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Abstract. Following the seminal paper by Bourgain, Brezis and Mironescu, we focus on the
asymptotic behavior of some nonlocal functionals that, for each u ∈ L2(RN ), are defined as the
double integrals of weighted, squared difference quotients of u. Given a family of weights {ρε},
ε ∈ (0, 1), we devise sufficient and necessary conditions on {ρε} for the associated nonlocal functionals
to converge as ε → 0 to a variant of the Dirichlet integral. Finally, some comparison between our
result and the existing literature is provided.
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1. Introduction

Let J := (0, 1) and let u : RN → R be an L2 function. Given the family of kernels {ρε}ε∈J , with
ρε : RN → [0,+∞) measurable, we consider the energy functionals

Fε[u] :=
1

2

ˆ
RN×RN

ρε(y − x)
|u(y)− u(x)|2

|y − x|2
dydx. (1.1)

We aim at characterizing the class of kernels such that for every u ∈ H1(RN ) the family {Fε[u]}
converges to (a variant of) ∥∇u∥2L2(RN ) as ε→ 0, see Theorem 1.1.

Our study follows the line of research initiated in the renowned paper [5]. The motivation advanced
by the authors was the analysis of the the Gagliardo seminorms

[u]ps :=

ˆ
RN×RN

|u(y)− u(x)|2

|y − x|N+sp
dydx, with p ∈ (1,+∞), s ∈ (0, 1)

as s → 1. They studied the asymptotics as ε → 0 of double integrals with the same structure as
the ones in (1.1) for a family {ρε} ⊂ L1(RN ) of radial kernels and a general exponent p ∈ (1,+∞),
and they proved that the Sobolev seminorm ∥∇u∥p

Lp(RN )
is retrieved in the limit. The case of the

Gagliardo seminorms may be treated analogously, upon taking some extra care of the tails of the
fractional kernel (see, e.g., [13, Sec. 1]).

The literature on nonlocal-to-local formulas has become extremely vast, and a detailed overview is
beyond the scope of our contribution. Here, we restrict ourselves to the research that is most close
in spirit to [5]. The gap left open for the case p = 1 was filled in [9], where a characterization of
functions of bounded variation was provided (see also [13,19]). The case of vector fields of bounded
deformations was later addressed in [15] by considering a suitable symmetrization of the functionals
in (1.1) (see also [16] for the asymptotics of nonlocal elastic energies of peridynamic-type and [21]
for a study of fractional Korn inequalities). The analysis of the asymptotic behavior in the sense of
Γ-convergence [8] of the fractional perimeter functionals introduced in [7] was undertaken in [2], and
then extended in multiple directions by several contributions, e.g. [4, 10, 14,17]. Finally, we point out
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that a general variational framework for the analysis of (static and dynamic) multiscale problems that
feature nonlocal interactions has been very recently considered in the monograph [1], again for kernels
that, in our notation, are required to form a definitively bounded sequence in L1.

A common trait of the works above is that they only concern sufficient conditions for the nonlocal-
to-local formulas to hold. In the specific case of the functionals in (1.1) (see Theorem 5.4 below for a
prototypical statement), this means that, given a measurable map ρε : RN → [0,+∞) for every ε ∈ J ,
a set of conditions on the family {ρε}ε∈J is prescribed, so that the following can be deduced: there
exist an infinitesimal sequence {εk} ⊂ J and a positive Radon measure λ on the unit sphere SN−1

that depends only on {ρε} such that for every u ∈ H1(RN )

lim
k→+∞

Fεk [u] =

ˆ
RN

ˆ
SN−1

|∇u(x) · σ|2dλ(σ)dx. (1.2)

We refer to such equality as the Bourgain-Brezis-Mironescu formula, in short BBM formula. The
novelty of our contribution is that we devise conditions that are both necessary and sufficient for (1.2)
to hold (see also subsection 5.3 for some remarks about energies with non-quadratic growth). Precisely,
we establish the following.

Theorem 1.1 (Necessary conditions for the BBM formula). For every ε ∈ J , let ρε : RN → [0,+∞)
be measurable and let Fε be as in (1.1). Let also λ be a fixed positive Radon measure on the unit
sphere SN−1.

Suppose that there exists an infinitesimal sequence {εk} ⊂ J such that for every u ∈ H1(RN ) the
Bourgain-Brezis-Mironescu formula (1.2) holds for the given measure λ. Then, the sequence {ρεk}
satisfies the following:

(i) there exists M ≥ 0 with the property that for every R > 0

lim sup
k→+∞

[ˆ
B(0,R)

ρεk(z)dz +R2

ˆ
B(0,R)c

ρεk(z)

|z|2
dz

]
≤M ; (1.3)

(ii) the sequence {νk} of Radon measures on RN defined by

⟨νk, f⟩ :=
ˆ
RN

ρεk(z)f(z)dz for all f ∈ Cc(RN ). (1.4)

locally weakly-∗ converges in the sense of Radon measures to αδ0, where α ≥ 0 is a positive
constant, and δ0 is the Dirac delta in 0.

Roughly speaking, condition (i) prescribes that for ε ∈ J small enough each kernel ρε must have
finite mass in any large ball around the origin, and that, at the same time, the contributions accounting
for long-range interactions must be asymptotically negligible. Indeed, as we show in subsection 5.1,
(1.3) is equivalent to the following uniform decay condition: there exists M ≥ 0 such that for every
R > 0

lim sup
k→+∞

ˆ
RN

ρεk(z)

R2 + |z|2
dz ≤ M

R2
.

When R = 1, the previous inequality entails that for k large enough ρεk ∈ L1
loc(RN ), so that,

in particular, position (1.4) actually defines a Radon measure on RN . A useful way to regard the
measures νk in (1.4) is to think of them as quantities encoding medium-range interactions, although
this is not immediately evident from the definition. From this point of view, condition (ii) tells us
that, in the limit, such interactions must vanish outside of the origin. We will elaborate further on
this point in this introduction.
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It turns out that conditions (i) and (ii) are also sufficient or the BBM formula to hold, so that, in
light of Theorem 1.1, they are sharp. To establish the sufficiency, we need the following compactness
result, which is interesting on its own:

Theorem 1.2 (Asymptotic behavior of nonlocal energies). For every ε ∈ J , let ρε : RN → [0,+∞) be
measurable and let Fε be as in (1.1).

Suppose that there exists M ≥ 0 with the property that for every R > 0

lim sup
ε→0

[ˆ
B(0,R)

ρε(z)dz +R2

ˆ
B(0,R)c

ρε(z)

|z|2
dz

]
≤M. (1.5)

Then, there exist an infinitesimal sequence {εk} ⊂ J and two finite positive Radon measures µ and ν,
respectively on SN−1 and RN , that depend only on {ρεk}, and such that for every u ∈ H1(RN ) there
holds

lim
k→+∞

Fεk [u] =
1

2

ˆ
RN

[ˆ
SN−1

|∇u(x) · σ|2dµ(σ) +
ˆ
RN\{0}

|u(x+ z)− u(x)|2

|z|2
dν(z)

]
dx. (1.6)

Moreover, the right-hand side is finite for every u ∈ H1(RN ).

Theorem 1.2 shows that, while the integrability and decay conditions in (i) are sufficient to establish
the convergence of the functionals in (1.1), in the absence of condition (ii) we cannot exclude the
persistence of nonlocal terms in the limit. Indeed, the measure ν is retrieved as the limit (in the sense
of weak-∗ convergence) of the medium-range interactions encoded by (1.4). The measure µ captures
instead the concentration of the sequence {ρεk} around the origin, and it characterizes the (possibly
zero) local term in the limiting energy. Loosely speaking, for every Borel subset E ⊆ SN−1, µ is given
by

µ(E) := lim
δ→0

ˆ
Cδ(E)

ρεδ(z)dz

where Cδ(E) is the intersection of the cone spanned by E with B(0, δ), {εδ} is a suitable subfamily,
and the limit is taken in the sense of the weak-∗ convergence of measures. We refer to Step 3 and 4 in
the proof of Proposition 3.2 for the precise definition. In particular, when the kernels ρεk are radial
(cf. [5]), then µ = cLN for a constant c ≥ 0.

We conclude our analysis by showing that, when (ii) is imposed as well, the limiting nonlocal effects
vanish.

Corollary 1.3 (Sharp sufficient conditions for the BBM formula). Let us suppose that same hypotheses
of Theorem 1.2 hold, and let us suppose also that the family {νε}ε∈J of Radon measures on RN defined
by

⟨νε, f⟩ :=
ˆ
RN

ρε(z)f(z)dz for all f ∈ Cc(RN ). (1.7)

locally weakly-∗ converges in the sense of Radon measures to αδ0, where α ≥ 0 is a positive constant,
and δ0 is the Dirac delta in 0. Then, there exist an infinitesimal sequence {εk} ⊂ J and a finite
positive Radon measure µ on SN−1 such that the Bourgain-Brezis-Mironescu formula holds, that is,

lim
k→+∞

Fεk [u] =
1

2

ˆ
RN

ˆ
SN−1

|∇u(x) · σ|2dµ(σ)dx. (1.8)

We refer to Remark 4.3 below for an alternative formulation of the right-hand side of (1.8) in terms
of the action of a quadratic form.
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Our approach grounds on the use of the Fourier transform, which allows recasting the family of
nonlocal functionals in (1.1) into double integrals of the form

ˆ
RN

|ψ(ξ)|2
ˆ
RN

ρε(z)
1− cos(z · ξ)

|z|2
dzdξ, (1.9)

with ψ in a suitable weighted L2 space (see (2.1) and (2.3)). The technical preliminaries about the
Fourier transform and those on Radon measures to be used later in this work are collected in section 2.
In particular, the functionals in (1.9) and an equivalent formulations of the BBM formula in Fourier
variables are retrieved in Lemma 2.1.

From section 3 we turn to the proof of our results. First, we establish Theorem 1.2 by observing
that the condition in (1.5) grants not only that the integrals with respect to z in (1.9), as function
of ξ, grow at most as 1 + |ξ|2 (see Lemma 3.1), but also that they converge pointwise to the Fourier
transform of the integrals within the square brackets in (1.6) (see Proposition 3.2). The dominated
convergence theorem then applies, and (1.6) is retrieved.

The pointwise convergence of the nonlocal energies provided by Proposition 3.2 plays a central role
in our analysis. It is obtained by studying separately the behaviors of the family {ρε} at three distinct
interaction ranges, respectively short, medium and long, that we encode by means of an additional
parameter δ ∈ J . Short-range interactions arise from the contributions of shrinking balls of radius
δ centered in the origin, and, as δ → 0, they asymptotically approach the gradient term in (1.6).
Medium-range interactions originate from the contributions to the energy stored in annuli that lie at
a distance δ from the origin. In the limit, their presence leads to the nonlocal term in (1.6), that is,
the integral with respect to the measure ν. Finally, long-range interactions occur outside of balls of
radius δ−1 centered in the origin, and their contributions is negligible when δ → 0.

The proofs of our two other results are provided in section 4. With Theorem 1.2 on hand,
Corollary 1.3, that is, the sufficiency of conditions (i) and (ii) in Theorem 1.1 for the BBM formula,
follows quickly: it is enough to observe that (ii) forces the integral with respect to ν in (1.6) to
vanish. In this sense, (ii) may be regarded as a locality condition, since it requires that in the limit
the kernels concentrate in the origin. Conditions of this sort appear to be natural as far as sufficient
criteria for the convergence of the nonlocal energies to variants of the Dirichlet norm are sought after
(cf., e.g., (5.4) in Theorem 5.4 below or [1, Thm. 3.1]). The key novelty of our contribution is that we
prove item (ii) in Theorem 1.1 to be the weakest locality requirement for the BBM formula (1.2) to
hold.

Proving Theorem 1.1, that is, the necessity of (i) and (ii) for the validity of the BBM formula, is a
more delicate issue. The key step is established in Proposition 4.1, where, by a suitable scaling of the
functions in (1.9) (see Remark 4.2), it is proved that (5.5) implies (i). The weak-∗ convergence of the
sequence {νk} in (ii) to a multiple of the Dirac delta in 0 follows then from a homogeneity argument.
We conclude our contribution in section 5 by clarifying how it compares with the existing literature
and by pointing out possible future research directions.

As we briefly outlined above, there have been intense research efforts in the asymptotic analysis of
nonlocal energies of the form (1.1). It is to be noted that such functionals also arise in applications, a
case of interest being represented, for instance, by nonlocal models in micromagnetics. Indeed, as
pointed out in [20], if the classical symmetric exchange energy given by the Dirichlet integral of the
magnetization is replaced by a nonlocal Heisenberg functional of the form (1.1), then a model closer to
atomistic theories is obtained, and, in addition, the class of admissible magnetizations may be enlarged
to include discontinuous and even ‘measure-valued’ fields. This observation is crucial in nonconvex
problems such as those of ferromagnetism, in which the highly oscillatory ‘domain structures’ observed
in ferromagnetic materials cannot be captured by magnetizations with Sobolev regularity. In such
nonlocal micromagnetics models, knowing what classes of kernels ρε lead to an approximation of the
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classical Dirichlet energies amounts to a selection criterion to establish whether nonlocal descriptions
can be replaced by local ones or, instead, such approximations are not mathematically correct. We
refer to [11] for further discussion on this topic.

2. Preliminaries

After fixing the notation, in this section we provide a concise overview of some facts from the
theories of the Fourier transform and of Radon measures, which will serve as the main tools for our
study. In particular, in Lemma 2.1 we derive an equivalent form of the BBM formula (1.2) to be
employed as the cornerstone of our analysis.

For N ∈ N\{0}, we work in the N -dimensional Euclidean space RN , endowed with the corresponding
inner product · and norm | |. We let {e1, . . . , eN} be its canonical basis. For all z ∈ RN \{0} we define
ẑ := z/|z|. We denote by L N and H N−1 the N -dimensional Lebesgue and the (N − 1)-dimensional
Hausdorff measures, respectively. We let B(x, r) be the open ball in RN of center x and radius r. We
write B(x, r)c for the complement of B(x, r), while the topological boundary of B(0, 1) is denoted by
SN−1.

2.1. Fourier transform. In this paper, we resort to results on the Fourier transform that are standard
and can be found in any textbook on Fourier analysis (see, e.g., [22]). Here we briefly recall the
properties to be used below.

We will employ the unitary Fourier transform expressed in terms of angular frequency, that is, for
any rapidly decaying u ∈ C∞(RN ) and ξ ∈ RN

Fu(ξ) := 1

(2π)N/2

ˆ
RN

e−ix·ξu(x)dx.

As customary, we will adopt û as a shorthand for Fu. We recall that the following identities hold:

τ̂zu(ξ) = e−iz·ξû(ξ), ∂̂αu(ξ) = (iξ)αû(ξ),

where (τzu)(x) := u(x− z), for x, z, ξ ∈ RN , and where α ∈ NN is a multi-index. In particular, we
observe that, by the Parseval identity, the Fourier transform is a bijection between

H1(RN ) :=
{
u ∈ L2(RN ) : the distribution ∇u is in L2(RN )

}
and the weighted space

L2
w(RN ) :=

{
ψ ∈ L2(RN ) :

ˆ
RN

|ξ|2|ψ(ξ)|2dξ < +∞
}
. (2.1)

By applying Fourier techniques to the functionals in (1.2), the following is readily obtained.

Lemma 2.1. Let λ be a positive Radon measure on SN−1. For every u ∈ H1
(
RN
)

we define

F [u] :=

ˆ
RN

ˆ
SN−1

|∇u(x) · σ|2dλ(σ)dx, (2.2)

while for every ψ ∈ L2
w(RN ) we set

F̂ε[ψ] :=

ˆ
RN

|ψ(ξ)|2
ˆ
RN

ρε(z)
1− cos(z · ξ)

|z|2
dzdξ, (2.3)

F̂ [ψ] :=

ˆ
RN

|ψ(ξ)|2
ˆ
SN−1

|ξ · σ|2dλ(σ)dξ. (2.4)

Then, recalling (1.1), for every u ∈ H1
(
RN
)

it holds

Fε[u] = F̂ε[û], F [u] = F̂ [û],



6 E. DAVOLI, G. DI FRATTA, AND V. PAGLIARI

and, in particular, there exist an infinitesimal sequence {εk} ⊂ J such that (1.2) holds for every
u ∈ H1(RN ) if and only if for every ψ ∈ L2

w(RN )

lim
k→+∞

F̂εk [ψ] = F̂ [ψ]. (2.5)

Proof. Recall that (τzu)(x) := u(x − z) for every x, z ∈ RN . By the change of variables z := y − x
and the Parseval identity we obtain

Fε[u] =
1

2

ˆ
RN×RN

ρε(z)

|z|2
|u(x+ z)− u(x)|2dzdx

=
1

2

ˆ
RN

ρε(z)

|z|2

ˆ
RN

|τ−zu(x)− u(x)|2dxdz

=
1

2

ˆ
RN

ρε(z)

|z|2

ˆ
RN

|F [u− τ−zu](ξ)|2dξdz.

The properties of the Fourier transform yield

|F [u− τ−zu](ξ)|2 = |1− eiz·ξ|2|û(ξ)|2 = 2
(
1− cos(z · ξ)

)
|û(ξ)|2,

whence we infer Fε[u] = F̂ε[û]. Similarly, we have

F [u] =

ˆ
SN−1

ˆ
RN

|F [∇u · σ](ξ)|2dξdλ(σ)

=

ˆ
RN

|û(ξ)|2
ˆ
SN−1

|ξ · σ|2dλ(σ)dξ

= F̂ [û].

We then achieve the conclusion thanks to the one-to-one correspondence between H1(RN ) and L2
w(RN )

provided by the Fourier transform. □

2.2. Positive Radon measures on RN . We recall here some definitions and properties that may
be found, e.g., in [3, Secs. 1.3 and 1.4]; we refer to such monograph for a more detailed study of
(geometric) measure theory.

Let X ⊆ RN be a set. A positive measure µ on the σ-algebra of Borel sets in X is a positive Radon
measure if it is finite on compact sets; if it holds as well that µ(X) < +∞, we say that µ is a finite
positive Radon measure. We denote the space of positive Radon measures on X by Mloc(X) and the
one of finite positive Radon measures by M (X).

The Riesz representation theorem proves that Mloc(X) may be identified as the dual of the
space of compactly supported continuous functions Cc(X) endowed with local uniform convergence.
Accordingly, we say that a sequence {µk} ⊂ Mloc(X) converges to µ ∈ Mloc(X) in the local weak-∗
sense, and we write µk

∗
⇀ µ in Mloc(X), if

lim
k→+∞

ˆ
X

f(x)dµk(x) =

ˆ
X

f(x)dµ(x) for every f ∈ Cc(X). (2.6)

In wider generality, if µk
∗
⇀ µ in Mloc(X), then the previous equality holds for every bounded Borel

function f : X → R with compact support such that the set of its discontinuity points is µ-negligible.
In particular, if X is compact and µk

∗
⇀ µ in Mloc(X), then (2.6) holds for every f ∈ C(X).

A uniform control on the mass of each compact set along a sequence of Radon measure is sufficient
to ensure local weak-∗ precompactness: if {µk} is a sequence of positive Radon measures such that
supk{µk(C) : C ⊂ X} < +∞ for every compact set C ⊂ X, then there exists a locally weakly-∗
converging subsequence.
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3. Proof of Theorem 1.2

We devote this section to proving that the summability and decay conditions in (1.5) are sufficient
to yield convergence of a subsequence of {Fε}. In particular, we are able to characterize the limiting
functional, as (1.6) shows.

As a first step, by assuming that the kernels ρε satisfy (1.5) (actually, it suffices that the bound
holds just for one R > 0), we deduce that the energies F̂ε in (2.3) are finite for every ψ ∈ L2

w(RN ),
provided ε is small enough. This is an immediate consequence of the next lemma, which, in spite of
its simplicity, will prove to be useful.

Lemma 3.1. For every ε ∈ J , let ρε : RN → [0,+∞) be measurable, and let us suppose that (1.5)
holds for R = 1. Then, for every ξ ∈ RN

lim sup
ε→0

ˆ
B(0,1)

ρε(z)
1− cos(z · ξ)

|z|2
dz ≤ M

2
|ξ|2,

lim sup
ε→0

ˆ
B(0,1)c

ρε(z)
1− cos(z · ξ)

|z|2
dz ≤ 2M,

where M ≥ 0 is as in (1.5).

Proof. From (1.5) with R = 1, it follows

lim sup
ε→0

ˆ
B(0,1)

ρε(z)dz ≤M, lim sup
ε→0

ˆ
B(0,1)c

ρε(z)

|z|2
dz ≤M (3.1)

We first focus on contributions in B(0, 1). Since sin(t) ≤ t for t ≥ 0, we have

1− cos(z · ξ)
|z|2

=
1

|z|2

ˆ |z·ξ|

0

sin(t)dt ≤ 1

2
(ẑ · ξ)2, (3.2)

where ẑ := z/|z|. By taking into account the first inequality in (3.1), we deduce

lim sup
ε→0

ˆ
B(0,1)

ρε(z)
1− cos(z · ξ)

|z|2
dz ≤ |ξ|2

2
lim sup

ε→0

ˆ
B(0,1)

ρε(z)dz ≤
M

2
|ξ|2.

Instead, far from the origin we have

lim sup
ε→0

ˆ
B(0,1)c

ρε(z)
1− cos(z · ξ)

|z|2
dz ≤ 2 lim sup

ε→0

ˆ
B(0,1)c

ρε(z)

|z|2
dz ≤ 2M,

where we used the second estimate in (3.1). □

For the second step towards the proof of Theorem 1.2, it is convenient to introduce the following
notation: for every ξ ∈ RN and ε ∈ J , we let

Iε(ξ;A) :=

ˆ
A

ρε(z)
1− cos(z · ξ)

|z|2
dz. for all L N -measurable A ⊆ RN . (3.3)

By Lemma 3.1, we know that, under condition (1.5), the functional Iε(ξ;RN ) grows at most as 1+ |ξ|2.
Then, recalling the formulation of the BBM formula in Fourier variables provided by Lemma 2.1,
in order to show that (1.6) holds, it suffices to characterize the pointwise limit of the family of
integrals with respect to z in (2.3), when regarded as functions of ξ, that is, of {Iε( · ;RN )}. The next
proposition takes care of this.

Note that in order to achieve the task that we have just outlined it is natural to regard {ρε}
as a family of Radon measures and to take the limit of {Iε( · ;RN )} by appealing to some weak-∗
compactness argument. Even though such compactness is actually available (see Step 2 in the proof
of Proposition 3.2), the discontinuity of the function z 7→ (1 − cos(ξ · z))/|z|2 prevents the results
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recalled in subsection 2.2 from being immediately viable. To circumvent such an obstacle, in the proof
of Proposition 3.2 we introduce an auxiliary parameter δ ∈ J to quantify the range of interactions
(respectively short, medium or long), and we accordingly define two families of measures, which are
meant to encode the limiting behavior of {ρε} at different scales.

Proposition 3.2. If (1.5) holds, then there exist an infinitesimal sequence {εk} ⊂ J and two finite
Radon measures µ ∈ M (SN−1) and ν ∈ M (RN ) that depend only on {ρεk} and such that for every
ξ ∈ RN

lim
k→+∞

Iεk(ξ;RN ) =
1

2

ˆ
SN−1

|ξ · σ|2dµ(σ) +
ˆ
RN\{0}

1− cos(z · ξ)
|z|2

dν(z).

Proof. Let us fix δ ∈ J . In order to compute the desired limit we part RN in three regions: B(0, δ),
Aδ and B(0, δ−1)c, where Aδ := {z ∈ RN : δ < |z| < δ−1}. The proof is then divided into several
steps: for each given δ ∈ J (except a countable family of them, see Step 2 below) we take the limits
as ε→ 0 of Iε(ξ;B(0, δ)), Iε(ξ;Aδ), and Iε(ξ;B(0, δ−1)c). For the analysis of the first two terms the
starting point is the observation that (1.5) implies for every R > 0 the existence of ε̄R ∈ J such that

ˆ
B(0,R)

ρε(z)dz ≤M + 1 for every ε ∈ (0, ε̄R) (3.4)

(cf. (3.1)). In the final step we conclude by summing up the three contributions and taking the limit
as δ → 0

Step 1: long range interactions. The term Iε(ξ;B(0, δ−1)c) is readily estimated by means of
(1.5): for every δ ∈ J we have

lim sup
k→+∞

Iεk(ξ;B(0, δ−1)c) ≤ 2Mδ2. (3.5)

Step 2: medium range interactions. For all ε ∈ J , let us define the measure νε := ρεL N

(cf. (1.7)). Let {R(n)}n∈N be a strictly increasing sequence of strictly positive real numbers. It follows
from (3.4) that for every n ∈ N there exists η(n) ∈ J such that it holds

ˆ
B(0,R(n))

dνε =

ˆ
B(0,R(n))

ρε(z)dz ≤M + 1. for every ε ∈ (0, η(n)).

We can choose each η(n) so that {η(n)} is strictly decreasing. From the previous bound, for each n ∈ N
we deduce the existence of a finite positive Radon measure ν(n) ∈ M (B(0, R(n))) and of a sequence
{ε(n)k } ⊂ (0, η(n)) such that ν

ε
(n)
k

∗
⇀ ν(n) weakly-∗ in M (B(0, R(n))). By grounding on this property,

a diagonal argument yields the existence of a sequence {εk} ⊂ J and of a Radon measure ν on RN

such that νεk
∗
⇀ ν locally weakly-∗ in Mloc(RN ). In particular, by the lower semicontinuity of the

total variation with respect to the weak-∗ convergence, since M does not depend on R, we infer that
ν is finite.

We next resort to a known property of Radon measures: if {Eδ}δ∈J is a family of pairwise disjoint
Borel sets in RN and if µ ∈ Mloc(RN ), then µ(Eδ) > 0 for at most countably δ ∈ J (see [3, page 29]).
By applying this property to the family {∂Aδ}δ∈J and the measure ν, we deduce that the set of
discontinuty points of the function

χδ(z) :=

{
0 if z /∈ Aδ,

1 if z ∈ Aδ



SHARP CONDITIONS FOR THE BBM FORMULA 9

is ν-negligible for all δ ∈ J , but those in a certain countable subset C ⊂ J . As a consequence, since
{νεk} weakly-∗ converges to ν, the following equality holds for every δ ∈ J \ C:

lim
k→+∞

Iεk(ξ;Aδ) = lim
k→+∞

ˆ
RN

χδ(z)
1− cos(z · ξ)

|z|2
dνεk(z)

=

ˆ
Aδ

1− cos(z · ξ)
|z|2

dν(z). (3.6)

Step 3: short range interactions. We adapt the approach of [19, Subsec. 1.1]. For a fixed
δ ∈ J and each ε ∈ J we define the Radon measure µ(δ)

ε on SN−1 by setting

µ(δ)
ε (E) :=

ˆ
E

(ˆ δ

0

tN−1ρε(tσ)dt

)
dH N−1(σ) for all H N−1-measurable sets E ⊂ SN−1.

By means of the coarea formula we deduce from (3.4) with R = 1 that definitively µ(δ)
ε (SN−1) ≤M +1.

Thus, for all δ ∈ J , there exists an infinitesimal sequence {ε(δ)k } ⊂ J and a finite Radon measures
µ(δ) ∈ M (SN−1) such that µ(δ)

ε
(δ)
k

∗
⇀ µ(δ) weakly-∗ in M (SN−1) as k → +∞. Note that it holds

µ(δ)(SN−1) ≤M + 1 for every δ ∈ J .
Next, by a Taylor expansion of the cosine in 0 we obtain

Iε(ξ;B(0, δ)) =
1

2

ˆ
B(0,δ)

ρε(z)|ξ · ẑ|2dz +
ˆ
B(0,δ)

ρε(z)O(|ξ|3|z|)dz

=
1

2

ˆ
SN−1

|ξ · σ|2dµ(δ)
ε (σ) +

ˆ
B(0,δ)

ρε(z)O(|ξ|3|z|)dz.

Since σ 7→ |ξ · σ|2 is a continuous function on SN−1, in view of the weak-∗ convergence of {µ(δ)

ε
(δ)
k

} we

can take the limit as k → +∞. Thus, for every δ ∈ J , we find

lim sup
k→+∞

I
ε
(δ)
k

(ξ;B(0, δ)) =
1

2

ˆ
SN−1

|ξ · σ|2dµ(δ)(σ) + lim sup
k→+∞

ˆ
B(0,δ)

ρ
ε
(δ)
k

(z)O(|ξ|3|z|)dz. (3.7)

Step 4: limit as δ → 0. In order to achieve the conclusion, we need to take the limit as δ → 0 of
the terms considered in Steps 1 – 3.

To this aim, let us consider the sequence {εk} ⊂ J and the set C ⊂ J given by Step 2. Let also
{δn}n∈N ⊂ J \ C be an infinitesimal sequence. We observe that for any n ∈ N, by reasoning as in
Step 3, we can inductively extract a subsequence {ε(n)k } ⊂ {ε(n−1)

k } ⊂ {εk} such that the sequence
of measures µ(n)

k := µ
(δn)

ε
(n)
k

weakly-∗ converges in M (SN−1) to some µ(δn). Step 3 yields as well the

existence of an unrelabeled subsequence {δn} and of a Radon measure µ ∈ M (SN−1) such that the
sequence {µ(δn)} weakly-∗ converges in M (SN−1) to µ.

Let us now define the diagonal sequence {ε̃k} by setting ε̃k := ε
(k)
k for every k ∈ N. Then, recalling

(3.4), it follows from (3.7) that

lim
n→+∞

lim sup
k→+∞

Iε̃k(ξ;B(0, δn)) =
1

2

ˆ
SN−1

|ξ · σ|2dµ(σ). (3.8)

We also note that by monotone convergence we can take the limit also in (3.6):

lim
n→+∞

lim
k→+∞

Iε̃k(ξ;Aδn) =

ˆ
RN\{0}

1− cos(z · ξ)
|z|2

dν(z). (3.9)
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Eventually, by collecting (3.5)–(3.9), we get

lim
k→+∞

Iε̃k(ξ;RN ) = lim
n→+∞

lim sup
k→+∞

[
Iε̃k
(
ξ;B(0, δn)

)
+ Iε̃k(ξ;Aδn) + Iε̃k

(
ξ;B(0, δ−1

n )c
)]
,

from which the conclusion follows. □

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. By Lemma 3.1 we know that for k sufficiently large Iεk(ξ;RN ) grows at most
as 1+ |ξ|2. Proposition 3.2, instead, characterizes the pointwise limit {Iεk( · ;RN )}, where {εk} ⊂ J is
a suitable infinitesimal sequence. Thus, for every ψ ∈ L2

w(RN ), by dominated convergence we deduce

lim
k→+∞

F̂εk(ψ) =

ˆ
RN

|ψ(ξ)|2
[
1

2

ˆ
SN−1

|ξ · σ|2dµ(σ) +
ˆ
RN\{0}

1− cos(z · ξ)
|z|2

dν(z)

]
dξ

where µ ∈ M (SN−1) and ν ∈ M (RN ) are as in Proposition 3.2. Formula (1.6) is then achieved by
recalling that the Fourier transform is a one-to-one correspondence between H1(RN ) and L2

w(RN ),
and by computations similar to the ones in the proof of Lemma 2.1.

We are now only left to show that the right-hand side in (1.6) is finite for every u ∈ H1(RN ). As
for the gradient term, its finiteness is trivial. For what concerns the nonlocal term, we note that in
view of Lemma 3.1 and of the construction in Proposition 3.2 there holds

ˆ
RN\{0}

1− cos(z · ξ)
|z|2

dν(z) ≤ 2M(1 + |ξ|2)

pointwise in RN . Thus, we deduce
ˆ
RN

|ψ(ξ)|2
ˆ
RN\{0}

1− cos(z · ξ)
|z|2

dν(z)dξ ≤ 2M

ˆ
RN

|ψ(ξ)|2(1 + |ξ|2)dξ

for every ψ ∈ L2
w(RN ). The claim follows then by the same computations as in Lemma 2.1. □

4. Necessary and sufficient conditions for the BBM formula

The goal of this section is to prove that conditions (i) and (ii) in Theorem 1.1 are both sufficient
and necessary for the BBM formula to hold. We first address the sufficiency by proving Corollary 1.3,
then we turn to the necessity, that is, to Theorem 1.1.

4.1. Sufficiency. As we outlined in section 1, Corollary 1.3 is an immediate consequence of the proof
of Theorem 1.2.

Proof of Corollary 1.3. Under the current assumptions, we know that there exist an infinitesimal
sequence of {εk} and two Radon measures µ ∈ M (SN−1) and ν ∈ M (RN ) such that (1.6) is satisifed.

In order to conclude, it now suffices to recall that the measure ν is the weak-∗ limit of the sequence
defined by (1.7) (see Step 2 in the proof of Proposition 3.2). We are currently supposing that such
sequence weakly-∗ converges to αδ0 for a suitable α ≥ 0: then, necessarily, ν = αδ0 and the second
integral on the right-hand side in (1.6) vanishes. The conclusion is thus achieved. □
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4.2. Necessity. We now focus on the proof of Theorem 1.1, thus showing that the sufficient conditions
devised in the previous subsection are also necessary for the BBM formula to hold. As before, we
rely on the formulation in Fourier variables provided by Lemma 2.1, or, in other words, we assume
that (2.5) holds for every ψ ∈ L2

w(RN ) and for a given measure λ ∈ M (SN−1). We first show that
such a nonlocal-to-local formula forces the restrictions of the kernels {ρε} to any large ball to belong
definitively to L1, while the integrals of ρε(z)/|z|2 on the complement of such balls need to become
increasingly smaller (see (1.3)). Then, item (ii) in Theorem 1.1 will be derived as well.

Proposition 4.1. Suppose that the convergence in (2.5) holds for every ψ ∈ L2
w(RN ) and for a given

measure λ ∈ M (SN−1). Then, there exists M ≥ 0 depending only on N and λ such that for every
R > 0 condition (1.3) is satisfied.

Proof. Throughout the proof, cN is a generic positive constant that depends just on the dimension N
and whose value may change from line to line.

Let ψ ∈ L2
w(RN ) \ {0} be a radial function. Then, there exists a measurable v : [0,+∞) → R such

that ψ(ξ) = v(|ξ|) and that

0 <

ˆ +∞

0

tN−1(1 + t2)v2(t)dt < +∞. (4.1)

We define

ψR(ξ) := RN/2ψ(Rξ) for all R > 0,

and we observe that a change of variables yieldˆ
B(0,R−1)c

|ψR(ξ)|2dξ =
ˆ
B(0,1)c

|ψ(ξ)|2dξ, (4.2)
ˆ
RN

|ξ|2|ψR(ξ)|2dξ =
1

R2

ˆ
RN

|ξ|2|ψ(ξ)|2dξ.

By choosing ψ = ψR in (2.5), we infer that

lim
k→+∞

ˆ
RN

|ψR(ξ)|2
ˆ
RN

ρεk(z)
1− cos(z · ξ)

|z|2
dzdξ ≤ λ(SN−1)

ˆ
RN

|ξ|2||ψR(ξ)|2dξ (4.3)

=
c

R2
,

where c := c(λ, ψ) is a suitable constant. We exchange the integrals on the left-hand side of (4.3) by
the Fubini theorem, and, for any fixed z ∈ RN \ {0}, recalling that ẑ = z/|z|, we let Lẑ be a rotation
such that ẑ = Lt

ẑe1, where the superscript t denotes transposition. A change of variables yieldsˆ
RN

|ψR(ξ)|2
(
1− cos(z · ξ)

)
dξ =

ˆ
RN

|ψR(ξ)|2
(
1− cos(|z|e1 · (Lẑξ)

))
dξ (4.4)

=

ˆ
RN

|ψR(ξ)|2
(
1− cos(|z|e1 · ξ)

)
dξ

(recall that ψR is radial). By plugging (4.4) into (4.3), we obtain

lim
k→+∞

ˆ
RN

ρεk(z)

|z|2

ˆ
RN

|ψR(ξ)|2
(
1− cos(|z|e1 · ξ)

)
dξdz ≤ c

R2
.

From now on, we detail the argument for N ≥ 4 only; the lower dimensional cases may be addressed
by similar (but lighter) computations. First, we change variables to find

lim
k→+∞

ˆ
RN

ρεk(z)

|z|N+2

ˆ
RN

∣∣∣∣ψR

(
ξ

|z|

)∣∣∣∣2 (1− cos(e1 · ξ)
)
dξdz ≤ c

R2
. (4.5)
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Next, we rewrite the integral with respect to ξ on the left-hand side of (4.5) by employing spherical
coordinates: for σ ∈ SN−1 we consider ϑ1, . . . , ϑN−2 ∈ [0, π] and ϑN−1 ∈ [0, 2π) such that

e1 · σ = cos(ϑ1),

ei · σ = cos(ϑi)

i−1∏
j=1

sin(ϑj) for i = 2, . . . , N − 1,

eN · σ =

N−1∏
j=1

sin(ϑj).

By the coarea formula, recalling that ψR(ξ) = RN/2v(R|ξ|) for v as above, it holds
ˆ
RN

∣∣∣∣ψR

(
ξ

|z|

)∣∣∣∣2 (1− cos(e1 · ξ)
)
dξ

= RN

ˆ +∞

0

v2
(
R

|z|
t

)
tN−1

ˆ
SN−1

(
1− cos(te1 · σ)

)
dH N−1(σ)dt

=

ˆ 2π

0

dϑN−1

N−2∏
j=2

ˆ π

0

sinN−j−1(ϑj)dϑj ·

·RN

ˆ +∞

0

v2
(
R

|z|
t

)
tN−1

ˆ π

0

[
1− cos

(
t cos(ϑ1)

)]
sinN−2(ϑ1)dϑ1dt

= cNR
N

ˆ +∞

0

v2
(
R

|z|
t

)
tN−1

ˆ π

0

[
1− cos

(
t cos(ϑ)

)]
sinN−2(ϑ)dϑdt

= cNR
N

ˆ +∞

0

v2
(
R

|z|
t

)
t

ˆ t

−t

(
1− cos(s)

)
(t2 − s2)

N−3
2 dsdt

Since the integrand in the last expression is positive, by restricting the domain of integration we find
ˆ
RN

∣∣∣∣ψR

(
ξ

|z|

)∣∣∣∣2 (1− cos(e1 · ξ)
)
dξ ≥ cNR

N

ˆ +∞

0

v2
(
R

|z|
t

)
tN−2

ˆ t
2

− t
2

(
1− cos(s)

)
dsdt

≥ cNR
N

ˆ +∞

0

v2
(
R

|z|
t

)
tN−1

(
1− 2

t
sin

(
t

2

))
dt. (4.6)

Next, we proceed by splitting the interval (0,+∞) into two regions, and we analyze the corresponding
integrals separately.

We observe that by a Taylor expansion around 0 there exists α0 > 0 such that

1− 2

t
sin

(
t

2

)
≥ α0t

2 for every t ∈ (0, 1].

Then, starting from (4.5) and taking into account (4.6), we infer

c

R2
≥ lim sup

k→+∞

ˆ
B(0,R)

ρεk(z)

|z|N+2

ˆ
RN

∣∣∣∣ψR

(
ξ

|z|

)∣∣∣∣2 (1− cos(e1 · ξ)
)
dξdz

≥ α0cNR
N lim sup

k→+∞

ˆ
B(0,R)

ρεk(z)

|z|N+2

ˆ |z|
R

0

tN+1v2
(
R

|z|
t

)
dtdz

=
α0cN
R2

lim sup
k→+∞

ˆ
B(0,R)

ρεk(z)

ˆ 1

0

tN+1v2(t)dtdz.
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In conclusion, owing to (4.1), we find

lim sup
k→+∞

ˆ
B(0,R)

ρεk(z)dz ≤M0

for a suitable M0 :=M0(N, v).
We now turn to the contribution accounting for ‘large’ |z|. Note that there exists α1 > 0 such that

1− 2

t
sin

(
t

2

)
≥ α1 for every t > 1.

Therefore, by estimates similar to the ones above we obtain

c

R2
≥ lim sup

k→+∞

ˆ
B(0,R)c

ρεk(z)

|z|N+2

ˆ
RN

∣∣∣∣ψR

(
ξ

|z|

)∣∣∣∣2 (1− cos(e1 · ξ)
)
dξdz

≥ α1cNR
N lim sup

k→+∞

ˆ
B(0,R)c

ρεk(z)

|z|N+2

ˆ +∞

|z|
R

tN−1v2
(
R

|z|
t

)
dtdz

= α1cN lim sup
k→+∞

ˆ
B(0,R)c

ρεk(z)

|z|2

ˆ +∞

1

tN−1v2(t)dtdz,

and, again by (4.1), we deduce

lim sup
k→+∞

ˆ
B(0,R)c

ρεk(z)

|z|2
dz ≤ M1

R2

for some M1 :=M1(N, v).
To conclude the proof, we first optimize M0 and M1 with respect to v and we choose as M the

largest of the two optima; note, in particular, that M is finite and strictly positive, and depends only
on the dimension of the space and on λ(SN−1). □

Remark 4.2. Observe that, heuristically, inequality (4.3) has the same structure of a Poincaré
inequality: the L2-norm of a function on the left hand-side, the L2-norm of its gradient on the
right one. So, in a sense, the integral with respect to z on the left hand-side may be regarded
as the inverse of the Poincaré constant. The latter has a well-known scaling property: if cP (Ω)
denotes the Poincaré constant associated with a certain domain Ω, then cP (RΩ) = RcP (Ω), where
RΩ := {x ∈ RN : x/R ∈ Ω}. Such considerations motivated the choice of the scaling of the test
function ψ in the proof above (recall that there we work in Fourier variables).

With Proposition 4.1 at hand, we are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Thanks to Proposition 4.1, we know that item (i) holds. As a consequence,
there is an infinitesimal sequence {εk} such that the inequality in (1.5) holds, and we may invoke the
compactness result in Theorem 1.2. Thus, there exist a subsequence {εkn

} and two Radon measures
µ ∈ M (SN−1) and ν ∈ M (RN ) such that for every u ∈ H1(RN )

lim
n→+∞

Fεkn
[u] =

1

2

ˆ
RN

[ˆ
SN−1

|∇u(x) · σ|2dµ(σ) +
ˆ
RN\{0}

|u(x+ z)− u(x)|2

|z|2
dν(z)

]
dx.

In particular, from the proof of Theorem 1.2 we know that ν is the weak-∗ limit in Mloc(RN ) of the
subsequence {νkn

} defined by

⟨νkn
, f⟩ :=

ˆ
RN

ρεkn
(z)f(z)dz for all f ∈ Cc(RN ). (4.7)
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Note that, in principle, the measures µ and λ may differ. However, since we are assuming (1.2), for
every u ∈ H1(RN ) it must hold
ˆ
RN

ˆ
SN−1

|∇u(x) · σ|2dλ(σ)dx

=
1

2

ˆ
RN

[ˆ
SN−1

|∇u(x) · σ|2dµ(σ) +
ˆ
RN\{0}

|u(x+ z)− u(x)|2

|z|2
dν(z)

]
dx.

By passing to Fourier variables as in the proof of Lemma 2.1, the previous equality becomes
ˆ
RN

|ψ(ξ)|2
ˆ
SN−1

|ξ · σ|2dλ(σ)dξ

=

ˆ
RN

|ψ(ξ)|2
[
1

2

ˆ
SN−1

|ξ · ẑ|2dµ(z) +
ˆ
RN\{0}

1− cos(z · ξ)
|z|2

dν(z)

]
dξ

for every ψ ∈ L2
w(RN ), whence, by the fundamental theorem of the calculus of variations and the

continuity with respect to the ξ variable, we deduceˆ
SN−1

|ξ · σ|2dλ(σ) = 1

2

ˆ
SN−1

|ξ · ẑ|2dµ(z) +
ˆ
RN

1− cos(z · ξ)
|z|2

dν(z) for every ξ ∈ RN . (4.8)

Then, by dividing (4.8) by |ξ|2 and letting |ξ| → +∞, we obtainˆ
SN−1

|ξ̂ · σ|2dλ(σ) = 1

2

ˆ
SN−1

|ξ̂ · ẑ|2dµ(z) for every ξ̂ ∈ SN−1. (4.9)

It follows that necessarily
ˆ
RN\{0}

1− cos(z · ξ̂)
|z|2

dν(z) = 0 for every ξ̂ ∈ SN−1,

but since z 7→ (1− cos(z · ξ̂))/|z|2 is a positive function with support on the whole space for every ξ,
we infer that the restriction of ν to RN \ {0} is 0. By the definition of Lebesgue integral, we obtain
that for any f ∈ Cc(RN ) ˆ

RN

f(z)dν(z) = ν({0})f(0),

that is, ν = αδ0 for a suitable α ≥ 0.
Finally, we conclude the proof of item (ii) by observing that for any subsequence {εkn

} the
associated sequence of measures {νkn

} defined by (4.7) must converge weakly-∗ to αδ0, and hence the
whole sequence {νk} converges. □

Remark 4.3. For each λ ∈ M (SN−1), let us define the positive semi-definite symmetric matrix

Aλ :=

ˆ
SN−1

σ ⊗ σdλ(σ).

By employing this notation, the functional F in (2.2) rewrites as

F [u] =

ˆ
RN

Aλ∇u · ∇udx

for every u ∈ H1(RN ).
As we observed in the previous proof, under the assumptions of Theorem 1.1 the measure λ in (1.2)

and the measure µ obtained by the compactness argument need not be the same. However, equality
(4.9) expresses the fact that the associated matrices Aλ and Aµ do coincide.
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5. Discussion and perspectives

In what follows, we first present an alternative formulation of condition (i) in Theorem 1.1, and we
then compare our results with previous ones in other contributions. In particular, we explain how
some classes of kernels that have been considered in the literature are encompassed by our theory. We
conclude by outlining possible future investigations.

5.1. Lévy conditions and reformulation of (i). As we recalled in section 1, the research on
nonlocal-to-local formulas has been focused on sufficient conditions. It must be however mentioned
that necessary conditions for the finiteness of the nonlocal energies in (1.1) have been devised as well,
and they are sometimes referred to as Lévy conditions. It is indeed known that, when u ∈ H1(RN ),
an ε-uniform upper bound on the functionals in (1.1) entails a certain summability close to the origin
and a decay at infinity. Precisely, the following can be shown:

Theorem 5.1. Suppose that for every u ∈ H1(RN ) there exists c := c(u) ≥ 0 such that Fε[u] ≤ c for
all ε ∈ J . Then, the family {ρε} fulfils the Lévy conditions, that is, there exists M ≥ 0 such thatˆ

B(0,1)

ρε(z)dz +

ˆ
B(0,1)c

ρε(z)

|z|2
dz ≤M for every ε ∈ J .

For a proof, we refer, e.g., to the recent contribution [12, Thm. 2.1] (the authors work under radiality
assumptions on the kernels, but for the result at stake this does not play a role). Alternatively, we
note that the argument in the proof of Proposition 4.1 may be adapted to establish the previous
proposition: it is enough to work with a fixed test function ψ ∈ L2

w(RN ).
When the bound in Theorem 5.1 holds only asymptotically, that is, lim supε→0 Fε[u] ≤ c, it can be

shown that

lim sup
ε→0

ˆ
RN

ρε(z)

1 + |z|2
dz ≤M. (5.1)

Such bound is necessary, but not sufficient for the one in (i): as a counterexample, consider for N = 1
the constant family ρε ≡ 1. As we observed in section 1, indeed, condition (i) may be regarded as a
uniform decay requirement on the kernels. In more precise terms, the following holds:

Lemma 5.2. Condition (i) is equivalent to the following:

(i’) There exists M̃ ≥ 0 such that for every R > 0 there holds

lim sup
k→+∞

ˆ
RN

ρεk(z)

R2 + |z|2
dz ≤ M̃

R2
. (5.2)

Proof. We first show that (1.3) implies (5.2). Fix R > 0. After a change of variable, (1.3) rewrites as

lim sup
k→+∞

[ˆ
B(0,1)

ρεk(Rz)dz +

ˆ
B(0,1)c

ρεk(Rz)

|z|2
dz

]
≤ M

RN
.

The conclusion follows then by observing thatˆ
B(0,1)

ρεk(Rz)dz +

ˆ
B(0,1)c

ρεk(Rz)

|z|2
dz ≥

ˆ
RN

ρεk(Rz)

1 + |z|2
dz

and by performing a further change of variables.
Conversely, assume that (5.2) holds. Then, for every R > 0 a change of variable yields

lim sup
k→+∞

ˆ
RN

ρεk(Rz)

1 + |z|2
dz ≤ M̃

RN
.
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Since the real function t 7→ t2/(1 + t2) is increasing on the positive real line, we findˆ
RN

ρεk(Rz)

1 + |z|2
dz ≥ 1

2

ˆ
B(0,1)

ρεk(Rz)

1 + |z|2
dz +

ˆ
B(0,1)c

|z|2

1 + |z|2
ρεk(Rz)

|z|2
dz

≥ 1

2

(ˆ
B(0,1)

ρεk(Rz)dz +

ˆ
B(0,1)c

ρεk(Rz)

|z|2
dz

)
.

A further change of variable entails (1.3). □

Remark 5.3. We observed that (5.1) is necessary for (1.3) to hold. On the other hand, a sufficient
condition not involving the parameter R is the following: there exists an infinitesimal family {ωε} ⊂
(0,+∞) such that

lim sup
ε→0

ˆ
RN

ρε(z)

1 + ωε|z|2
dz < +∞. (5.3)

This condition is however stronger than (i): to see this, given a family {ωε} as above, observe that for
N = 1 the kernels ρε(z) := ω

1/4
ε fulfil (1.3), but not (5.3).

5.2. L1 and fractional kernels. In [5] the authors proved their nonlocal-to-local formula under the
assumption that the kernels ρε are standard mollifiers. A more general version of their result is the
following:

Theorem 5.4 (cf. Thm. 1 in [19]). Let p ∈ (1,+∞) be fixed. For every ε ∈ J , let ρε : RN → [0,+∞)
be a function with ∥ρε/2∥L1(RN ) = 1. Suppose also that for every δ > 0

lim
ε→0

ˆ
B(0,δ)c

ρε(z)dz = 0. (5.4)

Then, for any u ∈W 1,p(RN ) there exists c > 0 such thatˆ
RN×RN

ρε(x− y)
|u(x)− u(y)|p

|x− y|p
dydx ≤ c for every ε ∈ J.

Besides, there exist an infinitesimal sequence {εk} ⊂ J and a positive Radon measure λ on the unit
sphere SN−1 that depends only on {ρε} such that

´
SN−1 dλ = 1 and

lim
k→+∞

1

2

ˆ
RN×RN

ρεk(x− y)
|u(x)− u(y)|p

|x− y|p
dydx =

ˆ
RN

ˆ
SN−1

|∇u(x) · σ|pdλ(σ)dx (5.5)

for every u ∈W 1,p(RN ).

We now show how the class of kernels considered in the theorem above falls within our theory.

Example 5.5 (L1 kernels). Let {ρε}ε∈J be a family of kernels as in Theorem 5.4. A direct check
shows that the normalization condition implies (1.5). Besides, for every f ∈ Cc(RN \ {0}) there exists
δ > 0 so small that ˆ

RN\{0}
ρε(z)f(z)dz =

ˆ
B(0,δ)c

ρε(z)f(z)dz.

It hence follows from (5.4) that

lim
ε→0

ˆ
RN\{0}

ρε(z)f(z)dz = 0,

which entails, similarly to the proof of Corollary 1.3, that the weak-∗ limit of the associated sequence
in (1.7) is a multiple of δ0.
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As we commented in section 1, fractional kernels are not exactly covered by Theorem 5.4. With
the next example, we see how they fit in our framework.

Example 5.6 (Fractional kernels). Given s ∈ (0, 1) and u ∈ L2(RN ), the (normalised) s-Gagliardo
seminorm of u is defined by

Gs[u] :=
1− s

2

ˆ
RN×RN

|u(x)− u(y)|2

|x− y|N+2s
dydx.

Such functional corresponds to the one in (1.1) upon selecting

ε := 1− s, ρε(z) = ρG
ε (z) :=

ε

2|z|N−2ε
.

Note that in this case ρε /∈ L1(RN ). On the other hand, for every δ > 0 and for suitable N -depending
constants α0, α1 > 0, we have ˆ

B(0,δ)

ε

2|z|N−2ε
dz = α0δ

2ε,

ˆ
B(0,δ)c

ε

2|z|N−2ε+2
dz = α1

ε

(1− ε)δ2(1−ε)
.

In particular, by taking, e.g., M = 2, we see that (1.5) holds. Besides, for every R > δ > 0 we have

lim
ε→0

ˆ
B(0,R)\B(0,δ)

ε

2|z|N−2ε
dz = α0 lim

ε→0
(R2ε − δ2ε) = 0,

whence, similarly to the previous example, we infer that {ρG
ε } converges locally weakly-∗ to a multiple

of the Dirac delta in 0 in the sense of Radon measures.

5.3. Future directions. In this paper we provided sufficient and necessary conditions on a family
of kernels {ρε} for the nonlocal functionals in (1.1) to converge to a variant of the Dirichlet integral
for every u ∈ H1(RN ). It is natural to wonder whether such characterization still holds for the more
general functionals considered in [5]. We conjecture that this is the case. Namely, given a family of
positive, measurable kernels {ρε}ε∈J , we conjecture that for any open set Ω ⊆ RN with Lipschitz
boundary and for any p ∈ [1,+∞) the following conditions are necessary and sufficient for the BBM
formula to hold for every u ∈W 1,p(Ω) when p > 1 or u ∈ BV (Ω) when p = 1:

(i) there exists M ≥ 0 such that for every R > 0 it holds

lim sup
ε→0

ˆ
B(0,R)

ρε(z)dz ≤M,

lim sup
ε→0

ˆ
B(0,R)c

ρε(z)

|z|p
dz ≤ M

Rp
when Ω is unbounded;

(ii) there exists an infinitesimal sequence {εk} ⊂ J such that the sequence of measures {νk} ⊂
Mloc(RN ) defined as in (1.4) converges locally weakly-∗ to αδ0 in the sense of Radon measures
for a suitable α ≥ 0.

We remind that it is known that the BBM formula fails when the boundary of Ω is not regular
enough (see [19, Rmk. 1], and [13] on a possible remedy).

Naturally, for p ̸= 2 and Ω ⊊ RN the Fourier approach is not viable anymore (but when p ̸= 2
and Ω = RN techniques of Fourier analysis may still be invoked by resorting to the Littlewood-Paley
theory, as it is done in the recent contribution [6]). A possible strategy to establish the necessity of
the previous conditions is to follow the proof of [12, Thm. 2.1] and employ rescaled test functions as
in the proof of Proposition 4.1.



18 E. DAVOLI, G. DI FRATTA, AND V. PAGLIARI

A second research direction concerns the variational convergence of the nonlocal energies to local
ones, in the same spirit as [19, Thm. 8 and Cor. 8]. For a thorough treatment of Γ-convergence we
refer to the monograph [8]. It is not difficult to see that the conditions in Corollary 1.3 are sufficient for
the Γ-convergence of {F̂ε} to F̂ when it is known that the limiting function u has Sobolev regularity;
under this extra assumption, by the inverse Fourier transform, the Γ convergence of {Fε} to F is
recovered. Proving that they are also necessary would require a refinement of Proposition 4.1, again
possibly resorting to the approach of [12, Thm. 2.1]; note, in particular, that in our analysis (1.3) is
derived from a Γ-limsup type inequality (see (4.3)).

Γ-convergence results are usually complemented by equi-coercivity statements, because in this way
convergences of minima and minimizers are obtained thanks to the so-called fundamental theorem
of Γ-convergence, see e.g. [8, Cor. 7.20]. Such results also have a role in devising the domain of
the Γ-limit. The convergence properties of sequences of Lp functions with equi-bounded nonlocal
energy were considered already in [5, Thm. 4]; refined results in the same vein have been obtained in
[18, Thm. 1.2 and 1.3] and, more recently, in [1, Thm. 4.2]. Another natural question that is left
open from our analysis is what conditions on the kernels {ρε} are necessary and sufficient for such a
compactness result to hold. It is expected that some requirement on the support of the measures µ in
Theorem 1.2 has to be enforced (cf. [19, Thm. 5] and [1, Thm. 3.1]).
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