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Abstract

In this paper we consider optimal control problems where the control variable
is a potential and the state equation is an elliptic partial differential equation of a
Schrödinger type, governed by the Laplace operator. The cost functional involves
the solution of the state equation and a penalization term for the control variable.
While the existence of an optimal solution simply follows by the direct methods
of the calculus of variations, the regularity of the optimal potential is a difficult
question and under the general assumptions we consider, no better regularity
than the BV one can be expected. This happens in particular for the cases in
which a bang-bang solution occurs, where optimal potentials are characteristic
functions of a domain. We prove the BV regularity of optimal solutions through
a regularity result for PDEs. Some numerical simulations show the behavior of
optimal potentials in some particular cases.
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1 Introduction

The starting point of our research is an optimal control problem of the form

min

ˆ
Ω

[
j(x, u) + ψ(m)

]
dx, (1.1)
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governed by the state equation{
−∆u+mu = f in Ω

u ∈ H1
0 (Ω).

(1.2)

Here Ω is a bounded open subset of RN , the control variable m is assumed to be
nonnegative, f ∈ L2(Ω), and j, ψ are suitable integrands. We assume that ψ has a
superlinear growth, which automatically implies that the control variables are in L1(Ω).
Notice that, when j(x, u) = f(x)u, the problem can be written in the variational form

min
{
− 2E (m) + Ψ(m) : m ∈ L1(Ω), m ≥ 0

}
,

where

Ψ(m) =

ˆ
Ω

ψ(m) dx

E (m) = min

{ˆ
Ω

[1

2
|∇u|2 +

1

2
mu2 − f(x)u

]
dx : u ∈ H1

0 (Ω)

}
.

In this case it is possible to see that the control variable m can be eliminated, obtaining
the auxiliary variational problem

min

{ˆ
Ω

[
|∇u|2 + ψ∗(u2)− 2f(x)u

]
dx : u ∈ H1

0 (Ω)

}
, (1.3)

where ψ∗ denotes the Fenchel-Moreau conjugate of the function ψ. Setting g(s) =
s(ψ∗)′(s2), the unique solution û of (1.3) can be obtained through the PDE{

−∆u+ g(u) = f in Ω

u ∈ H1
0 (Ω),

(1.4)

and the optimal control m̂ can be then recovered as

m̂ = (ψ∗)′(û2).

For general integrands j(x, u) the elimination procedure above is not possible, and the
necessary conditions of optimality involve an adjoint state variable and the correspond-
ing adjoint PDE. Nevertheless, we can show that the optimal control problem (1.1),
(1.2) admits a solution (û, m̂). The main goal of the present paper is to show that, un-
der suitable assumptions on the data, the optimal control m̂ has additional regularity
properties. In particular, we show that m̂ ∈ BV (Ω).

We stress that, under the general assumptions we consider on the function ψ, higher
regularity properties on m̂ do not hold. Indeed, when

ψ(s) =

{
s if s ∈ [α, β] (with 0 ≤ α < β)

+∞ otherwise,

the optimal control m̂ is of bang-bang type, that is

m̂ = α + (β − α)1E
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for a suitable set E, which then turns out to be a set with finite perimeter.
Problems of this form arise for instance in some biological models, governed by

logistic diffusive equations, where one aims to control the size of a total population or
the optimal location of resources, see for instance [20] and [21].

The proof of the BV regularity above is obtained through a careful analysis of a
nonlinear elliptic PDE of the form (1.4). In general, for the cases arising from optimal
control problems, the right-hand side f has a low summability and does not belong to
the space H−1(Ω); the definition of solution is then more involved and has to be given
as in the theory of renormalized solutions (see for instance [3], [17]).

In Section 2 we list the notation that is used along the paper, in Section 3 we study
the semilinear problems (1.4) with the nonlinearity g possibly discontinuous and the
right-hand side f having a low summability. Our goal is to show that, when f ∈ BV (Ω),
the solution u is such that g(u) ∈ BV (Ω). Section 4 deals with the application of the
result above to the optimal control problem (1.1), (1.2). In Section 5 we consider some
relevant examples with various particular choices of the data. Finally in Section 6
we provide some numerical simulations which show the bang-bang behavior of optimal
solutions in some cases, as well as the continuous behavior in some other ones.

2 Notation

In this section we fix the notation that we use in the rest of the paper.

• For s ∈ R, we denote by sgn(s) the sign of s.

• For a measurable set A ⊂ RN , we denote by |A| its Lebesgue measure.

• For a function g : R → R, and s ∈ R, we denote by g−(s), and g+(s) the limits
on the left and on the right in s, respectively (if they exist).

• For k > 0 we define the functions Tk, Sk ∈ W 1,∞(R) by

Tk(s) =

{
s if |s| < k

k sgn(s) if |s| ≥ k,
Sk(s) =


1 if |s| ≤ k

2− |s|
k

if k < |s| < 2k

0 if |s| ≥ 2k.

• We denote by M(Ω) the space of Borel measures in Ω with finite total mass.

• If ψ : R→ R∪ {∞} is a lower semicontinuous proper convex function, we denote
by dom(ψ) the domain of ψ, defined by

dom(ψ) =
{
s ∈ R : ψ(s) <∞

}
.

It is a non-empty interval of R, which we assume not reduced to a point. For
s ∈ dom(ψ), we denote by ∂ψ(s) the subdifferential of ψ at s, defined by

∂ψ(s) =
{
τ ∈ R : τ(t− s) ≤ ψ(t)− ψ(s) for every t ∈ dom(ψ)

}
. (2.1)

Taking into account that the map

(s, t) 7→ ψ(t)− ψ(s)

t− s
for s < t (2.2)

3



is non-decreasing in both variables s and t, we have that for every s ∈ dom(ψ)
the two limits 

d+ψ(s) := lim
ε↘0

ψ(s+ ε)− ψ(s)

ε
∈ (−∞,∞]

d−ψ(s) := lim
ε↘0

ψ(s)− ψ(s− ε)
ε

∈ [−∞,∞)

exist and
∂ψ(s) =

[
d−ψ(s), d+ψ(s)

]
. (2.3)

We also recall that every convex function ψ is locally Lipschitz in the interior of
its domain.

• We denote by ψ∗ the Fenchel-Moreau conjugate of ψ, defined by

ψ∗(t) := sup
s∈dom(ψ)

{
ts− ψ(s)

}
∀ t ∈ R.

We recall that ψ∗ is also a convex lower semicontinuous function and that

(ψ∗)∗ = ψ.

Moreover, we have

t ∈ ∂ψ(s) ⇐⇒ s ∈ ∂ψ∗(t) ⇐⇒ ts = ψ(s) + ψ∗(t). (2.4)

In the following we consider the integral functionals

J(u) =

ˆ
Ω

j(x, u) dx defined for u ∈ H1
0 (Ω);

Ψ(m) =

ˆ
Ω

ψ(m) dx defined for m ∈ L1(Ω), m ≥ 0;

F (u,m) = J(u) + Ψ(m).

The function ψ : [0,∞)→ R∪{∞} is assumed lower semicontinuous proper and convex,
and such that

lim
s→∞

ψ(s)

s
=∞; (2.5)

in this way the functional Ψ is well defined on L1(Ω) and Ψ(m) <∞ implies that m ∈
L1(Ω). It is easy to see that, with the conditions above, the function ψ is bounded from
below; hence up to the addition of a constant, that does not modify our optimization
problem, we may assume ψ non-negative.

Concerning the integrand j(x, s) we assume measurability in x, lower semicontinuity
in s and the bound

a(x)− c|s|2 ≤ j(x, s) (2.6)

for suitable c ≥ 0 and a ∈ L1(Ω).
The optimization problem we consider is then

min
{
F (u,m) : −∆u+mu = f, u ∈ H1

0 (Ω), m ∈ L1(Ω)
}
,

where f ∈ H−1(Ω) is prescribed. In Section 4 we show that the optimal control problem
above admits an optimal pair (û, m̂). Under some additional assumptions, we obtain the
corresponding necessary conditions of optimality and we study the regularity properties
of (û, m̂).
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3 Semilinear problems with a discontinuous term

In the present section we are interested in the existence and regularity properties of the
solutions of a semi-linear problem of the form{

−∆u+ g(u) = f in Ω

u = 0 on ∂Ω,
(3.1)

where the function g is non-decreasing and not necessarily continuous. Moreover, we
assume only low integrability on the right-hand side f . In particular, we do not assume
f ∈ H−1(Ω), which leads us to work with renormalized or entropy solutions (see for
instance [3], [4], [16]). In this sense, we introduce the following definition of solution
for problem (3.1).

Definition 3.1. Assume f ∈ L1(Ω). We say that a pair (u,w) is a solution of (3.1) if
it satisfiesu ∈ H

1
0 (Ω) if N = 1

u ∈ W 1,p
0 (Ω) ∀ p < N

N − 1
, Tk(u) ∈ H1

0 (Ω) ∀ k > 0 if N ≥ 2,
(3.2)

w ∈ L1(Ω), g−(u) ≤ w ≤ g+(u) a.e. in Ω, (3.3)
ˆ

Ω

∇u · ∇v dx+

ˆ
Ω

wv dx =

ˆ
Ω

fv dx

∀ v ∈ H1
0 (Ω) ∩ L∞(Ω) such that ∃k > 0 with ∇v = 0 a.e. in {|u| > k}.

(3.4)

The existence and uniqueness of solutions for problem (3.1) is given by the following
theorem.

Theorem 3.2. Let Ω ⊂ RN be a bounded open set, and g : R → R a non-decreasing
function. Then, for every f ∈ L1(Ω), there exists a unique solution (u,w) of (3.1) in
the sense of Definition 3.1. Moreover, it satisfies

‖w − g+(0)‖L1(Ω) ≤ ‖f − g+(0)‖L1(Ω), (3.5)
‖u‖H1

0 (Ω) ≤ C‖f‖L1(Ω) if N = 1,

‖Tk(u)‖2
H1

0 (Ω) ≤
ˆ

Ω

|f − g+(0)||Tk(u)| dx ∀ k > 0,

‖u‖W 1,p
0 (Ω) ≤ C‖f − g+(0)‖L1(Ω) ∀ p < N

N − 1
if N ≥ 2.

(3.6)

In these estimates the constant C only depends on |Ω|, p, and N .

Remark 3.3. Assuming in Theorem 3.2, f in Lq(Ω), with q > 1, the classical estimates
for renormalized solutions (see for instance [3], [4], [17]) combined with Stampacchia’s
estimates (see [25]) also prove that the solution (u,w) of (3.1) satisfies

u ∈ W
1, Nq
N−q

0 (Ω) if 1 < q ≤ 2N

N + 2

u ∈ H1
0 (Ω) ∩ L

Nq
N−2q (Ω) if

2N

N + 2
< q <

N

2

u ∈ H1
0 (Ω) ∩ L∞(Ω) if

N

2
< q.

(3.7)
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In particular, assuming f ∈ L
2N
N+2 (Ω), we have that the solution u in Theorem 3.2 is in

H1
0 (Ω). In this case, it can be defined in a simpler way as the unique solution of the

strictly convex minimum problem

min
v∈H1

0 (Ω)

ˆ
Ω

(
1

2
|∇v|2 +G(v)− fv

)
dx,

with G : R→ R defined by

G(s) =

ˆ s

0

g(r) dr ∀ s ∈ R.

Remark 3.4. Theorem 3.2 and (3.7) can be extended with the same proofs to the case
where the operator −∆u is replaced by −div (A(x)∇u) with A a matrix function in
L∞(Ω)N×N satisfying the ellipticity condition

∃ c > 0 such that A(x)ξ · ξ ≥ c|ξ|2 ∀ ξ ∈ RN , a.e. x ∈ Ω.

Moreover, the equation
−div (A(x)∇u) + w = f (3.8)

is satisfied in the sense of distributions for Ω. Indeed, in the case of the Laplacian
operator, since −∆ is an isomorphism from W 1,p

0 (Ω) into W−1,p(Ω), for 1 < p < ∞, it
is known that (3.4) is equivalent to require that (u,w) satisfies (3.8) in the distributions
sense in Ω. Thus, Theorem 3.2 shows that for every f ∈ L1(Ω), there exists a unique
solution (u,w) ∈ W 1,p

0 (Ω) ∩ L1(Ω), 1 < p < N/(N − 1), in the distributions sense, of
−∆u+ w = f in Ω

u = 0 on ∂Ω

g−(u) ≤ w ≤ g+(u) a.e. in Ω.

(3.9)

However, if we replace −∆u by −div (A∇u) with A as above, this is no longer true.
We refer to [24] for a classical counter-example to the uniqueness of the distributional
solution.

The following result proves the continuous dependence with respect to the right-
hand side and a maximum principle.

Theorem 3.5. Let Ω ⊂ RN be a bounded open set and g : R → R a non-decreasing
function. For f1, f2 ∈ L1(Ω) we take (u1, w1), (u2, w2) solutions of (3.1) with f = f1

and f = f2 respectively. Then, we have

‖w1 − w2‖L1(Ω) ≤ ‖f1 − f2‖L1(Ω); (3.10)

‖Tk(u1 − u2)‖H1
0 (Ω) ≤ k‖f1 − f2‖L1(Ω) ∀ k > 0; (3.11)‖u1 − u2‖H1

0 (Ω) ≤ C‖f1 − f2‖L1(Ω) if N = 1

‖u1 − u2‖W 1,p
0 (Ω) ≤ C‖f1 − f2‖L1(Ω) ∀ p ∈

(
1,

N

N − 1

)
if N ≥ 2.

(3.12)

The constant C > 0 in this last inequality only depends on |Ω| if N = 1. For N ≥ 2 it
only depends on N , p and |Ω|. In addition,

f1 ≤ f2 a.e. in Ω =⇒ u1 ≤ u2 a.e. in Ω.
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Our main result in this section proves that the function w in Theorem 3.2 is in
BV (Ω) when f is in BV (Ω). It will be used in Theorem 4.7 to deduce some regularity
results for the solution of a control problem governed by an elliptic equation, where the
control variable corresponds to the coefficients of the zero order’s term.

Theorem 3.6. Let Ω ⊂ RN be a bounded open set of class C1,1, and g : R → R
a non-decreasing function. Then, for f ∈ BV (Ω), the solution (u,w) of (3.9) is in

W 2, N
N−1 (Ω)×BV (Ω). Moreover, there exists C > 0 depending only on Ω such that

‖u‖
W

2, N
N−1 (Ω)

≤ C
(
‖f‖BV (Ω) + |g+(0)|

)
, (3.13)

‖∇w‖M(Ω)N ≤ C
(
‖f‖BV (Ω) + |g+(0)|). (3.14)

Let us now prove Theorems 3.2, 3.5 and 3.6.

Proof of Theorem 3.2. When g is a continuous function, the result is well known from
the theory of renormalized solutions for elliptic PDE (see for instance [3], [4], [17]). We
recall how the corresponding estimates are obtained.

Taking Tk(u), with k > 0 as test function in (3.4) we haveˆ
{|u|<k}

|∇u|2 dx+

ˆ
Ω

(
g(u)− g(0)

)
Tk(u) dx =

ˆ
Ω

(f − g(0))Tk(u) dx. (3.15)

Thanks to the fact that g is non-decreasing, we have (g(u)− g(0))Tk(u) ≥ 0 a.e. in Ω
and this gives the second estimate in (3.6). From this inequality, using the argument
in Theorem 1 of [4], we conclude that u satisfies (3.6).

Dividing by k in (3.15) and taking the limit as k → 0 we get

lim
k→0

1

k

ˆ
{|u|<k}

|∇u|2dx+

ˆ
Ω

|g(u)− g(0)|dx =

ˆ
Ω

(f − g(0)) sgn(u) dx.

This proves (3.5) with w = g(u).
Let us now prove the existence of solution for (3.9) in the case of g just non-

decreasing. For this purpose we replace g by gn = g ∗ ρn, n ∈ N, with ρn a sequence of
mollifiers functions defined as

ρn(s) = nρ
(
ns) ∀ s ∈ R,

with

ρ ∈ C∞(R), ρ ≥ 0 in R, support(ρ) ⊂ (−1, 0),

ˆ
R
ρ(s)ds = 1.

Then, gn satisfies

gn ∈ C∞(R), gn is non-decreasing, g(s) ≤ gn(s) ≤ g
(
s+

1

n

)
∀ s ∈ R. (3.16)

Taking un the solution of (3.1) for g = gn, and using estimates (3.5) and (3.6), we
deduce the existence of a subsequence of n, still denoted by n, and a function u such
that

un ⇀ u in W 1,p
0 (Ω) ∀ p < N

N − 1
(p = 2 if N = 1), (3.17)

Tk(un) ⇀ Tk(u) in H1
0 (Ω) ∀ k > 0, (3.18)ˆ

Ω

|gn(un)− gn(0)| dx ≤
ˆ

Ω

|f − gn(0)| dx. (3.19)
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From (3.15) we also have

lim
n→∞

(ˆ
{|un|<k}

|∇un|2 dx+

ˆ
Ω

(
gn(un)− gn(0)

)
Tk(un) dx

)
=

ˆ
Ω

(f − g+(0))Tk(u) dx,

for every k > 0. Dividing by k and taking the limit as k →∞, gives

lim
k→∞

lim
n→∞

(
1

k

ˆ
{|un|<k}

|∇un|2dx+

ˆ
{|un|>k}

∣∣gn(un)|dx
)

= 0. (3.20)

Let us prove that gn(un) is compact in the weak topology of L1(Ω). By (3.16), (3.19)
and the Dunford-Pettis theorem, it is enough to prove that gn(un) is equi-integrable,
i.e. that for every ε > 0, there exists δ > 0 such thatˆ

E

|gn(un)|dx ≤ ε ∀E ⊂ Ω, measurable, with |E| < δ.

For such ε, thanks to (3.20), there exist k,m > 0 such that
ˆ
{|un|>k}

∣∣gn(un))|dx < ε

2
∀n ≥ m.

Choosing then

δ1 <
ε

2 sup[−k,k+1] |g(s)|
,

and taking into account (3.16), we deduce that for every E ⊂ Ω, measurable with
|E| < δ, we have

ˆ
E

|gn(un)|dx ≤
ˆ
E

sup
[−k,k+1]

|g(s)|dx+

ˆ
{|un|>k}

|gn(un)|dx < ε ∀n ≥ m.

On the other hand, since every finite subset of functions in L1(Ω) is equi-integrable,
there exists δ2 > 0 such that ˆ

E

|gn(un)|dx < ε ∀n < m.

Thus, taking δ = min{δ1, δ2} we deduce the equi-integrability of gn(un). Extracting a
subsequence if necessary, we then deduce the existence of w ∈ L1(Ω) such that

gn(un) ⇀ w in L1(Ω). (3.21)

From (3.16), (3.17) and the Rellich-Kondrachov compactness theorem, we also have

g−(u) ≤ w ≤ g+(u) a.e. in Ω.

Let us prove that (u,w) satisfies (3.4). We take v ∈ H1
0 (Ω) ∩ L∞(Ω) such that there

exists k > 0 with ∇v = 0 a.e. in {|u| > k}. For m > 0, we use Sm(un)v as test function
in the equation for un. We get

− 1

m

ˆ
{m<|un|<2m}

|∇un|2 sgn(un)v dx+

ˆ
Ω

∇un · ∇v Sm(un) dx

+

ˆ
Ω

gn(un)Sm(un)v dx =

ˆ
Ω

fSm(un)v dx.
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Taking into account (3.18), (3.21) and the fact that Sm(un)v is bounded in L∞(Ω) and
converges in measure to Sm(u)v, we can pass to the limit as n→∞ in this inequality
to get ∣∣∣∣ˆ

Ω

∇u · ∇v Sm(u) dx+

ˆ
Ω

wSm(u)v dx−
ˆ

Ω

fSm(u)v dx

∣∣∣∣
≤
‖v‖L∞(Ω)

m
lim sup
n→∞

ˆ
{m<|un|<2m}

|∇un|2dx.

By (3.20), Tk(u) ∈ H1
0 (Ω) and ∇v = 0 a.e. in {|u| > k}, we can now pass to the limit

as m→∞ to deduce that (3.4) holds.
The uniqueness of solutions for (3.9) follows from Theorem 3.5.

Proof of Theorem 3.5. Let us assume N ≥ 2. The case N = 1 is simpler taking into
account the continuous imbedding of L1(Ω) into H−1(Ω).

For m, k > 0, we take Sm(u1)Sm(u2)Tk(u1 − u2)+ as test function in the difference
of the equations satisfied by (u1, w1) and (u2, w2). This gives

ˆ
{0<u1−u2<k}

|∇(u1 − u2)|2Sm(u1)Sm(u2)dx

+

ˆ
Ω

(w1 − w2)Tk(u1 − u2)+Sm(u1)Sm(u2) dx

− 1

m

ˆ
{m<|u2|<2m}

Tk(u1 − u2)+ sgn(u2)Sm(u1)∇(u1 − u2) · ∇u2 dx

− 1

m

ˆ
{m<|u1|<2m}

Tk(u1 − u2)+ sgn(u1)Sm(u2)∇(u1 − u2) · ∇u1 dx

=

ˆ
Ω

(f1 − f2)Tk(u1 − u2)+Sm(u1)Sm(u2) dx.

(3.22)

Here we use the second estimate in (3.6) for u = u1, u = u2, with k = m, which dividing
by m and taking the limit as m→∞, gives

lim
m→∞

1

m

ˆ
{|u1|<2m}

|∇u1|2dx =
1

m
lim
m→∞

ˆ
{|u2|<2m}

|∇u2|2dx = 0.

This allows us to pass to the limit in (3.22), as m→∞, to deduce

ˆ
{0<u1−u2<k}

|∇(u1 − u2)|2dx+

ˆ
Ω

(w1 − w2)Tk(u1 − u2)+dx

=

ˆ
Ω

(f1 − f2)Tk(u1 − u2)+dx, ∀ k > 0.

(3.23)

Now, we observe that the conditions

g−(u1) ≤ w1 ≤ g+(u1), g−(u2) ≤ w2 ≤ g+(u2) a.e in Ω,

imply
(w1 − w2)Tk(u1 − u2)+ ≥ 0 a.e. in Ω.
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Therefore (3.23) proves

ˆ
{0<u1−u2<k}

|∇(u1 − u2)|2 dx ≤ k

ˆ
{0<u1−u2<k}

|f1 − f2| dx.

Adding the analogous inequality with u1, u2 replaced by each other, we deduce (3.11).
This inequality also implies (3.12) (see [4]).

Dividing by k in (3.23) and passing to the limit as k → 0, we get

lim
k→0

1

k

ˆ
{0<u1−u2<k}

|∇(u1 − u2)|2 dx+

ˆ
{u2<u1}
|w1 − w2| dx =

ˆ
{u2<u1}

(f1 − f2) dx.

Using the analogous equality with u1, u2 replaced by each other we conclude (3.10).
If f1 ≤ f2 a.e. in Ω, then (3.23) proves

ˆ
{0<u1−u2<k}

|∇(u1 − u2)|2 dx = 0 ∀ k > 0,

and then that u1 ≤ u2 a.e. in Ω.

Proof of Theorem 3.6. Let us first assume g in W 1,∞(R), f ∈ W 1,1(Ω) ∩ L2(Ω). Then
u belongs to H2(Ω). Taking into account the boundary condition u = 0 on ∂Ω, and
Ω ∈ C1,1, we can use equation (4.19) in the proof of Lemma 4.3 in [16] to prove that
the second derivatives of u satisfy

−∆∂iu+ g′(u)∂iu = ∂if in Ω, 1 ≤ i ≤ N

∇u = |∇u|sν on ∂Ω

−D2u ν · ν + g(0) = f + h · ∇u on ∂Ω,

(3.24)

where ν denotes the unitary outside normal to Ω, h, s satisfy

h ∈ L∞(∂Ω)N , s ∈ L∞(∂Ω), s ∈ {−1, 1}, a.e. in Ω.

and they only depend on Ω.
For ε > 0, we multiply the first equation in (3.24) by

∂iu

|∇u|+ ε
∈ H1(Ω) ∩ L∞(Ω).

Integrating by parts, adding in i, and using the boundary conditions in (3.24), we get

ˆ
Ω

( |D2u|2

|∇u|+ ε
− |D2u∇u|2

|∇u|(|∇u|+ ε)2

)
dx+

ˆ
Ω

g′(u)
|∇u|2

|∇u|+ ε
dx

= −
ˆ
∂Ω

s
(
f + h · ∇u− g(0)

) |∇u|
|∇u|+ ε

ds(x) +

ˆ
Ω

∇f · ∇u
|∇u|+ ε

dx.

Using here that

|D2u|2 − |D2u∇u|2

|∇u|(|∇u|+ ε)
≥ |D2u|2 − |D

2u∇u|2

|∇u|2
=
∣∣∣D2u

(
I − ∇u⊗∇u

|∇u|2
)∣∣∣2 ≥ 0,
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a.e. in Ω, we can pass to the limit as ε→ 0 to deduce

ˆ
Ω

1

|∇u|

(
|D2u|2 − |D

2u∇u|2

|∇u|2
)
dx+

ˆ
Ω

g′(u)|∇u| dx

= −
ˆ
∂Ω

s
(
f + h · ∇u− g(0)

)
dσ(x) +

ˆ
Ω

∇f · ∇u
|∇u|

dx.

(3.25)

In the first term of the right-hand side, we can apply the trace theorem for functions
in W 1,1(Ω) which proves the existence of C depending only on Ω such that

‖f‖L1(∂Ω) ≤ C‖∇f‖L1(Ω)N . (3.26)

Using also that the imbedding of W 1,1(Ω) into Lp(Ω) is compact for 1 < p < N
N−1

, we
deduce that for every δ > 0, there exists C > 0 depending on Ω, p and δ, such that

‖∆u‖Lp(Ω) ≤ δ
(
‖∇g(u)‖L1(Ω)N + ‖∇f‖L1(Ω)N

)
+ C

(
‖g(u)‖L1Ω) + ‖f‖L1(Ω)

)
.

Applying then that (−∆)−1 is continuous from Lp(Ω) into W 1,p
0 (Ω)∩W 2,p(Ω), and the

trace theorem for Sobolev spaces, we conclude that, for another constant C > 0, we
have

‖∇u‖L1(∂Ω)N ≤ δ
(
‖∇g(u)‖L1(Ω)N + ‖∇f‖L1(Ω)N

)
+ C

(
‖g(u)‖L1Ω) + ‖f‖L1(Ω)

)
,

which combined with (3.5), with w = g(u), proves

‖∇u‖L1(∂Ω)N ≤ δ‖∇g(u)‖L1(Ω)N + C
(
‖f‖W 1,1(Ω) + |g(0)|), (3.27)

with C depending on Ω and δ.
Choosing δ such that δ‖h‖L∞(∂Ω) < 1, we can use (3.26) and (3.27) in (3.25), to

conclude the existence of C > 0 depending only on Ω such that (3.14) holds. From

this estimate, the continuous imbedding of W 1,1(Ω) into L
N
N−1 (Ω), and u solution of

(3.9), with w = g(u), we also have that u satisfies (3.13). This proves the result for
g ∈ W 1,∞(R), f ∈ W 1,1(Ω) ∩ L2(Ω).

The case where g is just an increasing function follows by approximating g by a
sequence of smooth functions gn as in the proof of Theorem 3.2.

The case where f is just in BV (Ω) follows by replacing f by a sequence fn in
W 1,1(Ω) ∩ L2(Ω), such that fn converges to f in L1(Ω) and ‖∇fn‖L1(Ω)N converges to
‖∇f‖M(Ω)N .

4 Applications to optimal potentials problems

In this section, we are interested in the study of an optimal control problem for an
elliptic equation of a Schrödinger type, where the control variable is the potential.
Namely, we consider the problem

min

ˆ
Ω

(
j(x, u) + ψ(m)

)
dx{

−∆u+mu = f in Ω

u ∈ H1
0 (Ω), m ∈ L1(Ω), m ≥ 0 a.e. in Ω,

(4.1)
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where ψ is a lower semicontinuous convex function. The constraint m ≥ 0 in Ω is
introduced in the cost functional taking

ψ(s) = +∞ ∀ s < 0.

Problems of this type intervene in several shape optimization problems, where m is a
Borel measure of capacitary type, not Radon in general (see for instance [2], [5], [6], [7],
[16], [9], [10], [12], [13], [14] and [22]). Similarly to these papers, the solution u of (4.1)
must be understood in the variational senseu ∈ H

1
0 (Ω) ∩ L2

m(Ω)ˆ
Ω

(
∇u · ∇v +muv

)
dx = 〈f, v〉 ∀ v ∈ H1

0 (Ω) ∩ L2
m(Ω).

In the present paper, we are interested in obtaining some regularity results for
the optimal controls m̂, which in our case are integrable functions. In particular, we
show that in several cases the optimal controls m̂ are of bang-bang type, and then
discontinuous. However, we show that, under some suitable assumptions, m̂ is a BV
function and then that the interfaces have finite perimeter.

Our first result proves the existence of solution for (4.1). We refer to Theorem 2.19
in [16] for a related result in a more general setting.

Theorem 4.1. Let Ω ⊂ RN be a bounded open set, j : Ω × R → R measurable in
the first component and lower semicontinuous in the second one, satisfying (2.6), and
ψ : R → [0,∞] a convex lower semicontinuous function with dom(ψ) ⊂ [0,∞), such
that (2.5) holds. Then, for every f ∈ H−1(Ω), problem (4.1) has a least one solution
m̂ ∈ L1(Ω).

The optimality conditions for (4.1) are given by Theorem 4.2 below (see also The-
orem 4.1 in [16]). Since our aim in the present work is to present some regularity
conditions for the solutions of problem (4.1), let us assume that the right-hand side f
in the state equation satisfies

f ∈ W−1,r(Ω), with

{
r ≥ 2 if N = 1

r > N if N ≥ 2.
(4.2)

By Stampacchia’s estimates (see for instance [25]), this implies that there exists M > 0,
such that for every m ∈ L1(Ω), m ≥ 0 a.e. in Ω, the solution u of the state equation
in (4.1) is in L∞(Ω), with ‖u‖L∞(Ω) ≤ M . In particular, this means that the value of
j(x, s) for |s| ≥M is not important and then we can replace in Theorem 4.1 condition
(2.6) by

inf
{|s|≤M}

j(x, s) ∈ L1(Ω) ∀M > 0.

Further we will assume j(x, .) ∈ C1(R) and satisfying

j(., 0) ∈ L1(Ω), max
|s|≤M

|∂sj(·, s)| ∈ L
r
2 (Ω) ∀M > 0. (4.3)

In these conditions, the following result holds.
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Theorem 4.2. Assume that in Theorem 4.1, the right-hand side f and the function j
satisfy (4.2) and (4.3) respectively, and define h : R→ R by

h(τ) = max
{
s ∈ dom(ψ) : τ ∈ ∂ψ(s)

}
. (4.4)

Then, if m̂ is a solution of (4.1), û is the corresponding state function, solution of{
−∆û+ m̂ û = f in Ω

û = 0 on ∂Ω,
(4.5)

and ẑ is the adjoint state, solution of{
−∆ẑ + m̂ ẑ = ∂sj(x, û) in Ω

ẑ = 0 on ∂Ω,
(4.6)

we have

m̂ ∈ L∞(Ω), ûẑ ∈ ∂ψ(m̂), h−(ûẑ) ≤ m̂ ≤ h(ûẑ), a.e. in Ω. (4.7)

Remark 4.3. Taking into account that dom(ψ) ⊂ [0,∞), ψ lower semicontinuous and
(2.5) we deduce that

lim
s→∞

d−ψ(s) =∞,

and that, taking
α := inf dom(ψ) ≥ 0, (4.8)

one of the following conditions hold

lim
s↘α

ψ(s) =∞, lim
s↘α

d+ψ(s) = −∞ or α ∈ dom(ψ), d−ψ(α) = −∞.

Therefore, for every τ ∈ R, there exists s ∈ dom(ψ) such that τ ∈ ∂ψ(s).

Remark 4.4. By (2.3) and (2.4), we have that h in Theorem 4.2) is also given by

h(τ) = d+ψ
∗(τ) ∀ τ ∈ R.

It is always a non-decreasing function, continuous on the right. Moreover, it also satisfies

h(τ) = max
{
s ∈ dom(ψ) : τ ≥ d−ψ(s)

}
. (4.9)

From (4.7) and the regularity results for elliptic equations, we deduce that the
optimal measure m̂ is very regular if h is and the functions j and f are very regular
too. In this sense, the following proposition provides some necessary and sufficient
conditions to have h continuous and locally Lipschitz-continuous respectively.

Proposition 4.5. The function h defined by (4.4) satisfies

h ∈ C0(R)⇐⇒ ψ is strictly convex. (4.10)

h ∈ Lip(R) ⇐⇒ 0 < inf
s1,s2∈dom(ψ)

s1<s2

d−ψ(s2)− d+ψ(s1)

s2 − s1

. (4.11)
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Further assumptions on ψ than those in Proposition 4.5 provide more regularity for
h, but it is interesting to note that

d+ψ(α) > −∞ =⇒ ∂ψ(α) =
(
−∞, d+ψ(α)

]
=⇒ h(s) = α, ∀ s ∈ (−∞, d+ψ(α)

)
,

with α defined by (4.8). Thus, h cannot be an analytic function if d+ψ(α) > −∞. Even
more, we have the following result.

Proposition 4.6. Assume that α defined by (4.8) is such that d+ψ(α) > −∞. Then

∃h′(d+ψ(α)) ⇐⇒ lim
s↘α

d+ψ(s)− d+ψ(α)

s− α
=∞. (4.12)

From Proposition 4.5, we have that h (and then m̂) is not continuous if ψ is not
strictly convex. Moreover, Proposition 4.6 shows that even if h is continuous, it is not
derivable in general. Theorem 4.7 below provides a sufficient condition to get m̂ûẑ in
BV (Ω), and then shows that the discontinuity surfaces of m̂ have finite perimeter.

Theorem 4.7. In addition to the conditions in Theorem 4.1 we assume Ω ∈ C1,1,

g(τ) := h(τ)τ ∀ τ ∈ R, (4.13)

non-decreasing in τ , and

max
|s|≤M

|∇x∂sj(., s)| ∈ Lq(Ω), max
|s|≤M

|∂2
ssj(., s)| ∈ L1(Ω), ∀M > 0, (4.14)

with

q ≥ 2N

N + 1
if 1 ≤ N ≤ 2, q >

N

2
if N ≥ 3. (4.15)

Then, for every f ∈ BV (Ω) ∩ Lq(Ω) and every solution m̂ of (4.1), we have

û, ẑ ∈ W 2,q(Ω), m̂ûẑ ∈ BV (Ω),

with û, ẑ the solutions of (4.5) and (4.6) respectively.

Remark 4.8. In the assumptions of Theorem 4.7, the functions û, ẑ are continuous,
and thus, the set E := {ûẑ = 0} is a closed subset of Ω (which contains the boundary).
The fact that m̂ûẑ belongs to BV (Ω), proves then that m̂ belongs to BVloc(Ω \ E).

Remark 4.9. Since h is non-decreasing, a sufficient condition to have g non-decreasing
is to assume d+ψ(α) ≥ 0, with α defined by (4.8).

Proof of Theorem 4.1. In order to prove the existence of solution, we apply the direct
method of the calculus of variations. We take mn ∈ L1(Ω), mn ≥ 0 a.e. in Ω, such that
the solution un of the state equation in (4.1) satisfies

lim
n→∞

ˆ
Ω

(
j(x, un) + ψ(mn)

)
dx = I,

where we have denoted by I the infimum of (4.1). In particular

lim sup
n→∞

ˆ
Ω

ψ(mn) dx <∞,

14



which, taking into account (2.5), implies that mn is compact in the weak topology
of L1(Ω). Moreover, f ∈ H−1(Ω) implies that un is bounded in H1

0 (Ω). Therefore,
extracting a subsequence if necessary, there exist m̂ ∈ L1(Ω), and û ∈ H1

0 (Ω) such that

mn ⇀ m̂ in L1(Ω), un ⇀ û in H1
0 (Ω). (4.16)

From these convergences, the Rellich-Kondrachov compactness theorem, the lower semi-
continuity of ψ, and Fatou’s Lemma, we deduce

I = lim
n→∞

ˆ
Ω

(
j(x, un) + ψ(mn)

)
dx

= lim inf
n→∞

ˆ
Ω

(
j(x, un)− a+ c|un|2 + ψ(mn)

)
dx−

ˆ
Ω

(
− a+ c|u|2) dx

≥
ˆ

Ω

(
j(x, û) + ψ(m̂)

)
dx.

Proving then that û is the solution of (4.5), we will deduce that m̂ is a solution of (4.1).
For this purpose, given v ∈ H1

0 (Ω)∩L∞(Ω), and l > 0, we take Sl(un)v as test function
in the equation satisfied by un. This gives

−1

l

ˆ
Ω

|∇un|2v sgn(un) dx+

ˆ
Ω

∇un · ∇v Sl(un) dx+

ˆ
Ω

mnunSl(un)v dx = 〈f, Sl(un)v〉.

By (4.16), the Rellich-Kondrachov compactness theorem, and Sl(un)v bounded in L∞(Ω),
we can pass to the limit in n, in the three last terms in this equality. In the first term,
we can use that un is bounded in H1

0 (Ω) and that v belongs to L∞(Ω). Thus, there
exists C > 0 independent of m such that∣∣∣∣ˆ

Ω

(
∇û · ∇v + m̂ûv)Sl(û) dx− 〈f, Sl(û)v〉

∣∣∣∣ ≤ C

l
.

Using that Sl(û)v converges strongly to v in H1
0 (Ω) as l → ∞, and the Lebesgue

dominated convergence theorem, we can pass to the limit as l →∞ in this equality to
get ˆ

Ω

(
∇û · ∇v + m̂ûv) dx = 〈f, v〉, ∀ v ∈ H1

0 (Ω) ∩ L∞(Ω).

If v is just in H1
0 (Ω)∩L2

m(Ω), we prove that this equality also holds true just replacing
v by Tk(v) and then passing to the limit as k →∞.

Proof of Theorem 4.2. Let m̂ be a solution of (4.1) and define û, ẑ as the solutions of
(4.5) and (4.6) respectively. Since f satisfies (4.2), Stampacchia’s estimates (see [25])
show that û belongs to H1

0 (Ω)∩L∞(Ω). By (4.3) we then have that ẑ solution of (4.6)
is well defined and belongs to H1

0 (Ω) ∩ L2
m̂(Ω).

Now, for another non-negative function m ∈ L1(Ω) such that ψ(m) is integrable,
k > 0, and ε ∈ (0, 1], we define mε as

mε = m̂+ ε Tk(m− m̂),

and uε as the solution of {
−∆uε +mεuε = f in Ω

uε = 0 on ∂Ω.
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Taking into account that

mε =

(1− ε)m̂+ εm if |m− m̂| ≤ k(
1− εk

|m− m̂|

)
m̂+

εk

|m− m̂|
m if |m− m̂| > k,

that m̂ is a solution of (4.1), and the convexity of ψ, we deduce

ˆ
Ω

j(x, uε) +

ˆ
{|m−m̂|≤k}

(
(1− ε)ψ(m̂) + ε ψ(m)

)
dx

+

ˆ
{|m−m̂|>k}

((
1− εk

|m− m̂|

)
ψ(m̂) +

εk

|m− m̂|
ψ(m)

)
dx

≥
ˆ

Ω

(
j(x, uε) + ψ(mε)

)
dx ≥

ˆ
Ω

(
j(x, û) + ψ(m̂)

)
dx,

for every ε > 0. Using then that

uε − u
ε
→ u′ in H1

0 (Ω),

with u′ ∈ H1
0 (Ω) ∩ L∞(Ω) the solution of{

−∆u′ + m̂u′ + Tk(m− m̂)û = 0 in Ω

u′ = 0 on ∂Ω,

we get
ˆ

Ω

∂sj(x, û)u′dx+

ˆ
{|m−m̂|≤k}

(
ψ(m)− ψ(m̂)

)
dx

+

ˆ
{|m−m̂|>k}

k
(
ψ(m)− ψ(m̂)

)
|m− m̂|

dx ≥ 0.

(4.17)

On the other hand, taking u′ as test function in (4.6), and ẑ as test function in (4.5)
we deduceˆ

Ω

∂sj(x, u)u′ dx =

ˆ
Ω

(
∇ẑ · ∇u′ + m̂ẑu′

)
dx = −

ˆ
Ω

Tk(m− m̂)ûẑ dx.

Therefore (4.17) provides

−
ˆ

Ω

Tk(m−m̂)ûẑ dx+

ˆ
{|m−m̂|≤k}

(
ψ(m)−ψ(m̂)

)
dx+

ˆ
{|m−m̂|>k}

k
(
ψ(m)− ψ(m̂)

)
|m− m̂|

dx ≥ 0.

Using here that m, m̂, ψ(m) and ψ(m̂) belong to L1(Ω) and that the second assertion
in (4.3), ẑ solution of (4.6) and Stampacchia’s estimates imply that ẑ is in L∞(Ω), we
can take the limit as k →∞ to deduceˆ

Ω

(
ψ(m)−mûẑ

)
dx ≥

ˆ
Ω

(
ψ(m̂)− m̂ûẑ

)
dx,

∀m ∈ L1(Ω), m ≥ 0 a.e. in Ω,

ˆ
Ω

ψ(m) dx <∞.
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This implies that m̂ satisfies

m̂ ∈ dom(ψ), ψ(m̂)− m̂ûẑ = min
s∈dom(ψ)

{
ψ(s)− sûẑ

}
, a.e. in Ω,

or equivalently,
m̂ûẑ = ψ(m̂) + ψ∗(ûẑ).

By (2.4) this is also equivalent to m̂ ∈ ∂ψ∗(ûẑ), and also to ûẑ ∈ ∂ψ(m̂). From (2.3)
applied to ψ∗ and Remark 4.4 we then deduce the third assertion in (4.7). Combined
with û and ẑ in L∞(Ω), this also implies that m̂ is in L∞(Ω).

Proof of Proposition 4.5. Let us prove (4.10). If ψ is strictly convex, the quotient func-
tion defined by (2.2) restricted to the set{

(s, t) ∈ dom(ψ)× dom(ψ) : s < t
}
,

is strictly increasing in s and t. This proves

d+ψ(s1) < d−ψ(s2) ∀ s1, s2 ∈ dom(ψ), s1 < s2.

By Remark 4.3, this implies that for every τ ∈ R, there exists a unique s ∈ dom(ψ)
such that τ ∈ ∂ψ(s). By definition (4.4) of h we deduce that h(τ) agrees with such s.
Now, we observe that the lower semicontinuity of ψ and definition (2.1) of ∂ψ imply
the following continuity property for ∂ψ:

sn, s ∈ dom(ψ), τn ∈ ∂ψ(sn), τ ∈ R, sn → s, τn → τ =⇒ τ ∈ ∂ψ(s).

Thanks to the uniqueness of s proved above, this can also be read as

sn = h(τn), sn → s, τn → τ =⇒ s = h(τ),

and then proves the continuity of h.
For the reciprocal, we argue by contradiction. If ψ is not strictly convex, then, there

exists an interval [c, d] ⊂ dom(ψ), with c < d such that ψ is an affine function with a
certain slope λ ∈ R in this interval. Moreover c ≥ 0 can be chosen as

c = min
s∈dom(ψ)

d+ψ(s) = λ.

If c = α, defined by (4.8), then ∂ψ(c) = (−∞, λ] and thus, definition (4.4) of h implies

h(τ) = c ∀ τ < λ, h(λ) ≥ d.

If c > α, then d+ψ(s) < λ for every s < c, and thus

h(τ) < c ∀ τ < λ, h(λ) ≥ d.

In both cases, we conclude that h is not continuous at τ = λ.
In order to prove (4.11) we first observe that the right-hand side implies ψ strictly

convex. Since h ∈ Liploc(R) implies h continuous, we conclude that the left-hand side
in (4.11) also implies ψ strictly convex. Therefore it is enough to prove the result for
ψ strictly convex. As we saw at the beginning of the proof, this implies that for every
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τ ∈ R there exists a unique s ∈ dom(ψ) such that τ ∈ ∂ψ(s), and this s satisfies
h(τ) = s. Then, taking into account (2.3), we deduce the existence of L > 0 such that

h(τ2)− h(τ1) ≤ L(τ2 − τ1),

for every τ1 ≤ τ2, is equivalent to

s2 − s1 ≤ L
(
d−ψ(s1)− d+ψ(s2)

)
,

for every s1, s2 ∈ dom(ψ), and then, that (4.11) holds.

Proof of Proposition 4.6. Since d+ψ(α) > −∞, we have ∂ψ(α) = (−∞, d+ψ(α)], and
then h(s) = α for every s < d+ψ(α). Therefore, if h is derivable at d+(ψ(α)), we must
have

h(d+ψ(α)) = α, lim
ε↘0

h(d+ψ(α) + ε)− α
ε

= 0.

Thus, for every ρ > 0, there exists δ > 0 such that 0 < ε < δ implies

h(d+ψ(α) + ε) < α + ερ,

which by (4.9) can also be read as

s ∈ dom(ψ), d−ψ(s) ≤ d+ψ(α) + ε =⇒ s < α + ερ,

and then that
s ≥ α + ερ⇒ d−ψ(s) > d+ψ(α) + ε.

Taking s = α + ερ and letting ε→ 0, this gives

lim
ε↘0

d−ψ(α + ερ)− d+ψ(α)

ερ
>

1

ρ
∀ ρ > 0,

and then

lim
ε↘0

d−ψ(α + ε)− d+ψ(α)

ε
=∞.

The proof of the reciprocal follows by a similar argument.

Proof of Theorem 4.7. Taking into account that m̂ belongs to L∞(Ω), that Ω is C1,1,
f ∈ Lq(Ω), the first assertion in (4.14) and û, ẑ solutions of (4.5) and (4.6) respectively,
we can apply the regularity results for elliptic equations (see e.g. [23], chapter 7) to
deduce that û, ẑ belong to W 2,q(Ω).

Now, we use that ûẑ satisfies

−∆(ûẑ) + m̂ûẑ = −2∇û · ∇ẑ + f ẑ + ∂sj(x, û)û in Ω.

where thanks to (4.14), f̂ ∈ BV (Ω) ∩ Lq(Ω) and û, ẑ ∈ W 2,q(Ω), we have that the
right-hand side of this equation belongs to BV (Ω). Using then that (4.7) and definition
(4.13) of g imply

g−(ûẑ) ≤ m̂ûẑ ≤ g−(ûẑ) a.e. in Ω,

and that we are assuming g non-decreasing in R, we can apply Theorem 3.6 to deduce
that m̂ûẑ belongs to BV (Ω).
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5 Some examples

In the present section we illustrate the results obtained in the previous one, by applying
them to some classical examples. In Section 6 we will also perform some numerical
computations relative to these examples.

First example. We consider the case where we are looking for a non-negative function
m such that the solution u of the state equation in (4.1) minimizes

J(u) :=

ˆ
Ω

j(x, u) dx, (5.1)

and it is such that the norm of m in some space Lp(Ω), 1 < p < ∞ is not too large.
This can be modeled by (4.1), with ψ given by

ψ(s) =∞1(−∞,0) + ksp1[0,∞).

with k a positive to parameter to choose. Then,

∂ψ(s) =

{
(−∞, 0] if s = 0,

{kp sp−1} if s > 0,
h(τ) =

( τ
kp

) 1
p−1

1(0,∞).

By Theorem 4.1 and by the fact that ψ is strictly convex, we have that h is continuous.
It is in C1(R) when p < 2, i.e. when condition (4.12) holds, and it is locally Lipschitz
continuous if p ≤ 2, (and then condition (4.11) holds in bounded subsets of dom(ψ)).

From (4.7), we deduce that, taking j and f regular enough, every solution m̂ of
(4.1) satisfies

m̂ =
( ûẑ
kp

) 1
p−1

1{ûẑ>0} a.e. in Ω, (5.2)

with û and ẑ the solutions of (4.5) and (4.6) respectively. In particular, this means that
û, ẑ solve the nonlinear system

−∆û+
( ûẑ
kp

) 1
p−1

1{ûẑ>0}û = f in Ω,

−∆ẑ +
( ûẑ
kp

) 1
p−1

1{ûẑ>0}ẑ = ∂sj(x, û) in Ω,

û = ẑ = 0 on ∂Ω.

(5.3)

By Theorem 4.7 we obtain that

m̂ûẑ =

(
ûẑ
)p′

(kp)
1
p−1

1{ûẑ>0}

belongs to BV (Ω) (and even to W 1,1(Ω)). However, in order to have m̂ in W 1,1(Ω), we

need (ûẑ)
2−p
p−1∇(ûẑ)1{ûẑ} to be in L1(Ω)N , which is not clear for p > 2, i.e. when h is

not locally Lipschitz.

Second example. We now consider the case where we want to minimize functional
(5.1), with u the solution of the state equation in (4.1), under the constraint m ∈ [α, β],
with 0 ≤ α < β. The problem corresponds to (4.1), with ψ given by

ψ(s) =∞1(−∞,α)∪(β,∞). (5.4)
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Thus, dom(ψ) = [α, β], and

∂ψ(s) =


(−∞, 0] if s = α

{0} if α < s < β

[0,∞) if s = β,

h(τ) =

{
α if τ < 0

β if τ ≥ 0,

As expected, since ψ is not strictly convex, we get by (4.10) that h is not continuous.
Condition (4.7) reads in this case as

m̂ = α a.e. in
{
ûẑ < 0}

m̂ = β a.e. in
{
ûẑ > 0}

m̂ ∈ [α, β] a.e. in
{
ûẑ = 0}.

(5.5)

Therefore, the value of m̂ is not determined on the set where ûẑ vanishes. When this
set has zero measure, assertion (5.5) shows that m̂ is a bang-bang control, which only
takes the values α and β. Taking into account that g(s) = h(s)s is non-decreasing, we
deduce from Theorem 4.7 that m̂ûẑ is in BV (Ω).

As a simple case where we can assure that m̂ is a bang-bang control, we take

j(x, s) = γ(x)s a.e. x ∈ Ω, ∀ s ∈ R, (5.6)

Assuming γ, f ∈ Lq(Ω), with q satisfying (4.15), we have that û, ẑ are in W 2,q(Ω).
Therefore, (4.5) and (4.6) imply

f = 0 a.e. in {û = 0}, γ = 0 a.e. in {ẑ = 0}.

Thus, assuming |{f = 0}| = |{γ = 0}| = 0, we conclude that the set {ûẑ = 0} has zero
measure.

It is also simple to give a counterexample where the set {ûẑ = 0} has positive
measure and the control m̂ is not a bang-bang control. Just take m̃ ∈ C0(Ω; [α, β]), not
constant, and ũ the solution of (4.5), with m̂ replaced by m̃. Defining

j(x, s) = |s− ũ(x)|2 a.e. x ∈ Ω, ∀ s ∈ R,

we deduce that problem (4.1) has the unique solution m̂ = m̃, for which the functional
vanishes. Observe that in this case ∂sj(x, û) = 0 a.e. in Ω, and then ẑ is the null
function. Therefore the set {ûẑ = 0} is the whole set Ω, and condition (5.5) does not
provide any information about m̂.

Third example. We consider a mixture of the first and second examples. Now,
the goal is to minimize (5.1), with u the solution of the state equation in (4.1) and
m ∈ [α, β], such that its norm in Lp(Ω) is not too great, with 1 ≤ p <∞. The problem
corresponds to take in (4.1)

ψ(s) =∞1(−∞,α)∪(β,∞) + ksp1[α,β],

with k > 0 a positive constant to choose.
In the strictly convex case p > 1, we have

∂ψ(s)=


(−∞, kpαp−1] if s = α

{kpsp−1} if α < s < β

[kpβp−1,∞) if s = β,

h(τ)=


α if τ < kpαp−1( τ
kp

) 1
p−1

if kpαp−1 ≤ τ < kpβp−1

β if τ ≥ kpβp−1.
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As in the first example, the strict convexity of ψ provides a function h which is continu-
ous. Therefore, the optimal controls are continuous and even, they are in some Sobolev
space if p ≤ 2 (assuming j and f smooth enough).

In the case p = 1, we have

∂ψ(s) =


(−∞, k] if s = α

{k} if α < s < β

[k,∞) if s = β,

h(τ) =

{
α if τ < k

β if τ ≥ k.

As in the second example, (4.7) provides
m̂ = α a.e. in

{
ûẑ < k}

m̂ = β a.e. in
{
ûẑ > k}

m̂ ∈ [α, β] a.e. in
{
ûẑ = k},

and then the optimal controls are bang-bang controls if the set {ûẑ = k} has null
measure.

Since h(τ)τ is still a non-decreasing, Theorem 4.7 proves that m̂ûẑ is in BV (Ω) for
every optimal control m̂. Using also that m̂ = α in a neighborhood of the closed set
{ûẑ = 0} we deduce that in this case m̂ is also in BV (Ω).

As a particular case we can take

j(x, s) = f(x)s. (5.7)

This is a classical problem corresponding to the minimization of the energy. In this
case control problem (4.1) can also be written in the simplest form

max
α≤m≤β

min
u∈H1

0 (Ω)

{ˆ
Ω

(
|∇u|2 +mu2 − 2fu

)
dx− k

ˆ
Ω

mdx

}
. (5.8)

For k = 0, it is clear that the solution corresponds to m̂ = β. Thus, the interesting case
corresponds (as we assumed above) to k > 0. This means that we just want to spend a
limited amount of the optimal potential β (for example, because it is more expensive).

From (5.7) we get ẑ = û, and then (4.7) gives{
m̂ = α a.e. in {|û|2 < k}
m̂ = β a.e. in {|û|2 > k}.

(5.9)

Taking f ∈ Lq(Ω), with q satisfying (4.15), we have û in W 2,q(Ω), and then (4.5)
provides

√
km̂ = f a.e. in

{
û =
√
k
}
, −

√
km̂ = f a.e. in

{
û = −

√
k
}
.

Therefore, a sufficient condition to have m̂ a bang-bang control is to assume that the
set {f ∈ [−

√
kβ,−

√
kα] ∪ [

√
kα,
√
kβ]} has null measure. This holds in particular if α

is positive, f belongs to L∞(Ω) and k is large enough.

Fourth example. Related to the case p = 1 in the third example, let us take

ψ(s) =∞1(−∞,α)∪(β,∞) − ks1[α,β],
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with 0 ≤ α < β, k > 0. In this case we are interested in controls m which take their
values in [α, β] and its integral is large. Similarly to the third example, we have

∂ψ(s) =


(−∞,−k] if s = α

{−k} if α < s < β

[−k,∞) if s = β,

h(τ) =

{
α if τ < −k
β if τ ≥ −k,

Theorem 4.1 proves that the optimal controls satisfy
m̂ = α a.e. in

{
ûẑ < −k}

m̂ = β a.e. in
{
ûẑ > −k}

m̂ ∈ [α, β] a.e. in
{
ûẑ = −k},

and then they are not continuous in general. Moreover, in this case the function

g(τ) = h(τ)τ =

{
ατ if τ < −k
βτ if τ ≥ −k,

decreases at τ = −k. Thus, this is an example where Theorem 4.7 does not apply and
therefore, we do not know if m̂ûẑ is in BV (Ω).

A classical example corresponds to the maximization of the energy i.e. (compare
with (5.7))

F (x, s) = −f(x)s. (5.10)

Similarly to (5.8), it is known that the problem can also be written as

min
α≤m≤β

min
u∈H1

0 (Ω)

{ˆ
Ω

(
|∇u|2 +mu2 − 2fu

)
dx− k

ˆ
Ω

mdx

}
. (5.11)

For k = 0 the solution is given by m̂ = α and then the interesting case is k > 0, as
assumed above. Now, the function ẑ is equal to −û, and therefore m̂ satisfies (compare
with (5.9) {

m̂ = α a.e. in
{
k < |û|2}

m̂ = β a.e. in
{
|û|2 < k}.

Thus, a suffcient condition to assure that the optimal controls only take the values
α and β is also to asume that the set {f ∈ [−

√
kβ,−

√
kα] ∪ [

√
kα,
√
kβ]} has null

measure.

6 Some numerical simulations

In this section, we illustrate the results of the previous ones through the numerical
resolution, in the 2D case, of problem (4.1) for the first three examples in Section 5.
For the first example we will consider p = 2 and for the third one p = 1. We apply
a gradient descent method with projection. It depends of the function ψ associated
to the volume constraint of the potential. The corresponding algorithm is related to
Theorem 4.2 providing the optimality conditions to (4.1). We refer to [1], [15] for similar
algorithms in optimal design problems. It reads as follows.
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• Initialization: choose an admisible function m0 ∈ L1(Ω), such that Ψ(m0) <∞.

• For j ≥ 0, iterate until stop condition as follows.

– Compute uj, zj solution of (4.5), (4.6), for m̂ = mj.

– Compute m̃j descent direction associated to uj and zj, as:

m̃j =


ujzj − 2kmj

‖ujzj − 2kmj‖L2(Ω)

in the first example,

sgn(ujzj) in the second example,

sgn(k − ujzj) in the third example.

– Update the function mj:

mj+1 = Pψ(mj + εjm̃j)

where Pψ is the projection operator from R into the domain of ψ, i.e.

Pψ(s) =

{
s+ in the first example,

min{β,max{s, α}} in the second and third examples.

• Stop if
|I(mj)−I(mj−1)|

|I(m0)| < tol, for tol > 0 small.

In all the simulations we have chosen Ω as the ball B of center zero and radius
one in dimension two. For the first example, we have chosen a simple case where the
solution is radial. Thus, we just solve the corresponding one-dimensional problem. The
implementation for this example has been carried out using Matlab R2022a. The second
and third examples have been implemented using the free software FreeFemm++ v 4.4-3
(see [19] and http://www.freefem.org/). The corresponding results are as follows.

First example. For s0 ∈ R, we take:

j(x, s) =
1

2

∣∣s− s0

∣∣2, ψ(s) =∞1(−∞,0) + k|s|2, f = 1.

Taking m as the null function, the solution of the state equation in (4.1) is

u(x) =
1− |x|2

4
.

Thus, the interesting case corresponds to s0 ∈ (0, 1/4). When k = 0 assumption (2.5) is
not satisfied, and the optimal control is not necessarily given by a function m̂ ∈ L1(Ω)
(we refer to [6], [8], [9], [10], [11], [12], [13] for some other existence results on optimal
potentials). Indeed, it can be proved that the optimal control m̂ is given by the Radon
measure

m̂ =
1

s0

1{|x|<a}dx+
4s0 − 1 + a2(1− 2 log a)

4s0 log a
1{|x|=a}dσ,

where dσ is the 1-dimensional measure and a is characterized by

0 < a < 1, 4s0 − 1 + a2 < 2a2 log a,
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log a

ˆ 1

a

r(4s0 − 1 + r2) log r dr = (4s0 − 1 + a2
)ˆ 1

a

r log2 r dr.

The corresponding optimal control û is given by

û(x) =

s0 if |x| < a
1− |x|2

4
+

(4s0 − 1 + a2) log |x|
4 log a

if a ≤ |x| ≤ 1.

In Figure 1 we represent the optimal state function û for s0 = 0.1 (then a ∼ 0.2825)
In Figure 2 we represent on the top the optimal control and optimal state function

obtained by solving the above problem (corresponding to k = 0) numerically. In the
middle and the bottom we also represent the optimal control and optimal state function,
taking k = 10−7 and k = 10−5 respectively. Since the solutions are radial functions,
we have applied the algorithm to the corresponding one-dimensional problem. Observe
that in this radial representation the singular part of the optimal measure m̂ is given
by two Dirac masses at r = −a and r = a. In the numerical computation this provides
the two corners which appear in the figure.

Figure 1: Example 1: Optimal state û for k = 0 (analytic solution).

Second example. As a particular case of the second example in the previous section,
we take

j(x, s) = g(x)s, ψ(s) =∞1(−∞,α)∪(β,+∞),

with
g(x1, x2) = x2

1 − x2
2.

The right-hand side in the state equation in (4.1) is given by

f(x1, x2) = 10(x2
1 + x2

2) sin
(

13 arctan
∣∣∣x2

x1

∣∣∣)1{|x1|>10−10}.

24



Figure 2: First example: Optimal control m̂ (left), and optimal state û (right). Top:
k = 0. Middle: k = 10−5. Bottom: k = 10−7.

Since the function f changes sign several times, we expect that the corresponding op-
timal state function û, solution of (4.5), changes sign several times too. The function
g, which is the right-hand side of the adjoint state function ẑ, solution of (4.6), also
changes sign four times. Taking into account (5.5), this produces a bang-bang control
with α and β being exchanged in several regions. For our numerical experiments we
consider α = 0, and we take three different values for β: 1, 102 and 104. The corre-
sponding results are shown in Figure 3. We observe that as β grows up, the optimal
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control m̂ is concentrated on smaller sets. We expect that for β tending to infinity, m̂
goes to a singular measure.

Figure 3: Second example: right-hand side f : (top left). Optimal control m̂ for β = 1
(top right), β = 102 (down left) and β = 104 (down right).

Third Example. In this case we take

j(x, s) = s, ψ(s) =∞1(−∞,α)∪(β,+∞) + ks1[α,β],

and
f(x1, x2) = 1ω1(x1, x2) + 1ω2(x1, x2) + 1ω3(x1, x2) + 1ω4(x1, x2).

where ωi = B(ci, r) (i = 1, . . . , 4) are small balls of radius r =
√

3/10 and centers
c1 = (0, 0.5), c2 = (0,−0.5), c3 = (0.5, 0) and c4 = (−0.5, 0). Taking α = 0, β = 1, we
have carried out three numerical experiments corresponding to k = 0.00175, k = 0.0014
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and k = 0.001 respectively. The results are given in Figure 4. We get a bang-bang
optimal potential for the three experiments. Moreover, as expected, the norm in L1(B)
of m̂ increases when k decreases, taking the values 0.172766, 0.531971 and 0.874948,
respectively.

Figure 4: Right-hand side f (top left). Optimal control m̂ for k = 0.00175 (top right),
k = 0.0014 (down left) and k = 0.001 (down right).
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