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Abstract. The Fisher infinitesimal model is a classical model of phenotypic trait inheritance in quanti-

tative genetics. Here, we prove that it encompasses a remarkable convexity structure which is compatible
with a selection function having a convex shape. It yields uniform contractivity along the flow, as mea-

sured by a L∞ version of the Fisher information. It induces in turn asynchronous exponential growth of

solutions, associated with a well-defined, log-concave, equilibrium distribution. Although the equation is
non-linear and non-conservative, our result shares some similarities with the Bakry-Emery approach to

the exponential convergence of solutions to the Fokker-Planck equation with a convex potential. Indeed,

the contraction takes place at the level of the Fisher information. Moreover, the key lemma for prov-
ing contraction involves the Wasserstein distance W∞ between two probability distributions of a (dual)

backward-in-time process, and it is inspired by a maximum principle by Caffarelli for the Monge-Ampère

equation.

1. Introduction

Let us consider the following nonlinear model

Fn = T [Fn−1], n ∈ N, x ∈ R, (1.1)

describing the evolution of the distribution Fn = Fn(x) of a one-dimensional trait x ∈ R, subject to
sexual reproduction and the effect of selection at each generation. The operator T above is defined by

T [F ](x) := e−m(x)B[F ](x), x ∈ R, (1.2)

B[F ](x) :=
∫∫

R2

G

(
x− x1 + x2

2

)
F (x1)

F (x2)

∥F∥L1

dx1 dx2, x ∈ R, (1.3)

for any F ∈ L1
+(R) \ {0}. On the one hand, the operator B describes the distribution of traits of

descendants of the previous generation Fn−1, arising as recombination of parental traits in agreement
with Fisher’s infinitesimal model, which is a classical model in quantitative genetics [6, 23]. Accordingly,
the mixing kernel G is set to a centered Gaussian distribution with unit segregation variance without loss
of generality, namely

G(x) :=
1

(2π)1/2
e−

x2

2 , x ∈ R. (1.4)

On the other hand, the trait-dependent mortality functionm = m(x) ≥ 0 represents the effect of selection
on the population, which acts multiplicatively over the descendants. In other words, the multiplicative
factor e−m(x) in (1.2) represents the survival probability to the next generation of individuals having the
trait x. We note that the time-discrete generations n ∈ N are assumed non-overlapping since, altogether,
Fn describes the distribution of those offspring of Fn−1 having survived after the selection step, and then
different generations do not get mixed, see [16] for further insight.
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As the model is tracking only one trait distribution, it applies either when individuals are hermaphroditic,
or when the traits are equally distributed between male and female individuals within the population.
We refer to [6] for a comprehensive presentation of the model, its derivation and its limitations.

The goal of this paper is to extend the studies initiated in [16] to a broader class of selection functions.
Specifically, when m is a strongly convex function we prove asynchronous exponential growth [45] of
solutions to (1.1). In other words, we derive quantitative rates for the relaxation of the solutions {Fn}n∈N
of (1.1) to a strongly log-concave quasi-equilibrium of the form λn F , where λ > 0 and F ∈ L1(R)∩P(R)
is an appropriate probability density. The fact that the quasi-equilibrium is strongly log-concave is crucial
in our approach and will be present all along the paper.

Definition 1.1 (Log-concavity). Consider any non-negative function F = e−V : Rd −→ R+.

(i) F is said log-concave when V is a convex function.
(ii) F is said strongly log-concave with log-concavity parameter γ > 0 (or γ-log-concave) when V is a

strongly convex function with convexity parameter γ (or γ-convex).

When the potential function V ∈ C2(Rd), we can equivalently formulate log-concavity in terms of second
order derivatives. Namely, F is log-concave when D2V ≥ 0, and F is γ-log-concave when D2V ≥ γId.

We remark that in order for an anstaz of the form Fn(x) = λnF (x) to define a solution to (1.1), we
need that the pair (λ, F ) solves the following nonlinear eigenproblem:

λF = T [F ], x ∈ R,

F ≥ 0,

∫
R
F (x) dx = 1.

(1.5)

Hence, the possible quasi-equilibria are to be found as solutions to (1.5). Note that contrarily to the
special quadratic regime treated in [16], the Gaussian structure can no longer be exploited and, in
particular, the existence of solutions to (1.5) is unclear. Indeed, the above non-linear integral operator is
1-homogenenous but non-monotone, and therefore the Krein-Rutman theorem [31] cannot be applied as
it has been done in other (usually linear) problems in population dynamics [7, 19]. Hence, the study of
the non-linear evolution problem (1.1) and the non-linear eigenproblem (1.5) requires innovative ideas.

Along this paper, we address jointly the following two problems: (i) Existence of a strongly log-
concave solution (λ,F ) to (1.5), and (ii) Quantitative relaxation of the solutions to (1.1) towards the
quasi-equilibrium λn F . We make the crucial hypothesis that m is a strongly convex function,

m′′ ≥ α for some α > 0, (H1)

The function m necessarily reaches its minimum value over R. For convenience, we assume the following
additional hypothesis without loss of generality,

m ≥ 0, and m(0) = 0. (H2)

The L∞ relative Fisher information I∞ plays a pivotal role in our analysis, as it measures the contractivity
along the flow (see methodological notes below). It is defined as follows, for a pair of functions P,Q ∈
L1
+(R) ∩ C1(R),

I∞(P∥Q) :=

∥∥∥∥ ddx
(
log

P

Q

)∥∥∥∥
L∞

. (1.6)

Theorem 1.2. Let m ∈ C2(Rd) satisfy (H1)-(H2). Then, the following statements hold true:

(i) (Existence of quasi-equilibrium)
There is at least one solution (λ,F ) to (1.5). In addition, F = e−V ∈ L1

+(R) ∩ C∞(R) is

β-log-concave, where β > 1
2 is uniquely defined by the following relationship

β = α+
2β

1 + 2β
. (1.7)

Moreover, (λ,F ) is the unique solution to (1.5) among all pairs (λ, F ) such that

d

dx

(
log

F

F

)
∈ L∞(R). (1.8)

(ii) (One-step contraction)
Consider any F0 ∈ L1

+(R) ∩ C1(R) such that

d

dx

(
log

F0

F

)
∈ L∞(R), (H3)



3

and let {Fn}n∈N be the solution to (1.1) issued at F0. Then, we have

I∞ (Fn∥F ) ≤ 2

1 + 2β
I∞ (Fn−1∥F ) , (1.9)

for any n ∈ N.
(iii) (Asynchronous exponential growth)

Consider any F0 ∈ L1
+(R) ∩ C1(R) verifying the assumption (H3) above, and let {Fn}n∈N be the

solution to (1.1) issued at F0. Then, we have∣∣∣∣ ∥Fn∥L1

∥Fn−1∥L1

− λ

∣∣∣∣ ≤ C

(
2

1 + 2β

)n
, (1.10)

DKL

(
Fn

∥Fn∥L1

∥∥∥∥F) ≤ C

(
2

1 + 2β

)2n

, (1.11)

for every n ∈ N, where C > 0 is a explicit constant depending on F0, and DKL is the Kullback-
Leibler divergence (or relative entropy), that is,

DKL(P∥Q) :=

∫
R
log

(
P (x)

Q(x)

)
P (x) dx, P,Q ∈ L1

+(R) ∩ P(R). (1.12)

Remark 1.3 (Case of quadratic selection). For quadratic selection m(x) = α
2 |x|

2, we have that m
satisfies the hypothesis (H1)-(H2) in Theorem 1.2, and then our new result applies. Such a special case
was studied in detail in [16], where in particular it was proven that there is a unique eigenpair (λ,F ) of
(1.5), which involves a Gaussian eigenfunction F (x) = G0,σ2(x) with variance σ2 > 0 verifying

1

σ2
= α+

1

1 + σ2

2

. (1.13)

In particular, F is 1
σ2 -log-concave (cf. Definition 1.1), which is compatible with our new result in view of

the identity σ2 = β−1 stemming from equations (1.7) and (1.13). Furthermore, the contraction factor in
(1.9) predicted by Theorem 1.2 also recovers the one obtained in [16] for quadratic selection. Specifically,

2

1 + 2β
=

(3 + 2α)−
√
(3 + 2α)2 − 8

2
,

which agrees precisely with the contraction factor found in [16, Lemma 6.3].

Remark 1.4 (Close-to-equilibrium initial data). In contrast with [16], where the above framework was
restricted to m(x) = α

2 |x|
2 but generic F0 ∈ M+(R), Theorem 1.2 applies to a broader class of selection

functions verifying (H1)-(H2) at the cost of restricting to initial data fulfilling the hypothesis (H3). Specif-
ically, such a condition imposes a precise behavior of the tails of F0, which must be very close to those of
the eigenfunction F (in particular, two Gaussian initial distributions should have the same variance).

Remark 1.5 (Conditional uniqueness). Another difference with [16] is that the current approach does not
guarantee global uniqueness of solutions to the eigenproblem (1.5), but only within the class of eigenpairs
verifying (1.8). Nevertheless, we conjecture that global uniqueness holds true, as in the quadratic case
m(x) = α

2 |x|
2. Proving global uniqueness would require a careful control of the behavior at infinity, in the

spirit of [16], which is beyond the scope of this paper.

Remark 1.6 (On the convexity assumption). The convexity assumption (H1) ensures that m must have
a unique minimum. It implies that the quasi-equilibrium F obtained in Theorem 1.2 is log-concave, as
a consequence of the Prékopa-Leindler inequality. In the presence of multiple local minima of m, it was
proven in [15, Corollary 1.5] that several quasi-equilibria could co-exist in the time-continuous version of
(1.1) provided that the variance of kernel (1.4) is small enough (in original units). That is, in the case of
non-convex m there is evidence that the generalized eigenproblem (1.5) may admit non-unique solutions,
in contrast with general conclusions of the Krein–Rutman theory in the linear case. This is illustrated by
numerical simulations shown in Figure 1, where two different quasi-equilibria (one of them bimodal) are
found numerically if m has two minima. A similar behaviour can be observed in a population adapting
to a heterogeneous, patchy environment, when each patch is associated with a different optimal trait [20].
The same conclusions also hold for the (continuous) time-marching problem in [40, 37, 27].
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(a) Double-well selection function

(b) Non-uniqueness of quasi-equilibria for the double-well selection function

Figure 1. (a) Double-well selection function m(x) = 0.015 ((x− 3)2 + 1)(x+ 5)2 used
in the simulations. (b) Time-evolution of the normalized profiles Fn/∥Fn∥L1 up to gen-
eration n = 40 (solid line) for two different choices of initial datum F0. On the left,
F0 = 1[−3.5, 1.5] leads to concentration near the left (globally) optimal trait. On the
right, F0 = 1[−1.5, 3.5] leads to concentration near the right (locally) optimal trait.

Remark 1.7 (Log-concavity and contraction factor). For any α > 0, we have that the log-concavity pa-
rameter β in (1.7) and the corresponding contraction factor 2

1+2 β in (1.9) satisfy the following properties:

α↘ 0 =⇒ β ↘ 1

2
and

2

1 + 2β
↗ 1,

α↗ ∞ =⇒ β ↗ ∞ and
2

1 + 2β
↘ 0,

see Figure 2. In particular, we have genuine contraction in (1.9) since 0 < 2
1+2 β < 1 for every α > 0.

Remark 1.8 (One-dimensional traits). In this paper we restrict to one-dimensional traits, but note
that an analogous version of (1.1) and (1.5) makes sense in higher dimensions yet. In fact, these
were studied in [16] for quadratic selection functions. However, a higher-dimensional version of our
result for generic strongly convex selection function would require some non-trivial improvements of the
present methods. Just to emphasize some non-trivial obstructions, we remark that our approach exploits
a maximum principle for the Monge-Ampère equation in convex but not uniformly-convex domains, as
described below. In this setting, it is not even clear why the standard elliptic regularity should hold up
to the boundary, as in the seminal works [12]. In two-dimensional domains with special symmetries, this
theory has been developed recently in [28], but a higher dimensional extension would require further work
which goes beyond the scope of this paper. The extension to any dimension was achieved in [29], which
was released during the time of revision of the present work.

Bibliographical notes.
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(a) Log-concavity parameter β as a function of α
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(b) Contraction parameter 2
1+2 β as a function of α

Figure 2. Plot of the log-concavity parameter β of the eigenfunction F and the con-
traction parameter 2

1+2 β in Theorem 1.2 as a function of α

This work can be viewed as another brick to combine optimal transportation tools for non-conservative
problems arising in biology. The connection between the Fisher infinitesimal model and the L2 Wasser-
stein distance was spotted by G. Raoul [39] (see also [32] for similar results in a different context of
protein exchanges between cells). In fact, when there is no selection (that is, m ≡ const), the operator T
is non-expansive for the latter distance. Contraction cannot be expected because of translational invari-
ance. Nevertheless, it is contractive with rate 1/

√
2 in the class of distributions having the same center

of mass (the latter being preserved by the flow) [39, Theorem 4.1 and Corollary 4.2]. This remarkable
structure was further exploited by G. Raoul [40] in a perturbative setting, when selection is small (in
amplitude), and restricted to a compact interval (m is constant beyond a certain range). More precisely,
G. Raoul proved that the dynamics is well captured by some averaged quantities (“moments”) of the
Gaussian distribution coupled with the selection function, provided that the initial data is well-prepared,
in the basin of attraction of the stationary state, and the amplitude of selection is small enough. For
that purpose, he carefully established that the contraction issued from the infinitesimal operator was
robust enough to dominate detrimental effects due to selection. Note that the later references consider
overlapping generations, that is, a continuous-in-time rather than discrete dynamics. However, some
fruitful analogy can be drawn between the results and methodology.

In parallel, the regime of small segregation variance (when G (1.4) has variance ε2 and ε is small
enough) was investigated by [15, 37] in another perturbative setting, without exploiting the Wasserstein
metric structure. This methodology built upon the seminal works on vanishing viscosity limits associated
with linear (asexual) modes of reproduction in quantitative genetics models [21, 38, 5]. Interestingly,
it was proven in [15] that the problem (1.5) lacks uniqueness in full generality. More precisely, it was
possible to build a solution to (1.5) centered in the vicinity of any local minimum of m, provided that
the selection value at the local minimum is close enough to the global minimum. This result entails
a clear separation with linear, order-preserving operators (and non-linear extensions [31, 33]) for which
(1.5) genuinely admits a unique solution (under standard irreducibility assumptions), see Remark 1.6.
The Cauchy problem initialized with some concentrated initial data was further investigated in [37] (in
a multiplicative perturbative approach) and more recently in [27] (in a moment-based approach), still in
the regime of small segregation variance. The case of zero segregation variance was the subject of the
recent [25].

Heuristically, uniqueness of the (non-linear) eigenpair (λ,F ) is rather clear when the selection function
m is convex, and [16] was a first contribution in this direction, restricted to m(x) = α

2 |x|
2. By exploiting

the quadratic structure of the operator T in (1.2) (which involves products and convolutions by Gaussian
density functions), it was possible to prove asynchronous exponential growth towards the explicit Gaussian
distribution of equilibrium F , starting from any initial configuration F0. This was achieved by a careful
study of the binary tree of ancestors, together with explicit change of variables in a high-dimensional
integral, to prove a sort of concentration of measure estimates. More precisely, it was shown that the
traits of the ancestors decorrelate sufficiently fast, backward in the tree, from the trait of the individual
at generation n. This implies that the dependence of the trait distribution Fn at generation n upon the
initial distribution F0 diminishes exponentially fast. Asynchronous exponential growth is a consequence
of this observation, which is a backward feature.
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Last, but not least, let us mention that both the infinitesimal model (1.2), and the relative information
(1.6) (or rather (1.18) below) date back to a couple of seminal works by R. A. Fisher in the same years
(circa 1920) on seemingly different purposes, respectively [23] and [24], see [42] for a discussion.

Methodological notes.

In the present study, we push further the observations of [16]. We identify a key mechanism ensuring
a one-step contraction for the flow (1.1). This can be summarized roughly as follows:

For any two given individuals with traits X and X ′ respectively, the associated parental
traits (X1, X2) and (X ′

1, X
′
2) are closer to each other than X and X ′ are, in some sense,

see also [26, Appendix F.2] for a visual explanation. To make sense of this contraction, we shall work
with the L∞ Wasserstein distance, denoted by W∞ (in contrast with the L2 Wasserstein distance). This
naturally leads to estimates on the so-called L∞ relative Fisher information I∞ (1.6) (in contrast with
the (L2) relative Fisher information I2, see (1.18) below). The core estimate (1.9) is forward in time,
and it naturally arises as a dual estimate of a backward in time estimate analogous to the work in [16].

A forward-backward argument. We propose a short warm-up to this argument, which may help the reader
follow our method (without details of the proofs). Indeed, one complication of our setting is that each
individual has two parents, so that the dimension of the distribution doubles at each generation. Nonethe-
less, the same methodology can be applied to the case of a single parent, which boils down to a linear
operator. We thus consider, temporarily, the following linear operator:

A[F ](x) := e−m(x)

∫
R
G (x− y) F (y) dy, x ∈ R, (1.14)

in place of the above non-linear operator T in (1.2). In this simpler case, the Krein-Rutman theorem
can be applied (at least formally), and there exists an eigenpair (λ,F ) of the linear eigenproblem (1.5)
with T replaced by A. Now, consider any solution {Fn}n∈N to the time-discrete problem (1.1) with T
replaced again by the linear operator A. We may introduce the associated relative distribution un = Fn

λn F
to follow the trend of Fn across generations. It satisfies the following equation:

un(x) =

∫
RG(x− y)un−1(y)F (y) dy∫

RG(x− z)F (z) dz
=

∫
R
P (x; y)un−1(y) dy, n ∈ N, x ∈ R,

where the x-dependent probability distribution function P (x; ·) is defined as

P (x; y) =
G(x− y)F (y)∫

RG(x− z)F (z) dz
, x, y ∈ R, (1.15)

and it can be interpreted as the transition probability from trait y to trait x. The fact that it is a
probability distribution function,

∫
P (x; y) dy = 1, is immediate by the choice of the normalization,

which is such that constant functions un ≡ const are invariant by the flow.
Next, it can be proven that, if F is strongly log-concave, then we have

W∞(P (x; ·),P (x′, ·)) ≤ κ |x− x′|, (1.16)

where κ ∈ (0, 1) is related to the modulus of convexity of V = − logF . By duality, this backward
contraction estimate results in the forward estimate below (cf. Lemma 2.4)∥∥∥∥ ddx (log un)

∥∥∥∥
L∞

≤ κ

∥∥∥∥ ddx (log un−1)

∥∥∥∥
L∞

,

which by iteration and using the L∞ relative Fisher information, it can be expressed as follows

I∞(Fn∥F ) ≤ κn I∞(F0∥F ). (1.17)

As mentioned in Remark 1.8, the key estimate (1.16) is a consequence of the maximum principle on the
Monge-Ampère equation for the optimal transportation plan between P (x; ·) and P (x′; ·). Interestingly,
this is an argument borrowed from the theory of conservative equations, whereas our problem is not. The
trick is to match an individual to its ancestor, which is obviously a conservative process, backward in
time.



7

Analogy with the Bakry-Emery argument. There is some analogy between our results and the standard
Bakry-Emery method for exponential relaxation towards equilibrium for the gradient flow of some dis-
placement convex “entropy”, for instance, the Fokker-Planck equation with a convex potential [3, 2, 43, 4].
Indeed, from (1.9) (alternatively (1.17) in the linear case) we obtain exponential convergence on a quantity
which is the L∞ analog of the usual (L2) relative Fisher information,

I2(P∥Q) :=

∫
R

∣∣∣∣ ddx
(
log

P

Q

)
(x)

∣∣∣∣2 P (x) dx. (1.18)

Recall that, in the usual Bakry-Emery argument, the exponential convergence is established at the level
of the dissipation of entropy, that is, the usual relative Fisher information [43]. In turn, the exponential
relaxation of the dissipation is intimately linked with the displacement convexity of the entropy functional
(essentially because the gradient flow is differentiated, which leads to the second derivative of the entropy
functional). In our argument, it is the convexity of V = − logF which induces the geometrical relaxation
of the uniform relative Fisher information.

Connection with another projective metric. The uniform relative Fisher information (1.6) may also be
viewed as a kind of first order version of the Hilbert’s projective distance associated with the cone of
non-negative functions, that is,

H(P,Q) := osc

(
log

P

Q

)
≡ sup

x∈R
log

P (x)

Q(x)
− inf
x∈R

log
P (x)

Q(x)
.

The latter distance is well-suited for the analysis of 1-positively homogeneous, order-preserving, operators
[33]. An obvious reason is the projective character of that metric [34], which makes it insensitive to the
exponential growth (or decay) O(λn). This character is also shared by I∞ (in contrast with I2).
A linear argument, even in the non-linear case. The previous discussion focussed on the linear operator
(1.14) for the sake of clarity. Interestingly, the non-linear case under study (1.2) also involves a linear
argument when formulated backward in time. Similarly, define the relative distribution un = Fn

λn F , where
the pair (λ,F ) is the strongly log-concave solution to (1.5) from part (i) in the main Theorem 1.2. Then,
un satisfies the following forward-in-time non-linear problem:

un(x) =
1

∥un−1 F ∥L1

∫∫
Rd

P (x;x1, x2)un−1(x1)un−1(x2) dx1 dx2, n ∈ N, x ∈ R, (1.19)

where the function P (x;x1, x2) is explicitly defined as

P (x;x1, x2) =
G
(
x− x1+x2

2

)
F (x1) F (x2)∫∫

R2 G
(
x− x′

1+x
′
2

2

)
F (x′1) F (x′2) dx

′
1 dx

′
2

, x ∈ R, (x1, x2) ∈ R2. (1.20)

Since P is normalized with respect to the variables (x1, x2), then it can be regarded as a Markov kernel
with source x ∈ R and target (x1, x2) ∈ R2 representing the probability of transitioning from the trait of
the offspring x to the traits of the parents (x1, x2). In Lemma 2.6, we prove the very same contraction
estimate as in (1.16) for the family of Markov kernels P indexed by its first variable x. The key difference
is that this Markov kernel makes the transition between un and un−1⊗un−1 due to the joint distribution
of parental traits (the non-linearity, in fact). This is rescued by an appropriate tensorization property of
the relative Fisher information, which is expressed in Lemma 2.4.

A close-to-optimal result despite a non-optimal argument. The rate of contraction 2
1+2 β coincides with

the optimal one in the quadratic case (see Remark 1.3). However, there is some non-optimal step in the
proof. Indeed, our key contraction estimate (1.16) is a consequence of the maximum principle on the
Monge-Ampère equation satisfied by the Brenier transportation map between the joint distributions of
the parental traits (X1, X2) and (X ′

1, X
′
2). There is some subtlety here to be noticed, as the contraction is

set for the L∞ Wasserstein distance (maximum of the optimal transportation displacement), whereas the
Brenier transportation map used in our argument is optimal for the L2 Wasserstein distance. Nevertheless,
in the quadratic case, the transportation map is simply a translation, so that it comes with the same
cost, measured either in (weighted) L2 or in L∞.

In the recent contribution [29], the authors used a different approach based on Langevin dynamics to
make the connection between the two joint distributions. Hence, they by-pass the use of the Brenier map.
Their approach is much simpler, and it enables to extend the result readily to higher dimensions. These
results were originally motivated by a computation in a previous version of our paper, where we obtained
an upper bound on the displacement ||T (x) − x||2 for the Brenier map between a strongly log-concave
density and a perturbation of it. In the current version, such an estimate cited by [29] is no more crucial,
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as the important one concerns the displacement ||T (x)−x||1 (see Sections 2.3 and 2.4) and interpolating
ℓ1 estimates from ℓ2 ones worsens the coefficients (cf. Remark 3.1). Then we have moved the ℓ2 estimates
to Appendix C for an easier readability. In [29], the authors by-pass this delicate issue of choosing ℓ1
rather than ℓ2 based distances by establishing some fruitful anisotropic version of our Lemma C.2.

Organization of the paper.

In Section 2 we provide a sketch of the proof of the one-step contraction property in Theorem 1.2(ii)
under an additional technical condition. In Section 3 we derive the fundamental contraction property of
the one-step transition probability of the problem under the W∞,1 Wasserstein distance (see definition
below), thus removing the technical condition used in the sketch of proof of Section 2. In Section 4
we analyze a truncated version of the time-marching problem (1.5) to bounded intervals, which will be
necessary in next part. Section 5 focuses on proving the existence of strongly log-concave solutions of the
nonlinear eigen-problem (1.5) as claimed in Theorem 1.2(i). In Section 6 we prove asymptotic exponential
growth of (1.5) for restricted initial data (H3) as in Theorem 1.2(iii). Finally, Appendices (A) and (B)
contain some technical results to alleviate the reading of the paper.

Notation.

• (Vector norms) Along the paper, Rd will be endowed with the various ℓq norms, namely, for any
z = (z1, . . . , zd) ∈ Rd and any 1 ≤ q ≤ ∞ we denote

∥z∥q :=


(

d∑
i=1

|zi|q
)1/q

, if 1 ≤ q <∞,

max
1≤i≤d

|zi|, if q = ∞.

(1.21)

The associated ℓ2 and ℓ∞ open balls centered at 0 with radius R > 0 are respectively denoted by

BR := {z ∈ Rd : ∥z∥2 < R} and QR := {z ∈ Rd : ∥z∥∞ < R}. (1.22)

• (Characteristic function) Given any set A ⊂ Rd, we will denote the associated characteristic function
of convex analysis by χA : Rd −→ (−∞,+∞], which is the mapping defined by

χA(z) :=

{
0, if z ∈ A,
+∞, if z ∈ Rd \A. (1.23)

• (Measure spaces) We denote by M(Rd) the space of finite Radon measures, endowed with the total
variation norm, andM+(Rd) represents the cone of non-negative finite Radon measures. Similarly, P(Rd)
is the subspace of probability measures, endowed with the narrow topology except otherwise specified.

• (Wasserstein metrics) For any 1 ≤ p ≤ ∞, we define the Lp Wasserstein space

Pp(Rd) :=
{
P ∈ P(Rd) :

∫
Rd

|z|p P (dz) <∞
}
, if 1 ≤ p <∞,

P∞(Rd) :=
{
P ∈ P(Rd) : suppP is compact

}
.

Similarly, we consider the Lp Wasserstein metric associated with the ℓq vector norm of Rd. Specifically,
for any P,Q ∈ P(Rd) and any 1 ≤ p, q ≤ ∞ we denote

Wp,q(P,Q) :=

(
inf

γ∈Γ(P,Q)

∫
R2d

∥z − z̃∥pq γ(dz, dz̃)
)1/p

, if 1 ≤ p <∞,

W∞,q(P,Q) := inf
γ∈Γ(P,Q)

γ- ess sup
z,z̃∈Rd

∥z − z̃∥q,
(1.24)

where Γ(P,Q) is the family of transference plan γ ∈ P(Rd × R)d with marginals P and Q. Whilst the
Lp Wasserstein distances could be infinitely-valued over P(Rd), note that they take finite values over
Pp(Rd) at least, although not exclusively. In particular, note that the L∞ Wasserstein distances take
finite values over distributions P and Q that only differ on a space translation independently on their
supports being compact or not. For this reason, along the paper we shall not restrict to compactly
supported distributions, but anyway in all our computations the involved L∞ Wasserstein distances will
take finite values as it will become clear later in the proofs.
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2. Proof of the one-step contraction property

For the reader convenience, we provide first the main ingredients behind the proof of the fundamental
one-step contraction property in Theorem 1.2(ii). Here, we shall assume that Theorem 1.2(i) holds
true, i.e., there exists a β-log-concave solution (λ,F ) to (1.5) with β given by (1.7) (recall the precise
notion of strong log-concavity in Definition 1.1). We remark that its use will be crucial in our following
argument, but its proof is not apparent with regards to classical approaches based on the application of
the Krein-Rutman theorem. For this reason, a major part of this paper is devoted to rigorously address
this question, which will be introduced in full detail in Section 5 of this paper.

2.1. Sharp log-concavity parameter. First, we elaborate on the precise value of β given in (1.7).
Specifically, we prove that it amounts to the sharpest possible log-concavity parameter of a generic
solution (λ, F ) to (1.5). To this end, it is worthwhile to note that the nonlinear operator T in (1.2) can
be restated as the composition of a multiplicative operator and a double convolution operator, namely,

T [F ] =
e−m

∥F∥L1

(G ∗ F̄ ∗ F̄ ), (2.1)

for every F ∈ L1
+(R) \ {0}, where we define F̄ (x) := 2F (2x) for x ∈ R. The starting point is to realize

that strong log-concavity is stable under convolutions. This is a classical corollary of the celebrated
Prékopa-Leindler inequality, which reads as follows (see [41, Proposition 7.1] for futher details).

Lemma 2.1 (Stability of log-concavity under convolutions). Assume that F1, F2 ∈ L1
+(R) verify that Fi

are γi-log-concave for some γ1, γ2 > 0. Then F1 ∗ F2 is also γ-log-concave for γ > 0 given by

1

γ
=

1

γ1
+

1

γ2
.

Let us remark that the above result could be applied to any couple of Gaussian distributions F1 and F2

with respective variances σ2
1 and σ2

2 since they are in particular γi-log-concave with parameters γi =
1
σ2
i

for i = 1, 2. In doing so one finds that the above result is consistent with the classical fact that the
convolution F1 ∗ F2 of two Gaussian distributions is again Gaussian with variance σ2 = σ2

1 + σ2
2 .

In addition, note that the mortality function m has been chosen α-convex by the hypothesis (H1)
in Theorem 1.2, and then e−m is α-log-concave. Since strong log-concavity is also preserved under
multiplication, and F̄ is 4γ-log-concave whenever F is γ-log-concave, then we obtain that log-concavity
must also be preserved under the full operator T .

Lemma 2.2 (Stability of log-concavity under T ). Assume that F ∈ L1
+(R) \ {0} is γ-log-concave for

some γ > 0. Then, T [F ] is also δ-log-concave for δ > 0 given by

δ = α+
2γ

1 + 2γ
.

Thereby, log-concavity is preserved by the dynamics in (1.1), and we also obtain that the sharpest
log-concavity coefficient of the eigenfunction F must be the one given in (1.7).

Lemma 2.3 (Propagation of log-concavity).

(i) Assume that F0 ∈ L1
+(R)\{0} is β0-log-concave for some β0 > 0. Then, the solution {Fn}n∈N to

the evolution problem (1.1) verifies that Fn is βn-log-concave for βn > 0 verifying the recurrence

βn = α+
2βn−1

1 + 2βn−1

, n ∈ N. (2.2)

(ii) Assume that (λ, F ) is any solution to the nonlinear eigenproblem (1.5) and that F is strongly
log-concave. Then, F is β-log-concave with β given by (1.7), that is,

β = α+
2β

1 + 2β
.

Proof. Since (i) is clear by Lemma 2.2, we just prove (ii). Recall that for any solution (λ, F ) of (1.5) with
γ-log-concave F , we can build Fn(x) = λnF (x), which solves the evolution problem (1.1). Therefore,
the above applied to {Fn}n∈N shows that F is βn log-concave for any n ∈ N with {β}n∈N verifying the
recurrence (2.2) above and β0 = γ. Since βn → β, then F is also β-log-concave. □
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2.2. The renormalized problem. We introduce a renormalized version of the evolution problem
(1.1). Specifically, for any solution {Fn}n∈N to (1.1) we renormalize by the strongly log-concave quasi-
equilibrium λn F granted in Theorem 1.2(i). Namely, we set

un(x) :=
Fn(x)

λn F (x)
, n ∈ N, x ∈ R. (2.3)

By inspection, we obtain that {un}n∈N must solve the evolution problem

un(x) =
1

∥un−1 F ∥L1

∫∫
R2

P (x;x1, x2)un−1(x1)un−1(x2) dx1 dx2, (2.4)

for any x ∈ R, where P (x;x1, x2) is the one-step transition probability of transitioning from the parental
traits (x1, x2) to the descendant trait x. More, specifically, P (x; ·) ∈ L1

+(R2) ∩ P(R2) is a probability
density on two variables (x1, x2) depending on the parameter x ∈ R which takes the form (recall the
notation F = e−V ),

P (x;x1, x2) :=
1

Z(x)
e−W (x;x1,x2), x ∈ R, (x1, x2) ∈ R2,

W (x;x1, x2) :=
1

2

∣∣∣∣x− x1 + x2
2

∣∣∣∣2 + V (x1) + V (x2),

Z(x) :=

∫∫
R2

e−W (x;x1,x2) dx1 dx2.

(2.5)

Inspired by our method in [16], we plan to study the relaxation to zero of
∥∥ d
dx (log un)

∥∥
L∞ as n grows.

Nevertheless, contrarily to the aforementioned paper, we do not need to accumulate a large enough
amount of generations in order to observe some ergodic behavior, but we rather find a precise contraction
of such a quantity after a single step.

2.3. A nonlinear Kantorovich-type duality. Our new approach exploits a nice nonlinear version of
a Kantorovich-type duality which relates the L∞ transport distance to the Lipschitz norm of the log of
test functions. This nonlinear extension is reminiscent of the usual Kantorovich duality theorem, which
relates the L1 transport distance to the Lipschitz norm of test functions, see [1, Theorem 6.1.1]. More
specifically, we remark that the usual Kantorovich duality is fundamental in the linear setting to establish
a general equivalence between the contraction of a forward semigroup under the Lipschitz norm, and the
contraction of its backward (or dual) semigroup under the L1 transport distance. We refer to [30] for
further extensions, yet in a linear setting. In our case, our nonlinear relation provides a method to
derive contraction of a forward semigroup under the Lipchitz norms of the log of tests functions, once
we know that there is contraction of the backward semigroup under a suitable L∞ transport distance.
Interestingly, our nonlinear relation does not only apply to the linear setting, but also to our nonlinear
setting. To the best of our knowledge, this relation appears to be new. Moreover, it does not represent
an isolated example but there is a full family of related inequalities interpolating between the (classical)
L1 result and the (seemingly new) L∞ result, and which further adapt to Lp transport distances, see
Appendix A.

Lemma 2.4 (L∞-type Kantorovich duality). Consider the one-step transition from u0 to u1 in (2.4),
where it is assumed that u0 ∈ C1(R) with u0 > 0 and d

dx (log u0) ∈ L∞(R). Then, we have

| log u1(x)− log u1(x̃)| ≤
∥∥∥∥ ddx (log u0)

∥∥∥∥
L∞

W∞,1(P (x; ·),P (x̃; ·)), (2.6)

for any x, x̃ ∈ R. Here, the metric W∞,1 represents the L∞ Wasserstein distance associated with the ℓ1
norm, cf. (1.24).

Proof. Set x, x̃ ∈ R and assume thatW∞,1(P (x; ·),P (x̃; ·)) <∞ (otherwise the inequality is obvious). In-
deed, this will always be the case as we prove later in Section 3. Then, consider any γ ∈ Γ(P (x; ·),P (x̃; ·))
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minimizing the W∞,1 transport distance (1.24) and note that

u1(x) =
1

∥u0 F ∥L1

∫∫
R2

u0(x1)u0(x2) γ(dx1, dx2, dx̃1, dx̃2)

=
1

∥u0 F ∥L1

∫∫
R2

exp

(
log u0(x1)− log u0(x̃1) + log u0(x2)− log u0(x̃2)

)
× u0(x̃1)u0(x̃2) γ(dx1, dx2, dx̃1, dx̃2)

≤ 1

∥u0 F ∥L1

∫∫
R2

exp

(∥∥∥∥ ddx (log u0)
∥∥∥∥
L∞

∥(x1, x2)− (x̃1, x̃2)∥1
)

× u0(x̃1)u0(x̃2) γ(dx1, dx2, dx̃1, dx̃2)

≤ exp

(∥∥∥∥ ddx (log u0)
∥∥∥∥
L∞

W∞,1(P (x; ·),P (x̃, ·))
)
u1(x̃),

where in the next-to-last line we have used the mean value theorem and in the last one we have exploited
the fact that γ is minimizer. Then, taking logarithm on each side of the above inequality ends the
proof. □

Remark 2.5 (The choice of ℓ1 norm). We note that Lemma 2.4 is a particular instance of Proposition
A.1 in Appendix A which can be recovered by setting d1 = 1, d2 = 2, q = 1 and

u(x1, x2) := u0(x1)u0(x2), (x1, x2) ∈ R2.

However, the special choice q = 1 (that is ℓ1 norms) is apparently less clear at this stage since in fact
choosing any other 1 ≤ q ≤ ∞ would be possible in Proposition A.1 and it would yield more generally

| log u1(x)− log u1(x̃)| ≤ 21/q
′
∥∥∥∥ ddx (log u0)

∥∥∥∥
L∞

W∞,q(P (x; ·),P (x̃; ·)), (2.7)

for every x, x̃ ∈ R. Here, the metric W∞,q represents the L∞ Wasserstein distance associated with the
ℓq norm, cf. (1.24). By the natural relation between ℓ1 and ℓq vector norms, we infer that the above
estimate (2.6) is sharper than (2.7), namely

W∞,1(P (x; ·),P (x̃; ·)) ≤ 21/q
′
W∞,q(P (x; ·),P (x̃; ·)).

Therefore, it is clear that whenever q > 1 the additional factor 21/q
′
makes the one-step contraction

factor in next section non-optimal as compared to the explicit one-step contraction for quadratic selection
m(x) = α

2 |x|
2, as illustrated in Remark 2.7 and more detailed later in Remark 3.1.

2.4. Contraction of the one-step transition probability. The last step of our argument requires
showing that the mapping x ∈ R 7→ P (x; ·) ∈ L1

+(R2) ∩ P(R2) is a contraction when the space P(R2) is
endowed with the W∞,1 Wasserstein distance in (1.24). Specifically, in the following result we quantify
the exact Lipschitz constant, which will account for the precise contraction factor in Theorem 1.2(ii).

Lemma 2.6 (W∞,1-contraction). Consider the one-step transition probability P = P (x;x1, x2) defined
in (2.5) in terms of the potential V of the β-log-concave quasi-equilibrium F = e−V in Theorem 1.2(i).
Then, the following inequality holds true

W∞,1(P (x; ·),P (x̃; ·)) ≤ 2

1 + 2β
|x− x̃|,

for every x, x̃ ∈ R.

A similar contraction property, with respect to W1 distances instead of W∞, appeared previously in
[35, 36] leading to the definition of coarse Ricci curvature of a Markov kernel P (x; ·):

κ(x, x̃) = 1− W1(P (x; ·),P (x̃; ·))
|x− x̃|

, x, x̃ ∈ R.

Specifically, the above references proved that a positive lower bound on the coarse Ricci curvature amounts
to the aforementioned contraction of the forward semigroup under the Lipschitz norm (or equivalently, the
contraction of the backward semigroup under the L1 transport distance [30]). For heat kernels in a linear
setting, this hypothesis on the coarse Ricci curvature is compatible with the Bakry-Emery convexity
condition and it proved equivalent to the contraction of the backward semigroup in all Wp transport
distances [44], including W∞. However, the decay of the L∞ relative Fisher information has not been
addressed in those works, and a nonlinear adaptation of them does not seem straightforward.
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Before entering into the details of the proof of the Lemma 2.6, let us note that putting Lemmas 2.4
and 2.6 together automatically implies the following one-step contraction estimate∥∥∥∥ ddx (log u1)

∥∥∥∥
L∞

≤ 2

1 + 2β

∥∥∥∥ ddx (log u0)

∥∥∥∥
L∞

, (2.8)

which can be iterated and propagated into (1.9) in Theorem 1.2(ii) (at generation n), thus concluding
this section. Nevertheless, we remark that Lemma 2.6 is far from straightforward as one typically cannot
even ensure that the above W∞,1 distance must be finite because the probability densities P (x; ·) and
P (x̃; ·) are supported on the full plane R2.

Remark 2.7 (Quadratic selection). In the case of quadratic selection m(x) = α
2 |x|

2 studied in [16], we
recall from Remark 1.3 that the unique eigenfunction of (1.5) is the Gaussian F = G0,σ2 with variance

σ2 = β−1. Therefore, one easily obtains from (2.5) that

P (x, x1, x2) ∝ exp

(
−1

2

∣∣∣∣x− x1 + x2
2

∣∣∣∣2 − β

2
|x1|2 −

β

2
|x2|2

)
.

Completing squares with respect to the variables (x1, x2) we readily find that P (x; ·) = Gµx,Σ is the density
of a bivariate normal distribution with mean and covariance matrix determined by

µx :=
1

1 + 2β
(x, x), Σ−1 :=

(
1
4 + β 1

4
1
4

1
4 + β

)
.

Since Σ is independent of x, then any couple of Gaussians P (x; ·) and P (x̃; ·) must agree up to a trans-
lation in the direction joining their means. Hence, the transport cost reduces to moving the center µx of
P (x; ·) to the center µx̃ of P (x̃; ·), which yields Lemma 2.6 (with identity indeed):

W∞,1(P (x; ·),P (x̃; ·)) = ∥µx − µx̃∥1 =
2

1 + 2β
|x− x̃|.

The goal of this section is to prove Lemma 2.6. To alleviate the notation, along this section we name
z := (x1, x2) ∈ R2, we fix x, x̃ ∈ R with x ̸= x̃ and then we simplify the notation on the one-step transition
probability in (2.5) by setting p(z) := P (x;x1, x2) and p̃(z) := P (x̃;x1, x2), that is,

p(z) =
1

Z
e−W (z), p̃(z) =

1

Z̃
e−W̃ (z), (2.9)

where the potentials W and W̃ , and the normalizing constants Z and Z̃ are then given by

W (z) := W (x;x1, x2) =
1

2

∣∣∣∣x− x1 + x2
2

∣∣∣∣2 + V (x1) + V (x2),

W̃ (z) := W (x̃;x1, x2) =
1

2

∣∣∣∣x̃− x1 + x2
2

∣∣∣∣2 + V (x1) + V (x2),

Z := Z(x) =

∫∫
R2

e−W (z) dz, Z̃ := Z(x̃) =

∫∫
R2

e−W̃ (z) dz.

(2.10)

For any transport map T : R2 −→ R2 with T# p = p̃, note that a possible strategy in order to estimate
the W∞,1 distance is to compute an L∞ bound for the ℓ1 associated displacement, namely,

W∞,1(p, p̃) ≤ ∥∥T − I∥1∥L∞ . (2.11)

Whilst the choice of T is somehow arbitrary at this point, a comfortable one is usually the Brenier map
T : R2 −→ R2 from the density p to the density p̃, which is characterized as the unique transport map
verifying T# p = p̃ and solving the Monge problem [9]∫∫

R2

∥T (z)− z∥22 p(z) dz =W 2
2,2(p, p̃),

whereW2,2 is the L
2 Wasserstein distance associated with the ℓ2 norm of R2, cf. (1.24). As we anticipated

in the Methodological notes in Section 1, in many cases this non-optimal argument leads to no loss
of generality since the W∞,1 and the uniform bound of the ℓ1 displacement of the Brenier map have the
same order. This was further depicted in the example of the Gaussians from Remark 2.7, where the
Brenier map is a translation, and therefore the transport cost is indeed identical to the displacement.

Our proof of Lemma 2.6 is based on the derivation of a novel L∞ bound of the ℓ1 displacement
∥T − I∥1 associated with the Brenier map T between the densities p and p̃. We derive those bounds
by reformulating such a Brenier map as a solution to a Monge-Ampère equation and using a version of
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Caffarelli’s maximum principle along with the strong log-concavity of our densities. Indeed, by the strong
log-concavity of F in Theorem 1.2(i) we have

−D2
(x1,x2)

log p = −D2
(x1,x2)

log p̃ ≥
(

1
4 + β 1

4
1
4

1
4 + β

)
≥ β

(
1 0
0 1

)
,

and then p, p̃ are β-log-concave. The aforementioned strategy recalls the one applied in Caffarelli’s
contraction principle [13, 14, 17, 18] to find Lipschitz bounds of the Brenier map between strongly log-
concave probability densities. Yet, in order to obtain Lipschitz bounds on the map (i.e. bounds on the
Hessian of the potential), it is necessary to differentiate twice the Monge-Ampère equation; here we only
require bounds on the displacement, and we need to differentiate only once. This recalls more what
was done in [22], where the goal was to obtain Lipschitz bounds on the logarithm of the solution of a
JKO scheme or, equivalently, L∞ bounds of the displacement associated with the Brenier map between
two subsequent measures in the same JKO scheme. Among the important differences, [22] was not
concerned with log-concave measures, but required one of the two to be obtained from the other via the
JKO scheme. As another important difference, [22] was concerned with ℓ2 displacement bounds, and
the choice of the Euclidean ball played a special role. In our setting, in view of the definition (1.24) of
W∞,1, the choice of ℓ2 is not suitable and we focus on ℓ1. For the ℓ1 norm, we obtain new bounds on
the Monge-Ampère equation, which are able to find the sharp contraction factor, and which cannot be
recovered by interpolation from known ℓ2 estimates, see Remark 3.1.

For the reader’s convenience, we provide below a formal proof of Lemma 2.6 under the strong additional
assumption that the maximal ℓ1 displacement associated with the Brenier map is attained. Whilst true
in particular situations (cf. Remark 2.7), unfortunately this hypothesis is not necessarily always true,
and thus the rigorous derivation requires further work which we provide in detail in Section 3.

Formal proof of Lemma 2.6. It is well known that the Brenier map T : R2 −→ R2 from p to p̃ takes
the form T = ∇ϕ for some convex function ϕ : R2 −→ R. Since p, p̃ > 0 and p, p̃ ∈ C∞(R2), then the
regularity results in [11] imply that ϕ ∈ C∞(R2). Moreover, the change of variable formula implies

det(D2ϕ) =
p

p̃ ◦ ∇ϕ
, z ∈ R2. (2.12)

As usual we make the change of variables through the displacement potential

ψ(z) := ϕ(z)− 1

2
∥z∥22, z ∈ R2. (2.13)

In view of the relation (2.11), we note that the core of the proof then reduces to obtaining L∞ bounds
for the ℓ1 norm of the displacement of the Brenier map, that is,

H(z) := ∥T (z)− z∥1 = ∥∇ψ(z)∥1 = |∂x1
ψ(z)|+ |∂x2

ψ(z)|, z ∈ R2. (2.14)

We start by restating the Monge-Ampère equation (2.12) by taking its logarithm,

log det(D2ψ(z) + I) = W̃ (∇ψ(z) + z)−W (z) + log
Z̃

Z
, z ∈ R2. (2.15)

Taking partial derivatives ∂xk
in (2.15) we have

tr
(
(D2ϕ)−1∂xk

D2ψ
)
= ∇W̃ (∇ψ + z) · ∂xk

∇ψ + (∇W̃ (∇ψ + z)−∇W ) · ek, z ∈ R2, (2.16)

for k = 1, 2. Let us assume that H attains its maximum at some z∗ = (x∗1, x
∗
2) ∈ R2 (for the general case

where the maximum is not attained we refer to Section 3) and let us also define the auxiliary function

H̃(z) := sgn(∂x1ψ(z
∗)) ∂x1ψ(z) + sgn(∂x2ψ(z

∗)) ∂x2ψ(z), z ∈ R2. (2.17)

Then, H̃ must also attain its maximum at z∗ and it agrees with the maximum of H. In particular, we
have the necessary optimality conditions

∇H̃(z∗) = 0, D2H̃(z∗) ≤ 0. (2.18)

Now, we perform an appropriate convex combination of (2.16) depending on the signs of ∂x1
ψ(z∗) and

∂x2
ψ(z∗) in order to make the auxiliary function H̃ in (2.14) appear.

⋄ Case 1: ∂x1
ψ(z∗) ≥ 0 and ∂x2

ψ(z∗) ≥ 0.

In this case we have H̃ := ∂x1
ψ + ∂x2

ψ. Evaluating (2.16) at z∗ and summing over k ∈ {1, 2} we have

tr((D2ϕ(z∗))−1D2H̃(z∗)) = ∇W̃ (∇ψ(z∗) + z∗) · ∇H̃(z∗)

+ (∇W̃ (∇ψ(z∗) + z∗)−∇W (z∗)) · (1, 1).
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By the optimality conditions (2.18) and since D2ϕ(z∗)−1 is positive definite, the term in the left hand
side above is non-positive, and we obtain

(∇W̃ (∇ψ(z∗) + z∗)−∇W̃ (z∗)) · (1, 1) ≤ ∇(W −W̃ )(z∗) · (1, 1) = x̃− x.

By expanding the left hand side we obtain

(∇W̃ (∇ψ(z∗) + z∗)−∇W̃ (z∗)) · (1, 1)

=
∂x1ψ(z

∗) + ∂x2ψ(z
∗)

2
+ V ′(∂x1

ψ(z∗) + x∗1)− V ′(x∗1) + V ′(∂x2
ψ(z∗) + x∗2)− V ′(x∗2)

≥ ∂x1
ψ(z∗) + ∂x2

ψ(z∗)

2
+ β(∂x1

ψ(z∗) + ∂x2
ψ(z∗)) =

1 + 2β

2
H̃(z∗),

where we have used that in this case ∂x1
ψ(z∗) ≥ 0 and ∂x2

ψ(z∗) ≥ 0, along with the β-convexity of V .
Therefore, we conclude that x̃ > x and

∥H∥L∞ = H(z∗) = H̃(z∗) ≤ 2

1 + 2β
|x− x̃|.

⋄ Case 2: ∂x1ψ(z
∗) < 0 and ∂x2ψ(z

∗) < 0.

This case follows the same argument as Case 1. Indeed, note now that H̃ = −∂x1ψ − ∂x2ψ. Then, we
sum over k ∈ 1, 2, multiply by −1 on (2.16) and we obtain

1 + 2β

2
H̃(z∗) ≤ x− x̃.

Hence, in this case we obtain x > x̃ and we recover

∥H∥L∞ = H(z∗) = H̃(z∗) ≤ 2

1 + 2β
|x− x̃|.

We show below that the other two cases (namely, ∂x1ψ(z
∗) ≥ 0 and ∂x2ψ(z

∗) < 0, or ∂x1ψ(z
∗) < 0

and ∂x2
ψ(z∗) ≥ 0) cannot happen.

⋄ Case 3: ∂x1
ψ(z∗) ≥ 0 and ∂x2

ψ(z∗) < 0.

Our goal is to show that this case cannot take place. In this case, we have H̃ := ∂x1
ψ − ∂x2

ψ. Taking
the difference of (2.16) with k = 1 and k = 2 we obtain

tr((D2ϕ(z∗))−1D2H̃(z∗)) = ∇W̃ (∇ψ(z∗) + z∗) · ∇H̃(z∗)

+ (∇W̃ (∇ψ(z∗) + z∗)−∇W (z∗)) · (1,−1).

Since z∗ is a maximizer of H̃ we have

(∇W̃ (∇ψ(z∗) + z∗)−∇W̃ (z∗)) · (1,−1) ≤ ∇(W −W̃ )(z∗) · (1,−1) = 0

The expansion on the left hand side is now radically different because the above factor
∂x1ψ(z

∗)+∂x2ψ(z
∗)

2
cancels and now we obtain

(∇W̃ (∇ψ(z∗) + z∗)−∇W̃ (z∗)) · (1,−1)

= V ′(∂x1ψ(z
∗) + x∗1)− V ′(x∗1)− V ′(∂x2ψ(z

∗) + x∗2) + V ′(x∗2)

≥ β(∂x1
ψ(z∗)− ∂x2

ψ(z∗)) = β H̃(z∗),

which implies ∥H∥L∞ = H(z∗) = H̃(z∗) = 0. This is clearly impossible since otherwise T (z) = z for all
z ∈ R2, that is, x = x̃.

⋄ Case 4: ∂x1
ψ(z∗) < 0 and ∂x2

ψ(z∗) ≥ 0.

This case cannot happen either thanks to the same argument as in Case 3 with H̃ replaced by H̃ =
−∂x1

ψ + ∂x2
ψ. Then, we omit the proof. □

2.5. Proof of the one-step contraction property. With all the above machinery in hand, we are
finally in position to prove the one-step contraction property (1.9) in Theorem 1.2.

Proof of Theorem 1.2(ii). Combining Lemmas 2.4 and 2.6 applied to the solution (2.3) of (2.4) we obtain∥∥∥∥ ddx
(
log

Fn
F

)∥∥∥∥
L∞

≤ 2

1 + 2β

∥∥∥∥ ddx
(
log

Fn−1

F

)∥∥∥∥
L∞

,

for every n ∈ N, and this amounts to (1.9). □
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Figure 3. Comparison of the theoretical contraction factor 1
1+2 β in Lemma 2.6, and

the contraction factor 1
β obtained by estimating the ℓ1 norm with the ℓ2 norm in R2.

3. Main contractivity lemma

In this section, we provide a rigorous proof of Lemma 2.6, where the a priori assumption that the
maximal displacement associated with the Brenier map must be attained is no longer required. To do
so, we shall argue by deriving a local version of the Lemma valid for more general strongly log-concave
densities f and g compactly supported on an appropriate domain and bounded away from zero on it.
More specifically, we propose to adapt the contribution of the maximum principle to the formal argument
above (Section 2.4) to compact domains. However, since the maximum may be attained at the boundary,
the boundary information is crucial in order to infer information from the non-linear elliptic PDE (2.12)
and therefore the choice of the domain cannot be made arbitrarily.

We refer to Appendix C for a bound on the maximum of ∥T − I∥2 (in ℓ2 norm) for the Brenier map

T : B̄R −→ B̄R between two generic strongly log-concave probability densities f = e−W and g = e−W̃ ,
supported and strictly positive on an Euclidean ball B̄R. Specifically, we obtain

W∞,2(f, g) ≤ ∥∥T − I∥2∥L∞(B̄R) ≤
1

γ
∥∥∇(W − W̃ )∥2∥L∞(B̄R), (3.1)

where γ > 0 is the log-concavity parameter of f and g.

Remark 3.1 (Inaccuracy of controlling ℓ1 by ℓ2 norms). We may be tempted to apply this ℓ2 estimate to

our setting by setting f and g as truncations of p ∝ e−W and p̃ ∝ e−W̃ (see (2.9)-(2.10)) to ℓ2 balls and
using the Cauchy-Schwarz inequality to get ℓ1 estimates. Specifically, consider an increasing sequence of
balls BR and set f and g in (3.1) to be the truncation of p and p̃ on such balls. First, recall that

D2 W (x1, x2) = D2W̃ (x1, x2) =

(
1
4 + V ′′(x1)

1
4

1
4

1
4 + V ′′(x2)

)
≥
(
β 0
0 β

)
,

because V ′′ ≥ 0, and therefore we can set γ = β in (3.1). Also note that

∇(W −W̃ )(x1, x2) =
1

2
(x̃− x, x̃− x).

Altogether implies the ℓ2 estimate

W∞,2(f, g) ≤ ∥∥T − I∥2∥L∞(B̄R) ≤
1

β
∥ ∥∇(W −W̃ )∥2∥L∞ =

1

β

∥∥∥∥12(x̃− x, x̃− x)

∥∥∥∥
2

=
1√
2β

|x− x̃|,

and by the Cauchy-Schwarz inequality we also have the ℓ1 estimate

W∞,1(f, g) ≤
√
2W∞,2(f, g) ≤

1

β
|x− x̃|.

In particular, we note that such an estimate only provides contraction as long as β > 1 and, in addition,
the contraction factor is worse than the one claimed in Lemma 2.6 as depicted in Figure 3.

We refer to [29] for a nice and fruitful anisotropic version of 3.1 which enables to obtain directly the
claimed contraction factor.
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Thus, we need to improve our proof and avoid using the ℓ2 norm. This was done, formally, in the
previous section, but we need a rigorous proof which also takes care of the boundary. Let us focus on the
observation made in [22, Lemma 3.1] that, for generic f and g smooth on a ℓ2 ball and bounded away
from zero on it, the maximal ℓ2 displacement of the Brenier map must be attained at some interior point
in the ball. Apparently, the use of ℓ2 norms to quantify the size of the displacement proved extremely
well suited in order to control the boundary information on ℓ2 balls. Interestingly, in the sequel we show
that in order to find precise information about the maximizers for the ℓ1 displacement, we need densities
f and g to be supported over ℓ∞ balls B̄R (cf. (1.22)). This is the content of the following

Lemma 3.2 (Maximizers in the ℓ1 setting). Consider two densities f, g ∈ L1
+(R2)∩P(R2), assume that,

{z ∈ R2 : f(z) > 0} = {z ∈ R2 : g(z) > 0} = Q̄R,

where QR is the ℓ∞ ball (cf. (1.22)), and suppose that f, g ∈ C1,δ(Q̄R) for some δ > 0. Let T = ∇ϕ :
Q̄R −→ Q̄R be the Brenier map from f to g, define the displacement potential ψ(z) := ϕ(z)− 1

2∥z∥
2
2 and

the displacement function quantified in ℓ1 norm

H(z) := ∥T (z)− z∥1 = |∂x1
ψ(z)|+ |∂x2

ψ(z)|, z ∈ Q̄R, (3.2)

Then, T ∈ C2,δ(Q̄R) and we have the optimality conditions

∇H̃(z∗) = 0, D2H̃(z∗) ≤ 0, (3.3)

for any maximizer z∗ = (z∗1 , z
∗
2) ∈ Q̄R of H, where H̃ is the auxiliary function

H̃(z) := sgn(∂x1
ψ(z∗)) ∂x1

ψ(z) + sgn(∂x2
ψ(z∗)) ∂x2

ψ(z), z ∈ Q̄R. (3.4)

In contrast with the standard regularity theory for optimal transport, QR is not uniformly convex.
Then, the regularity theory of the Monge-Ampère equation is not directly applicable in full generality.
Specifically, since f, g ∈ C1,δ(Q̄R) are bounded away from zero on Q̄R, then T ∈ C0,δ(Q̄R) by [10].
However, the lack of uniform convexity may prevent the full elliptic regularity [12], which claims that T
is a diffeomorphism of class C2,δ(Q̄R). Fortunately, we can proceed as in [28, Theorem 3.3] which, thanks
to a clever symmetrization argument around each corner of QR and the classical interior regularity in [11],
shows that T is indeed a diffeomorphism of class C2,δ(Q̄R). Moreover, it fixes the corners and sends each

segment of the boundary to itself. This guarantees in particular that H̃ ∈ C2(Q̄R) and the optimality
conditions above make sense, as shown below.

Proof of Lemma 3.2. We remark that z∗ ∈ Q̄R must also be a maximizer of H̃ since we have

H̃(z) ≤ H(z) ≤ H(z∗) = H̃(z∗),

for every z∗ ∈ Q̄R by the definition of H and H̃ in (3.2) and (3.4). Since the maximizer z∗ may lie in
principle in all Q̄R, two possible options arise, either z∗ ∈ QR or z∗ ∈ ∂QR. In the first case, the usual
optimality conditions at interior points yield (3.3). In the second case, namely z∗ ∈ ∂QR, note that the

result is trivial if z∗ is one of the four corners since those are fixed points of T and therefore H̃ ≡ 0.
Hence, here on we will assume that z∗ ∈ ∂QR is not at a corner, but it lies in the interior of some of the
four segments. Note that at those points we only have to prove that ∇H̃(z∗) = 0. In fact, we remark
that those z∗ can be approached by interior points from any direction, and then the above readily implies
the second order optimality condition D2H̃(z∗) ≤ 0. To show that ∇H̃(z∗) = 0, note that the boundary
∂QR contains four segments:

S+
1 := {(x1, x2) ∈ R2 : x1 = R, x2 ∈ [−R,R]},
S−
1 := {(x1, x2) ∈ R2 : x1 = −R, x2 ∈ [−R,R]},
S+
2 := {(x1, x2) ∈ R2 : x1 ∈ [−R,R], x2 = R},
S−
2 := {(x1, x2) ∈ R2 : x1 ∈ [−R,R], x2 = −R}.

Since T (∂QR) = ∂QR and each segment is mapped to itself, then we have the following information

∂x1
ψ(z) = 0, if z ∈ S+

1 ∪ S−
1 , (3.5)

∂x2
ψ(z) = 0, if z ∈ S+

2 ∪ S−
2 . (3.6)

By differentiation it is clear that we also have

∂x1x2
ψ(z) = 0, if z ∈ ∂QR. (3.7)

Now, we argue according to the four possible segments of ∂QR that z∗ may belong to.
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⋄ Case 1: z∗ ∈ S+
1 ∪ S−

1 .
In this case, by (3.5) we have ∂x1ψ(z

∗) = 0 and therefore we have

H̃(z) = sgn(∂x2
ψ(z∗)) ∂x2

ψ(z), z ∈ Q̄R.

Since z∗ is a maximizer of H̃, then there exist λ ∈ R (indeed λ ≥ 0 if z∗ ∈ S+
1 and λ ≤ 0 if z∗ ∈ S−

1 )
such that its gradient at z∗ equals the multiple λ(1, 0) of the outer normal vector, that is,

∇H̃(z∗) = sgn(∂x2
ψ(z∗))

(
∂x1x2

ψ(z∗)
∂x2x2

ψ(z∗)

)
=

(
λ
0

)
.

This implies that the second component of the gradient must vanish, but the first one also vanishes by
the condition (3.7) on the crossed derivative. Then, we have ∇H̃(z∗) = 0.

⋄ Case 2: z∗ ∈ S+
2 ∪ S−

2 .
In this case, by (3.6) we have ∂x2ψ(z

∗) = 0 and therefore we have

H̃(z) = sgn(∂x1ψ(z
∗)) ∂x1ψ(z), z ∈ Q̄R.

Since z∗ is a maximizer of H̃, then there exist λ ∈ R (indeed λ ≥ 0 if z∗ ∈ S+
2 and λ ≤ 0 if z∗ ∈ S−

2 )
such that its gradient at z∗ equals the multiple λ(0, 1) of the outer normal vector, that is,

∇H̃(z∗) = sgn(∂x1
ψ(z∗))

(
∂x1x1

ψ(z∗)
∂x1x2

ψ(z∗)

)
=

(
0
λ

)
.

This implies that the first component of the gradient must vanish, but the second one also vanishes by
the condition (3.7) on the crossed derivative. Then, we have ∇H̃(z∗) = 0. □

We remark that the unique formal point of the sketch of the proof of Lemma 2.6 in Section 2 which could
break down is the fact that for the global densities f = p and g = p̃ in (2.9)-(2.10) the ℓ1 displacement of
their Brenier map does not attain its maximum necessarily. In particular, we may be deprived from the
optimality condition (2.18), which was crucially used throughout the maximum-type principle sketched in
Section 2. However, Lemma 3.2 does guarantee that the maximum must be attained and the optimality
conditions (3.3) must hold in particular when f and g are set to be the truncation of the densities p and
p̃ on ℓ∞ balls. In fact, the result does not exploit the special potential V in the definition (2.9)-(2.10)
of p, p̃, which corresponds to the potential of the eigenfunction F = e−V in Theorem 1.2(i), but it can
actually be replaced by any strongly convex function supported on Q̄R. Since we shall use this more
general version later in Section 4, we state in full generality below.

Lemma 3.3 (Maximum principle on ℓ∞ balls). For any γ-convex potential V ∈ C1,δ
loc (R) with γ > 0, any

x, x̃ ∈ R with x ̸= x̃, and any R > 0 we define f, g ∈ L1
+(Rd) ∩ P(R2) given by

f(z) =
1

Z
e−W (z), g(z) =

1

Z̃
e−W̃ (z), z ∈ R2,

where the potentials W and W̃ , and the normalizing constants Z and Z̃ are set as follows

W (z) :=
1

2

∣∣∣∣x− x1 + x2
2

∣∣∣∣2 + V (x1) + V (x2) + χQ̄R
(z),

W̃ (z) :=
1

2

∣∣∣∣x̃− x1 + x2
2

∣∣∣∣2 + V (x1) + V (x2) + χQ̄R
(z),

Z :=

∫∫
R2

e−W (z) dz, Z̃ :=

∫∫
R2

e−W̃ (z) dz,

and χQ̄R
is the characteristic function associated to the ℓ∞ ball Q̄R (cf. (1.23)). Then, the Brenier map

T = ∇ϕ : Q̄R −→ Q̄R from f to g verifies

W∞,1(f, g) ≤ ∥∥T − I∥1∥L∞(Q̄R) ≤
2

1 + 2γ
|x− x̃|.

As explained above, we omit the proof since it follows the formal proof of Lemma 2.6 in Section 2 and
the optimality conditions in Lemma 3.2. In particular, by setting V = V (and therefore γ = β) we have
that Lemma 3.3 is directly applicable to the truncations to Q̄R of the densities p, p̃ in (2.9)-(2.10).
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Definition 3.4 (Truncation to Q̄R). For the probability densities p, p̃ ∈ L1
+(R2)∩P(R2) given in (2.9)-

(2.10), we define their truncations to the ℓ∞ ball Q̄R (cf. (1.22)) as follows

pR(z) :=
1

ZR
e−WR(z), p̃R(z) :=

1

Z̃R

e−W̃R(z),

WR(z) := W (z) + χQ̄R
(z), W̃R(z) := W̃ (z) + χQ̄R

(z),

ZR :=

∫
R2

e−WR(z) dz, Z̃R :=

∫
R2

e−W̃R(z) dz,

for any R > 0, where χQ̄R
is the characteristic function associated to the ℓ∞ ball Q̄R (cf. (1.23)).

Then, we are in position to rigorously prove Lemma 2.6 by taking limits R → ∞ and noting that
Lemma 3.3 yields a uniform bound of the displacement independent on R.

Rigorous proof of Lemma 2.6. Consider p and p̃ given in (2.9)-(2.10) and set the associated Brenier map
T : R2 −→ R2 from p to p̃. Similarly, we consider the family of truncations pR and p̃R in Definition 3.4
and we set the associated Brenier maps TR : R2 −→ R2. By the above Lemma 3.3 we have

∥ ∥TR − I∥1∥L∞(Q̄R) ≤
2

1 + 2β
|x− x̃|, (3.8)

for every R > 0. We set the optimal transference plans γ ∈ Γo(p, p̃) and γR ∈ Γo(pR, p̃R) associated
with the W2,2 distance, which are known to be supported on the graph of the above Brenier maps, i.e.,

γ := (I, T )# p, γR := (I, TR)# pR .

Since the involved potentials W and W̃ are β-convex, we have the enough integrability on p and p̃ to
ensure that p, p̃ ∈ P2(R2). Hence, the dominated convergence theorem applies and we have indeed

pR → p, p̃R → p̃ in (P2(R2),W2,2).

By stability of optimal transference plans, the sequence γR must converge narrowly to some optimal
transference plan (up to a subsequence), see [1, Proposition 7.1.3]. Since the unique optimal transference
plan between p and p̃ is precisely the above γ supported on the graph of T , then we obtain

γR → γ narrowly in P(R2).

Now we use the Kuratowski convergence of the supports under the narrow convergence of measures,
see [1, Proposition 5.1.8]. Namely, consider any z ∈ R2. Since (z, T (z)) ∈ supp γ, then there exists
(zR, wR) ∈ supp γR such that (zR, wR) → (z, T (z)). Since γR is supported on the graph of TR then
zR ∈ Q̄R and wR = TR(z

R). In particular, we have TR(z
R)− zR → T (z)− z as R→ ∞ and by the above

uniform bound (3.8) the same bound is preserved in the limit, that is,

W∞,1(p, p̃) ≤ ∥∥T − I∥1∥L∞ ≤ 2

1 + 2β
|x− x̃|.

□

Remark 3.5 (Replacing ℓ∞ balls by ℓ1 balls). We note that in Lemmas 3.2 and 3.3 the choice of ℓ∞ is
crucial. However, this is not the only possible choice and a similar proof could be obtained if replacing
ℓ∞ balls with ℓ1 balls. It is clear anyway that the shape of the boundary and the norm to be optimized
should satisfy some form of compatibility conditions.

4. Analysis of a truncated problem

In this part, we study an auxiliary version of the original time marching problem (1.1) restricted to
the bounded interval IR := (−R,R) with R > 0, namely,

FRn = TR[FRn−1], n ∈ N, x ∈ R. (4.1)

Here, we truncate the selection function mR as follows

mR(x) := m(x) + χĪR(x), x ∈ R, (4.2)

where χĪR is the characteristic function associated to the interval ĪR (cf. (1.23)), so that the truncated
integral operator TR takes the form

TR[F ](x) := e−mR(x)

∫∫
R2

G

(
x− x1 + x2

2

)
F (x1)

F (x2)

∥F∥L1

dx1 dx2, x ∈ R. (4.3)
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Again, solutions of the form FRn (x) = (λR)n FR(x) come as eigenpairs of the non-linear eigenproblem

λRFR = TR[FR], x ∈ R,

FR ≥ 0,

∫
R
FR(x) dx = 1.

(4.4)

The goal of this section is to derive an analogous truncated version of Theorem 1.2. More specifically, we
study: (i) Existence of a unique strongly log-concave solution (λR,FR) to (4.4), and (ii) Quantitative

relaxation of the solutions to (4.1) towards the quasi-equilibrium (λR)n FR.

Theorem 4.1 (Truncated problem). Consider any m ∈ C2(R) verifying (H1)-(H2) in Theorem 1.2. Set
any R > 0 and define the truncation mR according to (4.2). Then, the following statements hold true:

(i) (Existence of quasi-equilibrium)

There is a unique solution (λR,FR) to (4.4). In addition, FR = e−V R ∈ L1
+(R) ∩ C∞(ĪR) is

compactly supported on ĪR and bounded away from zero on it and β-log-concave with parameter
β > 0 given in (1.7) in Theorem 1.2.

(ii) (One-step contraction)
Consider any FR0 ∈ L1

+(R) ∩ C1(ĪR) compactly supported on ĪR and bounded away from zero on

it, and let {FRn }n∈N be the solution to (4.1) issued at FR0 . Then, we have∥∥∥∥ ddx
(
log

FRn
FR

)∥∥∥∥
L∞(ĪR)

≤ 2

1 + 2β

∥∥∥∥ ddx
(
log

FRn−1

FR

)∥∥∥∥
L∞(ĪR)

,

for any n ∈ N.
(iii) (Asynchronous exponential growth)

Consider any FR0 ∈ L1
+(R) ∩ C1(ĪR) compactly supported on ĪR and bounded away from zero on

it, and let {FRn }n∈N be the solution to (4.1) issued at FR0 . Then, we have∣∣∣∣ ∥FRn ∥L1

∥FRn−1∥L1

− λR
∣∣∣∣ ≤ CR

(
2

1 + 2β

)n
,∥∥∥∥ FRn

∥FRn ∥L1

− FR

∥∥∥∥
C1

≤ C ′
R

(
2

1 + 2β

)n
,

for any n ∈ N and some constants CR, C
′
R depending on R and FR0 .

As we show below, our proof exploits the overarching local contraction Lemma 3.3 to answer simul-
taneously both questions. More specifically, our main observation is the following type of contraction
which holds true providing that the initial data FR0 is strongly log-concave.

Lemma 4.2 (Cauchy-type property). Let m ∈ C2(R) satisfy (H1)-(H2) in Theorem 1.2. Consider a β0

log-concave density FR0 ∈ L1
+(R) ∩ C1,δ(ĪR) with β0 > 0 and 0 < δ < 1, compactly supported on ĪR and

bounded away from zero on it. Let {FRn }n∈N be the solution to (4.1) issued at FR0 . Then, we have∥∥∥∥ ddx
(
log

FRn
FRn−1

)∥∥∥∥
L∞(ĪR)

≤ 2

1 + 2βn−2

∥∥∥∥ ddx
(
log

FRn−1

FRn−2

)∥∥∥∥
L∞(ĪR)

, n ≥ 2,

where the sequence {βn}n∈N is defined by recurrence like in (2.2).

Proof. For any n ∈ N, we define

uRn (x) :=
FRn (x)

FRn−1(x)
, x ∈ ĪR,

and note that, arguing as in (2.3), we have that {un}n∈N must solve the following analogue of (2.4):

uRn (x) =
∥FRn−2∥L1

∥FRn−1∥L1

∫∫
Q̄R

PRn (x;x1, x2)u
R
n−1(x1)u

R
n−1(x2) dx1 dx2,
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for any x ∈ ĪR and n ≥ 2. We remark that the system above holds only on ĪR and the one-step transition
probability PRn (x; ·) ∈ L1

+(Q̄R)∩P(Q̄R) is not time-homogeneous but it depends explicitly on n, namely

PRn (x;x1, x2) :=
1

ZRn (x)
e−W

R
n (x;x1,x2), x ∈ ĪR, (x1, x2) ∈ Q̄R,

WR
n (x;x1, x2) :=

1

2

∣∣∣∣x− x1 + x2
2

∣∣∣∣2 + V Rn−2(x1) + V Rn−2(x2),

ZRn (x) :=

∫∫
Q̄R

e−W
R
n (x;x1,x2) dx1 dx2,

where we denote V Rn : ĪR −→ R so that FRn = e−V
R
n . By Lemma 2.2, V Rn−2 is βn−2-convex and therefore

the contractivity Lemma 3.3 applies to f = PRn (x; ·) and g = PRn (x̃; ·) with x, x̃ ∈ ĪR leading to

W∞,1(P
R
n (x; ·), PRn (x̃; ·)) ≤ 2

1 + 2βn−2

|x− x̃|.

Therefore, arguing as in Lemma 2.4 we end the proof. □

Proof of Theorem 4.1.

⋄ Step 1: Proof of (i).
Under appropriate assumptions on FR0 we shall prove that ∥FRn ∥L1/∥FRn−1∥L1 and FRn /∥FRn ∥L1 must

converge as in (iii), and their limit (λR,FR) solves (4.4). We set a β0-log-concave density F
R
0 ∈ L1

+(R)∩
C1,δ(ĪR) with β0 > β and 0 < δ < 1, compactly supported on ĪR and bounded away from zero on it. Let
{FRn }n∈N be the solution to (4.1). Since the initial datum has been chosen strongly log-concave, Lemma
4.2 implies ∥∥∥∥ ddx

(
log

FRn
FRn−1

)∥∥∥∥
L∞(ĪR)

≤
(

2

1 + 2β

)n−1 ∥∥∥∥ ddx
(
log

FR1
FR0

)∥∥∥∥
L∞(ĪR)

,

for all n ≥ 1 because FRn are βn-log-concave with βn > β for all n ∈ N by Lemma 2.2. Setting

V Rn : ĪR −→ R as before so that FRn = e−V
R
n we obtain∥∥∥∥ ddx (V Rn − V Rm )

∥∥∥∥
L∞(ĪR)

≤
n∑

k=m+1

∥∥∥∥ ddx (V Rk − V Rk−1)

∥∥∥∥
L∞(ĪR)

≤
n−1∑
k=m

(
2

1 + 2β

)k ∥∥∥∥ ddx (V R1 − V R0 )

∥∥∥∥
L∞(ĪR)

,

for all n ≥ m ≥ 1. Since 2
1+2 β < 1 by Remark 1.7, then

{
d
dx (V

R
n )
}
n∈N is a Cauchy sequence in C(ĪR)

and therefore it must converge uniformly to some limit DR ∈ C(ĪR). In particular, we have

d

dx

(
logFRn

)
→ DR in C(ĪR). (4.5)

Now, we show that FRn /∥FRn ∥L1 must also converge when evaluated at least at one point, and we choose
x = 0 for instance. To this purpose, we note that FRn (0)/∥FRn ∥L1 can be restated as follows∫∫

Q̄R

G

(
x1 + x2

2

)
exp

(
−(V Rn−1(x1)− V Rn−1(0))− (V Rn−1(x2)− V Rn−1(0))

)
dx1 dx1∫

ĪR

∫∫
Q̄R

G

(
x′ − x1 + x2

2

)
exp

(
−m(x′)− (V Rn−1(x1)− V Rn−1(0))− (V Rn−1(x2)− V Rn−1(0))

)
dx′ dx1 dx2

,

and, by the fundamental theory of calculus, V Rn−1(x)− V Rn−1(0) in the integrand can be represented by

V Rn−1(x)− V Rn−1(0) =

∫ 1

0

dV Rn−1

dx
(θx)x dθ, x ∈ ĪR,

which converges uniformly to some limit. Therefore, there exists LR ∈ R such that

log
FRn (0)

∥FRn ∥L1

→ LR. (4.6)

Putting (4.5)-(4.6) together and using the fundamental theorem of calculus entail

log
FRn (x)

∥FRn ∥L1

= log
FRn (0)

∥FRn ∥L1

+

∫ 1

0

d

dx

(
logFRn

)
(θx)x dθ → LR +

∫ 1

0

DR(θx)x dθ in C1(ĪR).
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We define FR(x) := exp(LR +
∫ 1

0
DR(θx)x dθ + χĪR(x)) ∈ L1

+(R) ∩ P(R) and therefore we achieve

FRn
∥FRn ∥L1

→ FR in C1(ĪR). (4.7)

Our second step is to prove the convergence of ∥FRn ∥L1/∥FRn−1∥L1 . Note that we have

∥FRn ∥L1

∥FRn−1∥L1

=

∫∫
R2

HR(x1, x2)
FRn−1(x1)

∥FRn−1∥L1

FRn−1(x2)

∥FRn−1∥L1

dx1 dx2, (4.8)

where we have defined

HR(x1, x2) :=

∫
ĪR

e−m(x)G

(
x− x1 + x2

2

)
dx, (x1, x2) ∈ R2.

Since HR is a bounded function, therefore HR ∈ L1(Q̄R) and, consequently, the above uniform conver-

gence (4.7) of the normalized profiles along with (4.8) imply that there must exists λR with

∥FRn ∥L1

∥FRn−1∥L1

→ λR . (4.9)

The last step is to show that (λR,FR) must solve (4.4). This is actually clear because we have

∥FRn ∥L1

∥FRn−1∥L1

FRn
∥FRn ∥L1

= TR
[

FRn−1

∥FRn−1∥L1

]
,

for all n ∈ N, and ∥FRn ∥L1/∥FRn−1∥L1 and FRn /∥FRn ∥L1 converge in the above sense (4.7)-(4.9). We note

that FR must be β-log-concave because so is FRn for all n ∈ N. The uniqueness of solution to (4.4) will
not be analyzed here, but it will hold as a consequence of the next contraction property in Step 2.

⋄ Step 2: Proof of (ii).

Once a strongly log-concave solution (λR,FR) of the truncated nonlinear eigenproblem (4.4) exists, the
one-step contraction property follows the same ideas as in the global version in Theorem 1.2(ii) sketched
in Section 2. More specifically, we shall argue like in the proof of Lemma 4.2 where again we replace un
by the normalization of FRn by the quasi-equilibrium (λR)n FR. That is, for any n ∈ N, we define

uRn (x) :=
FRn (x)

(λR)n FR
, x ∈ ĪR,

which must solve

uRn (x) =
1

∥uRn−1 F
R ∥L1

∫∫
Q̄R

PR(x;x1, x2)u
R
n−1(x1)u

R
n−1(x2) dx1 dx2,

for any x ∈ ĪR and n ∈ N, where PR(x; ·) ∈ L1
+(Q̄R) ∩ P(Q̄R) is the one-step transition probability

PR(x;x1, x2) :=
1

ZR(x)
e−WR(x;x1,x2), x ∈ ĪR, (x1, x2) ∈ Q̄R,

WR(x;x1, x2) :=
1

2

∣∣∣∣x− x1 + x2
2

∣∣∣∣2 + V R(x1) + V R(x2),

ZR(x) :=

∫∫
Q̄R

e−WR(x;x1,x2) dx1 dx2.

Again, we denote V R : ĪR −→ R so that FR = e−V R

. By Step 1 we have that V R is β-convex and
therefore the contractivity Lemma 3.3 applies to PR(x; ·) and PR(x̃; ·) with x, x̃ ∈ ĪR leading to

W∞,1(P
R(x; ·),PR(x̃; ·)) ≤ 2

1 + 2β
|x− x̃|.

Therefore, arguing as in Lemma 2.4 we end the proof.
In particular, the above implies that (λR,FR) must be the unique solution to the truncated nonlinear

eigenproblem 4.4. Indeed, if a second solution (λR, FR) exists, one can always define the special solution
FRn (x) = (λR)nFR(x) of (4.1) and therefore the above one-step contraction implies∥∥∥∥ ddx

(
log

FR

FR

)∥∥∥∥
L∞(ĪR)

≤ 2

1 + 2β

∥∥∥∥ ddx
(
log

FR

FR

)∥∥∥∥
L∞(ĪR)

.

Since 2
1+2 β < 1 by Remark 1.7, then we have FR = FR (and therefore λR = λR) because both FR and

FR are probability densities by definition.
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⋄ Step 3: Proof of (iii).
We prove that the convergence in Step 1 holds for generic initial data FR0 ∈ L1

+(R)∩C1(ĪR) compactly

supported on ĪR and bounded away from zero on it, and not necessarily strongly log-concave. Note that
by the above one-step contractivity property we have again∥∥∥∥ ddx (V Rn − V R)

∥∥∥∥
L∞(ĪR)

≤
(

2

1 + 2β

)n ∥∥∥∥ ddx (V R0 − V R)

∥∥∥∥
L∞(ĪR)

,

for all n ∈ N. Then, the same argument as in Step 1 can be applied with explicit convergence rates and

equal to
(

2
1+2 β

)n
at each step: first d

dx (logF
R
n ), second log

(
FRn (0)/∥FRn ∥L1

)
, hence log

(
FRn /∥FRn ∥L1

)
,

and finally also ∥FRn ∥L1/∥FRn−1∥L1 . Therefore, we readily obtain the claimed convergence rates for the
rates of growth and the normalized profiles. □

5. Existence and uniqueness of strongly log-concave quasi-equilibria

In this section, we employ the truncated quasi-equilibria in the above Theorem 4.1 to build a globally
defined quasi-equilibrium of the non-truncated model (1.1), thus proving Theorem 1.2(i). In the following,

we show that the family of probability densities {FR}R>0 are uniformly tight, and therefore weak limits
cannot lose mass at infinity, which will be useful in the sequel in order to pass to the limit with R→ ∞.

Proposition 5.1 (Bounded second-order moments). Under the assumptions in Theorem 4.1, let us

consider the unique eigenpair (λR,FR) of (4.4) for any R > 0 according to Theorem 4.1(i). Then,

sup
R>0

∫
R
x2 FR(x) dx <∞. (5.1)

We recall that a similar result was necessary in [16]. Indeed, a general strategy was developed therein
to propagate second-order moments along any solution {Fn}n∈N under the a priori knowledge that the
centers of mass stay uniformly bounded. However, such a condition proved difficult to verify unless the
initial datum F0 is centered at the origin, and m is an even function, which would leave the center of mass
fixed at the origin (and thus bounded) for all times. To overcome this problem, an alternative approach
was developed in [16, Lemma 4.5] in order to control the convergence to zero of the center of mass in the
case of quadratic selection. Unfortunately, the proof exploits the Gaussian structure in a crucial way and
cannot be easily adapted to more general selection functions. Here, we propose an alternative strategy
based on the extra knowledge that FR are β-log-concave.

Proof of Proposition 5.1.

⋄ Step 1: Uniform bound of the variance.
Let us define the center of mass and the variance

µR :=

∫
R
xFR(x) dx,

σ2
R :=

∫
R
(x− µR)

2
FR(x) dx,

for any R > 0. Since each eigenfunction FR is β-log-concave, then a straightforward application of the
Brascamp-Lieb inequality shows that variances σ2

R verify

σ2
R ≤ 1

β
, (5.2)

for any R > 0, see [8, Theorem 4.1]. Then, in order to control the (non-centered) second order moments,
we actually need to find a bound of the center of mass µR.

⋄ Step 2: Uniform bound of the center of mass.
Assume that {µR}R>0 is unbounded by contradiction. Changing variables x with −x if necessary, we
may assume without loss of generality that µR ↗ +∞ as R ↗ +∞ up to an appropriate subsequence,
which we denote in the same way for simplicity of notation. Note that integrating (4.4) against emR(x)

and remarking that
∫
R B[FR](x) dx =

∫
R FR(x) dx = 1 (where B is given in (1.3)) we obtain

ARBR = 1, (5.3)
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for every R > 0, where each factor reads

AR :=

∫
R
emR(x) FR(x) dx,

BR :=

∫
R2

ϕR
(
x1 + x2

2

)
FR(x1) F

R(x2) dx1 dx2,

and ϕR := G ∗ e−mR . By Chebyshev’s inequality we know that∫
|x−µR |≤

√
2σR

FR(x) dx ≥ 1

2
, (5.4)

for all R > 0. Therefore, noting that m is non-decreasing in R+ by virtue of the hypothesis (H1)-(H2)
we obtain the following lower bound

AR ≥
∫
|x−µR |≤

√
2σR

emR(x) FR(x) dx

≥ 1

2
min

|x−µR |≤
√
2σR

em(x) =
1

2
em(µR −

√
2σR),

(5.5)

for large enough R > 0 so that [µR−
√
2σR,µR+

√
2σR] ⊂ R+. Similarly, using (5.4) and noting that

ϕR is non-increasing at the right of its maximizer (by strong log-concavity, cf. Lemma 2.2) we obtain

BR ≥
∫∫

|xi−µR |≤
√
2σR

ϕR
(
x1 + x2

2

)
FR(x1) F

R(x2) dx1 dx2

≥ 1

4
min

|x−µR |≤
√
2σR

ϕR(x) ≥ 1

4
ϕR(µR+

√
2σR),

(5.6)

for large enough R > 0 so that [µR−
√
2σR,µR+

√
2σR] lies in that region of the domain. Note that

the above can be obtained if R > 0 is large enough since µR−
√
2σR → ∞ by assumptions, but however

the maximizers of ϕR must converge to the maximizer of ϕ, which is a fixed number in the real line.
Multiplying (5.5) and (5.6) yields the lower bound

ARBR ≥ 1

8
emR(µR −

√
2σR) (G ∗ e−mR)(µR+

√
2σR), (5.7)

for large enough R > 0. Lemma B.2 provides a explicit lower bound (B.6) on Gaussian convolutions.
Therefore, applying it to the second factor in (5.7) with the choices

f = e−m, γ = α, x0 = µR, δ =
√
2σR,

implies the following lower bound

ARBR ≥ G(2
√
2σR)

∫ α
α+1 µR −

√
2σR
α+1

0

exp

(
α+1

2
z2
)
dz

≥ G

(
2
√
2√
β

)∫ α
α+1 µR −

√
2√

β(α+1)

0

exp

(
α+1

2
z2
)
dz,

(5.8)

where in the last line we have used the bound (5.2) of variances. Since the left hand side in (5.8) diverges
as R→ ∞ because µR → +∞, then we reach a contradiction with (5.3), and this ends the proof. □

Theorem 5.2 (Existence of quasi-equilibria). Under the assumptions in Theorem 4.1, let us consider

the unique eigenpair (λR,FR) of (4.4) for any R > 0. Then, there exist λ ∈ R and F ∈ L1
+(R)∩C∞(R)

which is β-log-concave (with β given in (1.7)) such that

λR → λ, FR → F , as R→ ∞,

up to subsequence, both pointwise and in any space (Pp(R),Wp) with 1 ≤ p < 2. Moreover, the pair
(λ,F ) is the unique solution to (1.5) among all pairs (λ, F ) verifying (1.8).

Proof.

⋄ Step 1: Existence via limit as R→ ∞.
Let us notice that by (5.1) in Proposition 5.1 we have that {FR}R>0 is a uniformly tight sequence of
probability measures. Therefore, by Prokhorov’s theorem there must exist Rn ↗ ∞ and some limiting
probability measure F ∈ P(R) such that

FRn → F narrowly in P(R). (5.9)
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By integration on (4.4) we also obtain that

λRn =

∫∫
R2

(e−mRn ∗G)
(
x1 + x2

2

)
FRn(x1) F

Rn(x2) dx1 dx2,

and then we can pass to the limit as n → ∞ in the eigenvalues too. Specifically, since e−mR → e−m in
L∞(R), then e−mR ∗G→ e−m ∗G in Cb(R), and therefore by (5.9) we obtain

λRn → λ, (5.10)

as n→ ∞, where λ is given by

λ :=

∫∫
R2

(e−m ∗G)
(
x1 + x2

2

)
F (x1) F (x2) dx1 dx2 =

∫
R
T [F ](x) dx. (5.11)

Putting (5.9) and (5.10) together and taking limits as n → ∞ in (4.4) implies that {FRn}n∈N must

also converge pointwise to some other limit F̃ ∈ L1
+(R) by Fatou’s lemma. Note that since FR are all

β-log-concave, then so must also be their pointwise limit F̃ . Indeed, note that we further have

λ F̃ (x) = T [F ](x), x ∈ R, (5.12)

and therefore, F̃ ∈ L1
+(R) ∩ P(R), in view of (5.11). Then, we actually have FRn → F̃ in L1(R) (thus

narrowly in P(R)) by Scheffé’s lemma. Since F is a narrow limit of the same sequence, then we have

F̃ = F and by (5.12) we obtain that (λ,F ) must verify the initial problem (1.5). Let us also emphasize
that, we indeed have convergence in any Lp Wasserstein space with 1 ≤ p < 2 because all the p-th order
moment with 1 ≤ p < 2 are uniformly integrable by (5.1), see [1, Proposition 7.1.5].

⋄ Step 2: Uniqueness of quasi-equilibria.
Note that several different convergent subsequences of {FR}R>0 in Step 1 could give rise to various
eigenpairs (λ,F ) of (1.5). Whilst the global uniqueness is unclear with this method, we prove that there
can only exist one solution to (1.5) among the pairs (λ, F ) verifying (1.8). For, we exploit the one-step
contraction property in Theorem 1.2(ii). Specifically, assume that (λ, F ) is any other solution to (1.5)
and define Fn(x) = λnF (x), which is clearly a solution to the evolution problem (1.1) with initial datum
F0 ∈ L1

+(R)∩C1(R) verifying the hypothesis (H3) by virtue of the assumption (1.8). Then, (1.9) implies∥∥∥∥ ddx
(
log

F

F

)∥∥∥∥
L∞

≤ 2

1 + 2β

∥∥∥∥ ddx
(
log

F

F

)∥∥∥∥
L∞

.

Again, since 2
1+2 β < 1 by Remark 1.7, then we obtain that F/F must be constant. Since both F and F

are normalized probability densities, then we necessarily have that F = F (and therefore λ = λ). □

6. Convergence to equilibrium for restricted initial data

In this section, we prove asynchronous exponential as claimed in Theorem 1.2(iii). More specifically, we
show that for restricted initial the asymptotic behavior of the rate of growth of mass ∥Fn∥L1/∥Fn−1∥L1

and the normalized profiles Fn/∥Fn∥L1 is dictated by the solution (λ,F ) of the eigenproblem (1.5)
obtained in Theorem 1.2(i). We derive the relaxation of the normalized profiles under the relative entropy
metric. Our starting point is the one-step contraction property of the L∞ relative Fisher information in
Theorem 1.2(ii) and the following version of the logarithmic-Sobolev inequality with respect to strongly
log-concave densities, which relate the (L2) relative Fisher information and the relative entropy.

Proposition 6.1 (Logarithmic-Sobolev inequality). Consider any couple P,Q ∈ L1
+(R)∩P(R) such that

Q is γ-log-concave for some γ > 0. Then, we have

DKL(P∥Q) ≤ 1

2γ
I2(P∥Q) ≤ 1

2γ
I2
∞(P∥Q), (6.1)

where DKL is the relative entropy (1.12), I2 is the usual (or L2) relative Fisher information (1.18), and
I∞ is the L∞ relative Fisher information (1.6).

On the one hand, the first part of the inequality (6.1) amounts to the usual logarithmic-Sobolev
inequality with respect to a strongly log-concave measure, see Corollary 5.7.2 and Section 9.3.1 in [4]
for details. On the other hand, the second part of the inequality readily holds by definition. Therefore,
putting Theorem 1.2(ii) and Proposition (6.1) together, we end the proof of Theorem 1.2(iii).
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Proof of Theorem 1.2(iii). Notice that by iterating n times the one-step contraction property in Theorem
1.2(ii) and using the logarithmic-Sobolev inequality (6.1) in Proposition 6.1 we obtain

DKL

(
Fn

∥Fn∥L1

∥∥∥∥F) ≤ C1

(
2

1 + 2β

)2n

, (6.2)

for every n ∈ N, where the constant C1 reads

C1 :=
1

2γ
I2
∞ (F0∥F ) ,

and it is finite by the assumption (H3). This proves the relaxation of the normalized profiles towards F
in the relative entropy sense. Regarding the rate of growth, we note that

∥Fn∥L1

∥Fn−1∥L1

=

∫∫
R2

ϕ

(
x1 + x2

2

)
Fn−1(x1)

∥Fn−1∥L1

Fn−1(x2)

∥Fn−1∥L1

dx1 dx2, (6.3)

λ =

∫∫
R2

ϕ

(
x1 + x2

2

)
F (x1) F (x2) dx1 dx2. (6.4)

where (λ,F ) is the solution to (1.5) in Theorem 1.2(i), and ϕ := G ∗ e−m again. Taking the difference of
the two identities (6.3) and (6.4) above, we achieve∣∣∣∣ ∥Fn∥L1

∥Fn−1∥L1

− λ

∣∣∣∣ ≤ ∥ϕ∥L∞

∥∥∥∥ Fn−1

∥Fn−1∥L1

⊗ Fn−1

∥Fn−1∥L1

− F ⊗F

∥∥∥∥
L1

≤ ∥ϕ∥L∞

√
1

2
DKL

(
Fn−1

∥Fn−1∥L1

⊗ Fn−1

∥Fn−1∥L1

∥∥∥∥F ⊗F

)

= ∥ϕ∥L∞

√
DKL

(
Fn−1

∥Fn−1∥L1

∥∥∥∥F)
≤ C2

(
2

1 + 2β

)n
,

with a explicit constant C2 > 0 taking the form

C2 := ∥ϕ∥L∞

√
C1.

Note that above, we have used successively Hölder’s inequality, Pinsker’s inequality, the tensorization
property of the relative entropy, and (6.2) to reach the conclusion. □

Appendix A. Intermediate dualities

For simplicity of the discussion, we do not present here the intermediate Kantorovich-type dualities in
the case of non-linear transition semigroups like in (2.4), but we rather focus on linear semigroups. More
specifically, we have the following intermediate result which is reminiscent of the natural interpolation of
Kantorovich duality for L1 Wasserstein distance, and Lemma 2.4 for L∞ Wassestein metric.

Proposition A.1. Consider any µ, ν ∈ Pp(Rd) for some 1 ≤ p ≤ ∞, and set any function u ∈ C1(Rd)
such that u > 0 and ∇(u1/p) ∈ L∞(Rd,Rd). Then, the following inequality holds true∣∣∣∣∣

(∫
Rd

u(x)µ(dx)

)1/p

−
(∫

Rd

u(x) ν(dx)

)1/p
∣∣∣∣∣ ≤ ∥∥∥ ∥∇(u1/p)∥q′

∥∥∥
L∞

Wp,q(µ, ν),

for any 1 ≤ q ≤ ∞, and q′ given by 1
q+

1
q′ = 1. Here, Wp,q denotes the L

p Wasserstein distance associated

with ℓq norm of Rd, cf. (1.24), and we admit the convention that u1/∞ = log u for all u > 0.

Proof. Let us consider any constant-speed geodesic t ∈ [0, 1] 7−→ ρt ∈ Pp(Rd) in the Wasserstein space
(Pp(Rd),Wp,q) joining µ to ν. Specifically, ρ verifies the continuity equation

∂tρt + div(ρtvt) = 0, t ∈ [0, 1], x ∈ Rd,
ρ0 = µ, ρ1 = ν,

(A.1)

in distributional sense and, in addition, we have

∥ ∥vt∥q∥Lp(ρt) =Wp,q(µ, ν), t ∈ [0, 1]. (A.2)
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Let us also define the function

E(t) :=

∫
Rd

u(y) ρt(dy), t ∈ [0, 1].

Since ρ ∈ Lip([0, 1],Pp(Rd)), then E ∈ AC([0, 1]) and by the continuity equation (A.1) we have

dE

dt
(t) =

∫
Rd

∇u(y) · vt(y) ρt(dy) = p

∫
Rd

∇(u1/p)(y) · vt(y)u1/p
′
(y) ρt(dy), (A.3)

for a.e. t ∈ [0, 1], where we have used the identity ∇u = p∇(u1/p)u1/p
′
. Therefore, we obtain∣∣∣∣dEdt (t)

∣∣∣∣ ≤ p

∫
Rd

∥∇(u1/p)(y)∥q′ ∥vt(y)∥q u1/p
′
(y) ρt(dy)

≤ p
∥∥∥∥∇(u1/p)∥q′

∥∥∥
L∞

∫
Rd

∥vt(y)∥q u1/p
′
(y) ρt(dy)

≤ p
∥∥∥∥∇(u1/p)∥q′

∥∥∥
L∞

∥ ∥vt∥q∥Lp(ρt)
∥u1/p

′
∥Lp′ (ρt)

,

for a.e. t ∈ [0, 1], where in the first step we have used Hölder’s inequality with exponent q applied to
the inner product in the integrand of (A.3), and in the last step we have used Hölder’s inequality with
exponent p applied to the integral of the second line. Using the constant-speed condition (A.2) in the

second factor, and ∥u1/p′∥Lp′ (ρt)
= E(t)1/p

′
in the last one, we obtain the relation∣∣∣∣dEdt (t)

∣∣∣∣ ≤ p
∥∥∥∥∇(u1/p)∥q′

∥∥∥
L∞

Wp,q(µ, ν)E(t)1/p
′
,

for a.e. t ∈ [0, 1], which amounts to∣∣∣∣dE1/p

dt
(t)

∣∣∣∣ ≤ ∥∥∥∥∇(u1/p)∥q′
∥∥∥
L∞

Wp,q(µ, ν),

for a.e. t ∈ [0, 1]. Integrating between 0 and 1 implies∣∣∣E(0)1/p − E(1)1/p
∣∣∣ ≤ ∥∥∥∥∇(u1/p)∥q′

∥∥∥
L∞

Wp,q(µ, ν).

Then, noting that E(0) =
∫
Rd u(x)µ(dx) and E(1) =

∫
Rd u(x) ν(dx) ends the proof. □

As a consequence, we obtain the following result, which allows identifying the Lipschitz constant of a
function with the Lipschitz constant of an associated nonlinear functional over Pp(Rd).

Corollary A.2. Consider any 1 ≤ p ≤ ∞, set any v ∈ C1(Rd) with ∇v ∈ L∞(Rd,Rd), and assume that
v > 0 when p <∞ but not necessarily when p = ∞. Define the functional Φp,v : Pp(Rd) −→ R by

Φp,v[µ] :=


(∫

Rd

v(x)pµ(dx)

)1/p

, if p <∞,

log

(∫
Rd

ev(x)µ(dx)

)
, if p = ∞,

for any µ ∈ Pp(Rd). Then, for any 1 ≤ q ≤ ∞ the following identify holds true

∥ ∥∇v∥q′∥L∞ = sup
µ,ν∈Pp(Rd)

Φp,v[µ]− Φp,v[ν]

Wp,q(µ, ν)
.

Proof. First, note that the change of variables v = u1/p and Proposition A.1 readily implies

∥ ∥∇v∥q′∥L∞ ≥ sup
µ,ν∈Pp(Rd)

Φp,v[µ]− Φp,v[ν]

Wp,q(µ, ν)
.

On the other hand, also note that by particularizing the measures µ, ν ∈ Pp(Rd) to be Dirac masses at
respective points x, x′ ∈ Rd we obtain

sup
µ,ν∈Pp(Rd)

Φp,v[µ]− Φp,v[ν]

Wp,q(µ, ν)
≥ sup
x,x′∈Rd

Φp,v[δx]− Φp,v[δx′ ]

Wp,q(δx, δx′)
= sup
x,x′∈Rd

v(x)− v(x′)

∥x− x′∥q
= ∥ ∥∇v∥q′∥L∞ .

This proves the converse inequality and then the above identity holds. □
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Appendix B. Lower bound of Gaussian convolution of log-concave densities

We present a technical result which computes an explicit lower bound on the convolution of a Gaussian
density and any strongly log-concave probability density.

Lemma B.1 (Lower bound I). Consider any f = e−V ∈ L1
+(R) ∩ P(R), such that V ∈ C1(R) with

V ′(0) = 0, and f is γ-log-concave for some γ > 0. Then, we have

(G ∗ f)(x0 + δ) ≥ G(2δ) f(x0 − δ)

∫ γ
γ+1x0− δ

γ+1

0

exp

(
γ + 1

2
z2
)
dz, (B.1)

for any δ > 0 and each x0 >
γ+2
γ δ, where G denotes the standard Gaussian distribution (1.4).

Proof. For simplicity of notation, we define x± := x0 ± δ and we note that we can write

(G ∗ f)(x+) =
1

(2π)1/2
f(x−)

∫
R
eV (x−)−U(x) dx, (B.2)

where the function U : R −→ R is defined by

U(x) := V (x) +
1

2
(x− x+)

2, x ∈ R.

Since the potential V is γ convex, then we have that the potential U is (γ +1)-convex. By the convexity
inequality applied to the pair of points (x, x−) we then obtain

U(x−) ≥ U(x) + U ′(x)(x− − x) +
γ + 1

2
(x− − x)2, (B.3)

for any x ∈ R. Consider the unique minimizer x∗ ∈ R of the potential U . Since in particular x∗ is a
critical point of U , then we have

0 = U ′(x∗) = V ′(x∗) + (x∗ − x+).

Multiplying above by x∗, using that V ′(0) = 0 by hypothesis along with the convexity inequality of V
applied at the pair (x∗, 0), we infer γ x2∗ ≤ (x+ − x∗)x∗, and therefore,

|x∗| ≤
1

γ + 1
x+. (B.4)

Since U ′(x) > 0 for x > x∗ and x− − x > 0 for x < x−, then (B.3) implies

U(x−) ≥ U(x) +
γ + 1

2
(x− − x)2,

for any x ∈ (x∗, x−). Let us note that indeed we have the appropriate ordering x∗ < x− since by (B.4)
and the assumption x0 >

γ+2
γ δ we obtain

x∗ ≤ 1

γ + 1
x+ =

1

γ + 1
(x0 + δ) ≤ x0 − δ = x−.

Writing everything in terms of V implies

V (x−)− U(x) ≥ −1

2
(x− − x+)

2 +
γ + 1

2
(x− − x)2, (B.5)

for any x ∈ (x∗, x−). Injecting (B.5) into (B.2) we obtain

(G ∗ f)(x+) ≥ G(x+ − x−) f(x−)

∫ x−

x∗

exp

(
γ + 1

2
(x− − x)2

)
dx.

Of course, the above implies (B.1) by a simple change of variables z = x− − x, and noting again that

x− − x∗ ≥ x− − 1

γ + 1
x+ = (x0 − δ)− 1

γ + 1
(x0 + δ) =

γ

γ + 1
x0 −

γ + 2

γ + 1
δ,

thanks to (B.4), which yields again positive a positive upper bound by the assumption x0 >
γ+2
γ δ. □

Note that arguing along the same lines, we can prove an analogous result where the above positive
strongly log-concave density f is replaced by its truncation fR to intervals IR := (−R,R). Specifically,
anything that we need to guarantee is that [x∗, x−] ⊂ IR. First, note that x− < R amounts to the
condition x0 < R+ δ. Second, by (B.4) we obtain that x∗ > −R as long as 1

γ+1x+ < R, which amounts

to the condition x0 < (γ +1)R− δ. If we take R large enough (namely R > 2δ/γ) then we have that the
former condition on x0 is the most restrictive. Therefore, we have the following result.



28 VINCENT CALVEZ, DAVID POYATO, AND FILIPPO SANTAMBROGIO

Lemma B.2 (Lower bound II). Under the assumptions in Lemma B.1, let us define

fR(x) := e−VR(x), x ∈ R
VR(x) := V (x) + χĪR(x), x ∈ R,

for any R > 0, where χĪR is the characteristic function associated to ĪR (cf. (1.23)). Then, we have

(G ∗ fR)(x0 + δ) ≥ G(2δ) fR(x0 − δ)

∫ γ
γ+1x0− δ

γ+1

0

exp

(
γ + 1

2
z2
)
dz, (B.6)

for any δ > 0, each γ+2
γ δ < x0 < R+ δ, and every R > 2δ

γ .

Appendix C. Euclidean estimates on the displacement of the Brenier map between
perturbations of log-concave measures.

In this section we present a proof of the the uniform bound of the ℓ2 norm on the displacement of the
Brenier map between perturbations of log-concave measures.

Lemma C.1. Consider two densities f, g ∈ L1
+(Rd) ∩ P(Rd), assume that,

{z ∈ Rd : f(z) > 0} = {z ∈ Rd : g(z) > 0} = B̄R,

where BR is the Euclidean ball, and suppose that f = e−W , g = e−W̃ are γ-log-concave for some γ > 0
and f, g ∈ C1,δ(B̄R) for some δ > 0. Let T = ∇ϕ : B̄R −→ B̄R be the Brenier map from f to g. Then,

W∞,2(f, g) ≤ ∥∥T − I∥2∥L∞(B̄R) ≤
1

γ
∥∥∇(W − W̃ )∥2∥L∞(B̄R),

As mentioned in Remark 3.1, this result is not enough for the sake of this paper, but was the starting
point to prove Lemma 2.6. The technique to prove it is essentially based on the computations in [22],
but we provide the proof here since the statement is not a direct consequence of it. On the other hand,
this very result has its own interest, as one can see from the recent paper [29].

Proof of Lemma C.1. Since f, g ∈ C1,δ(B̄R) are bounded below on BR by a positive constant, f = g = 0
outside BR, and BR is uniformly convex, then the Caffarelli’s theory [12] proves that T ∈ C2,δ(B̄R).
We consider T (z) − z = ∇ψ(z), where ψ(z) = ϕ(z) − 1

2 ||z||
2
2. The function ψ solves the Monge-Ampere

equation, that we write in logarithmic form:

log det(D2ψ(z) + I) = W̃ (∇ψ(z) + z)−W (z), z ∈ Rd. (C.1)

Taking partial derivatives ∂xk
in (C.1) we have

tr
(
(D2ϕ)−1∂xk

D2ψ
)
= ∇W̃ (∇ψ + z) · ∂xk

∇ψ + (∇W̃ (∇ψ + z)−∇W ) · ek, z ∈ Rd,
for 1 ≤ k ≤ d. We then multiply times ∂xk

ψ, sum over k, so that we obtain

tr

(
(D2ϕ)−1

∑
k

∂xk
D2ψ∂xk

ψ

)

= ∇W̃ (∇ψ + z) · ∂xk

(
1

2
||∇ψ||22

)
+ (∇W̃ (∇ψ + z)−∇W ) · ∇ψ(z), z ∈ Rd.

We now consider the point z∗ ∈ B̄R which maximizes 1
2 ||∇ψ||

2
2, which is also the maximum point for

the displacement ||T − I||2. Such a point exist since the ball B̄R is compact. Moreover, [22, Lemma 3.1]
shows that such a maximum cannot be attained on the boundary ∂BR. Hence, we can apply first and
second-order optimality conditions. In particular, we have ∂xk

(
1
2 ||∇ψ||

2
2

)
(z∗) = 0 and the Hessian matrix

D2
(
1
2 ||∇ψ||

2
2

)
(z∗) has to be negative-definite, i.e.∑

k

∂xk
D2ψ(z∗)∂xk

ψ(z∗) + (D2ψ(z∗))2 ≤ 0.

Using the fact that (D2ψ(z∗))2 is the square of a symmetric matrix, and hence is negative, we obtain
that

∑
k ∂xk

D2ψ(z∗)∂xk
ψ(z∗) is itself negative definite, and the trace of its product times (D2ϕ)−1 is

also negative. This allows to obtain

(∇W̃ (∇ψ(z∗) + z∗)−∇W (z∗) · ∇ψ(z∗) ≤ 0,

which implies

(∇W (∇ψ(z∗) + z∗)−∇W (z∗) · ∇ψ(z∗) ≤ ∥∇(W̃ −W )∥L∞ ||∇ψ(z∗)||2,
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and hence by γ-convexity of W we have

γ ||∇ψ(z∗)||22 ≤ ∥∇(W̃ −W )∥L∞ ||∇ψ(z∗)||2,

which ends the proof. □

Similarly to Lemma 2.6 for the ℓ1 norm of the displacement of the Brenier map, a more general result

holds for strictly positive densities f, g ∈ C1,δ
loc (Rd) supported in the full space Rd.

Corollary C.2. Consider two densities f, g ∈ L1
+(Rd) ∩ P(Rd), assume that f, g > 0, and suppose

that f = e−W , g = e−W̃ are γ-log-concave for some γ > 0 and f, g ∈ C1,δ
loc (Rd) for some δ > 0. Let

T = ∇ϕ : Rd −→ Rd be the Brenier map from f to g. Then,

W∞,2(f, g) ≤ ∥∥T − I∥2∥L∞(Rd ≤ 1

γ
∥∥∇(W − W̃ )∥2∥L∞(Rd).

The proof is similar to the one of Lemma 2.6 arguing by a truncation argument and applying the local
version in Lemma C.1. Specifically, we truncate W and W̃ and accordingly f and g to an increasing
sequence BR of Euclidean balls preserving the Lipschitz and convexity bounds. We obtain a sequence of
optimal transport maps TR transporting the associated truncations fR onto gR and satisfying

∥ ||TR − I||2∥L∞(B̄R) ≤
1

γ
∥∇(W − W̃ )∥L∞(Rd),

for all R > 0. Finally, we pass to the limit in the above estimate as R→ ∞.
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