REGULARITY THEORY FOR PARABOLIC SYSTEMS WITH
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ABSTRACT. We establish local regularity theory for parabolic systems of Uhlenbeck type
with ¢-growth. In particular, we prove local boundedness of weak solutions and their
gradient, and then local Holder continuity of the gradients, providing suitable assump-
tions on the growth function ¢. Our approach, being independent of the degeneracy of
the system, allows for a unified treatment of both the degenerate and the singular case.

1. INTRODUCTION

We study local regularity theory for the following parabolic p-Laplace system

/
(1.1) u, — div (Mpu> =0 in Qp=0Qx(0,T),
| Dul

where 2 C R™ (n > 2) is open, ¢ is an Orlicz function verifying suitable growth conditions
(see Section 2), u = (u',...,u") is a vector-valued function of (z,t) € Q x (0,T), u, is
the derivative of u for time variable ¢, and Du = D, u is the gradient of u for the spatial
variable x. In particular, we prove the local boundedness of u and Du and the local
Holder continuity of Du.

A special case of ¢ in (1.1) is the p-power function, i.e., p(t) = %tp with 1 < p < oc.
In this case, we have the elliptic and parabolic p-Laplace systems

div (|[Dulf?Du) =0 in @ and  u;—div(|Duf’?Du) =0 in Q.
For the elliptic p-Laplace system, Uhlenbeck [37] proved the local Holder continuity of
Du when p > 2. In [37], Uhlenbeck considered the system
(1.2) div (o(|Duf*)Du) =0

and assumed that o satisfies a p-growth condition. Note that by setting ¢(s) := [ 7o(7%) dr
(ie., o(s*) = ¢/(s)/s) the previous system is changed to

(13) v (ol o) =

which is the elliptic counterpart of (1.1) and the Euler-Lagrange system corresponding
to the following autonomous and isotropic energy functional

| #A1ul) .

From this fact, we sometimes say that the system (1.3) or (1.1) has the Uhlenbeck struc-
ture. It is worth to point out that the radial structure, meaning the dependence through
the modulus of the gradient, is the only one that prevent the formation of singularities
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(even boundedness of minimizers) and allows to prove everywhere regularity results in
the vectorial case, see counterexamples in [33, 35] and also [32, Section 3].

Examples of (t) satisfying the conditions in the paper are ¥, t? log(1+t), max{t?, 17},
min{#, 7}, and so on. A more complicate example, which can fit experimental data,
can be found in [2, Section 2.3]. Moreover, the system (1.2) is strongly concerned with
stationary, irrotational flows of compressible fluids. Precisely, when N = 1 hence u = u,
if o is the density of an irrotational flow, then the gradient Du of a solution to (1.2)
represents the velocity of the flow hence the solution w is called the velocity potential of
the flow. At this stage, for an ideal flow (e.g. a polytropic flow) the density function p
depends on |Dul|?. We refer to [3, 17] for applications of the above system to stationary,
irrotational flow of compressible fluids.

After the pioneering work of Uhelenbeck, Tolksdorf [36] obtained C'**-regularity results
for more general elliptic systems with p-growth when 1 < p < oco. We also refer to
[18, 1, 20] for everywhere C'*-regularity results for elliptic systems with p-growth. For the
parabolic p-Laplace system, DiBenedetto and Friedman [10, 11] (see also the monograph
[12]) proved Holder continuity of Du when nz—j:g < p < oo and we refer to [5, 38, 6, 8, 9, 4]
for further related results for parabolic p-Laplace systems.

For a general function ¢, Lieberman studied regularity theory for elliptic equations
(i.e., N = 1) with p-growth, and around the same time Marcellini [29, 30] had considered
elliptic equations with general (p, q)-growth. Full Ct*-regularity for the elliptic ¢-Laplace
system (1.3) was established by Marcellini and Papi [31] and by Diening, Stroffolini
and Verde [16]. Marcellini and Papi proved Lipschitz regularity for local minimizers of
functionals with growth conditions general enough to embrace linear and exponential
ones. The conclusion then follows using the C'-regularity of the operator, with the
help of classical results. The second result, instead, is reminiscent of the Uhlenbeck
proof: a nonlinear quantity (| Dul) is shown to be a subsolution of an elliptic equation.
In addition, the authors were able to prove an excess decay estimate for V,(Du) (see
Section 2 for the definition of V,) which implies the Holder continuity of V,(Du) and
hence of Du.

On the other hand, CY-regularity for the parabolic p-Laplace system (1.1) has re-
mained an open problem. There have been partial developments in this direction. Lieber-
man [26] proved that if Du is bounded, then Du is Holder continuous. Hence the local
boundedness of Du is missing. Diening, Scharle and Schwarzacher [14] obtained the local
boundedness of Du for (1.1) under an additional integrability condition on Du which is
unnatural in the singular case, that is, p < 2 in (2.6). Moreover, Isernia [25] obtained the
local boundedness of u for (1.1).

We note that in [26] the approximation of the parabolic system (1.1) with nondegen-
erate systems is omitted and the weak solution is assumed to be twice differentiable with
respect to the x variable. In fact, one has to consider approximate nondegenerate para-
bolic systems (e.g. (4.1)), and obtain uniform regularity estimates by differentiating these
systems. At this stage, the twice differentiability of weak solutions of these systems with
respect to the x variable is needed. However, the proof of the twice differentiability for
parabolic system with ¢-growth is unclear and not an easy generalization of the one for
the para3bolic p-Laplace system. Even in the elliptic case, a more delicate analysis is re-
quired, see [13, Section 4]. In addition, Baroni and Lindfors [2] obtained the Holder and
Lipschitz continuity of solutions to Cauchy-Dirichlet problems for parabolic equations
(N = 1) with p-growth, see also [28] for similar results for parabolic obstacle problems
with ¢-growth. For more regularity results for the parabolic system with p-growth we
refer to [7, 15, 22, 23, 24, 34].



In this paper, we establish full C'*-regularity for the parabolic ¢-Laplace system (1.1)
by filling all the gaps in previous results. Let us state the main result.

1.1. Setting of the problem and main result. Suppose the function ¢ : [0,00) —
[0,00) is an N-function satisfying Assumption 2.1. A function u = (u!,u?,...,u") €
Cloc (0, T; L2 (Q,RN)) N LY (0, T; W,h# (€2, RY)) is said to be a (local) weak solution to

loc

(1.1) if it satisfies the following Weak form of (1.1):

/

Du

_/ H'Ctdz"'/ MDU D(dz=0 forall ¢ € C®Qp,RY),
O or |Dul

where “” and “” are the Euclidean inner products in RY and R¥", respectively. By
the density of smooth functions in Orlicz-Sobolev spaces and a standard approximation
argument (see e.g. the proof of Theorem 1 in [25]), one can see that the weak solution u
to (1.1) also satisfies for every 0 < t; <ty < T,

(1.4) /lu C(z,t)d // { w-cot ZUPY b el ards = o

| Dul

for all ¢ € WH2(ty, ty; L2(SY, ]RN) N LP(ty, ty; Wy ?(V,RY)) and Q' € Q. We note that
weak solution u is not weakly differentiable with respect to t. Therefore, we cannot take
a test function ( involving the weak solution directly. This technical obstacle can be
overcome by using approximation via Steklov average, see [12, I. 3-(i) and II. Proposition
3.1], which is by now a standard approximation argument. Hence we will assume that u
is differentiable, and consider test functions involving the weak solution without specific
comment.

We state C1%regularity, which is the maximal regularity, for the weak solution u of
the system (1.1). This result follows directly by combining Corollary 5.3 and Theorem
6.1.

Theorem 1.1. Suppose p € C*(]0,00)) N C?((0,00)) satisfies Assumption 2.3 with

2n
1.5 >
(1.5) b=y

and let u be a weak solution to the parabolic system (1.1). Then Du is locally Holder
continuous. Moreover, there exist a € (0,1) and ¢ > 0 depending on n, N,p,q, V1, cn such
that for every Qar(z0) € Qr and every 0 <r < R,

osc Du < c)\(ma { (N2, ”)\’%}Ly
Qr(20) XQD()QO() R

(E=r=n
)= (][ o(|Dul) d= + 1) |
Q2r(%0)

We remark that the condition (1.5) is essential in the regularity theory even for the
parabolic p-Laplace system, without any additional integrability condition on the solution
u, see [11, 8] and also [12].

We shall introduce the strategy of our paper. We prove sequentially local L*°-regularity
of the weak solution u to (1.1), the local L>®-regularity and C'“-regularity of Du, by pro-
viding essentially sharp conditions on . As for the local boundedness of u (Theorem 3.1),
we apply the Moser iteration to a suitable test function. Next, using the parabolic em-

bedding result in Lemma 2.7, we reach the conclusion. Once the L*°-regularity result is
3
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achieved, we prove twice differentiability of weak solutions to approximate nondegener-
ate systems in Lemma 4.1 by using the difference quotients and a Giaquinta-Modica type
covering argument. Note that the boundedness of u plays an important role in the proof
of Lemma 4.1 since the constant p in (2.6) can be less than 2. Then by differentiating the
approximate nondegenerate system and applying Moser iteration again, we obtain L
estimate for Du in Theorem 5.2 and Corollary 5.3. Finally, we revisit the results with
the proofs in [26], and prove Theorem 1.1.

2. PRELIMINARIES

2.1. Notation. We write u = (u®) = (u},...,u") € RN and Q = (Q¢) € RV*" = RN»
where 1< i <nand 1 < a < N. For z = (z,t) € R* x R, we introduce the parabolic
cylinder

(2.1) Q. (2) == B.(x) x (t — 1% ],

where B, (z) denotes the open ball in R™ with center = and radius r. The symbol 0,Q, ()
denotes the usual parabolic boundary of Q,.(z).

Let f: E — [0,00) with ' C R. f is called almost increasing (resp. almost decreasing)
if there is L > 1 such that f(s) < Lf(t) for all s,t € E with s < ¢ (resp. ¢t < s). In
particular, if we can choose L = 1, then f is simply called increasing (resp. decreasing).

By x* we denote the Sobolev conjugate exponent of y; i.e., x* := % for x < n, while
we agree that x* := 2y if y > n.

The notation f ~ g means that there exists constant ¢ > 1 such that % f<g<cf. We
will use the Einstein summation convention, that is, we will omit the summation symbol
for indexes that appear twice, see e.g. (2.14) and the next inequality.

2.2. Orlicz functions. In this paper, ¢ : [0,00) — [0, 00) is always an N-function, that
is, ¢(0) = 0, there exists a right continuous derivative ¢" of ¢, ¢’ is increasing with
¢©'(0) =0 and ¢'(¢) > 0 when ¢ > 0. For simplicity, we shall assume that

e(1) =1.
Note that if we do not assume the above condition, then constants ¢ may depend on ¢(1).
Moreover, we assume that ¢ satisfies the following growth conditions:

Assumption 2.1. ¢ : [0,00) — [0,00) is an N-function, and there are 1 < p < q such

2 s almost decreasing for t € (0,00) with constant

that 22 is almost increasing and =5

tP

L>1.

The almost decreasing and increasing conditions in Assumption 2.1 are equivalent to
the A, and V5 conditions for ¢, respectively. Compared with the As type conditions,
the benefit of the almost increasing/decreasing condition is that we can directly see the
lower and upper bounds of an exponent factor of ¢. In particular, we will prove the
boundedness of the weak solution to (1.1) under the above assumption where the lower
bound p will play a crucial role. We also remark that Assumption 2.1 with L = 1 is
equivalent to the following inequality

(2.2) 1 <p<

Without loss of generality, we sometimes assume that

(2.3) l<p<2<yq.



The conjugate function of ¢ is defined as

©*(t) == sup (st — p(s)).

s=>0

From the definition, the following Young’s inequality
(2.4) st < p(t) +¢*(s), s,t=0,

holds true. Since the exact value of p* is not always explicitly computable, the estimate

(et) )
(25) o (B2) ~ o) ~ o)
will often be useful in computations (see [21, Theorem 2.4.10]). In fact, the above relation
holds true since Assumption 2.1 guarantees the As condition for both ¢ and ¢*, and
relevant constants depends on p, ¢ and L.
For higher order regularity results we will consider stronger assumptions.

Assumption 2.2. ¢ : [0,00) — [0,00) is an N-function and satisfies

(1) ¢ € C'([0,00)) N C*((0, 0))
(2) There exist 1 < p < q such that

to"(t
f“gq—,
' (t)
Note that Assumption 2.2 implies Assumption 2.1 with the same p and ¢ and with the

constant L. = 1, hence we have (2.2). The next assumption is adding an Holder type
continuity on the Hessian of (|Q|) for Q € RN", denoted by Dge(|Q).

(2.6) 0<p—1< t>0.

Assumption 2.3. ¢ : [0,00) — [0,00) is an N-function and satisfies Assumption (2.2).
Furthermore, there exist positive constants v, and c;, such that for every Q,P € RN™ with

2 2 |Q — P| " "
(27) IDiye(lQl) — DielIPD)] < o ( g ) ¢ (P)

Note that if () = t? with 1 < p < oo, then it satisfies Assumption 2.3. Similar
assumptions were used for proving the C1*regularity for minimizers of functionals with
general growth in [16].

If ¢ satisfies Assumption 2.1, we define the Orlicz space L?(2, RY) as the set of all
measurable functions f : Q — RY such that

/Q (| f(2)]) d < oo,

and the Orlicz-Sobolev space W#(Q, RY) as the set of all f € L#(Q, RY)NWH(Q RY)
such that

/Q H(1Df(x)]) d < oo.

L?(Q,RY) and W#(Q, RY) are endowed with the usual Luxembourg type norms. Then
they are reflexive Banach spaces. Moreover, the parabolic space L?(t1,ty; W1#(Q,RY))
denotes the set of all functions f : Q x (t;,t2) — RY such that f(-,t) € W (Q,RY) for
a.e. t € (0,7T) and

L%LMWﬁmmM&<w'
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2.3. Shifted N-functions and related operators. The following definitions and re-
sults about shifted N-functions can be found in [13, 16].
For an N-function ¢ and for a > 0, we define the shifted N-function ¢, by

ou(t) = /Ot%ds <i.e., gp;(t):‘p'ia—:tt)t).

We note that if ¢ satisfies Assumption 2.1 or 2.2 or 2.3, then ¢, also satisfies Assump-
tion 2.1 or 2.2 or 2.3 uniformly in a > 0 with the same p and q. We then recall useful
inequalities for shifted N-function ¢, in [13].

Lemma 2.4. [13, Lemma 32| Let ¢ satisfy Assumption 2.1. Then we have

(2.8) pla+1t) ~pa(t) + ¢la),

and for all 6 > 0 there exists cs > 0 depending only on p, q, L and &, such that for all
t,u,a =0

tu < dp(t) + csp™(u),

t (u) + ug'(t) < 0p(t) + csp(u)

tu < 0pa(t) + oy (u)

teph (u) 4+ ug () < 0alt) + cspa(u) -

Lemma 2.5. [13, Lemmas 24 and 29]. Let ¢ satisfy Assumption 2.2.
(1) Uniformly in s,t € R™ with |s| + [t| > 0

(2.9)

(2.10) @ (Is] + [tN]s — ] ~ oy (ls = t])
(2) There exists ¢ = ¢(p,q) > 0 such that for all sy, s9,t € R"
(2.11) Plso| ([51 = s2]) S @y (Is1 = t]) + &y (Is2 — t])

where the hidden constants above depend only on p and q.
We next define vector valued functions A,V : RV — RN" by
¢'(1QJ) ¢'(1QJ)

Q| Ql
1

In particular, for 1 < p < 00, we denote by V,(Q) the function V associated to ¢(t) = ;¥;
ie, V,(Q):=1Q|7 Q. With shifted N-function ¢,, we define accordingly

va(1Q0) ZAU)
Q| Q|

We further suppose that ¢ satisfies Assumption 2.2. Denote
OA(Q)? ! Z a)b
oam A = AL _2(Q) {5@,5% <90 (aplal 1) QrQ, }

A(Q) =

Qle(1Q)] and V(Q):=

(2.12) AY(Q) =

Q V'(Q):=

Q and Vi(Q):=(a+]Q)7 Q

Qs Q ¢ (1Q) QF?

where 1 <i,j <nand 1 < a,3 < N. Here, 6°° and 4;; are the Kronecker symbols. Note
that Dge(|Ql) = (Agﬁ(Q)) Then we see that

¢'(1Q))
Q|

wf? < A2 (Qutn? < max{q — 1,1} 24 p

(2.14) min{p — 1,1} w; Q)

6



for all Q,w € R™. Moreover, since

AP)-AQ = [ ZACP0-DQldr = [ AT P 1-nQE- Q)

using the above results and [13, Lemma 20|, we have that

(A(P)~A(Q): (P—Q) > - ( [ Ao dT) P QP

c TP + (1 — 7)Q]
Lo'(IP|+1QJ) 9
> P — ;
Z el P
and
(2.15)

i [P -0Q) N o PN
a@) - s <o [ EETEEE M ar)ip < AL P - q

Moreover, we have that

(2.16) (A(P) - A(Q): (P - Q) ~¢p(|P — Q]) ~ [V(P) - V(Q)
and

(2.17) |A(P) = A(Q)| ~ ¢ip|(IP — Q).

(see [14, Lemma 3.1]). We note that the estimates in above still hold for ¢, and the
related operators A® and V.
From [14, Lemma 3.3], it follows that

|AY(Q) — A(Q)] < yiq(a).

Applying the same argument to the N-function @|q| defined by @|q,(t) := | /gon‘(t)t, we
obtain

(2.18) VI(Q) = V(Q)P < clgjq (@)l ~ ¢iqi(a).

Note that all constants concerned with the relation ~ and ¢ in above depend only on
p and q.

2.4. Embedding. We recall a Gagliardo-Nirenberg type inequality for Orlicz functions

in [22, Lemma 2.13]. A function ¢ : [0,00) — [0,00) is said to be a weak ®-function if

it is increasing with ¢(0) = 0, limy_,o+ ¢(t) = 0, limy_, 1, ©(t) = +00 and such that the
©(t)

map ¢ — =~ is almost increasing. Note that every N-function is a weak ®-function.

Lemma 2.6. Assume that ¢ : [0,00) — [0,00) is a weak ®-function and such that
t— % is almost decreasing with constant L > 1 for some ¢ > 1. For p € [1,n) and

g2 > 0 we have

(][f”(‘%‘)“‘””)i <<( £, sy + o)y dx)zq/;((]ir ran))”

for some ¢ = c(n, L, q1,q2) > 0, provided that 0 € (0,1) and v satisfies
1 > L3 + (1 =0a .

v b ¢
Applying the above lemma we can obtain a parabolic embedding result for an Orlicz

function ¢.
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Lemma 2.7. Let m > 0. Suppose that ¢ satisfies Assumption 2.1 with

e <q.

There exists 0 = 0(n,m,p,q) € (0,1) and ¢ = c(n,m,p,q, L) > 0 such that for every
f € Loo(tl, tz, Lm(Br)) N Lw(tl, to; Wl’Cp(Br))
we have

6(n+m)

n

]irx[tm] o(|12) " dz < c(][ [(Df) + (| £))] d:E)

1
xgp((esssup][ |£|mdx) )
te[tlth] [

Proof. Without loss of generality, we can assume that p < n. If p > n, it is enough to

(1—0)(n+m)

consider any p € (4, n) instead of p. Note that by (2.2) the function gpé is a weak

d- functlon and the function 22~ is decreasing. Therefore, applying Lemma 2.6 with

ta/p

) = gop and (v, p, q1, q2) = (p”j;m,p, ,m), we have that for a.e. ¢t € [t1, ],
0(n+m)

£ o2 ar <o £ [otpsion + (2] ar)

(1-6)(ntm)

A(hrera))
where f(t) = f(x,t) and 6 satisfies

_fn=p) (A=0¢ . ,_

n+m n m (n+m)(nm —ng—mp)

n(nm —ng — mq)

Note that 6 € (0,1) by the assumption ;% < p < ¢, which yields -2 < - < - and
that ("+m) € (0, 1]. Finally integrating for ¢ in [t1, t5] and using Holder’s inequality when

p<q ( €., M < 1), we obtain the desired estimate. O
Remark 2.8. In the above definition, if m = 2 | we see that
2
p(lfD" € LB, x [t1, 1))

Note that this implies
(n+2)
T (B x [, 1)),

(n+2

where 2 >21fp>n

+2°

3. LOCAL BOUNDEDNESS

We first prove that any weak solution u to (1.1) is locally bounded by using the Moser
iteration technique (for similar arguments, cfr. [9, Theorem 2], and [25], where the
superquadratic case is addressed). The key points in our approach are the introduction
of the function v in (3.2) and use of the embedding result Lemma 2.7 for Orlicz functions
in the parabolic setting, that measures the superquadratic or subquadratic character of

the function .
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Theorem 3.1. Let ¢ satisfy Assumption 2.1 with (1. 5) and let u be a weak solution to
(1.1). Then u € L2 (Q7, RY). Moreover, there exists ¢ > 1 depending onn, N, p, q and
L such that for any Q. € Qr,

(3.1) supa(|2]) < ( G2 Dg(2 ] d) e
Qr QQT

where

(3.2) Y(s) := max{s* p(s)}, s>0,

and xo > 0 is determined in (3.12) below.

Proof. We divide the proof into three steps.

Step 1. (Caccioppoli type inequality) Let 0 < r < 1, zg = (xo,tg) € R™ x R and
Q2-(20) € Qr be defined as in (2.1). Let p; = sy7 and py = sor with 1 < 51 < s9 < 2,
§ € C3°(B,,(x0)) be such that

2

3.3 0<E<1, €=1 in B d |Dfg < —2—
(3-3) £ § in B, (r9) and |D{ a7

and let n € C*°(R) be such that

With fixed y > 0 to be determined later, we take
¢ = () 0"

as a test function in (1.4) and integrate by parts. Then for every 7 € (—p?, 0] we have

o:// u, - up(|2]) %2 da dt
Bp2 m()) |

_[1
&' (| Dul) ,
~————~Du:D u\X2¢9q ‘
/ /B @ |Duy u: Dlug(|3[)r¢] da dt
o (T0)

=:15

Now, we estimate both the terms I; and I, separately. For what concerns [, setting
2

(3.5) B(5)i= [ p(Va) s < pls), 520

we obtain

h=r / o B2 — a2 €t
By, 270)
u(x, 2 u
>0 [ seerea- o2 [ a0,
By, (w0) 83 = 51 JQp, (0

Integrating by parts and taking into account (2.2),

(3.6)

2

B, (5) = () = x [ Vo) (W) e > e~ D)
hence
(3.7) s < B(s) < ol



As for Iy, we have

FUDUD (g S UED IDIRPIEY L
b= // ipa (\Duwu D )n&ddt

(|Dul) _
/ ZUPU) (D (De & w (12 gt do dt
By, (0) |D |

o,
o [y o (DR o ZE EE D)
.

/B {zq @' (IDuf)et 1)+090(|D£HU\)] (|25 da dt

u (|Du|)90(|%|)x w212\, 2¢q qp
> o // m( (a2 -+ v S |D[|T|1|)n§ de

- p(|2)¥* dz,
(82 - 81) /QPQ(ZO)

where in the first inequality we have applied Young’s inequality to the second integral.
Combining the above estimates (3.9) and (3.11), we have that for every 7 € (—p?,0]

,? / & (|22 g7 d
By, (z0)

" UDRD Y oo o,
/ /BPQ(xO ( (1Du))e (| DX+ | Du ‘%|2 |DHTH| )775 dx dt

C
S <m>dz+—/ P12 dz.
52~ 51 JQuu(e0) (52 = 51)7 Jgp, 20

Therefore, taking into account (3.7), neglecting a non-negative term in the left hand side
and recalling (3.5), we have

Sup /B ( )|U($,T)I290(I“(” I)qudx+/ o(|Dul)p(|2)*n?et dz

(3 9) —p%<7’<0 QPQ(ZO)
< M/ 12 2p(]2 )X dz +M/ o2 dz
(s2 = 51)% Jq,, (z0) (s2=s1)" Jg,pe0) '

Step 2. (Sobolev inequality) Set

2n
n+2

G(2) = r@(|2) ¥ ymgs, where @(s) = p(s) and po =

Then
_ ~rlua X,/ uDu Y+l = L1
DG = (1+ X)@(| )X (|2]) 2By 35 + L (| 2[5~ D

Now we apply Young’s inequality (2.4) to the N-function @, with ¢ = |Du| and s =
@'(1%]), together with (2.5) to get

~/lu ~/(lu 2 L ~(lu
IDG| < (14 x)@2(12)X@ (12))| Dulnrogro 4 erg(|2))¥*| D¢

< 1+ 0P(E ) G Dulyyed 1o (1 fy+ ) A1)

10
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Therefore, combining with (3.9) and recalling the definition of ¢, we have

s [ Jumn)e(e e [ DG
Bpy (z0) Qpq (20)

—p3<T<0
c(14x)? " 1+ y)pott u
a10) <O jepggepras+ S e
(s2 = 51)? Ja,, (z0) (s2 = 51)7 JQu, 0

o cd+x)mt

(52— 51)1

/ (1512 + o(12]) @(] B])* d=.
QPQ(ZO)

Now, applying Holder’s inequality, the Sobolev inequality to the function G € VVO1 P(B,)
and using (3.10), we can write

/ | 2pq E’)1+X+% dz
QPI(ZO) rn+2
1 0 " (14x) e
n X)npo n
<t [ ([ wretzan) ([ o) T
r n —p% Bpl(zo) BP1(IO)
1 0 "
u(z, * 0
< (w0 [ weopeeRpan) " ([ jepan)
T n —p2<7<0J By, (20) —pi By, (z0)
C X, T
< (o [ oPee2iras) " [ o
r n —p3<7<0 J By, (0) Qpy (20)
Po

1420

(1+X)po+1/ ) dz "
JOR g AT A— 12+ e(2D) e(3)* — :
{ I QPQ(ZO)( ) " o

E

*|
pSY
=

33

(82 — 51)

Then, since s? < ccp(s)s%o = cp(s )sn+2 for s > 1 by p > recalling (3.2), we have

st

d d
f, e e | R e
Qpy (20) |Q2T| Qp1 (20) |Q2r|

1+%0
(14"t u u dz "
<C{ (59— 51)4 /QpQ(ZO) [w(|r|>¢(’r|>x+1] ’Q2r|} :

Step 3. (Iteration) We first notice that by applying the Gagliardo-Nirenberg type
interpolation inequality to ¢ with p > ;=% provided by Lemma 2.7 and Remark 2.8, we
have

(3.11)

Y([u))p([u))* dz < oo
Q2r
where

(3.12) Yo = min{(w—2> 1,3} 0.

n

For m=0,1,2,..., set x,n = xof™ and

T, = / [(12 (2] +1]

™m

d
—Z, where 0:=1+22 and rmi=r(14+27").
|Q2r| n
Then, we can iterate (3.11) and write

T < 299 (1 4 oot DO g0 em g0

m—1> m:1,2,...,
11



for some ¢y > 1 depending on n, N, p, ¢ and L. Hence, for m > 2,
_ 0 — m — k—1 m m
T S () < G < < TR < (alk)!

for some large ¢; > 1 depending on n, N, p, ¢ and L. Consequently, setting

d
dpu(z) = (|2 1)@,

we have

1
. u m W
(7 Dle= @ < le(7 DIl @pam = lim (/Q (|2 )? d“)

— 00

< limsup (1) 7 < (e1J)%.

m—0o0

This implies the estimate (3.1) and the proof is concluded. O

4. APPROXIMATING PROBLEMS AND SECOND ORDER DIFFERENTIABILITY

Let u be a weak solution to (1.1). Then for Qg € Qr and a sufficiently small ¢ €
(0,1) we consider the following non-degenerate parabolic system with Cauchy-Dirichlet
boundary condition:

‘(ID
(u); — div (—%'(l’)u':f‘)pue) —0 in Qg,

u. =u on OpQr.

(4.1)

where ¢, is the shifted N-function with a = . We will show that the system (1.1) can
be approximated by (4.1), in the sense that if u. is the weak solution to (4.1), then Du,
converges to Du in LP(Qr) (see Lemma 4.3).

We first prove second differentiability in the spatial variable x for each weak solution
to the following non-degenerated problem without boundary condition:

(4.2) w,; — div (%

In order to do that, we fix some notation. For a (vector-valued) function f, we introduce
the notation

DW> =0 in Qp.

Aof(z,t) = [ (x + sex, t) — f(z,1),

where s € R and e, with k£ € {1,2,...,n} is a standard unit vector in R". Moreover, we
define T} , : R"* — R"*! by
(4.3) Tis(x,t) == (z + seg, t), (z,t) € R™.

Then we have the following result (cfr. [8, Theorem 6] where analogous estimates are
devised for parabolic systems with p-growth, and [13, Theorem 11], [16, Lemma 5.7] for
analogous arguments for elliptic systems with p-growth).

Lemma 4.1. Let ¢ satisfy Assumption 2.2 with (1.5) and (2.3), and let u. be a weak
solution to (4.2) with € > 0. Then

(i) Ve(Du.) € L2 (0, T; WL (Q; RN™));

loc loc
(i) Du. € L}, (0,T; W2 (Q; RM™));

loc

(i) if, in addition, Du. € L (Qp; RN™), then Du. € L2 _(0,T; W2 (Q;RN™)) and

loc loc loc
SOE(lDuE’) € L1200(07 T? VV]%),S(Q»

12



Proof. In order to enlighten the notation, we will denote u. by w. Note that in view of
Theorem 3.1, w € L2 (7). Fix any Qa5 = Qas, (0, to) € Qp with r € (0,1), and set

A = supg, W. Let s,h € R be such that 0 < s <h <r/2or —r/2 <h < s <0. Then
w satisfies

(4.4) (Ag,sw), — div (A (A*(Dw))) = 0 in Q3,2
in the weak sense, where A€ is defined as in (2.12) with a = ¢.

Let ( € C* (Qgr/g) be such that 0 < ( < 1, ¢ = 0in Qg \ Q3,/2, ¢ =1 in Q,, and
rDC|+ | D) + |G < <. Then, testing (4.4) with the function (Ay,w)C?, for every

2
to € (—r?,0] we obtain

to
0= [ [ @), Geowicrdcar
—4r2 J B,

to
+/ / Ay s(A*(Dw)) : (C'D[Ag swW] + qu_1Ak7SW ® D() dx dt.
—4r2 J Bo,

Note that an integration by parts with respect to the time variable gives

to
/ / (Ak,sw)t.(Ak,sw)@dxdt:% / A sw(z, t0)[2¢7 da
—4r2 J Bo,,

BQT‘

to
S PG
—4r2 J Bo,

Hence, for every to € [—72,0] we have that

’Ak,sw<$7 tO) ’2 dz
B

to
+2 / / Apo(AS(DW)) : (Apa(DW)CT + qC" Apow @ DC) dardt
—472 J Ba,

to
< q/ / \Ak,swﬁgq*lg dz dt.
—4r2 J By,

We first observe that by (2.16),
Ahs(Aa(DW)) . Ak7sDW
= [A*(Dw(z + sey, t)) — A*(Dw(z,t))] : [Dw(z + sey, t) — Dw(z,t)]

1
> 2| ALV (Dw)P.
C

Now, by (2.15) and (2.10),
|Ag sA°(Dw)| = |A*(Dw(z + seg, t)) — A*(Dw(x,t))]
pL(|Dw(x + sex, )| + [Dw(x, 1))
|Dw (z + se, t)| + | Dw(z, t)|
< Ly pw) ([ Ak s DW(z,t)])

|Ag sDw(z,t)|

N

whence

Ak s(AS(Dw)) : Ay ow ® D(CI

<Cf9émmOAmDWWWDW®+¢%JMDQdT
0 ~ ~ <
=:J
13




Note that we shall write f7 = 1 [ even if s € R is negative. Recalling (4.3), we have
w(z + Tey, t) = Ty, ow(z,t).

Now, from (2.11), Young’s inequality in (2.9) and (2.17), recalling h € R fixed above,
for any sufficiently small 6 > 0 we have that

J<c (@é—HD[TMTOWH(‘Ak,S*TD[Tk,T owl]|) + 90;+|D[T,€,Tow]\(\Ak:DWD> |8[| D[Tk,- o w]|| D

)7
<0 (m {@e+|D[Tk,Tow]|(|Ak,s—7D[Tk,T owl|) + 905+|D[Tk,fow]|(|Ak77—DW|)}
+ 5Pt DITy. rowl| ([P DT, o wl||DC])
E )

h
< (1806 VE(D[Ths 0 W) + |8k, VE(DW)[?) + 57502 (1D[Ths o W)

where we have used the fact that 0 < |s| < |h| < r/2. Note that applying Fubini’s
Theorem and the change of variables y = x + 7e,, and 7 = s — 7, we get

/ ][ |Aks—7 VE(D[T}.r o w])|* d7 da
Q3772 /0
= ][ / |VE(Dw(z + Tey, + (5 — T)ep, 1)) — VE(Dw(x + e, t))|* do dr
0 JQz./2
—F [ VDl e t) - VE(Dw(y. ) Py
0 2r

Therefore, we have

sup / [Ag. W (2,10)])* dz + AL VE(Dw)[*dz

t()E[—TZ,O] T Qr
ls| [* e 2 h? C 2 q—1

< cd— |Ag - VE(DW)|“dzdr + ¢(0)— e-(|Dwl)dz + = |Ag sW|CT " dz.
|h| 0 2r ’ T2 QQT‘ r2 QQT‘ 7

Further, we estimate the final term in the right hand side of the inequality above using
the integration by parts:

/ |Ak7sw|2('q_1 dz = / w,, (T + Tek, t) - Amwgq—l dzdr
QZT 0 Q2r
= / / W(z + Tep, t) - (ApsWae, (U7 + (¢ — 1) A w2, ) dzdr
0 2r
< |s|)\/ |Ag sDW| + |Ag sw||D¢| dz
QBT/Q

< |3|A/ (e + |Dw(x + sex, )| + | Dw(z,t))) "= T 2" | A . Dw]| dz
Q37‘/2

cAs?

/ |sT AL W dz.
r Q3r /2
14




Now we apply Young’s inequality, for any 6 € (0,1), in order to reabsorb some terms to
the left-hand side:

/
/ ]Ak,sw|2gq’1 dz < 5@ (¢) / (e + |Dw(z + seg, t)| + \Dw(sc,t)\)p’2|Ak7sDw|2 dz
2r Q3r /2

ep1

p—1

+ ot )\232/ (e + |[Dw(x + sex, t)| + [Dw(x,t)|)* P dz
SD (6) Q37‘/2

cAs?

|Dw|dz
r QZT

- ! D t
<5/ @(€+|DW(I+S€k,t)|+| W(‘T7 )|>’Ak,5DW’2dZ
Qe €T [DW(z+ sep,t)| + [Dw(z,t)]

+c%§2 <j<;>>\ + %) /QT[QO(|DW|) +1]dz

<o [ AR VE(DW)Pdz
Qar

+ 6227)2\ (;Z;/\ + 1) /QT[¢(|Dw|) + 1] d=.

Finally we have that for every Qs € Qg, 0,0 € (0,1) and s,h € R with 0 < s < h < /2
or —r/2 < h<s <0,

/ 1A, VE(Dw)[*dz < ’h’][ / |A - VE(Dw)|? dz dr
(45) r 2r
43 |AkSV€(Dw)\2dz+ 06,5, )\)/ lo(|Dwl) + 1] dz

Qar 2r

Now, we re-absorb the first two terms on the right hand side. To do this, we first
integrate both the sides of (4.5) with respect to s from 0 to h and apply Fubini’s Theorem,
so that

h
][ Ay, VE(DW)[2 dz ds

h s .
05][ \|h|‘][ / |Ap,VE(DwW)|? dxdes—i—é][ / 1A VE(DwW)[? dz ds
2r 0 o
+ 2 e@den | eow) +1ja:

2r

~ 2 ~
< (0 + 5)][ / |ALVE(Dw)[*dz ds + %C(é, J,€, /\)/ [o(|Dw|) + 1] d=
0 2r

2r

Therefore, applying the Giaquinta-Modica type covering argument in [13, Lemma 13] we
have that

h }L2
][ AL VE(Dw)[?dzds < cﬁC(e,A)/ [o(|]Dw]) + 1] dz
0 Qr 57
15



for every @5, € Qr and h € R with 0 < h < {5 or —55 < h < 0. Inserting this into (4.5)
with s = h, we have

5 B2
A VE(DW)Pdz < § / A VEDW)Pdz + e O (e, \) / o(|Dw]) + 1] d=.
Q'r 2r r
Again applying the same covering argument, we have that for every (o5, € Qg and h € R
with 0 < |h| < &5,
1
h% /g
Letting h — 0 in (4.6), we then obtain (7).
The results in (i7) and (i7i) are direct consequences of (4.6). Let Qa5 € Qr and h € R
with 0 < |h| < 5. By Young’s inequality we have that

5r

(4.6) |AL VE(DW)[*dz < 7%C(a, )\)/ [o(|Dw|) + 1] d=.

257

/ h7p|Ak’hDW|p dz < Ch2/ (8 + |DW<I + h€k>| + |DW($)DP72|A]€7}LDW|2 dz

T T

+ c/ -(8 + |[Dw(x + hey)| + |[Dw(x)])P dz

< ch™?

[ HetiDuas b0l DV g,
j ,

¢'(e) e+ |Dw(x + hey)| + |Dw(x)|

+c/Q%T[¢<|Dw|> +1)ds

<50EN [ [pDw)) + 1)z
QQST

and, passing to the limit as h — 0, this implies (ii).
Finally we prove (iii). Set M := [[Dw|| = [[Duc|ze(q,s, r¥n). Then, from (4.6), we
have

e+2M ' (e + |Dw(x + heg, t)| + |Dw(x,t)|)

AppDw]*dz < AppDwl]*d
o eVl de S = e T Dw(a + hent)| [ Dw(a.p] P4
2M
<L [ B Ve DR d:
¢'() Jag,
e+2M h?
C——C(E,)\)/ o(|Dw|) + 1] d=.
Sp’(g) r? Q25r[ ]
This implli)esghat Dw € L} (—R? 0;W.-2(Bgr; RN™)). Moreover, since (0.(|DW|))a, =
(| Dw]) 2D,
| 1Dl DwP = < cigtan)? [ DAl az.
QT r
From this we get ¢.(|Dw|) € L} (—R?,0; W,2*(Bg)), and the proof concludes. O

Combining the above lemma with the Sobolev inequality we obtain the following result:

Lemma 4.2. Let ¢ satisfy Assumption 2.2 with (1.5), and let u. be a weak solution to
(4.2). Then ¢.(|Du.|) € LE*(Qr).

loc

We end this section with the convergence results of Du, to Du.
16



Lemma 4.3. Let u be a weak solution to (1.1) and u. be the weak solution to (4.1) with
Qr € Qp. Then Du. converges to Du in L¥(Qr).

Proof. Tt suffices to show that

(4.7) lim 'V(Du,.) — V(Du)[*dz = 0.

e—0+ Qr

By following the proof of [14, Theorem 3.5, one has
(4.8) lim 'VE(Du.) — V(Du)[*dz = 0.

e—0+ Qr

Moreover, which together with (2.8) implies that

[ eipudaz<e [ [odipud)+ )] as

< c/ IV (Du.) + (2)] d

< c/ :]V(Du5)|2 +o(e) + 1} dz

<c /Q [p(1Dul) +1] a:

for any sufficiently small € > 0. Applying (2.18), Young’s inequality for the N-function
¢ and the preceding inequality we have that for any ¢ € (0,1),

/QR VE(Du.) — V(D)2 ds < c/

| puie)e<e | ¢ pupe+ o) a:

Qr

<0 [ o(|Du])dz + cs0(e)| Qg
Qr

<ed [ [p(Dul) +1] dz + csp(e)|Qnl
Qr
hence
limsup/ VE(Du.) — V(D)2 dz < 0(5/ [(1Du)) +1] d=.
e—0t R R
Therefore, since 6 € (0, 1) is arbitrary, we have

lim |[Ve(Du.) — V(Du,)|*dz = 0.
e—0+ Qn

This and (4.8) yield (4.7). O

5. LOCAL BOUNDEDNESS OF THE GRADIENT

Now, we address the problem of obtaining an L*>*-bound for Du, by deriving uniform
estimates in ¢ for weak solutions to the non-degenerate systems (4.1). We follow some
ideas underlying the Moser iteration for the Lipschitz regularity for parabolic p-Laplace

systems, which can be found in [8, Theorem 4], [9, Theorem 4] and [6, Proposition 3.1].
17



Note that Du, is weakly differentiable with respect to the spatial variable = by Lemma 4.1(3).
Hence differentiating (4.2) with respect to xj we find

(5.1)
W (eDul), P/(IDw])  l(Du]) (w)f ()i,
at(uE)mk - ( |Du5| (u&:):rzxk + |Du5| |_D]_15|2 |Du€| (ue)xl .
=: (AOZB( )$J$k> , a=1,2,..., N,
where
IAs(Q)°
A7 i (A% (D) = P2
0Q)
Q=Du.

We start with obtaining a Caccioppoli type inequality for the system (5.1).

Lemma 5.1. Let ¢ satisfy Assumption 2.2 with (1.5) and (2.3), and let u. be a weak
solution to (4.2). Suppose f € COl([O oo)) is positive, increasing and satisfying f'(s) > 0
for a.e. s with f(s) >0, and set F(s fo Tf(T)dr. For every Q := B, X [t1,t2] € Qr,
§eCyF(B,) with0<E<1 cmdnGCoo( ) wzth0<77< 1 and ny > 0, we have

/ F(|Du.(z, m) )¢ dz — / F(|Du.(z, m)|)€%n da
B, B,

I e L LR s T PP

FDWl? V.
<c /Q 1D L Defnd +/QF<|D e dz

Moreover, the term gps(|Du6|) l)\) in the above estimate can be replaced by p.(|Du.|) f(|Dul).

Proof. For simplicity, we shall write ¢ = ¢, and w = (w®) = u..
We test (5.1) with w, f(|Dw]|)&%n to obtain that

/ ; /B (wl Y, £(| Dw])En dads + / Aeud  fwt F(|Dw)ERnl, dz = 0.

~~ ~~

=:1; A2

We estimate I; and I, separately. We have
T2
= [ [ @D - F(Dwn) ¢ dsdt
BP

:/B F(\Dw(x,Tg)])fzndx—/B F(]Dw(a:,ﬁ)\)f%d:c—/F(\Dw\)f%tdz.

Q

As for I, we first observe that, with (2.13), (2.14),

¢'(IDw])

aﬁ wh a _ 2. |2

18



108 ,8
A l’ mkwmkwxlw:pl:vl

_ ~ " s
¢'(|1Dw|) 5 . (@"(|Dw|)|Dw| T

= 61“5& -1 J
|Dw| o &' (|Dwl) |Dw |? wmﬂkwﬂﬂszzwxm

F(Dw)) [IDUDWPIE | (@ (DwhDw]  \ XN, [Due - D(Dw)
|Dw\{ T () ADw }
Z(IDw)) | D(Dw)
|Dw| 4 ’

> (p—1)

and

2(|Dw) &"(|Dw|)| Dw| wgwy,
Aozﬁ B a | §0(| 51'.5(16 -1 i Zj B «
A tal = e | T g 0DwD Dwf? [ Mot

20m)

[D(IDwP)]-

Inserting these inequalities into Iy, we have

o f'(|Dw
IQZ/QA B £$k|: xkx (’DWD—{—kawxlwxlczzzw 5277(312
+ [ 2208wt f(Dw])EG
Q

1 @/(|DWD 2,12 f/<|DW|> N2 | 2
> a/QW [f<|Dw|>|D i+ LD i pwp) } ez

(5.3)

2(1Dw])
—c /Q |D—\D Dw[?)|f(|Dw])¢|DE | =

for some constant ¢; > 0. Applying Young’s inequality to the last integrand, we obtain

1 [ @(Dw)) F(1Dw))
B> o /Q e [f(|DW|)|D2W|2 T quwﬁﬂ & d

_ fFADWD? o

or

=/
o L[ @Dwh
a1 Jg |Dw |

f"(|1Dwl)

Aot 4 S0

rD<\Dw\2>P] €2 dz

o /Q AUDW), 1| D%l £(| Dw)el De

| Dw|
L [ &(Dw]) f'(|Dw))
| Dw|

~ 20, o |Dw]|
p / 5(1Dw|) f(|Dw)| Dg[*n dz
Q

[f(IDW|)|D2WI2 T |D<|Dw|2>|2} ez

Therefore, combining the above estimates, we get (5.2). O

Theorem 5.2. Let ¢ satisfy Assumption 2.2 with (1.5) and (2.3), and u. with e € (0,1)

be a weak solution to (4.2). Then Du. € L (Qp, RN™). Moreover, we have that for every
19



QQT(ZO> S QT;

2
(n+2)p—2n
(54) HDuEHLm(Qr(Zo),RN") <c (][ 905(|Du5]) dz + 1)
Q

2r(20)
for some ¢ > 1 depending on n, N, p and q, and independent of €.

Proof. Step 1. (Setting and Caccioppoli type estimate) To enlighten the notation, we will
write ¢ 1= . and w 1= u.. Let Q2. = Qo(20) € Qr. Without loss of generality, we
assume that zy = (z9,%) = (0,0). Let p; = s17 and py = sor with 1 < s1 < s9 < 2,
£ € C§°(B,,) and n € C*(R) be as in (3.3) and (3.4), respectively.

Then applying Lemma 5.1 with f(t) = tX where x > 0, p = py, 71 = —p3 and
T € (—p3,0), we have

P (IDw()

D] DD w ez

sup / |DW($,T)|2+X§2dx+/
B

—p2<7<0 02 Qpy

%/@ [|DW[2 + a(|Dwl])] [Dwl|* d= .

(5.5)
<

Step 2. (Improving inequality) We set

N

(5.6) F(z) == [p(|Dw(z, 1)) | Dw(z, t)[X]2n(t)€(x) .

Note that, in order to enlighten the notation, we will often omit the dependence of F,
u, n and £ on the respective arguments. Differentiating (5.6) with respect to z; we then
have

« «

17~ X173 [~ X x—1 Yo, Va0
Fr = 3 [p(Dw )| Dw )™ [ Dw Dwl -+ x| Dw (| Dwl)| e

+ [@(|Dw]) [ Dw[X]* s, .
whence, recalling the upper bound (3.3) for |DE|, we obtain

7'(|Dw])

@' _
IDF? < e(x +1)? Dwl | Dw|X| D?*w|*n¢ + (| Dw|)|[Dw|X.

(Pz - Pl)

Therefore, combining with (5.5) we have

sup / |DW($,T)|2+X§2dx+/ |DF|?dz
B

—p2<7<0 po Qpy

%/Q [IDW[* + @(|Dw])] [Dw]* dz.

(5.7)
<

Now, applying Holder’s inequality, the Sobolev inequality to function F' € VVO1 ’Q(BT) and

using (5.7), we can write
20



| pwi G g(Dwi) s
@y
n—2

0 % n
< / / Dw[ da / P(Dw)IDw = de | dt
- Bpy B

p1
2
*

0 2
5o <( sw [ pweopsa) (] P a
—pi<r<0J By, —p Bpy

< | sup / |Dw(z, 7)* ™ dz / |DF|?dz
—p?<7<0J B Qpy (20)

P1

NG x)?
(p2 — p1)?

3

1+2

n

/Q (IDW|* + @(|Dw])) !Dw!Xdz>

By Lemma 4.2, we have that (| Dw]|) € L¥/2(Qs,) hence, by (2.2), Dw € L#-2 (Q,; RN™).

Note that, under the assumption (1.5) on p, we have % > n22”_24 > 2. Therefore, it holds
that

(5.9) / [ Dw]? + ¢(|Dw])] d= < co.
2r
Since 2 < % + p again by (1.5), setting

4
(5.10) X1= =2,

we may improve estimate (5.8) as

/ (|DW’2 + @(|DW|))|DW|X1+)¢(1+%) K
Qpl |Q27‘|
o (1+ )3 d 1+2
A+ o o
<ec ((pz—p1)2 /sz [(IDW[* + @(|Dw]))| Dw|* + 1] |Q2T|> |

Step 3. (Iteration) Let sq, sy such that 1 < s; < s9 < 2 be fixed. For m =0,1,2,...
we set

Y

2
Xo:=0 and x,:=x1+60xm-1 (m=>=1), where 6:=1+ —,
n

I ‘:/ [(IDWI* + @(| Dw])) | Dw]* +1] where 7y = (81427 (52 = s1))r

™m

dz
Qx|
Note that x,, = (6" — 1)%*. Then we have from (5.11) that

C40m036’m cm
Iy < ———J0 < —9 g9 m=12,...

21
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where ¢y > 1 depends on n, N, p and ¢. Hence, for m > 2,

-1 0
Cm Cm
0 0 0
I < JO
m (32—51)29 20 “m—2

—-1)6
me(m=1)

SRy (me ket ) om
< & Y [ R
T (52— §1)2Xkm 0070 ((52 — 5p)f0 "

for some large ¢y, co, By > 1 depending on n, N, p and ¢q. Consequently, setting

B dz
du(z) = [|Dw(2)[* + (| Dw(2)])] Ol
we have
1DW (L (., mmy S ([DW (|20 (@4, iy = 1im (/ | Dw [Xr du) < limsup Jx"
m—00 - m—00
6t )
<limsup ( ———J < ——J,
m—>oop ((82 — s1)% O) (s —s1)% 0
where we used also the fact that x,,, = (6" — 1)X5*. Therefore, we have
_2
c _ i
(5.12) | DW|| Lo (., mN7) < 757 ][ [[Dw]* + ¢(|Dwl)] dz + 1 :
(s2 = s1)" \ g,

By virtue of (5.9), this shows that Dw € L (Qp; RN™).

loc

Step 4. (Interpolation) Now we get rid of the term |Dw]|? in the integrand in (5.12)
by using an interpolation argument. Since Dw € L (Qg; RN™) and 2(5—;119) <1 by (1.5),

loc
using Young’s inequality we have that for every 1 < s1 < s9 < 2,

c[|[Dwl|, 2 N a1
> (Qsqyr,,RN™)
D o0 ny < . DwPd
1Dl @) < (52— s1)™ ]ésw Dl dz

2(2—p) 2

2

c nx1
+ — >(|Dwl)dz + 1
(52— 51)% (éw AADw) )

c nx1—2(2-p)
< HIDW ] (g vy + 7@ DwlPdz
SQT‘

So — 31) nx1-2(2-p)

2

c nx1
+ — >(|Dwl)dz + 1
(52— 51)% (ésy AAlDw) )

X c ) o)
APl @ + (o (f, DD + 142
Therefore, we can remove the first term on the right hand side (cfr. [19, Lemma 6.1]).

Finally, recalling (5.10), we obtain (5.4). O
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From the previous theorem and Lemma 4.3, we obtain the boundedness of the gradient
of a weak solution to (1.1).

Corollary 5.3. Let ¢ satisfy Assumption 2.2 with (1.5), and u be a weak solution to
(1.1). Then Du € L2 (Qp, RYN™). Moreover, we have that for every Qs € Qr,

loc

2
(n+2)p—2n
(5.13) IDull s <(f. ppubdz+1)
Q2r(20)

for some ¢ = ¢(n, N,p,q) > 1.

Remark 5.4. When ¢(t) = t? with n2—f2 < p < 2, the estimate (5.13) is exactly the same
as [12, eq. (5.10)].

6. HOLDER CONTINUITY OF Du REVISITED

We prove local Holder continuity for the gradient of weak solution to (1.1), where ¢
satisfies Assumption 2.3. We remark that the result was already obtained by Lieberman
in [26] by assuming the local boundedness of Du. In this section, we take advantage of
the results of Section 5 and revisit his C1®-regularity’s proof, according to the setting of
our paper. We also note that Lieberman’s proof parallels the one given by Di Benedetto
and Friedman [10, 11], using a measure theoretic approach. In addition, we are adapting
the geometry of the cylinders accordingly, due to the growth conditions of the operator.

We define the intrinsic parabolic cylinder associated with an N-function ¢ as

Q7 (0, to) == By(0) x (to — 12 /¢" (N), o).
where \,r > 0, and oscillation of a function f: U — R™ by

osc = sup |f(x) ~ f(y)].

z,yelU

Now, we state the main result of this section.

Theorem 6.1. Let ¢ : [0,00) — [0,00) satisfy Assumption 2.3, and let u be a weak
solution to the parabolic system (1.1). and Qgr(20) € Qr. If Du € LX(Qr(2); RY"),
then Du € C&f(@g(zo);RN”) for some a € (0,1) depending on n,N,p,q,v1 and cp.
Moreover, any Qr(z0) € Qr, 1 € (0, R) and A > || Dul| oo (@ p(z0)rNn), we have

1 T\¢
osc Du < ¢\ (max{ (X %, "(\ _5}—)
o5 AN TE

fOT’ some ¢ = C(n7N7p7 q, 7170}1) > 0.

This result can be obtained by approximation via Lemma 4.3, once we obtain the
analog of Theorem 6.1 for the gradients Du. of weak solutions u. to the approximating
nondegenerate parabolic system (4.2), where ¢ € (0,1]. This will be a consequence of
the following two propositions (cfr. [26, Propositions 1.3 and 1.4]) for u.. Note that all
estimates in this section are independent of € € (0, 1]. Thus, for simplicity, we shall write
u=u. and p = ..

The first proposition provides an estimate on the oscillation of Du on subcylinders
when |Dul is small on a small portion of the main cylinder.

Proposition 6.2. Let ¢ : [0,00) — [0,00) satisfy Assumption 2.3, and let u be a weak
solution to (4.2). Suppose that for some A\, R > 0, Q%(20) € Q7 and

(6.1) Dul <A in Qilx).
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There exist o € (0,2~ and C > 1 depending on n, N,p,q,v1 and cy. such that if

(6.2) [{|Du] < (1—0)A} N Qx(20)] < o] Qn(20)]
then
3
T\ 1
6.3 osc Du<(C|(—= osc Du
(6.3) Q2 (20) <R> Q% (20)

for allr € (0, R).
If (6.2) fails, the following proposition gives an estimate of how |Du| decreases.

Proposition 6.3. Let ¢ : [0,00) — [0,00) satisfy Assumption 2.3, and let u be a weak
solution to (4.2). Suppose that for some \, R > 0, Q}(20) € Qr and (6.1) holds. For
any o € (0, %), there exists v € (0,1) depending on n, N, p,q and o such that if

(6.4) {|Du] < (1= 0)A} N Qx(20)| > o]Qr(20)].
then
(6.5) |Du| < vA in QﬁR/Q(zo).

for all r € (0, R).

Proposition 6.2 and Proposition 6.3 will be proved in Subsection 6.1 and Subsection 6.2,
respectively. In the remaining subsections, we always assume that ¢ : [0,00) — [0, 00)
satisfies Assumption 2.3, u is a weak solution to (4.2), and (6.1) holds for some Q%(z) €
Qp with A, R > 0. In addition, without loss of generality, we further assume that assume
(2.3) and zp = (z9,t0) = (0,0) = 0, and write @} = Q(0) for all r € (0, R].

6.1. Proof of Proposition 6.2. Before starting the proof, we recall the following weighted
version of Poincaré’s inequality, which is quite elementary and can be deduced, for in-
stance, from [13, Theorem 7).

Lemma 6.4. Suppose f € W'P(Bg;R™) and £ € L'(Bg) is nonnegative and satisfies
1€l 1 Br) = 1. The we have

Jo

for some ¢ = c(n,m,p) > 0, where (f)e = [ f€du.

f={(fe
R

P
dxgc/ |DfPdx
Br

We first derive a higher integrability result for Du (cfr. [26, Lemma 4.2]).

Lemma 6.5. Let P € R satisfying 5 < |P| < X\. There exist ,c > 0 depending on
n, N,p and q such that

(£

Proof. Fix any Q3.(z1) C Q% with 2; = (xl,t1)2€ Q) and r < ry <1y < 2r. We further

set ryg = 1E2 py = 02 and ¢y = ¢ — w;—f/\). Note that r; < r3 < ry < 79. We

consider two cut-off functions. Let & € C§°(B,,(x1)) satisfying 0 < & < 1, § = 1 in

B,,(x1) and |D&| < 8/(rg — 1), and set £ = ||§0||211(Br2)§0' Note that |B,| < |B,,| <
24
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Ty
|Du — P20+ dz) < C][ |Du —P|?dz.
Q

A A
R/2 R



1ol 1B,y < |Br,

| < 2B,| and [|¢][L1(5,,) = 1. Next, let ¢ € C=(Q,(21)) such that
¢ =00n9,Q7, (1), ¢

=1in Qi‘l(zl),

c co"(A)

DCP? + | DX < ———— d 0<¢< .
| C| +| C| (TQ—’I“l)z an Ct (7"2—7”1)2

Finally, define

w(z):=u(z) —P(z —x1), W(t) ::/B ( )W(x,t)lf(x) dz,

r2

1/ )\ t1
and W :=w —wy with WO::gp( >/ Wfdz—][ W(t)dt.
Q2 (21) ta

We take (Xw with y > 2 as a test function in the weak form of (1.1) to get, for every
T € [ﬁ;(tl),

/ / (wy - W)CX dz di + / / (A(Du) — A(P)) : D(C*w) dzdt = 0,
ta J B, (21) ta J Bry (21)
which yields

/
su ‘;VQ de_l_ @(‘Du‘+|PDDW2 XdZ
p Iw[*¢ ¢
BTz(xl)

T (t1) Q) [Dul+ [P
/ D P /" )\
< C / 80<| U.|+’ |>’DWHW|<X_1dZ+C ¥ ( ) 2/ |V\~/'|2<X_ld2.
T2 =71 J@Q), (1) |Du| + [P (ra —71) Q3 (21)

Here we used (2.15). Set

Sy == sup / |W[*¢*dx.
Br2(1‘1)

7—6172\2 (t1)

Applying Young’s inequality to the integrand of the first integral on the right hand side
and using the facts that x > 2, |Du| < A and % < |P| < A, we have

1 )\
SX + S0//()\>/v |DW|2<X dz < CL)Q/ |V~V|2Cx—2 dz
@, (1) (r2 = 71)% Jou, (1)

Then, when xy = 4 and y = 2, we have

S% t1 ==
(6.6) / |Dw|*dz < 02—2/ / |W(z,t)*dx dt,
Q2 (=1) (re =11)* /4 Bry(21)

and

1 )\ Vi )\
L) w2 ds < o2 [w — W) + [wo — W) dz.
(r _ 2 _ 2
> —T1) Q2 (21) (ry —11) QR (21)

By Poincaré’s inequality with the weight & (Lemma 6.4) we see that for every t € I} (t1)

So

/A

/ (w(z,t) — W(t)]*dz < cr2/ |Dw (z,t)|* dz.
By, By,
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Moreover, by testing (4.2) with ¢ = (§,--- , &) and using | D¢| < sy and (2.15) with
|Du| < A < 2|P| < 2, we see that for every to < 7 < 7/ < ty,

(W(7) = W(r')| =

/ /Wl) (A(Du) — A(P)) : D¢ dt

< c—][ |Dw|dz,
(ry —71) Q2 (21)

hence for every t € (tq, 1),

7,2

67) Iwo-W@OI< s [W(r) - W)l < c—][ Dwldz.
to<T<T/ <11 (TQ — Tl) Qi\z (Zl)

Therefore, combining the above estimates together with Holder’s inequality, we have
(6.8)

7 )\ 4 " )\ 4
Sy < e 1 >2( i 2+T2>/ |DW|2dz<cL)T4/ |Dw|*dz.
(7’2 - 7“1) (7“2 - 7"1) Q2 (1) (TQ - 7“1) Q2 (21)

Moreover, by (6.7), a weighted Sobolev-Poincaré type inequality and Hélder’s inequality,
we also see that for every t € (o, 1)

/ |W(z,t)|? dr < c/ (w(z,t) — W(t)|* dz + cr [W(t) — wo|?
B?“Q (1‘1) BTQ (371)

(6.9) n+2 n+2

2n_ " Tn+4 2n_ "
< Dw(a, ) Hde) 4o DwEd:)
Bry (@1) (TQ B Tl) Q7 (21)

Therefore, inserting (6.8) and (6.9) into (6.6) and using Young’s inequality, we have that
for every 0 < ry <ro <71,

2

"\ 4 n+2
/ |Dw|*dz < < 5 A 4/ |Dw|* dz
Q1) (rs = r1)? \ (r2 = 71)* Joy, )
2n

nt2 n

X ( r ) / |Dw|7127+2 dz

2= Q, (21)
4(n+3) 5 %4_2
]Dw]zdz> / ]DW]%QTHQ dz
(21) Q3,.(21)
n+2

n—+2 " n+2
< C< : ) = ()2 = (/
To —T1 r Q
1 2(n+3) s\ % " 3
< = ( ! ) / |Dw]2dz+c(gpn<+2)) / |Dw\n2T2 dz
2\ra—mn @ (21) r Q3(21)

Then we can remove the first term on the right hand side, and have

A
2

n+2

][ Dw|2dz < ¢ ][ Dw|ds |
QX (=1) Q3,.(=1)

for every Q2(z1) C Q%. Finally, applying Gehring’s Lemma (cfr. [19, Theorem 6.6]), we

obtain the conclusion. O
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Next we obtain an L2-comparison estimate between Du and the gradient of a weak
solution to a corresponding linear system with constant coefficients (cfr. [26, Lemma 4.3]).
We recall (2.7) and the definition of Af‘jﬁ in (2.13), so that

o «a P_Q I " 1
0100 Y g e - ag@l<a (Fpd) SR for Poq < el
i,J,a,8

Lemma 6.6. Let P = (P?) € RV" satisfying 5 < |P| < X, and v = (v) be the weak
solution to

(6.11) (V) = (A (P)0l )y =0 in Qpyp, a=1,2,..., N,
v=u on ain‘;w,

Then for every o € (0, 1),

][ |Du — Dv|*dz < c
Q

A
R/2

vy
e 4y INTY ][ |Du — P|?dz ][ |Du — P|*dz,
Q QX

for some ¢ = ¢(n, N,p,q,v,cn) > 0, where v > 0 is from Lemma 6.5

A
R

Proof. Observe the u satisfies

() = (APl ), = = (AT (P)(ul, = P)) + [AP)] — [A(D) = —(HP),,
for every a = 1,2, ..., N. By taking u® — v® as a test function in the weak form of the
above two equations, we have

1

L / (e, 0) — viz, 0)Fde+ [ AP@)(W —of)(ul — o) d
Bry2

2 N z; T T; T;
QR/2

= Hf(“’;, - ,Ugl) dZ’
R/

and
1

1" 2 2
¢"(|P])|Du — Dv|“dz < —][ H|*dz,
7{9% ?"(IP]) Jay,

where H = (H¢). We note that

Hf = A (P)(uf, — P}) + [A(P)]7 — [A(Dw)];

J

1
= A7 (P)(uf, — P)) - (/ AP (rDu+ (1-1)P) d7> (uf — PP,
0
If | Du — P| < go|P|, by (6.10)

1 D o P Y1
H| < c ( / [%] dr) Z([P))|Du - P| < e} (P])| Du — P/
If |[Du — P| > g|P|, then by (2.14) and (6.1)

H| < e ([P]) [ Du — P| < ey (|P])[P| )| Du - P,

where v is from Lemma 6.5. Combining the above results we have

f

Therefore, applying Lemma 6.5, we obtain the desired estimate. O
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Set v(z,t) == v (Rx, (j—&t), where v is a weak solution to (6.11) with P € RN

satisfying % < |P| < A. Then v is a weak solution to

_ AT (P) .
L ( 803/()\) Ugj) =0 in Qip, o=12,...,N.

i

_ afB _ _
Since 0 < L™ < i?,—él?wf‘wf < L for all w = (w®) € RY and some L > 1, by regularity

theory for linear parabolic systems with constant coefficients (see, for instance, [19, XI.
Theorem 6.6] with its proof), we have that for every p € (0, 1),

J

which implies the following estimate for v: for every p € (0, 35),

|Dv — (D\_/)Qﬂ|2 dz < cp2/ |Dv — (D\‘/)Ql/2|2 dz,
Q1/2

P

p n+4
(6.12) /@ Dy — (Dv)gy2dz < ¢ (Tz) /Q DV~ (Dv)gy [ dz.
o)

A
R/2

The estimate (6.12) is a key ingredient to obtain the following result, which provides an
estimate for the decay of the mean oscillation of Du on each scale (cfr. [26, Lemma 4.4]).

Lemma 6.7. Suppose

1
[(Du)ga | = 5)\ and ]ip |Du — (Du)QM? dz < eN?
R

for some € € (0,1). Then for every 0, € (0,3), we have
/ k |Du — (Du)gy [Pdz < er(e5" 45777 + 6" / |Du — (Du)gy |* d=
Qin Ok
for some c; > 1, where v > 0 is from Lemma 6.5.

Proof. By Lemma 6.6 with P = (Du)qy and (6.12), we have that for every 6 € (0, ),
/ |Du — (Du)o [*dz < 2/ |Du — Dv|*dz + 2/ |Dv — (Dv) |*dz
Qn o QX Qdn .
<ecled™ +e,77e] /
Q

This concludes the proof. U

|Du — (Du)QIAJ2 dz + c@”“/ |Dv — (Du)Qﬁ\2 dz.
Qo

A
R
The counterpart of [26, Lemma 4.5] is the following result.

Lemma 6.8. There exist small constants 0,¢ € (0,1) such if

3
[(Du)ga | = Z/\ and ]g% |Du — (Du)Q§|2dz <el?,

then for every m € N,

m 2 22+m
28
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|(Du)gy | = (— + ) A, where R, :=0"R,



and

3
fo |Du — (Du)Q§m|2dz < 02 ]é |Du — (Du)gy 1?dz

A m—1
Rm Rm—1
%m . 2
<. <0 ]2§|Du (Du)gy | dz.
In particular, we have that for every r € (0, R],
3
][ |Du — (Du)ga|*dz < o3 (L) ’ ][ |Du — (Du)p | dz.
Q) ' R Jop .
Proof. Choose 6, € and ¢j small so that
6n+7/2
401

where the constant ¢; > 1 is from the preceding lemma. We prove the lemma by induction.
We first obtain the desired estimates when m = 1. By the preceding lemma, we have

f

which is the desired second estimate when m = 1. Moreover,

(Dulgy, - (Dupgy| <02 f
Qy

T
0 < min { (4¢1) %, 2*4/3} , €0 < ( ) , e <min{g5[0" 72/ (de)] N, 27097,

Du— (Du)gy [*dz < 6%/ ]i [Du— (Du)gy [ dz,
R

A
OR

1
. —n—2_1/2 -
| Du (Du)Q?%] dz <0 e A< 8)\,

hence
1 1 1
|(DU)Q3R| > |(Du)Q§|—§/\> 5‘1'? A

This is the first estimate when m = 1.
Next, we suppose the estimates hold for all m < mg. Then from the first and the
second inequalities when m = mg we see that

1 1 1
[(Du)gy | > <§ + 22+m0> A > 5)\ and ][A ]Du—(Du)%mo ?dz < 030N < )2

Rm
Rmg

Therefore, applying the preceding lemma with R replaced by R,,, and the second in-
equality when m = mg, we see that

3

Q) [Du—(Du)gy  [dz< 0" ][A [Du— (Du)gy [*dz < 20" De?.
Ring+1 Bmg

This is the second estimate when m = mg + 1. Moreover, by the first estimate when
m = mg and the upper bounds of 6 and ¢,
1 fimoes 1

|Du — (Du)Q}Am0 |dz < iz A < ST

(Dulgy  —(Dwgy <50 f
Rmg

Therefore we have

1 1 1
(Dug;, 1> (D0, |~ g3 > (5 + 557 ) A

mo+1 mQ

This is the first estimate when m = mg + 1, and the proof is concluded. O
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We conclude the list of the auxiliary results needed to prove Proposition 6.2 with the
following one, which corresponds to [26, Lemma 4.6]. For a ¢ > 0 small enough such that
(6.2) holds, we have that the average of Du is comparable with A and that Du remains
close to its average.

Lemma 6.9. Fore > 0, there exists 0 = o(c) € (0,27"*2)) such that if o satisfies (6.2),
then -

g)\ < [(Du)gy

]é |Du — (Du)Q]Am|2 <el

A
R/2

| <A

and

Proof. Let f(s) := (s — (1 — 20)\)4 with § € (0,1/4) to be determined and F(s) :=
fos Tf(7)dr. Note that we have that

(i) when f(|Dul) > 0, 3A < (1—-260)X < |Du| < A (hence 2-%(\) < ¢(|Dul) < ¢(N))
and f/(|Dul) 1.
(i) 0 < f(|Du]) < 20X and 0 < F(|Dul) < 462)3.
Let £ € C§°(Br) and n € C*(R) be cut-off functions such that { = 1 in Bgs, |DE| <
n=0in (—oo, —WI,%—;)\)), 4;%;), oo)and 0 < 7y < 8” oy Then, the Cacc1oppoh

estimate (5.2) with p = R, 71 = —(p,l,p”—(?)\) and 75 = —4"%)\) ylelds
/
D
/ ©" (NN D*ul* dz < c/ ¢'(|Du))
A((1—0)A,R/2) Q | Dul
_ ul)®
<en? [ |pap L 4 apupr(ou)
o f'(|1Dul)
< cRZ|{|Du| > (1= 20)A} N Qp|0°Ap(N)

where A(k,7) := {2z € Q} : |Du(z)| > k}. Note that in the send inequality, we used the
fact that ¢”(A\) < 292¢"(|Du|) when F(|Dul) > 0. Hence we have

n=1lin (-

f(IDu])|D*ul* dz

A
R/2

(6.13) / D*ufdz < cOR2X2|{|Du| > (1—20)\} N Q)|
((1=0)X\,R/2)

Let hg € C*(R) be increasing such that ho(t) = 0 for t < 3\/4, ho(t) =1 for t > T\/8,
and hj < 16\, and set h(z) = ho(|Du(z)|)Du(z). Then we have |Dh|?* < c¢|D?*ul?.
Let & € C§°(Bgry2) be a cut-off function such that 0< & <1with § =11in Bg/ and

D2| + D& f? < ¢/ B2, and € = [, 60 ~ . Set

W(t) := Du(z,t)é(x)dx, Wy(t) ::/ h(x,t)¢(z)de
BR BR
and
SDH()\) 0 0
W, = / Du(z,t)é(z) dxdt = ][ W(t)dt.
R? __R2 Br __R2
ey ey
Note that by Lemma 6.4 with f = h(-,#) and p = ;2% we have
// h(z,t) — W) 2 dz dt < cAert // W (£)| 751 da dt
(6.14) e G
2n
< c(]BR])\)nTl / |Dh|»+7 dz .
A

Q2
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Set
Yo :=ABN4, R/2)\ A(1 —0)\,R/2) and X :=A((1—-0))\ R/2).
Since |Dh| =0 on Q% 72 \ A(BA/4, R/2), we have

I,

R/2

By Holder’s inequality, (6.2) and (6.13) with 6 = 1, the first term on the right hand side
can be estimated as

\Dh\ffldz:/ \Dh\mdz+/|Dh\f+nldz.
Yo ¥

n nil n n
|Dh|n2+1 dZ < |20|ni1 </ |_Dh|2 dz) < Canil)\n2+1Rin2+1|Qj\%‘ .
PO (3\/4,R/2)

Moreover, by (6.13) with 0 = o

n_

n n+1
|Dh|n2+1 dz < |Q;\%|ﬁ1 (/ |Dh? dz)
EO A((l*O‘))\,R/Z)

< com AT RTHT|Q)].

Therefore, we have
/A |Dh|#1 dz < comi AntT R™1 Q)
R/2
hence, inserting this into (6.14),

(6.15) // W ()2 da dt < com T A2[Q)] .
Q%

R/2

Note that
|Du— wol* < c(|[Du—h|*+ |h = W, > +|W;, - W]* + |[W — wy|*) .
First, by (6.2) with the definition of h, we have

(6.16) / |Du — h\zdz = /A (1-— ho(]Du|))2]Du]2dz < J)\QIQ)];J .
Q

A
R/2 QR2\E

Moreover, by Hélder’s inequality and the definition of (, we also have

/ W), - W|?dz = |BR/2|/
Q) R2/(4¢" (X))

R/2

(6.17) < \BR/2|/ / (Du(x,t)—h(x,t))2dx] [ §2dx] dt
~R2/(40"(N) |/ Brya Brya

< c/ |Du — h|?dz < coN?|Q}.
Q

A
R/2

2

dt

/ (Du(z,t) — h(x,t))é(x) dz
Br/2

Second, since u = u. is a weak solution to (4.2), by testlng (4.2) with ¢ = (&,,...,&,) €
Cs°(Bg,RY), i =1,2,...,n, we have that for every — ( p<T <7 <0,

[ s ey = 7)) do = [ ’ /B ((A(DW)]* — [A(W(£)]")) - DE,, dz.



a=1,2,...,N, hence, using (2.15) and the facts that |[Du| < X in Q% and o(t)/tP~1 is
increasing,

IW(r) = W(r)| < C/ |A(Du) — A(W(1))||D%| d=

A
R/2

c [ ¢UDul+ W) D W e
< | Sy Dl WD - WP

(6.18) 0
¢'(\) -1
<W/Q [Du = W de

R/2

<P (][ |Du — W|? dz)
A

R/2

p—1

2

Applying the estimates (6.15), (6.16) and (6.17), we obtain for every — <7T<71 <0,

—1

(W (r') = W(r)| < eX* P <0%+1)\2> ? Lot ),

( )

which also implies

(6.19) /A W — w0|2dz < c|Q§| sup [W(r') — VV(T)|2 < CO’Z;H)\2|Q)}\%| .

R2
R/2 _W<T<T<O

Therefore, combining the results in (6.15)—(6.19), we have

A

This implies the second desired estimate by choosing o sufficiently small. Moreover, since
|Du| < |Du — (DH)QA | + |(_DU)Q)\ | and by the assumption of the lemma

‘{|Du| > (1_U)>‘}QQR/2‘ > ( 1_2 (n+2) )|QR/2|

|Du — (Du)gx 1?dz < ][ |Du — wo|?dz < conFT 2,
R/2 Q)

R/2 R/2

we have )
\(Du)QR/2| > ][A |Du|dz — ][X |Du — (Du)Q%/Q‘ZdZ
QR /2 Qr/2
> [(1 —o)(1— 2" Dg) - 00725:1)] A
Finally, by choosing ¢ sufficiently small we obtain the first desired estimate. O

We are now in position to prove Proposition 6.2.

Proof of Proposition 6.2. As we mentioned above, we assume zy = 0. Let € > 0 be given
from Proposition 6.8. With this €, we determine o as in Lemma 6.9 with £ in place of e,
and suppose that Q% = Qx(0) satisfies (6.2). Therefore, we have

7
A< (Dujgy | <A

and

£
|Du — (Du)gy |*dz < 2.
Choose z; = (z1,t1) € Q% such that max{|z|,/¢"(A)1|t:]} < &R, where ¢’ € (0,1/2)
is a small constant to be determined. Then QR/Q(zl) C Q7 and |QR/2(21) \ Q% ol 1Q% 2 \
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Q% o(z1)] < cgf |Q7%| for some ¢ > 0 depending n if &’ is sufficiently small. Therefore, by
(6.1) and the preceding two inequalities, we have

2

?%/2(21)
1

~ A
@ryal Ja3 e,
< <ce + ))\2 <el?

2 2
|Du — (Du)Q§/2| dz —|—][Q |Du — (Du)QIAm| dz

A
R/2

and
(Du)gy ol = [(Pu)gy | = [(Du)gy  — (Du)gy

R/2 R/Q(zl) |

7 1
> X - |Du| dz
87 1Q%el S pen@ 0@ 0@ a0
7

>—>\—C€'/\2§l)\.

provided that ¢ is sufficiently small. Therefore, by Lemma 6.8 with Q7 /2(21) in place of
@7, we obtain that for every z; € Q;\% /2 and every 0 < r < % we have

r

3/2
(6.20) ][ Du — (Du)gyoy P dz < (%) ][ Du— (Du)gy .2 dz.
Q> (1) " R QX (21) R/2\*1
2 R/2

Consequently, the desired oscillation decay estimate (6.3) follows from (6.20) by the
standard embedding argument by Campanato in the parabolic setting (see for instance
[27, Lemma 4.3]). O

6.2. Proof of Proposition 6.3. We start with a density result from (6.4) (cfr. [26,
Lemma 6.2]).

Lemma 6.10. Suppose (6.4) holds for some o € (0,3). There exists mi € N depending
on o such that

sup  [{[Du(a,t)] > (1= 27" 0)A} 1 Bsr| < 6(Bsal,  where & := (1 - E)T

2
m<t<0

Proof. Step 1. We first prove that there exists ¢; € (—(p,ﬁi), 2;”]%(,\ ) such that

(6.21) {a € Bg: |Du(w, )] > (1 — o)A} < (1 - 5) |Bgl .
Set

_oR?_
1::/ " o€ By |Du(wt)] > (1 - o)A} dt.
R2
- //()\)

Then by (6.4),
RQ
I<{|Dul > (1-o)A}nQxl < (1 —U)W|BR|-

R? oR? )
N T 2 (N

On the other hand, by the mean value theorem for integrals, there exists t; € (—
such that
I = {a € Ba: |Dula,t)] > (1 — o)} (1 - %) =%
=|{z : |Du(x -0 — =] —=.
R s v1 9 S0,,(}\)
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This inequality wit
Step 2. Let

$ yields (6.21).

o
\If(s)::ln+(1_5/)\+2l_ma), 0<s<A,

where g, (s) := max{g(s),0} and m € N with m > 2, and set
2U(s)W’
f(s)::M, 0<s<A.
s

Then we have the following straightforward properties for ¥ and f:

(i) 0<¥(s) < (m—1)In2 and ¥(s) =0 if and only if 0 < s < (1 — 0 +2'""0) \;

(11) for (1 — 0+ 21—m0.>>\ < 8§ <A, \I/,(S) = m and \I/”<8) = \I’/(S)Q;

/ 2
(iii) for (1—o—+21—m A< s <A, f(s) = 2V J6) g,
(iv) F(s) =[5 7f(r)dr = ¥(s).

Choose any t € [ Q‘TNR( O} and let t; be that given from (6.21). Then from the proof of

A)?
Lemma 5.1 (applying (5.3) to I5) with p = R, 7y = t;, 7» =t and = 1, we deduce that

/ F(|Du(z, )¢ dz

¢'(|Dul) ( o2, £'(Du]) [D(DuP)]?\
6.22 // f(|Dul)|Dul* + &% dadt
02 b 1D Duf 4
¢'(|Duf)
F(|Du(z,t))]))€? dz + ¢ |D(|1Dul?)|f(|Du])¢| DE| dadt,
Br |D |
where £ € C§°(Bg) is a cut-off function sat1sfy1ng that £ = 1 on Bzg and |D¢| < ﬁ.

For what concerns the left hand side, applying (iii) and (iv), we have

(LHS of (6.22)) >/ (| Du(z, )22 da
¢'(|Dul) (¥(|Dul) + 1)¥'(|Du])® |D(|Dul?)] ,
/ I Dup g o

On the other hand, as for the right hand side, Young’s inequality with the definition of
f and (iv) yields.

(D
(RHS of (6.22))</B U(|Du(z, t,)])%€ d:c+c//B Il’? T' (|Dul)| D dzdt
f R
#'(|Dul) ¥(|Duf)¥'(| Dul)?
/tl /BR | Du | Dul? | D(|Dul? ’ )€ dadt .

Therefore, we have

/B~ (| Du(z, D)))? dz

Du|
< V(| Du(x,t 2dx+ / / | (|Dul|) dxdt .
[ wDute )+ e [ )

For the left hand side, we see that
(LHS of (6.23)) > ¥U((1 —2"™0)A ) I{|Du(x, )| > (1—=2""0)A\} N B;spg

> ((m - 2)In2)?|{|Du(z, )] > (1 — 27™0)A} N Bsgl .
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On the other hand, to estimate the right hand side, we apply Lemma 6.10 and (i) to
get

(RHS of (6.23)) < ((m —1)In2)*|{z € Bg : |Du(z,t,)| > (1 — o +2'""0)A\}|
N c¢(m—1)In2
(1-0)(1-0)?

< {«m PTPAPSEI Gl ) B Ui ”} |Bol

5| BR|

g

< {((m —1)In2)%> + C(m—n_} Bl

1)
o
Therefore, combining the above results, we have
m—1
m — 2 an(m —

|
{|Du(z,B)] > (1 - 2™0)A} ) Bag| < {( ) a?+c*(m—‘21>>2}|353|.

Finally, by choosing m € N sufficiently large so that

m—1\> _ 1+4¢ m—1 _ ¢ (1—5)
< d <
(m—2> ST MY 22 ST e,
we obtain the conclusion. ]

We note that & >  since o € (0, %) Now, we are ready for proving Proposition 6.3.
Proof of Proposition 6.3. We remark that constants ¢ in the proof depend also on . Let
(t— (1 —v)NY
fle) = CEEEYE
where v, € (0,3) is a sufficiently small constant to be determined, and set F(t) :=

X > 2,

fg sf(s)ds = %(t — (1 —v1)AN)X. Note that since f'(t) = (t_(l_yl)/\)172§gx_2)t+(1_yl)/\), we
have
: (t— (=)} FA O VRl SR 2O LY SN el € SR 2O Vs
A R\ O R GV AN R S

Let & € C5°(Bsr) be a cut-off function with 0 < & < 1, & = 1 on Bsg/ and
|D&| < =, and ny € C°(R ) with 0 <19 < 1,17 =0 in (—oo,—ngR&)], no = 1 in

oR’
(n+2)x—n

[~ 1255,00) and 0 < (mo)e < 2580 Set £ = ¢ * ,n=ny" 7" Then applying (5.2)

with p=06R, n=t and n =1t € (_%’O)’ and using the fact that A < |[Du] < A
when |Du| > (1 — 1)\, we have

1 D(|Dul?)]?
—/ w(z, t')XC(z, 1) X g + o (A / / (e 2%5%@;&
Bsr Bsr

1
/ / { N wX|DEn + wag%t] dzdt

<ex / / [ (At D& X2 4w (g) 0+ 1]
Bsr

/ / n+2xn2_‘_gn+2xnl)dxdt
UR
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where we denote

(\Du| (1 —=v)A)+ and ¢ := Eono.
Moreover, since D(w %f) = Jw %% D(DuP) E4+w>DE and 0 < ¢ < 1,

~|Dul
(n+2)x—n )
sup / WX dg o (N / , / D(w>¢ = e )2 dadt
-5 ,,(A)<t<0 Bsr 3oy /B
//
< QQD / / XC(n+2X n— QdQTdt
20/1/2(2»
Setting

w = w("t?,

by Holder’s inequality and Sobolev’s inequality we have

/ ) / @XT) 2 dpdt
oR

2 //()\)
L ) ([ e )
,# Bsg
2 (X)
<c sup </ wX(~ da:) / , / U_J% =R )|* dadt
,,(A)<t<0 Bsr 3y
H+x
—n—2
<R2/ oR2 / wX< dl’dt) .

2 H()\)

S

S\N

Sc

We further set Q := By X (— ,0]. Then we have

2 //(A)

1+2
][~’U_JX(1+721)C712 dz < et <][~ wX¢T"? dz> ,oX > 2.
Q Q

We now apply Moser’s iteration. For m = 0,1,2,..., we set

2
Xm = 30™, where y and 6:=1+ —,
n

T = ][ wXm ("2 dz
Q
Then we have that for m =1,2,...,

and

-1 5 (0(0™-1) 0(0™ 1)
2 2 — — ==t ] m
T < eX0 0 < AN e e ()32 e
em
< CJO) )

which together with @w = w("*? yields

ol
=

gy = 1TC 20 iy = lim Jx"b<c( 3c“dz>

<ec <][ w? dz) ,
Q
and by the definitions of w and Q = Bsg X (—3 ,,( 7 0] O QUR/Q,

10D = (1= 1)Vl < f was < ana P =E=2 201081
Q
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Finally choosing vy > 0 sufficiently small such that

20
r <27™og and V1<?,

where m; is from Lemma 6.10, and applying Lemma 6.10, we obtain

4!
I0Du] = @ = )N+ lli@d, ) S 5A-

Therefore, we complete the proof of (6.5) by defining v :=1 — %. U

6.3. Proof of Theorem 6.1. We are now in position to prove the main result, The-
orem 6.1. Arguing as in [26, Corollary 1.2], it will be a consequence of the following
claim.

Claim. Suppose that |Du| < X in some Q% = Qn(20) € Qp and X > 0. Then, for
every r € (0, R) it holds that

r\o
6.24 osc Du<e <—> A

624) @ (=0) R

for some a € (0,1).

We assume that zy = (0, 0) for simplicity. Fix o € (0,27""!) in Proposition 6.2. With
this o, choose v € (0, 1) as in Proposition 6.3. If the assumption (6.2) holds, then (6.24)
follows from Proposition 6.2. Hence, we assume that (6.2) does not hold, which means
that (6.4) holds.

Choose 0 € (0, 1) sufficiently small so that

41 4
0<Z” <% and 0< (5)3 ,
2 2
where C' > 1 is from Proposition 6.2 and for m € Ny := NU {0}, set R,, := 0™R and
Am = V™\. Then one has QR*”“J: QUR /2 for every j. This implies {QR " b 1S

shrinking. Define
N :={m € Ny : (6.2) holds with R,, and \,, in place of R and \},

and
min N if N #()
mo = .
00 if N=0.
Then my > 1. If 1 < m < myg, then by Proposition 6.4 with R,,_; and \,,_; in place of

R and A, we have |Du| < Ap =v"Ain Q%’; and
osc (Du) < 2HDU.||LOO(Q;\%M rmy S 207A
(6.25) @R "
forall m=0,1,2,...,mg when mg<oo, or m € Ny when mg= 0.

Furthermore, if mg < oo, by Proposition 6.2 with R,,, and A, in place of R and A, the
second condition of # in above and (6.25) with m = my, we have

(6.26) 0SC (Du) < CHim—mo)3/4 0sc (Du) < 2v™\  for all m > mg when my < co.
Q TVLO QRmO

Fix any r € (0, R/2]. Let t; € (—3 ( 7. 0]. Note that QR/2(0 t1) C Qpand ™IR/2 <
r < 0™R/2 for some m € Np. Then applymg (6.25) and (6.26) for QR/Q(O,tl) instead of
Q%, we see that
-

(6.27) |Du(z, ;) — Du(0, ;)] < 20"\ < ¢ (}—%)‘” A
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where a; = log, v, for all (z,t,) € Q).
Let & € C5°(B,) with 0 < & < 1,7 = 1 on B, and [D*| + [DE* < 5, & =

HgO”le(BT)an and
W(t) := Du(z,t)¢(z) dz .

By
Then by testing (4.2) with ¢ = (&,,...,&,) € C(B,,RY), i =1,2,...,n and applying
the analysis in (6.18) along with the inequality |D*¢| < =&, we have

(W (t) — W(0)| < lv1wW2AéJDuy, W(s)|P~!dyds, te(—5§vxﬂ.

Moreover, by (6.27) it follows that

r

|Du(z,t) —W(t)| < / |Du(z,t)— Du(y,t)|¢(y)dy < ¢ (E>a1 A for every (r,t) € Q).

Therefore, from the preceding two estimates we have that for every (z,t) € Q)
|Du(z,t) — Du(0,0)] < |Du(z,t) = W(t)[ + [Du(0,0) = W(0)[ + [W(t) — W(0)|

r\o(p—1)
< — A
C(R)

This implies (6.24).
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