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Abstract. We are concerned with the analysis of a mean field type equation and its
linearization, which is a nonlocal operator, for which we estimate the number of nodal
domains for the radial eigenfunctions and the related uniqueness properties.
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1. Introduction

Given a C2 function f : [0,+∞) → [0,∞), satisfying f ′ > 0 in (0,+∞) and for a
fixed λ ≥ 0, on a smooth bounded domain Ω ⊂ Rn, n ≥ 2, we consider the constrained
problem in the unknowns (α, ψ):

−∆ψ = f(α + λψ), in Ω,�
Ω
f(α + λψ) dx = 1,

α > 0,

ψ > 0 in Ω,

ψ = 0, on ∂Ω.

(1.1)

For a fixed λ, by definition a solution of (1.1) is a pair (αλ, ψλ) where ψλ is a classical C2(Ω)
solution of the elliptic equation. Let (αλ, ψλ) be any such solution and set

Vλ = f ′(αλ + λψλ) ∈ C1(Ω),

so that by our assumptions Vλ > 0 in Ω. In applications it also happens that Vλ > 0
in Ω with Vλ vanishing on the boundary ∂Ω, which will be particularly discussed in the
concluding section. Typical examples include f(t) = et which yields to the well known
mean field equations in dimension two, see for example [3, 4, 8, 10] and references quoted
therein, as well as f(t) = tp for some p ≥ 1 in general dimension, which is particularly
relevant for the analysis of problems arising in plasma physics, see [7, 6] and references
therein.

The linearized operator associated to (1.1) takes the form

Lλ(φ) = −∆φ− λVλ [φ]
λ
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where

[φ]
λ

= φ− 〈φ〉
λ
, with 〈φ〉

λ
=

�
Ω

Vλφ�
Ω
Vλ
.

The average term, which is a linear but non-local term, shows up due to the volume
constraint in (1.1). Let σ be an eigenvalue of Lλ, and φ ∈ H1

0 (Ω)\{0} be an eigenfunction
of σ, that is by definition a weak solution of

−∆φ− λVλ [φ]
λ

= σVλ [φ]
λ
. (1.2)

We will denote by σ1,λ the first eigenvalue of (1.2) (see (2) below for definition). Consider
f(t) = tp and Ω a two-dimensional disk. A natural question in this particular case arises
from the results in [7, 6], concerning a problem in plasma physics, which asks whether or
not σ1,λ > 0 for any λ < λ∗, where λ∗ is an explicit threshold depending only on the best
constant of the Sobolev embedding H1

0 (Ω) ↪→ L2p(Ω). This would imply, among other
things, nice energy monotonicity properties which are the analogue of those arising in the
context of classical mean field equations for λ < 8π, see [2, 5] and references therein. This
is our initial motivation to obtain refined information about the spectral properties of Lλ,
in particular for radial eigenfunctions on a disk. However, as far as we know, some of the
classical results at hand for ”standard” eigenvalue problems, as for example the Courant
nodal domain theorem [18], and consequently neither the multiplicity of eigenfunctions
[17], are available so far about (1.2), as we discuss here after.

Integrating (1.2) on the domain Ω by parts gives�
∂Ω

∂φ

∂ν
ds = 0.

Thus, either ∂νφ changes sign on ∂Ω or ∂νφ ≡ 0 on ∂Ω. In the former case, since φ ∈
H1

0 (Ω), we see that φ also changes sign in Ω and hence has at least two nodal domains.
The observation which motivates part of this work is that in fact the latter case may also
happen.

Note that the case ∂νφ ≡ 0 may only happen if 〈φ〉
λ
6= 0. Indeed, as far as 〈φ〉

λ
= 0, the

non-local character of (1.2) drops out and the the classical Hopf lemma implies that φ ≡ 0
in Ω. On the other side, if 〈φ〉

λ
6= 0, by the Hopf lemma we find that,

Lemma 1.1. Let φ be an eigenfunction of σ, i.e. (1.2) holds. Let Ω1 be a nodal domain
satisfying an interior sphere condition at x0 ∈ ∂Ω1. If φ < 0 in Ω1 and 〈φ〉

λ
> 0, then

∂φ

∂ν

∣∣∣∣
x0

> 0.

Proof. Since σ + λ ≥ 0 (see (2)) and Vλ > 0, then the function φ satisfies

∆φ+ (λ+ σ)Vλφ = (λ+ σ)Vλ 〈φ〉
λ
≥ 0.

Then the classical Hopf lemma (see e.g. [13]) applies at x0, immediately implying the
claim.

�
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The assumption that 〈φ〉
λ
> 0 does not harm any generality: if 〈φ〉

λ
< 0, we con-

sider φ̃ = −φ and conclude that if φ > 0 in Ω1 then

∂φ

∂ν

∣∣∣∣
x0

< 0.

But in the case 〈φ〉
λ
> 0 and φ|Ω1 > 0, we cannot apply the Hopf lemma, and it can

happen that ∂φ
∂ν

∣∣
x0

= 0. Actually, as mentioned above, it may even happen that ∂νφ ≡ 0

along ∂Ω1. Indeed, as far as Ω is a disk Br ⊂ R2, this is verified for example in a special
case (which however does not fit our assumptions since Vλ ≡ 0 in that situation) as
discussed in [1, 5] and more in general for a non-positive eigenvalue σ ≤ 0. The latter
idea goes back to [16], where it was shown that any ”standard” eigenfunction on a disk
(that is any solution of (1.2) on a disk with 〈φ〉

λ
= 0) whose eigenvalue σ is non positive,

must be radial. We postpone this proof to Section 5. Indeed we have,

Lemma 1.2. Let φ ∈ H1
0 (B1) be an eigenfunction of a non positive eigenvalue σ ≤ 0.

Then φ is radial and φ′(1) = 0.

In fact it is readily seen that if φ is a radial eigenfunction, then, regardless of the sign
of the eigenvalue, it satisfies φ′(1) = 0. In particular for the first eigenvalue in [1] and [5,
Appendix] (which is positive but Vλ ≡ 0 in that case) there are three eigenfunctions, one
of which being radial with φ′(1) = 0 and the other two having two nodal domains.

This unusual phenomenon causes troubles with the theory of nodal domains. For ex-
ample, on a general domain Ω, a zero point of order greater or equal than two, that is,
x0 ∈ Ω, φ(x0) = 0,∇φ(x0) = 0, need not be isolated as in classical linear problems [9].
This is not surprising after all, since, due to the non local term proportional to 〈φ〉

λ
,

unlike standard linear growth problems [15], near any such point we have that |∆φ| is
not anymore controlled by (|φ|+ |∇φ|).

In this work, motivated also by the above mentioned plasma problem and by Lemma
1.2, we wish to make a first step in this direction and consider radial eigenfunctions in
the unit ball B1 ⊂ Rn. The nodal sets will be spheres/solid shells and we will estimate
the number of nodal domains.

Before that, let us briefly recall the Courant nodal domain theorem. A nodal domain
is any domain Ω0 ⊆ Ω such that φ ≡ 0 on ∂Ω0 and either φ > 0 in Ω0 or φ < 0 in Ω0.
The Courant nodal domain theorem [18] says that any n-th eigenfunction (counted with
multiplicity) has at most n nodal domains. For the non-local operator Lλ, it is expected
that there is a similar bound for the number of nodal domains. However, due to the volume
constraint (which leads to the non-local term in the equation), any n-th eigenfunction
of Lλ in principle could be thought of as an (n+ 1)-th eigenfunction of an unconstrained
problem. As a consequence in this case any n-th eigenfunction of Lλ should have at
most (n + 1) nodal domains. We will prove this fact for the first radial eigenfunction.
However, as far as 〈φ〉

λ
= 0, obviously the equation (1.2) becomes a standard linear

equation, whence the argument in [18] works and gives

Theorem A. Let φk be a k-th eigenfunction of Lλ with k ≥ 1 and assume that 〈φ〉
λ

= 0.
Then φk has at most (k + 1) nodal domains.
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The nontrivial case is when 〈φ〉
λ
6= 0. Consider the unit ball B1 ⊂ Rn and let φ = φ(r)

be a radial eigenfunction:

φ′′(r) +
n− 1

r
φ′(r) + λVλ [φ]

λ
= −σVλ [φ]

λ
, r ∈ [0, 1] (1.3)

with 〈φ〉
λ
> 0. Due to the above observations it may happen that φ ≥ 0 in [r1, r3]

and φ(r2) = 0, φ′(r2) = 0 for some r2 ∈ [r1, r3]. Then (1.3) implies that

φ′′(r2) = (λ+ σ)Vλ(r2) 〈φ〉
λ
> 0.

Remark that since we assume α > 0 and f ′ > 0 in (0,+∞), then Vλ is a strictly positive
even if r2 = 1. In particular, any such point is necessarily isolated. This fact motivates
the following definitions.

Definition 1.3. Let φ be a radial eigenfunction of (1.3) with 〈φ〉
λ
> 0 in B1. A singular

point of φ is a point r0 ∈ [0, 1] such that

φ(r0) = 0, φ′(r0) = 0, φ′′(r0) > 0.

Definition 1.4. Let φ be a radial eigenfunction of Lλ in B1 with 〈φ〉
λ
> 0. A generalized

nodal domain of φ is a radial domain Ω0 with the following properties:

• φ ≡ 0 on ∂Ω0, and if r ∈ [0, 1) then ∂rφ 6= 0 on ∂Ω0,
• in Ω0, either φ ≥ 0 or φ ≤ 0,
• if φ ≤ 0 in Ω0 then φ < 0 in Ω0,
• if φ ≥ 0 in Ω0, then φ > 0 in Ω0 possibly with the exception of a finite number

of spheres {x ∈ B1 | |x| = ri}i=1,2,··· ,n such that each ri is a singular point of φ(r),
1 ≤ i ≤ n.

Remark 1.5. If a generalized domain is a ball Br(0), then in polar coordinates we may
identify Br(0) with the interval [0, r), being understood that in this particular case the
condition φ = 0 on ∂Br(0) takes the form φ(r) = 0.

Note also that, according to the above definition, the nodal sets, as the boundaries of
the generalized nodal domains, are the preimages of some regular values. Thus they are
all nodal spheres/solid shells. We can prove the following

Theorem 1.6. Let φ1 be a radial first eigenfunction on B1. Then φ1 has at most two
generalized nodal domains.

The proof is technically nontrivial, see Section 3. We refine the argument of [18] and
reduce the problem to that of finding at least one negative eigenvalue of a suitably defined
matrix. To achieve this goal we combine the matrix determinant lemma and the Sylvester
criterion. We also show the sharpness of the above result by some example.

For a general k-th radial eigenvalue, the above argument cannot work directly. Instead,
we appeal to the Interlacing Theorem for symmetric matrices, and get finer information
on the negative inertia index of certain coefficient matrices, which results in the following

Theorem 1.7. Any k-th radial function has at most 2k generalized nodal domains.

This is a generalization of Theorem 1.6. We remark that even if the proof of Theorem 1.7
is elegant and self-contained, nevertheless we include the proof of Theorem 1.6 since it
uses a different strategy which is quite enlightening and shows the power of the Pleijel’s
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original argument. Furthermore, there are two points to be clarified. First of all we are
only enumerating the radial eigenfunctions, the non-radial ones are not included. The
nonradial ones could help to fill the gap between (k + 1) and 2k, although we don’t
have a precise argument at hand. Moreover, there is still a chance that, compared to
the classical Courant Nodal Domain Theorem, the result is not sharp. Further comments
about this point will be given at the end of Section 4.

In the classical case, it is well known that the maximum allowed number of nodal
domains of eigenfunctions has relevant consequences about the multiplicity of the corre-
sponding eigenvalues, see [17]. Things are different for (1.3) in the radial case. Indeed we
have,

Proposition 1.8. Any eigenvalue σ of Lλ in B1 has at most one radial eigenfunction.

Needless to say that there may be no radial eigenfunctions for a positive eigenvalue.
But if there is one, the above proposition claims that this is the only one. The proof is
given in Section 6.

Let us remark that, besides Theorem A, by a result in [11] we see that there is no
eigenfunction φ of (1.3) with 〈φ〉

λ
= 0. Therefore we deduce from Proposition 1.8 and

Theorem 1.6 that, the unique eigenfunction of (1.3) of a non positive first eigenvalue
admits, as discussed above, at most two (generalized) nodal domains.

Several questions remain open. For example in many applications one would need
some sort of generalized nodal domain theorem, limiting the number of generalized nodal
domains for the eigenfunctions of (1.2), both for radial higher eigenfunctions with a
sharper bound as well as for any such eigenfunction (not necessarily radially symmetric)
in general domains. Then one would like to understand also the multiplicity ([17]) for
problems of this sort.

In conclusion we observe that the assumptions f ′ > 0 in (0,+∞) and α > 0 are still too
restrictive to cover the problem arising in plasma physics ([7, 6]) which was indeed part
of our initial motivation. To achieve this goal we need a refined version of Lemma 1.2,
Theorem 1.6 and Proposition 1.8 under an additional technical assumption about Vλ
(see (7.1) below) in case α = 0. To simplify the exposition we postpone the discussion
concerning this technical point to Section 7.

The paper is organized as follows. In section 2 we collect some preliminary spectral
properties, then, we prove the main nodal domain theorem and the related multiplicity of
eigenvalues in sections 3 and 6, respectively. The radial eigenfunctions with non positive
eigenvalues are discussed in 5. The last section 7 is devoted to a degenerate case arising
in the plasma problem.

Acknowledgments. We would like to express our warmest thanks to Prof. Carmine Di
Fiore for very interesting discussions and in particular for pointing out to us the relevance
of the Courant-Fischer Interlacing Theorem.
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2. Basic spectral properties

The first eigenvalues of Lλ can be characterized by the min-max principle:

σ1 = σ1(αλ, ψλ) = min
φ∈H1

0 (Ω)

�
Ω
|∇φ|2 − λ

�
Ω
Vλ [φ]2

λ�
Ω
Vλ [φ]2

λ

,

and for k ≥ 2, the k-th eigenvalues are defined inductively by

σk = σk(αλ, ψλ) = min
φ∈H1

0 (Ω), 〈φφj〉
λ

=0,∀1≤j≤k−1

�
Ω
|∇φ|2 − λ

�
Ω
Vλ [φ]2

λ�
Ω
Vλ [φ]2

λ

, (2.1)

where φj (counted with multiplicity) is any eigenfunction of the j-th eigenvalue σj, for j =
1, · · · , k − 1. In particular, λ+ σ > 0 for any eigenvalue σ and for any φ ∈ H1

0 (Ω),�
Ω

|∇φ|2 − λ
�

Ω

Vλ [φ]2
λ
≥ σ1

�
Ω

Vλ [φ]2
λ

(2.2)

and the equality is attained for the eigenfunctions of σ1.
This should be compared with the first Dirichlet type eigenvalues, by which we mean

ν1 = ν1(αλ, ψλ) = min
φ∈H1

0 (Ω)

�
Ω
|∇φ|2 − λ

�
Ω
Vλφ

2�
Ω
Vλφ2

,

which is evaluated without taking off the average 〈φ〉
λ
. Indeed, since Vλ > 0 in Ω, we

have

σ1 + λ = min
φ∈H1

0 (Ω)\{0}

�
Ω
|∇φ|2�

Ω
Vλ [φ]2

λ

≥ min
φ∈H1

0 (Ω)\{0}

�
Ω
|∇φ|2�

Ω
Vλφ2

= ν1 + λ

where we used that, for any φ ∈ H1
0 (Ω) \ {0},

�
Ω
Vλ [φ]

λ
dx = 0 and consequently�

Ω

Vλφ
2 dx =

�
Ω

Vλ(〈φ〉
λ

+ [φ]
λ
)2 dx

=

�
Ω

Vλ [φ]2
λ

dx + 〈φ〉2
λ

�
Ω

Vλ dx ≥
�

Ω

Vλ [φ]2
λ

dx .

The equality above holds iff 〈φ〉
λ

= 0. Concerning the eigenvalues, we readily deduce
that σ1 ≥ ν1, although the equality cannot hold, since the first Dirichlet eigenfunction has
a fixed sign in Ω, whence it cannot have zero mean with respect to Vλ. Therefore σ1 > ν1.

3. A nodal domain theorem for first radial eigenfunctions

In this section we carry out the proof of Theorem 1.6. Here and in the sequel we assume
without loss of generality that mλ ≡ 〈φ1〉

λ
> 0, otherwise the result is well known.

First of all observe that the zeros of a radial eigenfunction φ(r), viewed as a function
on the closed unit interval, are isolated, regardless of being singular or not. Actually if
there were infinitely many zeros, then these radii would admit an accumulation point
r0 ∈ [0, 1] at which φ

′′
(r0) = φ

′
(r0) = φ(r0) = 0. This impossible under our assumptions

since Vλ > 0 on B̄1 and we would deduce from (1.3) that

φ′′(r0) = (λ+ σ)Vλ(r0) 〈φ〉
λ
6= 0.
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Therefore φ−1(0) ⊂ [0, 1] is a finite set and there are at most finitely many generalized
nodal domains, which are concentric annuli, or more precisely, solid shells.

For any radial function solving (1.2), integrating by parts over Ω ≡ B1 we have,

0 =

�
∂B1

∂νφ1 ds = 2πφ′1(1)

whence φ′1(1) = 0. In particular r = 1 is an isolated singular point, since φ′′(1) =
(λ+ σ)Vλ(1) 〈φ〉

λ
6= 0.

We argue by contradiction and assume that φ1 has N generalized nodal domains, for
some N ≥ 3. As φ′1(1) = 0 and φ1 ∈ H1

0 (B1), we deduce from Lemma 1.1 that φ1 is
nonnegative in the outer-most generalized nodal domain, which is denoted by Ω1; so
there is some r1 < 1 such that

Ω1 = {x ∈ B1 | r1 < r < 1} .

Then Ω2 = {x ∈ B1 | r2 < |x| < r1} for some r2 ∈ (0, r1), in which φ1 < 0. In this way we
see that in the shells Ω2k+1 the eigenfunction φ1 is nonnegative (for 2k + 1 ≤ N), while
in the shells Ω2k it is negative, as long as 2k ≤ N . Note that the inner-most generalized
nodal domain is a ball.

For each j = 1, 2, · · · , N , let

φ1,j := φ1 · χΩj

where χΩj stands for the characteristic function for Ωj. Then φ1,j ∈ H1
0 (Ω) with weighted

average

mj ≡ 〈φ1,j〉
λ

=

�
Ωj
φ1Vλ dx�

Ω
Vλ dx

.

Then m1 > 0, m2 < 0, m3 > 0, etc. and in general (−1)jmj < 0. Moreover,

m1 +m2 + · · ·+mN = 〈φ1〉
λ

= mλ > 0.

Consider the test function

ϕ =
N∑
j=1

ajφ1,j ∈ H1
0 (Ω)

for some (a1, a2, · · · , aN) ∈ RN to be fixed later on. The weighted average of ϕ is

〈ϕ〉
λ

=
N∑
j=1

ajmj.
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By integrating by parts we find that,

1

λ+ σ1

�
Ω

|∇ϕ|2 dx

=
1

λ+ σ1

�
Ω

ϕ(−∆ϕ) dx =
3∑
j=1

1

λ+ σ1

�
Ωj

ϕ(−∆ϕ) dx

=
N∑
j=1

aj

�
Ωj

ϕVλ [φ1]
λ

dx

=
N∑
j=1

aj

�
Ωj

ϕVλ
(
φ1 − 〈φ1〉

λ

)
dx

=
N∑
j=1

�
Ω

ϕVλajφ1,j dx−〈φ1〉
λ

N∑
j=1

aj

�
Ωj

Vλϕ dx

=

�
Ω

ϕVλϕ dx−〈φ1〉
λ

(�
Ω

Vλ dx

) N∑
j=1

mja
2
j

=

�
Ω

Vλ
(
ϕ2 − 〈ϕ〉2

λ

)
dx +

(�
Ω

Vλ dx

)
〈ϕ〉2

λ
−
(�

Ω

Vλ dx

)
〈φ1〉

λ

(
N∑
j=1

mja
2
j

)

=

�
Ω

Vλ [ϕ]2
λ

dx +

(�
Ω

Vλ dx

)
(

N∑
j=1

ajmj

)2

−

(
N∑
i=1

mi

)(
N∑
j=1

mja
2
j

) .

According to (2.2), the tail term above is non-negative, namely the quadratic form

Q(~a) =
∑
i,j

mimjaiaj −mλ

N∑
j=1

mja
2
j

in ~a = (a1, · · · , aN) ∈ RN should be non-negative. Equivalently, the symmetric matrix A
corresponding to the quadratic form Q, as given by,

A = −mλ


m1

m2

. . .
mN

+


m2

1 m1m2 . . . m1mN

m2m1 m2
2 . . . m2mN

...
...

. . .
...

mNm1 mNm2 . . . m2
N


doesn’t have negative eigenvalues. Note that A has a kernel given by

SpanR {(1, 1, · · · , 1)}
which corresponds to SpanR {φ1}: it is clear that this one-dimensional space lies in the
kernel, and we will show in a later section that this is indeed the full kernel. Alternatively,
one can prove that rank(A) = N − 1 by an elementary computation.

In the rest of the proof we will show that if N ≥ 3 then A would have negative
eigenvalues, in contradiction with (2.2). As a consequence we deduce that φ1 cannot have
more than two generalized nodal domains.
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Observe at first that for N = 2 the matrix A ∈ Mat(2× 2;R) has eigenvalues

t0 = 0, t1 = −2m1m2 > 0,

while for N = 3 the matrix A ∈ Mat(3× 3;R) has eigenvalues {t0, t1, t2} satisfying

t0 = 0, t1t2 = 3m1m2m3mλ < 0.

Hence t1 and t2 are nonzero and have different signs. In particular, A has a negative
eigenvalue, a contradiction.

This actually proves that φ1 cannot have three generalized nodal domains. Next we
use the same idea to prove the general case. We remark that the case N > 3 cannot be
directly reduced to the case N = 3 (as in [18]), since there is a nonlocal term 〈φ〉

λ
in

the equation and hence in A. The proof turns out to be more involved. In the sequel we
assume that N ≥ 4.

Since any mj is not zero, we can transform to the new variables

bj = mjaj, j = 1, · · · , N.
In terms of bj’s the quadratic form Q takes the form

Q(~a) =
N∑

i,j=1

mimjaiaj −mλ

N∑
j=1

mja
2
j

=
N∑

i,j=1

bibj −mλ

N∑
j=1

1

mj

b2
j

and the matrix A transforms into

B = −mλ


1
m1

1
m2

. . .
1
mN

+


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1


whose kernel is now given by the span of the vector (m1, · · · ,mN). Moreover, B and A
has the same eigenvalues.

To get the spectral properties of B, one should look at its restriction onto Ker(B)⊥.
However, in that orthogonal subspace, we didn’t find an easy way to handle B. Instead we
consider a complement of Ker(B) given by RN−1 = (0, · · · , 0, 1)⊥, on which the matrix B
takes the form

BN−1 := −mλ


1
m1

1
m2

. . .
1

mN−1

+


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

 ∈ Mat((N − 1)× (N − 1);R).

Note that the second summand is a matrix of rank one. If we write ~1 = (1, · · · , 1)T ∈
RN−1, then

BN−1 = −mλ diag(
1

m1

, · · · , 1

mN−1

) +~1⊗~1 ≡ H0 +H1,
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where H0 denotes the diagonal part and H1 denotes the rank-one part. By the matrix
determinant lemma we have

det(BN−1) = det(H0 +H1)

=
(

1 +~1T (H0)−1~1
)

det(H0)

=

(
1−

N−1∑
i=1

mi

mλ

)
· (−mλ)

N−1

m1m2 · · ·mN−1

=(−1)N−1 mN−2
λ mN

m1 · · ·mN−1

,

and we readily deduce in particular that BN−1 has no vanishing eigenvalues.
At this point we claim that BN−1 has at least one negative eigenvalue. Argue by

contradiction and assume that BN−1 is positive definite. By the Sylvester criterion, the
leading principal minors ofBN−1 must all have positive determinant. For j = 1, 2, · · · , N−
1, let B

(j)
N−1 denote the upper left (j × j) corner, whose determinant is the j-th leading

principal minor, then again using the matrix determinant lemma:

detB
(N−1)
N−1 =(−1)N−1 mN−2

λ

m1m2 · · ·mN−1

mN , (3.1)

detB
(N−2)
N−1 =(−1)N−2 mN−3

λ

m1m2 · · ·mN−2

(mN +mN−1) , (3.2)

detB
(N−3)
N−1 =(−1)N−3 mN−4

λ

m1m2 · · ·mN−3

(mN +mN−1 +mN−2) , (3.3)

detB
(N−4)
N−1 =(−1)N−4 mN−5

λ

m1m2 · · ·mN−4

(mN +mN−1 +mN−2 +mN−3) . (3.4)

Since BN−1 was assumed to be positive definite, they should all be positive.
Recall that

m1 > 0, m2 < 0, · · · · · · (−1)NmN < 0,

and

mλ = m1 +m2 + · · ·+mN > 0.

Case 1: N ≡ 0 (mod 4).
In this case, there is an even number of negative mj’s so that

m1m2 · · ·mN > 0.

Then by (3.1)

detB
(N−1)
N−1 < 0

which is a contradiction.
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Case 2: N ≡ 3 (mod 4). In this case there is an odd number of negative mj’s so that

m1m2 · · ·mN < 0.

Hence by (3.1)

detB
(N−1)
N−1 < 0

which is again a contradiction.

Case 3: N ≡ 1 (mod 4).
Counting the negative signs in the sequence (mj) we find that

m1m2 · · ·mN−2 < 0, m1m2 · · ·mN−3 < 0.

Since both (3.2) and (3.3) are assumed to be positive, we have

mN +mN−1 > 0, mN +mN−1 +mN−2 < 0.

But the above cannot hold simultaneously since mN−2 = m4k−1 > 0 where N = 4k + 1.

Case 4: N ≡ 2 (mod 4). Similarly, counting the negative signs of the mj’s we find that

m1m2 · · ·mN−2 > 0, m1m2 · · ·mN−3 < 0.

From (3.3) and (3.4) we would conclude

mN +mN−1 +mN−2 > 0, mN +mN−1 +mN−2 +mN−3 < 0.

Since for N = 4k+ 2, mN−3 = m4k−1 > 0, the above two inequality cannot hold simulta-
neously.

To summarize, the restricted matrix BN−1 cannot be positive definite. Hence the origi-
nal matrix B, as well as A, must have negative eigenvalues. This, as remarked, contradicts
the min-max principle (2.2). Therefore, the radial first eigenfunction φ1 cannot have more
than two generalized nodal domains, as claimed.

4. A nodal domain theorem for general radial eigenfunctions

We start by recalling the Interlacing theorem which is a consequence of the well-known
Courant-Fischer min-max principle, see e.g. [14, Chapter 8] and the references therein.

Theorem B (Interlacing Theorem). Let K0 be a symmetric N × N matrix, and K1 =
vT ⊗ v a rank-one matrix generated by a column vector v ∈ Rn. Then for 1 ≤ j ≤ N − 2

λj(K0 +K1) ≤ λj+1(K0) ≤ λj+2(K0 +K1),

λj(K0) ≤ λj+1(K0 +K1) ≤ λj+2(K0).

We apply this theorem to the matrix A = K0 +K1, with

K0 = −mλ


m1

m2

. . .
mN

 , K1 =


m2

1 m1m2 . . . m1mN

m2m1 m2
2 . . . m2mN

...
...

. . .
...

mNm1 mNm2 . . . m2
N

 = mTm
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where mT = (m1,m2, · · · ,mN) ∈ RN . Then we get

λj(A) ≤ λj+1(K0).

By the conditions on mi’s, K0 has precisely N∗ ≡ dN2 e negative eigenfunctions. Therefore,

λN∗−1(A) ≤ λN∗(K0) < 0 < λN∗+1(K0) ≤ λN∗+2(A),

with only the signs of λN∗(A) and λN∗+1(A) left undetermined–but we know that one of
them has to be zero! The min-max principle tells that for the k-the eigenfunction,

N∗ − 1 ≤ k − 1

which implies N ≤ 2k, namely the k-th eigenfunction has at most 2k generalized nodal
domains.

This result is sharp in view of the first radial eigenfunction, as we have seen in the
previous section. For higher radial eigenfunctions, we try to show the sharpness from the
matrix viewpoint by some examples.
For the second radial eigenfunction, i.e. k = 2, consider the matrix A with

m1 = +5, m2 = −3, m3 = +5, m4 = −3,

so that mλ = +4. The corresponding matrix A has eigenvalues

60, 12, 0, −20,

hence precisely one negative eigenvalue. The enlarged matrix with mj as above, 1 ≤ j ≤ 4,
while m5 = +5, would have two negative eigenvalues:

75, 27, 0, −45, −45.

This cannot happen in terms of the min-max principle (2.1).
For the third radial eigenfunction, i.e. k = 3, similarly consider a matrix with

m1 = +5, m2 = −3, m3 = +5, m4 = −3, m5 = +5, m6 = −3,

so that mλ = +6. The corresponding matrix A has eigenvalues

90, 18, 18, 0, −30, −30,

with negative inertia index 2! If we increase the size N to 7, with m7 = +5, then the
corresponding A7×7 has eigenvalues

105, 33, 33, 0, −55, −55, −55,

which would again contradict the min-max principle (2.1).
As remarked in the introduction, we don’t know whether the bound 2k is sharp among

all radial eigenfunctions. Note that we cannot, in general, hope for a linear bound of
the form k + a, since there exist non-radial eigenfunctions even on a radially symmetric
domain such as the ball. It thus remains open to find the optimal bound of the number
of nodal domains.
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5. On eigenfunctions with non positive eigenvalues

We present here the proof of Lemma 1.2. Let ek(θ), θ ∈ Sn−1, denote the eigenfunctions
of the Laplace operator on S1 for the eigenvalues

0 = µ1 < (n− 1) = µ2 ≤ µ3 ≤ · · · ,

In particular,
�
Sn−1 ek(θ) dθ = 0 for k ≥ 2.

Consider the eigenfunction φ:

−∆φ− λVλ [φ]
λ

= σVλ [φ]
λ
, in B1.

Since ψλ is radially decreasing thanks to [12], then Vλ = f ′(αλ + λψλ) ≥ 0. For k ≥ 1,
consider the functions φ̄k : (0, 1]→ R defined by

φ̄k(r) :=

� 2π

Sn−1

φ(r, θ)ek(θ) dθ.

Then we would have φ =
∑

k≥0 φ̄
k(r)ek(θ). Note that, e1 = 1 is constant and hence φ̄1e1(θ)

is a radial function.
We claim that φ̄k(r) ≡ 0 for all k ≥ 2. By the boundary condition we know that φ̄k(1) =

0. In the interval (0, 1), the function φ̄k satisfies the ODE

d2

dr2
φ̄k +

n− 1

r

d

dr
φ̄k − µk

r2
φ̄k + λVλ(r)φ̄

k = −σVλ(r)φ̄k, (5.1)

as the average part 〈φ〉
λ

doesn’t contribute in the integration with respect to ek(θ) dθ.

Suppose φ̄k is not identically zero and let r0 be the first zero of φ̄k. W.l.o.g. we may
assume that φ̄k > 0 in (0, r0). Note that the radial solution ψλ satisfies

d2

dr2
(ψ′λ) +

n− 1

r

d

dr
ψ′λ +

(
λVλ −

n− 1

r2

)
ψ′λ = 0 in (0, 1) (5.2)

and ψ′λ(0) = 0, ψ′λ(r) ≤ 0 for r ∈ (0, 1]. Therefore, multiplying both sides of (5.1)
by rn−1ψ′λ(r) and integrating over (0, r0), we have,

� r0

0

rn−1ψ′λ
d2

dr2
φ̄k + (n− 1)rn−2ψ′λ

d

dr
φ̄k − µkrn−3ψ′λφ̄

k + λrn−1Vλ(r)ψ
′
λφ̄

k dr

= −σ
� r0

0

rn−1Vλ(r)ψ
′
λφ̄

k dr.

Integration by parts gives
� r0

0

rn−1ψ′λ
d2

dr2
φ̄k dr = rn−1

0 ψ′λ(r0)
dφ̄k

dr
(r0)

+

� r0

0

(
(n− 1)(n− 2)rn−3ψ′λ + 2(n− 1)rn−2ψ′′λ + rn−1ψ′′′λ

)
φ̄k dr,

� r0

0

(n− 1)rn−2ψ′λ
d

dr
φ̄k dr =

� r0

0

−(n− 1)(n− 2)rn−3ψ′λφ̄
k − (n− 1)rn−2ψ′′λφ̄

k dr,
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where we have used the boundary conditions ψ′λ(0) = 0, φ̄k(r0) = 0. Thus,

rn−1
0 ψ′λ(r0)

dφ̄k

dr
(r0) +

� r0

0

rn−1

(
d2

dr2
ψ′λ +

n− 1

r

d

dr
ψ′λ + λVλψ

′
λ

)
φ̄k dr

−
� r0

0

µkr
n−3ψ′λφ̄k dr = −σ

� r0

0

rn−1Vλ(r)ψ
′
λφ̄

k dr.

Then (5.2) implies that,

rn−1
0 ψ′λ(r0)

dφ̄k

dr
(r0) +

� r0

0

rn−3(n− 1− µk)Vλψ′λφ̄k dr = −σ
� r0

0

rn−1Vλψ
′
λφ̄

k dr.

Note that µk ≥ n − 1 for k ≥ 2, and d
dr
φ̄k(r0) < 0. Thus the l.h.s. of this equality is

positive. On the other side, if σ ≤ 0, then the r.h.s. is non-positive unless φ̄k vanishes
identically in [0, r0].

Therefore, for σ ≤ 0, the eigenfunction φ must be radial, and we deduce that,

0 = (λ+ σ)

�
B1

Vλ [φ]
λ

dx =

�
B1

−∆φ dx =

�
∂B1

−∂φ
∂r

ds = −|Sn−1|φ′(1),

which is the same as φ′(1) = 0.

6. On the multiplicity of eigenvalues

In this section we are going to prove Proposition 1.8. Let φ ∈ H1
0 (B1) be a radial

eigenfunction of σ, which satisfies (1.3). In particular, as above, integration by parts
gives φ′(1) = 0. If 〈φ〉

λ
= 0, then φ satisfies a classical elliptic PDE with φ|∂B1 = 0

and ∂νφ|∂B1 = 0, hence φ ≡ 0, which is impossible. Therefore we have 〈φ〉
λ
6= 0 as far as

φ is nontrivial. As a consequence by (1.3) we see that on ∂B1,

φ′′(1) = (λ+ σ)Vλ(1) 〈φ〉
λ
6= 0.

Now if there were two independent eigenfunctions φ1, φ2 ∈ H1
0 (B1) of the eigenvalue σ,

then we would have,

φj(1) = 0, φ′j(1) = 0, j = 1, 2

and φ′′1(1) 6= 0, φ′′2(1) 6= 0. Thus we could find a linear combination

Φ ≡ αφ1 + βφ2

for some α, β ∈ R such that

Φ′′(1) = 0.

Note that Φ ∈ H1
0 (B1) is also a radial eigenfunction of σ with Φ(1) = 0, Φ′(1) = 0.

Then 〈Φ〉
λ
6= 0 as otherwise we would have Φ ≡ 0, which contradicts that φ1 and φ2

are linearly independent. But then we should have again Φ′′(1) 6= 0, which is the desired
contradiction.
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7. concluding remarks: a degenerate case

The assumption that Vλ > 0 on B1 is crucial in treatment of the problem, as it implies
that φ′′(1) 6= 0. This is usually the case in many applications. For instance, as far as
α > 0, to cover the plasma problem (where f(t) = tp, see [7, 6]), it is enough to assume

f ′ > 0 in (0,+∞)

which implies, for each λ > 0,

Vλ(x) = f ′(αλ + λψλ) > 0 on B1

where (αλ, ψλ) is a solution of (1.1) with αλ > 0. Another well-known example is the
Liouville nonlinearity, where f(t) = et and in fact in this case we are allowed to peak any
α ∈ R ([2, 4]).

However, in one of our aiming applications ([7, 6]) we also need to consider the case
where Vλ|∂B1 = 0, more exactly f(t) = tp and αλ = 0 in the above example. This is a
rather delicate limiting case for the study of the stability of the solutions of the plasma
problem. Actually, as far as we just assume Vλ|∂B1 = 0, the arguments provided above
for the simplicity of the radial eigenfunctions and for the finiteness of the singular points
may be not conclusive in general. However if we knew that

lim
r→1−

Vλ(r)

(1− r)β
= v0, (7.1)

for some β > 0 and v0 > 0, then most of the main properties proved above still hold and
we will sketch the idea of how this is done in the rest of this section.
Remark that, interestingly enough, this is exactly what happens for the model plasma
problem with f(t) = tp for some p > 1 and α = 0. Indeed, in this case by the Hopf
Lemma the radial solution ψ0 satisfies ∂rψ0(1) 6= 0. As a consequence (7.1) holds for Vλ
with β = p− 1 > 0.

We adopt the convention that a function u : [0, 1] → R satisfies a β(> 0)-vanishing
condition at r = 1 if there exists a > 0 such that

lim
r→1−

u(r)

(1− r)β
= a.

Then we have

Theorem 7.1. Assume that: for some 0 ≤ k ∈ N,

• Vλ ∈ Ck,γ([0, 1]), for some γ ∈ (0, 1),
• Vλ satisfies a β-vanishing condition for some β ∈ (k, k + 1].

Let φ be a solution of (1.3) with 〈φ〉
λ
6= 0. Then φ satisfies a (β + 2)-vanishing condition

at r = 1.

Proof. We first prove the assertion for k = 0. Since Vλ ∈ C0,γ([0, 1]) then by standard
elliptic estimates φ is of class C2,γ near r = 1. Clearly (1.3) takes the form,

φ′′(r) +
n− 1

r
φ′(r) + (λ+ σ)Vλ(r)φ(r) = (λ+ σ)Vλ(r) 〈φ〉

λ
, (7.2)
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and since φ(1) = φ′(1) = 0 = Vλ(1), we deduce that φ′′(1) = 0 as well. Therefore we have

|φ′′(r)| ≤ C2(1− r)γ, |φ′(r)| ≤ C1(1− r)1+γ, |φ(r)| ≤ C0(1− r)2+γ.

Let us divide (7.2) by (1− r)β and observe that

1

r

φ(1)(r)

(1− r)β
≤ C

(1− r)1+γ

(1− r)β
≤ C(1− r)γ → 0, r → 1−,

φ(r)

(1− r)β
≤ C

(1− r)2+γ

(1− r)β
≤ C(1− r)1+γ → 0, r → 1−,

whence passing to the limit we find that

lim
r→1−

φ′′(r)

(1− r)β
= lim

r→1−
(λ+ σ) 〈φ〉

λ

Vλ(r)

(1− r)β
= (λ+ σ) 〈φ〉

λ
v0,

which proves the claim for k = 0.

For k ≥ 1, observe that a Ck function u satisfies a β(∈ (k, k + 1])-vanishing condition
at r = 1 if and only if u(j) satisfies a (β − j)-vanishing condition for all 0 ≤ j ≤ k. This
is an immediate consequence of L’Hospital’s rule. In particular, for 1 ≤ j ≤ k,

lim
r→1−

V
(j)
λ

(1− r)β−j
= vj

with vj = β(β − 1) · · · (β − j + 1)v0 > 0. Moreover, in our case, it suffices to prove
that φ(2+k) satisfies a (β − k)-vanishing condition.

Taking the k-th derivative of (1.3) yields an equation of the form,

φ(2+k)(r) +
k+2∑
j=1

cj(r)φ
(2+k−j)(r) = (λ+ σ)V

(k)
λ (r) 〈φ〉

λ
, (7.3)

where cj(r), j = 1, · · · , k + 2 are smooth functions of r near r = 1. Since V
(j)
λ (1) = 0,

j = 1, · · · , k, we have

|φ(2+k−j)(r)| ≤ C0(1− r)j+γ, j = 0, 1, · · · , 2 + k.

Let us divide (7.3) by (1− r)β−k and, recalling that β − k ∈ (0, 1], observe that,

k+2∑
j=1

|cj(r)|
∣∣∣∣φ(2+k−j)(r)

(1− r)β−k

∣∣∣∣ ≤ C
k+2∑
j=1

(1− r)j+γ

(1− r)β−k
≤ C

k+2∑
j=1

(1− r)j−1+γ → 0, r → 1−,

whence passing to the limit we find that

lim
r→1−

φ(2+k)(r)

(1− r)β−k
= lim

r→1−
(λ+ σ) 〈φ〉

λ

V
(k)
λ (r)

(1− r)β−k
= (λ+ σ) 〈φ〉

λ
vk,

which proves the claim for k ≥ 1.
�
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Theorem 7.1 guarantees that the argument for simplicity of the space of radial eigen-
functions associated to a fixed σ works as well and in particular we deduce that Propo-
sition 1.8 holds under the assumptions about Vλ of Theorem 7.1.
For the other results, Lemma 1.2 holds since the argument in the proof does not require
the positivity of Vλ at the boundary.
As for the main results, Theorem 1.6 and Theorem 1.7, we have to clarify first what we
mean by a generalized nodal domain, since in this case we cannot impose that φ′′(1) > 0.
However this degeneracy only occurs at r = 1 since the solution ψ to (1.1) is positive in
the interior of the domain, whence by definition Vλ has the same property as well. Thus
we take the following definition:

Definition 7.2. Let φ be a radial eigenfunction of (1.3) with 〈φ〉
λ
> 0 in B1. A singular

point of φ is a point r0 ∈ [0, 1] such that

• φ(r0) = 0, φ′(r0) = 0;
• φ satisfies some β-vanishing condition for some 0 < β < +∞ at r = r0.

If Vλ is positive up to the boundary, then we see that the above definition is equivalent
to Definition 1.3. On the other side, under the assumptions of Theorem 7.1, we can still
use the concept of generalized nodal domain as above and the proof in Section 3 still
works in this setting. Indeed Theorem 7.1 in particular guarantees that there is only a
finite number of generalized nodal domains. Therefore the main Theorems 1.6 and 1.7
are valid as well.

Data Availability Statement. Data sharing not applicable to this article as no datasets
were generated or analyzed during the current study.
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