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Abstract—Let S ⊂ R
n be a nonempty set. Given d ∈ [0, n) and a cube Q ⊂ R

n with side length
l = l(Q) ∈ (0, 1], we show that if the d-Hausdorff content Hd

∞(Q ∩ S) of the set Q ∩ S satisfies
the inequality Hd

∞(Q ∩ S) < λld for some λ ∈ (0, 1), then the set Q \ S contains a specific
cavity. More precisely, we prove the existence of a pseudometric ρ = ρS,d such that for every
sufficiently small δ > 0 the δ-neighborhood Uρ

δ (S) of S in the pseudometric ρ does not cover Q.
Moreover, we establish the existence of constants δ = δ(n, d, λ) > 0 and γ = γ(n, d, λ) > 0 such
that Ln(Q \ Uρ

δl(S)) ≥ γln for all δ ∈ (0, δ), where Ln is the Lebesgue measure. If in addition
the set S is lower content d-regular, we prove the existence of a constant τ = τ(n, d, λ) > 0 such
that the cube Q is τ -porous. The sharpness of the results is illustrated by several examples.
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1. INTRODUCTION

In many areas of analysis the so-called porous sets play a significant role. The corresponding
literature is so huge that we mention only the groundbreaking papers [4, 7, 13, 21], the beautiful
survey [14], and the monograph [9]. Roughly speaking, S is porous if, for any point x ∈ S, there are
cubic holes located in R

n \ S arbitrary close to x whose diameter is comparable to the distance to
the point x. Under a different nomenclature, porosity was used as early as 1920 by A. Denjoy [3].
As far as we know, E. P. Dolzhenko was the first to use the term “porous set” [4].

There are intimate connections between porosity properties of sets and their dimensions. It
was proved in [8] that a set S ⊂ R

n is porous if and only if its Assouad dimension is strictly less
than n. The situation becomes more complicated in the context of the Hausdorff dimension. The
papers [7, 11, 13] contain results stating that a “sufficiently strong porosity” of a set S ⊂ R

n implies
the existence of an appropriate upper bound on its Hausdorff dimension. However (in contrast to
the Assouad dimension), one can construct a nonporous set S ⊂ R

n whose Hausdorff dimension is
strictly less than n. The main goal of the present paper is to understand how the behavior of the
Hausdorff contents of the intersections of cubes Q ∩ S with a given set S ⊂ R

n affects porosity-type
properties of S. Such kind of questions arose naturally in the study of trace problems for Sobolev
spaces [17, 18]. This was a motivation for the present paper.

In order to briefly describe the main results and ideas of the present paper, we fix some notation
and introduce basic concepts. As usual, given n ∈ N, R

n denotes the linear space of all rows
x = (x1, . . . , xn) of real numbers. It will be convenient to equip this space with the uniform norm,
i.e., Rn := (Rn, ‖·‖∞), where ‖x‖∞ := max{|x1|, . . . , |xn|}. Furthermore, as usual, by Ln we denote
the classical Lebesgue measure on R

n. In what follows, given a number d ∈ [0, n] and a set E ⊂ R
n,

by Hd(E) and Hd
∞(E) we will denote the d-Hausdorff measure and the d-Hausdorff content of E,

respectively (see the next section for the precise definitions). Throughout the paper, by a cube we
will mean a closed cube in R

n with sides parallel to the coordinate axes. Given x ∈ R
n and l ≥ 0,
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284 A. I. TYULENEV

we set Ql(x) :=
∏n

i=1[xi − l, xi + l]. In other words, Ql(x) is the ball centered at x of radius l in
the space (Rn, ‖·‖∞). Given a cube Q, we will denote by l(Q) its side length. Given a c > 0 and a
cube Q = Ql(x), we let cQ denote the dilation of Q with respect to its center by a factor of c, i.e.,
cQl(x) := Qcl(x).

We recall a slightly modified modern definition of a porous set that is commonly used in the
literature [14]. First of all, given a nonempty set S ⊂ R

n and a parameter τ ∈ (0, 1], we say that
a cube Ql(x) is (S, τ)-porous if there is a cube Ql′(x

′) ⊂ Ql(x) \ S with l′ ≥ τ l. A cube Ql(x) is
said to be S-porous if it is (S, τ)-porous for some τ ∈ (0, 1]. The family of all (S, τ)-porous cubes
will be denoted by PORS(τ). Finally, we say that a set S is τ -porous if Ql(x) ∈ PORS(τ) for all
x ∈ S and all l ∈ (0, 1].

Recall that for d ∈ [0, n] a closed set S ⊂ R
n is said to be Ahlfors–David d-regular if there are

constants c1S , c
2
S > 0 such that

c1Sl
d ≤ Hd(Ql(x) ∩ S) ≤ c2Sl

d ∀x ∈ S, ∀ l ∈ (0, 1]. (1.1)

In what follows, given d ∈ [0, n], by ADR(d) we denote the class of all closed Ahlfors–David
d-regular sets.

The starting point of our investigation is the following elementary but beautiful observation
made by A. Jonsson [6] (see also [16, Proposition 9.18]). Note that this result was an important
tool in [5, 6], where traces of Besov and Lizorkin–Triebel spaces on Ahlfors–David d-regular sets
were studied.

Theorem A. Let d ∈ [0, n) and S ∈ ADR(d). Then there exists a constant τ ∈ (0, 1/2)
depending only on d, n, c1S , and c2S such that S is τ -porous.

We should make several remarks concerning Theorem A.
Remark 1.1. The requirement d < n is essential. Indeed, in the case d = n it is obvious that

S = R
n ∈ ADR(n) but the set S fails to satisfy any porosity-type properties.

Remark 1.2. Example 6.1 below shows that an analog of Theorem A fails for sets satisfying
only the right inequality in (1.1). One can easily show that an analog of Theorem A also fails for
sets satisfying only the left inequality in (1.1).

Remark 1.3. The Ahlfors–David d-regularity is only a sufficient condition for the porosity
of S but it is far from being necessary.

Remark 1.4. Theorem A has an essential drawback. Indeed, only d-dimensional sets fall into
the scope of the theorem.

Recent investigations related to trace problems for Sobolev-type spaces [12, 15, 18–20, 22] called
for the study of porosity-type properties of more complicated (in comparison with Ahlfors–David
regular sets) sets that can be composed of pieces of different dimensions. This gives a motivation
for finding some less restrictive conditions on a set S that are still sufficient for some porosity-type
properties of S.

Given d ∈ [0, n], a set S ⊂ R
n is said to be lower content d-regular (or equivalently, d-thick) if

there exists a constant λ ∈ (0, 1] such that

Hd
∞(Ql(x) ∩ S) ≥ λld ∀x ∈ S, ∀ l ∈ (0, 1]. (1.2)

Since the parameter λ will play some role below, we introduce the following notation. Given
d ∈ [0, n] and λ ∈ (0, 1], we denote by LCR(d, λ) the class of all sets S ⊂ R

n for which (1.2) holds.
Furthermore, we set LCR(d) :=

⋃
λ∈(0,1] LCR(d, λ).

As far as we know, d-thick sets were introduced by V. Rychkov in [12]. Recently, d-thick sets
were thoroughly studied in [1, 2], where they were called lower content d-regular sets. The class
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LCR(d) is a natural and far reaching generalization of the class ADR(d). Indeed,

ADR(d) ⊂ LCR(d) ∀ d ∈ (0, n]. (1.3)

It is clear that ADR(n) = LCR(n). If d ∈ (0, n), the inclusion (1.3) is strict. Indeed, it was
noticed in [12] and showed in [22] that any path-connected set containing at least two distinct
points is 1-thick. On the other hand, it is easy to built planar rectifiable curves that fail to satisfy
the Ahlfors–David 1-regularity condition (see [19]) and hence fail to satisfy the Ahlfors–David
d-regularity conditions for all d ∈ (0, 2]. In the recent papers [12, 19, 20, 22] it was discovered that
d-thick sets can be effectively used in the theory of traces of function spaces.

Problem A. Suppose we are given parameters d ∈ (0, n) and λ ∈ (0, 1). Does there exist a
constant τ ∈ (0, 1/2) such that LCR(d, λ) ⊂ POR(τ)?

Unfortunately, the answer to Problem A is negative. For example, in the case S = R
n we have

S ∈ LCR(d, λ) for all d ∈ (0, n) and all λ ∈ (0, 1] but S /∈ POR(τ) for any τ ∈ (0, 1/2). The reason
for that is clear. In contrast to condition (1.1), condition (1.2) contains a nontrivial lower bound for
the content but does not give any nontrivial estimate from above. The estimate Hd

∞(Ql(x) ∩ S) ≤ ld

holds automatically and does not give any information.
Our first main result looks like a natural generalization of Theorem A.
Theorem 1.1. Let d ∈ [0, n) and λ ∈ (0, 1). For every λ ∈ (0, 1) there exists a constant

τ = τ(n, d, λ, λ) ∈ (0, 1) such that, for every set S ∈ LCR(d, λ), every cube Q with l(Q) ∈ (0, 1]
and Hd

∞(Q ∩ S) < λ(l(Q))d is (S, τ )-porous.
In fact we will show that Theorem 1.1 is a simple corollary to a much deeper and more compli-

cated result. In order to formulate it, we need some notation.
Recall that a pseudometric on R

n is a symmetric nonnegative function ρ : Rn × R
n → [0,+∞]

satisfying the triangle inequality. In what follows, given a pseudometric ρ on R
n, we will denote the

pseudometric space (Rn, ρ) by R
n
ρ . By Bn,ρ

r (x) we will denote the closed ball centered at x ∈ R
n with

radius r (in the pseudometric ρ), i.e., Bn,ρ
r (x) := {y ∈ R

n : ρ(x, y) ≤ r}. Given a pseudometric ρ
on R

n, a nonempty set S ⊂ R
n, and a parameter τ ∈ (0, 1], we say that the ball Bn,ρ

r (x) is (S, ρ, τ)-
porous if there is a ball Bn,ρ

r′ (x′) ⊂ Bn,ρ
r (x) \ S with r′ ≥ τr. A ball B is said to be (S, ρ)-porous if

it is (S, ρ, τ)-porous for some τ ∈ (0, 1]. Given τ ∈ (0, 1/2), a set S ⊂ R
n is said to be (ρ, τ)-porous

if, for every x ∈ S and every r ∈ (0, 1], the ball Bn,ρ
r (x) is (S, ρ, τ)-porous.

Given a nonempty set S ⊂ R
n and parameters d ∈ [0, n] and λ ∈ (0, 1], we put

FS(d, λ) :=
{
Q : Hd

∞(Q ∩ S) ≥ λ(l(Q))d
}
. (1.4)

Since all the cubes Q are assumed to be closed, we obviously have {x} ∈ FS(d, λ) for all x ∈ S.
Given parameters d ∈ [0, n], λ ∈ (0, 1] and a nonempty set S, we define the (d, λ)-thick distance

with respect to S from an arbitrary point y ∈ R
n \ S to S by the formula

DS,d,λ(y, S) :=

{
inf{l(Q) : Q ∈ FS(d, λ), y ∈ Q}, {Q ∈ FS(d, λ) : y ∈ Q} �= ∅,

+∞, {Q ∈ FS(d, λ) : y ∈ Q} = ∅.

Given δ ≥ 0, we also define the (d, λ)-thick δ-neighborhood of S by the formula

Sδ(d, λ) :=
{
y ∈ R

n : DS,d,λ(y, S) ≤ δ
}
. (1.5)

In Section 5 we introduce a pseudometric ρ := ρS,d,λ on R
n and show that the set Sδ(d, λ) is a

δ-neighborhood of S in the pseudometric ρ.
If we disregard the particular form of holes in a cube, we can obtain a natural generalization of

the concept of porous cubes. Given a nonempty set S ⊂ R
n and a number γ ∈ (0, 1], we say that a

cube Q = Ql(x) with x ∈ R
n and l > 0 is (S, γ)-hollow if there is a Borel set Ω ⊂ Q \ S (called an

(S, γ)-cavity of Q) such that Ln(Ω) ≥ γln. Now we are ready to formulate our second main result.
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Theorem 1.2. Let d ∈ [0, n), λ ∈ (0, 1), and λ ∈ (0, 1). Then there exist constants γ =

γ(n, d, λ) ∈ (0, 1] and δ = δ(n, d, λ, λ) ∈ (0, 1) such that, for every set S ⊂ R
n, every cube Q with

l = l(Q) ∈ (0, 1] and Hd
∞(Q ∩ S) < λld, and any δ ∈ (0, δ ], the set

Wδl(Q) := Q \ Sδl(d, λ) (1.6)

is an (S, γ)-cavity of Q.
We should make several remarks clarifying Theorem 1.2.
Remark 1.5. It will follow from the proof of Theorem 1.2 that

lim
λ→1

γ(n, d, λ) = 0, lim
λ→1

δ(n, d, λ, λ) = 0, lim
λ→0

δ(n, d, λ, λ) = 0.

Remark 1.6. Note that if Q \ Sδl(d, λ) �= ∅, then there is a ball in the pseudometric ρS,d,λ
inside R

n \ S. In Section 5 we will show that ρS,0,λ(x, y) = ‖x− y‖∞. Hence, in the case d = 0 the
condition Q \ Sδl(0, λ) �= ∅ is equivalent to the (S, ‖·‖∞)-porosity of the cube 2Q.

Remark 1.7. We show in Example 6.2 that condition d < n is essential and cannot be dropped.
One can show that if S is (d, λ)-thick, then, for all points x ∈ R

n \ S close enough to S, the
(d, λ)-thick (with respect to S) distance from x to S is comparable to the usual distance from x
to S. This is a key observation underlying the derivation of Theorem 1.1 from Theorem 1.2.

Structure of the paper. The paper is organized as follows.
Section 2 contains elementary background. Section 3, which is a technical core of the paper, is

based on beautiful combinatorial ideas of Yu. Netrusov [10]. In Section 4 we prove Theorems 1.1
and 1.2. In Section 5 we introduce a new pseudometric and establish its basic properties. Finally,
Section 6 contains elementary examples demonstrating the sharpness of the main theorems.

2. PRELIMINARIES

Throughout the paper, C,C1, C2, . . . will be generic positive constants. These constants can
vary even in a single chain of estimates. The dependence of a constant on certain parameters is
expressed, for example, by the notation C = C(n, p, k). We write A ≈ B if there is a constant
C ≥ 1 such that A/C ≤ B ≤ CA. Given a number c ∈ R, we denote by [c] the integer part of c.

Recall that we consider the linear space R
n of row vectors with the uniform norm ‖x‖ :=

‖x‖∞ := max{|x1|, . . . , |xn|}. Given a set E ⊂ R
n, we will denote by intE the interior of E.

By #E we will denote the cardinality of a (finite) set E. Recall that by a cube Q ⊂ R
n we

mean a closed ball in the space (Rn, ‖·‖∞). By a dyadic cube we mean an arbitrary closed cube
Qk,m :=

∏n
i=1[mi/2

k, (mi + 1)/2k] with k ∈ Z and m = (m1, . . . ,mn) ∈ Z
n. For each k ∈ Z by Dk

we denote the family of all closed dyadic cubes with side lengths 2−k. We set

D :=
⋃

k∈Z
Dk, D+ :=

⋃

k∈N0

Dk.

Given a family of cubes Q in R
n and a number c > 1, we set

cQ := {cQ : Q ∈ Q}.

Given a family G of subsets of R
n, by M(G) we denote its covering multiplicity, i.e., the minimal

M ′ ∈ N such that every point x ∈ R
n belongs to at most M ′ sets from G.

We need the following elementary assertion (for details, see [18]).
Proposition 2.1. Let c ≥ 1 and k ∈ N0. Then

M(cDk) ≤ ([c] + 2)n. (2.1)
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Definition 2.1. Let G = {Gα}α∈I be a family of sets and let U ⊂ R
n be a set. We define the

restriction of the family G to U by the formula

G|U := {G : G ⊂ U}.

A family G of sets is said to be nonoverlapping if

intG ∩ intG′ = ∅ ∀G,G′ ∈ G, G �= G′.

In what follows, by a measure we only mean a nonnegative Borel measure on R
n. By Ln we

denote the classical n-dimensional Lebesgue measure on R
n. We say that a set E ⊂ R

n is measurable
if it belongs to the standard Lebesgue σ-algebra in R

n.
In what follows we will commonly use the following partial order on the set of all nonoverlapping

families of dyadic cubes. Given two nonoverlapping families Q,Q′ ⊂ D, we write Q  Q′ provided
that, for every Q′ ∈ Q′, there exists a unique cube Q ∈ Q such that Q ⊃ Q′. If, in addition,
l(Q) > l(Q′) for all such Q and Q′, we write Q � Q′. We say that two nonoverlapping families of
dyadic cubes Q,Q′ ⊂ D are comparable if either Q  Q′ or Q′  Q. Otherwise we call the families
incomparable.

Given a set E ⊂ R
n, by a covering of E we mean a family F of subsets of R

n such that E ⊂⋃
F∈F F . Given a set E ⊂ R

n, by a dyadic nonoverlapping covering of E we mean a nonoverlapping
family Q ⊂ D such that Q is a covering of E.

Given an at most countable family F of subsets of Rn and a number d ∈ [0, n], we set

Hd(F) :=
∑

F∈F
(diamF )d. (2.2)

We also define the metric floor and the metric ceiling of F by letting

μ(F) := inf{diamF : F ∈ F}, μ(F) := sup{diamF : F ∈ F}. (2.3)

In this paper we will deal not only with the classical Hausdorff measures and contents but also
with their corresponding dyadic analogs.

Definition 2.2. Let E ⊂ R
n be a nonempty set and d ∈ [0, n]. For any δ ∈ (0,∞], we set

Hd
δ(E) := inf Hd(F), DHd

δ(E) := inf Hd(Q), (2.4)

where the first infimum is taken over all at most countable coverings F of E such that μ(F) < δ
and the second infimum is taken over all dyadic nonoverlapping coverings Q of E with μ(Q) < δ.
The quantity Hd

∞(E) is called the d-Hausdorff content of E. The quantity DHd
∞(E) is called the

dyadic d-Hausdorff content of E. We define the d-Hausdorff measure and the dyadic d-Hausdorff
measure of the set E by letting, respectively,

Hd(E) := lim
δ→0

Hd
δ(E), DHd(E) := lim

δ→0
DHd

δ(E). (2.5)

Remark 2.1. Given a set E ⊂ R
n and a parameter δ ∈ (0,+∞], it is easy to show that

Hd
δ(E) ≤ DHd

δ(E) ≤ 2nHd
δ(E). (2.6)

Remark 2.2. Let d ∈ [0, n] and δ ∈ (0,∞]. Let E ⊂ R
n be an arbitrary set. Then by [9,

Lemma 4.6] and Remark 2.1 we get

Hd(E) = 0 ⇔ DHd(E) = 0 ⇔ Hd
δ(E) = 0 ⇔ DHd

δ(E) = 0.
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Definition 2.3. Let d ∈ [0, n] and E ⊂ R
n be an arbitrary set with Hd

∞(E) > 0. We say
that a family F of subsets of Rn is a d-almost covering of E if there exists a set E′ ⊂ E such that
Hd

∞(E′) = 0 and F is a covering of E \ E′.
Definition 2.4. Let d ∈ (0, n] and S ⊂ R

n be a set with Hd
∞(S) ∈ (0,+∞). Given ε > 0, we

say that a d-almost covering F of S is ε-optimal if

Hd(F) ≤ (1 + ε)Hd
∞(S).

Similarly, a dyadic nonoverlapping d-almost covering Q of S is ε-optimal if

Hd(Q) ≤ (1 + ε)DHd
∞(S).

We say that a dyadic ε-optimal nonoverlapping d-almost covering Q of S is maximal if Q  Q′ for
any ε-optimal dyadic nonoverlapping d-almost covering Q′ of S comparable to Q.

Remark 2.3. Let d ∈ (0, n] and S ⊂ R
n be a set with Hd

∞(S) ∈ (0,+∞). It is easy to see
that a maximal ε-optimal dyadic nonoverlapping d-almost covering of S exists but is not unique in
general.

Definition 2.5. Let d ∈ [0, n] and λ ∈ (0, 1]. Let S ⊂ R
n be a set with Hd

∞(S) > 0. We say
that a cube Q = Ql(x) with x ∈ R

n and l ∈ [0,∞) is (d, λ)-thick with respect to S if

Hd
∞(Q ∩ S) ≥ λld. (2.7)

Similarly, a cube Q ⊂ R
n is said to be (d, λ)-dyadically thick with respect to S if

DHd
∞(Q ∩ S) ≥ λld. (2.8)

Recall that, given parameters d ∈ [0, n], λ ∈ (0, 1] and a set S ⊂ R
n, we denote the family of all

(d, λ)-thick cubes by FS(d, λ) (see (1.4)).
Remark 2.4. Note that Q0(x) = x for any point x ∈ R

n. Hence, inequality (2.7) holds
trivially with Q = {x} for any d ∈ [0, n], λ ∈ (0, 1], and x ∈ S. Sometimes it will be convenient for
us to consider a point x ∈ S of a given set S ⊂ R

n as a (d, λ)-thick cube with respect to S (whose
side length is zero) for some d ∈ [0, n] and λ ∈ (0, 1].

In Section 3 we will constantly deal with a special family of dyadic cubes. This family provides
a sort of building blocks for the proof of the main results of the present paper.

Definition 2.6. Let S ⊂ R
n be a nonempty set. Given d ∈ [0, n] and λ ∈ (0, 1], we define the

(d, λ)-keystone family of cubes for S by the formula

DFS(d, λ) :=
{
Q ∈ D+ : DHd

∞(Q ∩ S) ≥ λ(l(Q))d
}
.

Remark 2.5. Let S ⊂ R
n be an arbitrary nonempty set. If Q = Ql(x) ∈ FS(d, λ) for some

d ∈ (0, n] and λ ∈ (0, 1], then Qcl(x) ∈ FS(d, λ/c
d). Indeed, using the monotonicity property of the

d-Hausdorff content, we get

Hd
∞(Qcl(x) ∩ S) ≥ Hd

∞(Ql(x) ∩ S) ≥ λld =
λ

cd
(cl)d.

Proposition 2.2. Let S ⊂ R
n be a set. Let d ∈ (0, n] and λ ∈ (0, 1]. Then there exists

an ε0 > 0 such that, for every ε ∈ (0, ε0), any cube Q = Ql(x) with DHd(Q ∩ S) < λld, and any
ε-optimal dyadic nonoverlapping d-almost covering Q of the set Q ∩ S, we have

l(Q) ≤ 2k(l) ∀Q ∈ Q, (2.9)

where k(l) is a unique integer for which l ∈ (2k(l), 2k(l)+1].
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Proof. We set λ := DHd
∞(Q ∩ S). By the assumptions, λ < λld. Choose ε0 > 0 so small that

(1 + ε0)λ < λld. Hence, taking ε ∈ (0, ε0) and taking an arbitrary ε-optimal dyadic nonoverlapping
d-almost covering Q of the set Q ∩ S, we clearly get

(l(Q))d ≤ Hd(Q) ≤ (1 + ε)λ < λld ∀Q ∈ Q.

Since Q ⊂ D, we obtain (2.9). �
The following elementary proposition will be quite useful in the sequel. It clarifies relations

between (d, λ)-thick cubes and (d, λ)-dyadically thick cubes.
Proposition 2.3. Let d ∈ (0, n) and λ ∈ (0, 1), and let S ⊂ R

n be a Borel set with Hd
∞(S) > 0.

Let Q = Ql(x) be a cube with l ∈ (0, 1] and let k := [− log2 l] ∈ N0. Then,

(i) if cQ ∈ FS(d, λ) (cQ ∈ DFS(d, λ)) for some c ≥ 1, then there exists a dyadic cube Qk,m ∈
FS(d, λ/([2c] + 1)n) (Qk,m ∈ DFS(d, λ/([2c] + 1)n)) such that Qk,m ∩Q �= ∅;

(ii) if Q /∈ FS(d, λ/2
dj) (Q ∈ D+ \ DFS(d, λ/2

dj)) for some j ∈ N0, then no dyadic cube
Qk+j,m ⊂ Q belongs to FS(d, λ) (to DFS(d, λ)).

Proof. It is clear that l ∈ (2−k−1, 2−k]. Since Q is closed, there are at most ([2c] + 1)n dyadic
cubes Qk,m such that Qk,m ∩ cQ �= ∅.

To prove assertion (i), we assume the contrary. Using the subadditivity property of Hd
∞, we get

Hd
∞(cQ ∩ S) ≤

∑

Qk,m∩cQ �=∅

Hd
∞(Qk,m ∩ S) <

λ([2c] + 1)n

2kd([2c] + 1)n
≤ λ(l(Q))d.

This contradicts the assumption that cQ ∈ FS(d, λ).
To prove assertion (ii), assume contrarily that there is a dyadic cube Qk+j,m ⊂ Q such that

Qk+j,m ∈ FS(d, λ). Due to the monotonicity of Hd
∞, by the definition of k we get

Hd
∞(Q ∩ S) ≥ Hd

∞(Qk+j,m ∩ S) ≥ λ

2(k+j)d
≥ λld

2dj
.

However, this contradicts the assumption that Q /∈ FS(d, λ/2
dj).

The corresponding dyadic analogs of the claims can be proved similarly. �

3. KEYSTONE FAMILIES OF CUBES

The following data are assumed to be fixed throughout this section:

(D1) arbitrary numbers n ∈ N and d ∈ (0, n];
(D2) a set S ⊂ R

n with Hd
∞(S) > 0.

Recall Definition 2.6. Given λ ∈ (0, 1], in this section we set DF(λ) := DFS(d, λ) for brevity.
In the sequel we will deal with special subfamilies of DF(λ).

Definition 3.1. Given λ ∈ (0, 1], we say that a family Q of cubes is (d, λ)-nice for the set S
if the following conditions hold:

(1) the family Q is a dyadic nonoverlapping d-almost covering of S;
(2) Q ⊂ DF(λ).

The following result is a modification of Netrusov’s Lemma 2.1 from [10] adapted to our frame-
work. We present a full proof to make our paper self-contained. Furthermore, we hope that the
proof will clarify the underlying ideas of this section.

Lemma 3.1. Let a cube Q ∈ D+ be such that

0 < DHd
∞(Q ∩ S) < 1. (3.1)
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Then, for every λ ∈ (0, 1), there exists a family of cubes Q̂(λ) := Q̂(Q,λ) ⊂ D such that

(1) Q̂(λ) is (d, λ)-nice for Q ∩ S;

(2) for every cube Q ∈ Q̂(λ),

l(Q) ≤ l(Q)

2
; (3.2)

(3) the Carleson-type packing condition

Hd(Q̂(λ)|Q) ≤ (l(Q))d (3.3)

holds for every dyadic cube Q ⊂ Q.

Proof. Given λ ∈ (0, 1), we fix ε > 0 so small that

0 < τ :=
ε

1− λ
< 1. (3.4)

We split the proof into several steps.
Step 1. Recall Definition 2.4. Given a dyadic cube K ⊂ Q with

0 < Hd
∞(K ∩ S) < (l(K))d, (3.5)

let Q(K) be a maximal ε-optimal dyadic nonoverlapping d-almost covering of the set K ∩ S. By (3.5)
and Proposition 2.2 (decreasing ε > 0 if necessary) we have

l(Q) ≤ l(K)

2
∀Q ∈ Q(K). (3.6)

The key property of the family Q(K) is that the Carleson-type packing condition holds true. More
precisely, by the construction and Definition 2.4 we have, for every dyadic cube Q ⊂ K,

Hd(Q(K)|Q) ≤ (l(Q))d. (3.7)

Indeed, otherwise, if inequality (3.7) fails for some dyadic cube Q ⊂ K, then we modify the family
Q(K) by including Q and excluding all cubes Q′ ⊂ Q, Q′ ∈ Q(K). This gives an ε-optimal dyadic
nonoverlapping d-almost covering of K ∩ S. But this contradicts the maximality of Q(K).

Step 2. Given a dyadic cube K ⊂ Q, we set

Q1(K) := Q(K) ∩ DF(λ) and Q̃1(K) := Q(K) \ Q1(K).

Using Definition 2.4 and the subadditivity of DHd
∞, we have

1

1 + ε
Hd(Q(K)) =

1

1 + ε
Hd(Q1(K)) +

1

1 + ε
Hd(Q̃1(K)) ≤ DHd

∞(K ∩ S)

≤
∑

Q∈Q1(K)

DHd
∞(Q ∩ S) +

∑

Q∈ ˜Q1(K)

DHd
∞(Q ∩ S) ≤ Hd(Q1(K)) + λHd(Q̃1(K)).

This clearly gives

εHd(Q1(K)) ≥
(
1− λ(1 + ε)

)
Hd(Q̃1(K)). (3.8)

Hence, using (3.8), Definition 2.4, and (3.4), we get

Hd(Q̃1(K)) ≤ ε

(1− λ)(1 + ε)
Hd(Q(K)) ≤ τ(l(K))d. (3.9)
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Step 3. Suppose that we have already built, for some k0 ∈ N and for every j ∈ {1, . . . , k0},
families of cubes Qj = Qj(Q) and Q̃j = Q̃j(Q) such that

(i) Q1 ⊂ . . . ⊂ Qk0 and Q̃1 � . . . � Q̃k0 ;
(ii) Qk0 ⊂ DF(λ)|Q;

(iii) Q̃k0 ⊂ D+|Q \ DF(λ)|Q;
(iv) the inequality

Hd
(
Qk0 |Q ∪ Q̃k0 |Q

)
≤ (l(Q))d (3.10)

holds for every dyadic cube Q ⊂ Q;
(v) it holds that

Hd(Q̃k0) ≤ τk0(l(Q))d. (3.11)

We recall the notation and constructions of steps 1 and 2. We put

Qk0+1 :=
⋃

Q∈ ˜Qk0

Q1(Q) ∪ Qk0 and Q̃k0+1 :=
⋃

Q∈ ˜Qk0

Q̃1(Q). (3.12)

It is clear that conditions (i)–(iii) are satisfied with k0 replaced by k0 + 1. It remains to verify
that (3.10) and (3.11) hold with k0 + 1 instead of k0. Indeed, an application of (3.7) with K
replaced by Q′ gives, for any Q ⊂ Q,

∑

Q′′ : ∃Q′∈ ˜Qk0 |Q, Q′′∈Q1(Q′)∪ ˜Q1(Q′)

(l(Q′′))d ≤
∑

Q′∈ ˜Qk0 |Q

(l(Q′))d = Hd(Q̃k0 |Q). (3.13)

By the construction it is clear that Q̃k0 ∩ Qk0 = ∅. Hence, combining (3.10), (3.12), and (3.13),
we get

Hd(Qk0+1|Q ∪ Q̃k0+1|Q) =
∑

Q′′ : ∃Q′∈ ˜Qk0 |Q, Q′′∈Q1(Q′)∪ ˜Q1(Q′)

(l(Q′′))d +Hd(Qk0 |Q)

≤ Hd(Qk0 |Q) + Hd(Q̃k0 |Q) = Hd(Qk0 |Q ∪ Q̃k0 |Q) ≤ (l(Q))d

for any dyadic cube Q ⊂ K. Hence, (3.10) holds with k0 + 1 instead of k0.
Combining (3.9), (3.11), and (3.12), we obtain

Hd(Q̃k0+1) =
∑

Q∈ ˜Qk0

Hd(Q1(Q)) ≤ τ Hd(Q̃k0) ≤ τk0+1(l(Q))d. (3.14)

Step 4. As a result, by induction we built sequences {Qk}k∈N := {Qk(Q)}k∈N and {Q̃k}k∈N :=
{Q̃k(Q)}k∈N such that conditions (i)–(v) are satisfied for any k ∈ N instead of a fixed k0 ∈ N.
We set

Q̂(λ) :=
⋃

k∈N
Qk ⊂ DF(λ)|Q. (3.15)

Note also that according to our construction, estimate (3.9) implies

Q̃k � Q̃k+1 and Hd(Q̃k) < τk(l(Q))d ∀ k ∈ N. (3.16)

Furthermore,

Q ∩ S \
⋃

Q∈ ̂Q(λ)

Q ⊂ Q̃k ∀ k ∈ N.
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Since τ ∈ (0, 1), this leads to

Hd
∞

(

Q ∩ S \
⋃

Q∈ ̂Q(λ)

Q

)

≤ lim
k→∞

Hd(Q̃k) = 0.

Hence, by (3.15) the family Q̂(λ) is a dyadic nonoverlapping (d, λ)-thick d-almost covering of the
set S ∩Q. This proves assertion (1) of the lemma.

By our construction, assertion (2) follows easily from (3.6).
Finally, it is clear from our construction that Qk ⊂ Qk+1 for all k ∈ N. Combining this fact

with (3.16) and using inequality (3.10) with k0 replaced by k ∈ N, we get

Hd(Q̂(λ)|Q) = lim
k→∞

Hd
(
Qk|Q ∪ Q̃k|Q

)
≤ (l(Q))d (3.17)

for every dyadic cube Q ⊂ Q. This shows assertion (3) of the lemma. �
The following concept will play a crucial role in what follows.
Definition 3.2. Given λ ∈ (0, 1], we say that a sequence {Q̂s(λ)}s∈N0 := {Q̂s

S(d, λ)}s∈N0 of
families of cubes is a (d, λ)-nice sequence for S if the following conditions hold:

(1) Q̂0 := {Q ∈ D0 : DHd
∞(S ∩Q) > 0};

(2) for every s ∈ N the family Q̂s(λ) is (d, λ)-nice for S;
(3) Q̂s+1(λ) ≺ Q̂s(λ) for all s ∈ N0;
(4) for each s ∈ N0, every Q ∈ Q̂s(λ), and every dyadic cube Q ⊂ Q,

∑

Q′∈ ̂Qs+1(λ)|Q

(l(Q′))d ≤
{
2n−d(l(Q))d if Q = Q and Q ∈ DF(1),

(l(Q))d in the other cases.
(3.18)

Theorem 3.1. Given λ ∈ (0, 1), there exists a sequence {Q̂s(λ)}s∈N0 of families of cubes that
is (d, λ)-nice for S.

Proof. We split the proof into two steps.
Step 1. We fix an arbitrary cube Q ∈ D+ such that

DHd
∞(Q ∩ S) > 0

and consider two cases.
In the first case,

DHd
∞(Q ∩ S) < (l(Q))d.

We apply Lemma 3.1 to the cube Q and obtain a (d, λ)-nice family Q̂(Q,λ) for Q ∩ S satisfying (3.2)
and (3.3).

In the second case,
DHd

∞(Q ∩ S) = (l(Q))d,

i.e., Q ∈ DF(1). We divide Q into 2n congruent dyadic cubes. Let KQ be those of them whose
intersection with S has positive Hd

∞-content. We put Kg
Q
:= KQ ∩ DF(λ) and Kb

Q
:= KQ \ Kg

Q
. For

every Q′ ∈ Kb
Q

we apply Lemma 3.1. This gives families Q̂(Q′, λ), Q′ ∈ Kb
Q
, satisfying conditions (1)

and (2) of Lemma 3.1 with Q̂(λ) replaced by Q̂(Q′, λ). We set

Q̂(Q,λ) := Kg
Q
∪

⋃

Q′∈Kb
Q

Q̂(Q′, λ).
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It is clear by the construction that

Hd
∞

(

Q ∩ S \
⋃

Q∈ ̂Q(Q,λ)

Q

)

= 0. (3.19)

Furthermore, by the construction,

l(Q) =
l(Q)

2
∀Q ∈ KQ. (3.20)

Using (3.3) with Q̂(Q,λ) replaced by Q̂(Q′, λ), Q′ ∈Kb
Q
, taking into account that #

(
Kg

Q
∪ Kb

Q

)
≤ 2n,

and finally using (3.20), we obtain

Hd(Q̂(Q,λ)) ≤
∑

Q′∈Kb
Q

Hd(Q̂(Q′, λ)) + Hd(Kg
Q
) ≤ Hd(Kb

Q
) + Hd(Kg

Q
)

= #
(
Kg

Q
∪ Kb

Q

)
(
l(Q)

2

)d

≤ 2n−d(l(Q))d. (3.21)

On the other hand, it is easy to see by construction that Hd(Q̂(Q,λ)|Q) ≤ (l(Q))d for any cube
Q ⊂ Q with side length l(Q) < l(Q). Thus, an analog of formula (3.18) is valid with Q̂s+1(λ)|Q
replaced by Q̂(Q,λ).

Step 2. We built the desirable sequence by induction. Clearly, by condition (D2) the family
Q̂0(λ), which consists of all dyadic cubes Q ∈ D0 with DHd

∞(Q ∩ S) > 0, is nonempty. We define

Q̂1(λ) :=
⋃

Q∈ ̂Q0(λ)

Q̂(Q,λ) ⊂ DF(λ).

Suppose that we have already built, for some j0 ∈ N, families Q̂0(λ), . . . , Q̂j0(λ) such that condi-
tions (1)–(4) of Definition 3.2 are satisfied for any s ∈ {0, . . . , j0 − 1}. Then we define

Q̂j0+1(λ) :=
⋃

Q∈ ̂Qj0 (λ)

Q̂(Q,λ) ⊂ DF(λ). (3.22)

By (3.19), (3.21), and (3.22) conditions (1)–(4) of Definition 3.2 are satisfied for any s ∈ {0, . . . , j0}.
As a result, by induction we get the required sequence {Q̂s(λ)}s∈N0 . �
Although the proof of the following result is quite elementary, as far as we know it has never been

formulated in the literature in the present form. For λ ∈ (0, 1), we get a canonical decomposition
of the family DF(λ). Informally speaking, this result can be thought of as a natural generalization
of the decomposition of the family of all dyadic cubes D+ into the subfamilies Dk, k ∈ N0.

Theorem 3.2. For every λ ∈ (0, 1), there exists a unique sequence {Qs(λ)}s∈N such that

(1) DF(λ) =
⋃

s∈NQs(λ);

(2) for every s ∈ N the family Qs(λ) is (d, λ)-nice for S;

(3) Qs(λ) � Qs+1(λ) for every s ∈ N;

(4) if, for some cubes Q ∈ Qs(λ) and Q ∈ Qs+1(λ), there is a cube Q ∈ D+ such that

Q ⊂ Q ⊂ Q and l(Q) ∈ (l(Q), l(Q)),

then the cube Q does not belong to the family DF(λ), i.e., Hd
∞(Q ∩ S) < λ(l(Q))d.
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Proof. We split the proof into several steps.
Step 1. First of all, we fix λ ∈ (0, 1) and for every Q ∈ D0 with DHd

∞(Q ∩ S) > 0 denote by
Q(Q,λ) the family of all maximal dyadic cubes Q′ ∈ DF(λ) whose side lengths are strictly less
than l(Q). Then, for any Q ∈ D0 with DHd

∞(Q ∩ S) > 0 we have the following properties:

(A) Q(Q,λ) ⊂ DF(λ);
(B) {Q} � Q(Q,λ);
(C) the family Q(Q,λ) is (d, λ)-nice for Q ∩ S.
Properties (A) and (B) are clear by the construction. To establish (C), we apply Theorem 3.1

and fix a (d, λ)-nice sequence {Q̂s(λ)}s∈N0 for S. Let j0 ∈ N0 be the least number among all j ∈ N0

satisfying {Q} � Q̂j(λ). It is clear by the construction that Q(λ)  Q̂j0(λ). Property (C) follows
from the fact that for every Q ∈ D0 with DHd

∞(Q ∩ S) > 0 the family Q̂j0(λ)|Q is (d, λ)-nice for the
set S ∩Q.

Step 2. We build the desirable sequence {Qs(λ)}s∈N0 by induction.
The base of induction. We set

K0
g := D0 ∩ DF(λ), K0

b :=
{
Q ∈ D0 : 0 < DHd

∞(Q ∩ S) < λ
}

(3.23)

and define
Q1(λ) :=

⋃

Q∈K0
b

Q(Q,λ) ∪K0
g. (3.24)

It follows immediately from the construction that the family Q1(λ) is (d, λ)-nice for S.
The induction step. Suppose that, for some j0 ∈ N, we have already built the families Qs(λ),

s ∈ {1, . . . , j0}. We put

Qj0+1(λ) :=
⋃

Q∈Qj0 (λ)

Q(Q,λ). (3.25)

Hence, by induction we obtain the families Qs(λ) for all s ∈ N.
Step 3. It is clear that

Qs(λ) ⊂ DF(λ) and Qs(λ) � Qs+1(λ) ∀ s ∈ N.

Furthermore, for each s ∈ N the family Qs(λ) is (d, λ)-nice for S. This proves properties (2) and (3)
from the statement of the theorem.

Suppose now that there exist a number j ∈ N and cubes Q ∈ Qj(λ), Q ∈ Qj+1(λ), and Q ∈ D
such that

Q ⊂ Q ⊂ Q and l(Q) ∈ (l(Q), l(Q)).

Note that Q /∈ DF(λ), since otherwise we get a contradiction with the maximality of Q ∈ Q(Q,λ).
To complete the proof, it is sufficient to note that the already established property (4) from the
statement of the theorem, combined with (3.24) and (3.25), gives property (1). �

Definition 3.3. For λ ∈ (0, 1) the sequence {Qs(λ)}s∈N will be called the canonical decompo-
sition of the family DF(λ).

The following result will be important in the proof of Theorem 4.2; however, we believe that it
can be interesting in itself. It describes some combinatorial properties of the canonical decomposition
{Qs(λ)}s∈N of the family DF(λ).

Theorem 3.3. Let λ1, λ2 ∈ (0, 1). Let {Q̂s(λ1)}s∈N be a (d, λ1)-nice sequence for S. Let
Q ∈ D+ and let

j0 := min
{
j ∈ N0 : Q̂j(λ1)|Q �= ∅

}
.
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Then

Hd(C) ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2n−d (l(Q))d

λ2
, Q ∈ DF(1),

(l(Q))d

λ2
, Q /∈ DF(1),

(3.26)

for any family C ⊂ DF(λ2) satisfying the following conditions:

(1) intQ ∩ intQ′ = ∅ for any Q,Q′ ∈ C such that Q �= Q′;

(2) {Q}  C  Q̂j0(λ1)|Q.

Proof. In the case {Q} = Q̂j0(λ1)|Q we clearly get C = {Q}, and hence (3.26) holds trivially.
Suppose now that {Q} � Q̂j0(λ1)|Q. Note that for every Q′ ∈ C the family Q̂j0(λ1)|Q′ is

(d, λ1)-nice for S ∩Q′. Hence, taking into account the inclusion C ⊂ DF(λ2) and using (3.18), we
obtain

Hd(C) ≤ 1

λ2

∑

Q′∈C
DHd

∞(Q′ ∩ S) ≤ 1

λ2

∑

Q′∈C
Hd

(
Q̂j0(λ1)|Q′

)

≤ 1

λ2
Hd

(
Q̂j0(λ1)|Q

)
≤ c

λ2
(l(Q))d, (3.27)

where c = 1 in the case when Q /∈ DF(1) and c = 2n−d in the case when Q ∈ DF(1). �

4. MAIN RESULTS

Recall that given a number δ > 0 and a set S ⊂ R
n, the δ-neighborhood of S is defined by the

formula

Uδ(S) :=
{
y ∈ R

n : ‖y − x‖∞ < δ for some x ∈ S
}
. (4.1)

We start with the following elementary observation. Recall that the metric floor and metric
ceiling of a given family of sets were defined in (2.3).

Proposition 4.1. Let Q be an arbitrary cube in R
n. Let F be a family of subsets in R

n such
that μ := μ(F) < l(Q)/2. Then

Ln

(
⋃

F∈F : F∩∂Q�=∅

F

)

≤ 8n(l(Q))n−1μ. (4.2)

Proof. Every n-dimensional cube has 2n facets. Given i ∈ {1, . . . , 2n}, we denote by ∂iQ the
ith facet of Q. It is clear that for any δ > 0 we have

Uδ(∂Q) ⊂
2n⋃

i=1

Uδ(∂
iQ). (4.3)

Elementary geometrical considerations give

Ln(Uδ(∂
iQ)) ≤ 2(2δ + l(Q))n−1δ ∀ i ∈ {1, . . . , 2n}. (4.4)

Combining (4.3) and (4.4), we obtain

Ln(Uδ(∂Q)) ≤
2n∑

i=1

Ln(Uδ(∂
iQ)) ≤ 4n(2δ + l(Q))n−1δ ∀ δ > 0. (4.5)
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By (2.3) it is clear that if F ∩ ∂Q �= ∅ for some F ∈ F , then F ⊂ U(1+ε)μ(∂Q) for a sufficiently
small ε > 0. Hence, using (4.5) with δ = μ and taking into account that (1 + ε)μ ≤ 2−1l(Q), we
obtain the desirable estimate

Ln

(
⋃

F∈F : F∩∂Q �=∅

F

)

≤ Ln(Uμ(∂Q)) ≤ 4n(2μ + l(Q))n−1μ ≤ 8n(l(Q))n−1μ. �

Below we will need the following auxiliary result, which can be of independent interest.
Lemma 4.1. Let d ∈ (0, n), c > 1, and r > 1. Then there exists a number δ = δ(n, c, r) > 0

such that, for any τ > 0, δ ∈ (0, δ ] and any at most countable family F of subsets of R
n with the

properties

(1) Hd(F) < +∞ and
(2) δτ ≤ μ(F) ≤ μ(F) ≤ τ < +∞,

the inequality
Ln(Urδτ (F)) ≤ cτn−d Hd(F) (4.6)

holds with F :=
⋃

F∈F F .
Proof. We fix θ > 1 so close to 1 and choose k∗ ∈ N so large that

θn +
([2r] + 1)n

2k∗(n−d)
< c. (4.7)

Now we set

δ :=
θ − 1

[2r] + 1
· 2−k∗ . (4.8)

We fix τ > 0, δ ∈ (0, δ ] and an arbitrary family F of subsets of Rn with properties (1) and (2).
We set μ := μ(F) and μ := μ(F) for brevity. It is clear that for every set F ∈ F there is a cube
Q(F ) ⊃ F with l(Q(F )) = diamF . Such a cube is not unique in general. We fix some choice of
cubes Q(F ), F ∈ F , and define the family

Q := Q(F) :=
{
Q : Q = Q(F ) for some F ∈ F

}
.

By our construction it is clear that

Hd(Q) = Hd(F), μ(Q) = μ, μ(Q) = μ. (4.9)

Since l(Q) ≥ δτ , it is easy to see that for any cube Q ∈ Q there is a constant c(Q) ∈ (1, [2r] + 1]
such that

Urδτ (F) ⊂
⋃

Q∈Q
Urδτ (Q) ⊂

⋃

Q∈Q
c(Q)Q. (4.10)

Our goal is to make a smart choice of the constants c(Q), Q ∈ Q. For this purpose we split the
family Q into two disjoint subfamilies. Namely, we set

Q1 :=
{
Q ∈ Q : l(Q) > 2−k∗τ

}
, Q2 := Q \ Q1. (4.11)

Since δ ∈ (0, δ ], by (4.8) we have Urδτ (Q) ⊂ θQ for all Q ∈ Q1. On the other hand, since l(Q) ≥ δτ
for all Q ∈ Q, it is clear that Urδτ (Q) ⊂ ([2r] + 1)Q for all Q ∈ Q2. Hence, inclusion (4.10) holds
with

c(Q) =

{
θ if Q ∈ Q1,

[2r] + 1 if Q ∈ Q2.
(4.12)
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By (4.10)–(4.12) we have

Ln(Urδτ (F)) ≤ θnHn(Q1) + ([2r] + 1)n Hn(Q2). (4.13)

Since d ∈ (0, n) by (2.3) and (4.11) we obtain the first key estimate

Hn(Q2) ≤
( τ

2k∗

)n−d
Hd(Q2) ≤

( τ

2k∗

)n−d
Hd(Q) =

( τ

2k∗

)n−d
Hd(F). (4.14)

Similarly, we have the second key estimate

Hn(Q1) ≤ τn−d Hd(Q1) = τn−dHd(F). (4.15)

Combining (4.13)–(4.15) and taking into account (4.7), we obtain (4.6). �
Now we are ready to prove a relatively simple result, which however will play an important role

in the proof of the main results of the present paper. We believe that it can be interesting in itself.
Roughly speaking, we show that if a cube Q is not (d, λ)-thick with respect to a given set S, then
one can find a cube Q ⊂ Q such that Hd

∞(Q ∩ S)/(l(Q))d is much smaller than λ but the side
length l(Q) is controlled from below in a reasonable way.

Since the proof below will be quite technical, for the reader’s convenience we give some informal
explanations of the underlying ideas. Roughly speaking, if d ∈ (0, n) and a cube Q is (d, λ)-thin,
then, for sufficiently large k = k(d, λ) ∈ N, one can construct a family F ⊂ Dk|Q of cardinality ≈ 2kn

such that
∑

Q∈F
Hd

∞(Q ∩ S) ≤ C(n)Hd
∞(Q ∩ S)

for some universal constant C(n) ≥ 1. Hence, if we assume that Hd
∞(Q ∩ S) is not small for any

cube Q ∈ F and if k is large enough, then, taking into account that d < n, by elementary cardinality
arguments we get a contradiction with the smallness of Hd

∞(Q ∩ S). In order to construct F , one
should fix a small enough ε > 0 and fix an ε-optimal covering Q of Q ∩ S. The main technical
difficulty is to split the family Q into a “large part” Ql and a “small part” Qs. The cubes Q ∈ Ql have
relatively large side lengths but the Lebesgue measure Ln of the union of such cubes is relatively
small. Hence, one should fix k ∈ N such that 2−k is approximately equal to the minimal side length
of cubes from Ql, and then select cubes from Dk|Q that do not meet cubes Q ∈ Ql.

Theorem 4.1. Let d ∈ (0, n) and λ ∈ (0, 1). For every c > 1 there exists a constant κ =
κ(λ, n, d, c) > 0 such that, for every set S ⊂ Q0,0 and any cube Q satisfying

l(Q) < 1 and Hd
∞(S ∩Q) < λ(l(Q))d, (4.16)

there exists a cube Q ⊂ Q with the following properties :

(i) Q ∈ D+ and Hd(Q ∩ S) < (λ/c)(l(Q))d;

(ii) l(Q) ≥ κl(Q).

Proof. We fix an arbitrary set S ⊂ Q0,0 and a cube Q satisfying (4.16). Without loss of gen-
erality we may assume that Hd

∞(S) > 0, because otherwise the assertion is trivial. Since λ ∈ (0, 1),
we fix a sufficiently small ε ∈ (0, 1/2) and c > 1 sufficiently close to 1 in such a way that

(1 + ε)λ < 1 and 1− c((1 + ε)λ)n/d >
3

4
(1− λn/d). (4.17)

We split the proof into several steps.
Step 1. Since Q /∈ FS(d, λ), there is an ε-optimal covering Q := Qε of the set Q ∩ S such that

Hd(Q) ≤ (1 + ε)λ(l(Q))d. (4.18)
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Hence, by (4.16)–(4.18) we get

μ := μ(Q) ≤
(
Hd(Q)

)1/d ≤ (λ(1 + ε))1/d l(Q) =: τ < 1. (4.19)

Step 2. Let δ = δ(n, c, 3) > 0 be the same number as in Lemma 4.1. We set

κ := min

{
δ

3
,
λn/d

64n
,

(
1− λn/d

3n+1c

)1/(n−d)}

. (4.20)

We split the family Q into two disjoint subfamilies. Namely, we define subfamilies of “large” and
“small” cubes of Q by letting, respectively,

Ql
κ :=

{
Q ∈ Q : l(Q) ≥ κτ

}
and Qs

κ := Q \ Ql
κ. (4.21)

We define
F :=

⋃

Q∈Ql
κ

Q.

The main idea is to show that (4.20) guaranties that for

k := [− log2(κτ)] (4.22)

there are a lot of cubes in Dk inside Q that meet neither F nor ∂Q. We set

F1
k :=

{
Q ∈ Dk : Q ∩ F �= ∅

}
, F2

k :=
{
Q ∈ Dk : Q ∩ ∂Q �= ∅

}
,

F3
k :=

{
Q ∈ Dk : Q ⊂ Q, Q /∈ (F1

k ∪ F2
k )
}
.

Step 3. By (4.22) we have 2−k ≤ 2κτ . Hence, Q ⊂ U3κτ (F ) for every Q ∈ F1
k . We apply

Lemma 4.1 with F = Ql
κ, δ = κ, r = 3 and take into account (4.18). This gives

V 1
k := Ln

(
⋃

Q∈F1
k

Q

)

≤ Ln(U3κτ (F )) ≤ cτn−dHd(Q) ≤ c((1 + ε)λ)n/d(l(Q))n. (4.23)

On the other hand, using Proposition 4.1 and taking into account the first inequality in (4.17)
we obtain

V 2
k := Ln

(
⋃

Q∈F2
k

Q

)

≤ 16n(l(Q))n−1κτ ≤ 16nκ(l(Q))n. (4.24)

Using (4.20) we continue (4.24) and get

V 2
k ≤ (λ)n/d

4
(l(Q))n. (4.25)

Step 4. By the very definition of F3
k we obviously have the following fact. If Q ∈ F3

k and Q′ ∈ Q
is such that Q′ ∩Q ∩ S �= ∅, then Q′ ∈ Qs

κ and
∑

Q′∈Qs
κ : Q′∩Q∩S �=∅

(l(Q′))d =
∑

Q′∈Q : Q′∩Q∩S �=∅

(l(Q′))d.

We use this observation and take into account that Q is a covering of the set Q ∩ S. Hence, by the
definition of the Hausdorff content it is clear that for every cube Q ∈ F3

k we have

Hd
∞(Q ∩ S) ≤

∑

Q′∈Qs
κ : Q′∩Q∩S �=∅

(l(Q′))d. (4.26)
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By (4.21) and (4.22) it follows that

2−k ≥ l(Q) ∀Q ∈ Qs
κ.

Hence, every cube Q′ ∈ Qs
κ meets at most 3n cubes from the family F3

k . A combination of this
observation with (4.26) gives

∑

Q∈F3
k

Hd
∞(Q ∩ S) ≤

∑

Q∈F3
k

∑

Q′∈Qs
κ : Q′∩Q∩S �=∅

(l(Q′))d ≤ 3nHd(Qs
κ). (4.27)

On the other hand, since the family F3
k consists of dyadic nonoverlapping cubes with the side

length 2−k, it is clear that the number of cubes in F3
k can be calculated by the formula

#F3
k = 2knHn(F3

k ) = 2knLn

(
⋃

Q∈F3
k

Q

)

.

From (4.17), (4.23), and (4.25) it follows that

Ln

(
⋃

Q∈F3
k

Q

)

≥ (l(Q))n − V 1
k − V 2

k ≥ 1− λn/d

2
(l(Q))n.

As a result, we obtain

#F3
k ≥ 2kn

1− λn/d

2
(l(Q))n. (4.28)

Step 5. If we assume that F3
k ⊂ FS(d, λ/c), then a combination of (4.18), (4.21), (4.22), (4.27),

and (4.28) gives

(1 + ε)λ(l(Q))d ≥ Hd(Qs
κ) ≥

1

3n
λ

c
· 2−kd#F3

k >
λ

2c
2k(n−d) 1− λn/d

3n
(l(Q))n

≥ λ(1− λn/d)

2c · 3n

(
l(Q)

2κτ

)n−d

(l(Q))d. (4.29)

Using (4.29) and taking into account the definition of τ given in (4.19), we get

(1 + ε)((1 + ε)λ)(n−d)/dκn−d ≥ 1− λn/d

c · 2n−d+1 · 3n .

Hence, using the first inequality in (4.17), we get (recall that ε ∈ (0, 1/2))

κn−d >
1− λn/d

c · 3n+1
.

This inequality is in contradiction with (4.20). �
The following concept, which was already mentioned in the Introduction, gives a natural gener-

alization of the concept of porous cubes.
Definition 4.1. Given a set S ⊂ R

n, a cube Q, and a parameter γ ∈ (0, 1], we say that a set
U ⊂ Q is an (S, γ)-cavity of Q if

U ⊂ Q \ S and Ln(U \ S) ≥ γ(l(Q))n.

We say that Q is (S, γ)-hollow if there exists an (S, γ)-cavity U of Q.
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We need some notation. Given numbers d ∈ (0, n), λ ∈ (0, 1), r ≥ 1 and a set S ⊂ R
n with

Hd
∞(S) > 0, we define, for every κ ∈ (0, 1] and any cube Q ⊂ R

n, the set

Uκ(Q, r) := Uκ(Q, d, λ, r) := Q \
⋃

Q′∈DFS(d,λ) : l(Q′)≤κl(Q)

rQ′.

Theorem 4.2. Let d ∈ (0, n), λ ∈ (0, 1), and r ≥ 1. Then, for every γ ∈ (0, 1 − 2d−n),
there exists a number κ = κ(γ, n, d, λ, r) ∈ (0, 1) such that, for every set S ⊂ R

n and every cube
Q = Qk,m ∈ D+ with

DHd
∞(Q ∩ S) < (l(Q))d, (4.30)

the sets Uκ(Q, d, λ, r) are (S, γ)-cavities of the cube Q for all κ ∈ (0,κ).
Proof. We fix a set S ⊂ R

n and a cube Q = Qk,m ∈ D+ /∈ DFS(d, 1). Without loss of
generality we assume that Hd

∞(S) > 0, because otherwise the assertion is trivial. We also fix a
parameter γ ∈ (0, 1 − 2d−n). During the proof we write for brevity DF := DFS(d, λ). Let {Q̂s}s∈N
be an arbitrary (d, λ)-nice sequence for S. We split the proof into several steps.

Step 1. We fix a number c > 1 close to 1 so that
c

2n−d
<

1

2
(1− γ + 2d−n). (4.31)

Let δ = δ(c, n, r) be the same as in Lemma 4.1. Now we fix the minimal k ∈ N for which

2−k < δ and
rd

2k(n−d)λ
+

8n

2k
<

1

2
(1− γ − 2d−n). (4.32)

Step 2. We define
s0 := min

{
s ∈ N0 : {Q} � Q̂s+1|Q

}
. (4.33)

Since Q ∈ D+ /∈ DFS(d, 1), by (3.18) we have

Hd
(
Q̂s0+1|Q

)
≤ (l(Q))d. (4.34)

Step 3. We introduce the family

K :=
{
Q ∈ DF : rQ ∩Q �= ∅, l(rQ) ≤ 2−k−1l(Q)

}
.

We split K into three subfamilies. More precisely, we set

K1 :=
{
Q ∈ K : intQ ⊂ R

n \Q
}
,

K2 :=
{
Q ∈ K \ K1 : ∃Q̂ ∈ Q̂s0+1, Q̂ ⊂ Q

}
,

K3 :=
{
Q ∈ K \ K1 : ∃Q̂ ∈ Q̂s0+1, Q ⊂ Q̂, l(Q) < l(Q̂)

}
.

(4.35)

It follows directly from the construction that

K ⊂ K1 ∪ K2 ∪ K3. (4.36)

Step 4. Using Proposition 4.1, we get

Ln

(
⋃

Q∈K1

(rQ ∩Q)

)

≤ 8n(l(Q))n
1

2k
. (4.37)

Step 5. Let K2 ⊂ K2 be the family of all maximal (with respect to inclusion) dyadic cubes from
the family K2. We obviously get

⋃

Q∈K2

Q ⊂
⋃

Q∈K2

Q. (4.38)
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Consider also the family

C := K2 ∪
{
Q ∈ Q̂s0+1|Q : intQ ∩ intQ′ = ∅ ∀Q′ ∈ K2

}
.

We use (4.38), then take into account that l(Q) ≤ 2−kl(Q) for all Q ∈ K2 and finally apply
Theorem 3.3 for λ = λ1 = λ2. As a result, we obtain

Ln

(
⋃

Q∈K2

rQ

)

≤ Ln

(
⋃

Q∈K2

rQ

)

≤ rnHn(K2) ≤ rd
(
l(Q)

2k

)n−d

Hd(K2)

≤ rd
(
l(Q)

2k

)n−d

Hd(C) ≤ rd

2k(n−d)λ
(l(Q))n. (4.39)

Step 6. Let Q̂ ⊂ Q̂s0+1|Q be the family consisting of all cubes Q̂ for each of which there exists
a cube Q ∈ K3 such that Q ⊂ Q̂ and l(Q) < l(Q̂). Letting τ := 2−1l(Q), by (4.33) we get

μ(Q̂) ≤ μ
(
Q̂s0+1|Q

)
≤ τ. (4.40)

Using the first inequality in (4.32), we have

⋃

Q∈K3

rQ ⊂ Urδτ

(
⋃

̂Q∈ ̂Q

Q̂

)

. (4.41)

We use (4.41), then apply Lemma 4.1, and finally use (4.34). This yields

Ln

(
⋃

Q∈K3

rQ

)

≤ Ln

(

Urδτ

(
⋃

̂Q∈ ̂Q

Q̂

))

≤ c

(
l(Q)

2

)n−d

Hd(Q̂)

≤ c

(
l(Q)

2

)n−d

Hd
(
Q̂s0+1|Q

)
≤ c

2n−d
(l(Q))n. (4.42)

Step 7. We set κ := 2−k−1r−1. Collecting (4.31), (4.32), (4.37), (4.39), and (4.42), we obtain

Ln
(
Q \ Uκ(Q, d, λ, r)

)
≤ (1− γ)(l(Q))n. (4.43)

Taking into account that Uκ(Q, d, λ, r) ⊂ Uκ(Q, d, λ, r) for all κ ∈ (0,κ) we complete the proof. �
Now we are ready to prove the second main result of the present paper. We recall that the

(d, λ)-thick δ-neighborhood of a set S ⊂ R
n was defined in (1.5).

Proof of Theorem 1.2. The case d = 0 is obvious, so we further assume that d ∈ (0, n). Fix
an arbitrary set S ⊂ R

n and an arbitrary cube Q = Ql(x) satisfying the assumptions of the theorem.
An application of Theorem 4.1 with c = 2n gives the existence of a constant κ := κ(λ, n, d, 2n) and
a cube Q ∈ D+ with side length

l(Q) ≥ κl(Q) (4.44)

such that Hd
∞(Q ∩ S) < λ/2n. By Remark 2.1,

DHd
∞(Q ∩ S) < λl(Q).

Hence, by Theorem 4.2 there exists a constant κ := κ((1 − 2d−n)/2, n, d, λ/3n, 3) such that

Ln

(

Uκ

(

Q, d,
λ

3n
, 3

))

≥ 1− 2d−n

2
(l(Q))n. (4.45)
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By Proposition 2.3 for any cube Q ∈ FS(d, λ) there is a cube Q′ ∈ Dj with j = [− log2 l(Q)]
such that Q′ ∈ DFS(d, λ/3

n). Clearly, Q ⊂ 3Q′. Hence, if we set

δ := δ(n, d, λ, λ) := κ(λ, n, d, 2n)κ

(
1− 2d−n

2
, n, d,

λ

3n
, 3

)

= κκ,

then for any δ ∈ (0, δ) we have

Wδl(Q, d, λ) ⊃ Uκ

(

Q, d,
λ

3n
, 3

)

. (4.46)

Now we set

γ(λ, n, d) =
1− 2d−n

2
(κ(λ, n, d, 2n))n.

As a result, by (4.44)–(4.46) we deduce

Ln(Wδl(Q, d, λ)) ≥ Ln

(

Uκ

(

Q, d,
λ

3n
, 3

))

≥ γ(λ, n, d)(l(Q))n. (4.47)

This completes the proof. �
Remark 4.1. It is easy to show that if d ∈ (0, n], λ ∈ (0, 1), S ⊂ R

n is a nonempty set, and a
cube Q = Ql(x) with l ∈ (0, 1] is such that Q /∈ FS(d, λ), then the cube Q is (S, 1− λn/d)-hollow.

Indeed, by Definition 2.2 there is an at most countable covering U of the set Q ∩ S such that

Hd(U) < λld.

For every set U ∈ U there is a cube Q(U) ⊃ U with l(Q) = diamU . It is clear that

l(Q(U)) < λ1/dl ∀U ∈ U .

This gives
Hn(U) < λn/d−1 ln−d Hd(U) ≤ λn/d ln. (4.48)

Since λ < 1, the required result follows from (4.48) and the subadditivity property of the Lebesgue
measure Ln.

It is clear that there is a huge difference between the elementary observation given above and
Theorem 1.2. The former observation does not give any information about the structure of cavities
in cubes whose intersections with S have relatively small d-Hausdorff content. On the other hand,
informally speaking, Theorem 1.2 claims that the corresponding cavities in cubes are located at
some “nonzero depth” in R

n \ S with respect to the special distance.
Now we show that Theorem 1.2 admits a significant refinement in the context of d-thick sets.
Proof of Theorem 1.1. The case d = 0 is obvious, so we further assume that d ∈ (0, n).

Since S is (d, λ)-thick, we have (recall the notation (1.5))

S2ε(d, λ) ⊃ Uε(S) ∀ ε ∈ (0, 1].

By Theorem 1.2 this implies that

Q \ Uδl(S) �= ∅ ∀ δ ∈ (0, δ ].

Hence, letting τ := τ(n, d, λ, λ) = δ(n, d, λ, λ)/2 and taking an arbitrary point x∗ ∈ Q \ Uδl(S), we
obtain

Qτ (x
∗) ⊂ Q \ S,

which completes the proof. �
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5. APPLICATIONS

In this section we introduce some new concepts, which may be of independent interest.
The following data are assumed to be fixed throughout this section:

(D1′) arbitrary numbers n ∈ N and d ∈ (0, n);
(D2′) a set S ⊂ Q0,0 with λS := Hd

∞(S) > 0.

Recall (1.4) and Definition 2.6. Given λ ∈ (0, 1], we write F(λ) and DF(λ) instead of FS(d, λ)
and DFS(d, λ), respectively. Furthermore, given λ ∈ (0, 1], for any x, y ∈ R

n we define the family

Qx,y(λ) :=
{
Q � x, y : Q ∈ F(λ)

}
.

Now, for every λ ∈ (0, 1] and any x, y ∈ R
n, we set

ρ̃S,d,λ(x, y) := ρ̃λ(x, y) :=

⎧
⎪⎨

⎪⎩

inf{l(Q) : Q ∈ Qx,y(λ)}, x �= y, Qx,y(λ) �= ∅,

+∞, Qx,y(λ) = ∅,

0, x = y.

(5.1)

For any two points x, y ∈ R
n such that at least one of them belongs to the set S, we put

ρλ(x, y) := ρS,d,λ(x, y) := inf

N−1∑

i=0

ρ̃λ(x
i, xi+1), (5.2)

where the infimum is taken over all finite sets {xi}Ni=0 ⊂ R
n such that x0 = x and xN = y. Finally,

in the case when x, y ∈ R
n \ S, we define

ρλ(x, y) := ρS,d,λ(x, y) := max

{

‖x− y‖∞, sup
ξ∈S

|ρλ(x, ξ)− ρλ(y, ξ)|
}

, (5.3)

where we set |ρλ(x, ξ)− ρλ(y, ξ)| := +∞ if max{ρλ(x, ξ), ρλ(y, ξ)} = +∞.
Recall that a pseudometric on R

n is a symmetric nonnegative function ρ : Rn × R
n → [0,+∞]

satisfying the triangle inequality.
Proposition 5.1. For every λ ∈ (0, 1] the function ρλ : R

n × R
n → [0,+∞) is a pseudometric

on R
n.

Proof. The symmetry is obvious by (5.2) and (5.3). Furthermore, note that

ρλ(x, y) ≥ ‖x− y‖∞ ∀x, y ∈ R
n.

Hence, ρλ(x, y) = 0 implies x = y.
It remains to verify the triangle inequality. We fix an arbitrary triple of points x, y, z ∈ R

n.
In the case when ρλ(x, y) = +∞ or ρλ(y, z) = +∞, the triangle inequality is obvious. Consider
the case when ρλ(x, y) < +∞ and ρλ(y, z) < +∞. We should consider two subcases. In the first
subcase at least one of the three points x, y, z (suppose that y ∈ S, as the case of z ∈ S and x /∈ S
immediately follows from (5.3)) belongs to the set S. Given δ > 0, let {xi}Ni=0, {xi}Li=N+1 ⊂ R

n be
finite sets of points such that x0 = x, xN = y, xL = z and

N−1∑

i=0

ρ̃λ(x
i, xi+1) ≤ ρλ(x, y) +

δ

2
,

L−1∑

i=N

ρ̃λ(x
i, xi+1) ≤ ρλ(y, z) +

δ

2
.

Adding the two inequalities and using (5.2), we obtain

ρλ(x, z) ≤
L−1∑

i=0

ρ̃λ(x
i, xi+1) ≤ ρλ(x, y) + ρλ(y, z) + δ.
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Since δ > 0 was chosen arbitrarily, we deduce the triangle inequality for this subcase,

ρλ(x, z) ≤ ρλ(x, y) + ρλ(y, z). (5.4)

Finally, consider the subcase when x, y, z ∈ R
n \ S. If ‖x − z‖ ≥ supξ∈S |ρλ(x, ξ) − ρλ(z, ξ)|,

then by (5.3) we get

ρλ(x, z) = ‖x− z‖ ≤ ‖x− y‖+ ‖y − z‖ ≤ ρλ(x, y) + ρλ(y, z). (5.5)

If ‖x− z‖ < supξ∈S |ρλ,ε(x, ξ)− ρλ,ε(z, ξ)|, then by (5.3) we have, for any ξ ∈ S,

|ρλ(x, ξ)− ρλ(z, ξ)| ≤ |ρλ(x, ξ) − ρλ(y, ξ)|+ |ρλ(y, ξ)− ρλ(z, ξ)| ≤ ρλ(x, y) + ρλ(y, z). (5.6)

Taking the supremum in (5.6) over all ξ ∈ S, we also obtain (5.4). Together with (5.5) this yields
the triangle inequality for the subcase when x, y, z ∈ R

n \ S.
Thus, we have proved that the triangle inequality holds for any triple of points x, y, z ∈ R

n. �
Remark 5.1. Note that if λ ∈ (0, λS ], then Q0,0 ∈ DF(λ) (by assumption (D2′) and Re-

mark 2.1). Hence, by (5.2) and (5.3) it is easy to see that ρλ(x, y) < +∞ for all x, y ∈ Q0,0.
Recall that the (d, λ)-thick distance between a nonempty set E ⊂ R

n \ S and S is defined by
the formula

Dλ(E,S) := DS,d,λ(E,S) := inf
{
ρλ(x, ξ) : x ∈ E, ξ ∈ S

}
. (5.7)

The following proposition gives a simpler way to compute the (d, λ)-thick distance from a given
point x ∈ R

n \ S to the set S.
Proposition 5.2. Let λ ∈ (0, λS ]. Then the equality

Dλ(x, S) = inf
{
l(Q) : Q � x, Q ∈ F(λ)

}
(5.8)

holds for any x ∈ (λS/λ)
1/dQ0,0 \ S.

Proof. By Remark 2.5 and assumption (D2′) it follows that (λS/λ)
1/dQ0,0 ∈ F(λ). Hence, we

have Qx,y(λ) �= ∅ for every x ∈ (λS/λ)
1/dQ0,0 \ S and y ∈ S. As a result, 0 < ρλ(x, y) < +∞ for

such x and y.
Now we fix an arbitrary x ∈ (λS/λ)

1/dQ0,0 \ S. We denote the right-hand side of (5.8) by
D̃λ(x, S). Our aim is to show that Dλ(x, S) = D̃λ(x, S). Given ε > 0, using (5.2) and (5.7), we
choose xε ∈ S and points {xi}Nε

i=0 in such a way that x0 = x, xNε = xε and

Nε−1∑

i=0

ρ̃λ(xi, xi+1) < Dλ(x, S) + ε.

Hence, we obtain
Dλ(x, S) ≤ D̃λ(x, S) ≤ ρ̃λ(x0, x1) < Dλ(x, S) + ε.

Since ε > 0 can be chosen arbitrary small, we get the required equality. �
Remark 5.2. The pseudometric ρλ := ρS,d,λ introduced above is a natural generalization of

the metric induced by the ‖·‖∞-norm. Indeed, for λ ∈ (0, 1] we have ρS,0,λ(x, y) = ‖x − y‖∞ for
any x, y ∈ R

n.
Given λ ∈ (0, λS ], recall the concept of (d, λ)-thick sets in R

n formulated in the Introduction.
Recall also the notion of δ-neighborhood of S. If S is (d, λ)-thick, then using Proposition 5.2 it is
easy to see that

dist(x, S) ≤ Dλ(x, S) ≤ 2 dist(x, S) ∀x ∈ U1/2(S).
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Given λ ∈ (0, 1], for any ε > 0 we introduce the ε-neighborhood of the set S with respect to the
metric ρλ by the formula

Uρλ
ε (S) := {x ∈ R

n : Dλ(x, S) < ε}.

By Remark 2.4 we have
Uρλ
ε (S) ⊃ S ∀ ε ≥ 0, ∀λ ∈ (0, 1].

Remark 5.3. For every λ ∈ (0, λS ] and ε > 0 small enough, we have (recall (1.5))

Uρλ
ε (S) = Sε(λ) :=

⋃

Q∈F(λ) : 0≤l(Q)<ε

Q. (5.9)

Indeed, by Proposition 5.2 for a given point x ∈ (λS/λ)
dQ0,0 \ S we have Dλ(x, S) < ε if and only

if there is a cube Q ∈ F(λ) with 0 ≤ l(Q) < ε. This proves the claim.

6. EXAMPLES

In this concluding section we present elementary examples demonstrating the sharpness of the
main results.

The following example shows that the d-thickness condition in Theorem 1.1 cannot be dropped.
Example 6.1. Let K ⊂ [0, 1] be the standard middle-third Cantor set. For each j ∈ N we

define Kj := {3−jx : x ∈ K}. We set

Sj :=

2j−1⋃

i=0

(
i

2j
+K2j

)

.

Obviously, given j ∈ N, the maximal size of closed one-dimensional cubes Q ⊂ [0, 1] \ Sj is at
most 2−j . If d = ln 2/ln 3, we clearly have

Hd(Sj) ≤
2j

22j
→ 0, j → ∞. (6.1)

Finally, we define the set

S :=
∞⋃

j=0

((

1− 1

2j

)

+
1

2j+1
Sj+1

)

,

where cSj+1 = {cx : x ∈ Sj+1} for c > 0. It follows from (6.1) that the set S is not (d, λ)-thick
for any λ ∈ (0, 1). On the other hand, any dyadic interval [1 − 2/2j , 1 − 1/2j ], j ∈ N, can be
(S, τ)-porous only with τ < 2−s.

Now we show that the restriction d < n in Theorem 1.2 cannot be dropped.
Example 6.2. For each j ∈ N we set

Sj :=

2j−1⋃

i=0

[
i

2j
,
i

2j
+

1

10
· 1

2j

]

. (6.2)

Define the set

S :=

∞⋃

j=0

((

1− 1

2j

)

+
1

2j+1
Sj+1

)

.

It is easy to see that

H1
∞

([

1− 2

2j
, 1 − 1

2j

]

∩ S

)

<
1

8
· 1

2j
∀ j ∈ N. (6.3)
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On the other hand, for any j ∈ N,
[

1− 2

2j
, 1 − 1

2j

]

\
⋃

Q′ : l(Q′)≤2−2j , Q′∈FS(1,1/10)

Q′ = ∅. (6.4)

This shows that the conclusion of Theorem 1.2 cannot hold in the case d = n = 1 and λ = 1/10.
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3. A. Denjoy, “Sur une propriété de séries trigonométriques,” Amst. Ak. Versl. 29, 628–639 (1920).
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