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Abstract. We give an overview of our recent new proof of the Riemannian Penrose inequal-
ity in the case of a single black hole. The proof is based on a new monotonicity formula,
holding along the level sets of the p–capacitary potential of the connected boundary of an
asymptotically flat 3–manifold, with nonnegative scalar curvature.

1. The Riemannian Penrose Inequality

The Penrose conjecture is a longstanding open problem in mathematical relativity. In the
case of an isolated gravitational system containing a single black hole and obeying the dom-
inant energy condition (see [19, Chapter 7]), it says that the “mass” of an asymptotically
flat initial datum for the Einstein field equations is at least as large as the one of a refer-
ence space–like Schwarzschild manifold, whose horizon boundary has the same area as the
horizon of the given initial datum. Here, the relevant concept of mass is the ADM mass, a
global invariant introduced by Arnowitt, Deser and Misner in the late fifties (see [3]), which
is supposed to measure the total amount of mass contained in an asymptotically flat initial
datum. We recall that in the PDE’s formulation of general relativity, the Einstein field equa-
tions are interpreted as a hyperbolic system whose solutions are four–dimensional space–time
Lorentzian manifolds. Then, an asymptotically flat initial datum is a triple (M, g, h), where
(M, g) is a three–dimensional asymptotically flat Riemannian manifold and h is a symmet-
ric (2, 0)–tensor field, representing the second fundamental form of M inside his (globally)
hyperbolic space–time development. In this framework, the Penrose conjecture affirms that

mADM ≥
√

|∂M |
16π

, (1.1)

where |∂M | denotes the area of the horizon boundary of M .
Penrose viewed it as a test result for the validity of his final–state conjecture (see [18,

Section 5] and [8, Section 1]) which, roughly speaking, says that the space–time evolution of
a generic asymptotically flat initial datum eventually gets closer and closer to a stationary
Kerr solution (see [25]) in the long run. If such a far reaching conjecture would be correct,
then the Penrose inequality (1.1) would also be true. Indeed, by Hawking’s area theorem, the
area of the horizon is nondecreasing along the evolution of the initial datum, whereas the
Trautman–Bondi mass (see [11]) – another concept of mass, which coincides with the ADM
mass on the initial datum – is nonincreasing. On the other hand, the inequality

mTB ≥
√

Horizon Area

16π
(1.2)
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can be seen to hold on any Kerr solution, hence at the asymptotic final–stage of the evolution,
provided the final–state conjecture is correct. Combining the latter fact with the opposite
monotonicities of mass and area, it turns out that the inequality (1.2) must hold a fortiori on
the initial datum, where it coincides with the Penrose inequality (1.1). This shows that the
Penrose inequality is a necessary condition for the validity of the final–state conjecture.

It is worth mentioning that the Penrose conjecture is still an open problem in its full gen-
erality. Remarkably, its validity has has been established within the class of time–symmetric
initial data, i.e. for initial data whose second fundamental form is vanishing inside their glob-
ally hyperbolic development. Since time–symmetric initial data are often called Riemannian
initial data in the physics literature, inequality (1.1) is often referred to as the Riemannian
Penrose inequality (RPI), in this context.

In dimension three, proofs of the RPI were obtained by G. Huisken and T. Ilmanen in
1997, for the case of a single black hole [17] and by H. Bray in 1999, for the general case
of multiple black holes [7]. The proof of Huisken and Ilmanen is based on the monotonicity
of a certain quantity, called Hawking mass, along a family of surfaces moving by (a weak
form of) the inverse mean curvature flow. Bray’s argument uses instead a flow of metrics,
called conformal flow, that deforms the original metric to a Schwarzschild one – representing
a spherically symmetric black hole in the vacuum – in a way that the total mass of the space
does not increase and the total area of the horizons does not decrease. Therefore, these two
approaches use two different geometric flows, while our proof relies on a monotonicity formula
holding along the level sets of appropriate p–capacitary potentials. Although our argument
cannot apparently be generalized to the case of multiple black holes and does not allow us,
so far, to characterize the equality case, its brevity and simplicity distinguish it from the
previous proofs of the Riemannian Penrose inequality. Actually, we think that our proof is
elementary enough to be understood by graduate students with a standard training in PDE’s
and Riemannian geometry.

We mention that several monotone quantities, involving appropriate harmonic functions [2,
20, 21, 22] or suitable p–harmonic functions [1, 9, 15], have been discovered thanks to the
groundbreaking work of Stern [23]. They have been used to obtain comparison results (con-
cerning the area of the level sets of the considered harmonic or p–harmonic functions, the
bottom spectrum, the ADM mass and the capacity). All these monotone quantities are com-
pared in [15], except those in [22], which are the only ones modeled on the Schwarzschild
manifolds.

In order to state precisely the result, we recall some definitions.

Definition 1.1. A complete 3–dimensional Riemannian manifold (M, g), with or without
boundary and with one single end, is said to be asymptotically flat with decay rate τ , if the
following conditions are satisfied:

(1) there exists a compact set K ⊆ M such that the end E = M \ K is diffeomorphic
to the complement of a closed ball in R3 centered at the origin, through a so called
asymptotically flat coordinate chart (E, (x1, x2, x3));

(2) in such a chart, the metric tensor can be expressed as

g = gij dx
i ⊗ dxj = (δij + γij) dx

i ⊗ dxj ,

with ∑
i, j

|x|τ |γij |+
∑
i, j, k

|x|1+τ |∂kγij |+
∑

i, j, k, ℓ

|x|2+τ |∂ℓ∂kγij | = O(1) ,
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as |x| → +∞ (here, δ is the Kronecker delta function).

According to the physicists Arnowitt, Deser and Misner who first introduced it in [3], the
ADM mass of an asymptotically flat Riemannian 3–manifold is defined as follows

mADM = lim
r→+∞

1

16π

ˆ

{|x |=r}

(∂jgij − ∂igjj)
xi

|x|
dσ ,

where dσ is the area element on the sphere {|x| = r} with respect to the Euclidean metric.
It can then be shown that if the scalar curvature of (M, g) is nonnegative and the decay rate
τ is strictly larger than 1/2, the ADM mass is a well defined geometric invariant, i.e., the
above limit exists (possibly equal to +∞) and its value does not depend on the particular
asymptotically flat coordinate chart in which the limit is computed (see [4] and [10]).

We can then state the Riemannian Penrose inequality for single black hole initial data.

Theorem 1.2 (Riemannian Penrose inequality for single black hole initial data). Let (M, g)
be a 3–dimensional, complete, connected, noncompact Riemannian manifold with a smooth,
compact, connected boundary and one single end. Assume that:

(1) the metric g has nonnegative scalar curvature R ≥ 0;
(2) (M, g) is asymptotically flat with decay rate τ = 1;
(3) ∂M is the unique closed minimal surface in (M, g).

Then, the ADM mass satisfies

mADM ≥
√

|∂M |
16π

, (1.3)

where |∂M | denotes the area of ∂M .

We are going to present here the proof with some technical simplifications, skipping details
that are fully addressed in [1]. We also mention, for completeness, that another proof of
Riemannian Penrose inequality under the optimal decay assumptions was been showed in [6],
through the use of the isoperimetric mass introduced by Huisken in [16].

2. A proof via nonlinear potential theory

The main idea of the proof is to consider, for every 1 < p < 3, the elliptic problem
∆pu = 0 in M

u = 0 on ∂M

u → 1 at ∞
(2.1)

where ∆pu = div
(
|∇u|p−2∇u

)
is the p–Laplacian operator of (M, g) (in the whole paper, ∇

denotes the Levi–Civita connection of (M, g)). This problem admits a unique (weak) solution

up ∈ W 1,p
loc (M) in C 1,β on any bounded open set, for some β > 0 (hence, a p–harmonic

function). It takes values in [0, 1) and it is a proper function from M to [0, 1). Furthermore,
up is smooth at the points where the gradient does not vanish and attains smoothly the datum
on the boundary, as zero is a regular value, by the Hopf lemma (see [5, Section 2]).

We then recall that, for any 1 ≤ p < 3, the p–capacity of ∂M is defined as

Capp(∂M) = inf

{ˆ
M

|∇v|p dµ : v ∈ C∞
c (M), v = 1 on ∂M

}
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and, when 1 < p < 3, it is related to up through the following identities

Capp(∂M) =

ˆ

M

|∇up|p dµ =

ˆ

{up=t}

|∇up|p−1 dσ , (2.2)

for every regular value t of up, see [5, Section 2]. We set

cp =

(
Capp(∂M)

4π

) 1
p−1

, (2.3)

moreover, whenever there is no possibility of misunderstanding, we will drop the subscript p
and we will simply denote with u the solution of problem (2.1).

With these notations, we introduce the vector field X as

X =
c
p−1
3−p
p[3−p

p−1 (1− u)
] p−1
3−p

{
|∇u|p−2∇u

cp−1
p

+
∇|∇u| − ∆u

|∇u|∇u

3−p
p−1 (1− u)

+
|∇u|∇u[3−p

p−1 (1− u)
]2
}

,

which is well defined and smooth away from the critical points of u. Then, we consider the
function

Fp(t) =

ˆ

{u=αp(t)}

〈
X,

∇u

|∇u|

〉
dσ = 4πt − t

2
p−1

cp

ˆ

{u=αp(t)}

|∇u|H dσ +
t
5−p
p−1

c2p

ˆ

{u=αp(t)}

|∇u|2 dσ , (2.4)

where

αp(t) = 1−
( tp
t

)3−p
p−1

, with tp =
( p− 1

3− p
cp

)p−1
3−p

, (2.5)

and the variable t ranges in [ tp,+∞). The function Fp is then well defined whenever αp(t) is
a regular value of u and the second equality follows by a straightforward computation, taking
into account the equalities (2.2), (2.3) and the expression

H = −(p− 1)
∇∇u(∇u,∇u)

|∇u|3

for the mean curvature H of a regular level set of u (with respect to the unit normal ∇u/|∇u|)
which is obtained by making explicit the equation ∆pu = 0.

The first step of the proof is to show that the function Fp is monotone nondecreasing. We
are going to prove this under the favorable hypothesis that the function u has no critical points,
indeed, this fact has two relevant consequences: first, all the level sets of u are connected closed
surfaces, being all diffeomorphic to {u = 0} = ∂M which is a connected closed surface and
second, all the previous quantities are well defined and smooth everywhere. In the general
case, without such assumption, one has to deal with the possible lack of these two properties,
making the proof of the monotonicity of Fp technically much more complicated (we refer the
reader to [1]).
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Step 1. Monotonicity of Fp. With the help of the Bochner formula and the twice contracted
Gauss equation, the divergence of X can be expressed as

divX =
c
p−1
3−p
p |∇u|[3−p

p−1 (1− u)
] p−1
3−p

+1

{
| ∇Σ|∇u| |2

|∇u|2
+

R

2
+

|
◦
h|2

2
+

5− p

p− 1

(
|∇u|

3−p
p−1 (1− u)

− H

2

)2

+
|∇u|p−1

cp−1
p

− RΣ

2

}
,

where RΣ(q), ∇Σ and
◦
h(q) represent the scalar curvature, the Levi–Civita connection and

the trace–free second fundamental form of the level set Σ = {u = u(q)} passing through the
point q ∈ M . Then, since all the values in the range of u are regular, the monotonicity of Fp

can be deduced by means of the divergence theorem and the coarea formula,

Fp(t)− Fp(s) =

ˆ

{u=αp(t)}

〈
X,

∇u

|∇u|

〉
dσ −

ˆ

{u=αp(s)}

〈
X,

∇u

|∇u|

〉
dσ

=

ˆ

{αp(s)<u<αp(t)}

divX dµ =

ˆ

(αp(s),αp(t))

dτ

ˆ

{u=τ}

divX

|∇u|
dσ

=

tˆ

s

dτ

ˆ

{u=αp(τ)}

[
| ∇Σ|∇u| |2

|∇u|2
+

R

2
+

|
◦
h|2

2
+

5− p

p− 1

(
|∇u|

3−p
p−1 (1− u)

− H

2

)2 ]
dσ

+

tˆ

s

dτ

ˆ

{u=αp(τ)}

(
|∇u|p−1

cp−1
p

− RΣ

2

)
dσ .

Now, recalling that RΣ/2 is equal to the Gaussian curvature G of the surface Σ and formu-
las (2.2), (2.3), the last integral is equal to

tˆ

s

(
4π −

ˆ

{u=αp(τ)}

G dσ
)
dτ =

tˆ

s

[
4π − 2πχ

(
{u = αp(τ)

) ]
dτ ≥ 0 ,

where the equality is given by the Gauss–Bonnet theorem. Here, χ
(
{u = αp(τ)}

)
is the

Euler characteristic of the level set {u = αp(τ)}. When |∇u| > 0, all the level sets are
diffeomorphic to each other, in particular they are all diffeomorphic to the boundary ∂M ,
which is a connected closed surface. Hence 4π − 2πχ({u = αp(τ)}) ≥ 0, for every τ , and the
conclusion then follows as R ≥ 0, by assumption. □

Remark 2.1. As we said the monotonicity part is formal, rigorous only if the critical points
of the function u are not present, being the vector field X well defined and smooth only away
from these points, hence we cannot in general apply the divergence theorem. Nevertheless,
through a suitable sequence of cut–off functions, we can always limit from below the difference
Fp(t)−Fp(s) with the integral on the open set {αp(s) < u < αp(t)} of the extension of divX
which is zero on such critical points and subsequently apply the coarea formula as above.
Actually, the main difference between the case without critical points and the general one
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is that there is no control on the set of the critical values of u, which a priori could even
have positive Lebesgue measure. Indeed, being the p–harmonic functions in general only of
class C 1,β, Sard theorem cannot be applied. This clearly could affect the regularity of “too
many” surfaces–level sets of the function u, not allowing the application of the Gauss–Bonnet
theorem as we did above. In order to overcome these difficulties, the idea is to “locally”
approximate the p–harmonic function u with the solutions uε,T of the following perturbed
problem (inspired by the works of Di Benedetto [12, 13] and similarly done in [9])


div
(
|∇v|p−2

ε ∇v
)
= 0 in {0 ≤ u ≤ T}

v = 0 on ∂M

v = T on {u = T}

where |∇v|ε =
√
|∇v|2 + ε2 and T is a fairly large regular value of u. The functions uε,T are

smooth (so Sard theorem can be applied) and C k
loc–converge to the function u outside {|∇u| =

0}, for every k ∈ N, as ε → 0, then, with the same line as before we can consider analogous
functions F ε

p , pointwise converging to Fp, as ε → 0, which are “almost” nondecreasing, up to
an “error term” going to zero as ε → 0. Hence, sending ε → 0, we obtain the monotonicity
of the original function Fp. For full details, we refer to [1, Section 1].

The monotonicity of Fp clearly leads to the inequality

Fp(tp) ≤ lim
t→+∞

Fp(t) , (2.6)

where the limit of Fp at infinity is well defined, by the “good” asymptotic behavior at infinity
of the function u, described by the expansion

u = 1− p− 1

3− p

cp

|x|
3−p
p−1

+ o2
(
|x|−

3−p
p−1
)

(2.7)

(see [5, Theorem 3.1]).

Step 2. The limit of Fp at infinity is bounded above by 8πmADM. By formula (2.4) we have

lim
t→+∞

Fp(t) = lim
t→+∞

4π − t
3−p
p−1

cp

´
{u=αp(t)}

|∇u|H dσ + t
2(3−p)
p−1

c2p

´
{u=αp(t)}

|∇u|2 dσ

1/t
,

where the right hand limit is an indeterminate form 0/0, by the expansion (2.7). Hence,
applying the generalized version of de l’Hôpital’s theorem in [24, Theorem II], we obtain the
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estimate

lim
t→+∞

Fp(t) ≤ lim sup
t→+∞

d
dt

[
4π − t

3−p
p−1

cp

´
{u=αp(t)}

|∇u|H dσ + t
2(3−p)
p−1

c2p

´
{u=αp(t)}

|∇u|2 dσ
]

−1/t2

= lim sup
t→+∞

{
− t

ˆ

{u=αp(t)}

[
| ∇Σ|∇u| |2

|∇u|2
+

R

2
+

|
◦
h|2

2
+

3− p

2(p− 1)

(
2|∇u|

3−p
p−1 (1− u)

− H

)2 ]
dσ

+ t

ˆ

{u=αp(t)}

RΣ

2
dσ − t

ˆ

{u=αp(t)}

H2

4
dσ

}

≤ lim sup
t→+∞

t

ˆ

{u=αp(t)}

RΣ

2
dσ − t

ˆ

{u=αp(t)}

H2

4
dσ

= lim sup
t→+∞

t

4

(
16π −

ˆ

{u=αp(t)}

H2 dσ

)
,

where the last identity follows by the Gauss–Bonnet theorem, as the level sets are all dif-
feomorphic to a 2–dimensional sphere, for t large enough. Then, the way to deal with the
term

Mp(t) =
t

4

(
16π −

ˆ

{u=αp(t)}

H2 dσ

)
,

is to compare it with the analogous quantity computed with respect to the Euclidean back-
ground metric. By means of the knowledge of the behavior of u at infinity, formula (2.7), one
gets

Mp(t) =
t

4

(
16π −

ˆ

Σt

H
2
dσ

)
+

1

2

ˆ

Σt

divΣtY
⊤ dσ +

1

2

ˆ

Σt

(
∂jgij − ∂igjj

)
νi dσ + o(1) ,

where the bar denotes the quantities in the Euclidean metric, Y is the vector field defined by
(gij − δij)ν

i∂j and Y ⊤ denotes its tangential component, namely Y ⊤ = Y − g(Y, ν)ν.
The first term in the right hand side of the equality is nonpositive by the Euclidean Willmore
inequality (see [26]), the second vanishes by the divergence theorem and it is well known that
the third one tends to 8πmADM, as t → +∞ (see [4, Proposition 4.1]). Thus,

lim
t→+∞

Fp(t) ≤ lim sup
t→+∞

Mp(t) ≤ 8πmADM .

□

Step 3. Proof of the Riemannian Penrose inequality – Theorem 1.2. By inequality (2.6) and
the above estimate, recalling the expression (2.4) of Fp, one gets

8πmADM ≥ Fp(tp) = 4πtp − t
2

p−1
p

cp

ˆ

∂M

|∇u|H dσ +
t
5−p
p−1
p

c2p

ˆ

∂M

|∇u|2 dσ ≥ 4πtp ,
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as {u = αp(tp)} = {u = 0} = ∂M is a minimal surface, hence H = 0. Making explicit cp and
tp with formulas (2.3) and (2.5), we obtain the following inequality involving the p–capacity
of ∂M ,

mADM ≥ 1

2

( p− 1

3− p

)p−1
3−p

(
Capp(∂M)

4π

) 1
3−p

.

Then, the Riemannian Penrose inequality (1.3) follows by sending p → 1+, as there holds

lim
p→1+

Capp(∂M) = |∂M |

by [14, Theorem 1.2]. □
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