
ON THE NUMERICAL APPROXIMATION OF
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Abstract. Identifying Blaschke-Santaló diagrams is an important topic that es-
sentially consists in determining the image Y = F (X) of a map F : X → Rd,
where the dimension of the source space X is much larger than the one of the
target space. In some cases, that occur for instance in shape optimization prob-
lems, X can even be a subset of an infinite-dimensional space. The usual Monte
Carlo method, consisting in randomly choosing a number N of points x1, . . . , xN

in X and plotting them in the target space Rd, produces in many cases areas in
Y of very high and very low concentration leading to a rather rough numerical
identification of the image set. On the contrary, our goal is to choose the points
xi in an appropriate way that produces a uniform distribution in the target space.
In this way we may obtain a good representation of the image set Y by a rela-
tively small number N of samples which is very useful when the dimension of the
source space X is large (or even infinite) and the evaluation of F (xi) is costly.
Our method consists in a suitable use of Centroidal Voronoi Tessellations which
provides efficient numerical results. Simulations for two and three dimensional
examples are shown in the paper.
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1. Introduction

In several problems one is faced with the question of identifying the image of a
map F : X → Rd, given X the set of admissible choices and F a given map which
describes the performances F (x) of the given choice x ∈ X. In this article we study
the approximation of F (X) when the dimension d is small, which amounts to say
that the performances F (x) can be summarized by a few outputs, with respect to the
dimension of X which may even be infinite. The subset F (X) ⊂ Rd is often called
Blaschke-Santaló diagram when X is a class of shapes, and may involve quantities
such as the volume, the perimeter, the torsional rigidity, the eigenvalues of the
Laplace operator −∆, and other similar geometrical or analytical quantities (see for
instance [4, 6, 18]).

Even when the set X is a subset of a finite dimensional Euclidean space RN ,
the identification of the image F (X) through a numerical procedure may present
deep and unexpected difficulties. The naive approach consisting in generating a
random uniform sampling of X by means of a discrete set {xi}i∈I , associated to the
corresponding outputs {F (xi)}i∈I , may not produce a satisfactory approximation.
Some parts of the image F (X) may be very rarely explored by a uniform random
sampling of X. In these cases one needs a very large number of samples in order
to have a quite accurate description of the set F (X). This phenomenon happens
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to have a dramatic impact when the evaluation of F on the chosen sample requires
the solution of one or more partial differential equations. In shape optimization,
for instance, this procedure may be too expensive in terms of computational time.
Such contexts require to develop a new approach to get a precise description of the
image F (X) using a relatively small number of sampling points. The choice of the
sampling has to be adjusted carefully in order to comply with the complexity of the
map F .

In the present paper we develop a new method based on Voronoi tessellations
which seems much more efficient than the standard random uniform approach. We
describe in the following sections the numerical method, and we show some algebraic
examples in which the efficiency of our procedure is clearly outlined.

The study of the range of scale invariant ratios between geometric quantities was
initiated by Santaló in [22] and Blaschke in [2]. If the geometric image of scale
invariant ratios is completely characterized, then all possible inequalities between
these quantities are known. In practice, often three geometric functionnals are used
to generate at least two scale invariant ratios.

This approach has been investigated recently in a shape optimization context.
We mention [6] concerning the diagram given by the area, the diameter and the
inradius. In [13] the inequalities between volume, perimeter and the first Dirichlet-
Laplace eigenvalue are investigated. The Cheeger inequality was investigated in [10]
and inequalities involving the first Dirichlet eigenvalue, the torsion and the volume
are studied in [11].

In most situations, a complete analytical understanding of the resulting Blaschke-
Santaló diagrams is not available. This motivates the use of numerical tools. A first
method is generating random shapes and computing quantities of interest. This
method is illustrated in some works cited above. A more rigorous numerical ap-
proach is solving numerical optimization problems finding extreme points for verti-
cal or horizontal slices of the diagram. This method is used in [12] using methods
described in [1] and [3] to perform numerical shape optimization among convex sets.

This article proposes a completely new alternative approach which generates uni-
formly distributed samples in the Blaschke-Santaló diagram. Implicitly, our method
also provides boundary points for the diagram. Compared to [12] where multiple
constrained numerical optimizations are solved, we use a global iterative process,
and we solve numerically a global optimization problem providing a geometrical
description of the diagram. We illustrate the method for an algebraic example in-
volving the trace and determinant of symmetric matrices with entries in [−1, 1].
This simple example is already non-trivial starting from 3× 3 matrices. In a second
stage we investigate numerically the diagram associated to the area, perimeter and
moment of inertia among convex shapes with two axes of symmetry.

2. Approximation framework

2.1. Optimal transport framework. Consider a continuous map F : X → Rd,
with X a compact metric space. In order to have a careful description of the image
set F (X) we could randomly choose some points {x1, . . . , xn} in X and, for a large
n, the set {F (xk) : k = 1, . . . , n} would give an approximate description of the
full image set F (X). However, even if X is a subset of an Euclidean finite dimen-
sional space, due to the nonlinearity of the map F , the number n that is necessary
to have a rather accurate description of the image set F (X) could be extremely
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high. In other words, a uniform random choice of points {x1, . . . , xn} in X does
not produce in general a well distributed sequence F (x1), . . . , F (xn), and concentra-
tion/rarefaction effects very often occur. We should then make the random choice of
the points {x1, . . . , xn} in X according to a probability measure that is not uniform
and that depends on the function F , in order to obtain a well distributed sequence
F (x1), . . . , F (xn). If L is the Lebesgue measure on F (X) the probability measure
µ governing the random choice of points on X should then be such that F#µ = L,
being F# the push-forward operator related to the function F , verifying

L(B) = F#µ(B) = µ(f−1(B)),

for every measurable set B ⊂ F (X).

Theorem 2.1. Let X, Y be compact metric spaces and let F : X → Y be a contin-
uous function, with Y = F (X). Then, for every probability measure ν on Y there
exists a probability measure µ on X such that

F#µ = ν.

Proof. Let ν be a probability measure on Y and let (νn) be a sequence of discrete
probability measures on Y with νn ⇀ ν weakly*. Each νn has the form

νn =
1

n

n∑
k=1

δyn,k

where yn,k are suitable points in Y . Since Y = F (X) we may take xn,k ∈ X such
that F (xn,k) = yn,k and define a discrete probability measure µn on X by

µn =
1

n

n∑
k=1

δxn,k
.

Then F#µn = νn and, possibly passing to a subsequence, we may assume that
µn ⇀ µ weakly* for some probability measure µ on X. Passing now to the limit as
n→∞, we obtain F#µ = ν. �

The usual uniform Monte Carlo method consists in taking µ as the Lebesgue
measure on the source space X. In this case it often happens that the image points
are unevenly distributed in Y , making the numerical identification of the image set
Y of a rather poor quality. On the contrary, our goal is to construct (a discrete
approximation of) a measure µ in order to obtain a well distributed image measure
ν, as close as possible to the Lebesgue measure on Y . The proof of Theorem 2.1
is clearly non-constructive, since the image set Y = F (X) is not a priori known.
We then need a constructive method that provides the probability measure µ in
the theorem above through an approximation procedure. This is the goal of next
sections.

To further motivate our approach, let us recall the classical optimal transport
problem raised by Monge [19]. Given probability measures η, ν on Y and a cost
function c : Y × Y → [0,∞] solve

inf
T :Y→Y

{∫
Y

c(y, T (y))dµ(y) : T#η = ν

}
. (2.1)

In the case the cost is simply given by the Euclidean distance squared c(y1, y2) =
‖y1−y2‖2, the infinimum in (2.1) is called the Wasserstein 2-distance and is denoted
W 2

2 (η, ν).
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Figure 1. General Voronoi diagram (left) vs Centroidal Voronoi Di-
agram (right). The points (yi) are depicted by squares, the centroids
of the Voronoi regions are depicted by dots.

Our objective is to approximate the Lebesgue mesure in the image Y = F (X)
with a discrete set of points. In the case where the measure η is discrete, given by a
sum of Dirac masses ηM =

∑M
i=1 aiδyi then it is known that if ηM solves the problem

min{W2(ηM , ν) : #(spt(ηM)) ≤M} (2.2)

the so-called location problem, then the points (yi)i=1,...,M correspond to a Centroidal
Voronoi Tessellation on Y . For more details see [23, Section 6.4.1, Box 6.6, Exercise
39].

This motivates our approach, detailed in the following sections: Find sample
points (xi)i=1,...,M in X such that their images (F (xi))

M
i=1 ⊂ Y give the best repre-

sentation of the Lebesgue measure on F (Y ) in the sense of (2.2), i.e. (F (xi))i=1,...,M

form a Centroidal Voronoi Tesellation in the image Y .

2.2. Centroidal Voronoi Tessellations. Consider D a compact connected region
in Rd (typically a rectangular box). Given M points yi ∈ D, consider the associated
Voronoi diagram consisting of a partition (Vi)

M
i=1 of D such that

Vi =
{
y ∈ D : |y − yi| ≤ |y − yj| for every 1 ≤ j ≤M, j 6= i

}
. (2.3)

In other words, Vi contains all points in D which are closer to yi compared to the
remaining images (yj)j 6=i. Note that in our convention, Voronoi cells are bounded
and are subsets of D. The Voronoi cells are, in general, different in volume and
are not necessarily uniform, for a general distribution of points. See the example in
Figure 1 where a Voronoi diagram corresponding to 10 random points in the square
[−1, 1]2 is shown. The Voronoi points are represented with red squares and the
centroids of the Voronoi cells are represented with blue points.

There exist, however, particular classes of Voronoi diagrams which have cells
that are more uniform in size, called Centroidal Voronoi Tessellations (CVT). For
such diagrams, the point yi which determines the Voronoi cell Vi coincides with the
centroid of the region Vi. An example of CVT is shown in Figure 1 where it can be
observed that the Voronoi points overlap with the centroids of the associated cells.
The Voronoi regions for such a configuration have uniform sizes. Relevant usages
of CVTs involve optimal quantization, data compression, optimal quadrature and
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mesh generation. We refer to [7, 8, 16, 17] for more details and references. There
exist iterative algorithms that produce CVTs starting from general Voronoi diagram.
the most basic one being Lloyd’s algorithm, described as follows.

Lloyd’s Algorithm. For a prescribed number of iterations M ≥ 1, successively
replace the Voronoi points yi with the centroids ci of their corresponding Voronoi cells
Vi. The algorithm was introduced in [17] and has a straightforward implementation.
Convergence properties for Lloyd’s algorithm are investigated in [21], [9]. While
being easy to implement, this algorithm is not the most efficient from a practical
point of view for reasons expressed in the following.

In [8], [16] it is shown that the Centroidal Voronoi Tessellation are critical points
for the energy

G(y1, .., yM) =
M∑
i=1

∫
Vi

|x− yi|2dx. (2.4)

Indeed, an immediate computation which can be found, for example, in [8] shows
that

∂G

∂yi
(y1, ..., yM) = 2|Vi|(yi − ci), 1 ≤ i ≤M (2.5)

where ci are the centroids of Vi, for 1 ≤ i ≤ M . For a more direct identification of
the gradient one may consider the following alternative formula:

G(y1, .., yM) =

∫
D

|x|2 dx+
M∑
i=1

(
−2yi ·

∫
Vi

x dx+ |yi|2|Vi|
)

=

∫
D

|x|2 dx+
M∑
i=1

|Vi|(|yi|2 − 2yi · ci).

Notice that the quadratic term is constant and can be ignored, leading to a simplified
energy function.

In view of the gradient formula (2.5), Lloyd’s algorithm can be viewed as a gradient
descent algorithm for minimising the energy (2.4) with no need for a step size control
[8]. Acceleration techniques for improving the convergence of Lloyd’s algorithm are
considered in [7], where a Newton algorithm is discussed. This proves efficient for a
small number of Voronoi cells, but is computationally heavy for large M .

It is generally agreed in the numerical optimization practice that gradient descent
algorithms have slow convergence for ill-conditioned problems [20]. For large scale
problems, quasi-Newton methods like the low memory BFGS algorithms (lbfgs) [20,
Chapter 7] have better convergence properties. In [16] such a quasi-Newton method
was used for minimizing (2.4), providing a faster method for computing CVTs. It
is well known that CVTs are not necessarily unique, but on the other hand CVTs
obtained through a variational process have improved stability properties as already
underlined in [16]. Thus an alternative way of finding CVTs is the following.

Variational CVT. Minimize numerically the energy (2.4) using a quasi-Newton
algorithm. Benchmarks presented in [16] show that such an algorithm is more
efficient than Lloyd’s Algorithm.

2.3. Approximation of Blaschke-Santaló diagrams using CVTs. The objec-
tive of this article is to provide numerical tools which allow the approximation of
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Blaschke-Santaló diagrams, i.e. the image of a mapping

F : X → Rd (2.6)

where X ⊂ RN is the set of admissible parameters, containing upper and lower
bounds and other eventual constraints.

Given M a positive integer, consider a random set of samples x1, . . . , xM ∈ X ⊂
RN . As underlined in the introduction, the images F (x1), . . . , F (xM) are not neces-
sarily uniformly distributed in the image F (X) ⊂ Rd. Our goal is to find a choice
of the points x1, . . . , xM in such a way that their images F (x1), . . . , F (xN) are uni-
formly distibuted inside the image set F (X).

In the following, we assume F (X) is bounded and consider D a bounding box
containing F (X) strictly in its interior. Denote by yi = F (xi) the images for the
initial sampling. We obviously have yi ∈ D. Consider now the Voronoi diagram
associated to the points yi defined by (2.3). Since our goal is to obtain a more
uniform distribution of the images, we search points yi = F (xi) which produce a
Voronoi diagram that is as close as possible to a CVT. Inspired from the results re-
called in Section 2.2 we propose two algorithms for approximating Blaschke-Santaló
diagrams.

Lloyd algorithm with projection. Lloyd’s algorithm is simple to implement,
for general CVTs, simply replacing the points with the corresponding centroids.
When dealing with BS diagrams one would like, for each sample xi, i = 1, ...,M to
replace it with another admissible sample x̄i such that F (x̄i) is the centroid of the
Voronoi region associated to F (xi). We are faced with two issues:

(a) Given a point c in the image F (X), find a sample realizing c, i.e. find x ∈ X
such that F (x) = c.

(b) Given a general point c ∈ Rd which may not be in the image F (X), find
x ∈ X such that F (x) is closest to c in a sense to be defined.

Both aspects enumerated above can be covered using a single optimization problem:

min
x∈X
‖F (x)− c‖. (2.7)

In cases where X is a compact set and F is at least of class C1 problem (2.7)
admits solutions and efficient approximations can be found using standard numerical
optimization algorithms.

We are thus lead to the following natural algorithm.

Algorithm 1 (Lloyd Blaschke-Santaló). Input: number of samples M , number
of iterations q, choose a bounding box D for the image F (X), tolerance ε > 0.

Initialization: generate M random samples xi ∈ X, i = 1, ...,M
Loop: For each one of the q iterations do:

• Compute yi = F (xi)
• Compute the Restricted Voronoi Diagram (Vi)

M
i=1 associated to the points

yi. Compute the centroids ci of the regions Vi, i = 1, ...,M .
• For each one of the ci solve (2.7) and replace xi with the numerical solution
x̄i.
• If for every i = 1, ...,M we have ‖F (xi)− F (x̄i)‖ < ε stop.

In our implementation and in the sequel, the norm considered in problem (2.7)
is the Euclidean one. However other choices are possible and may give different
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behavior for the algorithm. Supposing Algorithm 1 converges for a given threshold
ε we obtain a configuration of samples (xi)

M
i=1 such that:

• Whenever xi is such that the centroid ci of Vi belongs to F (X) we have ‖F (xi)−
ci‖ < ε.
• Whenever xi is such that the centroid ci of Vi does not belong to F (X) we have
‖ProjF (X)(ci) − F (xi)‖ < ε. We used the classical notation for the projection
operator ProjS(y) = {z ∈ S : ‖z − y‖ is minimal}. In particular, F (xi) will be a
boundary point for F (X).

The drawbacks of Algorithm 1 are similar to the ones of Lloyd’s algorithm com-
pared to the variational CVT. One may interpret Algorithm 1 as a fixed point or
gradient descent algorithm with projection. Such algorithms can be improved using
quasi-Newton methods as described in the following.

Variational CVT for Blasche-Santaló diagrams. Similar to [16] we formulate
a minimization problem. We propose to minimize the composition of (2.4) with the
parametrization (2.6). For a given number of samples M we consider the functional
H : XM ⊂ (RN)M → R given by

H(x1, . . . , xM) = G(F (x1), F (x2), . . . , F (xM)), (2.8)

with G defined in (2.4). In practice, we minimize H using quasi-Newton methods
with eventual bound and linear constraints characterizing the parameter set X. This
type of problems can easily be handled using available implementations (fmincon in
Matlab, Knitro see [5]). Assuming the function F defined in (2.6) is differentiable,
the derivatives of H can be expressed with

∂H

∂xi
= DF T (xi)

∂G

∂yi
(F (x1), . . . , F (xN)) = 2|Vi|DF T (xi)(F (xi)− ci), (2.9)

where DF (xi) ∈ Rd×n is the Jacobian of F evaluated at xi and ci is the centroid of
the Voronoi region Vi, i = 1, ...,M . We arrive at the following algorithm.

Algorithm 2 (Variational CVT Blaschke-Santaló). Input: number of samples
M , number of iterations q, choose a bounding box D for the image F (X),
tolerance ε > 0.

Initialization: generate M random samples xi ∈ X, i = 1, ...,M
Optimization: minimize (2.8) using gradient information given by (2.9):

min
(xi)∈XM

H(x1, ..., xM).

Minimizing H on XM will produce images F (xi), i = 1, . . . ,M that are equidis-
tributed in F (X) in the following sense.

Proposition 2.2. Assume the parameter set X ⊂ RN is compact and F is C1.
Suppose x∗1, . . . , x

∗
M minimizes (2.8) on XM and denote by y∗i = F (x∗i ), i = 1, . . . ,M

the corresponding images. If x∗i is an interior point of X and DF (x∗i ) is of full rank,
then y∗i is the centroid of the Voronoi cell associated to x∗i .

Proof. If x∗i is an interior point for X then ∂H
∂xi

= 0. In view of (2.9), if DF (x∗i ) is of

full rank, then F (x∗i ) = ci, i.e. F (x∗i ) is the centroid of the region Vi. �

Remark 2.3. In practice, if Proposition 2.3 does not apply, we may have the fol-
lowing situations.
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(a) If F (xi) is a boundary point for F (X) then F (xi) is not necessarily equal to the
centroid ci of the region Vi.

(b) Interior points of F (X) for which the Jacobian DF is not of full rank may act
as boundary points. We observe this behavior in the numerical simulations.

The minimization of the functional (2.8) is straightforward if the Voronoi diagram
associated to a set of points can be computed. We use the routine compute RVD

developed following the results in [16] from the library Geogram.

https://github.com/BrunoLevy/geogram

The optimization is performed in Matlab/Julia using fmincon or the Artelys Knitro
software in Algorithm 2. Details regarding the optimization procedure and more
specific aspects regarding the problem at hand are shown in the next section.

3. Application I: algebraic functions

We start with an algebraic example which is easy to state, but quickly becomes
challenging. For d ≥ 2 consider the space Symd([−1, 1]) of symmetric d×d matrices
with real entries in the interval [−1, 1]. We apply our algorithm to the study of
the (tr, det) diagram (tr denotes the trace, det denotes the determinant). More
precisely, consider the application F : Symd([−1, 1])→ R2 defined by

F (A) = (tr(A), det(A)). (3.1)

Our goal is to identify the image J(Symd([−1, 1])) for some particular choice of d.
While for d = 2 a complete analytical description of the diagram is possible, for

d ≥ 3 the problem becomes challenging. On the other hand, the numerical method
we propose is efficient and shows a clear description of the corresponding diagram.

We represent symmetric matrices of size d × d as a vector in Rd(d+1)/2, the con-
catenation of the diagonals j − i = 0, 1, ..., d− 1. With this convention the gradient
of the trace is equal to

∇ tr(A) = (1, 1, ..., 1, 0, 0...0),

where the first d elements are zero. Therefore the jacobian matrix DF (A) has rank
at least 1. Partial derivatives of the determinant with respect to the entries of the
matrix are components of the adjugate matrix adj(A). The elements of adj(A) on
position (j, i) are equal to (−1)i+j times the (i, j) minor of A, the determinant of the
matrix obtained from A when removing the i-th line and j-th column. In particular
A · adj(A) = det(A)I.

As a consequence, the Jacobian DF (A) has rank one if and only if the matrix
adj(A) is a multiple of the identity. Then det(A) = 0 or A is also a multiple of
the identity. In particular, the Jacobian matrix DF (A) is of rank 1 for all diagonal
matrices. Next, we consider in detail the case d = 2 for which an analytic description
of the (tr, det) diagram is available.

Analysis of the two dimensional case. For d = 2 we obviously have tr(A) ∈
[−2, 2] with extremal values attained when diagonal elements are all equal to ±1.
This shows that the diagram is contained in [−2, 2]× R.

Consider A =

(
a c
c b

)
and fix q = a+ b. Then

det(A) = ab− c2 ≤ ab ≤ 1

4
(a+ b)2 ≤ q2/4.

https://github.com/BrunoLevy/geogram
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Figure 2. Approximations of the (tr, det) diagram in Symd([−1, 1])
for cases d ∈ {2, 3} using Algorithm 1.

Thus, the upper part of the diagram is the curve [−2, 2] 3 q 7→ q2/4.
We also have ab = a(q−a) which is a concave function on [max{q−1,−1},min{q+

1, 1}]. The minimum is attained at one of the endpoints of the interval. Investigating
this minimum with respect to q ∈ [−2, 2] we find that the lower bound of the diagram
is given by q 7→ |q|−2. The Jacobian of A with respect to variables a, b, c is singular
if and only if it is diagonal, corresponding to the upper bound q 7→ q2/4.

Illustration of the numerical algorithms. In the following we apply the
algorithms proposed in Section 2 to study the proposed diagram. The bounding
boxes D are considered as follows:

• d = 2: D = [−2.5, 2.5]× [−2.5, 2.5]
• d = 3: D = [−5, 5]× [−5.5]
• d = 4: D = [−6, 6]× [−20, 20].

We apply Algorihm 1 for M = 200 samples, with a maximum number of q =
1000 iterations and a tolerance ε = 10−4. The initial samples are randomly chosen
with values in [−1, 1]M . Results are shown in Figure 2 and all simulations finished
before the maximum number of iterations was attained. We have the following
observations:

• The proposed method successfully approximates the Blaschke-Santaló diagrams
even when using a rather small number of samples. At the end of the iterative
process the images of the samples are uniformly distributed in the images Yd =
F (Symd([−1, 1])).
• Images of samples that are in the interior of the diagram Yd are close to the

center of gravity of the corresponding Voronoi cell.
• Images yi of samples lying on the boundary of Yd correspond to Voronoi cells Vi

where the distance between yi and the corresponding centroid ci is large.

Next we apply Algorithm 2 for M = 200 samples. The constrained numerical opti-
mization problem is executed using the software Artelys Knitro with the active-set
algorithm. The initial samples are randomly chosen with values in [−1, 1]M . The
number of iterations is limited to 1000 and the optimality criterion tolerance is set
to 10−8. All simulations reached the maximum number of iterations under these
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Figure 3. Approximations of the (tr, det) diagram in Symd([−1, 1])
for cases d ∈ {2, 3} using Algorithm 2.

Algorithm 1 Algorithm 2
d = 2 19.249278 19.246159
d = 3 218.595970 218.479052
d = 4 2359.898079 2356.123844

Table 1. Comparison of the energies (2.4) after 1000 iterations of
Algorithms 1, 2 for the final configurations shown in Figures 2, 3.

constraints. Results are shown in Figure 3. Similar observations can be underlined,
recalling again that the diagrams are approximated remarkably well with 200 well
distributed samples.

The function (2.4) is evaluated for the optimal configuration of both algorithms
and shown in Table 1. It is clearly observed that Algorithm 2 provides a lower energy
since this algorithm is focused on decreasing the objective value. Moreover, the use
of quasi-Newton descent directions (compared to anti-gradient descent direction for
Lloyd) is known to accelerate the convergence. On the other hand Lloyd’s algorithm
can make large changes in the optimization variables (each sample is replaced by
another one closest to the corresponding centroid as possible) which is advantageous
when applied to initial random configuration or to regions where (2.4) varies too
slowly.

Concerning the computational cost, Algorithm 1 is more costly (in our direct im-
plementation), possibly due to the large number of small size optimization problems
(2.7) that need to be solved at each iteration. Algorithm 2 simply computes one
Restricted Voronoi Diagram per iteration (global or line-search) and evaluates the
associated cost function and its gradient.

Applying the proposed algorithms directly for a large number of samples is rather
inefficient, convergence being slow. In the following we propose a multi-grid strategy
that accelerates convergence.
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4. Practical aspects: re-centering, multi-grid

In many numerical applications, multi grid strategies are employed to accelerate
simulations. An initial simulation is performed on a coarse grid. Then the dis-
cretization is refined and the current numerical optimizer is interpolated on the new
grid and used as an initialization for a new optimization procedure. The refinement
procedure is repeated until de desired precision is attained.

We intend to use a similar strategy described below. Given a point y = F (x) ∈
F (X) we search for other points (zi)

k
i=1 in X such that F (zi) is close to F (x) for

i = 1, ..., k. A natural idea is to find an ellipsoid around x which is mapped onto a
d-dimensional sphere around F (x). However, if x is a boundary point for F (X) it is
not possible to find such an ellipsoid. Nevertheless, if the dimension N of the space
of parameters is larger than the dimension d of the image, the Jacobian DF will be
most likely non-singular, thus allowing us to move the point in the interior of the
constraint set X while preserving the same image. This idea is detailed below.

4.1. Re-centering procedure. Suppose X =
∏N

i=1[ai, bi], and x0 ∈ X, y0 = F (x0)
are such that DF (x0) is of full rank. The implicit function theorem implies that
{F (x) = y0 : x ∈ X} is, locally around x0, a C1 hypersurface of dimension N − d.
Supposing N > d (always the case in our applications), if kerF (x0) is not contained
in the tangent space to {F (x) = y0} at x0, then it is always possible to find x in the
interior of X such that F (x) = F (x0). In particular, if x0 is on the boundary of X,
we can find another element in the interior of X, having the same image.

In practice, we solve a problem of the form

min
F (x)=F (x0)

(
N∑
i=1

(xi − 0.5(ai + bi))
p

)1/p

. (4.1)

Generic available software like fmincon in Matlab allows the implementation of the
nonlinear constraint F (x) = F (x0). The power p is chosen large enough (p = 10
in practice) such that the maximal difference between the coordinates of x and
coordinates of the center of X becomes as small as possible. Problems (4.1) are
computationally cheap for the algebraic application proposed previously.

4.2. Multi-grid procedure. Algorithms 1 and 2 proposed in Section 2 can con-
verge slowly when the number of samples is large. This is especially problematic
when random samples tend to concentrate mostly in some particular regions of the
Blaschke-Santaló diagram. Thus we are interested in ways of enriching the set of
samples given by Algorithms 1 or 2 for a rather small initial number of samples. We
propose two refinement procedures below.

(a) Spheres around current samples. Suppose N > d. For a point x0 such
that DF (x0) is not singular, we re-center it using (4.1). We start by computing the
singular value decomposition

DF (x0) = USV T ,

with U ∈ Rd×d, S ∈ Rd×N , V ∈ RN×N . Matrices U and V are unitary and S is
diagonal, containing the singular values on the diagonal. Assuming DF (x0) is not
singular, the diagonal values in S are non-zero. Moreover, if (ui)1≤i≤d, (vj)1≤j≤N are
columns if U and V , respectively and si, 1 ≤ i ≤ d are the singular values, we have
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Figure 4. Refinement procedure: application before re-centering
fails to add the required number of points around all interior points in
the image. (left) After re-centering, the multi-grid procedure succeeds
for all interior points. (right)

the decomposition

DF (x0) =
d∑
i=1

siuiv
T
i .

Denote by V the matrix containing the first d columns of V as columns and S the
d × d diagonal matrix containing 1/si on its diagonal. Consider the vectors wi,
1 ≤ i ≤ d which are columns of V · S ·U . Then these vectors verify DF (x0)wi = ei,
i ≤ i ≤ d where (ei)i=1,...,d is the canonical basis. Consider the matrix W containing
wi, i = 1, ..., d as columns. For k ≥ 3 consider k uniformly distributed points (θj)

k
j=1

in Sd−1 and consider points zj = x0 + rWθj, where r > 0 is a radius small enough.
In practice r is equal to one third of the minimal distance among images F (xi).
Among points zj we select only those that belong to X. If x0 is a boundary point
for F (X) it is possible that only a few of the points zj, j = 1, ..., d are admissible.

Whenever a refinement is necessary, the procedure described above is repeated
for every sample point (xi)

M
i=1 for which the singular values of DF (xi) are above a

certain threshold (10−3 in our implementation).
In Figure 4 an example of application of the methods described above is shown.

We take a result given by Algorithm 2. At the end of the optimization process some
samples may have images at the boundary of X. Applying directly the multi-grid
procedure, trying to add points on a circle around the current samples gives the result
shown in the left picture in Figure 4. For some points in the interior of F (X) the
algorithm fails to add the required number of points since the associated samples
are on the boundary of X. In the right picture, re-centering is performed before
applying the refinement procedure. For all interior points of F (X) the algorithm
manages to add the prescribed number of additional samples with images close to
the previous ones. It can be observed that for the upper boundary, corresponding to
a singular Jacobian in this case, no points are added, since the procedure described
above cannot be applied.

(b) Delaunay Triangulations. These triangulations are closely related to
Voronoi diagrams and their computation is standard in computational geometry.
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Figure 5. Refinement strategy using projections of midpoints of cer-
tain edges of the triangles in the Delaunay triangulation.

The Delaunay triangulation is the dual graph of the Voronoi diagram, the circum-
centers of the Delaunay triangles being the vertices of the Voronoi diagram.

Given a set of samples (xi)
M
i=1 and the corresponding images yi = F (xi), i =

1, ...,M , start by computing the Delaunay triangulation T of (yi)
M
i=1. Next, select

all edges of triangles in T . For each such edge, take the midpoint ym and solve the
problem

min
x∈X
‖F (x)− ym‖. (4.2)

If the minimization (4.2) succeeds, the solution xm is a sample for which F (x) = ym.
If ym does not belong to F (X) then the minimization problem still produces a
sample, as close as possible to ym. There are two issues that motivate us to solve
(4.2) only for particular edges in T .

• When F (X) is non-convex, the Delaunay triangulation T will contain triangles
which are not contained in F (X). Usually, such triangles have an obtuse angle,
some sides being significantly larger than the others.
• Some regions may contain a denser concentration of samples than others. There-

fore, for edges with length too small compared to the average, we choose not to
add the corresponding midpoints to the diagram.

In practice we compute the average length ` of sides of triangles in T and we solve
(4.2) for midpoints of edges with length in [0.5`, 1.5`]. Figure 5 shows the outcome
of this refinement procedure for the same test case as the one showin in Figure 4.

4.3. Global algorithm and numerical examples. Taking the previous consid-
erations into account leads us to the following practical approach. In particular, we
combine the advantages of Algorithms 1, 2 and the refinement strategy. Algorithm
2 is ran until convergence criteria are met or the maximal number of iterations is
reached.

Algorithm 3 (Blaschke-Santaló multi-grid approximation). Inputs: M - num-
ber of initial samples, maximal number of iterations q1 ∈ [20, 100] for Algorithm
1 and q2 ∈ [1000, 2000] for Algorithm 2, number of refinements nref , number of
points to add around each sample at refinement nadd.
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Initialization: Choose M random samples in X. Run Algorithm 1 for q1

iterations followed by Algorithm 2.
For k = 1 to nref do:

• Multigrid: do one of the following.

– Apply the re-centering procedure, solving (4.1) for each one of the re-
sulting samples. Apply the first refinement procedure adding at most
nadd points around each sample.

– Alternatively, use the midpoints of the triangles in the Delaunay trian-
gulation to find new sample points.

• Run Algorithm 1 for q1 iterations.
• Run Algorithm 2.

Running a few iterations of Algorithm 1 before running Algorithm 2 is motivated
by the fact that Lloyd’s algorithm can make large jumps when applied to a non-
optimal initial configuration.

In the following we show how Algorithm 3 approximates Blascke-Santaló diagrams
in practice. First we apply it for the (tr, det) diagram in the case d = 2. We start
with a set of 30 samples and we perform three refinements. The simulations have
30, 104, 464 and 2423 samples, respectively. Initialization and the results of the
successive stages of the algorithm are shown in Figure 6.

Similar simulations are made for d ∈ {3, 4}. The resulting final optimized config-
urations having 2684 and 2043 cells, respectively, are shown in Figure 7.

In all results presented up to this point, the centroids of Voronoi cells are shown
in blue and the images of the samples are shown in red. In some situations, for
d ∈ {3, 4} we may observe inner Voronoi points which do not coincide with the
Voronoi cell’s centroid. This happens especially close to the curves parametrized by
[−1, 1] 3 t 7→ (dt, td) corresponding to diagonal matrices, for which the Jacobian of
(tr, det) is singular. Such points generate boundary behavior in the interior of the
diagram.

4.4. Extracting the Blaschke-Santaló diagram from the Voronoi diagram.
The boundary points of the Blaschke-Santaló diagram can be recovered selecting
only samples for which the image is far from the centroid of the associated Voronoi
cell. However, extracting a polygon from these points is not straightforward. We use
the following ideas to plot the Blaschke-Santaló diagram starting from the numerical
results:

• If the resulting diagram is convex, taking the convex hull of the images of the
samples suffices.
• Since the optimized samples form a Centroidal Voronoi tessellation, except the

boundary points, we exploit the associated Delaunay triangulation which covers
the entire convex hull of the diagram. However, triangles which are outside our
diagram are nearly flat (having a small or large angle). We eliminate from the
Delaunay triangulation such triangles (with thresholds that are set case by case).

The resulting diagrams are shown in Figure 8.

4.5. Subset of a diagram. In some cases, more detail is needed regarding certain
parts of a Blaschke-Santaló diagram. Rather than increasing the point density
everywhere in the diagram, it is possible to focus only on the region of interest.
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Figure 6. The case d = 2 initialization and optimized configurations
after each refinement. The simulations have 30, 104, 464 and 2423
samples, respectively.

Suppose we are interested in the region F (X)∩B(y, r). Then we can implement all
algorithms presented previously adding the additional constraint

|F (xi)− y| ≤ r. (4.3)

The practical difficulty is that constraints (4.3) are nonlinear. General software like
fmincon and Knitro allow the use of non-linear constraints. The behavior of the
optimization algorithm is improved if the gradient of the non-linear constraints is
computed explicitly, which is possible in our case. Nevertheless, adding the non-
linear constraints (4.3) slows down the proposed algorithms. The speed loss is
compensated by a lower number of samples, since we only focus on a subset of the
desired diagram.

As an example, we show the of the (tr, det) diagram for d = 4 contained in the
disk B((3.9, 1), 0.2). We were interested in exploring extremal matrices in this region
of the diagram, since the boundary parametrization seemed to change here.

4.6. Details concerning d ∈ {3, 4}. We already saw that the case d = 2 admits
an explicit characterization of the boundary of the (tr, det) diagram. For higher
dimensions such a description is difficult to obtain. Nevertheless, identifying the
extremal matrices for diagrams given in Figure 7 we are able to conjecture a precise
parametrization of the corresponding boundaries.
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Figure 7. Results given by Algorithm 3 for cases d = 3 (2684 cells)
and d = 4 (2043 cells).

Figure 8. Extracting the Blaschke-Santaló diagram from the opti-
mal Voronoi tesellation by eliminating ”flat” triangles from the asso-
ciated Delaunay triangulation.

We give a brief description of the extremal matrices and corresponding parametriza-
tions of the boundary for d = 3:
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Figure 9. Blaschke-Santaló diagram for (tr, det), d = 4 (left), zoom
around the point (4, 1) (center). Diagram restrained to the disk
B((3.9, 1), 0.2) (corresponding to the small circle in the center image)
obtained using constraint (4.3) in the algorithms (right).

• Left boundary: A =

−1 a a
a −1 −a
a −a −1

: [−1, 1] 3 x 7→ (−3,−2x3 + 3x2 − 1)

• Right boundary: A =

1 a a
a 1 a
a a 1

: [−1, 1] 3 x 7→ (3, 2x3 − 3x2 + 1)

• Top boundary part 1: A =

−1 1 1
1 −1 1
1 1 a

: [−1, 1] 3 x 7→ (−2 + x, 4)

• Top boundary part 2: A =

 1 1 −1
1 a −1
−1 −1 a

: [−1,−0.125] 3 x 7→ (2x + 1, x2 −

2x+ 1)

• Top boundary part 3:

 a −1 −1
−1 a 1
−1 1 a

: [0.25, 2/3] 3 x 7→ (3x, x3 − 3 ∗ x+ 2)

• Top boundary part 4: [2/3, 1] 3 x 7→ (3x, x3)

Similar observations can be made for d = 4. Due to symmetry reasons, we only
detail the right-half of the boundary:

• Right boundary:


1 −a −a a
−a 1 −a a
−a −a 1 a
a a a 1

: [−1, 1] 3 x 7→ (4,−3x4 − 8x3 − 6x2 + 1)
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Figure 10. Direct parametrizations of the boundaries of the
(tr, det)(Symd([−1, 1]) diagrams for d = 3, 4.

• Bottom right:


a −1 1 1
−1 a 1 1
1 1 a −1
1 1 −1 a

: [−1, 1] 3 x 7→ (4x, x4 − 6x2 − 8x− 3)

• Top right-part 1:


1 −1 1 −1
−1 a −1 −1
1 −1 a 1
−1 −1 1 1

: [−1, 3−
√

2
2

] 3 x 7→ (2x+ 2, 8− 8x)

• Top right-part 2:


1 1 −1 1− a
1 a 0 1
−1 0 1 1

1− a 1 1 1

: [2 −
√

2, 1] 3 x 7→ (x + 3,−(x −

2)(x2 − 2x+ 2))

The resulting parametrized boundaries are shown in Figure 10.

4.7. Higher dimensions. The algorithm proposed generalizes in a straightforward
way to three dimensional diagrams. All algorithmic aspects remain the same. Three
dimensional Restricted Voronoi diagrams are computed again using the library Ge-
ogram [16]. The example for the diagram (tr, λ1λ2 + λ2λ3 + λ3λ1, det) for matrices
in Sym3([−1, 1]) is shown in Figure 11. As usual, λ1, λ2, λ3 denote the eigenvalues
of the 3× 3 matrix.

4.8. Comparison with Monte Carlo method. The simplest approach to inves-
tigate the Blaschke-Santaló diagrams is generating random samples and computing
the corresponding images. As underlined in Section 2.1, this choice does not neces-
sarily produce images uniformly distributed in the desired diagram. In the following,
we generate progressively, a fixed number of sample points and the corresponding
images. We compare the quality of the result and the computational cost with the
algorithms proposed in the previous sections.
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Figure 11. Different views of the three dimensional Blaschke-
Santaló diagram for (tr, λ1λ2 + λ2λ3 + λ3λ1, det) in Sym3. General
3D view (top left), Oyz view (top-right), Oxz view (bottom-left),
Oxy view (bottom-right).

.

We consider 104 and, respectively 106 random samples in Symd([−1, 1]), evaluate
(3.1) and plot the corresponding points in R2. The corresponding results for d ∈
{2, 3, 4} are shown in Figure 12. The Blaschke-Santaló diagrams computed with the
algorithms proposed in previous Sections are represented as polygons while random
samples are represented by points. The diagrams are rescaled to have the same
width in the horizontal and vertical directions.
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Figure 12. Generating 104 and, respectively, 106 random matrices
in Symd([−1, 1]) for cases d ∈ {2, 3, 4} and plotting the corresponding
images given by the function (3.1).

We notice that the Monte Carlo approach is inefficient, especially when the di-
mension increases. For d ∈ {3, 4} using one million random samples fails to give an
accurate description of the diagram.

In comparison, we give an analysis of the computational cost for some of our
simulations which give a high quality approximation of the Blaschke-Santaló dia-
grams. Simulations in Figures 2 and 3 use M = 200 samples with a limit of 1000
iterations. For Algorithm 2 at most 200 × 1000 function and gradient evaluations
are preformed. The computation of the Voronoi diagrams using Geogram is very
efficient. Algorithm 1 performs additional function evaluations when projecting the
centroids on the space of samples, but remains of the same order of magnitude:
O(M ×Q), where Q is the number of iterations.

5. Application II: example from convex geometry

We focus now on an application from convex geometry. Various other works in-
vestigate inequalities between geometric quantities using Blaschke-Santaló diagrams.
Among these we mention [6], [13], [10], [12], [11]. In order to apply directly our com-
putational framework we consider a particular case where functionals involved are
smooth and the corresponding diagram is bounded.

Consider the following three quantities: area A(Ω), perimeter Per(Ω), momentum
of inertia W (Ω) among two dimensional convex shapes Ω with two axes of symmetry.
Since in this case the centroid is at the origin, the momentum of inertia is given by
W =

∫
Ω
|x|2dx.

As usual, when studying Blaschke-Santaló diagrams, we consider scale invariant
quantities linking the three functionals. One can naturally consider:
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xi−1 xi xi+1

zi−1

zi

(xi−1, yi−1)

(xi, yi)

(xi+1, yi+1)

Figure 13. Parametrization of concave decreasing function using
second order differences. The first order differences zi are decreas-
ing.

• the isoperimetric ratio A(Ω)/Per(Ω)2, bounded above by 1
4π

.
• the ratio A2(Ω)/W (Ω), bounded above by 2π.

One can notice that both scale invariant ratios considered above are maximized by
the disk. Theoretical details regarding the corresponding Blaschke-Santaló diagram
are studied in [14].

We consider the mapping

F : Ω 7→ (100A(Ω)/P 2(Ω), A2(Ω)/W (Ω)), (5.1)

where the factor 100 is added so that the two quantities are comparable. Our
objective is to approximate the image of the mapping F defined above.

Various methods were developed for parametrizing convex sets. We mention in-
tersections of hyperplanes [15], the support function parametrized using truncated
Fourier series in [1] or values on a discrete grid in [3]. Methods proposed previously
are generally based on linear inequality constraints on the set of parameters. In order
to apply our framework directly, a more direct parametrization, using only bound
constraints would be more appropriate. This leads us to propose an alternate, yet
classical, discretization process.

We focus on the class of convex sets with two axes of symmetry. Since we are
also working in a scale invariant setting, it is enough to parametrize concave and
decreasing functions y : [0, 1] → R. Given a uniform discretization of [0, 1] using
q + 1 points, observe that if y0, ..., yq are samples of a concave decreasing function
at xi = i/q, i = 0, ..., q then:

• the first order differences are zi = yi − yi+1, i = 0, ..., q − 1 are increasing
• the second order differences ρi+1 = zi+1 − zi, i = 0, ..., q − 2 are non-negative.

Conversely, given non-negative values ρi, it is possible to construct samples of a
concave decreasing function having ρi as second order differences. Therefore we
take (ρi)

q−1
i=1 , ρ0 := z0 and yq as variables in our parametrization.
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Figure 14. Random sampling for the (A,P,W ) diagram using q pa-
rameters for generating convex shapes, q ∈ {2, 3, ..., 10}.

We immediately obtain the following equalities

yi = yq +

q−1∑
j=i

zi, zi =
i−1∑
k=0

ρk, i = 0, ..., q − 1,

which show that yi, for i = 0, ..., q − 1, can be expressed in terms of yq and (ρi)
q−2
i=0

using the following expression:
y0

y1

...
yq−1

 = yq + A


ρ0

ρ1

...
ρq−1

 (5.2)

with A = (Aij) given by Aij = q+ 1−max{i, j} for 1 ≤ i, j ≤ q. The coordinates of
the boundary points of the discrete convex set are given by (xi, yi), i = 0, ..., q for the
first quadrant. They are symmetrized to obtain the rest of the boundary. The area
and the perimeter are computed in a straightforward way. For the momentum of
inertia, we use the explicit formulas for polygons, found for example in [24], a direct
consequence of Green’s formulas. Since all computations are analytic in terms of
the parameters, the partial derivatives of all quantities of interest are also computed
analytically.

(a) Randomly generated shapes. Given the parametrization above and a
number of parameters q ≥ 2 we can generate random convex shapes and plot the
points given by (5.1). We generate 1000 random shapes for 2 ≤ q ≤ 10 parameters.
The results are plotted in Figure 14. It can be observed that q = 2 produces points
on the upper part of the boundary, while higher values of q produce points closer
to the origin. In fact, as q increases, the random shapes give points concentrated
around the origin (0, 0).

(b) Using the numerical algorithms proposed in Section 2.
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Figure 15. Numerical approximation of the (area, perimeter, mo-
mentum of inertia) diagram.

We choose to work with 50 parameters in (5.2) for generating convex shapes. We
generate 15 random samples obtaining points very close to the origin, shown in the
first image in Figure 15. The initial points do not give any meaningful information
on the geometry of the diagram. However, applying Algorithm 3 distributes these
initial samples uniformly as shown in the second image in the same Figure. Then
we continue the process, using the midpoints of edges of the Delaunay triangulation
for adding more samples to the diagram. The multi-grid strategy uses 15, 44, 145,
516 samples, respectively. The final configuration uses 516×50 = 25800 parameters
for the global iterative process.

Investigating shapes lying on the boundary of the Blaschke-Santaló diagram,
shown in Figure 16, we observe the following:

• The left upper boundary is generated by rhombi, flat towards the origin, going
towards the square.
• The right upper boundary is generated by octagons and other polygons converg-

ing to the disk, corresponding to the upper-right corner of the diagram.
• The lower boundary contains shapes similar to stadiums or ellipses.

The algorithms proposed, based on Centroidal Voronoi Tessellations, give a really
accurate numerical description of the diagram. Like in the algebraic case, investi-
gating the shapes on the boundary of the diagram provides insights regarding the
possible analytical bounds and may guide theoretical study to obtain a complete
description. More details regarding this diagram are given in [14].

6. Conclusions

We propose efficient algorithms which approximate Blaschke-Santaló diagrams by
generating samples having uniformly distributed images. The key ingredient is the
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Figure 16. Examples of shapes corresponding to points on the
boundary of the (Area, Perimeter, Momentum of inertia) diagram.

search for images which produce Centroidal Voronoi Tessellations. The algorithms
proposed, inspired from Lloyd’s algorithm and the Variational method proposed in
[16] are illustrated through examples coming from linear algebra and shape opti-
mization.

We observe that using a reasonable computational cost, compared with the usual
Monte Carlo methods which generate randomized samples, the algorithms proposed
achieve a precise description of the Blaschke-Santaló diagrams. Using a multi-grid
strategy, more samples can be considered, further improving the description of these
diagrams.
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