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Abstract. In this paper we study the asymptotic behavior of solutions to the subelliptic
p-Poisson equation as p → +∞ in Carnot Carathéodory spaces. In particular, introduc-
ing a suitable notion of differentiability, we extend the celebrated result of Bhattacharya,
DiBenedetto and Manfredi [BDM] and we prove that limits of such solutions solve in the
sense of viscosity a hybrid first and second order PDE involving the ∞−Laplacian and
the Eikonal equation.

1. Introduction

The problem of finding the best possible Lipschitz extension of a given sample of a
scalar function presents connections with many fields of mathematics and has several
real-world applications. Although issues of existence of minimizers date back to the early
30’s in the work of McShane and Whitney (see [ACJ] and references therein for a detailed
history), the work of Aronsson [A1, A2] in the mid 60’s represented truly a turning point,
bringing a PDE point of view in the picture. A key novelty in Aronsson’s approach was
the notion of Absolutely Minimizing Lipschitz Extensition (AMLE): a Lipschitz function
u is an AMLE of its boundary datum on the boundary of an open set Ω ⊂ Rn if for every
subdomain V ⊂ Ω one has Lip(u, V ) = Lip(u, ∂V ), where we have set

Lip(u, V ) = sup
x ̸=y, x,y∈V

u(x) − u(y)
d(x, y) .

This definition in a sense characterizes a canonical optimal Lipschitz extension for Lips-
chitz boundary data, as it provides uniqueness. This notion is meaningful in every metric
space, with no additional structure needed. In the Euclidean case, uniqueness of AMLE
was established by Jensen [Jen]. Following in the footprints of Aronsson, who had studied
the C2 case, Jensen proved that AMLE are viscosity solutions to the infinity Laplacian
equation

∆∞u :=
n∑

i,j=1
uijuiuj = 0, (1.1)

along with a uniqueness theorem for such solutions. The infinity Laplacian operator
arose from the work of Aronsson though a formal argument, based on Lp approximation.
Namely, for every p > 1 Aronsson considered C2 minimizers up of the energy

∫
Ω |∇u|pdx.

These minimizers are p−harmonic, i.e. div(|∇up|p−2∇up) = 0. Taking the formal limit of

L.C. was partially supported by the National Science Foundation award DMS1955992. G.G. was
partially supported by INdAM-GNAMPA Project 2022 "Analisi geometrica in strutture subriemanniane".
A.P. was partially supported by INdAM under the INdAM– GNAMPA Project 2022 "Problemi al bordo
e applicazioni geometriche". A.P., G.G. and S.V. were supported through funding from the University of
Trento.

Key words and phrases. Subelliptic p−Laplacian, Subelliptic ∞−Laplacian, Subelliptic p−Poisson
equation.
MSC Classification: 35H20, 35D40, 35J92, 35J94.

1



2 L. CAPOGNA, G. GIOVANNARDI, A. PINAMONTI, AND S. VERZELLESI

this PDE as p → ∞ one obtains (1.1). Since p−harmonic functions are not in general C2,
it took several years to build a rigorous framework for Aronsson’s asymptotic approach.
This was eventually accomplished thanks to the work of Bhattacharya, DiBenedetto and
Manfredi [BDM, Propositions 2.1 and 2.2].

In this paper we prove an extension of [BDM, Propositions 2.1 and 2.2] to the non-
Euclidean setting of Carnot-Carathéodory spaces and we also extend the non-homogenous
case studied in [BDM].

Specifically, we are concerned with the asymptotic behavior, as p → ∞, of vanishing
trace critical points for the functionals

Ep(w,Ω) =
∫

Ω

1
p

|Xw|pdx−
∫

Ω
fwdx,

where dx is the Lebesgue measure, Xw denotes the horizontal gradient associated to a
distribution X = {X1, ..., Xm} of smooth vector fields satisfying Hörmander’s finite rank
condition, that is

dim Lie(X1, ..., Xm)(x) = n,

for every point x in a neighborhood of a bounded open set Ω ⊂ Rn, and f ∈ Lp′(Ω) is a
given datum. In the rest of the paper, we will denote by W 1,p

X (resp. W 1,p
X,0) the horizontal

Sobolev spaces (resp. trace zero Sobolev spaces) associated to the frame X1, ..., Xm (see
[RS]) and consider Lipschtiz and Hölder regularity with respect to the associated Carnot-
Carathéodory control distance dΩ (see Section 2).

More specifically we consider weak solutions up ∈ W 1,p
X (Ω) to the non-homogeneous

boundary value problem divX(|Xup|p−2Xup) = −f in Ω,
up = 0 in ∂Ω.

(1.2)

In the homogenous case f = 0 we will also consider non-zero Lipschtiz boundary values.
We will denote by {up}p>1 the net of weak solutions to (1.2). As in the Euclidean case, it is
plausible to expect that its cluster point(s) u∞ solve an equation analogue to (1.1) which
is derived by (1.2) in the limit p → ∞. A formal computation, in the special homogeneous
case f = 0, indicates that a likely candidate for such a limit is the ∞−Laplacian PDE

∆X,∞u∞ = 0, (1.3)
where

∆X,∞u =
m∑

i,j=1
XiXjuXiuXju =

m∑
i,j=1

XiXju+XjXiu

2 XiuXju

denotes the subelliptic ∞−Laplacian.
Our main result in the homogenous case f = 0 is the following

Theorem 1.1. Let g ∈ W 1,∞
X (Ω), and for each p > 1 consider the weak solution up of the

boundary value problem divX(|Xup|p−2Xup) = 0 in Ω
u = g on ∂Ω

(1.4)

Every sequence {upk
} of weak solutions to (1.4) admits a subsequence converging locally

uniformly on Ω and weakly in W 1,m
X (Ω), for any m > 1, to a function u∞ ∈ W 1,∞

X (Ω) ∩
C(Ω) satisfying:

(1) ∥Xu∞∥∞ ≤ ∥Xg∥∞.
(2) u∞ − g ∈ W 1,p

X,0(Ω) for any p ∈ [1,∞).
(3) u∞ − g ∈ C0,α

X (Ω) ∩ C0(Ω) for any α ∈ [0, 1).
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(4) If g ∈ W 1,∞
X (Ω) ∩ C(Ω), then u∞ ∈ W 1,∞

X (Ω) ∩ C(Ω) and u∞(x) = g(x) for any
x ∈ ∂Ω.

(5) u∞ is a viscosity solution to (1.3).
(6) u∞ is an AMLE.

In the case of the Heisenberg group, this theorem is due to Bieske [B1]. Theorem
1.1 can also be proved, more indirectly, by invoking results from three earlier papers
[W, JS, DMV], all of which draw from the geometric significance of equation (1.3) in
the study of minimal Lipschtz extensions: in 2006, Juutinen and Shanmugalingam [JS],
studied the asymptotic limits as p → ∞ of p−energy minimizers in the setting of metric
measure spaces satisfying a doubling condition, a p−Poincarè inequalities and a weak
Fubini property, proving that such limits are AMLE. In that paper, the notion of viscosity
solution for the infinity Laplacian was substituted with the notions of comparison with
cones and strongly Absolutely Minimizing Lipschitz Extensions (sAMLE), which they
prove to be equivalent to AMLE. In the Carnot-Carathéodory setting the notion of sAMLE
is equivalent to the notion of Absolutely Minimizing Gradient Extension (AMGS) (see
[DMV], i.e. a Lipschitz function u is an AMGS of its boundary data in Ω, if for every
subdomain U ⊂ Ω and v ∈ W 1,∞

X (U) with u − v ∈ W 1,∞
X,0 (U), one has ∥Xu∥L∞(U) ≤

∥Xv∥L∞(U). In [DMV], Dragoni, Manfredi and Vittone prove that Carnot-Carathéodory
metrics satisfy the weak Fubini property and that AMGS is equivalent to sAMLE. Since
the latter is equivalent to AMLE, it follows that the limits of p−energy minimizers up as
p → ∞ converge to a function u∞ which is an AMGS. At this point one can invoke Wang’s
result [W] (see also [BC] in the case of Carnot groups), where it is proved that AMGS
are viscosity solutions to (1.3). By contrast, our proof is quite direct and it mirrors the
strategy in [BDM]. It also has the advantage of containing several technical steps upon
which the non-homogeneous case rests. Before proceeding to the non-homogenous case,
we want to note that the properties of AMLE and comparison by cones are equivalent in
every length space [CDP]. In the presence of a weak Fubini property, they imply sAMLE.
In the setting of Riemannian and subriemannian manifolds the latter agrees with AMGS
and so it implies the property of being a viscosity solution to the ∞−Laplacian. The
reverse implication follows from the uniqueness of solutions, and is known only for Carnot
groups and Riemannian manifolds. Further connections have been studied in the setting
of doubling metric measure space that satisfy a weaker condition, the ∞−weak Fubini
property (see [DJS]).

In the general non-homogenous case f ̸= 0, analogously to [BDM], one can prove that
u∞ solves a hybrid first and second order PDE in the viscosity sense. Our main result is
the following

Theorem 1.2. If f ∈ L∞(Ω) ∩ C(Ω), and f ≥ 0, then every sequence {upk
} of weak

solutions to (1.2) admits a subsequence converging uniformly on Ω̄ and weakly in W 1,m
X (Ω),

for any m > 1, to a function u∞ ∈ Lip(Ω) ∩C(Ω̄) vanishing on the boundary. Moreover,
u∞ is a solution of ∆∞u∞ = 0 on {f > 0}c

,

|Xu∞| = 1 on {f > 0},
(1.5)

in the viscosity sense.

In the Euclidean case, when Xi = ∂i and m = n, this is a celebrated result due to
Bhattacharaya, DiBenedetto and Manfredi [BDM]. To our knowledge, the present paper
is the first extension of the results for the non-homogeneous problem in [BDM] beyond
the Euclidean setting. One of the main challenges in this extension comes from the lack of
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linear structure and its role in the definition of viscosity solutions. Correspondingly, one
of the key contributions of the paper is the study of differentiability, which is carried out
in Section 2.3. The main result of that section is Proposition 2.14, which yields both the
differentiability as well as an explicit form for the horizontal differential (X−differential)
of suitably regular functions. Although in the proof of this result we need to assume
the linear independence of the vector fields X1, ..., Xm, eventually when we apply this
proposition later in the paper we will not need to do so, thanks to an argument reminiscent
of the Rothschild-Stein lifting theorem [RS]. We remark that our notion of differential
in general lacks uniqueness, and can be used in a broader generality than other notions
of horizontal differentiability that have appeared in the subriemannian literature, such as
the ones proposed by Pansu [Pa] (for Carnot groups) and Margulis and Mostow [MM]
(for equiregular subriemannian structures). However, in the presence of a Carnot group
structure, our notion of differentiability agrees with Pansu’s, whenever the X−differential
commutes with the group operation and the intrinsic dilations. Another important feature
of the paper is the study of the relationship between almost everywhere subsolutions
and viscosity subsolutions to suitable first-order PDE, which is carried out in Section 3.
Namely, exploiting the differentiability properties discussed in Section 2.3 and the notion
of (X,N)-subgradient introduced in [PVW] (cf. Section 2.2), in Theorem 3.7 we prove
that in the setting of Hörmander vector fields any almost everywhere subsolution to a
first-horder PDE is a viscosity subsolution, provided that the associated Hamiltonian is
quasiconvex in the gradient argument. We refer to [BCD, So] for similar results in the
Euclidean setting and in Carnot-Caratéodory spaces respectively. This result, although
fundamental in the development of the paper, might be of independent interest.
Remark. We note that the property of being a (viscosity) solution of either PDE in the
mixed problem (1.5) could be separately be expressed in the setting of metric measure
spaces: for the first order PDE see [LSZ], while for the infinity Laplacian one could use
comparison by cones or AMLE, or (with a Fubini property hypothesis) sAMLE. One
could then pose the question whether the conclusions of Theorem 1.2 could continue to
hold in the setting of PI spaces satisfying a weak Fubini property. Unfortunately, in our
proof of the convergence for the non-homogeneous case f ̸= 0 we use in a crucial way the
differential structure associated to the Hörmander vector fields. More specifically, we rely
on the non-divergence form formulation of (1.2), which is not allowed in a general metric
measure space, even with the additional hypotheses of doubling and Poincaré inequality.
Remark. It is interesting to note that in Theorem 1.1 we do not require any regularity
of the boundary of the domain. While this is sufficient to guarantee global Lipschitz
continuity of u∞, there is no parallel regularity theory for p−harmonic functions. Indeed,
even the case p = 2 is quite involved and boundary regularity may fail even for smooth
domains, in connection with their characteristic points (see [Jer82]).

The structure of the paper is the following: In Section 2 we introduce the main geomet-
ric hypotheses on the structure of the spaces we will work with, the Carnot-Carathéodory
spaces, with their control metric. We also recall some elements of analysis and potential
theory in this setting, and discuss the issue of horizontal differentiability (see subsection
2.3). Finally, we recall the notion of viscosity solutions for first and second-order PDE
and the ones of supremal functional and absolute minimizer. In Section 3 we study the re-
lationship between almost everywhere and viscosity subsolution to first-order quasiconvex
PDE, and we prove the aforementioned Theorem 3.7. It is in this theorem that we need
the notion of X−differential and the Hörmander finite rank condition hypothesis. The
proof of the theorem is partially based on the lifting process introduced by Rothschild and
Stein in [RS]. In Section 4 we turn our attention to the weak solutions to the p−Poisson
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equation and prove that they are also viscosity solutions (see also [B1] and subsequent
work of Bieske for earlier instances of this result in the setting of the Heisenberg group
and Carnot groups). In the last two sections we study the limiting problems as p → ∞
in the homogeneous and in the non-homogeneous regimes, proving Theorems 1.1 and 1.2.
Some of our results continue to hold in a setting where the Hörmander condition does
not hold, but where one still has a well defined control metric. The appendix provides a
concrete example of a space satisfying the needed hypotheses.

Acknowledgments: The authors are grateful to Nages Shanmugalingam for many useful
conversations and suggestions.

2. Preliminaries

Unless otherwise specified, we let m,n ∈ N\{0} with m ≤ n, we denote by Ω a bounded
domain of Rn and by A the class of all open subsets of Ω. Given two open sets A and
B, we write A ⋐ B whenever A ⊆ B. We let USC(Ω) and LSC(Ω) be respectively the
sets of upper semicontinuous and lower semicontinuous functions on Ω, and we denote by
C0(Ω) the set of continuous functions on Ω which vanish on ∂Ω. For any u, v ∈ Rn, we
denote by ⟨u, v⟩ the Euclidean scalar product, and by |v| the induced norm. We let Sm

be the class of all m×m symmetric matrices with real coefficients. We denote by Ln the
restriction to Ω of the n-th dimensional Lebesgue measure, and for any set E ⊆ U we
write |E| := Ln(E). If a < b, we denote by AC((a, b),Ω) the set of absolutely continuous
curves from (a, b) to Ω. Given x ∈ Rn and R > 0 we let BR(x) := {y ∈ Rn : |x−y| < R}.
Moreover, if d is a distance on Ω we let BR(x, d) := {y ∈ Ω : d(x, y) < R}. If we have a
function g ∈ L1

loc(Ω) and x ∈ Ω is a Lebesgue point of g, when we write g(x) we always
mean that

g(x) = lim
r→0+

∫
Br(0)

g(y)dy.

If f(x, s, p) is a regular function defined on Ω×R×Rm, we denote byDxf = (Dx1f, . . . , Dxnf),
Dsf and Dpf = (Dp1f, . . . , Dpmf) the partial gradients of f with respect to the variables
x, s and p respectively. In general we handle gradients as row vectors.

2.1. Carnot-Carathéodory spaces. Given a family X = (X1 . . . , Xm) of smooth vector
fields defined in an open set Ω ⊆ Rn, that is

Xj :=
n∑

i=1
cj,i

∂

∂xi

with cij ∈ C∞(Ω), we denote by C(x) the m× n matrix defined by

C(x) := [cj,i(x)] i=1,...,n
j=1,...,m

(2.1)

and we call it the coefficient matrix of X. If u ∈ L1
loc(Ω), we define the distributional

X-gradient (or horizontal gradient) of u by

⟨Xu,φ⟩ := −
∫

Ω
u divX(φ)dx for any φ ∈ C∞

c (Ω,Rm),

where the X-divergence divX is defined by

divX(φ) := div(φ · C(x))

for any φ ∈ C1(Ω,Rm). Given k ≥ 1, we define the horizontal Ck
X(Ω) space by

Ck
X(Ω) := {u ∈ C(Ω) : Xi1 · · ·Xisu ∈ C(Ω) for any (i1, . . . , is) ∈ {1, . . . ,m}s and 1 ≤ s ≤ k}.
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Therefore, whenever we have a function u ∈ C2
X(Ω), we can define its horizontal Hessian

X2u ∈ C(Ω, Sm) by

X2u(x)ij := XiXju(x) +XjXiu(x)
2

for any x ∈ Ω and i = 1, . . . , n, j = 1, . . . ,m. We extend the operator divX to C1
X(Ω,Rm)

by setting

divX(φ) :=
m∑

j=1
Xjφj +

m∑
j=1

n∑
i=1

φj
∂cj,i

∂xi

for any φ = (φ1, . . . , φm) ∈ C1
X(Ω,Rm), and for a given function u ∈ C2

X(Ω) we define the
X-Laplacian of u by

∆Xu := divX(Xu) =
m∑

j=1
XjXju+

m∑
j=1

n∑
i=1

Xju
∂cj,i

∂xi

. (2.2)

Finally, if p ∈ [1,+∞], we define the horizontal Sobolev spaces by

W 1,p
X (Ω) := {u ∈ Lp(Ω) : Xu ∈ Lp(Ω,Rm)},

W 1,p
X,loc(Ω) := {u ∈ Lp

loc(Ω) : u|V ∈ W 1,p
X (V ), for allV ⋐ Ω}

and
W 1,p

X,0(Ω) := C∞
c (Ω)

∥·∥
W

1,p
X

(Ω) ,

where
∥u∥W 1,p

X (Ω) := ∥u∥Lp(Ω) + ∥Xu∥Lp(Ω).

Moreover, when g ∈ W 1,p
X (Ω), we let

W 1,p
X,g(Ω) := {u ∈ W 1,p

X (Ω) : u− g ∈ W 1,p
X,0(Ω)}.

The following result is proved in [FS].

Proposition 2.1. (W 1,p
X (Ω), ∥ · ∥W 1,p

X (Ω)) is a Banach space, reflexive if 1 < p < ∞.

In analogy with the Euclidean setting, proceeding as in the proof of [Leo, Theorem
10.41], it is easy to get the following Riesz-type Theorem.

Proposition 2.2. Let 1 ≤ p < ∞, and let (uh)h ⊆ W 1,p
X (Ω) and u ∈ W 1,p

X (Ω). The
following conditions are equivalent.

(i) uh ⇀ u in W 1,p
X (Ω).

(ii) For 1/p′ + 1/p = 1 and for any (g0, . . . , gm) ∈ (Lp′(Ω))m+1 it holds that

lim
h→∞

∫
Ω
uh · g0 dx+

m∑
j=1

∫
Ω
Xjuh · gj dx

 =
∫

Ω
u · g0 dx+

m∑
j=1

∫
Ω
Xju · gj dx.

If γ : [0, T ] −→ Ω is an absolutely continuous curve, we say that it is horizontal when
there are measurable functions a1, . . . , am : [0, T ] −→ R such that

γ̇(t) =
m∑

j=1
aj(t)Xj(γ(t)) for a.e. t ∈ [0, T ], (2.3)

and we say that it is sub-unit whenever it is horizontal with ∑m
j=1 a

2
j(t) ≤ 1 for a.e.

t ∈ [0, T ]. Moreover, we define the Carnot-Carathéodory distance on Ω by
dΩ(x, y) := inf{T : γ : [0, T ] −→ Ω is sub-unit, γ(0) = x and γ(T ) = y}.
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If dΩ is a distance on Ω, then (Ω, dΩ) is called a Carnot-Carathéodory space. An equivalent
definition of the Carnot-Carathèodory distance (see [NSW]) is given by

dΩ(x, y) = inf


(∫ 1

0
|a(t)|2dt

) 1
2

: γ : [0, 1] −→ Ω is horizontal, γ(0) = x and γ(1) = y

 ,
where a(t) = (a1(t), . . . , am(t)) is as in (2.3).

We say that the smooth distribution X = (X1, ..., Xm) satisfies the Hörmander condi-
tion on Ω if

dim Lie(X1, ..., Xm)(x) = n for any x ∈ Ω. (2.4)
From [G, NSW] one has the following result.
Proposition 2.3. If X satisfies (2.4) on Ω, then the following properties hold:

(i) (Ω, dΩ) is a Carnot-Carathéodory space.
(ii) For any domain Ω̃ ⊆ Ω there exists a positive constant CΩ̃ such that

C−1
Ω̃ |x− y| ≤ dΩ(x, y) ≤ CΩ̃|x− y|

1
r for any x, y ∈ Ω̃,

where r denotes the nilpotency step of Lie(X1, . . . , Xm).
As a simple corollary of Proposition 2.3 we get that, under condition (2.4), the topology

induced by dΩ on Ω is equivalent to the Euclidean topology. Next, we recall an approx-
imation result based on an original argument due to Friederichs in 1944 for the local
version, which was extended to a global result in [GN, FSSC]. Its proof can be carried
out by means of similar techniques.
Proposition 2.4. Let X satisfies (2.4) on Ω. If v ∈ C1

X(Ω), then for any open set V ⋐ Ω
there exists a sequence (vh)h ∈ C∞(Ω) such that vh → u and Xvh → Xu uniformly on V .

The horizontal Lipschitz space is defined by

Lip(Ω, dΩ) :=
{
u : Ω −→ R : sup

x ̸=y, x,y∈Ω

|u(x) − u(y)|
dΩ(x, y) < +∞

}
and we say that u ∈ Liploc(Ω, dΩ) if every point x ∈ Ω has a neighbourhood U such that
u ∈ Lip(U, dΩ). Thanks to [GN, Theorem 1.3] one has

W 1,∞
X,loc(Ω) = Liploc(Ω, dΩ).

Therefore, in the following we will identify functions u ∈ W 1,∞
X,loc(Ω) with their continuous

representatives. We also recall a Poincaré type inequality for trace zero functions (see
[CDG, MPSC2] in the Carnot-Carathéodory setting and [BBB, Theorem 6.21] for a version
in PI spaces).
Theorem 2.5. Let X = (X1, ..., Xm) be a smooth family of Hörmander vector fields in
Ω0 ⊆ Rn. Let Ω ⋐ Ω0 be a bounded domain and let 1 ≤ p < ∞. Then there exists a
constant c = c(Ω, p) > 0 such that∫

Ω
|u|p dx ≤ c

∫
Ω

|Xu|p dx

for any u ∈ W 1,p
X,0(Ω).

Corollary 2.6. In the same hypothesis as above, for every g ∈ W 1,p
X (Ω) there exists a

constant K = K(Ω, p, g) > 0 such that∫
Ω

|u|p dx ≤ K
(

1 +
∫

Ω
|Xu|p dx

)
for any u ∈ W 1,p

X,g(Ω).
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2.2. Subgradient in Carnot-Carathéodory Spaces. In this section we recall some
properties of the so-called (X,N)-subgradient of a function u ∈ W 1,∞

X,loc(Ω), introduced in
[PVW] as a generalization of the classical Clarke’s subdifferential (cf. [Cl]) and defined
by

∂X,Nu(x) := co{ lim
n→∞

Xu(yn) : yn → x, yn /∈ N and the limit lim
n→∞

Xu(yn) exists}

for any x ∈ Ω, where N ⊆ Ω is any Lebesgue-negligible set containing the non-Lebesgue
points of Xu and co denotes the closure of the convex hull. The next two propositions,
which can be found as [PVW, Proposition 2.4] and [PVW, Proposition 2.5], describe some
properties of the (X,N)-subgradient which will be useful in the sequel.

Proposition 2.7. Let u and N be as above. Then the following facts hold.
(i) ∂X,Nu(x) is a non-empty, convex, closed and bounded subset of Rm for any x ∈ Ω.

(ii) if u ∈ C1
X(Ω), then

∂X,Nu(x) = {Xu(x)}
for any x ∈ Ω.

Proposition 2.8. Assume that X satisfies (2.4) on Ω and let C be the coefficient matrix
of X as in (2.1). Let u ∈ W 1,∞

X,loc(Ω) and let γ ∈ AC([−β, β],Ω) be a horizontal curve with

γ̇(t) = C(γ(t))T · A(t) a.e. t ∈ [−β, β].
If 1 ≤ p ≤ +∞, and A ∈ Lp((−β, β),Rm), then the function t 7→ u(γ(t)) belongs to
W 1,p(−β, β), and there exists a function g ∈ L∞((−β, β),Rm) such that

d(u ◦ γ)(t)
dt

= g(t) · A(t)

for a.e. t ∈ (−β, β). Moreover
g(t) ∈ ∂X,Nu(γ(t))

for a.e. t ∈ (−β, β).

As a consequence of Proposition 2.7 and Proposition 2.8, the following holds.

Proposition 2.9. Let u ∈ C2
X(Ω). Let x0 be a local maximum (minimum) point of u.

Then Xu(x0) = 0 and X2u(x0) ≤ (≥) 0.

Proof. We assume that x0 is a local maximum, being the other case analogous. Let γ
be a smooth horizontal curve defined in a neighborhood of 0, such that γ(0) = x0 and
γ̇(t) = C(γ(t))T · A(t). Fix i = 1, . . . ,m and choose A(t) = ei where ei denotes the i−th
element in the canonical basis of Rm. Let g(t) := u(γ(t)). Then g′(0) = 0 and g′′(0) ≤ 0.
Thanks to [PVW, Proposition 2.6], we know that

g′(t) = Xu(γ(t)) · A(t).
Hence, thanks to the choice of A, we conclude that Xiu(x0) = 0, and so Xu(x0) = 0. To
conclude, let us fix ξ ∈ Rm and let A(t) = ξ. Then, arguing as above,

g′(t) = Xu(γ(t)) · ξ,
which implies that

g′′(t) =
m∑

i,j=1
XiXju(γ(t))ξiξj.

Evaluating the previous identity in t = 0 allows to conclude that X2u(x0) ≤ 0. □

We conclude this section with the following well-known property, whose proof in the
smooth case goes back to [Jer] and which can be derived easily from Proposition 2.8.
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Corollary 2.10. Assume that X satisfies (2.4) and let u ∈ W 1,∞
X,loc(Ω). If Xu = 0 on Ω,

then u is constant on Ω.

2.3. Differentiability in Carnot-Carathéodory Spaces. In this section we introduce
a notion of differentiability for C1

X functions which is a generalization of the one introduced
in [M] to prove a Rademacher-type theorem for Lipschitz functions on suitable families
of Carnot-Carathéodory spaces. The new notion will be crucial in the study of viscosity
solutions for the asymptotic problem (1.5). The main result of the section is Proposition
2.14, which yields the differentiability and an explicit form for the differential of C1

X

functions. We remark explicitly that although in the proof of this result we need to
assume the linear independence of the vector fields X1, ..., Xm, later in the paper when
we apply this proposition we will not need to do so, thanks to an argument involving
the Rothschild-Stein lifting theorem (cf. [RS].) We say that a function u ∈ C(Ω) is
X-differentiable at x ∈ Ω if there exists a linear mapping Lx : Rn −→ R such that

lim
dΩ(x,y)→0

u(y) − u(x) − Lx(y − x)
dΩ(x, y) = 0.

In such a case we say that dXu(x) := Lx is a X-differential of u at x. In order to guarantee
the existence of a X-differential for a C1

X function, we assume that the vector fields satisfy
Hörmander’s condition (2.4) and in addition we also require that

X1(x), . . . , Xm(x) are linearly independent for any x ∈ Ω. (LIC)

The additional hypothesis (LIC) implies that the matrix C(x)T admits a left-inverse
matrix for any x ∈ Ω.

Proposition 2.11. Assume that X satisfies (LIC). Then, if we define C̃ as

C̃(x) := (C(x) · C(x)T )−1 · C(x)

for any x ∈ Ω, then C̃ is well defined and continuous on Ω. Moreover it holds that

C̃(x) · C(x)T = Im

for any x ∈ Ω. Here Im denotes the m×m identity matrix.

Proof. Let us define B(x) := C(x) ·C(x)T for any x ∈ Ω. Thanks to (LIC) we know that
C(x) and C(x)T have maximum rank, and so by standard linear algebra we know that
B(x) is a square matrix with maximum rank. Thus B(x) is invertible and C̃(x) is well
defined. Moreover it holds that

C̃(x) := Adj(B)(x) · C(x)
det(B(x)) ,

and so it is continuous on Ω. A trivial calculation shows that C̃ is a left inverse of CT . □

Lemma 2.12. Assume that X satisfies (2.4). Let x, y ∈ Ω and ε > 0. Assume that
γ ∈ AC([0, T ],Ω) is a sub-unit curve such that γ(0) = x, γ(T ) = y and T < dΩ(x, y) + ε.
Then it holds that

γ([0, T ]) ⊆ BdΩ(x,y)+ε(x, dΩ). (2.5)

Proof. Let x, y, γ and ε as above. Assume by contradiction that there exists t ∈ (0, T )
such that dΩ(x, γ(t)) ≥ dΩ(x, y) + ε. Then it follows that

dΩ(x, y) + ε ≤ dΩ(x, γ(t)) ≤ t < T < dΩ(x, y) + ε,

which is a contradiction. □
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Proposition 2.13. Assume that X satisfies (2.4). Let g ∈ C1
X(Ω) and let x ∈ Ω. Then

lim sup
y→x

|g(y) − g(x)|
dΩ(x, y) ≤ |Xg(x)|.

Proof. Let x and g be as in the statement. Let Ω̃ ⋐ Ω be an open and connected
neighborhood of x, and let β = C−1

Ω̃ be as in Proposition 2.3. Let R > 0 be such that
B2R(x, dΩ) ⊆ Ω̃. Choose now y ∈ BR(x, dΩ) and 0 < ε ≤ R. Then, thanks to Proposition
2.3, it follows that

BdΩ(x,y)+ε(x, dΩ) ⊆ BβdΩ(x,y)+βε(x). (2.6)
Moreover, if we let M be the family of all sub-unit curves γ : [0, T ] −→ Ω connecting x
and y and such that T < dΩ(x, y) + ε, then it is clear that

dΩ(x, y) = inf{T : γ : [0, T ] −→ Ω, γ ∈ M}.

Fix now a curve γ : [0, T ] −→ Ω, γ ∈ M with horizontal derivative A. Then, thanks to
(2.6), [PVW, Proposition 2.6] and Lemma 2.12, it follows that

|g(y) − g(x)| =
∣∣∣∣∣
∫ T

0
⟨Xg(γ(t)), A(t)⟩dt

∣∣∣∣∣ ≤ T∥Xg∥∞,BβdΩ(x,y)+βε(x) (2.7)

Therefore, passing to the infimum over M , it follows that
|g(y) − g(x)|
dΩ(x, y) ≤ ∥Xg∥∞,BβdΩ(x,y)+βε(x).

The conclusion follows letting ε → 0+ and y → x, together with the continuity of Xg. □

Now we state our main differentiability result.

Proposition 2.14. Assume that X satisfies (2.4) and (LIC), let u ∈ C1
X(Ω) and x ∈ Ω.

Then u is X-differentiable at x and

dXu(x)(z) = ⟨Xu(x) · C̃(x), z⟩,

where C̃ is as in Proposition 2.11 and z ∈ Rn.

Proof. Let x ∈ Ω be fixed. Define g : Ω −→ R as g(y) := u(y) − h(y), where

h(y) = ⟨Xu(x) · C̃(x), y − x⟩.

Then clearly g ∈ C1
X(U). Moreover, by explicit computations, we get that

Xg(y) = Xu(y) −X(⟨Xu(x) · C̃(x), y − x⟩)
= Xu(y) −D(⟨Xu(x) · C̃(x), y − x⟩) · C(y)T

= Xu(y) −Xu(x) · C̃(x) · C(y)T ,

which in particular implies that
Xg(x) = 0.

The conclusion then follows by invoking Proposition 2.13. □

Remark. A careful look at the above proof reveals that the X-differential exists in a
general Carnot-Carathéodory space, provided that the generating vector fields satisfies
(LIC) and that the induced Carnot-Carathéodory distance is continuous with respect to
the Euclidean topology. We refer to the Appendix for some remarks.
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Remark. It is clear from the proof of Proposition 2.14 that the X-differential is non-
unique in general. Indeed, Proposition 2.14 remains true if we let

dXu(x)(z) = ⟨Xu(x) ·D(x), z⟩,

where D(x) is any left-inverse matrix of CT (x). Since for a non-squared matrix the left-
inverse matrix is non-unique in general, the non-uniqueness of the X-differential follows.
As an instance, consider the Heisenberg group H1, i.e. the step-2 Carnot group whose Lie
algebra is generated by the vector fields

X = ∂

∂x
− y

∂

∂t
, Y = ∂

∂y
+ x

∂

∂t
.

It is easy to see that the matrices

C̃(x, y) = 1
1 + x2 + y2

[
1 + x2 xy −y
xy 1 + y2 x

]
, D =

[
1 0 0
0 1 0

]

are both left-inverse matrices of

C(x, y)T =

 1 0
0 1

−y x


Nevertheless, if in a Carnot group we require in addition that the X-differential is H-
linear, i.e. it commutes with the group operation and the intrinsic dilations, then it is
unique and it coincides with the classical Pansu differential (cf. [Pa, SC]). Finally, we
point out that when n = m and X1(x), . . . , Xn(x) are linearly independet for any x, i.e.
the Riemannian case, then the X-differential is unique since C̃(x) = (C(x)T )−1.

2.4. Embedding Theorems. In this section we recall some Morrey-Campanato type
embedding that we will use later. In the setting of Hörmander vector fields the results
were first proved in [Lu98], and it was later realized that they continue to hold in the
general setting of metric measure spaces satisfying doubling property and a Poincaré
inequality (cf. [HKST, Lemma 9.2.12]). If α ∈ (0, 1), we define the Folland-Stein Hölder
spaces as

C0,α
X (Ω) :=

{
u : Ω −→ R : sup

x ̸=y, x,y∈Ω

|u(x) − u(u)|
dΩ(x, y)α

< +∞
}

and

C0,α
X,loc(Ω) :=

{
u : Ω −→ R : sup

x ̸=y, x,y∈K

|u(x) − u(u)|
dΩ(x, y)α

< +∞ for any compact set K ⋐ Ω
}
.

Moreover, when E ⊆ Ω and u : Ω −→ R we set

∥u∥0,α,E := sup
x∈E

|u(x)| + sup
x̸=y, x,y∈E

|u(x) − u(u)|
dΩ(x, y)α

.

From these definitions it is clear that

C0,α
X (Ω) ⊆ C0,α

X,loc(Ω) ⊆ C(Ω).

As usual, in order to define a notion of convergence on C0,α
X,loc(Ω), we say that a sequence

(uh)h ⊆ C0,α
X,loc(Ω) converges to u ∈ C0,α

X,loc(Ω) if it holds that

lim
h→∞

∥uh − u∥0,α,K = 0
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for any compact set K ⋐ Ω. If we fix an increasing sequence (Ωk)k of open subsets of Ω
such that Ωk ⋐ Ωk+1 ⋐ Ω and ⋃∞

k=1 Ωk = Ω, and for any u, v ∈ C0,α
X,loc(Ω) we define

ϱ(u, v) :=
∞∑

k=1

1
2k

min{1, ∥u− v∥0,α,Ωk
},

it is easy to see that ϱ is a translation-invariant distance on C0,α
X,loc(Ω) which induces the

above-defined convergence in C0,α
X,loc(Ω). Thanks to [Lu98, HKST], the following Morrey-

Campanato type embedding theorem holds.

Proposition 2.15. Assume that X satisfies (2.4). There exists Q ∈ (1,∞), which de-
pends only on n,Ω and X, such that the following facts hold:

(i) W 1,p
X (Ω) ⊆ C

0,1− Q
p

X,loc (Ω) for any p > Q, and the inclusion is continuous.
(ii) the inclusion W 1,p

X (Ω) ⊆ C0,β
X,loc(Ω) is compact for any p > Q and for any β ∈

[0, 1 − Q
p
).

(iii) W 1,p
X,0(Ω) ⊆ C

0,1− Q
p

X (Ω) ∩ C(Ω) for any p > Q.

2.5. Viscosity Solutions to First and Second-Order PDE. Given a function F :
Ω × R × Rm × Sm −→ R, we say that F is horizontally elliptic if

F (x, s, p,X) ≤ F (x, s, p, Y )

whenever x ∈ Ω, s ∈ R, p ∈ Rm and X, Y ∈ Sm with Y ≤ X (i.e. X − Y is positive
semidefinite). It is clear that when F is independent of X, i.e. it describes a first-order
differential operator, then it is automatically horizontally elliptic. Therefore this definition
is relevant only when dealing with second-order differential operators. According to [CIL,
W], we start by recalling the definition of viscosity solutions to first-order PDE. We point
out that our notion of viscosity solution is a bit stronger than the one given in [W], since
he considers test functions in Ck

X rather than in Ck.

Definition 2.16. Let H : Ω ×R×Rm −→ R be continuous. We say that u ∈ USC(Ω) is
a viscosity subsolution to

H(x, u(x), Xu(x)) = 0 in Ω (2.8)

if
H(x, u(x0), Xφ(x0)) ≤ 0

for any x0 ∈ Ω and for any φ ∈ C1
X(Ω) such that

u(x0) − φ(x0) ≥ u(x) − φ(x)

for any x in a neighborhood of x0. We say that u ∈ LSC(Ω) is a viscosity supersolution
to (2.8) if

H(x0, u(x0), Xφ(x0)) ≥ 0
for any x0 ∈ Ω and for any φ ∈ C1

X(Ω) such that

u(x0) − φ(x0) ≤ u(x) − φ(x)

for any x in a neighborhood of x0. Finally we say that u is a viscosity solution to (2.8) if
it is both a viscosity subsolution and a viscosity supersolution.

Similarly, we recall the definition of viscosity solutions to second-order horizontally
elliptic partial differential equations.
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Definition 2.17. Let F : Ω×R×Rn ×Sm −→ R be continuous and horizontally elliptic.
We say that u ∈ USC(U) is a viscosity subsolution to the equation

F (x,w(x), Xw(x), X2w(x)) = 0 in Ω (2.9)
if

F (x0, u(x0), Xφ(x0), X2φ(x0)) ≤ 0 (2.10)
for any x0 ∈ Ω and for any φ ∈ C2

X(Ω) such that
u(x0) − φ(x0) ≥ u(x) − φ(x) (2.11)

for any x in a neighborhood of x0. We say that u ∈ LSC(Ω) is a viscosity supersolution
to (2.9) if

F (x0, u(x0), Xφ(x0), X2φ(x0)) ≥ 0
for any x0 ∈ Ω and for any φ ∈ C2

X(Ω) such that
u(x0) − φ(x0) ≤ u(x) − φ(x)

for any x in a neighborhood of x0. Finally we say that u is a viscosity solution to (2.9) if
it is both a viscosity subsolution and a viscosity supersolution.

Remark. As usual, when dealing with viscosity solutions to partial differential equations,
there are many equivalent ways to define this notion. For instance, one can check the
inequality (2.10) only in the more restrictive case when in (2.11) x0 is a strict minimum
point. Moreover, one can equivalently require that

F (x0, φ(x0), Xφ(x0), X2φ(x0)) ≤ 0
for any x0 ∈ Ω and for any ϕ ∈ C2

X(Ω) such that
0 = u(x0) − φ(x0) > u(x) − φ(x)

for any x in a neighborhood of x0. Similar equivalences hold for the other cases. Finally,
we note that thanks to Proposition 2.9, it is not difficult to show that a function in C1

X(Ω)
(resp. C2

X(Ω)) is a classical solution to (2.8) (resp. (2.9)) if and only if it is a viscosity
solution to (2.8) (resp. (2.9)).

2.6. Supremal functionals and absolute minimizers. In this section we recall the
notion of supremal functional associated to suitable Hamiltonian functions, together with
the related notions of absolute minimizers and absolute minimizing Lipschitz extensions.
We refer to [ACJ, BJW, C, W] for an extensive account of the topic. Given a non-
negative function f ∈ C(Ω × R × Rm), we define its associated supremal functional F :
W 1,∞

X (Ω) × A −→ [0,+∞] by
F (u, V ) := ∥f(x, u,Xu)∥L∞(V )

for any V ∈ A, u ∈ W 1,∞
X (V ), where A is the class of all open subsets of Ω. We say that

u ∈ W 1,∞
X (Ω) is an absolute minimizer of F if

F (u, V ) ≤ F (v, V )
for any V ⋐ Ω and for any v ∈ W 1,∞

X (V ) with v|∂V = u|∂V . If f belongs to C1(Ω×R×Rm),
we can define Af : Ω × R × Rm × Sm −→ R by

Af (x, s, p, Y ) := −(Xf(x, s, p) +Dsf(x, s, p)p+Dpf(x, s, p) · Y ) ·Dpf(x, s, p),
and we say that

Af [ϕ](x) := Af (x, ϕ,Xϕ,X2ϕ) = 0 (2.12)
is the Aronsson equation associated to F . It is easy to check that Af is continuous
and horizontally elliptic. In the Euclidean setting it is well known ([BJW, CYW]) that,
under suitable assumptions on the Hamiltonian function, absolute minimizer are viscosity
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solution to the Aronsson equation. The same kind of results holds in greater generality
in the Carnot-Carathéodory setting ([W, WY, PVW]). In the particular case in which
f(x, u, p) = |p|2, then absolute minimizers are known as absolute minimizing Lipschitz
extensions (AMLE for short). Moreover, its associated Aronsson equation becomes the
well known infinite Laplace equation

−∆X,∞ϕ = 0,

where the operator ∆X,∞ is defined by

∆X,∞w := Xw ·X2w ·XwT . (2.13)

The notions of AMLEs and the ∞-Laplace equation in the Euclidean setting have been
extensively studied during the last fifty years (see for example [A1, A2, A3, Jen] and
references therein) and part of the theory has been extended to the setting of Carnot
Groups and Carnot-Carathéodory spaces (see [B2, BC, BDM, DMV, FerMan] and refer-
ences therein).

3. Viscosity and Almost Everywhere Solutions

In this section we relate the notion of viscosity solutions to first-order partial differential
equations to solutions defined through horizontal jets, extending the results of [B1] to the
Carnot-Carathéodory setting. Exploiting this relation we prove that almost everywhere
subsolutions to quasiconvex first-order partial differential equations associated to a family
of Hörmander vector fields turns to be viscosity subsolutions. The proof of this fact is
divided in two steps. First we deal with a family X of vector fields which satisfies (2.4)
and the additional condition (LIC), in order to exploit Proposition 2.14. Then, thanks to
a lifting argument à la Rothschild-Stein (cf. [RS]) we extend the result to an arbitrary
family of Hörmander vector fields. We begin by introducing the first-order horizontal
subjet and superjet.

Definition 3.1. Assume that X satisfies (2.4) and (LIC). If u ∈ USC(Ω) and x0 ∈ Ω,
we define the first-order horizontal superjet of u at x0 by

Xu+(x0) := {p ∈ Rm : u(x) ≤ u(x0)+⟨p · C̃(x0), x−x0⟩+o(dΩ(x, x0)) as dΩ(x, x0) → 0}.

If u ∈ LSC(Ω) and x0 ∈ Ω, we define the first-order horizontal subjet of u at x0 by

Xu−(x0) := {p ∈ Rm : u(x) ≥ u(x0)+⟨p · C̃(x0), x−x0⟩+o(dΩ(x, x0)) as dΩ(x, x0) → 0}.

In the Euclidean setting, it is well known that the notion of viscosity solution given in
terms of comparison with sufficiently smooth tests functions is equivalent to the notion
involving jets. In our framework the following result still holds.

Proposition 3.2. Assume that X satisfies (2.4) and (LIC). The following facts hold.
• Assume that u ∈ USC(Ω) satisfies

H(x0, u(x0), p) ≤ 0

for any x0 ∈ Ω and p ∈ Xu+(x0). Then u is a viscosity subsolution to (2.8).
• Assume that u ∈ LSC(Ω) satisfies

H(x0, u(x0), p) ≥ 0

for any x0 ∈ Ω and p ∈ Xu−(x0). Then u is a viscosity supersolution to (2.8).
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Proof. Since the two statements follow from similar arguments, we prove only the first
one. Let x0 ∈ Ω and let φ ∈ C1

X(Ω) be an admissible function in the definition of viscosity
subsolution. Then, thanks to Proposition 2.14, we obtain

u(x) = u(x0) + u(x) − u(x0) ≤ u(x0) + φ(x) − φ(x0)
= u(x0) + ⟨Xφ(x0) · C̃(x0), x− x0⟩ + o(dX(x, x0)).

Therefore one has Xφ(x0) ∈ Xu+(x0). In view of the hypothesis then one has
H(x0, u(x0), Xφ(x0)) ≤ 0,

concluding the proof. □

To establish our desired implication we need some technical, but still intuitive, prelimi-
nary results, which are based on the notion of (X,N)-subgradient previously introduced.

Proposition 3.3. Assume that X satisfies (2.4). Let u ∈ W 1,∞
X,loc(Ω) and assume that

x0 ∈ Ω is either a point of local minimum or a point of local maximum for u. Then
0 ∈ ∂X,Nu(x0).

Proof. We prove the statement assuming that x0 is a minimum point, since the argument
for the other case is analogous. Assume by contradiction that 0 /∈ ∂X,Nu(x0). Since
∂X,Nu(x0) is convex and compact, then by the hyperplane separation theorem there exists
a ∈ Rm and α > 0 such that

max
p∈∂X,N u(x0)

⟨p, a⟩ < −α. (3.1)

Now we claim that there exists r > 0 such that
⟨p, a⟩ ≤ −α (3.2)

for any p ∈ ∂X,Nu(y) and for any y ∈ Br(x0). To prove this fact we first show that there
exists r > 0 such that

⟨Xu(y), a⟩ < −α
for any y ∈ Br(x0) \N . If it is not the case, then there is a sequence (yn)n ⊆ Rn \N such
that yn → x0 and

⟨Xu(yn), a⟩ ≥ −α. (3.3)
Moreover, since u ∈ W 1,∞

X,loc(Ω) we can assume that up to a subsequence
∃ lim

n→∞
Xu(yn) =: p,

and by construction we have that p ∈ ∂X,Nu(x0). Therefore, recalling (3.1) and (3.3), we
conclude that

−α ≤ lim
n→∞

⟨Xu(yn), a⟩ = ⟨p, a⟩ < −α,
which is a contradiction. Let us now define

A := {p ∈ Rm : ⟨p, a⟩ ≤ −α},
and, for any y ∈ Br(x0), the set

Sy :=
{

lim
n→∞

Xu(yn) : yn → y, yn /∈ N
}

so that ∂X,Nu(y) = co(Sy). Since A is convex and closed, our claim is proved if we show
that Sy ⊆ A. Let us take a sequence (yn)n converging to y and such that yn /∈ N and the
sequence Xu(yn) has a limit. Then up to a subsequence we have that (yn)n ⊆ Br(x0)\N ,
and so thanks to the previous claim we conclude that

lim
n→∞

⟨Xu(yn), a⟩ ≤ −α.
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Hence Sy ⊆ A, and so (3.2) is proved. Let now γ : [0, 1] −→ Ω be a solution toγ̇(t) = C(γ(t))T · a
γ(0) = x0.

(3.4)

Then by construction γ is a horizontal curve. Moreover, if we define xn := γ( 1
n
), it follows

that xn → x0, and so up to a subsequence we can assume that (xn)n ⊆ γ([0, δ]) ⊆ Br(x0)
for some δ > 0 small enough. Therefore, thanks to these facts, Proposition 2.8 and (3.2),
there exists g ∈ L∞(0, 1) such that g(t) ∈ ∂X,Nu(γ(t)) for a.e. t ∈ (0, 1) and

u(xn) − u(x0) = u
(
γ
( 1
n

))
− u(γ(0)) =

∫ 1
n

0
⟨g(t), a⟩dt ≤ −α

n
< 0.

Therefore we conclude that u(x0) > u(xn) for any n ∈ N, which is a contradiction with
the fact that x0 is a point of local minimum. □

Proposition 3.4. Assume that X satisfies (2.4). Let u, v ∈ W 1,∞
X,loc(Ω) and let N be a

negligible set which contains the non-Lebesgue points of Xu and Xv. Then
∂X,N(u− v)(x) ⊆ ∂X,Nu(x) − ∂X,Nv(x)

for any x ∈ Ω.
Proof. Fix x ∈ Ω. Since ∂X,Nu(x)−∂X,Nv(x) is convex and closed, it suffices to show that
the set {

lim
n→∞

X(u− v)(yn) : yn /∈ N, yn → x
}

is contained in ∂X,Nu(x) − ∂X,Nv(x). Therefore let (yn)n ⊆ Rn \N be such that yn → x.
Since u, v ∈ W 1,∞

X,loc(Ω) we can assume that, up to a subsequence, both the limits of
(Xu(yn))n and (Xv(yn))n exist. Therefore it follows that

lim
n→∞

X(u− v)(yn) = lim
n→∞

(Xu(yn) −Xv(yn)) = lim
n→∞

Xu(yn) − lim
n→∞

Xv(yn).

Since the right hand side belongs to ∂X,Nu(x) − ∂X,Nv(x), the thesis follows. □

Proposition 3.5. Assume that X satisfies (2.4) and (LIC). Let x0 ∈ Ω, u ∈ W 1,∞
X,loc(Ω)

and N be a negligible set which contains the non-Lebesgue points of Xu and dΩ(·, x0).
Then

Xu+(x0) ∪Xu−(x0) ⊆ ∂X,Nu(x0).
Proof. Fix x0 ∈ Ω and N as in the statement. We only show that Xu+(x0) ⊆ ∂X,Nu(x0),
being the proof of the other inclusion completely analogous. Let p ∈ Xu+(x0). For any
n ∈ N \ {0}, we define

vn(x) := u(x) − ⟨p · C̃(x0), x− x0⟩ − 1
n
dΩ(x, x0).

Using [GN] it is easy to see that vn ∈ W 1,∞
X,loc(Ω) and that vn(x0) = u(x0). Moreover, since

p ∈ Xu+(x0), it follows that

vn(x) = vn(x0) + u(x) − u(x0) − ⟨p · C̃(x0), x− x0⟩ − 1
n
dΩ(x, x0)

≤ vn(x0) − 1
n
dΩ(x, x0) + o(dΩ(x, x0))

as dΩ(x, x0) → 0, thus

vn(x0) ≥ vn(x) + 1
n
dΩ(x, x0) + o(dΩ(x, x0))

= vn(x) + 1
n
dΩ(x, x0)

[
1 + o(dΩ(x, x0))

dΩ(x, x0)

]
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as dΩ(x, x0) → 0. Therefore x0 is a point of local maximum of vn which together with
Proposition 3.3 and Proposition 3.4 gives

0 ∈ ∂X,Nu(x0) − ∂X,N(⟨p · C̃(x0), · − x0⟩))(x0) − ∂X,N

( 1
n
dΩ(·, x0)

)
(x0).

We start by noticing that x 7→ ⟨p · C̃(x0), x− x0⟩ is in C1(Ω) ⊆ C1
X(Ω), and so, thanks to

Proposition 2.7, it follows that
∂X,N(⟨p · C̃(x0), · − x0⟩)(x0) = {X(⟨p · C̃(x0), · − x0⟩)(x0)} = {p · C̃(x0) · C(x0)T } = {p}.
Moreover, thanks for instance to [GN], we know that |X( 1

n
dΩ(·, x0))(x)| ≤ 1

n
for a.e.

x ∈ Ω, and using the definition of X−subdifferential we infer

∂X,N

( 1
n
dΩ(·, x0)

)
(x0) ⊆ B 1

n
(0).

Putting all together we get that
0 ∈ ∂X,Nu(x0) − {p} −B 1

n
(0)

for any n ∈ N \ {0}. Since ⋂∞
n=1 B 1

n
(0) = {0}, we conclude that

0 ∈ ∂X,Nu(x0) − {p} − {0} = ∂X,Nu(x0) − {p},
which is the thesis. □

We have developed all the tools that we need to prove the main result assuming (LIC).
Before giving the precise statement, let us recall that a function g : Rm → R is said to be
quasiconvex whenever

g(tξ + (1 − t)η) ≤ max{g(ξ), g(η)}
for any ξ, η ∈ Rm and t ∈ [0, 1], or equivalently when its sublevel sets

{ξ ∈ Rm : g(ξ) ≤ α}
are convex for any α ∈ R. Clearly every convex function is quasiconvex. Moreover, if g is
convex and h : R → R is non-decreasing, it is easy to check that h ◦ g is quasiconvex.

Proposition 3.6. Assume that X satisfies (2.4) and (LIC). Let H : Ω × R × Rn −→ R
be a continuous function such that p 7→ H(x, u, p) is quasiconvex for any x ∈ Ω and any
u ∈ R. Let u ∈ W 1,∞

X,loc(Ω) be such that
H(x, u(x), Xu(x)) ≤ 0 (3.5)

for a.e. x ∈ Ω. Then u is a viscosity subsolution to (2.8).

Proof. We already know that u ∈ C(Ω). In view of Proposition 3.2 it suffices to show
that

H(x0, u(x0), p) ≤ 0
for any x0 ∈ Ω and for any p ∈ Xu+(x0). Fix then x0 ∈ Ω, and let N be a negligible set
which contains the non-Lebesgue points of Xu and of XdΩ(·, x0) and the points where
(3.5) is not satisfied. Then thanks to [PVW, Lemma 2.7] we know that

H(x, u(x), p) ≤ 0 (3.6)
for any x ∈ Ω and for any p ∈ ∂X,Nu(x). Therefore, thanks to the choice of N , we can
apply Proposition 3.5, which combined with (3.6) allows to conclude that

H(x0, u(x0), p) ≤ 0
for any p ∈ Xu+(x0). Being x0 arbitrary, the thesis follows. □

Exploiting the previous result and the lifting scheme in [RS], we can finally drop hy-
pothesis (LIC) and prove the following theorem.
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Theorem 3.7. Let X satisfy (2.4). Let H : Ω × R × Rn −→ R be a continuous function
such that p 7→ H(x, u, p) is quasiconvex for any x ∈ Ω and u ∈ R. Let u ∈ W 1,∞

X,loc(Ω) be
such that (3.5) holds for a.e. x ∈ Ω. Then u is a viscosity subsolution to (2.8).

Proof. As usual we can assume u ∈ C(Ω). Let x0 ∈ Ω and let φ ∈ C1
X(Ω) be such that

there exists an open neighborhood U of x0 in Ω such that

u(x) − u(x0) ≤ φ(x) − φ(x0) (3.7)

for any x ∈ U . Invoking an argument as in [RS, Part II] one has that there exists an open
and connected neighborhood V ⊆ U of x0, r ∈ N with 0 ≤ r < m, and δ > 0 such that,
setting Vδ := V × (−δ, δ)r, t = (t1, . . . , tr),

X̄i(x, t) := Xi(x)

for i = 1, . . . ,m− r and

X̄i(x, t) := Xi(x) + ∂

∂ti

for i = m − r + 1, . . . ,m, (where we have assumed that, up to reordering, the vector
fields X1, . . . , Xm−r are linearly independent at x0), then X̄ := (X̄1, . . . , X̄m) are linearly
independent and satisfy the Hörmander condition at every point (x, t) ∈ Vδ. Denote
by dX̄ the Carnot-Carathéodory distance induced by X̄ on Vδ. It is clear that given
v ∈ W 1,1

X,loc(Ω) and setting v̄(x, t) := v(x) for any (x, t) ∈ Vδ, then

X̄v̄(x, t) = Xv(x). (3.8)

Therefore it is easy to see that ū ∈ W 1,∞
X̄,loc

(Vδ) and φ̄ ∈ C1
X̄

(Vδ). Moreover, (3.7) implies
that

ū(x, t) − ū(x0, 0) ≤ φ̄(x, t) − φ̄(x0, 0)

for any (x, t) ∈ Vδ, which is an open neighborhood of (x0, 0). Therefore, proceeding as in
the proof of Proposition 3.2 and using (3.7) and (3.8) we get that

Xφ(x0) ∈ X̄ū+(x0, 0), (3.9)

where the horizontal superjet is considered with respect to the Carnot - Carathódory
distance induced by the family X̄, dX̄ on Vδ. To conclude the proof, set

H̄(x, t, s, p) := H(x, s, p)

for any (x, t) ∈ Vδ, s ∈ R and p ∈ Rm. It is clear that H̄ is continuous and that
p 7→ H̄(x, t, s, p) is quasiconvex for any (x, t) ∈ Vδ and s ∈ R. We show that (3.5) implies
that

H̄(x0, t0, ū(x0, t0), p) ≤ 0 (3.10)

for any (x0, t0) ∈ Vδ and for any p ∈ X̄ū+(x0, t0). This and (3.9) allow to conclude. To
prove (3.10) it suffices to notice that by (3.5) it holds that

H̄(x, t, ū(x, t), X̄ū(x, t)) = H(x, u(x), Xu(x)) ≤ 0

for a.e. (x, t) ∈ Vδ. Then (3.10) follows as in the proof of Proposition 3.6. □
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4. Some Properties of the p-Poisson Equation

In this section we study some properties of the p-Poisson equation associated to a family
X of vector fields. From now on, unless otherwise specified, we assume that X satisfies
the Hörmander condition on a domain Ω0, with Ω ⋐ Ω0. The reason for which we require
the Hörmader condition to be satisfied on Ω0 is twofold. On the one hand, we will need
to exploit Theorem 2.5. On the other hand, at some stage we will need to give a meaning
to the Carnot-Carathéodory distance from ∂Ω.
Let p ∈ (1,+∞) and p′ = p

p−1 . We say that a function u ∈ W 1,p
X (Ω) is a weak subsolution

(weak supersolution) to the p-Poisson equation
− divX(|Xw|p−2Xw) = f in Ω, (4.1)

for a given datum f ∈ Lp′(Ω), if∫
Ω

|Xu|p−2⟨Xu,Xφ⟩ dx ≤ (≥)
∫

Ω
fφdx

for any non-negative φ ∈ W 1,p
X,0(Ω). Finally, u is a weak solution to the p-Poisson equation

if it is both a weak subsolution and a weak supersolution, i.e. if∫
Ω

|Xu|p−2⟨Xu,Xφ⟩ dx =
∫

Ω
fφdx (4.2)

for any φ ∈ W 1,p
X,0(Ω). We begin our investigation with an existence result to the mini-

mization problem associated to (4.1).

Proposition 4.1. Let p ∈ (1,∞), f ∈ Lp′(Ω), g ∈ W 1,p
X (Ω) and let us define the func-

tional Ip : W 1,p
X,g(Ω) −→ R by

Ip(u) := 1
p

∫
Ω

|Xu|pdx−
∫

Ω
fu dx. (4.3)

Then there exists a unique up ∈ W 1,p
X,g(Ω) such that

Ip(up) = min
u∈W 1,p

X,g(Ω)
Ip(u). (4.4)

Moreover, if p ≥ 2, up is the unique weak solution to (4.1).

Proof. We wish to apply the direct method of the calculus of variations. To this aim,
we notice that W 1,p

X,g(Ω) is a closed and convex subset of W 1,p
X (Ω), and so it is weakly

closed. Moreover, Ip is strictly convex and strongly lower semicontinuous, and so it is
weakly sequentially lower semicontinuous. Finally, thanks to Corollary (2.6) and the
Hölder inequality it follows that∫

Ω
|Xu|pdx−

∫
Ω
fu ≥ min

{1
2 ,

1
2K

}
∥u∥p

W 1,p
X

− ∥f∥Lp′ ∥u∥Lp − 1
2

≥ min
{1

2 ,
1

2K

}
∥u∥p

W 1,p
X

− ∥f∥Lp′ ∥u∥W 1,p
X

− 1
2 → +∞

as ∥u∥W 1,p
X

→ +∞. Therefore Ip is sequentially weakly coercive. Hence there exists
up ∈ W 1,p

X,g(Ω) which minimizes Ip. The strict convexity of Ip yields the uniqueness of such
a minimizer. It is now standard calculus to observe that a function u minimizes Ip if and
only if it is a weak solution to (4.1). □

As in the Euclidean setting (cf. [L] for an elementary proof) the following comparison
principle holds.

Lemma 4.2. Let u, v ∈ C0(Ω) be a weak subsolution and a weak supersolution to (4.1)
respectively. Then the following facts hold:
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(i) If u ≤ v on ∂Ω, then u ≤ v on Ω.
(ii) It holds that

sup
x∈Ω

(u− v) ≤ sup
x∈∂Ω

(u− v).

Moreover, if u, v are both weak solutions, it holds that

∥u− v∥∞,Ω ≤ ∥u− v∥∞,∂Ω.

In the next result we study the relationships between weak and viscosity solutions to
(4.1). It is easy to see that when evaluated on C2

X(Ω) functions, equation (4.1) becomes

−|Xw|p−2∆Xw − (p− 2)|Xw|p−4∆X,∞w = f.

The associated differential operator, that is

F (x, ξ,X) = −|ξ|p−2

trace(X) +
m∑

j=1

n∑
i=1

ξj
∂cj,i

∂xi

− (p− 2)|ξ|p−4ξ ·X · ξT − f(x),

is horizontally elliptic and continuous, provided that p ≥ 4 and f is continuous. Therefore
we require in addition that p ≥ 4 and that f ∈ Lp′(Ω) ∩C(Ω). The proof of the following
result is inspired by [MO].

Proposition 4.3. Let p ≥ 4, f ∈ Lp′(Ω) ∩ C(Ω) and let u ∈ W 1,p
X (Ω) ∩ C(Ω) be a weak

solution to (4.1). Then u is a viscosity solution to (4.1).

Proof. We only prove that u is a viscosity subsolution, being the other half of the proof
completely analogous. We already know that u ∈ C(Ω). Therefore, arguing by contradic-
tion, we assume that there exists x0 ∈ Ω, v ∈ C2

X(Ω) and R > 0 such that BR(x0) ⋐ Ω,

0 = v(x0) − u(x0) < v(x) − u(x) on BR(x0) (4.5)

and
−|Xv(x0)|p−2∆Xv(x0) − (p− 2)|Xv(x0)|p−4∆X,∞v(x0) > f(x0).

Hence, thanks to the continuity of the p-Poisson operator, the continuity of f and the
fact that v ∈ C2

X(Ω), up to choosing R small enough we can assume that

−|Xv(x)|p−2∆Xv(x) − (p− 2)|Xv(x)|p−4∆X,∞v(x) ≥ f(x)

for any x ∈ BR(x0). Therefore v is a classical supersolution to the p-Poisson equation
on BR(x0), and so it is in particular a weak supersolution. Since u ∈ C(BR(x0)) it is
well defined the number m := min∂BR(x0)(v − u) and by (4.5) we get m > 0. Now we
notice that v − m is still a weak supersolution to the p-Poisson equation and u ≤ v − m
on ∂BR(x0). Therefore, thanks to Lemma 4.2, we conclude that u ≤ v − m on BR(x0).
Recalling that v(x0) = u(x0) we get m ≤ 0 which is a contradiction. Hence u is a viscosity
subsolution, and the proof is complete. □

5. Variational Solutions to the ∞-Laplace Equation

In this section we study the limiting behavior of solutions to (1.4) and we prove Theorem
1.1.



THE ASYMPTOTIC p-POISSON EQUATION IN CARNOT-CARATHÉODORY SPACES 21

5.1. Existence and Properties of Variational Solutions. Our approach follows the
scheme employed in [BDM]. We fix a function g ∈ W 1,∞

X (Ω) and p ∈ (4,∞). Let
us denote by up the unique weak solution to (4.1), coming from Proposition 4.1, with
boundary datum g and f = 0. Since up − g is an admissible test function in (4.2), it
follows from Hölder’s inequality that∫

Ω
|Xup|pdx ≤

∫
Ω

|Xup|p−1|Xg|dx

≤
(∫

Ω
|Xup|p

) p−1
p
(∫

Ω
|Xg|p

) 1
p

,

which implies that ∫
Ω

|Xup|pdx ≤
∫

Ω
|Xg|pdx. (5.1)

Let us fix a non-decreasing sequence (mk)k ⊆ (4,∞) with limk→∞ mk = ∞. We are going
to show that the family (Xup)p>m0 is bounded in Lm0(Ω). Indeed, if p > m0 then using
(5.1), Hölder’s inequality and the fact that g ∈ W 1,∞

X (Ω), we get∫
Ω

|Xup|m0dx ≤ ∥Xup∥m0
p |Ω|

p−m0
p ≤ (∥Xg∥p

∞|Ω|)
m0

p |Ω|
p−m0

p = |Ω|∥Xg∥m0
∞ . (5.2)

Thanks to Corollary 2.6 and (5.2), we can conclude that the family (up)p>m0 is bounded
in W 1,m0

X (Ω). Therefore, by reflexivity, we know that there exists a subsequence (uph
)h

and a function u∞ ∈ W 1,m0
X (Ω) such that

uph
⇀ u∞ in W 1,m0

X (Ω) as h → ∞.

We call u∞ a variational solution to the ∞-Laplace equation. Next, we prove points
(1)-(4) in Theorem 1.1.

Proof of (1)-(4) in Theorem 1.1. The proof of the weak convergence in W 1,m
X (Ω) for any

m ∈ (1,∞) follows repeating the same steps employed for finding u∞ for each k ∈ N and
by a standard diagonal argument. The uniform convergence follows by the previous fact
and thanks to Proposition 2.15. Let us prove (1). From the lower semicontinuity of the
Lmk-norm with respect to the weak convergence, and the analogous of (5.2) with mk in
place of m0 we get

∥Xu∞∥mk
≤ |Ω|

1
mk ∥Xg∥∞

for any k ∈ N. Therefore, passing to the limit as k goes to infinity, we conclude that

∥Xu∞∥∞ ≤ ∥Xg∥∞.

This, together with Corollary 2.6 and Proposition 2.15, allows to conclude that u∞ ∈
W 1,∞

X (Ω) ∩ C(Ω). To prove (2) we show that u∞ ∈ W 1,mk
X,g (Ω) for any k ∈ N. Indeed, fix

k ∈ N. For any h with ph > mk, there exists a sequence (φh
j )j ⊆ C∞

c (Ω) converging to
uph

− g strongly in W 1,ph
X (Ω), and so, since ph > mk, strongly in W 1,mk

X (Ω). Therefore we
can find a sequence (φh) ⊆ (φh

j )h
j such that

∥φh − (uph
− g)∥1,mk

<
1
h

(5.3)
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for any h > 0. We claim that (φh)h converges weakly to u∞ − g in W 1,mk
X (Ω). Indeed, for

any ψ ∈ Lm∗
k(Ω), thanks to (5.3) and Hölder’s inequality it follows that∣∣∣∣∫

Ω
φhψdx−

∫
Ω
(u∞ − g)ψdx

∣∣∣∣ ≤
∫

Ω
|φh − (uph

− g)||ψ|dx+
∣∣∣∣∫

Ω
(uph

− u∞)ψdx
∣∣∣∣

≤ ∥φh − (uph
− g)∥mk

∥ψ∥m∗
k

+
∣∣∣∣∫

Ω
(uph

− u∞)ψdx
∣∣∣∣

≤ 1
h

∥ψ∥m∗
k

+
∣∣∣∣∫

Ω
(uph

− u∞)ψdx
∣∣∣∣ .

The conclusion follows letting h → ∞. Reasoning in a similar way for the X-gradients,
thanks to Proposition 2.2, the claim is proved. Therefore, thanks to Mazur’s Lemma (cf.
e.g. [Br, Corollary 3.9]), for each j ∈ N there are convex combinations of φh converging
strongly to u∞ − g in W 1,mk

X (Ω), that is, for any j ∈ N there exist natural numbers
Mj < Nj and real numbers aj,Mj

, . . . , aj,Nj
, with limj→∞ Mj = +∞, 0 ≤ aj,h ≤ 1 and∑Nj

h=Mj
aj,h = 1, such that

ϕj :=
Nj∑

h=Mj

aj,hφh −→ u∞ − g in W 1,mk
X (Ω).

Since each ϕj belongs to C∞
c (Ω), it follows that u∞ − g ∈ W 1,mk

X,0 (Ω). The proof of (3)
follows from (2) and thanks to Proposition 2.15. Finally, (4) follows trivially from (3). □

The remaining part of this section is dedicated to the proof of the last two statements
in Theorem 1.1.

5.2. Variational Solutions are AMLEs. In this section we show that variational solu-
tions, as one might expect, are absolutely minimizing Lipschtz extensions. We point out
that this result has already been proved, in greater generality, in [JS]. Nevertheless we
prefer to give here a short proof to keep the paper as self-contained as possible.

Proposition 5.1. u∞ is an AMLE.

Proof. Let v ∈ W 1,∞
X (Ω) and V ⋐ Ω with v|∂V = u∞|∂V . Let (mk)k and (ph)h as above.

For any h ∈ N, consider the unique weak solution vp to the problem{
− divX(|Xu|ph−2Xu) = 0 in V

u = v on ∂V
(5.4)

Up to a subsequence, we can assume that (vph
)h converges to a variational solution v∞ in

the sense of Theorem 1.1. We claim that v∞ = u∞ on V . First of all notice that, for h big
enough and thanks to Proposition 2.15, being v ∈ C(V ), it holds that uph

, vph
∈ C(V ).

Moreover, observe that both uph
and vph

satisfies the equation∫
V

|Xu|p−2Xu ·Xφdx = 0

for any φ ∈ W 1,p
X,0(V ). Therefore, thanks to Lemma 4.2 and Theorem 1.1, it follows that

∥uph
− vph

∥∞,V ≤ ∥uph
− vph

∥∞,∂V ≤ ∥uph
− u∞∥∞,∂V → 0

as h goes to infinity. Therefore, again thanks to Theorem 1.1, we conclude that u∞ = v∞.
On the other hand, arguing as in the proof of Theorem 1.1 and thanks to the previous
claim, we conclude that

∥Xu∞∥∞,V = ∥Xv∞∥∞,V ≤ ∥Xv∥∞,V .
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The previous equation yields at once that
∥|Xu∞|2∥∞,V ≤ ∥|Xv|2∥∞,V ,

and the thesis follows. □

5.3. Variational Solutions are ∞-Harmonic. To complete the study of variational
solutions, we conclude by showing that they are viscosity solutions to the ∞-Laplace
equations. We point out that we cannot exploit Proposition 5.1, together with the results
in [W, WY, PVW], to conclude that u∞, being an AMLE, is ∞-harmonic. Indeed, as
mentioned before, our notion of viscosity solution is stronger than the one introduced in
the aforementioned papers. Therefore we need to give a direct proof which exploits again
the approximation scheme employed for obtaining u∞.

Proposition 5.2. u∞ is a viscosity solution to the ∞-Laplace equation
− ∆X,∞u∞ = 0 on Ω. (5.5)

Proof. We only show that u∞ is a viscosity subsolution to (5.5), being the other half of
the proof analogous. To this aim, let x0 ∈ Ω, v ∈ C2

X(Ω) and R > 0 be such that u∞ − v
has a strict maximum at x0 in BR(x0) ⋐ Ω. If Xv(x0) = 0, by (2.13) the thesis is trivial.
So we can assume that |Xv(x0)| > 0. Let uh := uph

be a sequence which allows to define
u∞. We can assume without loss of generality that ph > Q for any h ∈ N, where Q is as
in Proposition 2.15. Then it follows that uh ∈ C0(Ω). Moreover, thanks to Theorem 1.1
we can assume that uh converges to u∞ uniformly on BR(x0). Let now xh be a maximum
point of uh −v on BR

2
(x0). We claim that xh has a subsequence, still denoted by xh, which

converges to x0. If it is not the case, assume without loss of generality that xh → x1 ̸= x0,
for some x1 ∈ BR(x0). Then it follows that

uh(xh) − v(xh) ≥ uh(x0) − v(x0),
and so, passing to the limit and thanks to uniform convergence, we get that

u∞(x1) − v(x1) ≥ u∞(x0) − v(x0),
which contradicts the strict maximality of x0. Hence, up to a subsequence, we assume that
xh → x0. By Proposition 4.3 we know that uh is a viscosity solution to (4.1), therefore

−|Xv(xh)|ph−2∆Xv(xh) − (ph − 2)|Xv(xh)|ph−4∆X,∞v(xh) ≤ 0.
Since |Xv(x0)| > 0, then for h big enough we have that |Xv(xh)| > 0. Therefore we can
divide both sides by (ph − 2)|Xv(xh)|ph−4, and get that

−|Xv(xh)|2∆Xv(xh)
ph − 2 − ∆X,∞v(xh) ≤ 0.

Passing to the limit as h → ∞, the proof is complete. □

6. Variational Solutions Arising from the Non-Homogeneous Problem

In this section we prove Theorem 1.2 and study the limiting behavior of weak solutions
to the p-Poisson equation as p → ∞ with a non-negative datum f ∈ L∞(Ω) ∩ C0(Ω).
In analogy with the previous section we introduce the notion of variational solutions u∞
as suitable limits of the sequence (up)p. Moreover, we show that u∞ is the solution of a
constrained extremal problem which can be understood as the limiting problem arising
from (4.4). Finally, we study the limiting partial differential equation satisfied by u∞. In
particular we show that u∞ is a viscosity supersolution to the ∞-Laplace equation and a
viscosity subsolution to the Eikonal equation. Unlike the homogeneous case, u∞ is not in
general ∞-harmonic. Nevertheless, it satisfies in the viscosity sense the system (1.5).
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6.1. Existence and Properties of Variational Solutions. We follow the approach
of [BDM]. From now on we fix f ∈ L∞(Ω) and we denote by up ∈ W 1,p

X,0(Ω) the unique
solution to (4.1) with f ≥ 0 and p > 4. Let us denote by I∞ the variational functional
that we get taking the (formal) limit as p → +∞ in (4.3), namely

I∞(φ) := −
∫

Ω
fφdx

with φ ∈ W 1,∞
X (Ω) ∩C0(Ω). Clearly, I∞ does not admit a minimum in W 1,∞

X (Ω) ∩C0(Ω).
Nevertheless, in analogy with the Euclidean setting, we are going to show that imposing
the extra condition ∥Xφ∥∞,Ω = 1 is enough to find a solution.

Theorem 6.1. There exists u∞ ∈ W 1,∞
X (Ω) ∩ C0(Ω) such that
I∞(u∞) ≤ I∞(φ) (6.1)

for any φ ∈ W 1,∞
X (Ω) ∩ C0(Ω) such that ∥Xφ∥∞,Ω = 1. Moreover, it holds that

0 ≤ u∞(x) ≤ dΩ0(x, ∂Ω) ∀x ∈ Ω, (6.2)
where dΩ0(x, ∂Ω) = infy∈∂Ω dΩ0(x, y).

Before proving the theorem we construct the candidate solutions u∞, in analogy with
the previous section, as suitable limits of subsequences of (up)p. To this aim, let us define
the real number Ep by

Ep = Ep(Ω, f) :=
∫

Ω
|Xup|pdx.

By (4.2) and the Hölder inequality we have∣∣∣∣∫
Ω
f φ dx

∣∣∣∣ ≤ E
p−1

p
p

(∫
Ω

|Xφ|p
) 1

p

for each φ ∈ W 1,p
X,0(Ω). Therefore it holds that

max
φ∈W 1,p

X,0(Ω),φ ̸=0

( ∫
Ω f φ dx

(
∫

Ω |Xφ|p)1/p

) p
p−1

≤ Ep, (6.3)

where by possibly changing φ into −φ we have assumed that∫
Ω
f φ dx ≥ 0.

Testing (4.2) with φ = up we get

Ep =
∫

Ω
|Xup|pdx =

∫
Ω
f up dx. (6.4)

From this we have

Ep = (
∫

Ω |Xup|p)
p

p−1

(
∫

Ω |Xup|p)
1

p−1
=
( ∫

Ω f up

(
∫

Ω |Xup|p)1/p

) p
p−1

≤ max
φ∈W 1,p

X,0(Ω),φ ̸=0

( ∫
Ω f φdx

(
∫

Ω |Xφ|p)1/p

) p
p−1

(6.5)

which together with (6.3) gives

Ep = max
φ∈W 1,p

X,0(Ω),φ ̸=0

( ∫
Ω f φdx

(
∫

Ω |Xφ|p)1/p

) p
p−1

,

that is the anisotropic analogous of the so-called Thompson principle (cf. [BDM]). Using
equation (6.4) we have

Ep =
∫

Ω
⟨V,Xup⟩ dx,
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where V ∈ L
p

p−1 (Ω,Rm) is any vector valued function satisfying − divX(V ) = f . By the
Hölder inequality

Ep ≤
∫

Ω
|V |

p
p−1

with equality if V = |Xup|p−2Xup. Therefore the Thompson principle is equivalent to the
Dirichlet principle given by

Ep = min
{∫

Ω
|V |

p
p−1dx : V ∈ L

p
p−1 (Ω,Rm), − divX(V ) = f in D′(Ω)

}
. (6.6)

Lemma 6.2. The function p → (|Ω|−1Ep)
p−1

p is monotonically decreasing as p → +∞.

Proof. Let 1 < q < p. For all V in L
q

q−1 (Ω,Rm) such that − divX(V ) = f in D′(Ω) we
have

(|Ω|−1Ep)
p−1

p ≤
(

|Ω|−1
∫

Ω
|V |

p
p−1dx

) p−1
p

≤
(

|Ω|−1
∫

Ω
|V |

q
q−1dx

) q−1
q

.

Then we have

(|Ω|−1Ep)
p−1

p ≤ inf
V ∈Lq/(q−1)(Ω,Rm),divX(V )=−f

(
|Ω|−1

∫
Ω

|V |
q

q−1dx
) q−1

q

≤ (|Ω|−1Eq)
q−1

q ,

where the last inequality follows by (6.6). □

By Lemma 6.2 we get that {Ep}p converges and we set E∞ = limp→+∞ Ep. Fix m > 1,
by the Hölder inequality we have∫

Ω
|Xup|m ≤

(∫
Ω

|Xup|p
)m

p

|Ω|1− m
p = E

m
p

p |Ω|1− m
p for all p > m. (6.7)

Let us fix a non-decreasing sequence (mk)k ⊆ (4,+∞) with limk→∞ mk = +∞. By (6.7)
and E∞ = limp→+∞ Ep, the family (up)p>mk

is bounded in W 1,mk
X,0 (Ω) for each k ∈ N.

Therefore, by reflexivity, there exists a subsequence (uph
)h and a function u∞ ∈ W 1,mk

X,0 (Ω)
such that

uph
⇀ u∞ in W 1,mk

X,0 (Ω)
as h goes to infinity for each k ∈ N. We call u∞ a variational solution. It is now possible
to repeat the same arguments of the previous section to see that uph

⇀ u∞ in W 1,p
X (Ω)

for any p > 4. Moreover by (6.7) we conclude

∥Xu∞∥∞ ≤ lim
p→+∞

(
Ep

|Ω|

) 1
p

= 1. (6.8)

Therefore u∞ ∈ W 1,∞
X (Ω). Moreover, by Proposition 2.15 we know that u∞ ∈ W 1,∞

X (Ω) ∩
C0(Ω). Finally, again by Proposition 2.15 we conclude that uph

→ u∞ uniformly on Ω.

Proof of Theorem 6.1. Let us consider a variational solution u∞, relative to sequences
(mk)k and (ph)h. For sake of simplicity, we denote ph by p and we write p → ∞ meaning
that h → ∞. We already know that u∞ ∈ W 1,∞

X (Ω) ∩ C0(Ω). Therefore, if we extend
u∞ to be zero outside Ω, then clearly u∞ ∈ W 1,∞

X (Ω0). Hence (cf. [GN]) it follows that
u∞ ∈ Liploc(Ω0, dΩ0). Since Ω ⋐ Ω0, we conclude that u∞ ∈ Lip(Ω, dΩ0). By (6.8) we get

|u∞(x) − u∞(y)| ≤ dΩ0(x, y)

for each x, y ∈ Ω. Taking the infimum for y ∈ ∂Ω and recalling that u∞(y) = 0, we obtain

|u∞(x)| ≤ dΩ0(x, ∂Ω).
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On one hand, by (6.3) it follows that for φ ∈ W 1,∞
X (Ω) ∩ C0(Ω), φ ̸= 0 fixed we have∫

Ω f φ dx

(
∫

Ω |Xφ|p dx)1/p
≤ E

p−1
p

p

and letting p → +∞ ∫
Ω f φdx

∥Xφ∥∞
≤ E∞. (6.9)

On the other hand, recalling (6.4) and by the weak convergence, we have

E∞ =
∫

Ω
fu∞ dx. (6.10)

Combining (6.8), (6.9) and (6.10) we get that ∥Xu∞∥∞ = 1 and that∫
Ω
fu∞ dx ≥

∫
Ω
fφ dx

for any φ ∈ W 1,∞
X (Ω) ∩ C0(Ω) such that ∥Xφ∥∞ = 1. This concludes the proof.

□

To conclude this section, in analogy with [BDM], we show that when f > 0 variation-
als solutions are unique and coincide with the Carnot-Carathéodory distance from the
boundary of Ω. Before we need a technical lemma.

Lemma 6.3. The distance function x 7→ dΩ0(x, ∂Ω) belongs to W 1,∞
X (Ω) ∩ C0(Ω). In

particular, dΩ0(·, ∂Ω) belongs to W 1,p
X,0(Ω) for all p ≥ 1. Moreover, ∥XdΩ0(·, ∂Ω)∥∞ = 1.

Proof. It is well known that dΩ0(·, ∂Ω) ∈ Lip(Ω, dΩ0) and that ∥XdΩ0(·, ∂Ω)∥∞ = 1 (cf.
[GN]). Since Lip(Ω, dΩ0) ⊆ Lip(Ω, dΩ) and Lip(Ω, dΩ) ⊆ W 1,∞

X (Ω) (cf. [GN]), we conclude
that dΩ0(·, ∂Ω) ∈ W 1,∞

X (Ω). Moreover, dΩ0(·, ∂Ω) is continuous and dΩ0(x, ∂Ω) = 0 for
x ∈ ∂Ω, thus dΩ0(x, ∂Ω) ∈ C0(Ω). Finally, in order to prove that d(x, ∂Ω) belongs to
W 1,p

X,0(Ω) we argue as in [Br, Theorem 9.17]. □

Proposition 6.4. Assume that f > 0 in Ω. Then there exists a unique variational
solution u∞. Moreover, every sequence (upi

)i ⊆ (up)p converges to u∞ strongly in W 1,m
X (Ω)

for any m ≥ 1. Finally, it holds that

u∞(x) = dΩ0(x, ∂Ω), ∀x ∈ Ω.

Proof. Let u∞ be as in Theorem 6.1, relative to sequences (mk)k and (ph)h. By Lemma
6.3, dΩ0(·, ∂Ω) is a suitable test function in (6.1), and so∫

Ω
f(x)u∞(x) dx ≥

∫
Ω
f(x)dΩ0(x, ∂Ω) dx,

which together with f > 0 in Ω gives u∞(x) ≥ dΩ0(x, ∂Ω) for all x in Ω. This inequality
and (6.2) imply that u∞ = dΩ0(·, ∂Ω). Fix now a sequence (upi

)i ⊆ (up)p and m ≥ 1.
Since every subsequence of (upi

)i has a subsequence that weakly converges to dΩ0(·,Ω0) in
W 1,m

X (Ω), then the (upi
)i weakly converges to u∞ = d(x, ∂Ω) in W 1,m0

X,0 (Ω). In particular
we gain that (upi

)i converges to dΩ0(·, ∂Ω) in C0,α
X (Ω) for α = 1 − Q/m0 and (Xupi

)i

converges weakly in Lm to XdΩ0(·, ∂Ω). The rest of the proof follows exactly as in the
proof of [BDM, Part II, Proposition 2.1]. □

Corollary 6.5. Let Ω1 be a domain such that Ω ⋐ Ω1 ⊆ Ω0. Then

dΩ1(·, ∂Ω) = dΩ0(·, ∂Ω) on Ω.
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6.2. The Limiting Partial Differential Equation. In this final section, in analogy
with [BDM], we want to understand which is the limiting partial differential equation
that variational solutions have to satisfy. As in the Euclidean setting we show that the
limiting equations depend on the fact that we are in the support of f or not. Indeed
we show that a variational solution is ∞-harmonic outside the support of f and that
it satisfies the Eikonal equation inside the support of f . We begin our proof with the
following result.

Proposition 6.6. u∞ is a viscosity supersolution to the Eikonal equation

|Xu∞| = 1 in {f > 0}.

Proof. We begin by showing that it suffices to consider tests functions in C2
X(Ω). Indeed,

let x0 ∈ {f > 0} and v ∈ C1
X(Ω) such that u∞ − v has a strict minimum at x0 in a ball

BR(x0) ⋐ {f > 0}. Thanks to Proposition 2.4, there exists a sequence (vh)h ∈ C2
X(Ω)

such that vh → v and Xvh → Xv uniformly on BR(x0). Let now xh be a minimum point
of u∞ − vh on BR

2
(x0). Arguing as in the proof of Proposition 5.2, up to a subsequence

we can assume that xh → x0. Therefore, passing to the limit in

|Xvh(xh)| ≥ 1,

thanks to uniform convergence we get that

|Xv(x0)| ≥ 1.

Hence we can work with tests functions in C2
X(Ω). Let x0 ∈ {f > 0}, v ∈ C2

X(Ω) and
R > 0 be such that u∞ − v has a strict minimum at x0 in BR(x0) ⋐ {f > 0}. If uh := uph

is a sequence which allows to define u∞, then we can assume that uh converges to u∞
uniformly on BR(x0). Let now xh be a minimum point of uh − v on BR

2
(x0). Arguing as

above we can assume that, up to a subsequence, xh → x0. Let us assume without loss of
generality that ph > Q for any h ∈ N, where Q is as in Proposition 2.15. Then it follows
that uh ∈ C0(Ω). Therefore we can apply Proposition 4.3 and obtain that uh is a viscosity
solution to (4.1), i.e.

|Xv(xh)|ph−2∆Xv(xh)+(ph−2)|Xv(xh)|ph−4Xv(xh)·X2v(xh)·Xv(xh)T ≤ −f(xh), (6.11)

and recalling that xh ∈ {f > 0}, we also get |Xv(xh)| > 0 for any h ∈ N. Assume by
contradiction that |Xv(x0)| < 1, then there exists δ > 0 such that |Xv(x0)| ≤ 1 − 2δ
and without loss of generality we can also assume that |Xv(xh)| ≤ 1 − δ for any h ∈ N.
Consequently,

0 ≤ lim
h→∞

(ph − 2)|Xv(xh)|ph−4 ≤ lim
h→∞

(ph − 2)(1 − δ)ph−4 = 0. (6.12)

Dividing (6.11) by (ph − 2)|Xv(xh)|ph−4 and using (6.12) we conclude

Xv(x0) ·X2v(x0) ·Xv(x0)T = −∞

which contradicts v ∈ C2
X(Ω). □

Exploiting the previous result we can prove that variational solutions are ∞-superharmonic
on the entire domain.

Proposition 6.7. u∞ is a viscosity supersolution to the ∞-Laplace equation

−∆X,∞u∞ = 0 on Ω.
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Proof. Let x0 ∈ Ω, v ∈ C2
X(Ω) and R > 0 be such that u∞ − v has a strict minimum at

x0 in BR(x0). Assume without loss of generality that |Xv(x0)| ̸= 0. We argue exactly as
in the previous proof to get that

−Xv(x0) ·X2v(x0) ·Xv(x0)T ≥ f(x0)
limh→∞(ph − 2)|Xv(xh)|ph−4 .

If f(x0) = 0 the thesis is trivial. If instead x0 ∈ {f > 0}, we know by the previous
proposition that limh→∞(ph − 2)|Xv(xh)|ph−4 = +∞, and so the thesis follows. □

Since the notion of viscosity solution is of local nature then proceeding exactly as in
the proof of Proposition 5.2 the following result holds.

Proposition 6.8. u∞ is a viscosity subsolution to the ∞-Laplace equation

−∆X,∞u∞ = 0 on {f > 0}c
.

To conclude our investigation we show that u∞ is a viscosity subsolution to the Eikonal
equation on Ω. For doing this we invoke Theorem 3.7, together with the fact that, thanks
(6.8), ∥Xu∞∥∞ ≤ 1.

Proposition 6.9. u∞ is a viscosity subsolution to the Eikonal equation

|Xu∞| = 1 on Ω.

We summarize our results as follows.

Theorem 6.10. Let u∞ be a variational solution. Then the following facts hold.
(i) u∞ is a viscosity supersolution to the ∞-Laplace equation on Ω.

(ii) u∞ is a viscosity solution to the ∞-Laplace equation on {f > 0}c.
(iii) u∞ is a viscosity subsolution to the Eikonal equation on Ω.
(iv) u∞ is a viscosity solution to the Eikonal equation on {f > 0}.

7. Appendix

As already pointed out, Proposition 2.14 can still be proved assuming
(D1) (Ω, dΩ) is a Carnot-Carathéodory space,
(D2) dΩ is continuous with respect to the Euclidean topology,

(LIC) The vectors X1(x), . . . , Xm(x) are linearly independent for any x ∈ Ω
instead of (LIC) and (2.4). The previous set of conditions embraces many relevant families
of vector fields, such as for instance Carnot Groups. However, when considering the two
sets of hypotheses given by the Hörmander condition and (D1), (D2), (LIC), one can show
that neither of the two implies the other. Indeed, from one hand it is well known that
the Grushin plane, i.e. R2 equipped with the Carnot-Carathéodory distance generated by
the vector fields

X = ∂

∂x
Y = x

∂

∂y
,

satisfies the Hörmander condition, while X and Y are clearly linearly dependent in
{(0, y) | y ∈ R}. On the other hand, there are examples of (even smooth) families of
vector fields satisfying (D1), (D2), (LIC) which does not satisfies the Hörmander con-
dition. Let us consider the two linearly independent vector fields X, Y defined on R3

by

X = ∂

∂x
Y = ∂

∂y
+ φ(x) ∂

∂z
,
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where φ(x) := ψ(x) + ψ(−x) and ψ : R → R is defined by

ψ(x) =

e− 1
x if x > 0

0 otherwise.

Since φ(k)(0) = 0 for any k ∈ N, it is easy to see that
[X, [. . . , [X, Y ] . . .](0, y, z) = [Y, [. . . , [X, Y ] . . .](0, y, z) = 0

for any y, z ∈ R so X, Y do not satisfy the Hörmander condition in {(0, y, z) | y, z ∈ R}.
It is not difficult to show that they induces a Carnot-Carathéodory distance d on R3,

and that the identity map
Id : (R3, de) −→ (R3, d)

is continuous. Indeed, let A = (x, y, z) and B = (x1, y1, z1) in R3 we construct an
horizontal curve joining them whose horizontal length tends to zero as A tends to B
in the Euclidean topology. First, notice that moving along the X direction the induced
Carnot-Carathéodory distance is comparable with the Euclidean one. Hence, without loss
of generality, we can assume that x = x1 = 0. Moreover, since Y = ∂

∂y
on {x = 0}, then

moving along the Y direction inside {x = 0} the induced Carnot-Carathéodory distance
is comparable with the Euclidean one. Hence we assume that y1 = y. The last step is to
join (0, y, z) and (0, y, z1). We assume, without loss of generality, that z1 > z. Let us set

δ := − 1
log(

√
z1 − z)

then δ → 0+ as z1 → z. Let us define the curves γ1, . . . , γ4 : [0, 1] → R3 by
γ1(t) = (0, y, z) + t(δ, 0, 0),

γ2(t) = (δ, y, z) + t

(
0, z1 − z

φ(δ) , z1 − z

)
,

γ3(t) =
(
δ, y + z − z1

φ(δ) , z1

)
+ t(−δ, 0, 0)

and
γ4(t) =

(
0, y + z1 − z

φ(δ) , z1

)
+ t

(
0, z − z1

φ(δ) , 0
)

it is easy to see that they are horizontal and that they connect (0, y, z) and (0, y, z1).
Moreover, a quick computation shows that

d((0, y, z), (0, y, z1)) ≤ 2δ + z1 − z

φ(δ) = − 2
log(

√
z1 − z) +

√
z1 − z.

As the right hand side tends to zero as z1 → z, the conclusion follows.
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