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Abstract. Given a complete Riemannian manifold M ⊂ Rd which is a Lipschitz neighbourhood retract
of dimension m + n, of class Ch,β and an oriented, closed submanifold Γ ⊂ M of dimension m − 1,
which is a boundary in integral homology, we construct a complete metric space B of Ch,α-perturbations
of Γ inside M, with α < β, enjoying the following property. For the typical element b ∈ B, in the
sense of Baire categories, there exists a unique m-dimensional integral current in M which solves the
corresponding Plateau problem and it has multiplicity one.
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1 introduction

In the following let n, m ≥ 1, β ∈ [0, 1] and let M ⊂ Rd be a complete Riemannian manifold
(without boundary), which is a Lipschitz neighbourhood retract1 of dimension m + n, of class
Ch,β, with h + β > 3. For every k = 0, . . . , m + n, we denote by Dk(M) the set of k-dimensional
currents (or k-currents) with support in M and by Ik(M) the subgroup of k-dimensional integral
currents. We refer to Section 2 for the relevant definitions. We denote by AMC(b) the set of
area-minimizing integral currents in M with boundary b, namely

AMC(b) := {T ∈ Im(M) : ∂T = b, M(T) ≤ M(S) for every S ∈ Im(M) with ∂S = b}.

We denote the set of (m − 1)-dimensional boundaries in M by

Bm−1(M) := {b ∈ Dm−1(M) : b = ∂T for some T ∈ Dm(M)}.

Let Γ ⊂ M be an oriented, closed (i.e. compact and without boundary) submanifold of
dimension m − 1 and of class Cℓ,α, with 3 < ℓ + α < h + β. Let b0 := JΓK be the associated
multiplicity-one current and assume that b0 ∈ Bm−1(M). For every P ∈ Γ there exists a
connected, open set U ⊂ Rm+n, a diffeomorphism Φ : U → Φ(U) ⊆ M of class Ch,β such that
P ∈ Φ(U), a relatively open, connected, bounded set Ω ⊂ Rm−1 = ⟨e1, . . . , em−1⟩, and a function
f : Ω → Rn+1 of class Cℓ,α such that

gr( f ) := {(x, y) ∈ Ω × ⟨em, . . . , em+n⟩ : y = f (x)},

satisfies gr( f ) ⊂ U and such that

Γ ∩ Φ(U) = Φ(gr( f )). (1.1)

Observe that since Ω is connected, then (1.1) implies that Γ ∩ Φ(U) is also connected.

Given a connected open set Ω′ compactly contained in Ω and ε > 0, we let

Xε(P) := {u ∈ Cℓ,α(Ω, Rn+1) : f − u ≡ 0 on Ω \ Ω′, ∥ f − u∥Cℓ,α ≤ ε}. (1.2)

By (1.1) there exists ε > 0 such that

gr(u) ⊆ U for every u ∈ Xε(P). (1.3)

We endow Xε(P) with the norm ∥·∥Cℓ,α , which makes it a complete metric space, see Lemma 3.1.

For i = 1, . . . , N, we select one point pi on each connected component of Γ and we assume that
the definition of Ui, Φi, Ωi, fi and ε i as in (1.3) is understood. We assume that Φi(Ui) are disjoint
and we denote

η := min{1; min
i=1,...,N

ε i}. (1.4)

1 This assumption is satisfied for instance if M is a closed Riemannian manifold or if M = Rm+n.
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Further restrictions on η will be specified in Lemma 4.1. We denote by Xη the product space

Xη :=
N

∏
i=1

Xη(pi), (1.5)

endowed with the 1-product distance, namely the distance induced by the norm

∥(u1, . . . , uN)∥ :=
N

∑
i=1

∥ui∥Cℓ,α(Ωi)
. (1.6)

We define a map Ψ : Xη → Bm−1(M) as follows

Ψ(u1, . . . , uN) :=
N

∑
i=1

JΦi(gr(ui))K+ b0 (M\
N⋃

i=1

Φi(Ui)). (1.7)

We observe that Ψ is injective and Ψ(u1, . . . , uN) and b0 are in the same homology class for every
(u1, . . . , uN) ∈ Xη , see Lemma 2.2. We define the space of boundaries associated to Xη as

Bη := Ψ(Xη). (1.8)

We naturally endow Bη with the distance d induced by the map Ψ. More precisely, for every
b ∈ Xη we denote

(u1(b), . . . , uN(b)) := Ψ−1(b) (1.9)

and we define

d(b, b̄) :=
N

∑
i=1

∥ui(b)− ui(b̄)∥Cℓ,α(Ωi)
. (1.10)

Notice that (Bη , d) is also a complete metric space, because Ψ is by definition an isometry, see
Lemma 3.1. Roughly speaking, the space Bη consists of Cℓ,α-perturbations of the boundary Γ that
allow us to deform each connected component of Γ, locally around a point. Observe that (1.3)
implies that every boundary in Bη is the multiplicity-one current associated to an oriented regular
submanifold. We are ready to state the main results of this paper which we prove in Section 4.

Theorem 1.1. For the typical boundary b ∈ Bη , any area-minimizing integral current T with ∂T = b has
multiplicity one ∥T∥-a.e.

In codimension n = 1 the previous theorem has the following interesting consequence.

Corollary 1.2. If n = 1, then for the typical boundary b ∈ Bη , any area-minimizing integral current T
with ∂T = b has density 1/2 at every point of the support of b.

We also deduce the following general result.

Theorem 1.3. For the typical boundary b ∈ Bη , there is a unique area-minimizing integral current T with
∂T = b.
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Since the intersection of residual sets is a residual set, then for the typical boundary b ∈ Bη

both the conclusion of Theorem 1.1 and the conclusion of Theorem 1.3 are satisfied.
In Section 5, we obtain a result in the spirit of Theorem 1.3, replacing the space Bη with a larger

space of boundaries. On the other hand, the strong norm considered on Bη needs to be naturally
substituted by a weaker one and we work on the manifold M := Rm+n, with m > 1.

We fix an arbitrary C > 0, a compact, convex set K ⊂ Rm+n with nonempty interior and define

RC := {b ∈ Bm−1(K) ∩Im−1(K) : M(b) ≤ C}. (1.11)

We metrize RC with the distance d ♭ induced by the flat norm, see (2.3).
Also in this case, the space is complete, see Lemma 5.1, and we obtain the analogous result to

Theorem 1.3, that is, the following

Theorem 1.4. For the typical boundary b ∈ RC, the set AMC(b) is a singleton.

Even if the previous result is arguably weaker than Theorem 1.3, the strategy is quite flexible
and can be adapted to variational problems in which the singular set of minimizers is so large
that it can disconnect the regular part, see [5].

1.1 Content of the paper

In Section 2, we introduce the notation for currents and prove preliminary properties of our
space of boundaries. In Section 3 we play a Banach-Mazur game in the following context. The
main idea behind Theorem 1.1 is that for an area minimzing integral current, regular two-sided
boundary points are contained in the support of the current which locally is smooth. However,
the typical boundary is not contained in any m-dimensional submanifold of higher regularity
(proof of this can be found in Section 3) and thus, the typical boundary does not allow for
area-minimizing currents with regular two-sided boundary points, which we prove in Section 4.
We deduce Theorem 1.3 exploiting a technique introduced in [24]. In Section 5 we prove Theorem
1.4.

1.2 Previous results on generic properties of area-minimizing currents

Generic properties, in the sense of Baire categories, are of fundamental importance in the
study of the well-posedness of solutions to geometric variational problems. Fine results have
been derived when the ambient manifold is endowed with a C∞-generic metric, such as density,
equidistribution, multiplicity one and Morse index estimates of min-max minimal hypersurfaces,
see [19, 22, 36, 21]. Recent generic regularity results have been obtained for locally stable minimal
hypersurfaces in 8-dimensional closed Riemannian manifolds and for minimizing hypersurfaces
in ambient manifolds of dimension 9 and 10, see [20, 6] and [7] respectively. In other words, it has
been shown that singularities can be “perturbed away” for generic ambient metrics or for slight
perturbations of the boundary, leading to generic smoothness of solutions. Generic regularity for
higher dimensional hypersurfaces is still an open problem and not much is known about generic
regularity of minimal submanifolds with codimension higher than one, see [35, 34].
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Another question occurring naturally in connection with the Plateau problem is that of unique-
ness of solutions: it goes back at least to the first decades of the twentieth century, to works
by many authors, see [8, 13, 14, 28, 31]. There are many examples of curves admitting several
different minimizers, see [23, 29]. However, the presence of many symmetries motivated the
question whether uniqueness is a generic property itself, see [3, Section I.11, (3)].

Morgan proved in [24] that almost every curve in R3 (with respect to a suitable measure) bounds
a unique area-minimizing surface. The result has been later generalized by the same author to
elliptic integrands and to any dimension and, in the special case of area-minimizing flat chains
modulo 2, to any codimension, see [25, 26]. We remark that all Morgan’s results are restricted
to the Euclidean ambient setting or rely on uniform convexity assumptions on the boundary. In
fact his proofs depend on Allard’s boundary regularity theorem for stationary varifolds, which
states that if a boundary Γ is supported in the boundary of a uniformly convex set, then every
point p ∈ Γ has density 1/2 and it is regular, see [1], [2, §4], [24, Proposition 6.1] and [25, §4].
This allows Morgan to rule out the existence of two-sided regular boundary points, namely regular
boundary points at which the current “crosses” the boundary, see [9, Example 1.3].

Hardt and Simon proved in [17] that, for codimension one area-minimizing currents in the
Euclidean space, every boundary point is regular (possibly two-sided) without assuming the
convexity condition. More recently, the fourth-named author extended this result to codimension
one Riemannian ambient manifolds, see [33]. A recent result by De Lellis, De Philippis, Hirsch
and Massaccesi, see [9], proves the first general boundary regularity theorem with no restrictions
on the codimension, showing that the set of regular boundary points (possibly two-sided) is dense,
see also [27] for a 2-dimensional analogue allowing for arbitrary boundary multiplicity.

In this article we prove generic uniqueness and the multiplicity-one property of area-minimizing
integral currents in full generality, i.e. for general ambient manifolds M of any dimension, for any
codimension and with no convexity assumption on the geometry of the boundary Γ. Our result
relies on the aforementioned boundary regularity theorem in [9], as our main goal is to prove
the generic absence of two-sided boundary points. It is worth mentioning that Morgan hints at
generic uniqueness in the Baire sense when the ambient space is a manifold (see [25, Remark 5.4]),
but this case is restricted to codimension one submanifolds and still under convexity assumptions
on the boundary.
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2 notation and preliminaries

We briefly recall the relevant definitions of the theory of currents and we refer the reader to [16,
32] for a complete treatment of the subject. A k-dimensional current on Rd (k ≤ d) is a continuous
linear functional on the space D k(Rd) of smooth and compactly supported differential k-forms in
Rd. The space of k-dimensional currents in Rd is denoted by Dk(R

d). The boundary of a current
T ∈ Dk(R

d) is the current ∂T ∈ Dk−1(R
d) such that

∂T(φ) = T(dφ), for every φ ∈ D k−1(Rd),

where as usual d denotes the exterior differential. Given T ∈ Dk(R
d), the mass of T is denoted by

M(T) and is defined as the supremum of T(ω) over all forms ω with |ω(x)| ≤ 1 for all x ∈ Rd.
The support of a current T, denoted supp(T), is the intersection of all closed sets C in Rd such that
T(ω) = 0 whenever ω ≡ 0 on C. For every closed subset K of Rd, we will denote by Dk(K) the set

Dk(K) := {T ∈ Dk(R
d) | supp(T) ⊂ K}.

Given a smooth, proper map f : Rd → Rd′ and a k-current T in Rd, the push-forward of T
according to the map f is the k-current f♯T in Rd′ defined by

f♯T(ω) := T( f ♯ω), for every ω ∈ D k(Rd′), (2.1)

where f ♯ω denotes the pullback of ω through f . If T has finite mass and compact support, then
the previous definition can be extended to any f of class C1.

We say that a current T ∈ Dk(R
d) is integer rectifiable and we write T ∈ Rk(R

d) if we can identify
T with a triple (E, τ, θ), where E ⊂ K is a k-rectifiable set, τ(x) is a unit k-vector spanning the
tangent space TxE at H k-a.e. x and θ ∈ L1(H k E, Z) is an integer-valued multiplicity, where
the identification means that the action of T can be expressed by

T(ω) =

ˆ
E
⟨ω(x), τ(x)⟩θ(x)dH k(x), for every ω ∈ D k(Rd). (2.2)

If T is as in (2.2), we denote it by T = JE, τ, θK. We denote by Ik(R
d) the subgroup of k-

dimensional integral currents, that is the set of currents T ∈ Rk(R
d) with ∂T ∈ Rk−1(R

d). If
T = JE, τ, θK ∈ Rk(R

d) and B ⊂ Rd is a Borel set, we denote the restriction of T to B by setting
T B := JE ∩ B, τ, θK. The set of integer rectifiable (respectively integral) k-currents with support
in a closed set K is denoted by Rk(K) (respectively Ik(K)).

We recall that the (integral) flat norm F(T) of an integral current T ∈ Ik(K), with K compact, is
defined by:

F(T) := min{M(R) + M(S) | T = R + ∂S, R ∈ Ik(K), S ∈ Ik+1(K)}. (2.3)

A k-dimensional polyhedral current is a current P of the form

P :=
N

∑
i=1

θiJσiK, (2.4)
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where θi ∈ R, σi are non-overlapping k-dimensional simplexes in Rd, oriented by (constant)
k-vectors τi and JσiK = Jσi, τi, 1K is the multiplicity-one current naturally associated to σi. A
polyhedral current with integer coefficients θi is called integer polyhedral and we denote the
subgroup of k-dimensional integer polyhedral currents with support in K by Pk(K).

Lemma 2.1. There exists a constant C > 0 (depending only on maxi{M(JΩiK)} and maxi{Lip(Φi)})
such that F(b − b̄) ≤ C d(b, b̄), for every b, b̄ ∈ Bη .

Proof. It is sufficient to prove the lemma for N = 1. Indeed, denoting for every b ∈ Bη and for
i = 1, . . . , N the boundary bi ∈ Bη defined by

bi := b (Φi(Ui)) + JΓK (M\ Φi(Ui)),

we have

b̄ − b =
N

∑
i=1

b̄i − bi,

so that

F(b̄ − b) ≤
N

∑
i=1

F(b̄i − bi) ≤ N max
i=1,...,N

F(b̄i − bi).

Hence we can assume that N = 1 and for w ∈ Xη we define w : Ω → Rm+n by

w(x) := (x, w(x)). (2.5)

Let u := Ψ−1(b) and ū := Ψ−1(b̄) and we denote I := J[0, 1]K ∈ I1(R) and we let F : [0, 1]× Ω →
Rm+n be the linear homotopy

F(t, x) = (1 − t)u(x) + tū(x).

Denote S := F♯(I × JΩK). We use [32, 26.18] to compute

∂S =F♯(∂(I × JΩK)) = F♯(∂I × JΩK− I × ∂JΩK)

=F♯(δ1 × JΩK)− F♯(δ0 × JΩK)− F♯(I × ∂JΩK)

=(ū)♯JΩK− (u)♯JΩK− F♯(I × ∂JΩK)

=Jgr(ū)K− Jgr(u)K− F♯(I × ∂JΩK) = Jgr(ū)K− Jgr(u)K,

where the last equality is due to the fact that ū = u on ∂Ω. Hence, by the homotopy formula, see
[16, §4.1.9], we can estimate

F(Jgr(ū)K− Jgr(u)K) ≤ ∥ū − u∥∞ supx∈Ω (|Du(x)− Dū(x)|)m−1
M(JΩK)

≤ C∥ū − u∥Cℓ,α = C∥ū − u∥Cℓ,α ,
(2.6)

where the constant C in the second line depends only on m and the Lipschitz constant of ū − u,
which is bounded by 2 by definition of Xη . Therefore, since Φ is of class Ch,β, we infer

F(b̄ − b) = F(Φ♯(Jgr(ū)K− Jgr(u)K)) ≤ C Lip(Φi)
m−1∥ū − u∥Cℓ,α = C d(b̄, b),

where the last identity follows from the definition of the distance d.
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Lemma 2.2. For every b ∈ Bη there exists a current S ∈ Im(M) such that JΓK− b = ∂S. In particular
all the elements of Bη are in the same homology class.

Proof. For every connected component of Γ, we consider the corresponding Ui, Φi, Ωi, fi, defined
in the introduction. We now argue as in the proof of Lemma 2.1, replacing b̄ with JΓK to define
a current Si ∈ Im(Rm+n) such that ∂Si = Jgr( fi)K − Jgr(ui)K. The current S := ∑N

i=1(Φi)♯(Si)

satisfies the requirement.

3 the typical C ℓ ,α
graph avoids Ch ,β

submanifolds

The proof of Theorem 1.1 is obtained combining the boundary regularity result of [9] and the
following property of the typical map u ∈ Xε(P), see (1.2). For every open set V ⊂ U ⊂ Rn+m

such that gr(u Ω′) ∩ V ̸= ∅ and, for every m-dimensional submanifold N of class Ch,β in Rm+n

with ∂N ∩ V = ∅ it holds gr(u) ∩ V ̸⊂ N .
For the sake of generality, in this section we prove this result for u : Rm−k → Rn+k, for every

k < m. For the purpose of this paper, this generalization is unnecessary, however, we include it
since it does not require any additional effort.

In the following let n, m ≥ 1, and 0 ≤ k < m. Throughout this section we will denote
{e1, . . . , em+n} the standard basis of Rm+n. Let Ω be a fixed open bounded set in Rm−k =

⟨e1, . . . , em−k⟩. We further fix h ∈ N \ {0}, ℓ ∈ N, α, β ∈ [0, 1] and γ ∈ [0, 2] \ {1} so that
ℓ + α < ℓ + γ < h + β, a function f : Ω → Rn+k of class Cℓ,α and an open set Ω′ compactly
contained in Ω. For fixed ε > 0, we let

Xε := {u ∈ Cℓ,α(Ω, Rn+k) : f − u ≡ 0 on Ω \ Ω′, ∥ f − u∥Cℓ,α ≤ ε},

where we denoted

∥u∥Cℓ,α = ∥u∥Cℓ + [Dℓu]α := ∥u∥∞ +
ℓ

∑
j=1

∥Dju∥∞ + sup
x ̸=y∈Ω

|Dℓu(x)− Dℓu(y)|
|x − y|α .

we further endow Xε with the norm ∥·∥Ch,α . We observe that the space Xε(P) defined in (1.2), fits
this definition with k = 1 and ℓ ≥ 3.

We begin with the following observation.

Lemma 3.1. The space (Xε, ∥·∥Cℓ,α) is complete. In particular the space (Bη , d) is also complete.

Proof. It suffices to show that Xε is closed in (Cℓ,α, ∥·∥Cℓ,α). Let un be a sequence of elements in
Xε and let u ∈ Cℓ,α be such that ∥un − u∥Cℓ,α → 0. Obviously f − u ≡ 0 on Ω \ Ω′ and u ∈ Cℓ,α,
hence u ∈ Xε.

The fact that Bη is complete follows from the fact that Ψ is an isometry between the product
space Xη defined in (1.5) endowed with the distance induced by the norm (1.6) and (Bη , d).
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We then introduce a subset of Xε which roughly consists of those functions whose graph
has small intersection with any submanifold of class Ch,β. We let πΩ : Ω × Rn+k → Ω be the
orthogonal projection on the first m − k coordinates of Rm+n. For every open set A ⊂ Ω we denote

CA := {(z1, z2) ∈ Ω × Rn+k : z1 ∈ A}

and we abbreviate C(x, r) := CB(x,r).

Definition 3.2. Let A be the set of those w ∈ Xε for which there exists an embedded m-dimensional
manifold N ⊂ Rm+n of class Ch,β and an open set O ⊂ CΩ′ such that

∂N ∩ O = ∅ and ∅ ̸= gr(w) ∩ O ⊂ N .

The aim of this section is to prove the following proposition.

Proposition 3.3. The set A is of first category in Xε, i.e. it is contained in a countable union of closed sets
with empty interior.

Thanks to Lemma 3.1 and Baire’s theorem, Proposition 3.3 implies in particular that Xε \ A is
dense in Xε. Our strategy to prove Proposition 3.3 uses the relation between topological properties
of sets in the sense of Baire categories and the existence of a winning strategy for a suitable
topological game. Let us quickly recall such general result.

Definition 3.4 (Banach-Mazur game). Let (X, T ) be a topological space and let A ⊆ X be an
arbitrary subset. The Banach-Mazur game associated to A is a game between two players, P1
and P2 with the following rules: P1 chooses arbitrarily a non-empty open set U1 ⊆ X; then P2
chooses an open set V1 ⊆ U1; then P1 chooses a non-empty open set U2 ⊆ V1 and so on. If the
set (

⋂
i∈N Vi) ∩ A is non-empty then P1 wins. Otherwise P2 wins.

The following proposition relates the Banach-Mazur game to the topology of the space on
which it is played. We say that a set is of first category if it is contained in a countable union of
closed subsets with empty interior. A set is residual if its complement is of first category. We say
that a certain property holds for the typical element of X, if it holds for every element of a residual
set. We say that P2 has a winning strategy if, for every choice of open sets Ui by P1, there exists a

choice of open sets Vi for P2 such that
(⋂

i∈N Vi

)
∩ A = ∅.

Proposition 3.5. Suppose the metric space X is complete. Then there exists a winning strategy for P2 if
and only if A is of first category in X.

Proof. The proof of this result is given in [30] only in the case of the real line. However the same
argument works verbatim in any complete metric space.

Definition 3.6. Let A be the set of those w ∈ Xε for which there exists a map M : Ω ×
⟨em−k+1, . . . , em⟩ → Rn of class Ch,β and an open set W ⊂ Ω′ such that

πΩ(CW ∩ gr(M) ∩ gr(w)) = W.
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The main step for the proof of Proposition 3.3 is the following

Proposition 3.7. The set A is of first category in Xε.

We postpone the proof to the end of the section and begin with the following elementary
lemma.

Lemma 3.8. Suppose that g : R → R is a function of class Ch,β. Then, for any x ∈ R there exists a t0 > 0
and a bounded function rh+1(t) : [−t0, t0] → R such that for every t ∈ [−t0, t0]

g(x + t) = g(x) + dg(x)t + . . . +
dhg(x)

h!
th + rh+1(t)th+β.

In addition ∥rh+1(t)∥∞ ≤ [dhg(x)]
Cβ

h! .

Proof. The Taylor expansion of g yields

g(x + t) = g(x) + dg(x)t + . . . +
dh−1g(x)
(h − 1)!

th−1 +
dhg(x + ζt)

h!
th, (3.1)

for some ζt ∈ [0, t]. However, this shows that

g(x + t)− g(x)− dg(x)t − . . . − dh−1g(x)
(h − 1)!

th−1 − dhg(x)
h!

th =
dhg(x + ζt)th − dhg(x)th

h!
. (3.2)

Define rh+1(t) := dhg(x+ζt)−dhg(x)
h!tβ and note that |rh+1(t)| ≤ |dhg(x+ζt)−dhg(x)|

h!ζβ
t

≤ [dhg(x)]
Cβ

h! .

The following proposition provides the main tool to find a winning strategy for the Banach-
Mazur game associated to A, allowing us to prove Proposition 3.7. We denote the balls in Xε by
B(w, ρ) = {u ∈ Xε : ∥u − w∥Cℓ,α < ρ}.

Proposition 3.9. Let w̄ ∈ Xε be fixed and let ρ̄ > 0, j ∈ N \ {0}. Then, for any x ∈ Ω′ there exist
u ∈ Xε and ρ > 0 such that

(i) B(u, ρ) ⊆ B(w̄, ρ̄);

(ii) for every w ∈ B(u, ρ) and M : Ω × ⟨em−k+1, . . . , em⟩ → Rn of class Ch,β with ∥M∥Ch,β ≤ j we
have

πΩ(gr(M) ∩ gr(w) ∩ C(x, r)) ̸= B(x, r), (3.3)

where r := min{1/j, dist(x, Ω \ Ω′)}.

Proof. Assume by contradiction that there is an x ∈ Ω′ such that for every u ∈ B(w̄, ρ̄) there is an
infinitesimal sequence ρi ≤ ρ̄ − ∥u − w̄∥Cℓ,α for which property (ii) fails.

In the following we construct a function u ∈ Xε, which is a small perturbation of w̄ in the Cℓ,α

norm, by adding a bump of class Cℓ,γ (along a specific direction) to a mollified version of w̄ in
such a way that the optimal regularity of the perturbation u is Cℓ,γ. Via Taylor expansion, we
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show that the bound on the Ch,β norm of M implies that (3.3) holds with u in place of w. By a
simple compactness argument, this implies that (ii) holds for ρ sufficiently small: a contradiction.

Fix 0 < δ < 1 to be chosen later and let ψδ be the function on Rm−k defined by

ψδ(z) := δ1+γ|x1 − z1|ℓ+γ,

where zi are the coordinates of z ∈ Rm−k. Let r be as in (ii). Let η : Ω → [0, 1] be a smooth cutoff
function such that η ≡ 0 on Ω \ B(x, r) and η ≡ 1 on B(x, r/2). Observe that ηψδ ∈ Cℓ,α and more
precisely

lim
δ→0

δ−1∥ηψδ∥Cℓ,α = 0 and |ψδ(x + te1)| = δ1+γ|t|ℓ+γ for any |t| ≤ r/2. (3.4)

Throughout the rest of the proof, we let φ be a mollification kernel, that is a non-negative, radial
smooth function supported on B(0, 1) ⊆ Rm−k such that φ ≡ 1 on B(0, 1/2) and

´
φ = 1. For any

ι ∈ N \ {0} we further let φι(y) := ιm−k φ(ιy). Denote fδ := (1 − δ)w̄ + δ f and define

v := φι ∗ (η fδ) + (1 − η) fδ.

Observe that for ι sufficiently large we have that f − v ≡ 0 on Ω \ Ω′. Moreover, the function v is
smooth on B(x, r/2). Denote

u := (v1, . . . , vn+k−1, vn+k + ηψδ).

We can estimate

∥u − f ∥Cℓ,α ≤ ∥u − v∥Cℓ,α + ∥v − fδ∥Cℓ,α + ∥(1 − δ)(w̄ − f )∥Cℓ,α

≤ ∥ηψδ∥Cℓ,α + ∥φι ∗ (η fδ)− η fδ∥Cℓ,α + (1 − δ)ε.

Hence it follows from (3.4) that for δ sufficiently small and ι sufficiently large, u ∈ Xε. Moreover
for δ sufficiently small and ι sufficiently large we have u ∈ B(w̄, ρ̄/2). Indeed,

∥u − w̄∥Cℓ,α ≤ ∥u − v∥Cℓ,α + ∥v − fδ∥Cℓ,α + ∥δ(w̄ − f )∥Cℓ,α

≤ ∥ηψδ∥Cℓ,α + ∥φι ∗ (η fδ)− η fδ∥Cℓ,α + δε.

By assumption there is a sequence ρi < ρ̄/2 with ρi → 0, such that there exist wi ∈ B(u, ρi)

and Mi : Ω × ⟨em−k+1, . . . , em⟩ → Rn of class Ch,β with ∥Mi∥Ch,β ≤ j for which (3.3) fails, that is,

πΩ(gr(Mi) ∩ gr(wi) ∩ C(x, r)) = B(x, r).

This means that for any y ∈ B(x, r) we find y′ ∈ Rk such that(
y, y′, Mi(y, y′)

)
=

(
y, wi(y), wi(y)

)
∈ Rm−k × Rk × Rn, for any i ∈ N,

where we denote wi := (wi
1, . . . , wi

k) and wi := (wi
k+1, . . . , wi

n+k). In particular, for y = xt := x+ te1

with t ∈ [0, r/2], we have(
xt, wi(xt), wi(xt)

)
=

(
xt, wi(xt), Mi(xt, wi(xt))

)
,
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and comparing the last components, we deduce that for every t ∈ [0, r/2], we have

wi
n+k(xt) = Mi

n(xt, wi(xt)) for all i ∈ N. (3.5)

Thanks to Arzelà-Ascoli theorem, we can show that there exists M ∈ Ch,β with ∥M∥Ch,β ≤ j such
that, up to subsequences, limi→∞∥Mi − M∥Ch,β = 0. Indeed, up to subsequences, one can find
maps Mi

l for l = 0, . . . , h such that Dl Mi converges uniformly to Ml on Ω, the map Mh is of class
Cβ and ∑N

l=1∥Ml∥∞ + [Mh]β ≤ j. The fact that DMl = Ml+1 for l = 0, . . . , h − 1 is an elementary
consequence of Lemma 3.8 and of the fact that ∥Mi∥Ch,β ≤ j.

In addition, since ρi → 0 and wi ∈ B(u, ρi), we also have that limi→∞∥wi − u∥C1 = 0 and hence,
by continuity of all the functions involved, the fact that wi → u and u = v, (3.5) implies that

un+k(xt) = Mn(xt, u(xt)) = Mn(xt, v(xt)), (3.6)

for every t ∈ [0, r/2]. On the other hand, using Lemma 3.8 and the fact that M is of class Ch,β and
u is smooth, we find constants c0, . . . , ch and a function ch+1(t) with ∥ch+1∥L∞(0,rδ) < Ch+1 such
that for every t ∈ [0, r/2], it holds

Mn(xt, v(xt)) = c0 + c1t + . . . + ch
th

h!
+ ch+1(t)th+β. (3.7)

Observe that v is smooth, hence we can expand it

vn+k(xt) = vn+k(x) + ∂1vn+k(x)t + . . . +
∂h

1vn+k(x)
h!

th +
∂h+1

1 vn+k(ζ)

(h + 1)!
th+1, (3.8)

for some ζ ∈ [x, x + te1].
Now we estimate the size of the added bump.

η(xt)ψδ(xt) = (un+k − vn+k) (xt)
(3.6)
= Mn(xt, v(xt))− vn+k(xt). (3.9)

Combining (3.7), (3.8) and (3.9) we infer that for every t ∈ [0, r/2] we have∣∣∣∣∣ h

∑
κ=0

(cκ − ∂κ
1vn+k(x))

tκ

κ!
+ ch+1(t)th+β −

∂h+1
1 vn+k(ζ)

(h + 1)!
th+1

∣∣∣∣∣ = |Mn(xt, v(xt))− vn+k(xt)|

(3.9)
= |η(xt)ψδ(xt)|

(3.4)
= δ1+γtℓ+γ.

(3.10)

As γ > 0, we deduce that

cκ = ∂κ
1vn+k(x) for all 0 ≤ κ ≤ ℓ+ γ. (3.11)

Moreover, we infer from (3.10) that for any t ∈ [0, r/2], we have

δ1+γtℓ+γ (3.11)
=

∣∣∣∣∣ h

∑
κ=⌊ℓ+γ+1⌋

(cκ − ∂κ
1vn+k(x))

tκ

κ!
+ ch+1(t)th+β −

∂h+1
1 vn+k(ζ)

(h + 1)!
th+1

∣∣∣∣∣, (3.12)

which is a contradiction to ℓ+ α < ℓ+ γ < h + β.
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Proof of Proposition 3.7. Let us prove that P2 has a winning strategy for the Banach-Mazur game
associated to A.

Let us assume that the players P1 and P2 have played already κ moves which are associated to
open sets U1, . . . , Uκ and V1, . . . , Vκ chosen by P1 and P2 respectively in such a way that

Vκ ⊆ Uκ ⊆ Vκ−1 ⊆ · · · ⊆ V1 ⊆ U1.

The (κ + 1)th move for P1 is an open set Uκ+1 ⊆ Vκ. Now we describe how to choose properly
the set Vκ+1.

Let us fix a dense sequence {xι}ι∈N in Ω′. First P2 picks some w̄ ∈ Uκ+1 and ρ̄ > 0 such that
B(w̄, ρ̄) ⊆ Uκ+1. By Proposition 3.9 applied with these choices of w̄ and ρ̄ and with x = xκ+1,
j = κ + 1 we obtain uκ+1 ∈ B(w̄, ρ̄) and 0 < ρκ+1 < 1/(κ + 1) such that

(i) B(uκ+1, ρκ+1) ⊆ Uκ+1;

(ii) for every w ∈ B(uκ+1, ρκ+1) and M : Ω × ⟨em−k+1, . . . , em⟩ → Rn of class Ch,β with
∥M∥Ch,β ≤ κ + 1 we have

πΩ(gr(M) ∩ gr(w) ∩ C(x, r)) ̸= B(x, r),

where r := min{1/(κ + 1), dist(x, Ω \ Ω′)}.

Note that with the choice Vκ+1 := B(uκ+1, ρκ+1) there exists w∞ ∈ Xε such that {w∞} =
⋂

j∈N Vj.
Let us show that w∞ ̸∈ A. Let U ⊆ Ω′ be an open set and pick ι ∈ N such that B(xι, 1/ι) is
compactly contained in U. Since w∞ ∈ ∩κ∈NVκ, in particular w∞ ∈ Vι and we can deduce that

πΩ(gr(M) ∩ gr(w∞) ∩ C(xι, 1/ι)) ̸= B(xι, 1/ι),

for every M : Ω × ⟨em−k+1, . . . , em⟩ → Rn with ∥M∥Ch,β ≤ ι. Thanks to the arbitrariness of U and
since ι can be chosen arbitrarily large, we conclude that w∞ ̸∈ A. Hence this is a winning strategy
for P2 and this concludes the proof.

Proof of Proposition 3.3. Let w ∈ A and let O and N be as in Definition 3.2. Let p ∈ gr(w) ∩ O.
We claim that there exists a ball B ⊆ O centred at p such that the manifold N inside the ball
B coincides with the graph of a map N : V → V⊥ of class Ch,β, where V is an m-dimensional
coordinate plane in Rm+n = ⟨e1, . . . , em+n⟩. This is due to the implicit function theorem and to the
fact that the tangent of N at p must be a graph with respect to one of the coordinate planes.

Furthermore, it is also clear that V must contain ⟨e1, . . . , em−k⟩. This is due to the fact that
otherwise gr(w Ω′) and gr(N) would be transversal. In particular Ω ⊆ V. For any m-dimensional
coordinate plane denote with AV the subset of Xε obtained replacing ⟨e1, . . . , em⟩ with V in
Definition 3.6. Note that the above discussion implies that A ⊆ ∪V AV , where the union is taken
on the coordinate m-dimensional planes in Rm+n, and thus A is of first category by Proposition
3.7.
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4 proof of the main results

Given M, Γ as in Section 1 and T ∈ AMC(b) with b = JΓK, we recall that a point p ∈ Γ is a
regular boundary point for T if there exist a neighborhood W of p and an embedded m-dimensional
submanifold Σ ⊂ W ∩M of class C1,s for some s > 0 and without boundary in W, such that
supp(T) ∩ W ⊂ Σ. The set of regular boundary points is denoted by Regb(T) and its complement
in Γ will be denoted by Singb(T).

Let p ∈ Regb(T). Up to restrictions of W so that W ∩ Σ is diffeomorphic to an m-dimensional
ball, there exists a positive integer Q (called multiplicity) such that T W = QJΣ+K+ (Q − 1)JΣ−K,
where Σ+ and Σ− are the two disjoint regular submanifolds of W divided by Γ ∩ W and with
boundaries Γ and −Γ, respectively. We define the density of a regular boundary point p in Γ ∩ W
as Θ(T, p) := Q − 1/2. This definition is equivalent to the definition of density of T at every
regular boundary point p as

Θ(T, p) := lim
r→0

∥T∥(B(p, r))
ωmrm ,

where the numerator and the denominator represent respectively the mass of the current in a
ball of radius r and the m-dimensional volume of an m-dimensional ball of radius r. Regular
boundary points where Q = 1 are called one-sided boundary points. Regular boundary points
where Q > 1 are called two-sided. The main result of [9] is that, assuming M, Γ and T as above,
Regb(T) is (open and) dense in Γ.

Analogously, we say that p ∈ supp(T) \ Γ is an interior regular point if there is a positive
radius r > 0, a regular embedded submanifold Σ ⊂ M and a positive integer Q such that
T B(x0, r) = QJΣK. The set of interior regular points, which is relatively open in supp(T) \ Γ, is
denoted by Regi(T).

4.1 Proof of Theorem 1.1

Observe that for N = 1 the conclusion of Theorem 1.1 holds for every b ∈ Bη , due to [9, Theorem
2.1]. For N > 1 and every i = 1, . . . , N we consider the set Xη(pi) and we define the corresponding
set Ai as in Definition 3.2. By Proposition 3.3 we have that Ai is a set of first category in Xη(pi) so
that R := ∏N

i=1(Xη(pi) \ Ai) is a residual set in Xη , see (1.5). Since the map Ψ defined in (1.7) is
an isometry, then Ψ(R) is a residual set in Bη , see (1.8). Moreover, for every i = 1, . . . , N and for
every u ∈ Xη(pi) \ Ai the following property holds: for every open set W ⊂ Φi(gr(u)|Ω′

i
) ⊂ M

and for every m-dimensional submanifold N ⊂ M of class Ch,β such that ∂N ∩ W = ∅ we have

W ∩ Φi(gr(u)) ̸⊂ N . (4.1)

Now consider b ∈ Ψ(R) and assume by contradiction that there exists an area-minimizing integral
current T with ∂T = b which does not satisfy the conclusion of Theorem 1.1. By [9, Theorem 1.6
and Theorem 2.1], the open and dense set of regular boundary points of T contains at least a
two-sided point p. By [9, Theorem 2.1] the dense set of regular points in the connected component
of supp(b) containing p consists of two-sided points. This contradicts (4.1) because for any
two-sided point p, then supp(T) must be contained in a Ch,β submanifold, locally around p.
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4.2 Proof of Corollary 1.2

By [33, Theorem 9.1], for every area-minimizing integral current T with ∂T = b every point P ∈
supp(b) is regular. As in the proof of Theorem 1.1, for every b ∈ Ψ(R) there are no two-sided
regular points, which implies that every point of b has density 1/2.

4.3 Proof of Theorem 1.3

Consider the subset of Bη of those boundaries admitting more than one minimizer:

NU := {b ∈ Bη : there exist T1, T2 ∈ AMC(b) such that T1 ̸= T2}. (4.2)

We aim to prove that NU is a set of first category in Bη . The following lemma shows that it is
sufficient to prove that Bη \ NU is dense. A similar strategy is adopted in [5].

Lemma 4.1. There exists a constant η0 = η0(M) > 0 such that if the parameter η in (1.4) is smaller than
η0 the following property holds: if the set Bη \ NU is dense in (Bη , d), then it is residual.

Proof. For every m ∈ N \ {0}, consider the sets

NUm := {b ∈ Bη : there exist T1, T2 ∈ AMC(b) with F(T2 − T1) ≥ m−1}.

Since NUm ⊂ NU, then (Bη \ NUm) ⊃ (Bη \ NU) and hence, by assumption, Bη \ NUm is dense
in Bη for every m. Therefore NUm has empty interior in Bη for every m. We conclude by proving
that NUm is closed for every m.

Fix m and consider a sequence bj of elements of NUm and let b be such that d(bj, b) → 0.
Since Bη is complete, see Lemma 3.1, we deduce that b ∈ Bη . By Lemma 2.1 we deduce that
F(bj − b) → 0. Observe that, denoting u(bj) = (uj

1, . . . , uj
N), we have

M(bj) ≤ M(b0 (M\
N⋃

i=1

Φi(Ui))) +
N

∑
i=1

M((uj
i)♯JΩiK) ≤ C +

N

∑
i=1

Lip(uj
i)

m−1H m−1(Ωi), (4.3)

where we recall that uj
i are defined in (2.5). Therefore the masses of bj are equibounded because

Lip(uj
i) ≤ Lip( fi) + ∥uj

i − fi∥C1 ≤ Lip( fi) + ε i.

For every j ∈ N, take

Tj, T̄j ∈ AMC(bj) with F(Tj − T̄j) ≥ m−1.

Let T ∈ AMC(b) and observe that by [18, Lemma 3.4], if the parameter η defined in (1.4) is smaller
than a constant η0 depending only on M, for every j sufficiently large there exists Sj ∈ Im(M)

such that b − bj = ∂Sj and M(Sj) ≤ C F(b − bj). Therefore a competitor for Tj and for T̄j is
T − Sj, so that we can estimate

M(Tj) ≤ M(T) + C F(b − bj), M(T̄j) ≤ M(T) + C F(b − bj) (4.4)



proof of the main results 16

and so the masses of Tj and T̄j are equibounded. Moreover we claim that supp(Tj) and supp(T̄j)

are contained in a unique compact set K ⊂ M for j sufficiently large. We postpone the proof of
this claim for the moment. Combining (4.3) and (4.4) we deduce from the compactness theorem
[16, §4.2.17] that there exist integral currents T∞, T̄∞ ∈ Im(K), such that ∂T∞ = ∂T̄∞ = b and, up
to subsequences, F(Tj − T∞) → 0, F(T̄j − T̄∞) → 0. Clearly F(T̄∞ − T∞) ≥ 1/m. By [32, Theorem
34.5], we have T∞, T̄∞ ∈ AMC(b), hence b ∈ NUm.

Let us prove the claim only for the currents Tj, the proof for T̄j being identical. Assume by
contradiction that, up to passing to a non-relabeled subsequence, there are points pj ∈ supp(Tj)

such that the set {pj : j ∈ N} is not bounded and fix p ∈ Γ. By the density lower bound [15,
Lemma 2.1], there exists D > 0, r > 0 such that

M(Tj Br(pj)) ≥ Drm, (4.5)

for every j ∈ N. We will show that this contradicts the minimality of Tj, for j large enough.
By [32, Lemma 28.5], the slices ⟨Tj, dp, t⟩ of Tj with respect to the distance function dp(x) :=

dist(x, p) satisfy
⟨Tj, dp, t⟩ = ∂(Tj Bt(p))− ∂Tj Bt(p).

In particular, since ∂Tj are all supported in a small tubular neighbourhood of Γ, there exists t0 > 0
such that the last addendum coincides with bj for all j, if t ≥ t0.

Since dp(pj) is not bounded and the masses of Tj are equibounded, then, by [32, Lemma 28.5
(1)], there exist j ∈ N and t0 < ρ < dp(pj)− r such that, denoting ε0 the parameter in [18, Lemma
3.4],

F(⟨Tj, dp, ρ⟩) ≤ M(⟨Tj, dp, ρ⟩) ≤ min
{

ε0,
D
2

rm
}

.

By [18, Lemma 3.4], there exists an integral m-current Zj such that ∂Zj = ⟨Tj, dp, ρ⟩ =

∂(Tj Bρ(p))− bj and moreover

M(Zj) = F(⟨Tj, dp, ρ⟩) = F(∂(Tj Bρ(p))− bj) ≤
D
2

rm (4.6)

The current Rj := Tj Bρ(p)− Zj has boundary bj and, using (4.5) and (4.6) we deduce the
contradiction M(Rj) < M(Tj).

Proposition 4.2. The set Bη \ NU is dense in Bη .

Proof. Fix 0 < µ < 1. Let b ∈ Bη and take (u1, . . . , uN) ∈ Xη such that b = Ψ(u1, . . . , uN), see (1.7).
Consider

(w1, . . . , wN) := (1 − µ)(u1, . . . , uN)− µ( f1, . . . , fN)

and observe that (w1, . . . , wN) ∈ X(1−µ)η . By Proposition 3.3, there is (w̃1, . . . , w̃N) ∈ X(1−µ)η \ A
with

∑
i=1,...,N

∥w̃i − wi∥Cℓ,α < µη/2. (4.7)

Now define bµ := Ψ(w1, . . . , wN) and b̃ := Ψ(w̃1, . . . , w̃N) and observe that by (4.7)

d(b̃, b) ≤ d(b̃, bµ) + d(bµ, b) ≤ µη/2 + µη = 3µη/2. (4.8)
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Moreover, for every T ∈ AMC(b̃) there exists an open and dense subset of supp(b̃) which points
have density 1/2 for T. Indeed, fix such a current T and observe that for every i = 1, . . . , N [9,
Theorem 1.6] implies that Φi(gr(w̃i Ω′

i)) contains at least one regular boundary point qi for T.
On the other hand, by the same argument used in the proof of Theorem 1.1, qi cannot be two-sided
and therefore it has density 1/2. Hence [9, Theorem 2.1] implies that all points in the open dense
set of regular boundary points for T in the connected component of supp(b̃), which contains qi
have density 1/2.

Now we construct a boundary b̂ which is a local perturbation of b̃ around every qi, with the
property that AMC(b̂) is a singleton. From now on we we work in every Ωi separately and drop
the index i. Without loss of generality, and up to choosing a subset of U, we can assume that the
diffeomorphism Φ : U → Φ(U) ⊆ M is of the form

Φ(z) = (z, Φ(z)) ∈ Rd for z ∈ U ⊂ Rn+m,

with Φ : U → Rd−m−n of class Ch,β. Moreover up to rotation and translation, we can assume that

• (0, Φ(0)) = q and DΦ(0) = 0,

• T admits a nice parametrization over a domain Λ. More precisely, there exist r > 0, an open
set Λ ⊂ B(0, r) ⊂ Rm containing the origin and a Ch,β function F : Λ → Rn with F(0) = 0
and DF(0) = 0 such that

supp(T) ∩ CΛ ∩ Bd(q, r) ={(
x′, xm, F(x′, xm), Φ(x′, xm, F(x′, xm))

)
: x′ ∈ Ω′, xm > w̃1(x′) with (x′, xm) ∈ Λ

}
,

(4.9)

where Bd(q, r) denotes the d-dimensional ball, CΛ ⊂ Rd the cylinder above Λ and w̃1 the
first component of w̃.

Now consider a non-zero, smooth bump function ρ : Rm−1 → [0, ∞) with supp(ρ) ⊂ Λ ∩ Ω′ and

∥ρ∥Cℓ,α <
µη

4(1 + ∥F∥Cℓ,α)
.

Define v : Ω → R1+n by

v(x′) = (w̃1(x′) + ρ(x′), F(x′, w̃1(x′) + ρ(x′)))

and observe that denoting b̂ := Ψ(v) we have

d(b̃, b̂) < µη/2 (4.10)

and that that Φ(gr(v)) ⊂ supp(T). Combining (4.10) and the fact that b̃ ∈ B(1−µ/2)η we deduce
that b̂ ∈ Bη . Moreover by (4.8) and (4.10) we also have

d(b, b̂) < 2µη. (4.11)
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Define the current

T′ := T
{
(x′, xm, F(x′, xm), y) ∈ Rd : x′ ∈ Λ ∩ Ω′, w̃1(x′) < xm < v1(x′)

}
.

We repeat this construction in every connected component on b and call the resulting current T′
i .

Consider the current

T̂ := T −
N

∑
i=1

T′
i .

Since T ∈ AMC(b̃), it follows that T̂ ∈ AMC(b̂). Indeed assuming by contradiction that S ∈
AMC(b̂) satisfies M(S) < M(T̂), we obtain that ∂(S + ∑i T′

i ) = b̃ and moreover, as supp(T′
i ) are

disjoint and T′
j is the restriction of T to a set, we have

M
(

S + ∑
i

T′
i

)
≤ M(S) + ∑

i
M(T′

i ) < M(T̂) + ∑
i

M(T′
i ) = M(T),

which contradicts the minimality of T. We claim that T̂ is the unique element of AMC(b̂). The
validity of the claim concludes the proof due to (4.11) and the arbitrariness of µ.

We show the validity of the claim following [25]. Assume by contradiction that there exists a
current Ŝ ∈ AMC(b̂) with Ŝ ̸= T̂. Define S := Ŝ + ∑i T′

i . By interior regularity, see [10, 11, 12],
there exists a point qi ∈ Regi(T) ∩ Regi(S) ∩ supp(b̂) \ supp(b̃) in every connected component
of supp(b̂) \ supp(b̃). Since both T and S are smooth minimal surfaces in a neighbourhood of
qi which coincide on supp(T′

i ), the unique continuation principle of [26, Lemma 7.2] implies
that there exists a neighbourhood of qi where supp(S) = supp(T). By [9, Theorem 2.1] we
know that in every connected component of supp(T̂) \ supp(∂T̂) and of supp(Ŝ) \ supp(∂Ŝ)
respectively, the sets of interior regular points Regi(T̂) and Regi(Ŝ) are connected. Moreover
each of these connected components touch (at least) one of the qi. We therefore conclude that
supp(Ŝ) = supp(T̂).

Since the points of supp(b̂) ∩ Bd(q, r) are one-sided for T̂, then the multiplicity (and the
orientation) of Ŝ coincides with that of T̂, which concludes the proof of the claim and of Proposition
4.2.

Proof of Theorem 1.3. By Proposition 4.2, Bη \ NU is dense in Bη and by Lemma 4.1 it is also
residual.

Remark 4.3. The validity of Theorem 1.3 can be extended to the case in which Bη is replaced
by the corresponding space of boundaries of class C∞, where Xη is endowed with the classical
metric inducing the smooth convergence. The argument for the proof differs only in the final
steps. We begin the construction of the boundary b̂ starting from b̃ := bµ and observe that b̃
could be an element of Ψ(A), so that the regular boundary points of T ∈ AMC(b̃) in a fixed
connected component of supp(b̃) might fail to have density 1/2. Let us fix a point q in a connected
component of supp(b̃).
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By [4, Theorem 3.2] the current T can be written as a sum of two area-minimizing currents
T1 + T2, with

M(T) = M(T1) + M(T2) and M(∂T) = M(∂T1) + M(∂T2),

where T1 is multiplicity-one and q ̸∈ supp(∂T2). Since T1 has the same local structure which the
current T has in the proof of Theorem 1.3, with same argument we can define a boundary b̂1

pushing the connected component of b̃ containing q inside the support of T1 through a map φ

and prove that the corresponding current R := T̂1 + T2 is a minimizer for b̂1. Now consider any
area-minimizing S ̸= R with ∂S = b̂1. Again by [4, Theorem 3.2] the current S can be written as a
sum of two area-minimizing currents S1 + S2, with

M(S) = M(S1) + M(S2) and M(∂S) = M(∂S1) + M(∂S2),

where S1 is multiplicity-one and φ(q) ̸∈ supp(∂S2). The unique continuation argument used in
the proof of Theorem 1.3 guarantees that T̂1 = S1.

Now define b̌1 := b̂1 − ∂T2, pick a connected component of the boundary ∂T2 and iterate the
procedure obtaining a new boundary b̌2. Since such number of connected components is strictly
decreasing along the iteration, there exists M ∈ N such that b̂M+1 = 0. Obviously there is a
unique area-minimizing current with boundary b̂ := b̌1 + · · ·+ b̌M.

Remark 4.4 (Other metrics). For the typical boundary b ∈ Bη , the conclusions of Theorem 1.1,
Corollary 1.2, and Theorem 1.3 hold for area-minimizing currents with respect to any metric m,
provided M and m are sufficiently regular. For instance, if M is of class Ch+1 and M endowed
with the metric m embeds isometrically in some Euclidean space as Lipschitz neighbourhood
retract of class Ch+1, then the diffeomorphism between the two manifolds which is obtained
composing one isometric embedding with the inverse of the other preserves Ch,β-submanifolds,
and therefore all our arguments of Section 4 apply verbatim.

5 generic uniqueness with respect to the flat norm

In this section we prove Theorem 1.4. We begin with the following

Lemma 5.1. The space (RC, d ♭) is a nontrivial complete metric space.

Proof. It is sufficient to prove that RC is closed, then completeness follows from [16, §4.2.17]. Let bj
be a sequence of elements of RC and let b be such that F(bj − b) → 0. By the lower semicontinuity
of the mass, we have M(b) ≤ C. For any j ∈ N, let Tj ∈ AMC(bj). By the isoperimetric inequality,
see [16, §4.2.10], we have sup{M(Tj)} < ∞. By [16, §4.2.17], there exists T ∈ Im(Rm+n) such that,
up to (non relabeled) subsequences F(Tj − T) → 0. By the continuity of the boundary operator
we have ∂T = b and hence b ∈ RC.

In analogy with (4.2), we consider the following subset of RC:

NUC := {b ∈ RC : there exist T1, T2 ∈ AMC(b) such that T1 ̸= T2}.

The following lemma is the counterpart of Lemma 4.1 for the flat norm.
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Lemma 5.2. Assume that the set RC \ NUC is dense in RC. Then it is residual.

Proof. For m ∈ N \ {0}, consider the sets

NUm
C := {b ∈ RC : there exist T1, T2 ∈ AMC(b) with F(T2 − T1) ≥ m−1}.

It suffices to prove that NUm
C is closed for every m. Consider a sequence bj of elements of NUm

C
and let b ∈ RC be such that F(bj − b) → 0. For every j ∈ N, take T1

j , T2
j ∈ AMC(bj) with

F(T2
j − T1

j ) ≥ 1/m. As in the proof of Lemma 5.1, we deduce that there exist T1, T2 ∈ Im(Rm+n)

such that ∂T1 = ∂T2 = b and, up to (non relabeled) subsequences, F(T1
j − T1) → 0, F(T2

j − T2) →
0 and F(T2 − T1) ≥ 1/m. By [32, Theorem 34.5], we have T1, T2 ∈ AMC(b), hence b ∈ NUm

C .

To prove Theorem 1.4 we are left to show that the set of boundaries b ∈ RC for which AMC(b) is
a singleton is dense in the metric space (RC, d ♭). The proof can be roughly summarized as follows:
firstly, we approximate b ∈ RC with an integer polyhedral boundary bP ∈ RC−δ, for some δ > 0,
see Lemma 5.3. Then, we fix S ∈ AMC(bP) and for every connected component of Regi(S) there
exists, by [10, 11, 12], an interior regular point xi. We define the current b′ := ∂(S − S

⋃
i B(xi, ri))

where ri are suitably small radii, so that b′ ∈ RC and F(b − b′) is small. An argument similar to
that used in Proposition 4.2 proves that AMC(b′) is a singleton.

Lemma 5.3. For any b ∈ RC and ε > 0 there exist a δ > 0 and bP ∈ RC−δ ∩Pm−1(K) such that

F(b − bP) ≤ ε.

Proof. Without loss of generality and up to rescaling, we can assume C = 1. We consider a map
ϕ : K → K with image contained in the relative interior of K, which is (1 − ε/(4m))-Lipschitz and
∥Id − ϕ∥∞ < ε/2m. Consider b̄ := ϕ♯b. Applying the homotopy formula as in (2.6), we obtain that

F(b − b̄) ≤ 2m−1∥Id − ϕ∥∞ ≤ ε/2 (5.1)

and
M(b̄) ≤

(
1 − ε

4m

)m−1
M(b) ≤

(
1 − ε

2

)
M(b).

Observe in particular that b̄ ∈ RC(1−ε/2) and moreover supp(b̄) is contained in the relative interior
of K. We can thus apply [16, §4.2.21] to obtain an integer polyhedral current bP such that

F(bP − b̄) ≤ ε/2, ∂bP = 0 and M(bP) ≤ (1 + ε/2)M(b̄), (5.2)

deducing from (5.1) and (5.2) that

F(bP − b) ≤ ε and M(bP) ≤ (1 − ε2/4)M(b).

In particular bP satisfies the requirement of the lemma for δ = Cε2/4.
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Proof of Theorem 1.4. Fix ε > 0, b ∈ RC and bP as in Lemma 5.3 and consider S ∈ AMC(bP). It is
sufficient to prove the theorem assuming Regi(S) is connected, indeed the same argument can be
applied to each connected component of Regi(S).

Let x0 ∈ Regi(S), so that there exists a positive radius r > 0, a smooth embedded submanifold
Σ ⊂ Rm+n and a positive integer Q such that S B(x0, r) = QJΣK. Fix some positive radius r such
that r < r and define

S′ := S − S B(x0, r) and b′ := ∂S′.

Note that, since bP ∈ RC−δ, then for r sufficiently small b′ ∈ RC. Note further that S′ ∈ AMC(b′),
which can be proved by the same argument used in the proof of Proposition 4.2. Hence we only
need to show that AMC(b′) = {S′}.

Suppose there exists S′′ ∈ AMC(b′) such that S′ ̸= S′′ and denote Ŝ := S′′ + S B(x0, r).
Observe that since

M(S) ≤ M(Ŝ) ≤ M(S′′) + M(S B(x0, r)) ≤ M(S),

then Ŝ ∈ AMC(bP). By the minimality of S one immediately sees that supp(Ŝ) ⊃ supp(S) ∩
B(x0, r). By interior regularity, there exists x1 ∈ ∂B(x0, r) ∩ Regi(S) ∩ Regi(Ŝ). For a sufficiently
small radius ρ we can write

S B(x1, ρ) = Q1JΣ1K B(x1, ρ) and Ŝ B(x1, ρ) = Q2JΣ2K B(x1, ρ).

By the same argument of Lemma 4.2, the two submanifolds Σ1, Σ2 must coincide locally around
x1. Since by [9, Theorem 2.1] Regi(S

′) and Regi(S
′′) are connected, unique continuation implies

that Regi(S
′) = Regi(S

′′). Since all points of ∂B(x0, r) have density Q/2, then the multiplicity
(and the orientation) of S′ coincides with that of S′′, contradicting S′ ̸= S′′. This proves that the
set of boundaries b ∈ RC for which AMC(b) is a singleton is dense in (RC, d ♭) and hence, by
Lemma 5.2, we conclude the proof of Theorem 1.4.

The preliminary approximation of Lemma 5.3 is motivated by the following remark.

Remark 5.4. Given an integral current b ∈ Bm−1(K)∩Im−1(K) and S ∈ AMC(b), it is not possible
to conclude Regi(S) ̸= ∅. Indeed, it could happen that supp(b) = supp(S), as the following
example shows. Consider a sequence of positive real numbers rj such that ∑j rj < ∞ and a
sequence qj that is dense in B(0, 1) ⊂ R2. Denote ρj := min{rj, 1 − |qj|}, and consider the balls
B(qj, ρj) and the 2-dimensional current defined as

T := ∑
j∈N

JB(qj, ρj)K.

Note T is well defined and has finite mass because ∑j∈N M(JB(qj, ρj)K) < ∞ and moreover

M(∂T) = M
(

∑
j∈N

∂JB(qj, ρj)K
)
≤ ∑

j∈N

M(∂JB(qj, ρj)K). (5.3)

Hence, by [32, Theorem 30.3], T ∈ I2(B(0, 1)). Moreover, since the intersection between two
circumferences with different centers is H 1-null, then the inequality in (5.3) is an equality and



references 22

therefore ∂B(qj, ρj) ⊂ supp(∂T) for every j implying that supp(∂T) = B(0, 1). Now take S ∈
AMC(∂T). Since supp(S) ⊂ conv(supp(∂T)), we deduce that Regi(S) ⊂ supp(S) \ supp(∂T) =
∅.
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