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Abstract. We study compactness properties of the set of conformally flat singular metrics with
constant, positive sixth order Q-curvature on a finitely punctured sphere. Based on a recent
classification of the local asymptotic behavior near isolated singularities, we introduce a notion of
necksize for these metrics in our moduli space, which we use to characterize compactness. More
precisely, we prove that if the punctures remain separated and the necksize at each puncture is
bounded away from zero along a sequence of metrics, then a subsequence converges with respect to
the Gromov–Hausdorff metric. Our proof relies on an upper bound estimate which is proved using
moving planes and a blow-up argument. This is combined with a lower bound estimate which is a
consequence of a removable singularity theorem. We also introduce a homological invariant which
may be of independent interest for upcoming research.

1. Introduction

In recent years, there has been active research into analogs of the Yamabe problem and its
singular counterpart. In each of these problems, one seeks a representative of a conformal class
with constant curvature of some type, scalar curvature in the classical case, and some σk-curvature
or one of Branson’s Q2m-curvatures in more modern examples. Conformal invariance (or, more
generally, covariance) often complicates these problems, leading to singular solutions and the lack
of compactness in the space of solutions. For this reason, it is always appealing to characterize
which geometric properties in the solution space imply compactness.

In the present paper, we study the moduli space of complete, conformally flat metrics with
constant sixth order Q6-curvature on a finitely punctured sphere. Our main result generalizes a
theorem of Pollack [25] in the scalar curvature setting, stating that so long as the punctures remain
separated and certain geometric necksizes bounded away from zero, the the corresponding subset
of moduli space is compact in the Gromov-Hausdorff topology.

Let n ⩾ 7 and denote the n-dimensional sphere by Sn. For N ∈ N we let Λ = {p1, . . . , pN} ⊂ Sn
be a finite subset and seek complete metrics on Ω := Sn\Λ of the form g = U4/n−6g0, where g0
is the standard round metric. The fact that g is complete on Ω forces lim infp→pi U(p) = ∞ for
each i = 1, . . . , N . Furthermore, we prescribe the resulting metric to have constant Q6-curvature,
which we normalize to be

Qn = Q6(g0) =
n(n4 − 20n2 + 64)

25
. (1.1)

We define Q6(g) the quantity in Definition A.3 for any smooth metric.
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The Q-curvature Q6 behaves well under a conformal change of metric. More precisely, the
condition that g = U4/(n−6)g0 satisfies Q6(g) = Qn on Ω = Sn\Λ is equivalent to the PDE

P 6
g0U = cnU

n+6
n−6 on Ω, (Q6,g0,N )

where cn = n−6
2 Qn is a normalizing constant. The operator on the left-hand side is the sixth order

GJMS operator on the sphere defined by

P 6
g0 =

(
−∆g0 +

(n− 6)(n+ 4)

4

)(
−∆g0 +

(n− 4)(n+ 2)

4

)(
−∆g0 +

n(n− 2)

4

)
, (1.2)

and after a conformal change of metric g = U4/n−6g0, it transforms as

P 6
g ϕ = U−n+6

n−6P 6
g0(Uϕ) for all ϕ ∈ C∞(Ω). (1.3)

For more details on this subject, we refer the interested reader to [7, 10,12,19].
In [14] Graham, Jenne, Mason and Sparling constructed conformally covariant differential

operators P 2m
g on a compact n-dimensional Riemannian manifold (Mn, g) for any m ∈ N such

the leading order term of P 2m
g is (−∆g)

m. One can then construct the associated Q-curvature of

order 2m by Q2m
g = P 2m

g0 (1). In the special case m = 1, one recovers the conformal Laplacian

P 2
g = −∆g +

n− 2

4(n− 1)
Rg with Q2

g =
n− 2

4(n− 1)
Rg,

where ∆g is the Laplace-Beltrami operator of g and Rg is its scalar curvature. Subsequently,
Grahan and Zworski [15] and Chang and González [8] extended these definitions in the case the
background metric is the round metric on the sphere to obtain (nonlocal) operators P σ

g0 of any
order σ ∈ (0, n/2) as well as the corresponding Q-curvatures of order σ. Once again, the leading
order part of P σ

g0 is (−∆g0)
σ, understood as the principal value of a singular integral operator.

We write the formulae for P 2
g , P

4
g and P 6

g explicitly in Definitions A.2 and A.4. Nevertheless, the
expressions for P σ

g and Qσ
g for a general σ ∈ R+ are more complicated (see for instance [11]).

We remark that the nonlinearity on the right-hand side of (Q6,g0,N ) has critical growth with

respect to the Sobolev embedding W 3,2(Rn) ↪→ L2#(Rn), where 2# = 2n
n−6 . It is well known that

this embedding is not compact, reflecting the conformal invariance of the PDE (Q6,g0,N ).
It will be convenient to transfer the PDE (Q6,g0,N ) to Euclidean space, which we can do using

the standard stereographic projection (with the north pole in Ω, and thus a regular point of any
of the metrics we consider). After stereographic projection, we can write

g0 = u
4

n−6

sph δ, usph(x) =

(
1 + |x|2

2

) 6−n
2

,

where δ is the Euclidean metric. In these coordinates our conformal metric takes the form
g = U4/(n−6)g0 = (U · usph)4/(n−6)δ. Thus, u ∈ C∞(Rn \ Γ) given by u = U · usph is a positive
singular solution to the transformed equation

(−∆)3u = cnu
n+6
n−6 in Rn \ Γ, (Q6,δ,N )

where ∆ is the usual flat Laplacian and Γ is the image of the singular set Λ under the stereographic
projection. As a notational shorthand, we adopt the convention that U refers to a conformal factor
relating the metric g to the round metric, i.e. g = U4/(n−6)g0, while u refers to a conformal factor
relating the metric g to the Euclidean metric, i.e. g = u4/(n−6)δ, with the two related by u = Uusph.

Remark 1.1. In this Euclidean setting, the transformation law (1.3) in particular implies the

scaling law for (Q6,δ,N ), namely if u solves (Q6,δ,N ) then so does uλ(x) := λ
n−6
2 u(λx) for any

λ > 0.
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We study the compactness properties of both the unmarked and the marked moduli spaces of
admissible constant sixth Q-curvature metrics. We define the unmarked moduli space as

M6
N =

{
g ∈ [g0] : g is complete on Sn \ Λ with #Λ = N, Q6

g ≡ Qn

}
, (1.4)

and the marked moduli space as

M6
Λ =

{
g ∈ [g0] : g is complete on Sn \ Λ, Q6

g ≡ Qn

}
.

Intuitively, in the unmarked moduli space we fix only the number of punctures, whereas in the
marked moduli space, we fix the punctures themselves. We place the Gromov-Hausdorff topology
on both the marked and unmarked moduli spaces.

The first step to understanding the properties of the marked moduli space M6
N is to study the

conformally flat equation

(−∆)3u = cnu
n+6
n−6 in B∗

R, (P6,R)

where B∗
R := {x ∈ Rn : 0 < |x| < R} is the punctured ball for R < +∞. Allowing R → +∞ turns

(P6,R) into the following PDE on the punctured space

(−∆)3u = cnu
n+6
n−6 in Rn \ {0}. (P6,∞)

On this subject, the classification of non-singular solutions to (P6,∞) is provided in [29]. Later on,
in [18] it is proved that blow-up limit solutions do exist. Recently, based on a topological shooting
method, the first and last authors classified all possible solutions to this limit equation [3].

One can merge these classification results into the statement below

Theorem A. Let u be a positive solution to (P6,∞). Assume that

(a) the origin is a removable singularity, then there exists x0 ∈ Rn and ε > 0 such that u is
radially symmetric about x0 and, up to a constant, is given by

ux0,ε(x) =

(
2ε

1 + ε2|x− x0|2

)n−6
2

. (1.5)

These are called the (sixth order) spherical solutions (or bubbles).
(b) the origin is a non-removable singularity, then u is radially symmetric about the origin.

Moreover, there exist ε0 ∈ (0, ε∗n] and T ∈ (0, Tε0 ] such that

uε,T (x) = |x|
6−n
2 vε(ln |x|+ T ). (1.6)

Here ε∗n = K
(n−6)/6
0 , Tε ∈ R is the fundamental period of the unique T -periodic bounded

solution vT to the following sixth order IVP,{
v(6) −K4v

(4) +K2v
(2) −K0v = cnv

n+6
n−6

v(0) = ε0, v
(2)(0) = ε2, v

(4)(0) = ε4, v
(1)(0) = v(3)(0) = v(5)(0) = 0,

where K4,K2,K0, ε
∗
n are dimensional constants ε0 ∈ (0, ε∗n] (See (2.2)). These are called

(sixth order) Emden–Fowler solutions.

In [18], it is shown that solutions to (P6,R) with R < +∞ satisfy a priori bound near the isolated
singularity, which implies that they behave like the solutions to the limit equation near the isolated
singularity

Theorem B. Let u be a positive singular solution to (P6,R). Suppose that −∆u ⩾ 0 and ∆2u ⩾ 0.
Then

u(x) = (1 + o(1))uε,T (|x|) as x→ 0, (1.7)

where uε,T belongs to the family (1.6).
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These two results combined motivate the following definition

Definition 1.2. Let g ∈ MN with a singular set Λ ⊂ Sn, #Λ = N , and let pj ∈ Λ. Let

g = U4/(n−6)g0 = u4/(n−6)δ where we choose stereographic coordinates centered at pj. By (1.7) we
know u(x) = uεj ,Tj (|x|)(1 + o(|x|)) for some εj ∈ (0, ε∗n]. This εj is the asymptotic necksize of the
metric g at the puncture pj.

Now we have conditions to state our main compactness theorem for the unmarked moduli space

Theorem 1.3. Let N ⩾ 3 and let 0 < δ1, δ2 < 1 be positive real numbers. Then the set

Q6
δ1,δ2 =

{
g ∈ M6

N : dg0(pj , pℓ) ⩾ δ1 for each j ̸= ℓ and εj(g) ⩾ δ2
}
.

is sequentially compact with respect to the Gromov–Hausdorff topology.

Remark 1.4. Notice that as a consequence of Theorem A (a), it follows that M1 = ∅. Also,
from Theorem A (b), we have that Mp1,p2 = (0, ε∗n] for any p1 ̸= p2, where ε

∗
n ∈ (0, 1). Moreover,

it follows that M2 = (0, ε∗n] × ((Sn × Sn \ diag)/SO(n + 1, 1)), where the group SO(n + 1, 1)
of conformal transformations acts on each Sn factor simultaneously. These metrics are called
the Delaunay metrics. Furthermore, they all correspond to a doubly punctured sphere and are
rotationally invariant.

Remark 1.5. It is worthwhile to now describe the possible degenerations of a sequence of metrics
in M6

N . Let {gk = (Uk)
4/n−6g0} ∈ M6

N be a sequence that leaves every compact subset. We
denote the singular set of gk by Λk = {p1,k, . . . , pN,k} and the asymptotic necksize of gk at the
puncture pj,k as εj,k. Then either limk→∞ εj,k = 0 for some j or limk→∞ pj,k = limk→∞ pj′,k for
some j ̸= j′. We sketch these two degenerations in Figure 1. (It is possible that both degenerations
happen simultaneously.) In either case, in the limit one obtains a metric g∞ ∈ M6

N ′ for some
N ′ < N . In this way, one can compactify the moduli space M6

N by gluing copies of M6
N ′ for

N ′ < N to ∂M6
N . We speculate that this compactification would not give a smooth manifold with

boundary, but rather that ∂M6
N is in general a stratified space.

∗

(p1, ε1)

∗

(p4, ε4)

∗

(p2, ε2)

∗

(p3, ε3)

∗∗
p1 → p2

∗∗

∗ ∗

∗◦

ε4 → 0

Figure 1. The two possible degenerations in the moduli space M6
4.

Let us compare our main results with the second and fourth order analogs. In the same spirit
as our main result, it was proved in [25] and [2] that the moduli sets below

Q2
δ1,δ2 ⊂ M2

N =
{
g ∈ [g0] : g is complete and Rg ≡ 2−1(n− 4)

}
. (1.8)
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and

Q4
δ1,δ2 ⊂ M4

N =
{
g ∈ [g0] : g is complete, Rg ⩾ 0, and Q4

g ≡ 2−3n(n2 − 4)
}
. (1.9)

are also sequentially compact.
Based on classifications results like Theorem A and Theorem B, much more is known about the

moduli spaces in (1.8) and (1.9). In fact, in some classical works of Mazzeo and Pacard [21] used
gluing techniques to prove that there exists a family of solutions in (1.8). Furthermore, Mazzeo,
Pollack, and Uhlenbeck [22], this space turns out to be a finite-dimensional analytic submanifold
furnished with a natural Lagrangian structure. On the moduli space (1.9), less is known; it is
not proved yet whether this is non-empty. Some of the authors in [1] proved that this property
holds for non-degenerate manifolds with a suitable hypothesis on the vanishing of the Weyl tensor,
However, the standard round sphere is not included in this class.

Inspired by the arguments in [25], the proof of Theorem 1.3 is divided into three parts that
we describe as follows. First, we need to introduce the so-called sixth order geometric Pohozaev
invariant, which is related to the Hamiltonian energy of the limiting ODE [24, 27]. Second, we
obtain an a priori upper and for positive singular solutions to (Q6,g0,N ), estimates which are
accomplished by combining a sliding method, a blow-up argument, and a Harnack inequality.
From this, we obtain uniform bound on certain Hölder norms, which by compactness, allows us
to extract a limit, up to subsequence. Third, we use the first order asymptotic expansion for the
Green function of the sixth order GJMS operator near the pole and the fact the necksizes are
away from zero shows that this limit is non-trivial. Finally, one can apply a removable singularity
theorem to conclude the proof.

The rest of the paper is divided as follows. In Section 2, we define the logarithmic cylindrical
change of variables and we use the conformal invariance between the punctured space and the
cylinder to transform (Q6,g0,N ) into a PDE on the cylinder. In Section 3, we describe all singular
solutions on a doubly punctured sphere. These Delaunay metrics are especially important because
they provide asymptotic models for the metrics in M6

N near a given puncture point. In Section 4,
we define the sixth order Pohozaev invariants associated with (Q6,g0,N ). In Section 5, we prove a
priori upper and lower bound estimates for positive singular solutions to (Q6,g0,N ). In Section 6,
we prove the compactness statement in Theorem 1.3.

Remark 1.6. Several of our supporting results below generalize to the Paneitz operators and Q-
curvatures of any order σ ∈ (0, n/2), at least in the conformally flat setting. In particular, the
convexity result of Lemma 5.1 and the upper bound of Proposition 5.2 both generalize, and may be
of independent interest. On the other hand, some parts of the proof of Theorem 1.3 do not carry
over. In particular, at this time we cannot classify all two-ended constant Qσ-curvature metrics
on the sphere, which is very important for our proof.

2. Cylindrical coordinates

This section is devoted to constructing a change of variables that transforms the local singular
PDE (P6,R) problem into a nice ODE problem with constant coefficients. This is the conformally
flat problem associated with (Q6,g0,N ).

Definition 2.1. We define the sixth order autonomous Emden-Fowler change of variables as
follows. Let R > 0 and T = − lnR and CT = (T,∞)× Sn−1. We then define

F : C∞(B∗
R) → C∞(CT ), F(u)(t, θ) = e−γntu(e−tθ) = v(t, θ), (2.1)

where γn = n−6
2 .
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It is easy to show the inverse transform is given by

F−1 : C∞(CT ) → C∞(B∗
R), F−1(v)(x) = |x|−γnv(− ln |x|, x/|x|) = u(x).

Using F and performing a lengthy computation we arrive at the following sixth order nonlinear
PDE on CT :

−P 6
cylv = cnv

n+6
n−6 on CT . (CT )

Here P 6
cyl is the sixth order GJMS operator associated to the cylindrical metric gcyl = dt2 + dθ2

on R× Sn−1, and it is given by

P 6
cyl := P 6

rad + P 6
ang,

where

P 6
rad := ∂

(6)
t −K4∂

(4)
t +K2∂

(2)
t −K0

and

P 6
ang := 2∂

(4)
t ∆θ − J3∂

(3)
t ∆θ + J2∂

(2)
t ∆θ − J1∂t∆θ + J0∆θ + 3∂

(2)
t ∆2

θ − L0∆
2
θ +∆3

θ

with

K0 = 2−8(n− 6)2(n− 2)2(n+ 2)2

K2 = 2−4(3n4 − 24n3 + 72n2 − 96n+ 304)

K4 = 2−2(3n2 − 12n+ 44)

J0 = 2−3(3n4 − 18n3 − 192n2 + 1864n− 3952) (2.2)

J1 = 2−1(3n3 + 3n2 − 244n+ 620)

J2 = 2n2 + 13n− 68

J3 = 2(n+ 1)

L0 = 2−2(3n2 − 12n− 20)

dimensional constants.

Remark 2.2. The following decomposition holds

P 6
rad = Lλ1 ◦ Lλ2 ◦ Lλ3 ,

where Lλj
:= −∂2t + λj for j = 1, 2, 3 with

λ1 =
n− 6

2
, λ2 =

n− 2

2
, and λ3 =

n+ 2

2
.

We refer the reader to [3, Proposition 2.7] for the proof.

3. Spherical and Delaunay metrics

In this section, we present some particular model metrics on the moduli space. Let p1, p2 ∈ Sn,
which without loss of generality can be chosen such that p1 = en is the north pole and p2 = −p1
is the south pole. The conformal factor U : Sn\{p1, p2} → (0,∞) determines a metric g ∈ Mp1,p2

and after composing with a stereographic projection it corresponds to a singular solution to (P6,∞)
Applying the cylindrical transform (2.1) to this PDE in turn yields

−P 6
cylv = cnv

n+6
n−6 on C∞ := R× Sn.



COMPACTNESS OF SOLUTIONS TO THE GJMS EQUATION 7

Next, using those solutions to (Q6,g0,N ) are radially symmetric with respect to the origin, (CT )
reduces to a sixth order ODE problem

−v(6) +K4v
(4) −K2v

(2) +K0v = cnv
n+6
n−6 in R. (O6,∞)

From this last formulation, we quickly compute the cylindrical solution

vcyl(t) =

(
K0

cn

) 12
n−6

=

(
K0

cn

) 6
γn

= ε∗n > 0,

which is the only constant solution. Transforming back from the cylinder to Rn\{0} we see

ucyl(x) = F−1(vcyl) =

(
K0

cn

) 12
n−6

|x|−γn , gcyl = u
4

n−6

cyl δ.

We have already encountered the spherical solution, given by

usph(x) =

(
1 + |x|2

2

)−γn

and gsph = u
4/(n−6)
sph δ, (3.1)

which is the particular case of (1.5) with ϵ = 1 and x0 = 0. Applying the Emden-Fowler change
of variables to usph we obtain

vsph(t, θ) = F(usph)(t, θ) = (cosh t)−γn .

In this setting, Theorem A classifies all positive solutions vε0 ∈ C6(R) to (O6,∞) in terms of
the necksize ε0 ∈ (0, ε∗n], where ε0 = minR v ∈ (0, ε∗n]. Varying the parameter ε from its maximal
value of ε∗n to 0, we see that the Delaunay solutions in Theorem A (b) interpolate between the
cylindrical solution vcyl and the spherical solution vsph. We denote the minimal period of vε by Tε.

Definition 3.1. For each ε ∈ (0, ε∗n] the Delaunay metric of necksize ε is

gε = v
4

n−6
ε (dt2 + dθ2) = u

4
n−6
ε δ,

where uε = F−1(vε). Observe that we have equivalently defined gε as a metric on C−∞, using vε as
the conformal factor, and on Rn\{0}, using uε = F−1(vε) as the conformal factor.

We can reformulate the expansion (1.7) to read

Proposition 3.2. Let g ∈ M6
N with the singular set Λ and let p ∈ Λ. Then there exists a Delaunay

solution uε such that in stereographic coordinates centered at p the asymptotic expansion

g = ((1 + o(|x|))uε,R(x))
4

n−6 δ, uε,R(x) = uε(Rx).

We can restate this asymptotic expansion as

g = ((1 + o(|x|))F−1(vε(·+ T ))(x))
4

n−6 δ = ((1 + o(e−t))vε(t+ T ))
4

n−6 (dt2 + dθ2).

In other words, any admissible metric is asymptotic to a translated Delaunay metric near a
puncture. In the formulae above R and T are related by R = − lnT .
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4. Pohozaev invariants

We now turn to a discussion of the existence and specific form of a family of homological integral
invariants of solutions of equation (Q6,g0,N ). These homological invariants were discovered in their
simplest form by S. Pohozaev [24], and generalized by R. Schoen [27] for the Riemannian setting.

As a starting point, we define the energy Hcyl by

Hcyl(v) := Hrad(v) +Hang(v) + F (v), (4.1)

where

Hrad(v) :=
1

2
v(3)

2
+
K4

2
v(2)

2
+
K2

2
v(1)

2 − K0

2
v2 + v(5)v(1) − v(4)v(2) −K4v

(3)v(1),

is the radial part,

Hang(v) := −J4
(
∂
(3)
t ∇θv∂t∇θv − |∂(2)t ∇θv|2

)
− J2

2
|∂(2)t ∇θv|2 −

J1
2
|∂(2)t ∇θv|2

− J0
2
|∇θv|2 +

L2

2
|∂(2)t ∆θv|2 +

L0

2
|∂(2)t ∆θv|2 +

1

2
|∆θv|2.

is the angular part, and

F (v) :=
cn(n− 6)

2n
|v|

2n
n−6

is the nonlinear term.
Evaluating a derivative, one can easily verify Hcyl(v) is constant for any solution v of the PDE

(CT ). We further observe that the last term F in (4.1) is homogeneous of degree 2n
n−6 while the

remaining terms are all homogeneous of degree 2.

Definition 4.1. Let v ∈ C6(CT ) be a positive solution to (CT ). We define its cylindrical Pohozaev
invariant as

Pcyl(v) :=

∫
{t}×Sn−1

Hcyl(v)dθ

for any t > T . Observe that this integral does not, in fact, depend on t.

In light of the cylindrical transformation from Definition 2.1, we can define this invariant in
spherical coordinates

Definition 4.2. Let u ∈ C6(B∗
R) be a positive solution to (P6,R). We define its spherical Pohozaev

invariant as

Psph(u) := (Pcyl ◦ F−1)(u) =

∫
{t}×Sn−1

Hcyl(F
−1(u))dθ.

Finally, in terms of conformal metrics, we have the following definition of an invariant associated
with metrics in the moduli space.

Definition 4.3. Let g ∈ M6
N and pj ∈ Λ. We define its radial (or dilational) Pohozaev invariant

at the puncture pj as follows. Choose stereographic coordinates sending pj to the origin and write

g = u
4

n−6 δ in these coordinates. Then define

Prad(g, pj) := Psph(u) =

∫
{t}×Sn−1

Hcyl(F
−1(u))dθ.

The most important result of this section states that bounding the radial Pohozaev invariants
away from zero is equivalent to bounding the necksizes of the Delaunay asymptotes away from
zero.
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Proposition 4.4. Let g ∈ M6
N and pj ∈ Λ. Then Prad(g, pj) is well-defined, negative and depends

only on the necksize εj of the Delaunay asymptote at pj ∈ Λ. Moreover, decreasing εj will increase
Prad(g, pj) and if εj ↘ 0 then Prad(g, pj) ↗ 0.

Proof. By construction, the integral defining Prad(g, pj) does not depend on which sphere {t}×Sn−1

we choose, so long as t is sufficiently large, and therefore Prad is well-defined. By the asymptotics
in Theorem B we know that the conformal factor is asymptotic to a Delaunay solution uε, and so
letting t→ ∞ we see

Prad(g, pj) = lim
t→∞

∫
{t}×Sn−1

Hcyl(F
−1(u))dθ = lim

t→∞

∫
{t}×Sn−1

Hcyl(vε)dθ < 0.

The remaining properties follow directly from energy ordering of the Delaunay solutions as
described in [3, Lemma 4.14]. □

Remark 4.5. One often finds integral invariants in geometric variational problems. For more
details on a class of general higher order conformally invariant locally conserved tensors, we
cite [13]. These invariants arise from the conformal invariance of (Q6,g0,N ), by Noether’s famous
conservation theorem.

For our later applications we will need a slight refinement of Proposition 4.4.

Proposition 4.6. Let v ∈ C6(CT ) be a positive solution to the following rescaled equation

−P 6
cylv = Av

n+6
n−6

for some constant A and let

HA
cyl(v) = Hrad(v) +Hang(v) +

(n− 6)A

2n
|v|

2n
n−6 .

Then ∫
{t}×Sn−1

HA
cyl(v)dθ

is independent of t.

Proof. The proposition follows from taking the derivative with respect to t and integrating by
parts. □

5. Uniform estimates

This section is devoted to proving uniform upper and lower estimates near the singular set for
positive singular solutions to (Q6,g0,N ).

We begin by quoting a superharmonicity result of Ngô and Ye [23]. We also remark a similar
superharmonicity result for a related integral equation Ao et al. [4].

Proposition A. Let u ∈ C∞(Rn\Γ) be a positive solution to (Q6,δ,N ). Then additionally −∆u ⩾ 0
and ∆2u ⩾ 0 in Rn \ Γ.

Proof. Following [23, Proposition 1.5] we see that u is both weakly superharmonic and weakly
superbiharmonic in Rn. In other words, for a smooth test function ϕ compactly supported in
Rn \ Γ, we have ∫

Rn

u(−∆)ϕdx ⩾ 0 and

∫
Rn

u(−∆)2ϕdx ⩾ 0.

Standard elliptic regularity then implies u is superharmonic and superbiharmonic where it is
smooth, namely in Rn \ Γ. □



10 J.H. ANDRADE, J.M. DO Ó, J. RATZKIN, AND J. WEI

The first step is a sixth order version of the convexity result [26, Proposition 1], which is proved
using the Alexandrov’s moving planes (see also [9, Theorem 4.1] for a fourth order version).

Lemma 5.1. Let g = U4/(n−6)g0 be a complete metric on Ω = Sn\Λ which is conformal to the
round metric, such that Q6

g is a positive constant. Then the boundary of any (spherically) round
ball in Ω has a non-negative definite second fundamental form with respect to g.

Proof. We let B be a geodesic ball with respect to the round metric such that B ⊂ Ω and choose
a stereographic projection that sends B to the half-space {x ∈ Rn : x1 < 0}. As before, we denote
the image of the singular set Λ under this stereographic projection by Γ. With respect to these
stereographic coordinates the metric takes the form g = u4/(n−6)δ where u ∈ C∞(Rn \ Γ) satisfies
(Q6,δ,N ), namely u : Rn \ Γ → (0,∞) satisfy

(−∆)3u = cnu
n+6
n−6 in Rn \ Γ.

Furthermore, the boundary of our round ball is ∂B = {x ∈ Rn : x1 = 0} and is oriented by the

inward unit normal ηg = u−2/(n−6)∂x1 . It follows that the second fundamental form II and mean
curvature H of ∂B are given by

IIij = −⟨∇∂xj
η, ∂xi⟩ =

2

n− 6
δiju

8−n
n−6∂x1u, H =

2n

n− 6
u

8−n
n−6∂x1u.

Therefore, (weak) convexity of ∂B follows once we show ∂x1u ⩾ 0 along the hyperplane {x1 = 0}.
By Proposition A, we have

−∆u ⩾ 0 and (−∆)2u ⩾ 0 in Rn \ Γ.
We now rewrite (Q6,δ,N ) as a second order system, letting

u0 = u, u1 = −∆u and u2 = (−∆)2u.

so that we obtain ui : Rn \ Γ → (0,∞) for i = 0, 1, 2 satisfy
−∆u0 = u1 ⩾ 0
−∆u1 = u2 ⩾ 0

−∆u2 = cnu
n+6
n−6

0 ⩾ 0.

(5.1)

It follows from [28, Theorem 2.7] that the Newtonian capacity of the singular set vanishes, i.e.
cap(Γ) = 0. As a consequence, one can find a0 > 0 and aj ∈ R for j = 1, . . . , n such that

u0(x) = a0|x|6−n +
∑n

j=1 ajxj |x|4−n +O
(
|x|4−n

)
∂xiu0(x) = −(n− 6)a0xi|x|4−n +O

(
|x|4−n

)
∂2xixj

u0(x) = O
(
|x|4−n

)
,

(5.2)

which, by differentiating further, yields
u1(x) = b0|x|4−n +

∑n
j=1 bjxj |x|2−n +O

(
|x|2−n

)
∂xiu1(x) = −(n− 4)b0xi|x|−n +O

(
|x|2−n

)
∂2xixj

u1(x) = O
(
|x|2−n

) (5.3)

and 
u2(x) = c0|x|2−n +

∑n
j=1 cjxj |x|−n +O (|x|−n)

∂xiu2(x) = −(n− 2)c0xi|x|−n +O
(
|x|2−n

)
∂2xixj

u2(x) = O (|x|−n)

(5.4)

as |x| → 0, where b0, c0 > 0 and bj , cj ∈ R for j = 1, . . . , n.
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We are now ready to set up the method of moving planes applied to the triple of functions
(u0, u1,u2). For any λ ∈ R, we let Σλ = {x ∈ Rn : x1 > λ} and Tλ = ∂Σλ = {x ∈ Rn : x1 = λ}.
We also set Σ′

λ = Σλ \ Γ. For any x ∈ Σ′
λ, we let

xλ = (2λ− x1, x2, . . . , xn)

be the reflection of x across the hyperplane Tλ = {x1 = λ}. Finally, our goal in moving planes is
to show that for any λ ⩽ 0 and i = 0, 1, 2, we have

wλ
i (x) > 0 for i = 0, 1, 2, (5.5)

where wλ
i : Σ′

λ → R is given by

wλ
i (x) = ui(x)− ui(x

λ).

Once we establish (5.5), letting λ↗ 0 the first inequality implies ∂x1u ⩾ 0 on T0 = ∂B, completing
our proof.

Observe that the expansion (5.4) implies u2 is not identically zero. Thus, using the strong
maximum principle and the last equation in (5.1), we see that u2 > 0 on Rn\Γ. Working backwards,
the inequality u2 > 0 and the same reasoning implies u1 > 0 on Rn\Γ, which then in turn gives us
u0 > 0 on Rn\Γ.

The singular set Γ is compact, so there exists R0 > 0 such that Γ ⊂ BR0(0). We use the extended
maximum principle [20, Theorem 3.4] to conclude there exists δ > 0, depending on R > R0, such
that

u0|BR(0)\Γ ⩾ δ, u1|BR(0)\Γ ⩾ δ, and u2|BR(0)\Γ ⩾ δ. (5.6)

Combining our expansion (5.4) with [5, Lemma 2.3] there exists R1 > 0 and λ1 ⩽ λ0 such that
for each λ < λ1 we have

wλ
0 (x) > 0, wλ

1 (x) > 0, and wλ
2 (x) > 0 for x ∈ Σλ and |x| > R.

Using this inequality together with (5.6) then implies that there exists λ2 ⩽ λ1 such that

wλ
0 (x) > 0, wλ

1 (x) > 0, and wλ
2 (x) > 0 on Σ′

λ for each λ ⩽ λ2.

By construction

∆wλ
2 (x) = cn

(
u0(x

λ)
n+6
n−6 − u0(x)

n+6
n−6

)
< 0 on Σ′

λ for each λ ⩽ λ2. (5.7)

On the other hand, the asymptotic expansion (5.4) implies

wλ
2 (x) → 0 as |x| → ∞. (5.8)

Putting together (5.7), (5.8) and wλ
2

∣∣
Tλ

= 0, we see by the maximum principle that wλ
2 (x) ⩾ 0 for

each x ∈ Σ′
λ and λ ⩽ λ2. However, by the completeness of the metric g on Ω we know that wλ

2 is

not identically zero on Σ′
λ, so again the maximum principle actually implies wλ

2 (x) > 0 for each

x ∈ Σ′
λ and λ ⩽ λ2. Once again, analogous arguments imply wλ

1 > 0 and wλ
0 > 0 on Σ′

λ for each
λ ⩽ λ2.

At this point, we define

λ∗ = sup{λ ⩽ 0 : wµ
i (x) > 0 for each µ ⩽ λ and i = 0, 1, 2}

and prove that λ∗ = 0. Following our definitions, we have

∆wλ
0 (x) = −∆u0(x) + ∆u0(x

λ) < 0

for each x ∈ Σ′
λ and λ < λ∗, and so ∆wλ∗

0 ⩽ 0 on Σ′
λ∗ . By similar arguments, we also have

∆wλ∗
1 ⩽ 0 and ∆wλ∗

2 ⩽ 0 on Σ′
λ∗ .
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Now suppose λ∗ < 0 and let x∗ ∈ Σ
′
λ∗ such that wλ∗

i (x∗) = 0 for some i = 0, 1, 2. If xλ
∗ ∈ Σ′

λ∗ is an

interior point then the maximum principle implies wλ∗
i ≡ 0, which in turn means ui is symmetric

about the hyperplane Tλ∗ . This is impossible because the singular set Γ lies to one side of Tλ∗ . On
the other hand, if x∗ ∈ Tλ∗ then by the Hopf boundary lemma (together with the fact that wλ∗

i
may not be constant in Σ′

λ∗) we have

0 < ∂x1w
λ∗
i (x∗) = 2∂x1ui(x

∗). (5.9)

However, the asymptotic expansions (5.2), (5.3) and (5.4) combined with λ∗ < 0 tells us

ui(x)− ui(x
λ∗
) ⩾ δ3 for |x| > R2 and x1 = λ∗ (5.10)

for some positive numbers δ3 and R2. Combining (5.9) and (5.10) implies the inequality wλ
i

continues to hold for some small value λ < λ∗, contradicting the definition of λ∗. □

First, we prove the upper bound estimate. Our proof borrows from Pollack’s proof of the
corresponding upper bound in the scalar curvature case.

Proposition 5.2. Let u ∈ C∞(Ω) be a positive singular solution to (Q6,g0,N ). There exists C1 > 0
depending only on n and d satisfying

u(x) ⩽ C1dg0(x,Λ)
−γn .

Proof. Let p0 ̸∈ Λ, and ρ > 0 such that Bρ(p0) ⊂ Ω, where Bρ(p0) is a geodesic ball with respect
to the round metric. We define the auxiliary function ψρ : Bρ(p0) → R given by

ψρ(x) = (ρ− dg0(x, x0))
γnu(x).

Notice that choosing ρ = 1
2dg0(x0,Λ), it follows

ψρ(x0) = ργnu(x0) = 2−γndg0(x0,Λ)
γnu(x0).

We claim that there exists C > 0 depending only on n such that ψρ(x) ⩽ C for all admissible
choices of λ, u, x0, and ρ. We suppose by contradiction that one can find sequences {Λk}k∈N,
{uk}k∈N, {p0,k}k∈N, and {ρk}k∈N of admissible parameters satisfying

Mk = ψρ(p1,k) = sup
x∈Bρk

(p0,k)
ψρ(x) → +∞.

Also, we observe ψρ|∂Bρk
(p0,k)

= 0, so p1,k ∈ int(Bρk(p0,k)). Next, by taking rk = ρk−dg0(p1,k, p0,k),

and defining be geodesic normal coordinates centered at p1,k, denoted by y, we set

λk = 2uk(p1,k)
−γn and Rk = rkλ

−1
k = 2−1rk(uk(p1,k))

−γn = 2−1M
1/γn
k .

We now construct a blow-up sequence {wk}k∈N ⊂ C6,α(BRk
) for some α ∈ (0, 1) by wk : BRk

(0) → R
is such that

wk(y) = λγnk uk(λy) for all k ∈ N.
Whence, using the conformal invariance in Remark 1.1, one can verify that the function wk ∈
C6,α(BRk

) satisfies

P 6
λgk
wk = cnw

n+6
n−6

k in BRk
.

Moreover, by construction, one has

2γn = wk(0) = sup
BRk

(0)
wk(x) for all k ∈ N,

which, by Arzela–Ascoli theorem, means there exists subsequence that converges uniformly on
compacts.
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In addition, it is not hard to check that the rescaled metrics λg0 converge to the classical
Euclidean metric δ as k → ∞. Therefore, by taking the limit of the blow-up sequence, we obtain
a positive function w∞ ∈ C6,α(Rn) satisfying w∞(0) = supw∞ = 2γn and

(−∆)3w∞ = cnw
n+6
n−6
∞ in Rn.

By the classification theorem in Theorem A (a), we must have

w∞(x) := 2−γn
(
1 + |x|2

)−γn
= 2−γnusph(x).

Thus each solution uk has a bubble for k ≫ 1 sufficiently large. In other terms, a small
neighborhood of p1,k is close (in C6,α-norm) to the round metric, and hence has a concave boundary,
for k ≫ 1 sufficiently large.

We verify this by computing the mean curvature of a geodesic sphere explicitly. Using
g0 = 4(1 + |x|2)−2δ, a direct computation shows the mean curvature of a hypersurface is given
by HΣ = − trg⟨∇∂ℓνΣ, ∂m⟩, where νΣ is the unit inward normal vector of Σ.

A geodesic sphere centered at p = 0 coincides with a Euclidean round sphere centered at the
origin (with a different radius), and so

νΣ = −
(
1 + |x|2

2|x|

)
xℓ∂xℓ

.

A straightforward computation yields

HΣ = −2n|x|(1 + |x|2) + n− 1 + n|x|2

|x|
,

which is negative when |x| > 3. Additionally, since

lim
k→∞

∥wk − w∞∥C6,α(B3Rk/4(0))
= 0,

it holds that ∂B3Rk/4(0) is also mean concave with respect to the metric ĝk ∈ Met∞(B3Rk/4(0))

defined as ĝk = w
4/(n−6)
k δℓm, which in turn implies ∂B3|p1,k|/8(p1,k) is mean concave with respect

to the metric gk ∈ Met∞(Ω) given by ĝk = u
4/(n−6)
k δℓm. This is contradiction with Lemma 5.1,

which proves the claim. □

Second, we obtain a lower bound estimate.

Proposition 5.3. Let u ∈ C∞(Ω) be a positive singular solution to (Q6,g0,N ). There exists C2 > 0
depending only on u satisfying

C2 min
j∈IN

dg0(x, pj)
−γn ⩽ u(x).

Proof. Indeed, notice that by applying [17, Theorem 1.3] in cylindrical coordinates v = F(u), we
obtain that Pcyl(v) ⩽ 0 with equality if and only if

lim inf
t→∞

v(t, θ) = lim sup
t→∞

v(t, θ) = lim
t→∞

v(t, θ) = 0.

Otherwise, if Pcyl(v) < 0, there exists C2 > 0, which depends on the solution v, such that
v(t, θ) ⩾ C2. This proves the proposition. □

Third, we have a version of Harnack inequality for our setting, which will be important in the
proof of our main result.



14 J.H. ANDRADE, J.M. DO Ó, J. RATZKIN, AND J. WEI

Proposition 5.4. Let Ω ⊂ Rn and u ∈ C∞(Ω). Assume that −∆u ⩾ 0, ∆2u ⩾ 0, and

(−∆)3u = f(u),

where f is either linear or superlinear and f(0) = 0. Then, there exists ρ0 > 0 such that for
ρ ∈ (0, ρ0] and C3 > 0 depending only on Ω, f , and ρ, it holds

sup
Bρ(0)

u ⩽ C3 inf
Bρ(0)

u.

Proof. The proof is a straightforward adaptation of [6, Theorem 3.6]. □

6. Compactness result

In this section, we prove the main result of the manuscript.
Before proceeding to the proof, we need to obtain the existence of a positive Green function for

the sixth order GJMS of the round sphere with a prescribed asymptotic rate near a pole given by
the fundamental solution to the flat tri-Laplacian.

Proposition 6.1. Let p ∈ Λ ⊂ (Sn, g0) be a point on the standard round sphere. There exists a
Green function with pole at p, denoted by Gp : Sn \ {p} → (0,∞), that satisfies

Pg0Gp = δp,

where Pg0 is the sixth order GJMS operator of the round metric given by (1.2) and δp is the Dirac
function concentrated at p. Furthermore, there exists Cn > 0 depending only on n such that

Gp(x) = Cndg0(x, p)
6−n +O(1) (6.1)

in conformal normal coordinates.

Proof. This is a direct application of [10, Proposition 2.1] for the standard round sphere
(Sn, g0). □

Proof of Theorem 1.3. Let {gk}k∈N = {(Uk)
4/n−6g0} ⊂ M6

N be a sequence of admissible metrics,

each of which is a complete, conformally flat metric on Ωk = Sn\Λk withQ
6
gk

≡ Qn = n(n4−20n2+64)
32 .

We denote the punctures of gk by

Λk := sing(Uk) = {p1,k, . . . , pN,k} ⊂ Sn.
The proof will be divided into a sequence of steps.

The first step will simplify our later analysis since it allows us to assume the singular points are
fixed.
Step 1. After passing to a subsequence, we may assume that for k ≫ 1 sufficiently large each Uk

is non-singular on the set K1 := Sn \ (∪N
i=1Bδ1/2(pj,i)).

Indeed, for 0 < δ1 small enough, the set

(Sn)N \
{
(q1, . . . , qk) ∈ (Sn)N : dg0(qj , qℓ) ⩾ δ1 for each j ̸= ℓ

}
is compact and contains each singular set Λk for all k ∈ N. Thus, there exits {p1,∞, . . . , pN,∞} ⊂ Sn,
and a convergent subsequence such that pj,k → pj,∞ as k → +∞, proving Step 1.

To set notation, we define the compact sets

Kℓ := Sn \
(
∪N
j=1B2−ℓδ1(pj,∞)

)
for each ℓ ∈ N

Notice that by construction the family {Kℓ}ℓ∈N is a compact exhaustion of the limit singular set

Ω∞ := Sn \ Λ∞, where Λ∞ := {p1,∞. . . . , pk,∞}.
Furthermore, by the convergence pj,k → pj,∞ as k → +∞, for each fixed ℓ ∈ N there exists k0 ≫ 1
such that k ⩾ k0 implies Uk is smooth in Kℓ.
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The second step is based on the uniform upper bound and states that we can extract a limit.
Step 2. The exists U∞ ∈ C∞(Ω∞) solving (Q6,g0,N ) such that

lim
k→+∞

∥U∞ − Uk∥C∞
loc(Ω∞) = 0. (6.2)

In fact, using the upper bound in Proposition 5.2, one has that for each compact subset K ⊂ Ω∞,
there exists α ∈ (0, 1) and C1 > 0 depending only on n, Ω, and α such that

∥Uk∥C6,α(K) ⩽ C1 for all k ∈ N.

Therefore, as a consequence of the Arzela–Ascoli theorem, one can find a limit U∞ ∈ C6,α(K) a
convergent subsequence, which we again denote the same, such that

lim
k→+∞

∥U∞ − Uk∥C6,α
loc (Ω∞)

= 0.

Furthermore, by applying standard elliptic regularity, we directly obtain that (6.2) holds, and so
Step 2 is proved.

The next step is to show that this limit is non-trivial.
Step 3. U∞ > 0 on Ω∞.
If this step were false, there would exist p∗ ∈ Ω∞ such that

0 = U∞(p∗) = lim
k→+∞

Uk(p∗).

For each k ∈ N, we define εk = Uk(p∗) and the rescaled function Ûk ∈ C∞(Ωk) given by

Ûk(x) = εk
−1Uk(x) for all k ∈ N.

As a consequence of Remark 1.1, it follows

Pg0Ûk = ε
12

n−6

k cnÛ
n+6
n−6

k in Ωk for all k ∈ N.

In addition, by construction, the sequence {Ûk}k∈N satisfy the normalization

Ûk(p∗) = 1 for all k ∈ N. (6.3)

By the Harnack inequality of Lemma 5.4 there exists a positive constant C1 depending only on
n and ℓ such that

sup
Kℓ

|usphÛk| ⩽ C1. (6.4)

However, there is another positive constant C2, again depending only on n and ℓ, such that

C2 ⩽ usph ⩽ 2γn . (6.5)

Combining (6.4) and (6.5) there exists a uniform constant C3 such that

sup
Kℓ

Ûk ≤ C3,

and so by the Arzela-Ascoli theorem we may pass to a subsequence Ûk that converges uniformly

on compact subsets of Ω∞ to a smooth function Û∞.

This limit function Û∞ : Ω∞ → R satisfies

Pg0Û∞ = 0 in Ω∞

and so it has the form

Û∞ =

N∑
j=1

βjGpj,∞
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for some collection of real numbers β1, . . . , βN . The normalization (6.3) implies one of the
coefficients βj0 is positive, so after possibly relabeling the punctures we may assume β1 > 0.

We now choose a stereographic projection sending p1,∞ to the origin and perform the Emden-
Fowler change of coordinates in Definition 2.1, which yield the functions

vk := F(usphUk) and v̂k := F(usphÛk)

and their respective limits

v∞ := F(usphU∞) and v̂∞ := F(usphÛ∞).

The expansion (6.1) implies

v̂∞(t, θ) = e−γnt(cosh t)−γn(Cne
−γnt +O(1)) = Cn +O(e(6−n)t) as t→ +∞. (6.6)

Also, observe that v̂k ∈ C6(CT ) satisfies the PDE

P 6
cylv̂k = ε

12
n−6

k cnv̂
n+6
n−6

k in CTk
for all k ∈ N,

which we combine with (6.6) and Proposition 4.6 and the convergence v̂k → v̂∞ to see that for t
sufficiently large∫

{t}×Sn−1

Hε
12

n−6
k cn

cyl dθ =

∫
{t}×Sn−1

Hrad(v̂k) +Hang(v̂k) +
n− 6

2n
ε

12
n−6 cn|v̂k|

2n
n−6dθ (6.7)

= −C̃nβ
2
1 +O(e(6−n)t).

for some C̃n > 0. On the other hand, by our construction we have

Pcyl(vk) =

∫
{t}×Sn−1

Hrad(vk) +Hang(vk) + F (vk)dθ (6.8)

=

∫
{t}×Sn−1

ε2k (Hrad(v̂k) +Hang(v̂k)) + ε
2n
n−6

k F (v̂k)dθ → 0

From (6.7) and (6.8), we find

lim
k→+∞

Prad(gk, p1,k) = 0,

which, together with Proposition 4.4, implies limk→+∞ ε1(gk) = 0. This contradicts the hypothesis
that the necksizes are bounded away from zero, that is, εj(gk) > δ1 for some 0 < δ1 ≪ 1.

At last, we can complete our argument

Step 4. The metric g∞ = U
4

n−6
∞ g0 is a complete metric on Ω∞.

Indeed, suppose by contradiction that is g∞ is incomplete. Then there exists an index j ∈
{1, . . . , N} such that lim infx→pj,∞ U∞(x) < ∞. In this case, the removable singularity result
in Proposition 5.3 implies

Prad(g∞, pj,∞) = 0.

However, by construction

0 = Prad(g∞, pj,∞) = lim
k→+∞

Prad(gk, pj,k) ⩾ δ2,

which, by Proposition 4.4 implies εj(gk) ⩾ δ2, which is contradiction with the fact gk ∈ Q6
δ1,δ2

.
By putting all these steps together, our main theorem is proved. □
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Appendix A. Higher order curvature tensors

Let (Mn, g) is a Riemannian manifold with n ⩾ 2. In what follows, we will always be
using Einstein’s summation convection. In a local coordinate frame, denoted by {∂i}ni=1, we

let Rmg ∈ T3
1(M) be the Riemannian curvature tensor,

◦
Rmg ∈ T4

0(M) be covariant Riemann

curvature tensor, and the Ricci curvature tensor Ricg = trg
◦

Rmg ∈ T2
0(M), which can be expressed

as Ricjk =
◦

Rmi
ijk = giℓ

◦
Rmijkℓ. We also consider the scalar curvature Rg = trgRicg ∈ T0

0(M),

defined by R = gijRicij , where Tr
s(M) stands for the set of (r, s)-type tensor over M with

T0
0(M) = C∞(M) and trg : Tr

s(M) → Tr−2
s (M). Also for the Laplace–Beltrami operator, we

simply denote ∆g := gij∇i∇j , where ∇g the Levi–Civita connection associated to g.
It is also convenient to define some operations involving two tensors.

Definition A.1. First, let us introduce the cross product × : Sym2(M)× Sym2(M) → Sym2(M)
is given by

(h1 × h2)ij := gkℓh1,ikh2,jℓ = hℓ1,ih2,ℓj .

Second, we define a dot product × : Sym2(M)× Sym2(M) → R, given by

h1 · h2 := trg(h1 × h2) = gijgkℓhik1 h2,jℓ = hjk1 h2,jk.

Third, we also recall the Kulkarni–Nomizu product ⃝∧ : Sym2(M)× Sym2(M) → T4
0(M)

(h1 ⃝∧ h2)ijkℓ := h1,iℓh2,jk + h1,jkh2,iℓ − h1,ikh2,jℓ − h1,jℓh2,ik.

At last, we consider · : Sym2(M) → Sym2(M) and δg : Sym2(M) → R,

(
◦

Rm · h)jk := Rijkℓh
iℓ and (δgh)i := − (divg h)i = −∇jhij ,

where the latter one is the L2-formal adjoint of Lie derivative (up to scalar multiple).

Definition A.2. Let us define the Schouten tensor, Weyl tensor, Bach tensor, and nameless
tensor, respectively, by

Ag :=
1

n− 2

(
Ricg −

1

2(n− 1)
Rgg

)
Wg :=

◦
Rmg −Ag ⃝∧ g

Bg := ∆gAg −∇2
g trg Ag + 2

◦
Rmg ·Ag − (n− 4)Ag ×Ag − |Ag|2g − 2(trg Ag)Ag, A

where these expressions are written in an abstract index-free manner.

From this, we introduce the following tensors

T 2
g := (n− 2)σ1(Ag)g − 8Ag,

T 4
g := −3n2 − 12n− 4

4
σ1(Ag)

2g + 4(n− 4)|A|2gg + 8(n− 2)σ1(Ag)Ag

+ (n− 6)∆gσ1(Ag)g + 48A2
g −

16

n− 4
Bg,

T 6
g := −1

8
σ3(Ag)−

1

24(n− 4)
⟨Bg, Ag⟩g,

where σk is the k-th elementary symmetric function for each k ∈ N.
Based on this notation, we introduce the concept of higher order curvatures as follows
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Definition A.3. For any g ∈ Met∞(Ω), let us define the 2mth order Q-curvature Q2m
g for

m = 1, 2, 3, respectively, by

Q2
g := Rg

Q4
g := − 1

2(n− 1)
∆Rg −

2

(n− 2)2
|Ricg |2 +

n3 − 4n2 + 16n− 16

8(n− 1)2(n− 2)2
R2

g,

Q6
g := −3!26T 6

g − n+ 2

2
∆g(σ1 (Ag)

2) + 4∆g|A|2g − 8δ (Agdσ1 (Ag)) + ∆2
gσ1 (Ag)

− n− 6

2
σ1 (Ag)∆gσ1 (Ag)− 4(n− 6)σ1 (Ag) |A|2g +

(n− 6)(n+ 6)

4
σ1 (Ag)

3 .

Associated with these curvatures, we have the following conformally invariant operators

Definition A.4. For any g ∈ Met∞(Ω), let us define the N th order GJMS operator P 2m
g for

m = 1, 2, 3, respectively, by

P 2
g := −∆g +

n− 2

2
Rg

P 4
g := ∆2

g − div

(
(n− 2)2 + 4

2(n− 1)(n− 2)
Rgg −

4

n− 2
Ricg

)
d +

n− 4

2
Q4

g

P 6
g := −∆3

g −∆gδT2d− δT2d∆g −
n− 2

2
∆g (σ1 (Ag)∆g)− δT4d +

n− 6

2
Q6

g.

When m = 1, the operator P 2
g = Lg is the so-called conformal Laplacian.

Appendix B. Modica estimates

In this appendix, we discuss possible pointwise estimates for positive smooth solutions to (P6,∞).
These estimates have strong geometric implications in terms of the associated conformally flat
metric.

In [16, Theorem 1.4], it is proved that positive smooth solutions to

∆2u =
n(n− 4)(n2 − 4)

16
u

n+4
n−4 in Rn \ {0}.

satisfies the following pointwise inequality

−∆u− 4

n− 2

|∇u|2

u
⩾

√
n− 4

n
u

n
n−4 in Rn \ {0}.

This implies in particular that the scalar curvature Q2
g of the conformally flat metric g = u4/(n−4)δ

is positive. This type of result is known in the literature as Modica-type estimates.

In our situation, we start by writing the metric g ∈ [g0] as g = (u
n−2
n−6 )

4
n−2 δ, we see

Q2
g = −4(n− 1)

n− 2
u

−(n+2)
n−6 ∆

(
u

n−2
n−6

)
= −4(n− 1)

n− 6
u−

n−2
n−6

(
∆u+

4

n− 6

|∇u|2

u

)
. (B.1)

and

−∆
(
u

n−2
n−6

)
= −∆u− 4

n− 6

|∇u|2

u
.

From this, we conclude that Q2
g ⩾ 0 implies −∆u ⩾ 0, and in fact is a stronger condition. Similarly,

writing g = (u
n−4
n−6 )

4
n−4 δ, it follows

Q4
g =

2

n− 4
u−

n+4
n−6∆2

(
u

n−4
n−6

)
. (B.2)
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Furthermore, a long computation shows

(−∆)2
(
u

n−4
n−6

)
=

n− 4

n− 6
u

2
n−6∆2u+

8(n− 4)

(n− 6)2
u

8−n
n−6 ⟨∇u,∇∆u⟩

+
4(n− 4)

(n− 6)2
u

8−n
n−6 |D2u|2 + 8(n− 4)(8− n)

(n− 6)3
u

−2(n−7)
n−6 D2u(∇u,∇u)

+
4(n− 4)(8− n)

(n− 6)3
u

−2(n−7)
n−6 |∇u|2∆u+

2(n− 7)(n− 8)

(n− 6)4
u

20−3n
n−6 |∇u|4,

where

|D2u|2 =
n∑

i,j=1

u2xixj
and D2u(∇u,∇u) =

n∑
i,j=1

uxixjuxiuxj .

Hence, the conditions Q2
g ⩾ 0 and Q4

g ⩾ 0 are not enough to guarantee that ∆2u ⩾ 0 directly.
Based on this, it is natural to ask whether the following result holds.

Conjecture B.1. Let u ∈ C∞(Rn \ {0}) be a positive solutions to (P6,∞). Then, the conformally

flat metric given by g = u4/(n−6)δ satisfies the following pointwise estimate

Q2(u) ⩾

√
n− 6

n
u

n
n−6 and Q4(u) ⩾

√
n− 6

n
u

n
n−6 in Rn \ {0}

where

Q2(u) := −∆u− 4

n− 6

|∇u|2

u
.

and

Q4(u) := ∆2u− 8

(n− 6)
u

8−n
2 ⟨∇u,∇∆u⟩ − 4

(n− 6)
u

8−n
2 |D2u|2 − 8(8− n)

(n− 6)2
u7−nD2u(∇u,∇u)

− 4(8− n)

(n− 6)2
u7−n|∇u|2∆u− 2(n− 7)(n− 8)

(n− 6)3(n− 4)
u

20−3n
2 |∇u|4.

In particular, it follows that the curvatures Q2
g and Q4

g associated with the conformally flat metric

g = u4/(n−6)δ are both positive.
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