{〈T ;ω〉 | ω ∈ Dn(Bn × S2) , F(ω) ≤ 1}

where for every ω ∈ Dn(Bn × S2)

F(ω) := max

{
sup

z∈Bn×S2
‖ω(z)‖ , sup

z∈Bn×S2
‖dω(z)‖

}
.

Remark 7.2. As |T (ω)| ≤ F(T ) F(ω), we infer that Tk ⇀ T weakly in
Dn(Bn × S2) provided that F(Tk − T ) → 0. Notice that the converse im-
plication holds true on the class Rn(Bn × S2), as we deal with compactly
supported currents, compare e.g. [24, Sec. 5.1.3, Thm. 2].

If T ∈ cartL(Bn × S2), so that (1.11) holds, we denote by µT the finite
Radon measure on Bn given for every Borel set B ⊂ Bn by

(7.3) µT (B) := 8π ·M(L B) .

Theorem 7.3. Let T ∈ cartL (Bn × S2), let ε ∈ (0, 1/2) and k ∈ N. We

can find a current T̃ ∈ cartL (Bn × S2) such that

L(T̃ ) ≤ L(T ) + εk , F(T̃ − T ) ≤ εk , and µ
T̃

(Bn) ≤ 1

2
· µT (Bn) .

The proof of the approximation theorem 7.3 is rather technical. Therefore,
it is postponed to the Appendices B and C.

Proof of Theorem 7.1. By Theorem 7.3 and Remark 7.2, using a diagonal ar-
gument we find a sequence {Tk} ⊂ cartL (Bn × S2) that weakly converges to
T in Dn(Bn × S2) with L(Tk)→ L(T ) as k →∞, and such that µTk(Bn) = 0
for each k. Therefore, Tk = Guk for some uk ∈ W 2,1(Bn, S2), and hence
L(Tk) = L(uk). Since

(∂Tk) Bn × S2 = 0 ∀ k

by (1.14) we have P(uk) = 0. Therefore, by Theorem 5.4 each uk is the
strong limit of a sequence {uk,h}h in C∞(Bn, S2), with Guk,h ⇀ Guk in

Dn(Bn × S2) and also L(uk,h) → L(uk) as h → ∞. Using Remark 7.2, a
further diagonal argument yields the smooth approximating sequence. �
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8. Final remarks and open questions

The relaxed Laplacean energy of maps satisfying a suitable Dirichlet-type
boundary condition can be treated similarly to the case analysed here, and
we refer to [26] for the corresponding results concerning the Dirichlet energy.

As already mentioned in Sec. 2, a part from the case of low dimension
n = 2, we are not able to give an explicit formula of the relaxed energy in

case of maps u in L1(Bn,S2) \W 2,1(Bn,S2) satisfying L̃(u) <∞.
To this purpose, we have seen in Proposition 2.1 that in the particular case

when the gradient Du belongs to BV(Bn,R3×n), the singular component
(DivDu)s is “tangential” to S2. On the other hand, in the W 2,1-case we
have proved that the energy gap 8π · mi,Bn(Bn) does not depend on the
tangential component τ(u) of the Laplacean vector, see (0.2).

Therefore, since we are dealing with maps in W 1,2(Bn, S2), formula

L̃(u) = |DivDu|(Bn) + 8π ·mi,Bn(Bn) <∞ ∀u ∈ L(Bn,S2)

is expected to hold in any dimension n ≥ 3, i.e., no extra terms in corre-
spondence to the singular part of the measure DivDu should appear.

The BV case. On account of (0.17), we now show in any dimension n ≥ 3
the lower bound (0.18). To this purpose, denoting by cartLBV (Bn × S2) the
class of Cartesian currents T = GuT + L × [[ S2 ]] in cart2,1(Bn × S2) with
uT ∈ LBV (Bn, S2), and defining

L(T ) := |DivDuT |(Bn) + 8π ·M(L)

it turns out that the lower semicontinuity theorem 6.3 continues to hold in
cartLBV (Bn × S2).

In fact, when n = 2 it is obtained again as a consequence of Theorem 2.2,
whereas in case n ≥ 3 we can apply the same dimension reduction procedure,
due to the structure of the measure DivDu inherited by the membership of
the gradient function Du to the class BV. As a consequence, the lower
bound (0.18) is obtained exactly as in the proof of Theorem 0.1 from Sec. 7.

On the other hand, in order to obtain the equality sign in (0.18), one
should extend Theorem 5.2, by proving for any u ∈ LBV (Bn,S2), where
n ≥ 3, the existence of a sequence {uh} ⊂ R∞n−3(Bn,S2) converging to u in

W 1,2(Bn,R3) and such that L(uh) → |DivDu|(Bn) as h → ∞. Therefore,
it is not clear how to extend the density theorem 7.1 to the larger class
cartLBV (Bn × S2), that would give the equality sign in (0.18).

Remark 8.1. Extending the validity of the lower semicontinuity theo-
rem 6.3 to the case of general maps u ∈ L(B2, S2) is another open question.
In fact, when Du 6∈ BV(B2,R3×2) we do not have enough information con-
cerning the singular part of the measure DivDu in order to apply the same
dimension reduction procedure. Therefore, we are not able to extend the
lower bound (0.18) to the whole class of maps with finite relaxed energy.
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Bienergy. Theorem 6.3 may be compared to the lower semicontinuity
property (1.12) of the Dirichlet energy functional D(T ) in cart2,1(Bn × S2),
that holds true since D(T ) agrees with the parametric polyconvex lower
semicontinuous extension of the Dirichlet integrand.

Concerning second order functionals as e.g. the Laplacean energy L(u),
a part from the easier case of 1-dimensional currents, compare [1, 2], to our
knowledge it is not clear how to apply the approach from [25] in order to
find the explicit formula of the parametric polyconvex lower semicontinuous
extension. Therefore, we have followed a different strategy.

The same difficulty appears in case of the bienergy functional H(u) of
maps u : Bn → S4, see (0.4). In fact, finding the expression of the paramet-
ric polyconvex lower semicontinuous extension of the bienergy to Cartesian
currents in Bn×S4 would give us the explicit value of the minimal bienergy
E4 of degree one maps from R4 into S4, a non-trivial open problem.

We recall that in [5] it is proved that the bienergy minimum is attained,
and that E4 > 16 · H4(S4), the expected weight being E4 = 24 · H4(S4).

Denote now on maps u ∈ L1(Bn,S4)

H̃(u) := inf
{

lim inf
h→∞

H(uh) | {uh} ⊂ C∞(Bn,S4), uk → u in L1(Bn,R5)
}
.

Under prescribed first order boundary conditions, by the Bochner inequal-

ity one infers that H̃(u) <∞ if and only if u ∈W 2,2(Bn,S4). Since moreover
by (0.6) we have W 2,2(Bn,S4) ⊂ W 1,2(Bn,S4), due to the continuous em-

bedding of W 1,4(Bn) in VMO, in low dimension n ≤ 4 we get H̃(u) = H(u)
for every u ∈W 2,2(Bn,S4). Finally, in high dimension n ≥ 5, with a similar
strategy to the one adopted in this paper it could be shown that

H̃(u) = H(u) + E4 ·mi(P(u)) <∞ ∀u ∈W 2,2(Bn,S4)

where mi(P(u)) denotes the integral mass of the (n− 5)-current P(u) of the
singularities, that is defined on maps u ∈ W 1,4(Bn, S4) in a similar way to
(1.13), but in terms of a volume 4-form in S4.

Appendix A. The density theorem in 3D

We give a sketch of a proof of Theorem 7.1 in low dimension n = 3, by
following the lines of Thm. 1 from [25, Sec. 4.2.6], to which we refer for
further details.

We make use of the following variant of Theorem 4.1. Recalling (4.3), for
each m > 0 small we denote

Φm
δ (x̃, x̂) := (x̃,mϕδ(x̃) x̂) , Ωm

δ := Φm
δ (D1

r ×B2) .

Proposition A.1 is obtained by readapting an argument taken from [23],
compare [25, Sec. 4.2.3]. Therefore, its proof is omitted.

Proposition A.1. Let U be a neighborhood of the segment joining a−
to a+, and let u : U → S2 be a W 1,2-map with finite Laplacean energy
which is smooth in U outside the singular points a±, where it has degree
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deg(u, a±) = k± for some k± ∈ Z, see (1.19). Let d ∈ Z. Then for all
positive ε and for δ, m > 0 sufficiently small there exists a smooth function
uε : R3 \ {a−, a+} → S2 such that uε ≡ u outside Ωm

δ , deg(u, a+) = k+ − d,
deg(u, a−) = k− + d, and finally

L(uε,Ω
m
δ ) :=

∫
Ωmδ

|∆uε| dx ≤ |a+ − a−| · 8π |d|+ ε .

Proof of Theorem 7.1, case n = 3. By Theorem 5.2 and Proposition 1.16,
we find a sequence {uk} ⊂ W 2,1(B3,S2) ∩ R∞0 such that uk → u strongly
in W 1,2(B3,R3), with L(uk) → L(u) and mi,B3(P(uk) − P(u)) → 0. We

thus reduce to the case when T = Gu + ST , where u ∈ W 2,1(B3,S2) ∩ R∞0
and ST = L × [[ S2 ]] for some L ∈ R1(R3) with (∂L) B3 = −P(u), where
P(u) ∈ R0(B3) with M(P(u)) <∞.

If in addition we have M(∂L) <∞, i.e., L is an integral current in R3, as
in Steps 1–3 of the proof of Thm. 1 from [25, Sec. 4.2.5], we reduce to

ST =
∑
d∈I

P d × d [[S2 ]]

where I is a finite set of integer indices and the P d’s are polyhedral lines in
B3 with pairwise disjoint supports. Let now Si be anyone of the segments
of the P d’s, and let [[Si ]] = [[ (ni, pi) ]]. By a suitable change of coordinates
we can assume that ni = a+ and pi = a−, as in Sec. 4. We then apply
Proposition A.1. To this aim, notice that we can take m and δ sufficiently
small so that the neighborhoods Ωm

δ corresponding to different segments Si
are pairwise disjoint and contained in B3. We then replace u in a small
neighborhood of each Si by a function uε ∈W 2,1(B3,S2) satisfying

L(uε) ≤ L(u) +
∑
d∈I

M(P d) · 8π |d|+ ε .

The function uε this way obtained belongs to W 2,1(B3, S2) and it has
degree zero around each end point of the segments Si which belongs to the
open ball B3, see (1.19), i.e., around each singular point of uε, whence
P(uε) = 0, see (1.13). Moreover, taking δ ↘ 0 as ε ↘ 0, it turns out that
Guε ⇀ T weakly in D3(B3× S2) as ε→ 0 along a sequence. Since moreover
P(uε) = 0, by Theorem 5.4 we find a sequence {uεk} ⊂ C∞(B3,S2) such that
uεk → uε strongly in W 1,2(B3,R3) and L(uεk) → L(u), so that Guεk ⇀ Guε
weakly in D3(B3×S2). Therefore, a diagonal argument concludes the proof
in case M(∂L) <∞.

Finally, in general we only have M((∂L) B3) < ∞. In that case, in
order to apply the strong polyhedral approximation theorem we make use
of a slicing argument as in the proof of Thm. 1 from [25, Sec. 4.2.6]. �
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Appendix B. The approximation theorem. I

The proof of Theorem 7.3 is given in Appendix C. It is based on the
following local arguments. Firstly, Proposition B.1, we show how to “de-
form” a current T , satisfying suitable energy estimates on the boundary
of a ball, into a current satisfying a bound on the oscillation. Secondly,
Propositions B.2 and B.3, we make use of a local approximation argument
that relies on the Dipole construction from Theorem 4.1. Since we follow
arguments from [27, 28, 29, 20], some details will be omitted.

Notation. If T ∈ cartL (Bn × S2), in formula (1.11) we can write

(B.1) T = Gu + ST , ST :=
∑
d∈Z

Ld × d [[S2 ]]

where u = uT ∈ W 2,1(Bn,S2), every Ld is an i.m. rectifiable current in
Rn−2(Bn) with multiplicity one, and the (n − 2)-rectifiable sets Ld :=
set (Ld) are pairwise disjoint. As a consequence, by definition (7.3) we have

(B.2) µT (B) = 8π ·
∑
d∈Z
|d| ·M(Ld B)

and the rectifiable measure µT satisfies µT = θT Hn−2 LT , where LT :=⋃
d∈Z Ld is an (n− 2)-rectifiable set, with Hn−2(LT ) <∞, and the density

θT : LT → [0,+∞) is Hn−2 LT -summable, with θT (x) = |d| if x ∈ Ld.
Therefore, there exists d ∈ N+, only depending on T , such that

(B.3) µT (Bn \ LT (d)) <
1

4
µT (Bn) , where LT (d) :=

⋃
|d|≤d

Ld .

Finally, for each Borel set B ⊂ Bn we let

L(T,B) := L(u,B) + µT (B) , L(u,B) :=

∫
B
|∆u| dx .

For ε > 0 small, we denote by S2
ε := {y ∈ R3 | dist (y,S2) ≤ ε} the

ε-neighborhood of S2 and by Πε the nearest point projection of S2
ε onto S2.

Notice that the Lipschitz constant Lε of the smooth map Πε goes to 1 as
ε→ 0+. For y ∈ S2 we also denote by

BS2(y, ε) := B̄3
ε (y) ∩ S2

the intersection of S2 with the closed 3-ball B̄3
ε (y) in R3 of radius ε centered

at y, so that we have Πε(B̄
3
ε (y)) = BS2(y, ε). Moreover, we let Ψ(y,ε) : R3 →

BS2(y, ε) be the retraction map Ψ(y,ε)(z) := Πε ◦ ξ(y,ε), where

(B.4) ξ(y,ε)(z) :=

 z if z ∈ B̄3
ε (y)

ε
z − y
|z − y|

if z ∈ R3 \ B̄3
ε (y) .

Then, Ψ(y,ε) is Lipschitz continuous and Lip Ψ(y,ε) = Lip Πε → 1+ as ε→ 0+.
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Finally, in the sequel we denote by c > 0 an absolute real constant,
possibly varying from line to line.

Slicing properties. For every point x0 ∈ Bn we consider on (x, y) ∈
Bn × R3 the distance functions d̂x0(x, y) = d̃x0(x) := |x − x0|. Since T is
an i.m. rectifiable current satisfying the null-boundary condition (1.10), for
a.e. radius r ∈ (0, r0), where r0 := dist (x0, ∂B

n) > 0, the sliced current

〈T, d̂x0 , r〉 = 〈GuT , d̂x0 , r〉+ 〈ST , d̂x0 , r〉
(cf. [24, Sec. 2.2.5]) is i.m. rectifiable in Rn−1(∂Bn

r (x0) × S2), with no

boundary, ∂〈T, d̂x0 , r〉 = 0 on Dn−2(∂Bn
r (x0)× S2).

Denoting by ur,x0 := u|∂Bnr (x0) the restriction of u to ∂Bn
r (x0), then ur,x0

is a Sobolev map in W 2,1(∂Bn
r (x0),S2), with

∫
∂Bnr (x0) |∆ur,x0 | dH

n−1 < ∞,

where ∆ur,x0 denotes the Laplacean of the sliced map ur,x0 w.r.t. a tangen-
tial frame to ∂Bn

r (x0), and on account of (1.3)

〈〈Gu, d̂x0 , r〉;ω〉 =

∫
∂Bnr (x0)

(Id ./ ur,x0)#ω , ω ∈ Dn−1(∂Bn
r (x0)× S2)

whereas by (B.1)

〈ST , d̂x0 , r〉 =
∑
d∈Z
〈Ld, d̃x0 , r〉 × d [[S2 ]] on Dn−1(∂Bn

r (x0)× S2) .

As in Definition 6.1, the sliced current 〈T, d̂x0 , r〉 is said to be a Cartesian

current in cartL(∂Bn
r (x0)× S2). The Laplacean energy of 〈T, d̂x0 , r〉 is

L(〈T, d̂x0 , r〉) := L(〈T, d̂x0 , r〉, Bn)

where for each Borel set B ⊂ Bn we let

(B.5) L(〈T, d̂x0 , r〉, B) := L(ur,x0 , B) + 8π ·
∑
d∈Z
|d| ·M(〈Ld, δ̃x0 , r〉 B)

and

L(ur,x0 , B) :=

∫
∂Bnr (x0)∩B

|∆ur,x0 | dHn−1 .

Projecting the image of a current. Let Dr := Bn−2(0Rn−2 , r),
and denote O := 0Rn . We have:

Proposition B.1. Let 0 < R < R0 < 1 and T ∈ cartL(Bn
R0
× S2) such that

θT (O) ≤ d, see (B.3), and

(B.6)

L(〈T, d̂O, R〉, ∂Bn
R \ (D̄R × {0R2})) ≤ c σ θT (O)Rn−3

L(〈T, d̂O, R〉) ≤ c θT (O)Rn−3∫
∂BnR

|u(x)− y|2 dHn−1 ≤ c σ Rn−1

for some y ∈ S2 and for σ > 0 small enough, in such a way that σ1/3 d ≤ 1.
Then, there exists an absolute constant c > 0 such that, if q ∈ N+ is the

integer part of σα(n), where α(n) := 1/(6(2− n)) < 0, and r = R(1− 1/q),
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we can find a Cartesian current T̃ ∈ cartL((Bn
R \ B̄n

r ) × S2) for which the
following facts hold:

(a) 〈T̃ , d̂O, R〉 = 〈T, d̂O, R〉 and 〈T̃ , d̂O, r〉 = (ψR,r ./ Ψ(y,εσ))#〈T, d̂O, R〉,
see (B.4), where εσ := c σ1/3 and ψR,r(x) := rx/R, so that the sup-

port spt 〈T̃ , d̂O, r〉 ⊂ ∂Bn
r ×BS2(y, εσ);

(b) T̃ has small energy on Bn
R \ B̄n

r , i.e.,

(B.7) L(T̃ , Bn
R \ B̄n

r ) ≤ c R
q
L(〈T, d̂O, R〉) ;

(c) the flat distance to the graph Gy of the constant map y is small:

(B.8) F((T̃ −Gy) (Bn
R \ B̄n

r )× S2) ≤ c σ
q
Rn ≤ c σ Rn−1

0 .

Proof. We find a suitable subdivision of ∂Bn
R in a grid made of small (n−1)-

dimensional “cubes” of side R/q. Denoting by Σk
R the union of the k-faces

of the grid that do not intersect D̄R × {0R2}, using the first inequality in

(B.6) we may and do estimate the energy of the restriction of 〈T, d̂O, R〉 to
Σk
R × S2 by c σ θT (O) qn−1−k Rk−2 for every k = 1, . . . , n− 2.

In particular, since σ1/3 ΘT (O) ≤ σ1/3 d ≤ 1, then the energy of the

restriction of 〈T, d̂O, R〉 to Σ2
R × S2 is smaller than the quantity E(σ) :=

c σ2/3 qn−3. Therefore, since E(σ) → 0 as σ → 0, provided that q ∈ N+

is chosen as in the hypothesis, taking σ > 0 small it turns out that the

restriction of 〈T, d̂O, R〉 to Σ2
R×S2 has no vertical part, hence it agrees with

the graph current of a W 2,1 map w with values into S2. In addition,∫
Σ1
R

|Dw|Σ1
R
|2 dH1 ≤

∫
Σ1
R

|∆w|Σ1
R
| dH1 ≤ c σ2/3 qn−2 1

R
.

The grid of ∂Bn
R being made of approximately qn−1 cubes of side R/q, we

have H1(Σ1
R) ≤ cR qn−2 and hence, by Hölder inequality∫

Σ1
R

|Dw|Σ1
R
| dH1 ≤ c σ1/3qn−2 ≤ c σ1/3 =: εσ .

By using the third inequality in (B.6) and the above formula, we then
infer that we may and do assume that the image w(Σ1

R) is contained in the
geodesic ball BS2(y, εσ).

Therefore, using the argument of Step 3 of [29], we define the current T̃
on the cubes of Bn

R \Bn
r that do not intersect D̄R × {0R2}. In fact, since it

is obtained by means of extensions of the restriction of w to the 1-skeleton
Σ1
R, no boundary is produced in the construction, as w(Σ1

R) ⊂ BS2(y, εσ).

This way we obtain a bound of the energy of T̃ in terms of

c
R

q
L(〈T, d̂O, R〉, ∂Bn

R \ (D̄R × {0R2}))
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and hence in terms of the right-hand side of (B.7). Using a slightly different

argument when defining T̃ on the cubes of Bn
R\Bn

r that intersect the (n−2)-
disk D̄R×{0R2}, by the second inequality in (B.6) we obtain an extra term

in the energy estimate of T̃ given again by the right-hand side of (B.7).

By the third inequality in (B.6), by the construction of T̃ , and since
0 < R < R0 < 1, we obtain the bound (B.8) of the flat distance, whereas
property (a) follows by using the argument of [29, Step 3]. �

Approximation on a ball. Let ϕδ : (−r, r) → [0, δ] be the smooth
function defined in (4.3) for the Dipole problem, and let Φδ be given by (4.4),
where this time z = (z̃, ẑ) ∈ Dr×B̄2 ⊂ Rn−2×R2, so that Ωδ := Φδ(Dr×B̄2)
is a small neighborhood of the interior of the (n−2)-disk Dr×{0R2} in Bn

R.
Moreover, let

(B.9) Ω̃δ := Φδ(Dr × B̄2
1/2) = {(x̃, x̂) | x̃ ∈ Dr , |x̂| ≤ ϕδ(|x̃|)/2} ,

where |x̃| := |x̃|Rn−2 , |x̂| := |x̂|R2 , and

Ω(r,δ) := Ωδ \ (Dr × {0R2}) .
In the proof of Theorem 7.3, we make use of the following

Proposition B.2. Let T ∈ cartL(Bn
r ×S2) be such that (B.1) holds. Assume

that sptT ⊂ B̄n
r × BS2(y, εσ), where y ∈ S2 and εσ = c σ1/3, with σ > 0

small, and that Dr × {0R2} ⊂ set (Ld) for some d ∈ Z. For δ > 0 small

enough, we can find a current T̃ ∈ cartL((Bn
r \ Ω̃δ)× S2) satisfying:

i)

∂(T̃ (Bn
r \ Ω̃δ)× S2) = ∂(T Bn

r × S2)− ∂[[ Ω̃δ ]]× δy
−[[ ∂Dr × {0R2} ]]× d [[S2 ]] ;

ii) L(T̃ , (Bn
r \ Ω̃δ)× S2) ≤ L(u, (Bn

r \ Ωδ)) + c σ rn−2 + c µT (Ω(r,δ));

iii) F((T̃ − T ) (Bn
r \ Ω̃δ)× S2) ≤ c σ rn−2.

Proof. Let ψδ : Ωδ \ Ω̃δ → Ω(r,δ) be the bijective map

ψδ(x̃, x̂) :=
(
x̃,
(

2− ϕδ(|x̃|)
|x̂|

)
x̂
)
.

Similarly to [28, Sec. 5.5], we infer that the current

T := ((ψδ)
−1 ./ IdR3)#(T (int (Ω(r,δ))× S2))

belongs to cartL(int (Ωδ \ Ω̃δ) × S2), its underlying W 2,1 function is v :=

u ◦ ψδ : (Ωδ \ Ω̃δ) → BS2(y, εσ), where u : Bn
r → BS2(y, εσ) is the W 2,1

function corresponding to T in (B.1), and

µT (int (Ωδ \ Ω̃δ)) ≤ µT (int (Ω(r,δ))) .

Setting then w : (Ωδ \ Ω̃δ)→ R3 by

w(x) :=
( 2|x̂|
ϕδ(|x̃|)

− 1
)
v(x) +

(
2− 2|x̂|

ϕδ(|x̃|)

)
y
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using that the oscillation of v is small with σ > 0, we infer that the energy

L(w,Ωδ \ Ω̃δ) is small if δ and σ are small. Moreover, by projecting w into

S2, we may and do assume that w belongs to W 2,1(Ωδ \ Ω̃δ, S2).

Therefore, we can define a current T̂ ∈ cartL(int (Ωδ \ Ω̃δ) × S2), with
underlying W 2,1 function equal to w, that satisfies the boundary condition

∂T̂ = ∂(T Ωδ × S2)− ∂[[ Ω̃δ ]]× δy − [[ ∂Dr × {0R2} ]]× d [[S2 ]]

and (taking δ small) also the energy estimate

L(T̂ , int (Ωδ \ Ω̃δ)) ≤ c σ rn−2 + c µT (Ω(r,δ)) .

We finally set

T̃ := T (Bn
r \ int (Ωδ))× S2 + T̂ (int (Ωδ) \ Ω̃δ)× S2 .

Properties i)–iii) readily follows, for δ > 0 small. �

The dipole construction. We finally make use of the following:

Proposition B.3. Let d ∈ Z and y ∈ S2. For every σ > 0 there exists a

function vσ ∈ W 2,1(Ω̃δ, S2), with δ > 0 sufficiently small, such that Gvσ ∈
cartL(int (Ω̃δ)× S2), vσ#[[ Ω̃δ ]] = d [[S2 ]],

(B.10) L(vσ, Ω̃δ) ≤ σ rn−2 +Hn−2(Dr) · 8π |d|

and

(B.11) ∂Gvσ = ∂[[ Ω̃δ ]]× δy + [[ ∂Dr × {0R2} ]]× d [[S2 ]] .

Proof. By Theorem 3.2, we find u ∈ Fd with energy L(u,R2) ≤ 8π |d| + ε.
Arguing as in Proposition 3.1 (where we choose δ = 1/2), for each ε > 0 we
then find a smooth map vε ∈ C∞(R2,S2) such that:

(1) vε is equal to y outside the disk B2
1/2 ;

(2) deg vε = deg u = d ;
(3) L(vε,R2) ≤ L(u,R2) + ε .

Setting uε(x) := vε(x̂), where x = (x̃, x̂) ∈ Rn−2 × R2, we obtain uε ∈
WL(Rn,S2) such that for every ρ ∈ (0, r]

L(uε, Dρ ×B2
1/2) ≤ Hn−2(Dρ) · L(vε,R2) ≤ Hn−2(Dρ) · (8π |d|+ 2ε) .

Let now 0 < δ < 1 and uεδ := uε ◦ Φ−1
δ : Ω̃δ → S2, where Φδ is given by

(4.4). Arguing as e.g. in [28, Sec. 5.5], we estimate

L(uεδ, Ω̃δ) ≤ L(uε, Dr ×B2
1/2) + cL(uε, (Dr \Dr−δ)×B2

1/2)

where c > 0 is an absolute constant. Therefore, setting vσ := uεδ for ε > 0
sufficiently small, and for δ sufficiently small in dependence of ε, we get
(B.10), whereas (B.11) readily follows. �
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Appendix C. The approximation theorem. II

Proof of Theorem 7.3. On account of (B.3), we let

(C.1) µ̃T := θT Hn−2 LT (d) .

By applying arguments as for instance in the proof of [16, 4.2.19] to the
rectifiable measure µ̃T , by [16, 3.2.29] we find a countable family G of (n−2)-
dimensional C1-submanifolds Mj of Bn such that µ̃T -almost all of Bn is
covered by G.

Let σ ∈ (0, 1) to be fixed. By Vitali-Besicovitch theorem, and by the prop-
erties of the class cartL (Bn × S2), we can find a number t = tσ ∈ (1/2, 1), a
countable disjoint family of closed balls Bj := B̄n(xj , rj), contained in Bn

and centered at points xj in LT (d), satisfying the properties listed below. In
the sequel we denote by c > 0 an absolute constant, possibly varying from
line to line, which is independent of σ and of the radii rj of the balls Bj .

i) µ̃T (Bn \
⋃
j Bj) = 0.

ii) For every j there is a manifold Mj of G such that the center xj of
Bj belongs to Mj .

iii) Since Hn−2(LT (d)) <∞, then

(C.2)
∞∑
j=1

rj
n−2 ≤ cHn−2(LT (d)) <∞ .

iv) We have

(C.3) µ̃T (B(xj , rj) \ (B(xj , trj) ∩Mj)) ≤ σ µ̃T (B(xj , rj)) ∀ j .
v) Recalling (B.2) and(B.3), we have Mj ⊂ Ldj = set (Ldj ) for some

dj ∈ Z with |dj | ≤ d, so that in particular ΘT (xj) ≤ d.
vi) All the xj ’s are Lebesgue points of u, Du, and ∆u, with Lebesgue

values u(xj) = zj , and by a slicing argument

(C.4)

∫
∂B(xj ,trj)

|u(x)− zj |2 dHn−1 ≤ c σ rjn−1 .

vii) Using a blow-up argument at xj in the x-variables, we may and do
assume that the current Sj := [[Bj ]] × δzj + [[Mj ]] × dj [[ S2 ]] has

small flat distance from T on Bj × S2, i.e.,

(C.5) F((Sj − T ) Bj × S2) ≤ c σ rjn−2 .

viii) By a slicing argument, we may and do assume that for some R ∈
(trj , 2trj) the (n − 1)-dimensional current 〈T, d̂xj , trj〉 belongs to

cartL and satisfies

L(〈T, d̂xj , trj〉, ∂B(xj , trj) \Mj) ≤
c

rj
· L(T,B(xj , R) \Mj) .

Also, by the construction we may assume that both (C.3) and

(C.6) µ̃T (B(xj , ρ)) ≤ c θT (xj) ρ
n−2 , L(u,B(xj , ρ)) ≤ c |∆u(xj)| ρn
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hold true for any 0 < ρ < 2rj . Therefore, taking rj small so that
|∆u(xj)| rj2 ≤ σ θT (xj), we readily obtain

(C.7) L(〈T, d̂xj , trj〉, ∂B(xj , trj) \Mj) ≤ c σ θT (xj) rj
n−3 .

ix) Using a similar slicing argument and (C.6), we also may and do
assume that

(C.8) L(〈T, d̂xj , trj〉) ≤ c θT (xj) rj
n−3 .

x) Since θT (xj) is the (n − 2)-dimensional density of µ̃T at xj , and
xj ∈ set (Ldj ), denoting by αn−2 the measure of the unit ball of
dimension n− 2, we also may and do assume that

(C.9) |µ̃T (Bj)− 8π |dj | · αn−2 rj
n−2| ≤ σ αn−2 rj

n−2 .

xi) There exists a suitable bilipschitz homeomorphism ψσ from Bn onto
itself, with Lipψσ ≤ 2 and Lipψ−1

σ ≤ 2, such that ψσ maps bijec-
tively Bj onto Bj with ψσ|∂Bj = Id|∂Bj for all j, and ψσ is equal to
the identity outside the union of the balls Bj . Moreover:

xii) For every j we have

ψσ(B(xj , tσrj) ∩Mj) = B(xj , ρj) ∩ (xj + Tan(Mj , xj))

where ρj ∈ (rj/2, rj) and Tan(Mj , xj) is the (n − 2)-dimensional
tangent space to Mj at xj , and also

ψσ(∂B(xj , tσrj)) = ∂B(xj , ρj) .

Setting now for any j

T σj := (ψσ ./ IdR3)#T int (Bj)× S2

then T σj belongs to cartL(int (Bj)×S2), with underlying function uσj := (u ◦
ψ−1
σ )|int (Bj) in W 2,1(int (Bj), S2), and µTσj = ψσ#(µ̃T int (Bj)). Moreover,

by (C.7), (C.8), and (C.4) we infer that T σj satisfies (B.6), where y = zj ∈ S2

is the Lebesgue value of u at xj , with xj = O, R0 = rj , and R = ρj , i.e.,

Bj = B̄n
R0
, B(xj , ρj) = Bn

R ,
B(xj , ρj) ∩ (xj + Tan(Mj , xj)) = DR × {0R2} ⊂ Rn−2 × R2 .

Since ΘT (xj) ≤ d, we can apply Proposition B.1 in order to obtain a

current T̃j ∈ cartL((B(xj , ρj) \ B̄(xj , δj))×S2), where δj := ρj(1− 1/q). Set

now β(n) := 1/(12(n − 2)) > 0. Since 1/q ≤ c σ1/(6(n−2)), by (B.7), (B.6),

and (C.8), taking σ > 0 small so that σβ(n) < 1/d, see (B.3), we obtain

(C.10) L(T̃j , B(xj , ρj) \ B̄(xj , δj)) ≤ c σβ(n) ρj
n−2

whereas by (B.8)

(C.11) F((T̃j −Gzj ) (B(xj , ρj) \ B̄(xj , δj))× S2) ≤ c σ rjn−1 .

Setting now

T̆ σj := (ψj ./ Ψ(zj ,εσ))#(T σj B̄(xj , ρj)× S2)
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where ψj(x) := xj +
δj
ρj

(x− xj), we have spt T̆ σj ⊂ B̄(xj , δj) × BS2(zj , εσ),

whence T̆ σj satisfies the hypotheses of Proposition B.2, with B(xj , δj) instead

of Bn
r , y = zj , and d = dj . By defining Ω̃j

δ similarly to (B.9), but in

correspondence to B(xj , δj), the cited proposition yields a current T̂ σj ∈
cartL((B(xj , δj) \ Ω̃j

δ)× S2).
Moreover, by applying Proposition B.3, with B(xj , δj) instead of Bn

r and

d = dj , we find a suitable function vσj ∈W 2,1(Ω̃j
δ,S

2). Setting then

T
σ
j := T̂ σj +Gvσj

(B.11) and i) in Proposition B.2 yield that T
σ
j ∈ cartL(B(xj , δj)× S2) and

(C.12) ∂(T
σ
j B(xj , δj)× S2) = ∂(T̆ σj B(xj , δj)× S2) .

Also, by (B.10) we have

L(vσj , Ω̃δ) ≤ σ δjn−2 +Hn−2(Drj ) · 8π |dj | .
Therefore, since δj ∈ (rj/2, rj), by (C.9) we get:

L(vσj , Ω̃δ) ≤ c σ rjn−2 + µ̃T (Bj) .

Finally, using (C.3) in order to estimate the last term in the right-hand side
of ii) in Proposition B.2, we obtain

(C.13)
L(T

σ
j , B(xj , δj)) ≤ L(uσj , B(xj , δj))

+ c σ rj
n−2 + (1 + c σ) µ̃T (B(xj , δj)) .

We now set

T̃ σj := T
σ
j + T̃j + T σj (B(xj , rj) \B(xj , ρj))× S2 .

Property (a) in Proposition B.1, the definition of T̆ σj , and (C.12), yield that

T̃ σj belongs to the class cartL(int (Bj)×S2). Moreover, by (C.10) and (C.13)

(C.14) L(T̃ σj , Bj) ≤ L(T σj , Bj) + c σβ(n) rj
n−2 + c σµ̃T (Bj) .

Finally, arguing as in [28, Sec. 5.5, Step 3], by (B.8), property iii) in Propo-
sition B.2, and the dipole construction from Proposition B.3, for ε, δ small
we obtain

F((T̃ σj − T σj ) Bj × S2) ≤ c σ rjn−2 .

Setting now

T
(σ)
j := (ψ−1

σ ./ IdR3)#T̃
(σ)
j int (Bj)× S2 ,

by (C.14) we infer that for every j

(C.15) L(T
(σ)
j , int (Bj)) ≤ L(u,Bj) + (1 + c σ) µ̃T (Bj) + c σβ(n) rj

n−2

whereas

(C.16) F((T
(σ)
j − T ) Bj × S2) ≤ c σ rjn−2 .
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In conclusion, setting T σ ∈ Dn(Bn × S2) by

T σ :=

∞∑
j=1

T
(σ)
j + T

(
Bn \

∞⋃
j=1

int (Bj)
)
× S2

we have T σ ∈ cartL(Bn × S2). By (B.3), (C.2), and (C.15), we thus obtain

L(T σ) ≤ L(u) + µT (Bn \ LT (d)) + (1 + c σ) µ̃T (Bn) + c σβ(n)Hn−2(LT )

so that if σ = σ(ε, k,LT , µT ) > 0 is small, by (C.1) we have

L(T σ) ≤ L(T ) + εk .

Moreover, by (C.3), taking σ small, the above construction yields that

µTσ(Bn) ≤ c

∞∑
j=1

µ̃T (B(xj , rj) \ (B(xj , trj) ∩Mj)) + µT (Bn \ LT (d))

≤ c σ µT (Bn) +
1

4
µT (Bn) <

1

2
µT (Bn) .

Finally, by (C.16) and (C.2) we have

F(T σ − T ) ≤
∞∑
j=1

F((T
(σ)
j − T ) Bj × S2) ≤ c σ

∞∑
j=1

rj
n−2 < εk

if σ = σ(ε, k,LT , µT ) > 0 is small. Taking T̃ = T σ for σ > 0 small, the
proof is complete. �
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