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Restrictions of Sobolev W 1
p
(R2)-spaces

to planar rectifiable curves

Alexander I. Tyulenev

Abstract. We construct explicit examples of Frostman-type measures concentrated on arbi-

trary simple rectifiable curves Γ ⊂ R
2 of positive length. Based on such constructions we obtain for

each p ∈ (1,∞) an exact description of the trace space W 1

p
(R2)|Γ of the first-order Sobolev space

W 1

p
(R2) to an arbitrary simple rectifiable curve Γ of positive length.

Sobolevin avaruuden W 1

p
(R2) rajoittumat suoristuville tasokäyrille

Tiivistelmä. Rakennamme esimerkkejä mielivaltaiselle yksinkertaiselle positiivimittaiselle

suoristuvalle käyrälle Γ ⊂ R
2 keskittyneistä Frostmanin-tyyppisistä mitoista. Näiden avulla saamme

jokaisella eksponentilla p ∈ (1,∞) tarkan kuvailun ensimmäisen kertaluvun Sobolevin avaruuden

W 1

p
(R2) jäljestä W 1

p
(R2)|Γ mielivaltaisella tällaisella käyrällä Γ.

1. Introduction

The problem of the exact description of restrictions of Sobolev spaces W 1
p (R

n),
p ∈ [1,∞], to different subsets S ⊂ R

n has rich history. It takes the origin in the
pioneering work of Gagliardo [6] where the case S = R

n−1 was considered. In fact, the
methods of [6] cover the case when S is a graph of a Lipschitz function H : Rn−1 → R.
Note that this work extended the earlier results by Aronszajn [2] and Slobodetskii
and Babich [18] concerning the case p = 2. It should be mentioned that the trace
problem for higher order Sobolev spaces Wm

p (Rn), p ∈ (1,∞), m ∈ N, in the case

S = R
d, d ∈ [1, n− 1] ∩ N, was solved by Besov in the fundamental paper [3].

In the case p = ∞, the Sobolev space W 1
∞(Rn) can be identified with the space

LIP(Rn) of Lipschitz functions on R
n. It is known (see McShane–Whitney extension

lemma in Section 4.1 of [7]) that for any closed set S ⊂ R
n the restriction LIP(Rn)|S

coincides with the space LIP(S) of Lipschitz functions on S and that, furthermore,
the classical Whitney extension operator linearly and continuously maps the space
LIP(S) into the space LIP(Rn) (see e.g., [19, Chapter 6]).

In the case p = 1 much less is known. Indeed, as it was shown in [6] for the case
S = R

n−1, the trace space on R
n−1 of the Sobolev space W 1

1 (R
n) can be identified

with L1(R
n−1) as a linear space, the corresponding norms being equivalent. However,

the extension operator constructed by Gagliardo is nonlinear. Furthermore, it was
shown by Peetre [13] (see also Section 5 in [14]) that any bounded map from L1(R

n−1)
to W 1

1 (R
n) which is right inverse of the trace map is nonlinear.
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In the sequel we deal with the case p ∈ (1,∞) only. After [6] a substantial
progress was made by several mathematicians [10, 11, 21, 15, 16, 17, 9] in the direction
of relaxation of extra assumptions on the sets S. Note that in [17] the corresponding
trace problem was solved without any assumption on S. However, in [17] only the
case p > n was considered. This case is special and exploits techniques different from
that of used in other papers mentioned above. Unfortunately, such techniques do not
allow to attack the case p ∈ (1, n].

Recall that given d ∈ (0, n], a closed set S ⊂ R
n is said to be Ahlfors–David

d-regular provided that there exist constants c1S, c
2
S > 0 such that

(1.1) c1Sr
d ≤ Hd(Q(x, r) ∩ S) ≤ c2Sr

d for every x ∈ S, r ∈ (0, 1].

In (1.1) we set Q(x, r) :=
∏n

i=1[xi − r, xi + r] and by Hd we denote the d-Hausdorff
measure. We will also call condition (1.1) the Ahlfors–David d-regularity condition.

Summarizing results and methods of papers [10, 16, 9] restricted to the case of
the first-order Sobolev spaces W 1

p (R
n) one can obtain for any fixed d ∈ (0, n] and

p ∈ (max{1, n− d},∞) an exact description of the trace space of the space W 1
p (R

n)
to any closed set S ⊂ R

n satisfying the Ahlfors–David d-regularity condition (1.1).
Rychkov introduced in [15] the concept of d-thick sets. Recall that given d ∈

[0, n], a set S ⊂ R
n is said to be d-thick if there exists a constant c3S > 0 such that

(1.2) c3Sr
d ≤ Hd

∞(Q(x, r) ∩ S) for every x ∈ S, r ∈ (0, 1],

where by Hd
∞ we denote the so-called d-Hausdorff content. Note that condition (1.2)

is much weaker than (1.1). It was noted in [15] and proved in [23] that every path-
connected set S ⊂ R

n consisting of more than one point is 1-thick. It is clear that a
generic path-connected set S fails to satisfy the Ahlfors–David 1-regularity condition.
In [15] trace criteria for Besov Bs

p,q(R
n) and Lizorkin–Triebel F s

p,q(R
n) spaces were

obtained for d-thick sets S. However, that criteria were not fully intrinsic and were
based on atomic-type characterizations of function spaces. Furthermore, in the case
s ∈ Z the extra assumption d > n − 1 was required. In particular, with these
restrictions one cannot hope to attack the trace problem for Sobolev spaces W 1

p (R
n)

in the case of d-thick sets S with d ∈ [0, n− 1].
In [11] the trace problem for Sobolev spaces was considered in the case when

S ⊂ R
2 is a single cusp satisfying some extra regularity assumptions. In [21] the trace

problem for Besov Bs
p,q(R

n) and Lizorkin–Triebel F s
p,q(R

n) spaces was considered in
the case when S ⊂ R

n is a domain satisfying the so-called internal and external
regularity assumptions. However, the corresponding criteria were not fully intrinsic
and involved atomic-type characterizations.

Very recently [23], given d ∈ [0, n], p ∈ (max{1, n− d},∞), and a closed d-thick
set S ⊂ R

n, an exact description of traces of functions F ∈ W 1
p (R

n) to the set S
was obtained. As far as we know, it was the first result concerning trace problems
for the first-order Sobolev spaces W 1

p (R
n) obtained for the range p ∈ (1, n] in such a

high generality. Furthermore, these results were generalized to the case of weighted
Sobolev spaces in [22].

Analysis of the results obtained in [10], [16], [9] shows that in the case of Ahlofrs-
David d-regular sets S the only measure which played a crucial role in the solution
of the trace problems is the d-Hausdorff measure Hd. This is not the case for d-thick
sets. Unfortunately, in this case one should work with a sequence of measures with
prescribed growth conditions instead of the only “nice measure”. Recall [23] that
given a closed d-thick set S ⊂ R

n, by a d-regular on S sequence of measure we will
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mean any sequence of Radon measures {mk} := {mk}k∈N0 satisfying the following
properties:

(1) for every k ∈ N0

(1.3) suppmk = S;

(2) there exists a constant C1 > 0 such that for each k ∈ N0

(1.4) mk(Q(x, r)) ≤ C1rd for every x ∈ R
n and every r ∈ (0, 2−k];

(3) there exists a constant C2 > 0 such that for each k ∈ N0

(1.5) mk(Q(x, 2
−k)) ≥ C22−dk for every x ∈ S;

(4) for each k ∈ N0 the measure mk = wkm0 with wk ∈ L∞(m0) and

(1.6) 2d−nwk+1(x) ≤ wk(x) ≤ wk+1(x) for m0-a.e. x ∈ S.

We denote by C1
{mk}

and C2
{mk}

the minimum among the constants C1 in (1.4)

and the maximum among the constants C2 in (1.5) respectively. It was proved in
[23] that for each closed d-thick set S ⊂ R

n there is a d-regular on S sequence of
measures.

To describe the aim of this paper and for the sake of completeness of exposition
we formulate one particular case of the main result from [23]. In doing so we firstly
recall some concepts that were introduced in [23]. Given an arbitrary sequence {mk}
of Radon measures on R

n, we define for each t ∈ (0, 1] the Calderon-type maximal

function of f with respect to {mk} as

(1.7) f ♯

{mk}
(x, t) := sup

k∈N0,2−k≥t

2k inf
c∈R

 

Q(x,2−k)

|f(y)− c| dmk(y),

where the corresponding averaged integrals are assumed to be zero in the case
mk(Q(x, 2

−k)) = 0.
Finally, given a closed set S ⊂ R

n and a parameter λ ∈ (0, 1), we define for each
t ∈ (0, 1] the maximal λ-porous at the scale t subset of S by

(1.8) St(λ) := {x ∈ S : there exists y ∈ Q(x, t) s.t. Q(y, λt) ⊂ R
n \ S}.

Given parameters d ∈ (0, n], p ∈ (max{1, n − d},∞), and a closed set S with
Hd(S) > 0, we denote the trace space of the Sobolev space W 1

p (R
n) to the set S (see

the next section for the precise definition) by W 1
p (R

n)|S.
Recall briefly the construction of the extension operator from [23]. Given d ∈

(0, n] and a closed d-thick set S ⊂ R
n, let {Qα}α∈I be the Whitney decomposition of

R
n \ S and let I ⊂ I be the index set corresponding to the Whitney cubes with side

lengths ≤ 1. Let {ϕα}α∈I be the corresponding partition of unity (see [23] for details).

For any cube Qα = Q(xα, rα), α ∈ I, we define the cube Q̃α := Q(x̃α, rα), where
x̃α is an arbitrary metric projection of xα to the set S. Let {mk} be an arbitrary
d-regular on S sequence of measures. Let f ∈ Lloc

1 (mk) for some (and hence every)
k ∈ N0. We set k(r) := [log2 r

−1] and define

(1.9) F (x) = ExtS,{mk}[f ](x) :=
∑

α∈I

ϕα(x)

 

Q̃α∩S

f(x̃) dmk(rα)(x̃), x ∈ R
n.

Theorem A. Let d ∈ (0, n) and p ∈ (max{1, n − d},∞). Let S ⊂ R
n be a

closed d-thick set with Hn(S) = 0. Given a d-regular on S sequence of measures
{mk} := {mk}k∈N0 , a Borel function f : S → R belongs to the trace space W 1

p (R
n)|S

if and only if the following conditions hold:



510 Alexander I. Tyulenev

(1) for Hd-almost every point x ∈ S it holds,

(1.10) lim
k→∞

 

Q(x,2−k)∩S

|f(x)− f(z)| dmk(z) = 0;

(2) there exists a number λ0 ∈ (0, 1) such that (we set Sk(λ) := S2−k(λ))

BN {mk},p,λ0
[f ] := ‖f |Lp(m0)‖+

(
∞∑

k=1

2k(d−n)

ˆ

Sk(λ0)

(
f ♯

{mk}
(x, 2−k)

)p
dmk(x)

) 1
p

< +∞.

(1.11)

Furthermore, for every λ ∈ (0, λ0] there exists a constant C > 0 depending only on
p, n, d, C1

{mk}
, C2

{mk}
, and λ such that

(1.12)
1

C
BN {mk},p,λ[f ] ≤ ‖f |W 1

p (R
n)|S‖ ≤ CBN {mk},p,λ[f ].

The extension operator ExtS,{mk} is a right inverse operator of the usual trace opera-
tor. It maps the trace spaceW 1

p (R
n)|S to the space W 1

p (R
n) linearly and continuously.

In fact, Theorem A is an almost immediate consequence of Theorem 2.1 from
[23]. The only delicate point which we should mention is that condition (1.10) is
more rough than the corresponding condition in [23], because it is based on Hausdorff
measures instead of capacities. On the other hand, our definition of the trace space
given in this paper is based on Hausdorff measures rather than capacities (compare
Definition 2.2 in this paper with Definitions 2.7, 2.8, 2.9 in [23]). Hence, a careful
analysis of proofs of Lemma 4.3 and Theorem 4.2 in [23] in combination with very
well known relations between capacities and Hausdorff measures shows that condition
(1.10) is justified.

In practice the criterion given in Theorem A is not so easy to verify by the
following reasons:

(1) it is difficult to check the delicate condition (1.10);
(2) in fact, the typical construction of a d-regular sequence of measures {mk}

given in [23] is not fully explicit. Indeed, the classical Frostman-type arguments
based on an inductive algorithm and on the weak limit procedure were used. Hence,
the construction of explicit examples of d-regular sequences of measures {mk} on
different closed d-thick sets S ⊂ R

n is of great importance.
The aim of this paper is to demonstrate that one can overcome the difficulties

described above and simplify Theorem A in the case when S is a planar simple (i.e.
without self-intersections) rectifiable curve Γ ⊂ R

2 of positive length. In this case Γ is
a 1-thick set. We construct a special 1-regular on Γ sequence of measures {µk[Γ]}k∈N0.
The advantage of the sequence {µk[Γ]}k∈N0 is that the measures µk[Γ], k ∈ N0, have
explicit expressions. Furthermore, having such measures at disposal one can get rid of
the sophisticated condition (1.10) in Theorem A. Note that the results obtained in the
present paper are new and could not be obtained by previously known methods. As
far as we know, explicit constructions of Frostman-type measures on arbitrary simple
planar rectifiable curves Γ of positive length were not considered in the literature
before. Furthermore, even in the the case of a planar simple rectifiable curve S =
Γ ⊂ R

2 of positive length, the result formulated in Theorem A cannot be obtained by
previously known methods. On the one hand, this result cannot be derived using the
methods of [15] because in the case of Sobolev spaces the corresponding trace problem
was considered only for d-thick sets S ⊂ R

n satisfying the additional requirement
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d > n − 1. On the other hand, there are planar rectifiable curves of positive length
that fail to satisfy the Ahlfors–David 1-regularity condition (and hence, fail to satisfy
the Ahlfors–David d-regularity conditions for all d ∈ (0, 2]) and hence do not fall into
the scope of [9].

Now we explain (informally) why in the present paper we restrict ourselves to
simple rectifiable curves Γ ⊂ R

2 only.
(A) In fact, the arguments of section 3 work for simple rectifiable curves of

positive length in R
n for any n ≥ 2. The only minor issue here is that in the case

n > 2 the corresponding expressions for measures will be more technical. On the
other hand, what is more important is the application of Theorem 3.1 in Section 4
where the restriction on the dimension n ∈ N of the ambient space becomes essential.
More precisely, as we have already mentioned, any rectifiable curve of positive length
is a 1-thick subset of Rn. But Theorem 4.1 (which is a keystone for the main result
of ) works for d-thick sets with d ∈ [n− 1, n]. This obstruction justifies our analysis
in the 2-dimensional plane.

(B) The main reason why we restrict ourselves to the case of curves instead of
general 1-thick sets in R

2 is that the corresponding expressions for the Frostman-type
measures concentrated on such sets will be much less transparent. Roughly speaking,
the main technical advantage of our construction, which works for curves, is the
reduction of 1-dimensional Frostman-type measures to the 0-dimensional Frostman-
type measures. Indeed, it is well known that any simple planar rectifiable curve Γ
has a finite number of intersections with “almost every” line parallel to any fixed
coordinate axis. This allows to built the corresponding 0-dimensional Frostman-type
measure with the help of elementary combinatorial arguments. Clearly, one cannot
hope to make a similar trick for general 1-thick sets in R

2 because intersections of
such sets with lines parallel to coordinate axes can have much more complicated
geometry.
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2. Preliminaries

Throughout the paper C,C1, C2, . . . will be generic positive constants. These
constants can change even in a single line. The dependence of a constant on certain
parameters is expressed, for example, by the notation C = C(n, p, k). We write
A ≈ B if there is a constant C ≥ 1 such that A/C ≤ B ≤ CA. Given a number
c ∈ R we denote by [c] the integer part of c.

2.1. Geometric measure theory background. We let Rn, n ≥ 1, denote the
linear space of all strings x = (x1, . . . , xn) of real numbers equipped with the uniform

norm ‖ · ‖∞ i.e., ‖x‖∞ := max{|x1|, . . . , |xn|}. As usual, R := R ∪ {−∞} ∪ {+∞}.
Given a set E ⊂ R

n, we denote by intE, E and Ec the interior, the closure, and the
complement (in R

n) of E, respectively. Given a set E ⊂ R
n, we will always denote
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by χE the characteristic function of E. By a cube Q in R
n we mean a closed cube

with sides parallel to the coordinate axes. We say that E ⊂ R
n is a measurable set if

E belongs to the standard Lebesgue σ-algebra. Given a measurable set E ⊂ R
n, we

say that a function f : E → R is measurable if f−1((c,+∞]) is measurable for any
c ∈ R.

In the sequel, given a metric space X = (X, d), by a measure on X we mean only
a nonnegative Borel measure on X. Given a measure m on X and a nonempty Borel
set S ⊂ X, we define the restriction m⌊S of m to S by

(2.1) m⌊S(E) := m(E ∩ S) for any Borel set E ⊂ X .

Given two metric spaces (X1, d1), (X2, d2), a Borel map G : X1 → X2 and a Borel
measure m on X1, we define the push-forward measure G♯m on X2 by letting

(2.2) G♯m(E) := m(G−1(E)) for any Borel set E ⊂ X2 .

Let m be an arbitrary measure on R
n. Given f ∈ Lloc

1 (R2,m) and a Borel set G ⊂ R
n

with m(G) < +∞, we put

(2.3)

 

G

f(x) dm(x) :=

{
1

m(G)

´

G
f(x) dm(x), if m(G) > 0;

0, if m(G) = 0.

Given a Radon measure m on R
n, we set for every cube Q ⊂ R

n

(2.4) Ẽm[f ](Q) :=

 

Q

 

Q

|f(y)− f(z)| dm(y) dm(z).

Recall that Calderon-type maximal functions f ♯

{mk}
were defined in the introduc-

tion.

Proposition 2.1. Let {mk} = {mk}k∈N0 be a sequence of Radon measures on
R

n. Then for each t ∈ (0, 1] and every x ∈ R
n,

1

2
sup

k∈N0,2−k≥t

2kẼmk
[f ](Q(x, 2−k)) ≤ f ♯

{mk}
(x, t) ≤ sup

k∈N0,2−k≥t

2kẼmk
[f ](Q(x, 2−k)).(2.5)

Proof. We fix arbitrary x ∈ R
n,r ∈ (0, 1] and set Q = Q(x, r) for brevity. The

first inequality in (2.5) follows from the fact that for each k ∈ N0 and any constant
c ∈ R we have

Ẽmk
[f ](Q) ≤

 

Q

|f(y)− c| dmk(y) +

 

Q

| − f(z) + c| dmk(z)

≤ 2

 

Q

|f(y)− c| dmk(y).

The second inequality in (2.5) follows from the estimate

inf
c∈R

 

Q

|f(y)− c| dmk(y) ≤

 

Q

∣∣∣f(y)−
 

Q

f(z) dmk(z)
∣∣∣ dmk(y)

≤ Ẽmk
[f ](Q), k ∈ N0. �

It will be convenient to follow [5] (see Section 1.2 therein) and define for each
d ∈ [0, n] and δ ∈ (0,∞]

Hd
δ(E) := inf

∞∑

i=1

(diamUi)
d,



Restrictions of Sobolev W
1
p (R

2)-spaces to planar rectifiable curves 513

where the infimum is over all coverings {Ui}i∈N of E with diamUi < δ, i ∈ N. Now,
the d-Hausdorff measure Hd of the set E is defined as Hd(E) := limδ→0Hd

δ(E). By
the d-Hausdorff content of E we mean Hd

∞(E).
The following proposition is an immediate consequence of (1.4) and the definition

of Hd. We omit an elementary proof.

Proposition 2.2. Let d ∈ (0, n]. Let S ⊂ R
n be a closed d-thick set. Let {mk}

be a d-regular on S sequence of measures. Then, for every k ∈ N0 the measure mk is
absolutely continuous with respect to Hd⌊S. Furthermore, for each k ∈ N0,

(2.6) mk(E) ≤ C1
{mk}

Hd(E) for any Borel set E ⊂ S.

Remark 2.1. Note that the right-hand side of (2.6) can be equal to +∞ and
hence the corresponding estimate is trivial.

Given a measurable set E ⊂ R
n, recall that a map f : E → R, E ⊂ R is said

to have the Lusin property if for any set E0 ⊂ E of Lebesgue measure zero the
image f(E0) has Lebesgue measure zero. The following result is a particular case
of Theorem 12 in [8] (see also Theorem 4.3.3 in [12] where minor modifications are
required). In fact, this result will be a keystone for the whole Section 3 below.

Proposition 2.3. Let a map Φ: R → R be absolutely continuous. Let g : R →
[0,+∞] be a measurable function. Then for any measurable set E ⊂ R

ˆ

E

g(x)|Φ′(x)| dx =

ˆ

Φ(E)

∑

x∈Φ−1(y)∩E

g(x) dH1(y)

=

ˆ

Φ(E)

(
ˆ

Φ−1(y)∩E

g(x) dH0(x)

)
dH1(y).

(2.7)

Let S ⊂ R
n be a closed set. We recall that given λ ∈ (0, 1) and t ∈ (0, 1],

the definition of the set St(λ) was given in the introduction. In what follows for
every k ∈ N we set Sk(λ) := S2−k(λ). It is natural to ask whether there exists a
parameter λ ∈ (0, 1) such that the union

⋃
k∈N0

Sk(λ) contains S or equivalently
maxk∈N0 χSk(λ)(x) = 1 for every x ∈ S? Unfortunately, this is not the case in general.
We introduce the following concept.

Definition 2.1. Let d ∈ (0, n] and λ ∈ (0, 1). Let S ⊂ R
n be a closed set with

Hd(S) > 0. We say that S is (d, λ)-quasi-porous if

(2.8) lim
k→∞

χSk(λ)(x) = 1 for Hd-a.e. x ∈ S.

Remark 2.2. Clearly, for each k ∈ N0 we have Sk(λ) ⊂ Sk(λ
′) for all λ′ ∈ (0, λ].

Hence, if a set S is (d, λ)-quasi-porous for some λ ∈ (0, 1), then it is (d, λ′)-quasi-
porous for every λ′ ∈ (0, λ].

The following lemma gives a simple sufficient condition for a given closed set S
to be (d, λ)-quasi-porous.

Lemma 2.1. Let d ∈ (0, n). Suppose that a closed set S ⊂ R
n is such that:

(1) Hd(S) ∈ (0,∞);
(2) there is a constant c1 > 0 such that

(2.9) inf
r∈(0,1]

Hd(Q(x, r) ∩ S)

rd
≥ c1 for every x ∈ S.
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Then, there exists λ0(S) ∈ (0, 1) such that S is (d, λ)-quasi-porous for every λ ∈
(0, λ0].

Proof. The proof is very close in spirit to that of Proposition 9.18 in [20]. We
present the details for completeness.

Since Hd(S) ∈ (0,∞), it is well known (see, for example, Theorem 1.3.9 in [12])
that there exists a constant c2 > 0 depending only on d and a set S ′ ⊂ S with
Hd(S \ S ′) = 0 such that

(2.10) lim
r→0

Hd(Q(x, r) ∩ S)

rd
≤ c2 for every x ∈ S ′.

Now we fix an arbitrary point x0 ∈ S ′. By (2.9) and (2.10) there is a small
r0 = r0(x0) > 0 such that

(2.11) c1 ≤
Hd(Q(x0, r) ∩ S)

rd
≤ 2c2 for all r ∈ (0, r0).

Fix a sufficiently large number N ∈ N to be specified later. We fix r ∈ (0, r0/2),
subdivide the cube Q(x0, r) into 2Nn congruent cubes, and choose those of them that
have nonempty intersections with S. Let {Qi}Mi=1 be the family of all such chosen
cubes. For each i ∈ {1, . . . ,M} take an arbitrary point xi ∈ Qi∩S. Clearly, we have

Qi ⊂ Q(xi, 2
−N+1r) := Q∗

i for every i ∈ {1, . . . ,M}. Hence, S ∩Q(x0, r) ⊂
⋃M

i=1Q
∗
i .

The multiplicity of the covering of the set Q(x0, r)∩S by the cubes Q∗
i , i = 1, . . . ,M ,

is bounded from above by 5n. As a result, using the subadditivity of Hd, we get

2c2r
d ≥ Hd(Q(x0, r) ∩ S) ≥ 5−n

M∑

i=1

Hd(Q∗
i ∩ S) ≥ 5−nc1M2d−Ndrd.

Hence, this gives

(2.12) M ≤

(
2c2
c1

5n2−d2(d−n)N

)
2nN .

Since d < n we can take N = N(d, n, c1, c2) ∈ N so large that M < 2nN . This
gives existence of at least one cube Qi ⊂ Q(x0, r) \ S. Hence, if we set λ0 = 1/N ,
we get that x0 ∈ Sk(λ0) for every k > − log2 r + 1. This observation together with
Remark 2.2 completes the proof. �

Remark 2.3. Clearly, each Ahlfors–David d-regular set S ⊂ R
n (with d ∈ (0, n))

satisfies conditions (1) and (2) of Lemma 2.1. The converse is false. For example,
each rectifiable curve Γ ⊂ R

n of positive length satisfies conditions (1) and (2) of
Lemma 2.1 with d = 1. On the other hand, in section 5 we present simple examples
of planar rectifiable curves that fail to satisfy Ahlfors–David 1-regularity condition.

2.2. Sobolev spaces. As usual, for each p ∈ [1,∞], we let W 1
p (R

n) denote
the corresponding Sobolev space of all equivalence classes of real-valued functions
F ∈ Lp(R

n) whose distributional partial derivatives DβF on R
n of order |β| ≤ 1

belong to Lp(R
n). This space is normed by

‖F‖W 1
p (R

n) :=
∑

|β|≤1

‖DβF‖Lp(Rn).

Recall (see, e.g., [1, Section 6.2]) that given a parameter p ∈ (1, n], for every

element F ∈ W 1
p (R

n) there is a representative F̂ in the equivalence class of the
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element F such that F̂ has Lebesgue points everywhere except a set EF of zero C1,p-
capacity. Furthermore, according to the Sobolev embedding theorem (see, e.g., [1,
Theorem 1.2.4]), given a parameter p > n, for every F ∈ W 1

p (R
n) there is a continuous

representative F̂ of F . In the sequel we will call F̂ a good representative of the element

F . Recall also (see [1, Theorem 5.1.13]) that if p ∈ (1, n], d ∈ (n− p, n], then for any
given set S ⊂ R

n the condition C1,p(S) = 0 implies Hd(S) = 0. Since in this paper
we mainly focus on traces of Sobolev functions to 1-dimensional path-connected sets
in R

2 we can use a little bit more rough definition of the trace of a given Sobolev
function than the corresponding one used in [23]. More precisely, the later definition
is based on C1,p-capacities instead of the Hausdorff measures. However, taking into
account well known relations between the d-Hausdorff measures and C1,p-capacities,
we believe that the use of C1,p-capacities is not reasonable in the present framework.
Informally speaking, our trace criterion in Theorem 4.2 is expressed in terms of
Frostman-type measures µk[Γ] which “do not feel” changes of a trace function on a
set of H1-measure zero. These remarks justify the following definition.

Definition 2.2. Let d ∈ (0, n], p ∈ (max{1, n− d},∞), and F ∈ W 1
p (R

n). Let

S be a Borel set with Hd(S) > 0. We define the trace F |S of the element F to the
set S as

(2.13) F |S := {f : S → R : f(x) = F̂ (x) for Hd-a.e. x ∈ S}.

We define the trace space W 1
p (R

n)|S of the space W 1
p (R

n) as

(2.14) W 1
p (R

n)|S := {f : S → R : f = F |S for some F ∈ W 1
p (R

n)}

and equip it with the usual quotient-space norm, i.e.

(2.15) ‖f |W 1
p (R

n)|S‖ := inf{‖F |W 1
p (R

n)‖ : f = F |S}.

We denote by Tr |S : W 1
p (R

n) →W 1
p (R

n)|S the corresponding trace operator.

Remark 2.4. Since the trace F |S of a given Sobolev function is a class of equiv-
alent (modulo coincidence on a set of Hd-measure zero) functions f : S → R, the
trace operator is well defined and linear.

2.3. Rectifiable curves in R
n. By a curve in R

n we mean the image Γ of a
continuous map γ : [a, b] → R

n, i.e. Γ = γ([a, b]). The map γ is called a parametriza-

tion of the curve Γ. We say that a curve Γ is simple if the map γ is injective. We
say that Γ is rectifiable provided that

(2.16) l(Γ) := sup

n∑

i=1

‖γ(ti)− γ(ti−1)‖∞ <∞,

where the supremum is taken over all tuples {ti}ni=0 such that a = t0 < t1 < . . . <
tn = b. The associated length function sγ is defined as

sγ(t) := l(γ([a, a+ t])), t ∈ [a, b].

The properties summarized in the next proposition are well known (see, e.g., [7,
Chapter 5]).

Proposition 2.4. Let Γ ⊂ R
n be a rectifiable curve and let γ : [a, b] → R

n be
its parametrization. Then the curve Γ admits the arc length parametrization. More
precisely, there exists the 1-Lipschitz map γs : [0, l(γ)] → R

n defined by

(2.17) γs(τ) := γ(s−1
γ (τ)),
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where

(2.18) s−1
γ (τ) := sup{s : sγ(s) = τ}.

If the curve Γ is simple, then

(2.19) l(Γ) = H1(Γ).

It is also useful to recall the infinitesimal behavior of H1⌊Γ. The following prop-
erty is also well known (see, e.g., [5, Lemma 3.5])

Proposition 2.5. Let Γ ⊂ R
n be a rectifiable curve. Then,

(2.20) lim
r→0

H1⌊Γ(Q(x, r))

2r
= 1 for H1-a.e. x ∈ Γ.

Clearly, one could assume everywhere in the sequel that any given curve Γ has a
1-Lipschitz parametrization (for example, the arc-length parametrization). However,
as we will see in Section 5, it is useful to have some sort of flexibility in the choice of
parameterizations. This fact justifies the following definition.

Definition 2.3. Given a curve Γ ⊂ R
n we say that a map γ : [a, b] → R

n is an

admissible parametrization of the curve Γ if the following conditions hold:

(1) the map γ is absolutely continuous;
(2) ‖γ̇(t)‖ > 0 for H1-a.e. t ∈ [a, b].

Given i = 1, . . . , n, we denote by Πi the projection map along the i-th coordinate
axis, i.e. if x = (x1, . . . , xn) ∈ R

n, then Πi(x) := (x1, . . . , xi−1, xi+1, . . . , xn) ∈
R

n−1. Sometimes we will use the shorthand x̂i := Πi(x), i = 1, . . . , n. Given a
parametrization γ = (γ1, . . . , γn) : [a, b] → R

n of the curve Γ, we let γi, i = 1, . . . , n
denote its i-th component. Similarly, if for some t0 ∈ [a, b] there exists the velocity
vector

(2.21) γ̇(t0) := lim
t→t0

γ(t)− γ(t0)

t− t0
∈ R

n,

where we let γ̇i(t0), i = 1, . . . , n denote the corresponding components of γ̇(t0).

Definition 2.4. Let Γ ⊂ R
n be a simple rectifiable curve and let γ : [a, b] → R

n

be an admissible parametrization of Γ. Given i ∈ {1, . . . , n}, we identify R
n−1 with

a hyperplane orthogonal to the i-th coordinate axis and define

Li[Γ](x
′) := Π−1

i (x′) ∩ Γ, x′ ∈ R
n−1.(2.22)

Informally speaking, Li[Γ](x
′) is just the intersection of the line going through x′

parallel to the i-th coordinate axis with Γ. We also define the Banach indicatrix
functions of Γ by

(2.23) Ni[Γ](x
′) := cardLi[Γ](x

′) = card{t ∈ [a, b] | t = (Πi◦γ)
−1(x′)}, x′ ∈ R

n−1.

Remark 2.5. It follows from Theorem 4.3.2 in [12] that for each i ∈ {1, . . . , n}
the function Ni[Γ] ∈ Lloc

1 (Rn−1). Hence, Ni[Γ](x
′) ∈ N0 for each i ∈ {1, . . . , n} and

almost all x′ ∈ R
n−1. Furthermore, the analysis of the proof of Lemma 4.1.4 in [12]

allows to deduce that Ni[Γ], i = 1, ..., n are Borel.

3. Construction of a special 1-regular sequence of measures.

As we mentioned in the introduction, every path-connected set in R
n contain-

ing at least two distinct points is 1-thick. In particular, every curve Γ ⊂ R
n with

l(Γ) > 0 is 1-thick. Hence, there is a 1-regular sequence of measures on Γ. The
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aim of this section is to construct, for any planar simple rectifiable curve Γ ⊂ R
2

of positive length, a special 1-regular sequence of measures {µk[Γ]} concentrated on
Γ. All constructions can be easily extended to simple rectifiable curves in R

n. We
consider the case n = 2 for simplicity.

Let us briefly describe the main idea of the construction. In this section we will
assume without loss of generality that a rectifiable curve Γ ⊂ [0, 1) × [0, 1). By
Remark 2.5 for each i ∈ {1, . . . , n} intersections of Γ with almost all lines Li parallel
to the i-th coordinate axis consist of an at most finite number of distinct points.
Hence, we can easily construct a special 0-regular sequence of measures concentrated
on that finite sets. After that, taking an admissible parametrization γ : [a, b] → R

2

of Γ and applying Proposition 2.3 we easily obtain a 1-regular sequence of measures
concentrated on Γ.

Let I0 := [0, 1) be a half-open unit interval. Given k ∈ N0, let

Dk :=

{
Ik,m :=

[
m

2k
,
m+ 1

2k

)
, m = 0, . . . , 2k − 1

}

be the family of all dyadic half-open intervals of side length 2−k contained in I0.

Definition 3.1. Given a set of distinct points {xi}Ni=0 ⊂ I0, N ∈ N0, let
P({xi}Ni=0) be the set of all probability measures with the support {xi}Ni=0. In other
words, ν ∈ P({xi}

N
i=0) if and only if there exists a density function α : {xi}

N
i=0 →

[0,+∞) with
∑N

i=0 α(xi) = 1 such that

(3.1) ν =
N∑

i=0

α(xi)δxi
,

where δxi
,i = 0, . . . , N are the Dirac measures concentrated at the points xi, i =

0, . . . , N .

Definition 3.2. Let {xi}Ni=0 ⊂ I0, N ∈ N be an arbitrary finite set of distinct
points. Let k∗ := k∗({xi}Ni=0) be the minimal among all k ∈ N0 for each of which the
map sending every point xi to the unique dyadic interval Ik,m(xi) ∋ xi is injective.
For every k ≥ k∗ we define the family

(3.2) Fk({xi}
N
i=0) :=

{
Ik,m : Ik,m ∩ {xi}

N
i=0 6= ∅

}
.

For each i ∈ {0, . . . , N} and any k ≥ k∗({xi}Ni=0) we denote by Ik,m(xi) the unique
dyadic interval in Fk({xi}Ni=0) containing xi.

Given an arbitrary tree T with a root r, we introduce the intrinsic metric ρ on
T and obtain the so-called metric tree (T , ρ). More precisely, given two vertices
ξ, ξ′ ∈ V(T ) joined by some edge e we put ρ(ξ, ξ′) = 1. For generic two vertices
ξ, ξ′ ∈ V(T ) we define ρ(ξ, ξ′) = inf

∑
i ρ(ξi, ξi−1), where the infimum is taken over

all paths ξ =: ξ0 ↔ . . . ↔ ξl := ξ′ such that ξi and ξi+1 are joined by the unique
edge ei for all i ∈ {0, ..., l − 1}. Given i ∈ N0, let V i(T ) := {ξ ∈ T : ρ(r, ξ) = i}. If
V i(T ) 6= ∅ then for any ξ ∈ V i(T ) we denote by n(ξ) the number of edges joining ξ
with the corresponding vertices in V i+1(T ).

Definition 3.3. Let k ∈ N0. Given a nonempty family of dyadic intervals Fk ⊂
Dk, we define the tree T = T (Fk) as the metric tree whose vertices V i(T ), i =
0, . . . , k, correspond naturally to all those dyadic intervals in Di each of which contains
at least one interval from Fk.
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Definition 3.4. Let Fk ⊂ Dk, k ∈ N0 be an arbitrary nonempty family of dyadic
intervals. For each j ∈ N0 and any I ∈ Fk we define the Frostman-type weight by
letting

(3.3) αj
F [Fk](I) :=





k−1∏
l=j

1
n(ξl(I))

if j ∈ {0, . . . , k − 1},

1 if j > k − 1,

where for each j ∈ {0, . . . , k} we denote by ξj(I) ∈ Vj(T ) the unique vertex cor-
responding to the unique dyadic interval in Dj containing the interval I and r =:
ξ0(I) ↔ . . .↔ ξk(I) := ξ(I) is a unique path joining the root r with the vertex ξ(I).
Given a finite set {xi}Ni=0, N ∈ N of distinct points, we define the Frostman-type

weight by letting

(3.4) αj
F [{xi}

N
i=0](xi) := αj

F [Fk({xi}
N
i=0)](Ik,m(xi)), k ≥ k∗({xi}

N
i=0).

Definition 3.5. Given a finite set {xi}
N
i=0 ⊂ I0, N ∈ N of distinct points, we

define for each j ∈ N0 the Frostman-type measure νjF [{xi}
N
i=0] by letting

(3.5) νjF [{xi}
N
i=0] :=

N∑

i=0

αj
F [{xi}

N
i=0](xi)δxi

.

Remark 3.1. It follows immediately from the definition of k∗ that Definition 3.4
is correct. Indeed, for each k ≥ k∗ we have αj

F [Fk({xi}Ni=0)](I) = αj
F [Fk∗({xi}Ni=0)](I)

for all I ∈ Fk({xi}
N
i=0).

The following assertion exhibits basic properties of Frostman-type weights.

Lemma 3.1. Let {xi}Ni=0 ⊂ I0, N ∈ N0, be a set of distinct points. Then, for
each j ∈ N0 the following properties hold:

(1) for any dyadic interval Ij,m, m ∈ {0, . . . , 2j − 1}

(3.6) νjF [{xi}
N
i=0](Ij,m) =

{
1, {xi}Ni=0 ∩ Ij,m 6= ∅;

0, {xi}Ni=0 ∩ Ij,m = ∅;

(2) for every i ∈ {0, . . . , N}

either αj
F [{xi}

N
i=0](xi) = αj+1

F [{xi}
N
i=0](xi)

or αj
F [{xi}

N
i=0](xi) = 2−1αj+1

F [{xi}
N
i=0](xi).

(3.7)

Proof. For j ≥ k∗ the corresponding result is obvious. Let T = T (Fk∗({xi}Ni=0))
be the corresponding metric tree. Note that in the case j < k∗ equalities (3.7) follow
directly from (3.3) because for any ξ ∈ V(T ) we have either n(ξ) = 1 or n(ξ) = 2.

To prove (3.6) we argue by induction. For j ≥ k∗ this is obvious. Suppose that
k∗ > 1 and that (3.6) is proved for some j0 ∈ {1, . . . , k∗}. Then from (3.7) it is easy
to conclude the validity of (3.6) for j0 − 1 using the same arguments as above. �

Remark 3.2. Note that given a set {xi}Ni=0 ⊂ I0, N ∈ N0, of distinct points and
Ij,m with Ij,m ∩ {xi}Ni=0 6= ∅, the restriction νjF ⌊Ij,m∈ P(Ij,m ∩ {xi}Ni=0). Clearly, in

general νjF is not a probability measure on I0.

We recall Definition 2.4.

Definition 3.6. Let Γ ⊂ [0, 1) × [0, 1) be a simple rectifiable curve of positive
length. Let γ : [a, b] → R

2 be an admissible parametrization of Γ. Given j ∈ N0, we
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define for each t ∈ [a, b]

(3.8) Wj
1 [γ](t) :=

{
αj
F [L1[Γ](γ2(t))](γ1(t)) if N1[Γ](γ2(t)) <∞;

0 if N1[Γ](γ2(t)) = ∞;

and similarly,

(3.9) Wj
2 [γ](t) :=

{
αj
F [L2[Γ](γ1(t))](γ2(t)) if N2[Γ](γ1(t)) <∞;

0 if N2[Γ](γ1(t)) = ∞.

Given j ∈ N0 we also define the special density as

(3.10) Dj [γ](t) := max{Wj
2 [γ](t)|γ̇1(t)|,W

j
1 [γ](t)|γ̇2(t)|}, t ∈ [a, b].

Remark 3.3. Let γ : [a, b] → R
2 and γ′ : [a′, b′] → R

2 be two admissible param-
eterizations of Γ. Suppose that γ(t) = γ′(t′(t)) for some strictly increasing abso-

lutely continuous function t′ : [a, b] → [a′, b′]. Then it is easy to see that Wj
i [γ](t) =

Wj
i [γ

′](t′(t)) for each i = 1, 2, every j ∈ N0 and all t ∈ [a, b].

Proposition 3.1. Let Γ ⊂ [0, 1)× [0, 1) be a simple rectifiable curve of positive
length. Let γ : [a, b] → R

2 be an admissible parametrization of Γ. Then for every
j ∈ N0 the functions Wj

i [γ], i = 1, 2 and Dj [γ] are measurable.

Proof. First of all we prove that the functions Wj
1 [γ], j ∈ N0 are measurable.

The proof of measurability of the functions Wj
2 [γ], j ∈ N0 requires exactly the same

arguments. By Lemma 3.1 it is sufficient to verify that W0
1 [γ] is measurable.

Fix an arbitrary number k ∈ N. Let Fk ⊂ Dk be an arbitrary nonempty family
of dyadic intervals. We define

Fk :=
⋃

Ik,m∈Fk

Ik,m, Ẽ(Fk) := γ2(γ
−1
1 (Fk)) \ γ2([a, b] \ γ

−1
1 (Fk)).

In other words, Ẽ(Fk) is the set of all x2 ∈ Π1(Γ) such that L1[Γ](x2) ⊂ Fk. The set

γ−1
1 (Fk) is a Borel set. Since γ2 is continuous, this implies that the set Ẽ(Fk) is a

difference of two Souslin sets, and hence, is universally measurable. Now we define

E(Fk) := Ẽ(Fk) \
⋃

F ′

k
⊂Fk

F ′

k
6=Fk

Ẽ(F ′
k), G(Fk) := γ−1

2 (E(Fk)).

Informally speaking, E(Fk) is the set of all points on the second coordinate axis for
each of which the line going through the point and parallel to the first coordinate
axis the corresponding intersection with Γ consist of sets of points whose projections
to the first coordinate axis meet every interval from the family Fk and do not meet
the other dyadic intervals.

Clearly, E(Fk) and G(Fk) are universally measurable. We set

(3.11) Wk,1[γ](t) := αF [Fk](Ik,m), if t ∈ γ−1
1 (Ik,m) ∩G(Fk).

Since for different families Fk and F ′
k the sets G(Fk) and G(F ′

k) are disjoint and since

[a, b] =
⋃

Fk

G(Fk)

the function Wk,1[γ] is well defined everywhere on [a, b] and is measurable.
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From Remark 2.5 it follows that the set G where N1[Γ] = +∞ has measure
H1(G) = 0. Since N1[Γ] is a Borel function, the set G is Borel. Hence, the set γ−1

2 (G)
is a Borel set. As a result, by the very definition of the sets E(Fk), k ∈ N0 and G,

lim
k→∞

Wk,1[γ](t) = W0
1 [γ](t) for every t ∈ [a, b] \ γ−1

2 (G).

This implies that W0
1 [γ] is measurable. Note that the image of the function W0

1 [γ] is
an at most countably set. Using this fact together with the measurability of W0

1 [γ]
and (3.3), (3.4), (3.7), (3.8) it is easy to get measurability of Wj

1 [γ] for all j ∈ N.

Finally, to prove measurability of Dj [γ] it is sufficient to use measurability of Wj
i

just established and take into account condition (1) of Definition 2.3. The proof is
complete. �

Now we are ready to give the key definition.

Definition 3.7. Let Γ ⊂ [0, 1) × [0, 1) be a simple rectifiable curve of positive
length. Let γ : [a, b] → R

2 be an admissible parametrization of Γ. We say that the
sequence of measures {µk[Γ]} := {µk[Γ]}k∈N0 is a special sequence of measures on Γ
if

(3.12) µk[Γ] := γ♯(D
k[γ]H1⌊[a,b]) for every k ∈ N0.

We are going to show that the measures µk[Γ], k ∈ N0 are well defined. For this
purpose we recall the following property. Probably it looks like a folklore but we give
a proof for the completeness.

Proposition 3.2. Let [a, b] ⊂ R, [A,B] ⊂ R and let g : [a, b] → [A,B] be
absolutely continuous. Assume that

(3.13)
dg

dt
(t) > 0 for H1-a.e. t ∈ [a, b].

Then the inverse function g−1 : [A,B] → [a, b] is absolutely continuous.

Proof. From (3.13) it follows that g : [a, b] → [A,B] is strictly increasing. There-
fore, there exists the inverse function g−1 : [A,B] → [a, b] which is continuous and
strictly increasing. Hence, to prove that g−1 : [A,B] → [a, b] is absolutely continuous
it is sufficient to check the Lusin property. Assume the contrary. Hence, there exists
a set E ⊂ [A,B] with H1(E) = 0 such that H1(g−1(E)) > 0. Combing this with
(3.13) we get

(3.14) r0 :=

ˆ

g−1(E)

dg

dt
(t) dt > 0.

Let {(Ai, Bi)}∞i=1 be an arbitrary sequence of nonempty intervals such that E ⊂⋃∞
i=1(Ai, Bi). Since g−1 is strictly increasing we have a sequence of nonempty intervals

{(ai, bi)}∞i=1 such that (ai, bi) := g−1((Ai, Bi)), i ∈ N. Clearly g−1(E) ⊂ ∪∞
i=1(ai, bi).

Since g is absolutely continuous we can apply the Newton–Leibniz formula and take
into account (3.14). As a result, we have

(3.15)
∞∑

i=1

|Ai − Bi| =
∞∑

i=1

ˆ bi

ai

dg

dt
(t) dt ≥ r0.

The sequence {(Ai, Bi)}
∞
i=1 was chosen arbitrarily. Hence, by (3.15) and the definition

of the measure H1 we conclude that H1(E) ≥ r0 > 0. This contradiction completes
the proof. �
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Proposition 3.3. Let Γ ⊂ [0, 1)× [0, 1) be a simple rectifiable curve of positive
length. Let γ : [a, b] → R

2 and γ′ : [a′, b′] → R
2 be admissible parameterizations of Γ.

Then

(3.16) γ♯(D
k[γ]H1⌊[a,b]) = γ′♯(D

k[γ′]H1⌊[a′,b′]).

Proof. Since the parameterizations γ and γ′ are admissible we see that the asso-
ciated length functions sγ and sγ′ are absolutely continuous and strictly increasing.
Furthermore,

ṡγ(t) = ‖γ̇(t)‖ > 0 for H1-a.e. t ∈ [a, b];

ṡγ′(t′) = ‖γ̇′(t′)‖ > 0 for H1-a.e. t′ ∈ [a′, b′].
(3.17)

Hence, there are continuous strictly increasing functions t = t(s) = s−1
γ (s) and t′ =

t′(s) = s−1
γ′ (s). We set t′(t) := s−1

γ′ (sγ(t)) for all t ∈ [a, b]. Note that

dt′

dt
(t) > 0, for H1-a.e. t ∈ [a, b].

By Proposition 3.2 not only the functions sγ , sγ′ but also the functions s−1
γ , s−1

γ′ have
the Lusin property. Hence, the function t′(·) is absolutely continuous and strictly
increasing. As a result, applying Proposition 2.3 with Φ(t) = t′(t), taking into
account (3.10) and Remark 3.3, we establish for any measurable set E, the desirable
equality

ˆ

E

Dk[γ](t) dt =

ˆ

E

Dk[γ′](t′(t))
dt′

dt
(t) dt =

ˆ

t′(E)

Dk[γ′](t′) dt′.

The proof is complete. �

Recall Proposition 2.4. Now we can formulate the main result of this section.

Theorem 3.1. Let Γ ⊂ [0, 1) × [0, 1) be a simple rectifiable curve of positive
length. Then the special sequence of measures {µk[Γ]} := {µk[Γ]}k∈N0 is 1-regular on
Γ.

Proof. Using Proposition 3.3 we may assume without loss of generality that the
curve Γ is parameterized by the arc length γs. During the proof we use the shorthand
γ = γs. By Proposition 2.4 the map γ : [0, l(Γ)] → Γ is 1-Lipschitz. Clearly the maps
γi, i = 1, 2 are 1-Lipschitz as compositions of γ with the corresponding projections
Πi. We set

li = diam γi([a, b]) for i = 1, 2.

Since the curve Γ is rectifiable and l(Γ) > 0, we have

(3.18) 0 < l(Γ) ≤ l1 + l2 ≤ 2l(Γ) < +∞.

Now we should verify that conditions (1)–(4) in the definition of a 1-regular on Γ
sequence of measures (see the introduction) hold true for the sequence {µk[Γ]}.

Step 1. Since γ is the arc length parametrization of Γ it follows directly from
(3.10) that for each k ∈ N

Dk[γ](t) > 0 for H1-a.e. t ∈ [a, b].

Hence, the construction (3.12) gives

(3.19) supp µk[Γ] = Γ for every k ∈ N0.
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Step 2. Now it is convenient to verify condition (4). It follows immediately from
(3.7), (3.8), (3.9) and (3.10) that, for every k ∈ N0,

(3.20) 2−1Dk+1[γ](t) ≤ Dk[γ](t) ≤ Dk+1[γ](t) for H1-a.e. t ∈ [a, b].

This fact together with (3.12) implies existence of a sequence of weights {wk[Γ]} such
that for every k ∈ N we have µk[Γ] = wk[Γ]µ0[Γ] and

(3.21) 2−1wk+1[Γ](x) ≤ wk[Γ](x) ≤ wk+1[Γ](x) for µ0[Γ]-a.e. x ∈ Γ.

Step 3. Fix an arbitrary j ∈ N0. If i = 1 we set i′ = 2, if i = 2 we set i′ = 1. It
is clear that for any (half-open) dyadic cube Qj,m with j ≥ k, m ∈ Z

2, we have by
(3.10) and (3.12)

ˆ

γ−1(Qj,m)

Wk
i′ [γ](s)|γ̇i(s)| ds ≤ µk[Γ](Qj,m)

≤

ˆ

γ−1(Qj,m)

(
Wk

1 [γ](s)|γ̇2(s)|+Wk
2 [γ](s)|γ̇1(s)|

)
ds, i = 1, 2.

(3.22)

Since the map γ is injective, we have, for H1-a.e. xi ∈ Πi′(Qj,m),

(3.23)

ˆ

γ−1(Qj,m)∩γ−1
i

(xi)

Wk
i′ [γ](s) dH

0(s) =

ˆ

Πi(Qj,m)

dνkF [Li′ [Γ](xi)](xi′).

Recall that γi, i = 1, 2, are Lipschitz maps. Hence, we apply Proposition 2.3 and use
(3.23) taking into account Definition 3.6 and Remark 3.2. We get for each k ∈ N0

and any j ≥ k, m ∈ Z
2,

ˆ

γ−1(Qj,m)

Wk
i′ [γ](s)|γ̇i(s)| ds

=

ˆ

Πi′(Qj,m∩Γ)

(
ˆ

Πi(Qj,m)

dνkF [Li′[Γ](xi)](xi′)

)
dH1(xi)

≤

ˆ

Πi′ (Qj,m∩Γ)

dH1(y) = H1(Πi′(Qj,m ∩ Γ)), i = 1, 2.

(3.24)

On the other hand, similar arguments allow to deduce for every k ∈ N0, m ∈ Z
2, the

following equality

(3.25)

ˆ

γ−1(Qk,m)

Wk
i′ [γ](s)|γ̇i(s)| ds = H1(Πi′(Qk,m ∩ Γ)), i = 1, 2.

Step 4. We verify condition (3) with d = 1 for the sequence {µk[Γ]}k∈N0 . Fix
k ∈ N0 and x ∈ Γ. We set Qk(x) := Q(x, 2−k) for brevity. We use (3.19), (3.21),
(3.25) and subadditivity of the measure H1. This gives

µk[Γ](Qk(x) ∩ Γ) = µk[Γ](Qk(x)) ≥
1
4
µk+2[Γ](Qk(x))

≥
1

4

∑

m∈Z2

Qk+2,m∩ 1
2
Qk(x)6=∅

µk+2[Γ](Qk+2,m)

≥
∑

m∈Z2

Qk+2,m∩ 1
2
Qk(x)6=∅

1
4
H1(Πi(Qk+2,m ∩ Γ))

≥ 1
4
H1(Πi(

1

2
Qk(x) ∩ Γ)), i = 1, 2.

(3.26)
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Since Qk(x) ∩ Γ is path-connected we clearly have for k ≥ − log2(max{l1, l2})

(3.27) max{H1(Π1(
1

2
Qk(x) ∩ Γ)),H1(Π2(

1

2
Qk(x) ∩ Γ))} ≥ 2−k−1.

Finally, combining (3.26) and (3.27) we deduce

µk[Γ](Qk(x)) ≥
1

8
min{1, 2k max{l1, l2}}2

−k

≥
1

8
min{1,max{l1, l2}}2

−k, k ∈ N0.

(3.28)

Step 5. To verify condition (2) with d = 1 we fix x ∈ Γ and r ∈ (0, 2−k]. We
set k(r) := [log2 r

−1]. Note that there are at most 25 dyadic cubes Qk(r),m whose
intersections with Q = Q(x, r) are nonempty. Hence, we apply the second inequality
in (3.22) and then use (3.24) with j = k(r) (it is possible because k(r) ≥ k). We get

µk[Γ](Q) ≤
∑

m∈Z2

Qk(r),m∩Q 6=∅

µk[Γ](Qk(r),m)

≤
∑

m∈Zn

Qk(r),m∩Q 6=∅

2∑

i=1

H1(Πi(Qk(r),m ∩ Γ)) ≤
50

2k(r)
≤ 50r.

(3.29)

The proof is complete. �

4. Main results

During the whole section we use the shorthand Qk(x) := Q(x, 2−k), k ∈ N0. The
proof of the following lemma is based on standard arguments. Nevertheless, as far
as we know, the assertion is new. We present the full proof for the completeness.

Lemma 4.1. Let Γ ⊂ [0, 1)×[0, 1) be a simple rectifiable curve of positive length.
Let {µk[Γ]} be a special 1-regular sequence of measures on Γ. Let µk[Γ] = wk[Γ]µ0[Γ],
k ∈ N. Then,

(4.1) lim
k→∞

1

wk[Γ](x)

 

Q(x,2−k)

wk[Γ](y) dµ0[Γ](y) < +∞ for H1-a.e. x ∈ Γ.

Proof. By Proposition 3.3 we may assume that Γ is parameterized by the arc
length γs : [0, l(Γ)] → R

2. We split the proof into several steps.
Step 1. Since H1⌊Γ is a Radon measure, by Theorem 3.1 and Proposition 2.2

there exists a function g[Γ] ∈ L1(H1⌊Γ) such that, for H1-a.e. point x ∈ Γ, (note that
w0[Γ] ≡ 1)

(4.2) g[Γ](x) =
dµ0[Γ]

dH1⌊Γ
(x) := lim

r→0

µ0[Γ](Q(x, r))

H1(Q(x, r) ∩ Γ)
≤ C1

{µk [Γ]}
.

Step 2. At this step we are going to show that

(4.3) g[Γ](x) > 0 for H1-a.e. x ∈ Γ.

By Proposition 2.5 it follows from (4.2) that in order to prove (4.3) it is sufficient to
establish

(4.4) lim
r→0

µ0[Γ](Q(x, r))

r
> 0 for H1-a.e. x ∈ Γ.
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Since the set Γ is connected and the map γs is the arc-length parametrisation of
Γ we get for each point x ∈ Γ and any r < diamΓ

3
that the preimage γ−1

s (Q(x, r))
contains a closed interval [t1x(r), t

2
x(r)] ∋ γ−1

s (x) such that:

(1) γs(t
1
x(r)) = x, γs(t

2
x(r)) ∈ ∂Q(x, r);

(2) it holds

(4.5) |t1x(r)− t2x(r)| ≥ r.

Since γs is the arc-length parametrization, taking into account Proposition 2.5 we
obtain

(4.6) |t1x(r)− t2x(r)| ≤ l(Γ ∩Q(x, r)) → 0, r → 0.

Combining (3.12), (4.5) and (4.6) and taking into account that γs has the Lusin
property (because γs is 1-Lipschitz) we get

lim
r→0

µ0[Γ](Q(x, r))

r
≥ lim

r→0

 t2x(r)

t1x(r)

χ[0,l(Γ)](τ) D
0[γs](τ) dτ

= D0[γs](γ
−1
s (x)) > 0 for H1-a.e. x ∈ Γ.

(4.7)

Step 3. Using (4.3) and the definition of the measure H1 given in Section 2.1 it
is easy to see that the measure H1⌊Γ is absolutely continuous with respect to µ0[Γ].
Furthermore, w0[Γ](x) := 1 for all x ∈ Γ by Theorem 3.1 and the definition of a
d-regular sequence of measures given in the introduction. As a result, by (3.21) we
have

(4.8) wk[Γ](x) ≥ w0[Γ](x) = 1 for H1-a.e. x ∈ Γ.

According to Theorem 3.1 the sequence of measures {µk[Γ]} is 1-regular on Γ. Hence,
we can apply Proposition 2.2 with d = 1 and then use (4.3), (4.8). This gives

lim
k→∞

1

wk[Γ](x)

 

Qk(x)

wk[Γ](y) dµ0[Γ](y)

= lim
k→∞

1

wk[Γ](x)

µk[Γ](Qk(x))

H1⌊Γ(Qk(x))

H1⌊Γ(Qk(x))

µ0[Γ](Qk(x))
(4.9)

≤ lim
k→∞

( 1

wk[Γ](x)

C1
{µk [Γ]}

g(x)

)
≤
C1

{µk[Γ]}

g(x)
< +∞ for H1-a.e. x ∈ Γ. �

Recall that given a closed d-thick set S, the definition of a d-regular on S sequence
of measures was given in the introduction. Recall also that the functional BN {mk},p,λ

was defined in (1.11).

Theorem 4.1. Let n ∈ N, n ≥ 2, d ∈ [n− 1, n], p ∈ (1,∞) and λ ∈ (0, 1). Let
S ⊂ R

n be a closed d-thick set. Let {mk} be a d-regular on S sequence of measures.
Assume that the following conditions hold:

(1) the set S is (d, λ)-quasi-porous;
(2) for m0-almost every x ∈ S

(4.10) lim
k→∞

1

wk(x)

 

Q(x,2−k)

wk(y) dm0(y) < +∞.

Then, the condition BN {mk},p,λ[f ] < +∞ implies

(4.11) lim
k→∞

 

Q(x,2−k)

|f(x)− f(y)| dmk(y) = 0 for m0-a.e. x ∈ S.
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Proof. We split the proof into several steps.
Step 1. Using Proposition 2.1 we get for each k ∈ N0

(4.12) 2k(p−(n−d))
(
Ẽmk

[f ](Qk(x))
)p

≤ 2k(d−n)
(
2f ♯

{mk}
(x, 2−k)

)p
for every x ∈ S.

Step 2. By B. Levi theorem we deduce from (4.12) and (1.11)

ˆ

S

[ ∞∑

k=1

2k(p−(n−d))χSk(λ)(x)
(
Ẽmk

[f ](Qk(x))
)p
wk(x)

]
dm0(x)

=
∞∑

k=1

2k(p−(n−d))

ˆ

Sk(λ)

(
Ẽmk

[f ](Qk(x))
)p
wk(x) dm0(x) ≤ 2p

(
BN {mk},p,λ[f ]

)p
.

(4.13)

Step 3. Since the set S is (d, λ)-quasi-porous and BN {mk},p,λ[f ] < +∞ by (4.13)
we get

(4.14)

∞∑

k=1

2k(p−(n−d))wk(x)
(
Ẽmk

[f ](Qk(x))
)p

< +∞ for m0-a.e. x ∈ S.

In particular, this gives

(4.15) lim
k→∞

2k(p−(n−d))wk(x)
(
Ẽmk

[f ](Qk(x))
)p

= 0 for m0-a.e. x ∈ S.

Since p > 1, d ∈ [n− 1, n] and since wk(x) ≤ 2k(n−d) for m0-a.e. x ∈ S we obtain

(4.16) wp
k(x) ≤ 2k(p−1)(n−d)wk(x) ≤ 2k(p−(n−d))wk(x) for m0-a.e. x ∈ S.

As a result, combining (4.15) and (4.16), we get

(4.17) lim
k→∞

(
wk(x)Ẽmk

[f ](Qk(x))
)p

= 0 for m0-a.e. x ∈ S.

Step 4. Clearly, the condition BN {mk}p,λ[f ] < +∞ implies f ∈ L1(m0). Hence,
m0-almost every point x0 ∈ S is a Lebesgue point of the function f with respect to
the measure m0. This gives

lim
k→∞

 

Qk(x0)

|f(x0)− f(x)| dmk(x)

≤ lim
k→∞

 

Qk(x0)

|f(x0)− f(y)| dm0(y)

+ lim
k→∞

 

Qk(x0)

 

Qk(x0)

|f(y)− f(x)| dm0(y)dmk(x)

≤ lim
k→∞

 

Qk(x0)

 

Qk(x0)

|f(y)− f(x)| dm0(y)dmk(x) for m0-a.e. x ∈ S.

(4.18)
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Step 5. Since wk(x) ≥ 1 for m0-a.e. x ∈ S and since suppmk = S, k ∈ N0 we
have by (4.10) and (4.17)

lim
k→∞

 

Qk(x0)

 

Qk(x0)

|f(y)− f(x)| dmk(x) dm0(y)

≤ lim
k→∞

mk(Qk(x0))

wk(x0)m0(Qk(x0))

wk(x0)

mk(Qk(x0))

·

ˆ

Qk(x0)

 

Qk(x0)

|f(y)− f(x)| dmk(x)wk(y) dm0(y)

≤ lim
k→∞

mk(Qk(x0))

wk(x0)m0(Qk(x0))
lim
k→∞

wk(x0)Ẽmk
[f ](Qk(x0)) = 0, m0-a.e. x0 ∈ S.

(4.19)

Combining (4.18) with (4.19) we get (4.11) and complete the proof. �

If Γ ⊂ R
2 is a simple rectifiable curve of positive length then for any 1-regular

on Γ sequence of measures {mk}k∈N0 every measure mk, k ∈ N0 is finite on Γ. Hence,
using (1.6) we have f ∈ L1(mk0) for some k0 ∈ N0 if and only if f ∈ L1(mk) for all
k ∈ N0. Furthermore, by Hölder inequality if f ∈ Lp(mk0) for some k0 ∈ N0 and
p ∈ [1,∞) then f ∈ L1(mk) for all k ∈ N0. Recall the construction of the extension
operator given in (1.9). Given a Borel function f ∈ Lp(µ0[Γ]), we define (we set
k(r) := [log2 r

−1])

(4.20) F (x) = ExtΓ[f ](x) :=
∑

α∈I

ϕα(x)

 

Q̃α∩Γ

f(x̃) dµk(rα)[Γ](x̃), x ∈ R
2.

Now we can formulate the main result of this section.

Theorem 4.2. Let Γ ⊂ [0, 1) × [0, 1) be a simple rectifiable curve of positive
length. Let γ : [a, b] → R

2 be an admissible parametrization of Γ. Let {µk} =
{µk[Γ]}k∈N0 be a special 1-regular on Γ sequence of measures. Given p ∈ (1,∞), a
function f : Γ → R belongs to the trace space W 1

p (R
2)|Γ if and only if there exists

λ0 := λ0(Γ) ∈ (0, 1] such that

BN {µk},p,λ0[f ] := ‖f |Lp(µ0)‖+

(
∞∑

k=1

2−k

ˆ

Γk(λ0)

(
f ♯

{µk}
(x, 2−k)

)p
dµk(x)

) 1
p

<∞.

(4.21)

Furthermore, for every λ ∈ (0, λ0] there exists a constant C > 0 depending only on
p, n, λ, C1

{µk}
, C2

{µk}
such that

(4.22) C−1BN {µk},p,λ[f ] ≤ ‖f |W 1
p (R

2)|Γ‖ ≤ CBN {µk},p,λ[f ]

and the operator ExtΓ : W
1
p (R

2)|Γ →W 1
p (R

2) defined in (4.20) is linear, bounded and

Tr |Γ ◦ ExtΓ = Id on the space W 1
p (R

2)|Γ.

Proof. Since Γ is a compact path-connected set and l(Γ) > 0 there exists a
constant c > 0 such that H1(Q(x, r) ∩ Γ) ≥ cr for all x ∈ Γ and all r ∈ (0, 1].

By Lemma 2.1, there is a number λ̃0 := λ̃0(Γ) ∈ (0, 1] such that the curve Γ is

(1, λ)-quasi-porous for any λ ∈ (0, λ̃0]. Hence, combining Proposition 2.2, Theorem

3.1, Lemma 4.1 and Theorem 4.1 we deduce that for any λ ∈ (0, λ̃0] the condition



Restrictions of Sobolev W
1
p (R

2)-spaces to planar rectifiable curves 527

BN {µk},p,λ[f ] < +∞ implies that

lim
k→∞

 

Q(x,2−k)

|f(x)− f(y)| dµk(y) = 0 for µ0[Γ]-a.e. x ∈ Γ.

On the other hand, it was mentioned in the proof of Lemma 4.1 that the measure
H1⌊Γ is absolutely continuous with respect to µ0[Γ]. Hence, BN {µk},p,λ[f ] < +∞
implies that

lim
k→∞

 

Q(x,2−k)

|f(x)− f(y)| dµk(y) = 0 for H1-a.e. x ∈ Γ.

Combining this observation with Theorem A and Theorem 3.1 we complete the proof.
�

5. Example

Note that despite the fact that for a given simple rectifiable curve Γ ⊂ R
2 of

positive length the measures µk[Γ], k ∈ N0 constructed in Section 3 have explicit
expressions, still without additional restrictions Γ can have extremely complicated
geometry and functions Dk[γ] can oscillate wildly in general. As a result, given a
function f ∈ W 1

p (R
2)|Γ, computations of the norm BN {µk [Γ]},p,λ[f ] can be problematic

in practice.
Below we present an illustrative example, which on the one hand is quite simple

for computations, and on the other hand, it exhibits the typical effects when oscilla-
tions of a given curve Γ affect to the behavior of the densities Dk[γ] (for admissible
parameterizations γ).

We restrict ourselves to the case when Γ is a graph of some locally Lipschitz non-
negative function. More precisely, we assume that γ1 = id on [0, 1] and γ2 : [0, 1] →
R+ is a locally Lipschitz (i.e. γ2|[a,b] is Lipschitz for each [a, b] ⊂ (0, 1)) function. We
set Γ := {(x1, x2) : x1 ∈ [0, 1], x2 = γ2(x1)}. Note that in order to make our example
interesting our curve Γ should satisfy the following requirements:

a) the function γ2 is not (globally) Lipschitz because otherwise we fall into the
scope of [6];

b) the graph Γ fails to satisfy the Ahlfors–David 1-regularity condition because
otherwise we fall into the scope of [9]. Hence, γ2 should oscillate strongly.

First of all we define

(5.1) ζ(t) :=





2t, t ∈ [0, 2−1],

2− 2t, t ∈ (2−1, 1],

0, t /∈ [0, 1].

For each k ∈ N0 we set

(5.2) ψk(t) :=
∑

m∈Z

ζ
(
2k
(
t−

m

2k

))
, t ∈ R.

Let {ck} = {ck}k∈N ⊂ [0, 1) be a sequence of nonnegative numbers and let {nk} =
{nk}k∈N be a sequence of nonnegative integer numbers such that nk > k for every
k ∈ N. We define

(5.3)




γ1(t) = t, t ∈ [0, 1];

γ2(t) :=
∞∑
k=1

ckχ[2−k,2−k+1)(t)ψnk
(t), t ∈ [0, 1].
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In other words, the graph Γ looks like a sequence of triangles. The amount of con-
gruent triangles on the interval [2−k, 2−k+1) equals 2nk−k and the height of every such
triangle equals ck.

Since γ2 is a continuous function, the map γ = (γ1, γ2) : [0, 1] → [0, 1) × [0, 1)
gives a parametrization of the simple planar curve. Clearly, γ2 is locally Lipschitz (in
fact γ2 is Lipschitz on any closed interval [a, 1] with a ∈ (0, 1]). It is easy to see that
the sequences {ck} and {nk} can be chosen in such a way that:

(5.4)

∞∑

k=1

ck2
nk−k <∞;

(5.5) lim
k→∞

ck2
nk = +∞.

As a typical example one can take ck := k−α2k−nk, k ∈ N0 with α > 1.
From now we assume that our planar curve Γ satisfies (5.4)–(5.5). It is clear that

condition (5.4) is necessary and sufficient for the rectifiability of Γ. This fact together
with (5.1) and local Lipschitz property of γ2 implies that the parametrization γ is

admissible. From (5.5) it follows that

(5.6) lim
j→∞

2j
∞∑

k=j

ck2
nk−k = +∞.

Clearly, (5.6) leads to the distortion of the second inequality in (1.1) with d = 1
and S = Γ (the first inequality in (1.1) always holds true with S = Γ and d = 1).
Hence, our curve is locally Lipschitz and fails to satisfy the Ahlfors–David 1-regularity

condition. Finally, (5.5) implies that γ2 is not globally Lipschitz. Hence, the exact
description of the trace space W 1

p (R
2)|Γ cannot be obtained by the earlier available

methods of [6, 9].
It follows directly from the construction that for any k ∈ N0,

(5.7) Wk
2 [γ](t)|γ̇1(t)| = 1 for a.e. t ∈ [0, 1].

By (5.3) we obtain for every k ∈ N0

(5.8) |γ̇2(t)| = ck2
nk+1 for a.e. t ∈ [2−k, 2−k+1].

Using (5.7) and (5.8) it is easy to deduce (with the help of elementary geometrical
arguments) for every k, l ∈ N0

(5.9) χ[2−l,2−l+1)(t) D
k[γ](t) ≈ χ[2−l,2−l+1)(t)D̃

k
[γ](t),

where we set

(5.10) χ[2−l,2−l+1)(t)D̃
k
[γ](t) :=

{
1 if 2−k ∈ (0, 2−nl) ∪ (cl, 1] or cl ≤ 2−nl;

2kcl if 2−k ∈ [2−nl, cl].

The corresponding constants in (5.9) do not depend on γ, k, l and t. We also define

(5.11) µ̃k[Γ] = γ♯(D̃
k
[γ]H1⌊[0,1]), k ∈ N0.

We would like to describe informally the main idea of (5.9). Firstly note that
2−nk < ck for all sufficiently large k ∈ N because ck2

nk → +∞, k → +∞. This
implies that (5.10) is correct. In order to obtain a simplified version of Theorem A
for this case we do not use Theorem 3.1. Indeed, in a trace criterion it is sufficient to
obtain not precisely the special sequence of measures {µk[Γ]} but rather something
comparable with it. Hence, we would like to guess in some sense how can we choose
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the measures µ̃k[Γ], k ∈ N0 in order µ̃k[Γ] to satisfy conditions (1)–(4) in the corre-
sponding definition of 1-regular on Γ sequence of measures. Fix a cube Q = Q(x, r)

with x ∈ Γ and r ≈ 2−k. Roughly speaking, our weight function D̃
k
[γ] ≈ 1 in the

case when either the side length r is comparable with the base of the corresponding
triangle (where the center of the cube is located) or when the side length of the cube
is comparable with the height of the corresponding triangle. In the case when the
heights of the congruent triangles (located on the corresponding dyadic intervals) a
much bigger than its bases and when the side length of the cube under consideration
is somewhere between these two numbers we should focus on the intersections of lines
parallel to the first coordinate axis with our curve Γ.

It remains to describe the porous subsets of Γ. First of all we fix λ ∈ (0, 1) and
k ∈ N0. For each l ∈ N we set

El
k(λ) :=

(
γ−1
2 ((cl −

1− λ

2k
, cl]) ∩ [

1

2l
,
2

2l
)
)⋃(

γ−1
2 ([0,

1− λ

2k
)) ∩ [

1

2l
,
2

2l
)
)

⋃(
γ−1
2 ((cl+1 −

1− λ

2k
, cl]) ∩ [

1

2l
,
1

2l
+

1− λ

2k
)
)

⋃(
γ−1
2 ((cl−1 −

1− λ

2k
, cl]) ∩ (

2

2l
−

1− λ

2k
,
2

2l
])
)
.

(5.12)

Now for every λ ∈ (0, 1) and k ∈ N0 we set

(5.13) Ek(λ) :=
∞⋃

l=1

El
k(λ).

It is an elementary verification that for every λ ∈ (0, 1) and k ∈ N0

(5.14) Γk(λ) = {(x1, x2) ∈ R
2 : x1 ∈ Ek(λ), x2 = γ2(x1)}.

Let {ϕα}α∈I be the same as in (4.20). Given a Borel function f ∈ Lp(µ̃0[Γ]), we
define

(5.15) F (x) = ẼxtΓ[f ](x) :=
∑

α∈I

ϕα(x)

 

Q̃α∩Γ

f(y) dµ̃k(rα)[Γ](y), x ∈ R
2.

Combining Theorem 4.2 with (5.9), (5.11), (5.14), (5.15) and Proposition 2.1, we
obtain the following criterion:

Given p ∈ (1,∞), a function f : Γ → R belongs to the trace space W 1
p (R

2)|Γ if
and only if there is λ0 ∈ (0, 1] such that

BNΓ,p,λ0[f ] :=

(
ˆ 1

0

|f(γ2(t))|
p dt

) 1
p

+

(
∞∑

k=1

2−k

∞∑

l=1

ˆ

El
k
(λ0)

(
f̃ ♯
k(t)
)p

D̃k[γ](t) dt

) 1
p

<∞,

(5.16)

where we set for each k ∈ N0 (we use the shorthand Uk(t) := γ−1(Qk(γ(t))))

(5.17) f̃ ♯
k(t) := sup

0≤k′≤k

23k
′

ˆ

Uk′(t)

ˆ

Uk′(t)

|f ◦ γ(s)− f ◦ γ(s′)|D̃k[γ](s)D̃k[γ](s
′) ds ds′,

t ∈ [0, 1). Furthermore, for each λ ∈ (0, λ0] there is a constant C > 0 depending only
on p and λ such that

(5.18) C−1 BNΓ,p,λ[f ] ≤ ‖f |W 1
p (R

2)|Γ‖ ≤ C BNΓ,p,λ[f ]
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and the operator ẼxtΓ : W
1
p (R

2)|Γ →W 1
p (R

2) defined in (5.15) is linear, bounded and

Tr |Γ ◦ ẼxtΓ = Id on the space W 1
p (R

2)|Γ.
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