MINIMAL EXTENSION FOR THE α-MANHATTAN NORM

DANIEL CAMPBELL, AAPO KAURANEN, AND EMANUELA RADICI

Abstract

Let $\partial \mathcal{Q}$ be the boundary of a convex polygon in $\mathbb{R}^{2}, e_{\alpha}=(\cos \alpha, \sin \alpha)$ and $e_{\alpha}^{\perp}=(-\sin \alpha, \cos \alpha)$ be a basis of \mathbb{R}^{2} for some $\alpha \in[0,2 \pi)$ and $\varphi: \partial \mathcal{Q} \rightarrow \mathbb{R}^{2}$ be a continuous, finitely piecewise linear injective map. We construct a finitely piecewise affine homeomorphism $v: \mathcal{Q} \rightarrow \mathbb{R}^{2}$ coinciding with φ on $\partial \mathcal{Q}$ such that the following property holds: $\left|\left\langle D v, e_{\alpha}\right\rangle\right|(\mathcal{Q})$ (resp. $\left\langle D v, e_{\alpha}^{\perp}\right\rangle \mid(\mathcal{Q})$) is as close as we want to $\inf \left|\left\langle D u, e_{\alpha}\right\rangle\right|(\mathcal{Q})$ (resp. inf $\left.\left|\left\langle D u, e_{\alpha}^{\perp}\right\rangle\right|(\mathcal{Q})\right)$ where the infimum is meant over the class of all $B V$ homeomorphisms u extending φ inside \mathcal{Q}. This result extends that already proven in $[14$ in the shape of the domain.

1. Introduction

In this paper we are interested in the problem of extending injective continuous and piecewise linear boundary values from a convex polygon by piecewise affine homeomorphisms. The motivation for such a study arises in the context of approximation problems found in regularity theory for non-linear elasticity. There is already a plurality of extension results in a variety of contexts, which have been applied to solve various approximation problems. Let us now give an overview of some examples.

In general, we are interested in the approximation of a weakly differentiable homeomorphism, which we would like to approximate by \mathcal{C}^{1} homeomorphisms or by locally finite piecewise affine homeomorphisms. The approximation of a planar $W^{1, p}$ homeomorphism $1<p<\infty$ in [10] and [11] relies heavily on the injectivity of the harmonic extension of convex boundary values. In [7] the authors were also able to approximate a bi-Lipschitz map and its inverse simultaneously in the p, p bi-Sobolev setting and to do so used the extension result in [6]. In order to solve the $W^{1,1}$ case in [9, the authors had to develop an independent extension result in that paper which was further examined and improved in [2] and [16]. The extension result was also utilised in the 1,1 bi-Sobolev setting in [13]. Finally let us mention that the authors of [15] approximate planar $B V$ homeomorphisms using an extension result they proved in [14].

More than just approximation of weakly differentiable homeomorphisms by diffeomorphisms these extension results have been key in examining the behaviour of weak and strong limits of homeomorphisms in their respective classes. Such results include a categorisation of the closure of Hom $\cap W^{1, p}, p \geq 2$ in [12], a categorisation of the closure of Hom $\cap W^{1, p}, 1<p<2$ in [8] and partial $B V$ result in [4].

[^0]It was demonstrated in 14 that their main extension result can be "rotated" to approximate a BV homeomorphism strictly and similarly in [15] for the areastrict case. Nevertheless this approach makes the application of the extension result somewhat cumbersome and technical. The main result of the present paper is a piecewise affine homeomorphic extension that improves on that of [14]. More precisely, we consider extensions of piecewise linear boundary values defined on boundary of convex quadrilaterals (and not only rectangles parallel to the coordinate axes as in [14]) which are optimal in a particular BV sense. We emphasize that the generality of the class of convex quadrilaterals includes the "rotated" version of the extension result of [14]. Also our Theorem 1.2 is stronger than the extension theorem there (not only because of the shape of \mathcal{Q}) in the sense that it immediately implies their extension theorem but the opposite is not true. Nevertheless this improvement is a case of separating estimates already conducted in [14].

The motivation for our extension theorem is the full categorisation result in [5], where we identify a condition which guarantees that a map is a strict or area-strict limit of BV homeomorphisms. In the course of the approximation we want to work on grids that are not only made up of rectangles and we prefer to not have to rotate the rectangles. In that sense we need the current result, which we present below, after we set some necessary notation.

Let $\mathcal{Q} \subset \mathbb{R}^{2}$ be a convex polygon, let $\alpha \in[0,2 \pi)$ be fixed and call $e_{\alpha}=(\cos \alpha, \sin \alpha)$ and $e_{\alpha}^{\perp}=(-\sin \alpha, \cos \alpha)$. We define the following numbers

$$
\begin{align*}
a^{-}:=\inf \left\{\left\langle x, e_{\alpha}^{\perp}\right\rangle: x \in \mathcal{Q}\right\} & a^{+}:=\sup \left\{\left\langle x, e_{\alpha}^{\perp}\right\rangle: x \in \mathcal{Q}\right\}, \\
b^{-}:=\inf \left\{\left\langle x, e_{\alpha}\right\rangle: x \in \mathcal{Q}\right\}, & b^{+}:=\sup \left\{\left\langle x, e_{\alpha}\right\rangle: x \in \mathcal{Q}\right\} . \tag{1.1}
\end{align*}
$$

For each $s \in\left(a^{-}, a^{+}\right)$we define V_{s}^{1}, V_{s}^{2} uniquely by the conditions

$$
\begin{equation*}
V_{s}^{1}, V_{s}^{2} \in \partial \mathcal{Q}, \quad\left\langle V_{s}^{1}, e_{\alpha}^{\perp}\right\rangle=\left\langle V_{s}^{2}, e_{\alpha}^{\perp}\right\rangle=s, \quad\left\langle V_{s}^{1}, e_{\alpha}\right\rangle<\left\langle V_{s}^{2}, e_{\alpha}\right\rangle \tag{1.2}
\end{equation*}
$$

Similarly for every $t \in\left(b^{-}, b^{+}\right)$we define H_{t}^{1}, H_{t}^{2} uniquely by

$$
\begin{equation*}
H_{t}^{1}, H_{t}^{2} \in \partial \mathcal{Q}, \quad\left\langle H_{t}^{1}, e_{\alpha}\right\rangle=\left\langle H_{t}^{2}, e_{\alpha}\right\rangle=t, \quad\left\langle H_{t}^{1}, e_{\alpha}^{\perp}\right\rangle<\left\langle H_{t}^{2}, e_{\alpha}^{\perp}\right\rangle \tag{1.3}
\end{equation*}
$$

Let $\varphi: \partial \mathcal{Q} \rightarrow \mathbb{R}^{2}$ be continuous, injective and piecewise linear. We denote \mathcal{P} as the bounded component of $\mathbb{R}^{2} \backslash \varphi(\partial \mathcal{Q})$. For every pair of points $\mathbf{A}, \mathbf{B} \in \overline{\mathcal{P}}$ we denote by $\rho_{\mathcal{P}}(\mathbf{A}, \mathbf{B})$ the geodesic distance between \mathbf{A} and \mathbf{B} inside $\overline{\mathcal{P}}$. We define the quantity

$$
\Psi_{\alpha}(\varphi):=\int_{a^{-}}^{a^{+}} \rho_{\mathcal{P}}\left(\varphi\left(V_{s}^{1}\right), \varphi\left(V_{s}^{2}\right)\right) d s+\int_{b^{-}}^{b^{+}} \rho_{\mathcal{P}}\left(\varphi\left(H_{t}^{1}\right), \varphi\left(H_{t}^{2}\right)\right) d t
$$

Further for $u \in B V\left(\Omega, \mathbb{R}^{2}\right)$ we denote the α-Manhattan norm of $D u$ as $\|\cdot\|_{\alpha}$ which we define as

$$
\|D u\|_{\alpha}(\mathcal{Q}):=\left|\left\langle D u, e_{\alpha}\right\rangle\right|(\mathcal{Q})+\left|\left\langle D u, e_{\alpha}^{\perp}\right\rangle\right|(\mathcal{Q}) .
$$

The main results of the paper is are the follwoing.
Theorem 1.1. Let $\alpha \in[0,2 \pi)$ be fixed, $\mathcal{Q} \subset \mathbb{R}^{2}$ be a convex polygon and $\varphi: \partial \mathcal{Q} \rightarrow \mathbb{R}^{2}$ be a continuous piecewise linear injective map. Then for every $\varepsilon>0$ there exists a finitely piecewise affine homeomorphism $v: \mathcal{Q} \rightarrow \mathbb{R}^{2}$ extending φ, such that

$$
\begin{equation*}
\|D v\|_{\alpha}(\mathcal{Q}) \leq \Psi_{\alpha}(\varphi)+\varepsilon \tag{1.4}
\end{equation*}
$$

Theorem 1.2. Let $\varepsilon>0$ and let v be the extension from Theorem 1.1 then

$$
\begin{align*}
& \left|\left\langle D v, e_{\alpha}\right\rangle\right|(\mathcal{Q}) \leq \int_{b^{-}}^{b^{+}} \rho_{\mathcal{P}}\left(\varphi\left(H_{t}^{1}\right), \varphi\left(H_{t}^{2}\right)\right) d t+\varepsilon \text { and } \tag{1.5}\\
& \left|\left\langle D v, e_{\alpha}^{\perp}\right\rangle\right|(\mathcal{Q}) \leq \int_{a^{-}}^{a^{+}} \rho_{\mathcal{P}}\left(\varphi\left(V_{s}^{1}\right), \varphi\left(V_{s}^{2}\right)\right) d s+\varepsilon
\end{align*}
$$

Let us remark that Theorem 1.2 immediately implies Theorem 1.1 but the argument used to construct v is exactly the same. Also it is immediate that
$\int_{b^{-}}^{b^{+}} \rho_{\mathcal{P}}\left(\varphi\left(H_{t}^{1}\right), \varphi\left(H_{t}^{2}\right)\right) d t \leq \inf \left\{\left|\left\langle D u, e_{\alpha}\right\rangle\right|(\overline{\mathcal{Q}}): u \in \operatorname{Hom} \cap B V\left(\overline{\mathcal{Q}}, \mathbb{R}^{2}\right), u=\varphi\right.$ on $\left.\partial \mathcal{Q}\right\}$
and
$\int_{a^{-}}^{a^{+}} \rho_{\mathcal{P}}\left(\varphi\left(V_{s}^{1}\right), \varphi\left(V_{s}^{2}\right)\right) d s \leq \inf \left\{\left|\left\langle D u, e_{\alpha}^{\perp}\right\rangle\right|(\overline{\mathcal{Q}}): u \in \operatorname{Hom} \cap B V\left(\overline{\mathcal{Q}}, \mathbb{R}^{2}\right), u=\varphi\right.$ on $\left.\partial \mathcal{Q}\right\}$
and our result in fact shows that there is a sequesnce of homeomorphisms achieving the infimum and having variation converging to the left hand side in the sense of (1.5). This fact is actually a direct consequence of the proofs in [14], though it was not explicitely remarked there. The key argument is in Theorem 2.9.
1.1. Sketch of the proof. Before expounding the proof in detail, let us look at an overview of the proof. We start with a convex polygon \mathcal{Q}. Up to a rotation of α we may assume that $\alpha=0$. Either (the rotated) \mathcal{Q} has horizontal sides, or after removing a tiny triangle called T_{1} close to the lowest point of \mathcal{Q} and a triangle called T_{2} close to the highest point of \mathcal{Q} we get a convex Δ that has a pair of horizontal sides (see Figure 1). We extend φ on $\partial T_{1}, \partial T_{2}$ so that it is continuous injective and piecewise linear. By making the triangles small enough we guarantee that $\Psi_{0}(\varphi(\Delta))+\Psi_{0}\left(\varphi\left(T_{1}\right)\right)+\Psi_{0}\left(\varphi\left(T_{2}\right)\right) \leq \Psi_{0}(\varphi(\mathcal{Q}))+\varepsilon$. Here our new φ extends the original φ from $\partial \mathcal{Q}$. This step is Lemma 3.2.

Now we separate Δ into thin horizontal strips S_{i} (see Figure 22), defining a continuous injective piecewise linear φ on ∂S_{i} so that $\sum_{i=1}^{M} \Psi_{0}\left(\varphi\left(\partial S_{i}\right)\right) \leq \Psi_{0}(\varphi(\partial \Delta))+\varepsilon$ which extends the original φ from $\partial \Delta \cup \partial T_{1} \cup \partial T_{2}$. This step is Lemma 3.3.

We separate each S_{i} into a central rectangle and a pair of right-angle triangles at each end. On the rectangular domains R_{i} we can use Proposition 2.8 to extend the boundary values and get a piecewise affine homeomorphism w_{i} on the R_{i} satisfying an estimate on $\left|D w_{i}\right|\left(R_{i}\right)$. In Lemma 4.2 we show how we extend the boundary values to get a piecewise affine homeomorphism on the triangles at the ends of the strips, see Figure 4. We do this by further separating them into even thinner rectangles where we can extend and estimate as above. The remaining part of the set is so small that its contribution to the norm is bounded by $2^{-i} \varepsilon$.

The final part of the proof is collating the estimates and summing to estimate that our mapping v satisfies (1.4).

2. Preliminaries

In this subsection we recall a list of definitions and known geometrical results which are already available in the literature. Most of them are taken from [14] and 15].

Notation 2.1. Throughout the paper we endeavour to keep to the following norms of notation:

- \mathcal{Q} is a convex polygon,
- $\alpha \in[0,2 \pi)$ is a given angle and the vector $e_{\alpha}:=(\cos \alpha, \sin \alpha)$. Also we denote $e_{\alpha}^{\perp}:=(\cos (\alpha+\pi / 2), \sin (\alpha+\pi / 2))$,
- u and v are planar $B V$ mappings,
- $a^{-}, a^{+}, b^{-}, b^{+}$are the numbers from (1.1), typically $s \in\left(a^{-}, a^{+}\right)$and $t \in$ $\left(b^{-}, b^{+}\right)$and $\ell=a^{+}-a^{-}, h=b^{+}-b^{-}$,
- Δ is a convex polygon with 2 sides parallel to α,
- $T, T_{1}, T_{2}, \tilde{T}, T_{i}^{1}, T_{i}^{2}$ are all triangles,
- $V_{s}^{1}, V_{s}^{2}, H_{t}^{1}, H_{t}^{2}$ are the points satisfying the conditions in (1.2) and (1.3) although we may replace \mathcal{Q} with another convex polygon, for example Δ or T,
- by $\mathcal{R}_{\mathcal{Q}}=\left[a^{-}, a^{+}\right] e_{\alpha}+\left[b^{-}, b^{+}\right] e_{\alpha}^{\perp}$ we denote the smallest rectangle with sides parallel to e_{α} and e_{α}^{\perp} containing \mathcal{Q},
- $c_{1}, c_{2}, d_{1}, d_{2}, \in \mathbb{R}$ are ordinates,
- by \tilde{C} we denote a generic constant whose precise value may vary between estimates,
- points in the preimage are $A, B, C, D, E, F, G, P, Q, \boldsymbol{H}^{\top}$
- d $:=|\varphi(A)-\varphi(C)|$ is the length of the image of the hypotenuse of the triangle $A B C$ in φ,
- $\beta \in\left(0, \frac{\pi}{2}\right)$ is the angle at A in the triangle $A B C$,
- $\eta>0$ is a small chosen parameter,
- points in the image are written in bold font e.g. A, B, C, D, X, Y, Z,
- $\mathcal{P}, \mathcal{P}_{0}, \mathcal{P}^{+}$are polygons in the image, typically the piecewise affine image of a polygon in the preimage e.g. $\mathcal{P}=\varphi(\partial \mathcal{Q})$,
- φ, ψ are continuous injective piecewise linear maps from one dimensional 'skeletons' (i.e. a finite union of segments) in the preimage,
- $\gamma_{\mathbf{A}, \mathbf{B}}$ is the geodesic curve from \mathbf{A} to \mathbf{B} in \mathcal{P} and $\rho_{\mathcal{P}}(\mathbf{A}, \mathbf{B})$ is the length of that curve.

Remark 2.2 (Geodesics and modified geodesics). Let $\mathcal{P} \subset \mathbb{R}^{2}$ be a polygon, and let \mathbf{A} and \mathbf{B} be any two distinct points in \mathcal{P}. We define $\gamma_{\mathbf{A B}}$ the unique geodesic (i.e., curve of minimal length) connecting them, lying inside \mathcal{P}. Notice that $\gamma_{\mathbf{A B}}$ is a piecewise linear curve, whose vertices are only \mathbf{A}, \mathbf{B} and some vertices of $\partial \mathcal{P}$ whose internal angles have size at least π. Assume now that $\mathbf{A}, \mathbf{B} \in \partial \mathcal{P}$, and let $\mathbf{W} 1, \mathbf{W}_{2}, \ldots, \mathbf{W}_{K}$ be all the vertices of \mathcal{P} met by $\gamma_{\mathbf{A B}}$, so that $\gamma_{\mathbf{A B}}=\mathbf{A} \mathbf{W}_{1}, \mathbf{W}_{2}, \ldots, \mathbf{W}_{K} \mathbf{B}$. Fix now any $\delta>0$. For every $1 \leq i \leq K$ let $\widetilde{\mathbf{W}}_{i} \neq \mathbf{W}_{i}$ be some arbitrary point in the internal bisector of the angle at \mathbf{W}_{i} having distance from \mathbf{W}_{i} smaller than δ. The piecewise linear curve $\tilde{\gamma}_{\mathbf{A B}}=\mathbf{A} \widetilde{\mathbf{W}}_{1}, \widetilde{\mathbf{W}}_{2}, \ldots, \widetilde{\mathbf{W}}_{K} \mathbf{B}$ is then called a δ-modification of $\gamma_{\mathbf{A B}}$.

Notice that there exists a constant $\bar{\delta}(\mathcal{P})>0$, depending on \mathcal{P} but not on \mathbf{A} and \mathbf{B}, such that the interior of $\tilde{\gamma}_{\mathbf{A B}}$ is contained in the interior of \mathcal{P} if $\delta<\bar{\delta}(\mathcal{P})$, unless the segment $\mathbf{A B}$ is already contained in $\partial \mathcal{P}$, in which case $K=0$ and $\tilde{\gamma}_{\mathbf{A B}}=\gamma_{\mathbf{A B}} \subseteq \partial \mathcal{P}$.

[^1]Lemma 2.3 ([14], Lemma 2.4). Let $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ and \boldsymbol{D} be four distinct points in a polygon \mathcal{P}. Then the intersection $\gamma_{A B} \cap \gamma_{C D}$ is either empty or closed and connected. Assume now also that $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D} \in \partial \mathcal{P}$ and call $\mathcal{P}_{1}, \mathcal{P}_{2}$ the two components of $\mathcal{P} \backslash\{\boldsymbol{C}, \boldsymbol{D}\}$. If $\boldsymbol{A} \in \mathcal{P}_{1}$ and $\boldsymbol{B} \in \mathcal{P}_{2}$ then $\gamma_{\boldsymbol{A B}} \cap \gamma_{C D} \neq \emptyset$. If $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{P}_{1}$ and $\gamma_{\boldsymbol{A B}} \cap \gamma_{C D} \neq \emptyset$ then the first and last point of this intersection must be either vertices of \mathcal{P} or coincide with one of the points \boldsymbol{A} or \boldsymbol{B}.

Lemma 2.4 ([14], Lemma 2.5). Let \mathcal{P} be a polygon, let $\boldsymbol{A}, \boldsymbol{B} \in \partial \mathcal{P}$ be two points such that the segment $\boldsymbol{A B}$ is not contained in $\partial \mathcal{P}$, then let $\delta<\bar{\delta}(\mathcal{P})$ and let $\tilde{\gamma}_{\boldsymbol{A} \boldsymbol{B}}$ be a modified geodesic in the sense of Definition 2.2. Let also \mathcal{P}_{1} and \mathcal{P}_{2} be the two polygons in which \mathcal{P} is divided by $\tilde{\gamma}_{A B}$, and let $\varepsilon>0$ be a given constant. If δ is small enough, depending only on ε and \mathcal{P}, then the following is true:

For any two points $\boldsymbol{C}, \boldsymbol{D} \in \mathcal{P}_{i}$ for $i \in\{1,2\}$ one has

$$
\rho_{\mathcal{P}_{i}}(\boldsymbol{C}, \boldsymbol{D})<\rho_{\mathcal{P}}(\boldsymbol{C}, \boldsymbol{D})+\varepsilon
$$

If $\boldsymbol{C} \in \mathcal{P}_{1}, \boldsymbol{D} \in \mathcal{P}_{2}$ and $\boldsymbol{E} \in \partial \mathcal{P}_{1} \cap \partial \mathcal{P}_{2}$ is any point with distance at most δ from $\gamma_{C D}$, then

$$
\begin{equation*}
\rho_{\mathcal{P}_{1}}(\boldsymbol{C}, \boldsymbol{E})+\rho_{\mathcal{P}_{2}}(\boldsymbol{E}, \boldsymbol{D})<\rho_{\mathcal{P}}(\boldsymbol{C}, \boldsymbol{D})+\varepsilon . \tag{2.2}
\end{equation*}
$$

Definition 2.5 (Set of vertices of a geodesic curve). Let $\mathcal{P} \subset \mathbb{R}^{2}$ be a polygon. For every $\mathbf{A}, \mathbf{B} \in \partial \mathcal{P}$ there is a unique ordered set $\mathcal{X}(\mathbf{A}, \mathbf{B})=\left\{\mathbf{X}_{1}, \ldots, \mathbf{X}_{N}\right\}$ such that the geodesic $\gamma_{\mathbf{A B}}$ is exactly the piecewise linear curve $\mathbf{A X}_{1} \ldots \mathbf{X}_{N} \mathbf{B}$, and the points \mathbf{X}_{j} are all the vertices of \mathcal{P} met by the geodesic $\gamma_{\mathbf{A B}}$ (except \mathbf{A} and \mathbf{B} themselves, in case they are already vertices). The set $\mathcal{X}(\mathbf{A}, \mathbf{B})$ is called set of vertices of $\gamma_{\mathbf{A B}}$.
Definition 2.6 (δ-linearization of a Jordan curve). Let ψ be a Jordan curve with finite length, and let $\delta>0$ be much smaller than the diameter of the bounded component of $\mathbb{R}^{2} \backslash \psi$. Let $\widehat{\mathbf{A}_{1} \mathbf{B}_{1}}, \widehat{\mathbf{A}_{2} \mathbf{B}_{2}}, \ldots, \widehat{\mathbf{A}_{N} \mathbf{B}_{N}}$ be finitely many essentially disjoint arcs contained in ψ. Let then φ be the closed curve obtained by replacing each arc $\widehat{\mathbf{A}_{i} \mathbf{B}_{i}}$ with the segment $\mathbf{A}_{i} \mathbf{B}_{i}$. We say that φ is a δ-linearization of ψ if

- φ is injective
- every arc $\widehat{\mathbf{A}_{i} \mathbf{B}_{i}}$ is such that $\mathcal{H}^{1}\left(\widehat{\mathbf{A}_{i} \mathbf{B}_{i}}\right)<\delta$
- $\widehat{\mathbf{A}_{i} \mathbf{B}_{i}} \cap \varphi \subset \mathbf{A}_{i} \mathbf{B}_{i}$.

The δ-linearization is said complete if the union of the arcs $\widehat{\mathbf{A}_{i} \mathbf{B}_{i}}$ is the whole curve ψ, hence φ is piecewise linear.

Lemma 2.7 (14 , Corollary 4.3). Let $\Delta \subset \mathbb{R}^{2}$ be a convex polygon and let ψ : $\partial \Delta \rightarrow \mathbb{R}^{2}$ be a parametrized Jordan curve with finite length and $\varphi: \partial \Delta \rightarrow \mathbb{R}^{2}$ be a δ-linearization of ψ. Then for every $P, Q \in \partial \Delta$ one has

$$
\rho_{\varphi(\partial \Delta)}(\varphi(P), \varphi(Q)) \leq \rho_{\psi(\partial \Delta)}(\psi(P), \psi(Q))+2 \delta .
$$

In particular for every $\theta \in[0,2 \pi)$ we deduce

$$
\Psi_{\theta}(\varphi) \leq \Psi_{\theta}(\psi)+2 \delta \mathcal{H}^{1}(\partial \Delta)
$$

We conclude this subsection recalling two extension results that will be useful in the sequel. The next Proposition 2.8 is proved in [14] Theorem A, and Corollary 2.10 is a straightforward consequence of Proposition 2.8.

Proposition 2.8 (Minimal extension for standard Manhattan norm). Let $\mathcal{R} \subset \mathbb{R}^{2}$ be a rectangle of the form $\left[a^{-}, a^{+}\right] \times\left[b^{-}, b^{+}\right]$and let $\varphi: \partial \mathcal{R} \rightarrow \mathbb{R}^{2}$ be a continuous injective map. Then for every $\varepsilon>0$ there exists a piecewise affine homeomorphism $v: \mathcal{R} \rightarrow \mathbb{R}^{2}$ coinciding with φ on $\partial \mathcal{R}$ such that

$$
\begin{equation*}
\|D v\|_{0}(\mathcal{R}) \leq \Psi_{0}(\varphi)+\varepsilon . \tag{2.3}
\end{equation*}
$$

Moreover, if φ is piecewise linear then the map v can be chosen finitely piecewise affine.

Theorem 2.9 (Minimal extension for standard Manhattan norm). Let $\varepsilon>0$ and let v be the mapping from Proposition 2.8 then

$$
\begin{align*}
& \left|D_{1} v\right|(\mathcal{Q}) \leq \int_{b^{-}}^{b^{+}} \rho_{\mathcal{P}}\left(\varphi\left(H_{t}^{1}\right), \varphi\left(H_{t}^{2}\right)\right) d t+\varepsilon \text { and } \tag{2.4}\\
& \left|D_{2} v\right|(\mathcal{Q}) \leq \int_{a^{-}}^{a^{+}} \rho_{\mathcal{P}}\left(\varphi\left(V_{s}^{1}\right), \varphi\left(V_{s}^{2}\right)\right) d s+\varepsilon
\end{align*}
$$

Proof. The finitely piecewise affine homeomorphisms from a rectangle to a polygon in [14] used in the proof of Proposition 2.8 are constructed in Lemma 2.12. The key estimates we need to extract are the last two unnumbered equations of the proof, found on page 543. They say exactly that

$$
\begin{aligned}
& \left|D_{1} v\right|(\mathcal{Q}) \leq \int_{b^{-}}^{b^{+}} \rho_{\mathcal{P}}\left(\varphi\left(H_{t}^{1}\right), \varphi\left(H_{t}^{2}\right)\right) d t+\varepsilon \text { and } \\
& \left|D_{2} v\right|(\mathcal{Q}) \leq \int_{a^{-}}^{a^{+}} \rho_{\mathcal{P}}\left(\varphi\left(V_{s}^{1}\right), \varphi\left(V_{s}^{2}\right)\right) d s+\varepsilon
\end{aligned}
$$

Corollary 2.10 ($W^{1,1}$ extension with non optimal bound). There exists a $\tilde{C}>0$ such that the following holds. Let $\mathcal{R} \subset \mathbb{R}^{2}$ be a rectangle and let $\varphi: \partial \mathcal{R} \rightarrow \mathbb{R}^{2}$ be a continuous, piecewise linear and injective map. Then there exists a finitely piecewise affine homeomorphism $v: \mathcal{R} \rightarrow \mathbb{R}^{2}$ extending φ such that

$$
\begin{equation*}
\|D v\|_{L^{1}(\mathcal{R})} \leq \tilde{C} \mathcal{H}^{1}(\partial \mathcal{R}) \mathcal{H}^{1}(\varphi(\partial \mathcal{R})) \tag{2.5}
\end{equation*}
$$

Proof. The conclusion follows by applying Proposition 2.8 with $\varepsilon=\mathcal{H}^{1}(\partial \mathcal{R}) \mathcal{H}^{1}(\varphi(\partial \mathcal{R}))$ and by observing that

$$
\|D v\|_{L^{1}(\mathcal{R})} \leq \tilde{C}\left(\left|D_{1} v\right|(\mathcal{R})+\left|D_{2} v\right|(\mathcal{R})\right)=\tilde{C}\|D v\|_{0}(\mathcal{R})
$$

and

$$
\begin{aligned}
\Psi_{0}(\varphi) & =\int_{a^{-}}^{a^{+}} \rho_{\varphi(\partial c R)}\left(\varphi\left(t, b^{-}\right), \varphi\left(t, b^{+}\right)\right) d t+\int_{b^{-}}^{b^{+}} \rho_{\varphi(\partial c R)}\left(\varphi\left(a^{-}, t\right), \varphi\left(a^{+}, t\right)\right) d t \\
& \leq\left(a^{+}-a^{-}+b^{+}-b^{-}\right) \mathcal{H}^{1}(\varphi(\partial \mathcal{R})) \\
& \leq \mathcal{H}^{1}(\partial \mathcal{R}) \mathcal{H}^{1}(\varphi(\partial \mathcal{R})) .
\end{aligned}
$$

Figure 1. The figure shows the set-up in the case that $\alpha=0$. We have the polygon \mathcal{Q} constituted of the green set Δ and the removed red triangle(s). In the case where the polygon \mathcal{Q} has no sides parallel to α (corresponding to class i ii from Remark 3.1 pictured on the left) we generate a polygon with two sides, both parallel to α by removing 2 triangles. If there is already one side parallel to some α (as pictured in the middle) then it is enough to remove one triangle and the remaining set has two sides both parallel to α; this corresponds to class $i i$ from Remark 3.1. In the scenario on the right \mathcal{Q} already has two sides parallel to α (corresponding to class i from Remark 3.1), it is not necessary to remove any triangles.

3. Extension on a one-dimensional skeleton

Remark 3.1. If \mathcal{Q} coincides with the rectangle $\mathcal{R}_{\mathcal{Q}}$ then the conclusion of Theorem 1.1 follows directly by [14, Theorem A]. So, without loss of generality, we can assume that $\mathcal{Q} \neq \mathcal{R}_{\mathcal{Q}}$. Then there are three cases left to consider. Either
i) \mathcal{Q} has two parallel sides parallel to α
ii) \mathcal{Q} has exactly one side parallel to α
iii) \mathcal{Q} has no side parallel to α.

In this subsection we introduce a suitable partition of \mathcal{Q}, whose boundary will be referred to as one-dimensional skeleton, and we define a continuous, injective and piecewise linear extension of φ on the skeleton. This procedure will be done in two different steps, which eventually correspond to the following technical lemmas.

Lemma 3.2 (Skeleton- triangles). Let $\alpha \in[0,2 \pi)$ be fixed, $\mathcal{Q} \subset \mathbb{R}^{2}$ be a convex polygon and let $\varphi: \partial \mathcal{Q} \rightarrow \mathbb{R}^{2}$ be a continuous, piecewise linear, injective map.

Then for every $\varepsilon>0$ one of the following holds:

- the set \mathcal{Q} is of class ii) from Remark 3.1 and there exists a triangle T satisfying
a) two sides of T are contained in two sides of \mathcal{Q}, so T and \mathcal{Q} share the vertex W and the side of T inside \mathcal{Q} is parallel to α (we refer to the point in the intersection of the third side of T and the bisector of the vertex at W as W^{*}),
b) $\mathcal{H}^{1}(\partial T)<\varepsilon$
c) $\mathcal{Q}=T \cup \Delta$, where $\partial \Delta$ is a convex polygon with two sides parallel to α one of which lies in $\partial \mathcal{Q}$ and the other one is the common side of ∂T and $\partial \Delta$
d) φ is linear on each side of $\partial T \cap \partial \mathcal{Q}$
e) there exists a $\bar{\varphi}: \partial T \cup \partial \Delta \rightarrow \mathbb{R}^{2}$ a continuous piecewise linear injective map such that $\bar{\varphi}=\varphi$ on $\partial \mathcal{Q}, \bar{\varphi}$ is exactly bi-linear on $\partial T \cap \partial \Delta$ and the singular point is precisely W^{*}
f) the estimates

$$
\begin{aligned}
\mathcal{H}^{1}(\bar{\varphi}(\partial T)) & \leq \varepsilon, \\
\left.\Psi_{\alpha}(\bar{\varphi}\rceil \partial T\right)+\Psi_{\alpha}\left(\bar{\varphi}_{\rceil \partial \Delta}\right) & <\Psi_{\alpha}(\varphi)+\varepsilon
\end{aligned}
$$

hold.

- the set \mathcal{Q} is of class iii) from Remark 3.1 and there exists a pair of disjoint triangles T_{1}, T_{2} satisfying
a) T_{1}, T_{2} each contain a vertex of \mathcal{Q} which we call W_{1} resp. W_{2},
b) It holds that

$$
\begin{equation*}
\mathcal{H}^{1}\left(\partial T_{1}\right), \mathcal{H}^{1}\left(\partial T_{2}\right)<\varepsilon \tag{3.1}
\end{equation*}
$$

c) $\mathcal{Q}=T_{1} \cup T_{2} \cup \Delta$, where $\partial \Delta$ is a convex polygon with two sides parallel to α one of which is the common side of ∂T_{1} and $\partial \Delta$ and the other is the common side of ∂T_{2} and $\partial \Delta$
d) φ is linear on each side of $\partial T_{1} \cap \partial \mathcal{Q}$ and $\partial T_{2} \cap \partial \mathcal{Q}$
e) there exists a $\bar{\varphi}: \partial T_{1} \cup \partial T_{2} \cup \partial \Delta \rightarrow \mathbb{R}^{2}$ a continuous piecewise linear injective map such that $\bar{\varphi}=\varphi$ on $\partial \mathcal{Q}, \bar{\varphi}$ is exactly bi-linear on $\partial T_{2} \cap \partial \Delta$ and on $\partial T_{1} \cap \partial \Delta$ and the singular points are precisely W_{1}^{*}, W_{2}^{*}
f) the estimates

$$
\begin{equation*}
\mathcal{H}^{1}\left(\bar{\varphi}\left(\partial T_{1}\right)\right)+\mathcal{H}^{1}\left(\bar{\varphi}\left(\partial T_{2}\right)\right) \leq \varepsilon \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi_{\alpha}\left(\bar{\varphi}_{\rceil \partial T_{1}}\right)+\Psi_{\alpha}\left(\bar{\varphi}_{\supset \partial \Delta}\right)+\Psi_{\alpha}\left(\bar{\varphi}_{\rceil \partial T_{2}}\right)<\Psi_{\alpha}(\varphi)+\varepsilon \tag{3.3}
\end{equation*}
$$

hold.
Proof. It suffices to prove the claim for the case of \mathcal{Q} being class $i i)$ since the class iii) case is just a repetition of the same argument used at a pair of opposing vertices of \mathcal{Q}.

Assume that \mathcal{Q} is of class $i i$), then there exists a side of $\mathcal{R}_{\mathcal{Q}}$ (the smallest rectangle containing \mathcal{Q} with sides parallel and perpendicular to $e_{\alpha}, e_{\alpha}^{\perp}$) whose intersection with \mathcal{Q} is exactly the vertex W of \mathcal{Q}. Up to a rotation of angle α and a translation of $\left(-a^{-},-b^{-}\right)$we may assume that $\mathcal{R}_{\mathcal{Q}}=[0, \ell] \times[0, h]$ for $\ell=a^{+}-a^{-}$and $h=$ $b^{+}-b^{-}$. Further we may assume that the α rotation of \mathcal{Q} has a horizontal side lying in $[0, \ell] \times\{h\}$ of that $W=(w, 0)$ for some $w \in[0, \ell]$. It suffices to prove our claim for the α-rotated, translated \mathcal{Q} and replacing Ψ_{α} with Ψ_{0}.

Since \mathcal{Q} is convex, it holds that for every $t \in(0, h)$ one has $\partial \mathcal{Q} \cap(\mathbb{R} \times\{t\})$ consists of exactly two points H_{t}^{1} and H_{t}^{2} with $0 \leq\left(H_{t}^{1}\right)_{1}<\left(H_{t}^{2}\right)_{1} \leq \ell$. Analogously, for every $s \in(0, \ell)$ one has $\partial \mathcal{Q} \cap(\{s\} \times \mathbb{R})$ consists of exactly two points V_{s}^{1} and V_{s}^{2} with $0 \leq\left(V_{s}^{1}\right)_{1}<\left(V_{s}^{2}\right)_{1} \leq h$.

Let $\varepsilon>0$ be arbitrary fixed. We then let $\bar{\delta}=\bar{\delta}(\varphi(\partial \mathcal{Q}))>0$ be the parameter introduced directly after Definition 2.2, and $\delta_{1}<\bar{\delta}$ be the parameter introduced in

Lemma 2.4 for the polygon given by $\varphi(\partial \mathcal{Q})$ and the number $\frac{\varepsilon}{2(h+\ell)}$. Let

$$
0<\eta_{1}<\min \left\{\frac{\varepsilon}{24}, \frac{\delta_{1}}{4}\right\}
$$

For the following recall the definition of the points $H_{t}^{1,2}$ in 1.3 . Since $\varphi: \mathcal{Q} \rightarrow \mathbb{R}^{2}$ is continuous, injective and piecewise linear, then we can find $0<t^{*} \ll h$ such that the following properties hold
i) $\left|H_{t^{*}}^{1}-W\right|<\eta_{1},\left|H_{t^{*}}^{2}-W\right|<\eta_{1}$;
ii) φ is linear on each of the segments $H_{t^{*}}^{1} W, H_{t^{*}}^{2} W$;
iii) $\left|\varphi\left(H_{t^{*}}^{1}\right)-\varphi(W)\right|<\eta_{1}$ and $\left|\varphi\left(H_{t^{*}}^{2}\right)-\varphi(W)\right|<\eta_{1}$.

We denote T the triangle $W H_{t^{*}}^{1} H_{t^{*}}^{2}$, and $\Delta=\mathcal{Q} \backslash T$. We call $W^{*}=\frac{1}{2}\left(H_{t^{*}}^{1}+H_{t^{*}}^{2}\right)$, then W^{*} is the intersection of the segment $H_{t^{*}}^{1} H_{t^{*}}^{2}$ and the bisector of the angle at W. Then claim a) is immediate and claim b) is immediate from the choice of t^{*}. By construction, Δ is convex and the third side of T is horizontal (i.e. parallel to α) thus proving c). By the triangular inequality and by property i), we have that

$$
\mathcal{H}^{1}(\partial T)<4 \eta_{1} .
$$

We now consider γ^{*} the geodesic connecting $\varphi\left(H_{t^{*}}^{1}\right)$ and $\varphi\left(H_{t^{*}}^{1}\right)$ inside the polygon identified by $\varphi(\partial \mathcal{Q})$. There are two possibilities: either γ^{*} is a segment or γ^{*} is a bi-linear path lying inside $\varphi(\partial \mathcal{Q})$ passing through $\varphi(W)$. In both cases, we let \mathbf{X} be on the internal bisector of the corner $\varphi(W)$ such that $|\mathbf{X}-\varphi(W)|<2 \eta_{1}$ and we call $\tilde{\gamma}^{*}$ the path $\varphi\left(H_{t^{*}}^{1}\right) \mathbf{X} \varphi\left(H_{t^{*}}^{2}\right)$. Notice that, being $2 \eta_{1}<\delta_{1}, \tilde{\gamma}^{*}$ is a δ_{1}-modification of γ^{*} in the sense of Definition 2.2. Moreover, $\tilde{\gamma}^{*}$ lies in the interior of $\varphi(\partial \mathcal{Q})$ and $\mathcal{H}^{1}\left(\tilde{\gamma}^{*}\right) \leq 4 \eta_{1}$.

We now construct the extension $\bar{\varphi}: \partial T \cup \partial \Omega \rightarrow \mathbb{R}^{2}$ that is continuous, piecewise linear and injective. We let $\bar{\varphi}=\varphi$ on $\partial \mathcal{Q}$, then we have claim d) by the choice of t^{*} and we only need to define $\bar{\varphi}$ on the segment $H_{t^{*}}^{1} H_{t^{*}}^{2}$.

We set $\bar{\varphi}\left(W^{*}\right):=\mathbf{X}$ and then we define $\bar{\varphi}: H_{t^{*}}^{1} H_{t^{*}}^{2} \rightarrow \mathbb{R}^{2}$ as the map that is linear on $H_{t^{*}}^{1} W^{*}$ and $W^{*} H_{t^{*}}^{2}$, such that $\bar{\varphi}\left(H_{t^{*}}^{1} H_{t^{*}}^{2}\right)=\tilde{\gamma}^{*}$. Then we have claim e). Thanks to property iii) from the choice of t^{*} and the bound on $\mathcal{H}^{1}\left(\tilde{\gamma}^{*}\right)$ we can compute

$$
\mathcal{H}^{1}(\bar{\varphi}(\partial T)) \leq 6 \eta_{1} .
$$

For claim f) we now estimate the quantity $\left.\Psi_{0}(\bar{\varphi}\rceil \partial T\right)+\Psi_{0}\left(\bar{\varphi}_{\rceil \partial \Delta}\right)$. Thanks to our choice of δ_{1} and (2.1) of Lemma 2.4, we can observe

$$
\begin{array}{ll}
\rho_{\bar{\varphi}(\partial T)}\left(\bar{\varphi}\left(H_{t}^{1}\right), \bar{\varphi}\left(H_{t}^{2}\right)\right) \leq \rho_{\varphi(\partial \mathcal{Q})}\left(\varphi\left(H_{t}^{1}\right), \varphi\left(H_{t}^{2}\right)\right)+\frac{\varepsilon}{2(h+\ell)} & \text { for all } t \in\left(0, t^{*}\right) \\
\rho_{\bar{\varphi}(\partial \Delta)}\left(\bar{\varphi}\left(H_{t}^{1}\right), \bar{\varphi}\left(H_{t}^{2}\right)\right) \leq \rho_{\varphi(\partial \mathcal{Q})}\left(\varphi\left(H_{t}^{1}\right), \varphi\left(H_{t}^{2}\right)\right)+\frac{\varepsilon}{2(h+\ell)} & \text { for all } t \in\left(t^{*}, h\right) \\
\rho_{\bar{\varphi}(\partial \Delta)}\left(\bar{\varphi}\left(V_{s}^{1}\right), \bar{\varphi}\left(V_{s}^{2}\right)\right) \leq \rho_{\varphi(\partial \mathcal{Q})}\left(\varphi\left(V_{s}^{1}\right), \varphi\left(V_{s}^{2}\right)\right)+\frac{\varepsilon}{2(h+\ell)} & \text { for all } s \in\left(0,\left(H_{t^{*}}^{1}\right)_{1}\right) \cup\left(\left(H_{t^{*}}^{2}\right)_{1}, \ell\right) .
\end{array}
$$

On the other hand, for every $s \in\left(\left(H_{t^{*}}^{1}\right)_{1},\left(H_{t^{*}}^{2}\right)_{1}\right)$ we call $V_{s}^{3}=\left(s, t^{*}\right)$ and we notice that the geodesic $\gamma_{\varphi\left(V_{s}^{1}\right) \varphi\left(V_{s}^{2}\right)}$ must intersect $\tilde{\gamma}^{*}$.

Since, by construction, $\bar{\varphi}\left(V_{s}^{3}\right) \in \tilde{\gamma}^{*}$, then the maximal distance between $\bar{\varphi}\left(V_{s}^{3}\right)$ and $\tilde{\gamma}^{*} \cap \gamma_{\varphi\left(V_{s}^{1}\right) \varphi\left(V_{s}^{2}\right)}$ is bounded by $\mathcal{H}^{1}\left(\tilde{\gamma}^{*}\right) \leq 4 \eta_{1}<\delta_{1}$. Then from (2.2) of Lemma 2.4. we
get

$$
\rho_{\bar{\varphi}(\partial T)}\left(\bar{\varphi}\left(V_{s}^{1}\right), \bar{\varphi}\left(V_{s}^{3}\right)\right)+\rho_{\bar{\varphi}(\partial \Delta)}\left(\bar{\varphi}\left(V_{s}^{3}\right), \bar{\varphi}\left(V_{s}^{2}\right)\right)<\rho_{\varphi(\partial \mathcal{Q})}\left(\varphi\left(V_{s}^{1}\right), \varphi\left(V_{s}^{2}\right)\right)+\frac{\varepsilon}{2(h+\ell)}
$$

Therefore we can compute

$$
\begin{align*}
\left.\Psi_{0}(\bar{\varphi}\rceil \partial T\right)+ & \Psi_{0}\left(\bar{\varphi}_{\rceil \partial \Delta}\right) \\
= & \int_{0}^{t^{*}} \rho_{\bar{\varphi}(\partial T)}\left(\bar{\varphi}\left(H_{t}^{1}\right), \bar{\varphi}\left(H_{t}^{2}\right)\right) d t+\int_{\left(H_{\left.t^{*}\right)_{1}}^{1}\right.}^{\left(H_{t^{*}}^{2}\right)_{1}} \rho_{\bar{\varphi}(\partial T)}\left(\bar{\varphi}\left(V_{s}^{1}\right), \bar{\varphi}\left(V_{s}^{3}\right)\right) d s \\
& +\int_{t^{*}}^{h} \rho_{\bar{\varphi}(\partial \Delta)}\left(\bar{\varphi}\left(H_{t}^{1}\right), \bar{\varphi}\left(H_{t}^{2}\right)\right) d t+\int_{\left(H_{\left.t^{*}\right)_{1}}^{1}\right.}^{\left(H_{\left.t^{*}\right)}^{2}\right.} \rho_{\bar{\varphi}(\partial \Delta)}\left(\bar{\varphi}\left(V_{s}^{3}\right), \bar{\varphi}\left(V_{s}^{2}\right)\right) d s \\
& +\int_{\left(0,\left(H_{t^{*}}^{1}\right)_{1}\right) \cup\left(\left(H_{t^{*}}^{2}\right)_{1}, \ell\right)} \rho_{\bar{\varphi}(\partial \Delta)}\left(\bar{\varphi}\left(V_{s}^{1}\right), \bar{\varphi}\left(V_{s}^{2}\right)\right) d s \tag{3.4}\\
\leq & \int_{0}^{h} \rho_{\varphi(\partial \mathcal{Q})}\left(\varphi\left(V_{t}^{1}\right), \varphi\left(V_{t}^{2}\right)\right) d t+\int_{0}^{\ell} \rho_{\varphi(\partial \mathcal{Q})}\left(\varphi\left(V_{s}^{1}\right), \varphi\left(V_{s}^{2}\right)\right) d s \\
& +(\ell+h) \frac{\varepsilon}{2(h+\ell)} \\
\leq & \Psi_{0}(\varphi)+\frac{\varepsilon}{2}
\end{align*}
$$

To finish the proof it suffices prove the claim in the case that \mathcal{Q} is class iii). But this is just a question of repeating the argument above for the opposing vertex, since the horizontal side of \mathcal{Q} was not used at any point. Finally, in every case $\partial \Delta$ has two sides parallel to α.

The next result that we present concerns the extension of the boundary values inside a convex polygon Δ having two non-consecutive parallel sides. This is an opportune generalization of the analogous results on rectangles proved in Lemma 2.11 of [14]. Loosely speaking, there are two differences between the current setting and the one considered in Lemma 2.11 of [14]. In [14] the rectangular domain is partitioned in rectangular strips while here the polygon Δ is partitioned into strips that are not necessarily rectangular, which we later split further into a rectangle and two triangles, one at either end.

Lemma 3.3 (Skeleton-strips). Let $h, \ell>0$ and let $\Delta \subset[0, \ell] \times[0, h]$ be a convex polygon and let $[0, \ell] \times[0, h]$ be the smallest rectangle containing Δ. Further assume that $\partial \Delta$ has a pair of horizontal sides, one of which lies in $[0, \ell] \times\{0\}$ and the other in $[0, \ell] \times\{h\}$. For every $\varphi: \partial \Delta \rightarrow \mathbb{R}^{2}$ continuous piecewise linear injective map and for every $\varepsilon>0$ there exist $M \in \mathbb{N}$ and values

$$
0=t_{0}<t_{1}<\cdots<t_{M-1}<t_{M}=h
$$

such that the following properties hold:
i) $t_{i+1}-t_{i}<\varepsilon$ for every $i=0, \ldots, M-1$
ii) for every $i=0, \ldots, M-1$, call $S_{i}:=\Delta \cap\left(\mathbb{R} \times\left[t_{i}, t_{i+1}\right]\right.$) (which we call a horizontal strip). Then φ is linear on I_{i}^{1} and I_{i}^{2}, where I_{i}^{1}, I_{i}^{2} are the two non horizontal segments of $\partial S_{i} \cap \partial \Delta$. Moreover,

$$
\begin{equation*}
\mathcal{H}^{1}\left(\varphi\left(I_{i}^{1}\right)\right)+\mathcal{H}^{1}\left(\varphi\left(I_{i}^{2}\right)\right)<\varepsilon \tag{3.5}
\end{equation*}
$$

Figure 2. The figure shows the slicing of the set Δ into $\Delta^{+} \cup S_{0}$ by the horizontal line $\mathbb{R} \times\left\{t_{1}\right\}$ and \mathcal{P} into $\mathcal{P}^{+} \cup \mathcal{P}_{0}$ by the modified geodesic called $\bar{\gamma}_{1}$.
iii) there exists $\bar{\varphi}: \bigcup_{i=0}^{M-1} \partial S_{i} \rightarrow \mathbb{R}^{2}$ a continuous, piecewise linear, injective map such that $\bar{\varphi}=\varphi$ on $\partial \Delta$ and

$$
\begin{equation*}
\sum_{i=0}^{M-1} \Psi_{0}\left(\bar{\varphi}_{\rceil \partial S_{i}}\right) \leq \Psi_{0}(\varphi)+\varepsilon \tag{3.6}
\end{equation*}
$$

iv) for every $i=0, \ldots, M-1$, the quadrilateral S_{i} can be decomposed in the essentially disjoint union $T_{i}^{1} \cup R_{i} \cup T_{i}^{2}$, where R_{i} is a rectangle with horizontal and vertical sides and T_{i}^{1}, T_{i}^{2} are right angle triangles whose hypotenuses are I_{i}^{1}, I_{i}^{2} the two segments of $\partial \Delta \cap \partial S_{i}$
v) there exists $\tilde{\varphi}: \bigcup_{i=0}^{M-1} \partial T_{i}^{1} \cup \partial R_{i} \cup \partial T_{i}^{2} \rightarrow \mathbb{R}^{2}$ a continuous, piecewise linear, injective map such that $\tilde{\varphi}=\bar{\varphi}$ on $\bigcup_{i=0}^{M-1} \partial S_{i}$ and moreover

$$
\begin{equation*}
\sum_{i=0}^{M-1}\left(\Psi_{0}\left(\tilde{\varphi}_{\rceil \partial T_{i}^{1}}\right)+\Psi_{0}\left(\tilde{\varphi}_{\rceil \partial R_{i}}\right)+\Psi_{0}\left(\tilde{\varphi}_{\rceil \partial T_{i}^{2}}\right)\right) \leq \Psi_{0}(\varphi)+\varepsilon \tag{3.7}
\end{equation*}
$$

Proof. Let $\varepsilon>0$ be fixed. Throughout the proof we denote by \mathcal{P} the polygon of boundary $\varphi(\partial \Delta)$.

Step I. Finding the value M and fixing $\left(t_{i}\right)_{i=0 \ldots M}$.
There are a finite number of vertices of Δ call it M_{1}. There is similarly a finite number of vertices of \mathcal{P}, call it M_{2}. Since $\left|D_{\tau} \varphi\right| \in L^{\infty}(\partial \Delta)$ we have that any segment on $\partial \Delta$ of length at most $\varepsilon\left(1+\left\|D_{\tau} \varphi\right\|_{\infty}\right)^{-1}$ has image whose length is at most ε. Further since $\mathcal{H}^{1}(\partial \Delta)<\infty$, we find a number M_{3} bounded by $\varepsilon^{-1} \mathcal{H}^{1}(\partial \Delta)\left(1+\left|D_{\tau} \varphi\right|\right)$ such that splitting $\partial \Delta$ into M_{3} segments then the length of the segments and their images is bounded by ε.

We take set of all $\tilde{t} \in(0, h)$ the t-coordinates such that Δ has a vertex with t coordinate equal to \tilde{t} (their number is bounded by M_{1}) further all $\tilde{t} \in(0, h)$ such that $\partial_{\tau} \varphi$ does not exist (their number is bounded by M_{2}) and then add a finite number (bounded by M_{3}) of \tilde{t} such that whenever \tilde{t}, \tilde{t}^{*} are a pair of neighbouring (with respect to the order $<$) we have

$$
\left|H_{\tilde{t}}^{1}-H_{\tilde{t}^{*}}^{1}\right|<\varepsilon>\left|H_{\tilde{t}}^{2}-H_{\tilde{t}^{*}}^{2}\right| \quad \text { and } \quad\left|\mathbf{H}_{\tilde{t}}^{1}-\mathbf{H}_{\tilde{t}^{*}}^{1}\right|<\varepsilon>\left|\mathbf{H}_{\tilde{t}}^{2}-\mathbf{H}_{\tilde{t}^{*}}^{2}\right| .
$$

Indexing this set from $\{1, \ldots, M-1\}$ and calling $t_{0}=0$ and $t_{M}=h$ we determine t_{i} and the number M.

We define the strips $S_{i}=\left(\mathbb{R} \times\left[t_{i}, t_{i+1}\right]\right) \cap \Delta$. They are all convex quadrilaterals with two horizontal sides.

Step II. Definition of the curve $\bar{\gamma}_{1}=\bar{\varphi}\left(\Delta \cap\left(\mathbb{R} \times\left\{t_{1}\right\}\right)\right)$ and the polygons $\Delta^{+} \cup S_{0}=\Delta$ and $\mathcal{P}^{+} \cup \mathcal{P}_{0}=\mathcal{P}$.
The goal of this step is to define the piecewise linear curve $\bar{\gamma}_{1}$, internal to \mathcal{P}, which will be the image of the segment $H_{t_{1}}^{1} H_{t_{1}}^{2}$ in a map $\bar{\varphi}$ extending φ. The precise parameterization of $\bar{\varphi}$ will be presented in the next step, here we only aim to define the curve $\bar{\gamma}_{1} \subset \mathcal{P}$.

Our argument is recursive and so we deal with the first curve $\bar{\gamma}_{1}$ defined on $H_{t_{1}}^{1} H_{t_{1}}^{2}$ separating Δ into S_{0} and $\Delta \cap \mathbb{R} \times\left[t_{1}, h\right]=\Delta^{+}$(see Figure 22). Similarly the curve $\bar{\gamma}_{1}$ means dividing the polygon \mathcal{P} into two further polygons: a polygon \mathcal{P}_{0} (which will be the image of S_{0}) containing the curve $\varphi\left(H_{t_{0}}^{1} H_{t_{0}}^{2}\right)$ and another polygon \mathcal{P}^{+}(which will be the image of Δ^{+}) (see Figure 22).

Since \mathcal{P} is a non degenerate polygon, let $\bar{\delta}(\mathcal{P})>0$ be the parameter of Definition 2.2 and let $\delta_{1}>0$ be so small that
$\delta_{1}<\min \left\{\bar{\delta}(\mathcal{P}), \frac{\varepsilon\left(t_{1}-t_{0}\right)}{8 h \mathcal{H}^{1}(\mathcal{P})}, \frac{h}{2^{3}}, \frac{\varepsilon}{2}\right\}$ and Lemma 2.4 applies with δ_{1} for \mathcal{P} and $\frac{\varepsilon\left(t_{1}-t_{0}\right)}{8 h(\ell+h)}$.
We define

$$
\begin{equation*}
\bar{\gamma}_{1} \text { as a } \delta_{1} \text {-modification of the geodesic in } \mathcal{P} \text { connecting } \mathbf{H}_{t_{1}}^{1} \text { and } \mathbf{H}_{t_{1}}^{2} \text {. } \tag{3.8}
\end{equation*}
$$

Step III. Definition of $\bar{\varphi}$ on ∂S_{0}.
In this step we care about the definition of $\bar{\varphi}$ on ∂S_{0}. More precisely, we let $\bar{\varphi}=\varphi$ on $\partial \Delta$ and we specify the parametrization $\bar{\varphi}: \partial \Delta^{+} \cap\left(\mathbb{R} \times\left\{t_{1}\right\}\right) \rightarrow \bar{\gamma}_{1}$ so that $\bar{\varphi}$ is continuous, injective, piecewise linear and

$$
\begin{equation*}
\Psi_{0}\left(\bar{\varphi}_{\rceil \partial S_{0}}\right)+\Psi_{0}\left(\bar{\varphi}_{\rceil \partial \Delta^{+}}\right) \leq \Psi_{0}(\varphi)+\frac{\varepsilon}{2 h}\left(t_{1}-t_{0}\right) . \tag{3.9}
\end{equation*}
$$

Let us observe, that thanks to Lemma 2.7 it is enough to look for a continuous and injective parametrization $\psi: \partial \Delta^{+} \cup \partial S_{0} \rightarrow \mathbb{R}^{2}$ coinciding with φ on $\partial \Delta$ such that (3.9) holds for ψ with error $\frac{\varepsilon}{4 h}\left(t_{1}-t_{0}\right)$, namely

$$
\Psi_{0}\left(\psi_{\rceil \partial S_{0}}\right)+\Psi_{0}\left(\psi_{\urcorner \partial \Delta+}\right)<\Psi_{0}(\varphi)+\frac{\varepsilon}{4 h}\left(t_{1}-t_{0}\right) .
$$

Indeed, the correct $\bar{\varphi}$ can be found as a δ-linearization of ψ for some δ small enough depending on $\frac{\varepsilon}{4 h}\left(t_{1}-t_{0}\right)$ such that

$$
\Psi_{0}\left(\bar{\varphi}_{\rceil \partial S_{0}}\right)+\Psi_{0}\left(\bar{\varphi}_{\rceil \partial \Delta^{+}}\right)<\Psi_{0}\left(\psi_{\rceil \partial S_{0}}\right)+\Psi_{0}\left(\psi_{\rceil \partial \Delta^{+}}\right)+\frac{\varepsilon}{4 h}\left(t_{1}-t_{0}\right)
$$

Thanks to our choice of δ_{1} and the fact that $\bar{\gamma}_{1}$ is a δ_{1}-modification with variable endpoints of the geodesic connecting $\mathbf{H}_{t_{1}}^{1}$ and $\mathbf{H}_{t_{1}}^{2}$, hence splitting \mathcal{P} into the two
polygons \mathcal{P}_{0} and \mathcal{P}^{+}, we can apply Lemma 2.4 to get that

$$
\begin{align*}
& \rho_{\mathcal{P}_{0}}\left(\mathbf{H}_{t}^{1}, \mathbf{H}_{t}^{2}\right) \leq \rho_{\mathcal{P}}\left(\mathbf{H}_{t}^{1}, \mathbf{H}_{t}^{2}\right)+\frac{\varepsilon\left(t_{1}-t_{0}\right)}{8 h(\ell+h)} \text { for any } t_{0}<t<t_{1} \text { and } \tag{3.10}\\
& \rho_{\mathcal{P}^{+}}\left(\mathbf{H}_{t}^{1}, \mathbf{H}_{t}^{2}\right) \leq \rho_{\mathcal{P}}\left(\mathbf{H}_{t}^{1}, \mathbf{H}_{t}^{2}\right)+\frac{\varepsilon\left(t_{1}-t_{0}\right)}{8 h(\ell+h)} \text { for any } t_{1}<t<t_{M} .
\end{align*}
$$

For short denote $c_{1}=\left(H_{t_{1}}^{1}\right)_{1}$ and $c_{2}=\left(H_{t_{1}}^{2}\right)_{1}$. Then $0 \leq c_{1}<c_{2} \leq \ell$. For every $0<s<\ell$ we call γ_{s} the geodesic inside \mathcal{P} connecting \mathbf{V}_{s}^{1} and \mathbf{V}_{s}^{2}. Moreover, whenever $c_{1}<s<c_{2}$ we also set $V_{s}^{3}:=\left(s, t_{1}\right)$ the point in the intersection of $H_{t_{1}}^{1} H_{t_{1}}^{2}$ with $V_{s}^{1} V_{s}^{2}$. For every $s \in\left(0, c_{1}\right) \cup\left(c_{2}, \ell\right)$ we have that either both $V_{s}^{1}, V_{s}^{2} \in S_{0}$ and using Lemma 2.4

$$
\rho_{\mathcal{P}_{0}}\left(\mathbf{V}_{s}^{1}, \mathbf{V}_{s}^{2}\right) \leq \rho_{\mathcal{P}}\left(\mathbf{V}_{s}^{1}, \mathbf{V}_{s}^{2}\right)+\frac{\varepsilon\left(t_{1}-t_{0}\right)}{8 h(\ell+h)}
$$

or $V_{s}^{1}, V_{s}^{2} \in \Delta^{+}$and by Lemma 2.4

$$
\rho_{\mathcal{P}^{+}}\left(\mathbf{V}_{s}^{1}, \mathbf{V}_{s}^{2}\right) \leq \rho_{\mathcal{P}}\left(\mathbf{V}_{s}^{1}, \mathbf{V}_{s}^{2}\right)+\frac{\varepsilon\left(t_{1}-t_{0}\right)}{8 h(\ell+h)}
$$

The two equations above can be expressed simultaneously as

$$
\begin{equation*}
\max \left\{\rho_{\mathcal{P}_{0}}\left(\mathbf{V}_{s}^{1}, \mathbf{V}_{s}^{2}\right), \rho_{\mathcal{P}^{+}}\left(\mathbf{V}_{s}^{1}, \mathbf{V}_{s}^{2}\right)\right\} \leq \rho_{\mathcal{P}}\left(\mathbf{V}_{s}^{1}, \mathbf{V}_{s}^{2}\right)+\frac{\varepsilon\left(t_{1}-t_{0}\right)}{8 h(\ell+h)} \tag{3.11}
\end{equation*}
$$

for all $s \in\left(0, c_{1}\right) \cup\left(c_{2}, \ell\right)$.
On the other hand, whenever $s \in\left(c_{1}, c_{2}\right)$, the points $\mathbf{V}_{s}^{1} \in \mathcal{P}_{0}$ and $\mathbf{V}_{s}^{2} \in \mathcal{P}^{+}$thus the geodesic γ_{s} necessarily intersects $\bar{\gamma}_{1}$. Let κ be the (injective and continuous) constantspeed parametrization of $\bar{\gamma}_{1}$ from $\left[0, \mathcal{H}^{1}\left(\bar{\gamma}_{1}\right)\right], \kappa(0)=\mathbf{H}_{t_{1}}^{1}$ and $\kappa\left(\mathcal{H}^{1}\left(\bar{\gamma}_{1}\right)\right)=\mathbf{H}_{t_{1}}^{2}$. For every $s \in\left(c_{1}, c_{2}\right)$ we then let $\mathbf{X}(s)$ be the point in $\gamma_{s} \cap \bar{\gamma}_{1}$ such that

$$
\mathbf{X}(s)=\kappa\left(\max \left\{x \in\left[0, \mathcal{H}^{1}\left(\bar{\gamma}_{1}\right)\right]: \kappa(x) \in \gamma_{s} \cap \bar{\gamma}_{1}\right\}\right) .
$$

Then, thanks to Lemma 2.3, it is easy to see that the map $s \rightarrow \kappa^{-1}(\mathbf{X}(s))$ is non-decreasing, therefore if $c_{1}<s<s^{\prime}<c_{2}$ then $\mathbf{X}\left(s^{\prime}\right) \in \kappa\left(\left[\kappa^{-1}(\mathbf{X}(s)), \mathcal{H}^{1}\left(\bar{\gamma}_{1}\right)\right]\right)$. Notice that, in general, the function $s \rightarrow \kappa^{-1} \circ \mathbf{X}(s)$ is not continuous, nor injective nor surjective. However, for every $\sigma>0$ it is always possible to find a continuous bijection \mathbf{X}_{σ} of $\left[c_{1}, c_{2}\right]$ onto $\bar{\gamma}_{1}$ such that

$$
\begin{equation*}
\mathcal{H}^{1}\left(J_{\sigma}\right)<\sigma \quad \text { where } \quad J_{\sigma}:=\left\{s \in\left(c_{1}, c_{2}\right):\left|\mathbf{X}_{\sigma}(s)-\mathbf{X}(s)\right|>\sigma\right\} \tag{3.12}
\end{equation*}
$$

We can then fix $\sigma=\frac{\delta_{1}}{2}$ and apply Lemma 2.4 to get that

$$
\begin{equation*}
\rho_{\mathcal{P}_{0}}\left(\mathbf{V}_{s}^{1}, \mathbf{X}_{\frac{\delta_{1}}{2}}(s)\right)+\rho_{\mathcal{P}^{+}}\left(\mathbf{X}_{\frac{\delta_{1}}{2}}(s), \mathbf{V}_{s}^{2}\right) \leq \rho_{\mathcal{P}}\left(\mathbf{V}_{s}^{1}, \mathbf{V}_{s}^{2}\right)+\frac{\varepsilon\left(t_{1}-t_{0}\right)}{8 h(\ell+h)} \tag{3.13}
\end{equation*}
$$

for all $s \in\left(c_{1}, c_{2}\right) \backslash J_{\frac{\delta_{1}}{2}}$. On the other hand, we have the trivial estimate

$$
\begin{equation*}
\rho_{\mathcal{P}_{0}}\left(\mathbf{V}_{s}^{1}, \mathbf{X}_{\frac{\delta_{1}}{2}}(s)\right)+\rho_{\mathcal{P}^{+}}\left(\mathbf{X}_{\frac{\delta_{1}}{2}}(s), \mathbf{V}_{s}^{2}\right) \leq \mathcal{H}^{1}(\partial \mathcal{P})+\mathcal{H}^{1}\left(\bar{\gamma}_{1}\right)<2 \mathcal{H}^{1}(\partial \mathcal{P}) \tag{3.14}
\end{equation*}
$$

for all $s \in J_{\frac{\delta_{1}}{2}}$.
We define $\psi: \partial \Delta^{+} \cup \partial S_{0} \rightarrow \mathbb{R}^{2}$ as $\psi=\varphi$ on $\partial \Delta$ and $\psi\left(V_{s}^{3}\right)=\mathbf{X}_{\frac{\delta_{1}}{2}}(s)$ for every $s \in\left(c_{1}, c_{2}\right)$. In particular, ψ is continuous and injective and fails to be piecewise linear
only on the segment $H_{t_{1}}^{1} H_{t_{1}}^{2}$. Moreover, gathering together (3.10), (3.11), (3.13), (3.14) we deduce that

$$
\begin{aligned}
\Psi_{0}\left(\psi_{\rceil \partial S_{0}}\right)+\Psi_{0}\left(\psi_{\urcorner \partial \Delta+}\right)= & \int_{0}^{t_{1}} \rho_{\mathcal{P}_{0}}\left(\psi\left(H_{t}^{1}\right), \psi\left(H_{t}^{2}\right)\right) d t+\int_{t_{1}}^{h} \rho_{\mathcal{P}^{+}}\left(\psi\left(H_{t}^{1}\right), \psi\left(H_{t}^{2}\right)\right) d t \\
& +\int_{\left(0, c_{1}\right) \cup\left(c_{2}, \ell\right)} \min \left\{\rho_{\mathcal{P}_{0}}\left(\mathbf{V}_{s}^{1}, \mathbf{V}_{s}^{2}\right)+\rho_{\mathcal{P}^{+}}\left(\mathbf{V}_{s}^{1}, \mathbf{V}_{s}^{2}\right)\right\} \\
& +\int_{\left(c_{1}, c_{2}\right) \backslash J_{\frac{\delta_{1}}{2}}^{2}} \rho_{\mathcal{P}_{0}}\left(\psi\left(V_{s}^{1}\right), \psi\left(V_{s}^{3}\right)\right)+\rho_{\mathcal{P}^{+}}\left(\psi\left(V_{s}^{3}\right), \psi\left(V_{s}^{2}\right)\right) \\
& +\int_{J_{\frac{\delta_{1}}{2}}^{2}} \rho_{\mathcal{P}_{0}}\left(\psi\left(V_{s}^{2}\right), \psi\left(V_{s}^{3}\right)\right)+\rho_{\mathcal{P}^{+}}\left(\psi\left(V_{s}^{3}\right), \psi\left(V_{s}^{2}\right)\right) \\
\leq & \int_{0}^{h} \rho_{\mathcal{P}}\left(\varphi\left(H_{t}^{1}\right), \varphi\left(H_{t}^{2}\right)\right) d t+\int_{(0, \ell) \backslash J_{\frac{\delta_{1}}{2}}^{2}} \rho_{\mathcal{P}}\left(\varphi\left(V_{s}^{1}\right), \varphi\left(V_{s}^{2}\right)\right) d s \\
& +\frac{\varepsilon\left(t_{1}-t_{0}\right)}{8 h(\ell+h)}\left(\ell+h-\mathcal{H}^{1}\left(J_{\frac{\delta_{1}}{2}}\right)\right)+\mathcal{H}^{1}\left(J_{\frac{\delta_{1}}{2}}\right) 2 \mathcal{H}^{1}(\partial \mathcal{P}) \\
\leq & \Psi_{0}(\varphi)+\frac{\varepsilon}{4 h}\left(t_{1}-t_{0}\right),
\end{aligned}
$$

where in the last inequality we used (3.12) and the fact that $\delta_{1}<\frac{\varepsilon\left(t_{1}-t_{0}\right)}{8 h \mathcal{H}^{1}(\mathcal{P})}$.
Finally, thanks to Lemma 2.7 and the considerations of the first part of the step, we can find a function $\bar{\varphi}: \partial \Delta^{+} \cup \partial S_{0} \rightarrow \mathbb{R}^{2}$ that is continuous, injective, piecewise linear and such that (3.9) holds.

Step IV. Definition of $\tilde{\varphi}$ on $\partial T_{0}^{1} \cup \partial R_{0} \cup \partial T_{0}^{2}$.
In this step we further subdivide the strip S_{0} in the essentially disjoint union of two triangles T_{0}^{1}, T_{0}^{2} and a rectangle R_{0} with the following properties. The rectangle R_{0} is the biggest rectangle with horizontal and vertical sides inside S_{0}, such that the horizontal sides are contained in ∂S_{0}, while T_{0}^{1}, T_{0}^{2} are the two disjoint right-angle triangles containing I_{0}^{1}, I_{0}^{2} respectively.

We continue to define a new $\tilde{\varphi}: \partial \Delta^{+} \cup \partial T_{0}^{1} \cup \partial R_{0} \cup \partial T_{0}^{2} \rightarrow \mathbb{R}^{2}$ coinciding with $\bar{\varphi}$ on $\partial \Delta^{+} \cup \partial S_{0}$ such that $\tilde{\varphi}$ is injective, continuous, piecewise linear and satisfies the following estimate

$$
\begin{equation*}
\left.\Psi_{0}\left(\tilde{\varphi}_{\rceil \partial T_{0}^{1}}\right)+\Psi_{0}(\tilde{\varphi}\rceil \partial R_{0}\right)+\Psi_{0}\left(\tilde{\varphi}_{\urcorner \partial T_{0}^{2}}\right) \leq \Psi_{0}\left(\bar{\varphi}_{\urcorner \partial S_{0}}\right)+\frac{\varepsilon}{2 h}\left(t_{1}-t_{0}\right) . \tag{3.15}
\end{equation*}
$$

Let us emphasize that $\tilde{\varphi}$ will be defined so that $\tilde{\varphi}\left(\partial T_{0}^{1} \cup \partial R_{0} \cup \partial T_{0}^{2}\right) \subset \mathcal{P}_{0}$.
We denote by d_{1} and d_{2} the two values such that the projection of ∂S_{0} onto $\mathbb{R} \times\{0\}$ is exactly $\left[d_{1}, d_{2}\right] \times\{0\}$, and we call x_{1} and x_{2} those values for which the projection of ∂R_{0} onto $\mathbb{R} \times\{0\}$ is the segment $\left[x_{1}, x_{2}\right] \times\{0\}$. Notice that $d_{1} \leq c_{1} \leq x_{1}<x_{2} \leq c_{2} \leq d_{2}$.

Being \mathcal{P}_{0} a non degenerate polygon, we let $\bar{\delta}\left(\mathcal{P}_{0}\right)$ be the parameter of Definition 2.2 and take
$\delta_{1}^{\prime}<\min \left\{\bar{\delta}\left(\mathcal{P}_{0}\right), \frac{\varepsilon\left(t_{1}-t_{0}\right)}{32 h \mathcal{H}^{1}\left(\mathcal{P}_{0}\right)}\right\}$ and Lemma 2.4 applies with δ_{1}^{\prime} for \mathcal{P}_{0} and $\frac{\varepsilon\left(t_{1}-t_{0}\right)}{16 h(\ell+h)}$.

Let now $\nu_{x_{1}}$ be the geodesic inside \mathcal{P}_{0} connecting $\bar{\varphi}\left(V_{x_{1}}^{1}\right)$ and $\bar{\varphi}\left(V_{x_{1}}^{3}\right)$ and $\bar{\nu}_{x_{1}}$ be its δ_{1}^{\prime}-modification in the sense of Definition 2.2. In particular, $\bar{\nu}_{x_{1}}$ splits \mathcal{P}_{0} into two non degenerate polygons \mathcal{P}_{0}^{1} and \mathcal{U}, where \mathcal{P}_{0}^{1} contains $\bar{\varphi}\left(I_{0}^{1}\right)$ and \mathcal{U} contains $\bar{\varphi}\left(I_{0}^{2}\right)$.

Thanks to Lemma 2.4 we have

$$
\begin{align*}
& \rho_{\mathcal{U}}\left(\bar{\varphi}\left(V_{s}^{1}\right), \bar{\varphi}\left(V_{s}^{3}\right)\right) \leq \rho_{\mathcal{P}_{0}}\left(\bar{\varphi}\left(V_{s}^{1}\right), \bar{\varphi}\left(V_{s}^{3}\right)\right)+\frac{\varepsilon\left(t_{1}-t_{0}\right)}{16 h(\ell+h)} \text {, for all } s \in\left(x_{1}, x_{2}\right) \\
& \rho_{\mathcal{U}}\left(\bar{\varphi}\left(V_{s}^{1}\right), \bar{\varphi}\left(V_{s}^{2}\right)\right) \leq \rho_{\mathcal{P}_{0}}\left(\bar{\varphi}\left(V_{s}^{1}\right), \bar{\varphi}\left(V_{s}^{2}\right)\right)+\frac{\varepsilon\left(t_{1}-t_{0}\right)}{16 h(\ell+h)}, \text { for all } s \in\left(x_{2}, d_{2}\right) \tag{3.16}
\end{align*}
$$

while for all $s \in\left(d_{1}, x_{1}\right)$

$$
\begin{equation*}
\rho_{\mathcal{P}_{0}^{1}}\left(\bar{\varphi}\left(V_{s}^{1}\right), \bar{\varphi}\left(V_{s}^{2}\right)\right) \leq \rho_{\mathcal{P}_{0}}\left(\bar{\varphi}\left(V_{s}^{1}\right), \bar{\varphi}\left(V_{s}^{2}\right)\right)+\frac{\varepsilon\left(t_{1}-t_{0}\right)}{16 h(\ell+h)} . \tag{3.17}
\end{equation*}
$$

We continue similarly as described in step III. For every $t \in\left(0, t_{1}\right)$ we denote the point $\bar{\varphi}\left(H_{t}^{1}\right)=\mathbf{H}_{t}^{1} \in \mathcal{P}_{0}^{1}$ and $\bar{\varphi}\left(H_{t}^{2}\right)=\mathbf{H}_{t}^{2} \in \mathcal{U}$ thus the geodesic ζ_{t} connecting \mathbf{H}_{t}^{1} and \mathbf{H}_{t}^{2} inside \mathcal{P}_{0} must intersect $\bar{\nu}_{x_{1}}$. So also in this case, for every $t \in\left(0, t_{1}\right)$ we can find a map $\mathbf{Y}(t)$ identifying the last point of the intersection $\zeta_{t} \cap \bar{\nu}_{x_{1}}$ running $\bar{\nu}_{x_{1}}$ from $\bar{\varphi}\left(V_{x_{1}}^{1}\right)$ to $\bar{\varphi}\left(V_{x_{1}}^{3}\right)$. Moreover, exactly as explained in step III, we can find a continuous and injective approximation $\mathbf{Y}_{\frac{\delta_{1}^{\prime}}{2}}$ such that

$$
\left|\mathbf{Y}(t)-\mathbf{Y}_{\frac{\delta_{1}^{\prime}}{2}}(t)\right|<\frac{\delta_{1}^{\prime}}{2} \text { for all } t \in\left(0, t_{1}\right) \backslash J_{\frac{\delta_{1}^{\prime}}{2}}^{1} \text { and } \mathcal{H}^{1}\left(J_{\frac{\delta_{1}^{\prime}}{2}}^{1}\right)<\frac{\delta_{1}^{\prime}}{2}
$$

So if we now call $H_{t}^{3}:=\left(t, x_{1}\right)$ then we can define $\psi^{1}: \partial T_{0}^{1} \cup \partial S_{0} \rightarrow \mathbb{R}^{2}$ in this way: $\psi^{1}=\bar{\varphi}$ on ∂S_{0} and $\psi^{1}\left(H_{t}^{3}\right)=\mathbf{Y}_{\frac{\delta_{1}^{\prime}}{2}}(t)$ for all $t \in\left(0, t_{1}\right)$. Then the map ψ^{1} is continuous, injective and fails to be piecewise linear only on the segment $\left\{x_{1}\right\} \times\left[0, t_{1}\right]$. Using Lemma 2.4, for all $t \in\left(0, t_{1}\right) \backslash J_{\frac{\delta_{1}^{\prime}}{2}}^{1}$ we can estimate

$$
\begin{align*}
\rho_{\mathcal{P}_{0}^{1}}\left(\psi^{1}\left(H_{t}^{1}\right), \psi^{1}\left(H_{t}^{3}\right)\right) & +\rho_{\mathcal{U}}\left(\psi^{1}\left(H_{t}^{3}\right), \psi^{1}\left(H_{t}^{2}\right)\right) \\
& \leq \rho_{\mathcal{P}_{0}}\left(\bar{\varphi}\left(H_{t}^{1}\right), \bar{\varphi}\left(H_{t}^{2}\right)\right)+\frac{\varepsilon\left(t_{1}-t_{0}\right)}{16 h(\ell+h)} \tag{3.18}
\end{align*}
$$

while for the remaining $t \in J_{\frac{\delta_{1}^{\prime}}{2}}^{l}$ we get

$$
\begin{align*}
\rho_{\mathcal{P}_{0}^{1}}\left(\psi^{1}\left(H_{t}^{1}\right), \psi^{1}\left(H_{t}^{3}\right)\right)+\rho_{\mathcal{U}}\left(\psi^{1}\left(H_{t}^{3}\right), \psi^{1}\left(H_{t}^{2}\right),\right) & \leq \mathcal{H}^{1}\left(\bar{\nu}_{x_{1}}\right)+\mathcal{H}^{1}\left(\partial \mathcal{P}_{0}\right) \tag{3.19}\\
& \leq 2 \mathcal{H}^{1}\left(\partial \mathcal{P}_{0}\right) .
\end{align*}
$$

Then (3.16), (3.17), (3.18) and (3.19) give

$$
\begin{aligned}
\Psi_{0}\left(\psi_{\rceil \partial T_{0}^{1}}^{1}\right)+ & \Psi_{0}\left(\psi_{\partial \partial\left(S_{0} \backslash T_{0}^{1}\right)}^{1}\right) \\
\leq & \int_{d_{1}}^{c_{1}} \rho_{\mathcal{P}_{0}}\left(\bar{\varphi}\left(V_{s}^{1}\right), \bar{\varphi}\left(V_{s}^{2}\right)\right)+\frac{\varepsilon\left(t_{1}-t_{0}\right)}{16 h(\ell+h)} d s \\
& +\int_{c_{1}}^{c_{2}} \rho_{\mathcal{P}_{0}}\left(\bar{\varphi}\left(V_{s}^{1}\right), \bar{\varphi}\left(V_{s}^{3}\right)\right)+\frac{\varepsilon\left(t_{1}-t_{0}\right)}{16 h(\ell+h)} d s \\
& +\int_{c_{2}}^{d_{2}} \rho_{\mathcal{P}_{0}}\left(\bar{\varphi}\left(V_{s}^{1}\right), \bar{\varphi}\left(V_{s}^{2}\right)\right)+\frac{\varepsilon\left(t_{1}-t_{0}\right)}{16 h(\ell+h)} d s \\
& +\int_{\left(0, t_{1}\right) \backslash J_{\delta_{1}^{\prime}}^{1}} \rho_{\mathcal{P}_{0}}\left(\bar{\varphi}\left(H_{t}^{1}\right), \bar{\varphi}\left(H_{t}^{2}\right)\right)+\frac{\varepsilon\left(t_{1}-t_{0}\right)}{16 h(\ell+h)} d t \\
& +2 \mathcal{H}^{1}\left(J_{\frac{\delta_{1}^{\prime}}{2}}^{1}\right) \mathcal{H}^{1}\left(\partial \mathcal{P}_{0}\right) \\
\leq & \Psi_{0}\left(\bar{\varphi}_{\urcorner} \mathcal{P}_{0}\right)+\frac{\varepsilon}{8 h}\left(t_{1}-t_{0}\right),
\end{aligned}
$$

and, as in step III, Lemma 2.7 ensures that there is some continuous, injective and piecewise linear map $\tilde{\varphi}^{1}: \partial T_{0}^{1} \cup \partial S_{0} \rightarrow \mathbb{R}^{2}$ such that $\tilde{\varphi}^{1}=\psi^{1}=\bar{\varphi}$ on ∂S_{0} and

$$
\Psi_{0}\left(\tilde{\varphi}_{\nmid \partial T_{0}^{1}}^{1}\right)+\Psi_{0}\left(\tilde{\varphi}_{\nmid \partial\left(S_{0} \backslash T_{0}^{1}\right)}^{1}\right) \leq \Psi_{0}\left(\bar{\varphi}_{\not \mathcal{P}_{0}}\right)+\frac{\varepsilon}{4 h}\left(t_{1}-t_{0}\right) .
$$

To conclude the step we need to repeat the very same argument on $\tilde{\varphi}_{\gamma \partial\left(S_{0} \backslash T_{0}^{1}\right)}$ by replacing \mathcal{P}_{0} with \mathcal{U} and considering a $\delta_{1}^{\prime \prime}$-modification of $\nu_{x_{2}}$, where $\delta_{1}^{\prime \prime}$ is chosen so that

$$
\delta_{1}^{\prime \prime}<\min \left\{\bar{\delta}(\mathcal{U}), \frac{\varepsilon\left(t_{1}-t_{0}\right)}{32 \ell \mathcal{H}^{1}(\mathcal{U})}\right\} \text { and Lemma } 2.4 \text { applies with } \delta_{1}^{\prime \prime} \text { for } \mathcal{U} \text { and } \frac{\varepsilon\left(t_{1}-t_{0}\right)}{16 h(\ell+h)} .
$$

This would provide a continuous, injective and piecewise linear map $\tilde{\varphi}$: $\partial T_{0}^{1} \cup \partial R_{0} \cup$ $\partial T_{0}^{2} \rightarrow \mathbb{R}^{2}$ extending $\tilde{\varphi}^{1}$ (hence, ultimately, $\bar{\varphi}$) such that

$$
\begin{aligned}
\left.\Psi_{0}\left(\tilde{\varphi}_{\urcorner \partial T_{0}^{1}}\right)+\Psi_{0}(\tilde{\varphi}\urcorner \partial R_{0}\right)+\Psi_{0}\left(\tilde{\varphi}_{\urcorner \partial T_{0}^{2}}\right) & \leq \Psi_{0}\left(\tilde{\varphi}_{\rceil \partial\left(S_{0} \backslash T_{0}^{1}\right)}^{1}\right)+\frac{\varepsilon}{4 h}\left(t_{1}-t_{0}\right) \\
& \leq \Psi_{0}\left(\bar{\varphi}_{\urcorner \mathcal{P}_{0}}\right)+\frac{\varepsilon}{2 h}\left(t_{1}-t_{0}\right)
\end{aligned}
$$

thus proving (3.15) and concluding the step.

Step V. Recursion and conclusion.

In this final step we want to conclude our construction by recursion. In steps III and IV we divided Δ into a new convex polygon with two horizontal sides Δ^{+}and a horizontal strip S_{0} given by a rectangle R_{0} and two triangles T_{0}^{1}, T_{0}^{2}.

Then we defined continuous, injective, piecewise linear functions $\bar{\varphi}, \tilde{\varphi}$ such that $\bar{\varphi}=\tilde{\varphi}$ on $\partial \Delta^{+}$satisfies (by (3.9), (3.15) and our choice of δ_{1})

$$
\begin{aligned}
\Psi_{0}\left(\bar{\varphi}_{\rceil \partial S_{0}}\right)+\Psi_{0}\left(\bar{\varphi}_{\rceil \partial \Delta^{+}}\right) & \leq \Psi_{0}(\varphi)+\frac{\varepsilon}{2 h}\left(t_{1}-t_{0}+2 \delta_{1}\right) \\
& \leq \Psi_{0}(\varphi)+\frac{\varepsilon}{2 h}\left(t_{1}-t_{0}\right)+\frac{\varepsilon}{4} \frac{1}{2}, \\
\left.\Psi_{0}\left(\tilde{\varphi}_{\rceil \partial T_{0}^{1}}\right)+\Psi_{0}(\tilde{\varphi}\rceil \partial R_{0}\right)+\Psi_{0}\left(\tilde{\varphi}_{\rceil \partial T_{0}^{2}}\right) & \left.\leq \Psi_{0}(\bar{\varphi}\rceil \partial S_{0}\right)+\frac{\varepsilon}{2 h}\left(t_{1}-t_{0}+2 \delta_{1}\right) \\
& \left.\leq \Psi_{0}(\bar{\varphi}\rceil \partial S_{0}\right)+\frac{\varepsilon}{2 h}\left(t_{1}-t_{0}\right)+\frac{\varepsilon}{4} \frac{1}{2} .
\end{aligned}
$$

Iterating the construction and choosing for every i the parameter δ_{i} suitably small depending on $t_{i-1}, \frac{h}{2^{2+1}}$ and the polygon $\mathcal{P}^{+}=\mathcal{P} \backslash \bigcup_{j=0}^{i-1} \mathcal{P}_{j}$, we then find

$$
\left.\sum_{i=0}^{M-1} \Psi_{0}(\bar{\varphi}\rceil \partial S_{i}\right) \leq \Psi_{0}(\varphi)+\frac{\varepsilon}{2 h} \sum_{i=0}^{M-1}\left(t_{i+1}-t_{i}\right)+\frac{\varepsilon}{4} \sum_{i=0}^{M-1} \frac{1}{2^{i}}
$$

and

$$
\left.\sum_{i=0}^{M-1} \Psi_{0}\left(\tilde{\varphi}_{\rceil \partial T_{i}^{1}}\right)+\Psi_{0}\left(\tilde{\varphi}_{\rceil} \partial R_{i}\right)+\Psi_{0}\left(\tilde{\varphi}_{\rceil \partial T_{i}^{2}}\right) \leq \sum_{i=0}^{M-1} \Psi_{0}(\bar{\varphi}\rceil \partial S_{i}\right)+\frac{\varepsilon}{2 h} \sum_{i=0}^{M-1}\left(t_{i+1}-t_{i}\right)+\frac{\varepsilon}{4} \sum_{i=0}^{M-1} \frac{1}{2^{i}},
$$

which finally imply (3.6) and (3.7) respectively.

4. Piecewise affine extension

In this subsection we investigate two possible finitely piecewise affine homeomorphic extension inside triangles.

Lemma 4.1 (Extension-direct). Let $T \subset \mathbb{R}^{2}$ be a triangle of corners A, B, C such that $B C$ is horizontal and A^{*} is the intersection of $B C$ with the bisector of the angle at A. If $\varphi: \partial T \rightarrow \mathbb{R}^{2}$ is continuous, injective and linear on each of the segments $A B, A C, B A^{*}$ and $A^{*} C$, then there exists a bi-affine homeomorphism $v: T \rightarrow \mathbb{R}^{2}$ such that $v=\varphi$ on ∂T and

$$
\begin{equation*}
\|D v\|_{0}(T) \leq \mathcal{H}^{1}(\varphi(\partial T)) \mathcal{H}^{1}(\partial T) \tag{4.1}
\end{equation*}
$$

Proof. The proof is immediate, indeed it is enough to consider the continuous map v which is affine on each of the triangles $T_{1}:=A B A^{*}, T_{2}:=B A^{*} C$. Then we can compute

$$
D_{1} v_{T_{1}}=\frac{\varphi\left(A^{*}\right)-\varphi(B)}{\left(A^{*}\right)_{1}-(B)_{1}} \mathcal{L}^{2}, \quad D_{1} v_{T_{T}}=\frac{\varphi(C)-\varphi\left(A^{*}\right)}{(C)_{1}-\left(A^{*}\right)_{1}} \mathcal{L}^{2}
$$

and

$$
D_{2} v_{\rceil T_{1}}=\frac{\varphi(A)-\varphi\left(A^{*}\right)-D_{1} v_{\rceil T_{1}}\left((A)_{1}-\left(A^{*}\right)_{1}\right)}{(A)_{2}-\left(A^{*}\right)_{2}} \mathcal{L}^{2}
$$

and

$$
D_{2} v_{T_{2}}=\frac{\varphi(A)-\varphi\left(A^{*}\right)-D_{1} v_{T_{2}}\left((A)_{1}-\left(A^{*}\right)_{1}\right)}{(A)_{2}-\left(A^{*}\right)_{2}} \mathcal{L}^{2}
$$

Figure 3. The decomposition of T into $T=\Omega \cup \tilde{T} \cup A D E C$. And the corresponding decomposition of int $\varphi(\partial T)$ into $\mathcal{P}_{\Omega} \cup \mathcal{P}_{\tilde{T}} \cup \mathcal{P}_{A D E C}$

In particular, one can estimate

$$
\begin{aligned}
\|D v\|_{0}(T)= & \left|D_{1} v\right|\left(T_{1}\right)+\left|D_{2} v\right|\left(T_{1}\right)+\left|D_{1} v\right|\left(T_{2}\right)+\left|D_{2} v\right|\left(T_{2}\right) \\
\leq & \frac{1}{2}\left|\varphi\left(A^{*}\right)-\varphi(B)\right|\left[\left|(A)_{2}-\left(A^{*}\right)_{2}\right|+\left|(A)_{1}-\left(A^{*}\right)_{1}\right|\right] \\
& +\frac{1}{2}\left|\varphi\left(A^{*}\right)-\varphi(A)\right|\left|(B)_{1}-\left(A^{*}\right)_{1}\right| \\
& +\frac{1}{2}\left|\varphi(C)-\varphi\left(A^{*}\right)\right|\left[\left|(A)_{2}-\left(A^{*}\right)_{2}\right|+\left|(A)_{1}-\left(A^{*}\right)_{1}\right|\right] \\
& +\frac{1}{2}\left|\varphi\left(A^{*}\right)-\varphi(A)\right|\left|(C)_{1}-\left(A^{*}\right)_{1}\right| \\
\leq & \mathcal{H}^{1}(\varphi(\partial T)) \frac{1}{2}\left(4\left|A-A^{*}\right|+|B-C|\right) \\
\leq & \mathcal{H}^{1}(\varphi(\partial T)) \frac{1}{2}(2|A-B|+2|A-C|+2|B-C|) \\
\leq & \mathcal{H}^{1}(\varphi(\partial T)) \mathcal{H}^{1}(\partial T) .
\end{aligned}
$$

Lemma 4.2 (Extension-indirect). Let $T \subset \mathbb{R}^{2}$ be a triangle of corners A, B, C such that $A B$ is horizontal, $B C$ is vertical and let $\varphi: \partial T \rightarrow \mathbb{R}^{2}$ be a continuous, piecewise linear, injective map such that φ is linear on the hypotenuse $A C$. For every $\varepsilon>0$ there exists a finitely piecewise affine homeomorphism $v: T \rightarrow \mathbb{R}^{2}$ such that $v=\varphi$ on ∂T and

$$
\begin{equation*}
\|D v\|_{0}(T) \leq \Psi_{0}(\varphi)+242 \mathcal{H}^{1}(\partial T) \mathcal{H}^{1}(\varphi(A C))+\varepsilon \tag{4.2}
\end{equation*}
$$

Proof. Let $\varepsilon>0$ be fixed arbitrary small.

For simplicity of notation, through the proof we refer to β as the internal angle of the corner $A=(0,0)$ and we will denote $\mathbf{d}:=|\varphi(A)-\varphi(C)|=\mathcal{H}^{1}(\varphi(A C))$ and $d=|A-C|$. Clearly, since the internal angle in B is $\pi / 2$, then $\beta \in(0, \pi / 2)$.

Since the polygon of boundary $\varphi(\partial T)$ is non degenerate, then Definition 2.2 provides some constant $\bar{\delta}>0$, then we consider

$$
\begin{equation*}
\eta<\left\{1, \frac{d}{2}, \frac{\bar{\delta}}{4}, \frac{\mathbf{d}}{14}, \frac{\varepsilon}{4},\left(1+\frac{1}{2 \tan \beta}\right)^{-1},\|D \varphi\|_{\infty}^{-1}\right\} . \tag{4.3}
\end{equation*}
$$

The basic idea of the proof is to find a suitable one-dimensional skeleton Υ inside T, construct a continuous, piecewise linear and injective map $\tilde{\varphi}: \Upsilon \rightarrow \mathbb{R}^{2}$ coinciding with φ on ∂T and finally perform a suitable piecewise affine extension inside each component of the partition of T identified by Υ.

For clarity, we present the proof in three separate steps.

Step I. Definition of a first skeleton Ξ and a continuous piecewise linear injective map $\varphi^{1}: \Xi \rightarrow \mathbb{R}^{2}$.

In this step we would like to construct a one-dimensional skeleton of the form $\Xi=\partial T \cup D E \cup F G$, for some suitably chosen points D, E, F, G, and we will define an extension φ^{1} of φ on $D E \cup F G$ that is still continuous, piecewise linear and injective. See Figure 3 for an illustration.

We will select D, E, F, G so that

$$
D \in A B, \quad E, F \in B C, \quad G \in D E, \quad F G \| A B \quad \text { and } \quad D E \| A C
$$

and satisfying the following estimates

$$
\begin{align*}
& |A-D|<\eta \quad \text { and } \quad|C-E|<\eta \\
& \mathcal{H}^{1}\left(\varphi^{1}(\partial \tilde{T})\right)<4 \eta, \tag{4.4}\\
& \Psi_{0}\left(\varphi^{1} \partial \Omega\right) \leq \Psi_{0}^{1}(\varphi)+(\mathbf{d}+14 \eta) \mathcal{H}^{1}(\partial T) .
\end{align*}
$$

where $\tilde{T} \subset T$ is the triangle of corners E, F, G and $\Omega \subset T$ is the trapezoid of corners D, B, F, G.

Having fixed η, by the assumptions on φ, we can choose $D \in A B$ and $E \in B C$ so that
i) $|A-D|<\eta$ and $|C-E|<\eta$;
ii) $|\varphi(A)-\varphi(D)|<\eta$ and $|\varphi(C)-\varphi(E)|<\eta$;
iii) the restriction of φ is linear on $A D$ and $C E$;
iv) $D E$ is parallel to $A C$;
v) the point \mathbf{X} is on the internal bisector of $\varphi(A)$ and \mathbf{Y} on the internal bisector of $\varphi(C)$ such that $|\varphi(A)-\mathbf{X}|<2 \eta$ and $|\varphi(C)-\mathbf{Y}|<2 \eta$ and the piecewise linear path $\tilde{\gamma}_{\varphi(D) \varphi(E)}:=\varphi(D) \mathbf{X Y} \varphi(E)$ lies in the interior of $\varphi(\partial T)$ and is a $\bar{\delta} / 2$-modification of the geodesic $\gamma_{\varphi(D) \varphi(E)}$ in the sense of Definition 2.2.
Observe, that ii) and v) imply that $|\varphi(D)-\mathbf{X}|,|\varphi(E)-\mathbf{Y}|<3 \eta$ and also

$$
\begin{align*}
\mathcal{H}^{1}\left(\tilde{\gamma}_{\varphi(D) \varphi(E)}\right) & <|\varphi(D)-\mathbf{X}|+|\mathbf{X}-\mathbf{Y}|+|\varphi(E)-\mathbf{Y}| \\
& <6 \eta+|\varphi(A)-\mathbf{X}|+|\varphi(A)-\varphi(C)|+|\varphi(C)-\mathbf{Y}| \tag{4.5}\\
& <\mathbf{d}+10 \eta .
\end{align*}
$$

We find a point F on the segment $E B$, a point $G \in D E$ and a point $\mathbf{Z} \in[\mathbf{Y} \varphi(E)]$ such that
vi) $|F-E|<\eta$ and $|\varphi(F)-\varphi(E)|<\eta$;
vii) φ is linear on $E F$;
viii) $|\varphi(E)-\mathbf{Z}|<\eta$ and $[\varphi(F) \mathbf{Z}]$ lies in int $\varphi(\partial T)$. As a consequence $|\varphi(F)-\mathbf{Z}|<2 \eta$
ix) $G_{2}=F_{2},|G-E|<\eta(\sin \beta)^{-1}$ and $|G-F|<\eta(\tan \beta)^{-1}$.

This concludes the definition of Ξ. Indeed i) ensures the first equation of (4.4), then \tilde{T} is a right-angle triangle and Ω is a trapezoid inside T.

We now proceed to construct a function $\varphi^{1}: \Xi \rightarrow \mathbb{R}^{2}$ extending φ such that the second and third estimates of (4.4) are satisfied. In order to do that, we consider two further auxiliary points $P, Q \in D G$ so that
x) $|P-D|<\eta$ and $|Q-G|<\eta$;
and we set

$$
\varphi^{1}(P):=\mathbf{X}, \quad \varphi^{1}(Q):=\mathbf{Y} \quad \text { and } \quad \varphi^{1}(G):=\mathbf{Z}
$$

We then define $\varphi^{1}: \Xi \rightarrow \mathbb{R}^{2}$ so that $\varphi^{1}=\varphi$ on $\partial T, \varphi_{\rceil D P}^{1}$ is the parametrization at constant speed of the segment $\varphi(D) \mathbf{X}, \varphi_{1 P Q}^{1}$ is the parametrization at constant speed of the segment XY, $\varphi^{1}{ }^{1}$ is is the parametrization at constant speed of the segment $\mathbf{Y Z}, \varphi_{1 G E}^{1}$ is the parametrization at constant speed of the segment $\mathbf{Z} \varphi(E)$ and, finally, $\varphi_{\jmath_{G F}}^{1}$ is the parametrization at constant speed of the segment $\mathbf{Z} \varphi(F)$. A sketch of the situation is presented in Figure 3

The second estimate of (4.4) is a direct consequence of vi) and viii), indeed φ^{1} is linear in each of the segments $E F, F G, E G$ and by triangular inequality we have

$$
\begin{aligned}
\mathcal{H}^{1}\left(\varphi^{1}(\partial \tilde{T})\right) & =|\varphi(E)-\varphi(F)|+|\varphi(E)-\mathbf{Z}|+|\mathbf{Z}-\varphi(F)| \\
& \leq 2(|\varphi(E)-\varphi(F)|+|\varphi(E)-\mathbf{Z}|) \leq 4 \eta
\end{aligned}
$$

The remaining part of the step is devoted to the proof of the third estimate of (4.4). In the following X_{i} is the i-th coordinate of the point X. For every $t \in\left[0, E_{1}\right]$ we denote by $H_{t}^{1}, H_{t}^{2}, H_{t}^{3}$ the intersections between the horizontal line $\mathbb{R} \times\{t\}$ and the curves $A C, D E, B F$ respectively. Clearly, $H_{0}^{1}=A, H_{0}^{2}=D, H_{0}^{3}=B, H_{F_{2}}^{2}=G$ and $H_{F_{2}}^{3}=F$. Similarly, for every $s \in\left[D_{1}, B_{1}\right]$ we denote by $V_{s}^{1}, V_{s}^{2}, V_{s}^{3}$ the intersections between the vertical line $\{s\} \times \mathbb{R}$ and the sets $D B, D G \cup G F, A C$ respectively. Then $V_{D_{1}}^{1}=V_{D_{1}}^{2}=D, V_{B_{1}}^{3}=C, V_{B_{1}}^{2}=F$ and $V_{B_{1}}^{1}=B$.

We recall that, by definition, $\Psi_{0}\left(\varphi_{\lceil\partial \Omega}^{1}\right)$ corresponds to the following quantity

$$
\int_{0}^{F_{1}} \rho_{\mathcal{P}_{\Omega}}\left(\varphi^{1}\left(H_{t}^{2}\right), \varphi^{1}\left(H_{t}^{3}\right)\right) d t+\int_{D_{1}}^{B_{1}} \rho_{\mathcal{P}_{\Omega}}\left(\varphi^{1}\left(V_{s}^{1}\right), \varphi^{1}\left(V_{s}^{2}\right)\right) d s
$$

where \mathcal{P}_{Ω} is the non degenerate polygon identified by $\varphi^{1}(\partial \Omega)$.
Notice that, by construction, the curve $\varphi^{1}(D G)$ is exactly the piecewise linear curve $\varphi(D) \mathbf{X Y Z}$, so $\varphi^{1}\left(H_{t}^{2}\right)$ and $\varphi^{1}\left(V_{s}^{2}\right)$ will lie on $\varphi(D) \mathbf{X Y Z}$ for every $t \in\left[0, F_{2}\right]$ and $s \in\left[D_{1}, G_{1}\right]$. On the other hand, when $s \in\left[G_{1}, B_{1}\right]$ we get that $\varphi^{1}\left(V_{s}^{2}\right)$ lies on the segment $\mathbf{Z} \varphi(F)$.

Obviously one can construct a path in \mathcal{P}_{Ω} from $\varphi^{1}\left(H_{t}^{3}\right)$ to $\varphi^{1}\left(H_{t}^{2}\right)$ by following $\gamma_{\varphi\left(H_{t}^{1}\right) \varphi\left(H_{t}^{3}\right)} \cap \mathcal{P}_{\Omega}$ and when necessary going around $\mathcal{P}_{\tilde{T}}$ on its boundary and travelling
along $\tilde{\gamma}_{\varphi(D) \varphi(E)}$ till one gets to $\varphi^{1}\left(H_{t}^{2}\right)$. The length of this curve bounds the length of the geodesic in \mathcal{P}_{Ω} between $\varphi^{1}\left(H_{t}^{2}\right)$ and $\varphi^{1}\left(H_{t}^{3}\right)$. Further

$$
\begin{align*}
\rho_{\mathcal{P}_{\Omega}}\left(\varphi^{1}\left(H_{t}^{2}\right), \varphi^{1}\left(H_{t}^{3}\right)\right) & \leq \mathcal{H}^{1}\left(\gamma_{\varphi\left(H_{t}^{1}\right) \varphi\left(H_{t}^{3}\right)} \cap \mathcal{P}_{\Omega}\right)+\mathcal{H}^{1}\left(\partial \mathcal{P}_{\tilde{T}}\right)+\mathcal{H}^{1}\left(\tilde{\gamma}_{\varphi(D) \varphi(E)}\right) \\
& \leq \rho_{\varphi(\partial T)}\left(\varphi\left(H_{t}^{1}\right), \varphi\left(H_{t}^{3}\right)\right)+\mathbf{d}+14 \eta, \tag{4.6}
\end{align*}
$$

where in the last inequality we used the second of (4.4) and (4.5). Analogously, for every $s \in\left(D_{1}, B_{1}\right)$ it holds that

$$
\begin{align*}
\rho_{\mathcal{P}_{\Omega}}\left(\varphi^{1}\left(V_{s}^{1}\right), \varphi^{1}\left(V_{s}^{2}\right)\right) & \leq \mathcal{H}^{1}\left(\gamma_{\varphi\left(V_{s}^{1}\right) \varphi\left(V_{V}^{3}\right)} \cap \mathcal{P}_{\Omega}\right)+\mathcal{H}^{1}\left(\partial \mathcal{P}_{\tilde{T}}\right)+\mathcal{H}^{1}\left(\tilde{\gamma}_{\varphi(D) \varphi(E)}\right) \tag{4.7}\\
& \leq \rho_{\varphi(\partial T)}\left(\varphi\left(V_{s}^{1}\right), \varphi\left(V_{s}^{3}\right)\right)+\mathbf{d}+14 \eta .
\end{align*}
$$

Gathering the last two estimates together we obtain

$$
\begin{align*}
\Psi_{0}\left(\varphi_{1 \partial \Omega}^{1}\right)= & \int_{0}^{F_{2}} \rho_{\mathcal{P}_{\Omega}}\left(\varphi^{1}\left(H_{t}^{2}\right), \varphi^{1}\left(H_{t}^{3}\right)\right) d t+\int_{D_{1}}^{B_{1}} \rho_{\mathcal{P}_{\Omega}}\left(\varphi^{1}\left(V_{s}^{1}\right), \varphi^{1}\left(V_{s}^{2}\right)\right) d s \\
\leq & \int_{0}^{F_{2}} \rho_{\varphi(\partial T)}\left(\varphi\left(H_{t}^{1}\right), \varphi\left(H_{t}^{3}\right)\right) d t+\int_{D_{1}}^{B_{1}} \rho_{\varphi(\partial T)}\left(\varphi\left(V_{s}^{1}\right), \varphi\left(V_{s}^{3}\right)\right) d s \tag{4.8}\\
& +(\mathbf{d}+14 \eta)(|F-B|+|D-B|) \\
\leq & \Psi_{0}(\varphi)+(\mathbf{d}+14 \eta) \mathcal{H}^{1}(\partial T) .
\end{align*}
$$

which is exactly the third estimate of (4.4).
Step II. Definition of the final skeleton Υ and the continuous piecewise linear injective map $\tilde{\varphi}: \Upsilon \rightarrow \mathbb{R}^{2}$.

The aim of this step is to define a set Υ depicted in Figure 4 and a map $\tilde{\varphi}$ satisfying the following properties:

1) the set Υ subdivides T in the essentially disjoint union $\hat{T} \cup \tilde{T} \cup \mathbb{P} \cup \bigcup_{i=0}^{M-1} R_{i}$, where \mathbb{P} is a polygon which is \tilde{C}-bi-Lipschitz (\tilde{C} is a universal constant) equivalent to the rectangle $[0,|A-C|] \times[0,|A-D| \sin \beta], \hat{T}$ is a triangle near either A or C, \tilde{T} is the triangle defined in step I of corners E, F, G and R_{i} are M pairwise essentially disjoint rectangles having horizontal and vertical sides.
2) $\tilde{\varphi}: \Upsilon \rightarrow \mathbb{R}^{2}$ is piecewise linear, continuous and injective, moreover it coincides with φ^{1} on Ξ (where Ξ is the set defined in step I) and satisfies the following estimates

$$
\sum_{i=0}^{M-1} \Psi_{0}\left(\tilde{\varphi}_{\urcorner \partial R_{i}}\right) \leq \Psi_{0}(\varphi)+(\mathbf{d}+14 \eta) \mathcal{H}^{1}(\partial T)+\frac{\eta}{50} .
$$

We use Lemma 3.3 on φ^{1} and on Ω with

$$
\xi<\frac{1}{100} \min \left\{\sin \beta \operatorname{dist}(D, A C), \frac{\eta}{2 d}\right\}
$$

and get a number $M \in \mathbb{N}$ and M values

$$
0=t_{0}<t_{1}<\ldots<t_{M-1}<t_{M}=F_{2}
$$

such that $\left|t_{i+1}-t_{i}\right|<\xi$ for every $i=1 \ldots M-1$. Moreover it is possible to decompose Ω into the essentially disjoint union of $M-1$ horizontal strips $S_{i}=\mathbb{R} \times\left[t_{i-1}, t_{i}\right] \cap \Omega$ such that φ^{1} is linear on $I_{i}:=\partial S_{i} \cap D G$ and on $\partial S_{i} \cap F B$ and $\mathcal{H}^{1}\left(\varphi^{1}\left(I_{i}\right)\right) \leq \xi$.

Further we deduce from Lemma 3.3 the existence of a continuous, piecewise linear and injective

$$
\varphi^{2}: \partial T \cup D E \cup F G \cup \bigcup_{i=1}^{M-1} \partial S_{i} \rightarrow \mathbb{R}^{2}
$$

such that $\varphi^{2}=\varphi^{1}$ on $\partial T \cup D E \cup F G$ and

$$
\sum_{i=0}^{M-1} \Psi_{0}\left(\varphi_{\upharpoonleft \partial S_{i}}^{2}\right) \leq \Psi_{0}\left(\varphi_{\rceil \partial \Omega}^{1}\right)+\xi
$$

A consequence of the above inequality, the choice of ξ and the third estimate of (4.4) is that

$$
\begin{align*}
\sum_{i=0}^{M-1} \Psi_{0}\left(\varphi_{\rceil \partial S_{i}}^{2}\right) & \leq \Psi_{0}(\varphi)+(\mathbf{d}+14 \eta) \mathcal{H}^{1}(\partial T)+\xi \tag{4.10}\\
& <\Psi_{0}(\varphi)+(\mathbf{d}+14 \eta) \mathcal{H}^{1}(\partial T)+\frac{\eta}{100}
\end{align*}
$$

We now proceed to construct the skeleton Υ and the final map $\tilde{\varphi}$. Observe that for every $i=0 \ldots M-1$, the right-angle triangle T_{i} of hypotenuse I_{i} constructed at the exterior of Ω is still contained in T and does not intersect $A C$. Indeed, by construction, one has that $\mathcal{H}^{1}\left(\partial S_{i} \cap F B\right)=\left|t_{i+1}-t_{i}\right|<\xi$ and hence $\mathcal{H}^{1}\left(I_{i}\right)<\frac{\xi}{\sin \beta}$ and the distance between any point of T_{i} and the segment $A C$ must be at least $\operatorname{dist}(D, A C)-\frac{\xi}{\sin \beta}>\frac{99}{100} \operatorname{dist}(D, A C)$, thus ensuring that $T_{i} \subset T$. Clearly, $T_{i} \cap T_{j}$ is either empty or contains at most one corner (this corresponds to the case where $j=i \pm 1)$.

Then, connecting the horizontal and vertical sides of T_{i} for every $i=0 \ldots M-1$, we obtain a continuous piecewise linear path Γ connecting D and G that lies inside T and, at the same time, outside the trapezoid Ω. Moreover, by construction, we have that

$$
\operatorname{dist}(A C, \Gamma) \geq \frac{99}{100} \operatorname{dist}(D, A C)=\frac{99}{100}|A-D| \sin \beta
$$

and

$$
\begin{equation*}
\mathcal{H}^{1}(\Gamma) \leq 2|D-G|+|E-G| \leq 2|D-E| \leq 2 h . \tag{4.11}
\end{equation*}
$$

Assuming that β is bounded away from 0 and $\frac{\pi}{2}$ we have that the non degenerate polygon $\mathbb{P} \subset T$ of boundary $A C \cup A D \cup \Gamma \cup G E \cup E C$ is \tilde{C}-bi-Lipschitz equivalent to a rectangle of side-lengths $|A-C|=d$ and $|A-D| \sin \beta$. On the other hand if β is very close to 0 it suffices to take away the triangle \hat{T} with vertexes at A, $A / 2+D / 2$ and third vertex on $A C$ with angle $\pi / 2$. Then the remaining part of \mathbb{P} is again \tilde{C}-bi-Lipschitz equivalent to a rectangle of side-lengths $|A-C|=d$ and $|A-D| \sin \beta$. Similarly if β is close to $\pi / 2$ we subtract a triangle \hat{T} close to C and then the remaining set is \tilde{C}-bi-Lipschitz equivalent to a rectangle of side-lengths $|A-C|=d$ and $|A-D| \sin \beta$.
Let us now observe that, by construction, the polygon of boundary $D B \cup F B \cup$ $F G \cup \Gamma$ can be seen as the essentially disjoint union of M rectangles R_{i} of horizontal and vertical sides such that $S_{i}=R_{i} \cap \Omega$ and $T_{i}=R_{i} \backslash \Omega$.

Figure 4. The division of T into $T=\mathbb{P} \cup \tilde{T} \cup \bigcup_{i} R_{i}$ and that $R_{i}=T_{i} \cup S_{i}$ where one vertex of R_{i} lies on $D E$. The set \mathbb{P} is uniformly bi-Lipschitz equivalent to the rectangle $[0,|A-C|] \times[0,|A-D|]$. The usage of \hat{T} is optional and is used near either A or C when the hypotenuse is close to being either horizontal or vertical.

Notice that the rectangles R_{i} are pairwise essentially disjoint, moreover they are essentially disjoint from \mathbb{P} and \tilde{T}. We are finally in position to define the set

$$
\Upsilon:=\partial \mathbb{P} \cup \partial \hat{T} \cup \partial \tilde{T} \cup \bigcup_{i=0}^{M-1} \partial R_{i}
$$

satisfying all conditions of property 1).
We now focus on the definition of $\tilde{\varphi}: \Upsilon \rightarrow \mathbb{R}^{2}$. We set

$$
\tilde{\varphi}:=\varphi^{2} \quad \text { on } \quad\left(\Xi \cup \bigcup_{i=0}^{M-1} \partial S_{i}\right) \backslash D G,
$$

then we only need to care about the definition of $\tilde{\varphi}$ on Γ. The idea is to let $\tilde{\varphi}\left(\partial T_{i} \backslash I_{i}\right)=$ $\varphi^{2}\left(I_{i}\right)$ and decide the parametrization in such a way that $\Psi_{0}\left(\tilde{\varphi} \mid \partial R_{i}\right) \lesssim \Psi_{0}\left(\varphi^{2} \partial S_{i}\right)$.
For this reason, for every $i=0 \ldots M-1$, we define $\tilde{\varphi}: \partial T_{i} \backslash I_{i} \rightarrow \mathbb{R}^{2}$ as the bi-linear map that parametrizes the segment $\varphi^{2}\left(I_{i}\right)$ at constant speed. We recall that Lemma 3.3 gives a φ^{2} that is linear and equal to φ^{1} on each I_{i}, and $\mathcal{H}^{1}\left(\varphi^{2}\left(I_{i}\right)\right)<\xi$. As a consequence, for any choice of $X \in \Gamma \cap \partial T_{i}$ and $Y \in I_{i}$ we get that $\left|\tilde{\varphi}(X)-\varphi^{2}(Y)\right|<\xi$, and since any horizontal/vertical slice of R_{i} intersects ∂S_{i}, it is immediate to deduce that

$$
\Psi_{0}\left(\tilde{\varphi}_{\jmath \partial R_{i}}\right) \leq \Psi_{0}\left(\varphi_{\rceil \partial S_{i}}^{2}\right)+\xi \mathcal{H}^{1}\left(\Gamma \cap \partial T_{i}\right)
$$

for every $i=0 \ldots M-1$.

Recalling the first of (4.4), (4.11) and the bound on ξ, thanks to 4.10) we deduce

$$
\begin{aligned}
\sum_{i=0}^{M-1} \Psi_{0}\left(\tilde{\varphi}_{\rceil R_{i}}\right) & \leq \sum_{i=0}^{M-1}\left(\Psi_{0}\left(\varphi_{\rceil \partial S_{i}}^{2}\right)+\xi \mathcal{H}^{1}\left(\Gamma \cap \partial T_{i}\right)\right) \\
& \leq \Psi_{0}(\varphi)+(\mathbf{d}+14 \eta) \mathcal{H}^{1}(\partial T)+\frac{\eta}{100}+\xi \mathcal{H}^{1}(\Gamma) \\
& \leq \Psi_{0}(\varphi)+(\mathbf{d}+14 \eta) \mathcal{H}^{1}(\partial T)+\frac{\eta}{50}
\end{aligned}
$$

which is exactly (4.9). Then the fact that $\tilde{\varphi}$ is continuous, injective and coincides with $\varphi^{2}=\varphi^{1}$ on $\Xi \backslash D G$, implies property 2) and hence the conclusion of the step.

Step 3. Piecewise affine extensions in the components of $T \backslash \Upsilon$ and conclusion.

In this conclusive step we perform independently piecewise affine extensions in the different components of $T \backslash \Upsilon$. Indeed, thanks to step $I \Pi$ we have that T is the disjoint union of \mathbb{P}, \tilde{T}, possibly \hat{T} and M rectangles R_{i} and $\tilde{\varphi}$ is continuous, injective and piecewise linear on the respective boundaries. This allows to work separately in each component with piecewise affine extensions that coincide with the restriction of $\tilde{\varphi}$ on the boundary of the considered component.

Let us first consider the rectangle R_{i} for some $i=0 \ldots M-1$. Proposition 2.8 applied to R_{i} and $\tilde{\varphi}_{\rceil \partial R_{i}}$ with parameter $\frac{\varepsilon}{2^{i}}$ provides a finitely piecewise affine homeomorphism $v_{i}: R_{i} \rightarrow \mathbb{R}^{2}$ extending $\tilde{\varphi}$ on ∂R_{i} such that

$$
\begin{equation*}
\left.\left\|D v_{i}\right\|_{0}\left(R_{i}\right) \leq \Psi_{0}(\tilde{\varphi}\rceil \partial R_{i}\right)+\frac{\varepsilon}{2^{i}} . \tag{4.12}
\end{equation*}
$$

We pass now to consider the extension inside the triangle \tilde{T}. Being $\tilde{\varphi}$ linear on each side of $\partial \tilde{T}$, then we define $w: \tilde{T} \rightarrow \mathbb{R}^{2}$ as the unique affine extension of the boundary value $\tilde{\varphi}$. We can then directly compute

$$
D_{1} w=\frac{\tilde{\varphi}(F)-\tilde{\varphi}(G)}{|F-G|} \quad \text { and } \quad D_{2} w=\frac{\tilde{\varphi}(E)-\tilde{\varphi}(F)}{|E-F|} .
$$

Therefore, recalling vi), vii), viii), ix) and the fact that $\tilde{\varphi}(G)=\mathbf{Z}, \tilde{\varphi}(E)=\varphi(E), \tilde{\varphi}(F)=$ $\varphi(F)$ from step we get

$$
\begin{align*}
\|D w\|_{0}(\tilde{T}) & =\frac{1}{2}(|E-F\|\tilde{\varphi}(G)-\tilde{\varphi}(F)|+|F-G \| \tilde{\varphi}(E)-\tilde{\varphi}(F)|) \\
& \leq \frac{\eta}{2}(|\mathbf{Z}-\tilde{\varphi}(F)|+|F-G|) \leq \eta^{2}\left(1+\frac{1}{2 \tan \beta}\right) \tag{4.13}
\end{align*}
$$

To extend in \hat{T} we use Lemma 4.1. We have $\mathcal{H}^{1}(\partial \hat{T}) \leq \tilde{C} \eta$ and $\mathcal{H}^{1}(\tilde{\varphi}(\partial \hat{T})) \leq$ $\tilde{C}\|D \varphi\|_{\infty} \eta$. Recalling (4.3) we get a bi-affine homeomorphism v equal to $\tilde{\varphi}$ on $\partial \hat{T}$ and $\|D v\|_{0}(T) \leq \eta \leq \varepsilon$.

At last, we discuss the extension inside \mathbb{P}. Since \mathbb{P} is \tilde{C}-bi-Lipschitz equivalent to $\mathcal{R}:=[0,|A-C|] \times[0,|A-D| \sin \beta]$, then there exists a \tilde{C}-bi-Lipschitz finitely piecewise affine homeomorphism $\Phi: \mathbb{P} \rightarrow \mathcal{R}$.

We can apply Corollary 2.10 to $\psi:=\tilde{\varphi} \circ \Phi^{-1}: \partial \mathcal{R} \rightarrow \mathbb{R}^{2}$ to get a finitely piecewise affine homeomorphism $\tilde{\omega}: \mathcal{R} \rightarrow \mathbb{R}^{2}$ coinciding with ψ on $\partial \mathcal{R}$ such that

$$
\|D \tilde{\omega}\|_{L^{1}(\mathcal{R})} \leq \tilde{C} \mathcal{H}^{1}(\partial \mathcal{R}) \mathcal{H}^{1}(\psi(\partial \mathcal{R}))
$$

Then the map $\omega:=\tilde{\omega} \circ \Phi: \mathbb{P} \rightarrow \mathbb{R}^{2}$ is a finitely piecewise affine homeomorphism coinciding with $\tilde{\varphi}$ on $\partial \mathbb{P}$ and satisfying

$$
\|D \omega\|_{L^{1}(\mathbb{P})} \leq \tilde{C}\|D \tilde{\omega}\|_{L^{1}(\mathcal{R})} \leq \tilde{C} \mathcal{H}^{1}(\Phi(\partial \mathbb{P})) \mathcal{H}^{1}\left(\tilde{\varphi} \circ \Phi^{-1}(\partial \mathcal{R})\right) \leq \tilde{C} \mathcal{H}^{1}(\partial \mathbb{P}) \mathcal{H}^{1}(\tilde{\varphi}(\partial \mathbb{P}))
$$

Once here we recall (4.11) and the first of (4.4) to get that

$$
\begin{aligned}
\mathcal{H}^{1}(\partial \mathbb{P}) & \leq|A-C|+|D-A|+|C-E|+\mathcal{H}^{1}(\Gamma)+|E-G| \\
& \leq 4 d+2 \eta,
\end{aligned}
$$

while from ii), the fact that $\tilde{\varphi}(\Gamma \cup E G)=\varphi^{1}(D E)=\tilde{\gamma}_{\varphi(D) \varphi(E)}$ and 4.5), we deduce

$$
\begin{aligned}
\mathcal{H}^{1}(\tilde{\varphi}(\partial \mathbb{P})) & \leq \mathcal{H}^{1}(\varphi(A C))+\mathcal{H}^{1}(\varphi(A D))+\mathcal{H}^{1}(\varphi(C E))+\mathcal{H}^{1}\left(\varphi^{1}(E D)\right) \\
& \leq|\varphi(A)-\varphi(C)|+|\varphi(A)-\varphi(D)|+|\varphi(C)-\varphi(E)|+\mathcal{H}^{1}\left(\tilde{\gamma}_{\varphi(D) \varphi(E)}\right) \\
& \leq 2 \mathbf{d}+12 \eta .
\end{aligned}
$$

Then the last two observations together with the estimate on $D \omega$ imply

$$
\begin{equation*}
\|D \omega\|_{0}(\mathbb{P}) \leq \tilde{C}\|D \omega\|_{L^{1}(\mathbb{P})} \leq \tilde{C}(d+\eta)(\mathbf{d}+\eta) \leq \tilde{C} d \mathbf{d} . \tag{4.14}
\end{equation*}
$$

We finally define $v: T \rightarrow \mathbb{R}^{2}$ the finitely piecewise affine map such that

$$
v_{\rceil \mathbb{P}}=\omega, \quad v_{\rceil \tilde{T}}=w \quad \text { and } \quad v_{\rceil R_{i}}=v_{i} \text { for every } i=0 \ldots M-1 .
$$

We observe that v is continuous and injective, hence a homeomorphism, since $v=\tilde{\varphi}$ on Υ. From the same observation we also deduce that $v=\varphi$ on ∂T because $\tilde{\varphi}=\varphi$ there. Gathering together (4.12), (4.13), (4.14) and (4.9) we find

$$
\begin{aligned}
\|D v\|_{0}(T) & =\|D \omega\|_{0}(\mathbb{P})+\|D w\|_{0}(\tilde{T})+\sum_{i=0}^{M-1}\left\|D v_{i}\right\|_{0}\left(R_{i}\right)+\|D v\|_{0}(\hat{T}) \\
& \left.\leq \tilde{C} d \mathbf{d}+\eta^{2}\left(1+\frac{1}{2 \tan \beta}\right)+\sum_{i=0}^{M-1}\left(\Psi_{0}(\tilde{\varphi}\urcorner \partial R_{i}\right)+\frac{\varepsilon}{2^{i}}\right)+d \varepsilon \\
& \leq \tilde{C} d \mathbf{d}+\eta^{2}\left(1+\frac{1}{2 \tan \beta}\right)+\Psi_{0}(\varphi)+C \mathbf{d} \mathcal{H}^{1}(\partial T)+\tilde{C} \varepsilon \\
& \leq \Psi_{0}(\varphi)+\tilde{C} \mathcal{H}^{1}(\partial T) \mathcal{H}^{1}(\varphi(A C))+\tilde{C} \varepsilon
\end{aligned}
$$

where in the last inequality we used that $d=|A-C| \leq \mathcal{H}^{1}(\partial T)$ and $\mathbf{d}=\mid \varphi(A-$ $\varphi(C)) \mid$.

5. Proof of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1. Let $\varepsilon>0$ be arbitrary fixed and let

$$
\begin{equation*}
0<\eta<\min \left\{1, \frac{\varepsilon}{\tilde{C}+\tilde{C} \mathcal{H}^{1}(\mathcal{Q})}\right\} \tag{5.1}
\end{equation*}
$$

for some large appropriate but fixed geometric constant \tilde{C}. We describe in detail the proof when \mathcal{Q} is of class $i i i)$ in the sense of Remark 3.1, while the other cases are an obvious modification of the current argument.

Applying Lemma 3.2 to $\mathcal{Q}, \varphi, \alpha$ and the parameter η, we can partition \mathcal{Q} in two triangles T_{1}, T_{2} and a convex polygon Δ and find a continuous, piecewise linear,
injective map $\bar{\varphi}: \partial T_{1} \cup \partial T_{2} \cup \partial \Delta \rightarrow \mathbb{R}^{2}$ with the properties listed in the statement of Lemma 3.2. In particular, from (3.3) it follows that

$$
\begin{equation*}
\left.\Psi_{\alpha}(\bar{\varphi}\rceil \partial \Delta\right) \leq \Psi_{\alpha}(\varphi)+\eta \tag{5.2}
\end{equation*}
$$

where (3.1) and (3.2) ensure that

$$
\begin{equation*}
\mathcal{H}^{1}\left(\partial T_{1}\right)+\mathcal{H}^{1}\left(\partial T_{2}\right)<\eta, \quad \mathcal{H}^{1}\left(\bar{\varphi}\left(\partial T_{1}\right)\right)+\mathcal{H}^{1}\left(\bar{\varphi}\left(\partial T_{2}\right)\right)<\eta . \tag{5.3}
\end{equation*}
$$

Furthermore, since Δ is a convex polygon with two parallel sides in direction α, we can apply the α-rotated version of Lemma 3.3 to $\Delta, \bar{\varphi}^{1}$ and the parameter η so to find M increasing values $\left(t_{i}\right)_{i=0}^{M-1}$ and α-rotated strips S_{i}, which can be seen as the union of a rectangle R_{i} and two triangles T_{i}^{1} and T_{i}^{2}, and a continuous piecewise linear injective map $\hat{\varphi}: \bigcup_{i=0}^{M-1} \partial T_{i}^{1} \cup \partial R_{i} \cup \partial T_{i}^{2} \rightarrow \mathbb{R}^{2}$ coinciding with $\bar{\varphi}$ on $\partial \Delta$ with the properties of Lemma 3.3. In particular, thanks to (3.7) we deduce

$$
\begin{equation*}
\sum_{i=0}^{M-1}\left(\Psi_{\alpha}\left(\hat{\varphi}_{\rceil \partial T_{i}^{1}}\right)+\Psi_{\alpha}\left(\hat{\varphi}_{\urcorner \partial R_{i}}\right)+\Psi_{\alpha}\left(\hat{\varphi}_{\rceil \partial T_{i}^{2}}\right)\right) \leq \Psi_{\alpha}\left(\bar{\varphi}_{\rceil \partial \Delta}^{1}\right)+\eta \tag{5.4}
\end{equation*}
$$

while (3.5) ensures that

$$
\begin{equation*}
\mathcal{H}^{1}\left(\hat{\varphi}\left(I_{i}^{1}\right)\right)+\mathcal{H}^{1}\left(\hat{\varphi}\left(I_{i}^{2}\right)\right)<\eta \tag{5.5}
\end{equation*}
$$

where $I_{i}^{1}=\partial T_{i}^{1} \cap \partial \Delta$ and $I_{i}^{2}=\partial T_{i}^{2} \cap \partial \Delta$.
We are finally in position to define a function

$$
\tilde{\varphi}: \partial T_{1} \cup\left(\bigcup_{i=0}^{M-1} \partial T_{i}^{1} \cup \partial R_{i} \cup \partial T_{i}^{2}\right) \cup \partial T_{2} \rightarrow \mathbb{R}^{2}
$$

that is continuous, injective, finitely piecewise linear and such that $\tilde{\varphi}=\bar{\varphi}^{1}$ on $\partial T_{1} \cup \partial T_{2}$ and $\tilde{\varphi}=\hat{\varphi}$ on $\bigcup_{i=0}^{M-1} \partial T_{i}^{1} \cup \partial R_{i} \cup \partial T_{i}^{2}$.

Once here we will perform the homeomorphic piecewise affine extension on $T_{1}, T_{2}, T_{i}^{1}, T_{i}^{2}$ and R_{i} independently for every $i=0 \ldots M-1$. We first focus on the extension inside the strips S_{i}. Let $i \in\{0, \ldots M-1\}$ be fixed, we then apply the α-rotated version of Proposition 2.8 to $\left.R_{i}, \tilde{\varphi}\right\rangle \partial R_{i}$ and parameter $\eta\left(t_{i+1}-t_{i}\right)$ to find finitely piecewise affine homeomorphisms $v_{i}: R_{i} \rightarrow \mathbb{R}^{2}$ coinciding with $\tilde{\varphi}$ on ∂R_{i} such that

$$
\begin{equation*}
\left.\left\|D v_{i}\right\|_{\alpha}\left(R_{i}\right) \leq \Psi_{\alpha}(\tilde{\varphi}\urcorner \partial R_{i}\right)+\eta\left(t_{i+1}-t_{i}\right) . \tag{5.6}
\end{equation*}
$$

By construction, we have that T_{i}^{1}, T_{i}^{2} are right-angle triangles whose hypotenuse is contained in $\partial \Delta \cap \partial \mathcal{Q}$, we can apply the α-rotated version of Lemma 4.2 to $T_{i}^{1,2}, \tilde{\varphi}_{1 \partial T_{i}^{1,2}}$ and parameter $\eta\left(t_{i+1}-t_{i}\right)$ to find finitely piecewise affine homeomorphisms $w_{i}^{1,2^{2}}$: $T_{i}^{1,2} \rightarrow \mathbb{R}^{2}$ coinciding with $\tilde{\varphi}$ on $\partial T_{i}^{1,2}$ such that

$$
\left\|D w_{i}^{1,2}\right\|_{\alpha}\left(T_{i}^{1,2}\right) \leq \Psi_{\alpha}\left(\tilde{\varphi}_{\urcorner \partial T_{i}^{1,2}}\right)+\tilde{C} \mathcal{H}^{1}\left(\partial T_{i}^{1,2}\right) \mathcal{H}^{1}\left(\tilde{\varphi}\left(I_{i}^{1,2}\right)\right)+\tilde{C} \eta\left(t_{i+1}-t_{i}\right)
$$

which thanks to (5.5) implies

$$
\begin{align*}
\left\|D w_{i}^{1}\right\|_{\alpha}\left(T_{i}^{1}\right)+\left\|D w_{i}^{2}\right\|_{\alpha}\left(T_{i}^{2}\right) \leq & \Psi_{\alpha}\left(\tilde{\varphi}^{\partial} \partial T_{i}^{1}\right)+\Psi_{\alpha}\left(\tilde{\varphi}_{\urcorner \partial T_{i}^{2}}\right) \\
& +\left[\tilde{C}\left(\mathcal{H}^{1}\left(\partial T_{i}^{1}\right)+\mathcal{H}^{1}\left(\partial T_{i}^{2}\right)\right)+\tilde{C}\left(t_{i+1}-t_{i}\right)\right] \eta \tag{5.7}
\end{align*}
$$

Let us also notice that, for future need, since the triangles $T_{i}^{1,2}$ have one angle equal to $\pi / 2$ and, by construction, their hypotenuse is $I_{i}^{1,2}$, then one has $\mathcal{H}^{1}\left(\partial T_{i}^{1,2}\right) \leq$
$3 \mathcal{H}^{1}\left(I_{i}^{1,2}\right)$ for every i. Moreover, being $I_{i}^{1,2} \subset(\partial \Delta \cap \partial \mathcal{Q})$ and the triangles pairwise essentially disjoint, we deduce

$$
\begin{equation*}
\left.\sum_{i=0}^{M-1}\left(\mathcal{H}^{1}\left(\partial T_{i}^{1}\right)+\mathcal{H}^{1}\left(\partial T_{i}^{2}\right)\right)\right) \leq 3 \sum_{i=0}^{M-1}\left(\mathcal{H}^{1}\left(I_{i}^{1}\right)+\mathcal{H}^{1}\left(I_{i}^{2}\right)\right) \leq 3 \mathcal{H}^{1}(\partial \mathcal{Q}) \tag{5.8}
\end{equation*}
$$

Let us now consider the extension inside the triangles T_{1}, T_{2}. In this case, by construction, we are in position to apply the α-rotated version of Lemma 4.1 to $T_{1,2}$ and $\tilde{\varphi}_{\nmid \partial T_{1,2}}$ to find bi-affine homeomorphisms $w_{1,2}: T_{1,2} \rightarrow \mathbb{R}^{2}$ such that

$$
\left\|D w_{1,2}\right\|_{\alpha}\left(T_{1,2}\right) \leq \mathcal{H}^{1}\left(\tilde{\varphi}\left(\partial T_{1,2}\right)\right) \mathcal{H}^{1}\left(\partial T_{1,2}\right)
$$

which, thanks to (5.3), gives

$$
\begin{equation*}
\left\|D w_{1}\right\|_{\alpha}\left(T_{1}\right)+\left\|D w_{2}\right\|_{\alpha}\left(T_{2}\right)<2 \eta^{2} \tag{5.9}
\end{equation*}
$$

We can finally define $v: \mathcal{Q} \rightarrow \mathbb{R}^{2}$ to be the piecewise affine function such that
$v=w_{1,2}$ on $T_{1,2}, \quad v=w_{i}^{1,2}$ on $T_{i}^{1,2} \quad$ and $\quad v=v_{i}$ on $R_{i} \quad$ for every $i=0 \ldots M-1$.
By construction, v is continuous because $v=\tilde{\varphi}$ on the one-dimensional skeleton $\partial T_{1} \cup\left(\bigcup_{i=0}^{M-1} \partial T_{i}^{1} \cup \partial R_{i} \cup \partial T_{i}^{2}\right) \cup \partial T_{2}$ and, moreover, v coincides with $\tilde{\varphi}=\varphi$ on $\partial \mathcal{Q}$. To conclude, it is only left to verify the validity of 1.4 , but this is now a straightforward consequence of (5.6), (5.7), (5.9), (5.4), (5.8) and (5.2). Indeed, we get

$$
\begin{aligned}
\|D v\|_{\alpha}(\mathcal{Q})= & \left\|D w_{1}\right\|_{\alpha}\left(T_{1}\right)+\left\|D w_{2}\right\|_{\alpha}\left(T_{2}\right)+\sum_{i=0}^{M-1}\left(\left\|D w_{i}^{1}\right\|_{\alpha}\left(T_{i}^{1}\right)\right. \\
& \left.+\left\|D v_{i}\right\|_{\alpha}\left(R_{i}\right)+\left\|D w_{i}^{2}\right\|_{\alpha}\left(T_{i}^{2}\right)\right) \\
\leq & \sum_{i=0}^{M-1}\left(\Psi_{\alpha}\left(\hat{\varphi}_{\urcorner \partial T_{i}^{1}}\right)+\Psi_{\alpha}\left(\hat{\varphi}_{\rceil \partial R_{i}}\right)+\Psi_{\alpha}\left(\hat{\varphi}_{\nmid \partial T_{i}^{2}}\right)\right) \\
& +4 \eta^{2}+\tilde{C} \eta \sum_{i=0}^{M-1}\left[\left(\mathcal{H}^{1}\left(\partial T_{i}^{1}\right)+\mathcal{H}^{1}\left(\partial T_{i}^{2}\right)\right)+\left(t_{i+1}-t_{i}\right)\right] \\
\leq & \Psi_{\alpha}\left(\bar{\varphi}_{\uparrow}^{1} \partial \Delta\right)+\eta+4 \eta^{2}+\tilde{C} \eta\left(\mathcal{H}^{1}(\partial \mathcal{Q})+\operatorname{diam} \mathcal{Q}\right) \\
\leq & \Psi_{\alpha}\left(\bar{\varphi}_{\urcorner \partial \Delta}\right)+6 \eta+\tilde{C} \eta\left(\mathcal{H}^{1}(\partial \mathcal{Q})\right), \\
\leq & \Psi_{\alpha}(\varphi)+\tilde{C} \eta\left(1+\mathcal{H}^{1}(\partial \mathcal{Q})\right),
\end{aligned}
$$

and then estimate (1.4) follows since η has been chosen as in (5.1).

5.1. Proof of Theorem 1.2.

To prove the claim it suffices to repeat the proof of the above Lemmas as before but using the estimates from Theorem 2.9 instead of from Proposition 2.8. In all of our calculations we estimate $\int \rho_{\mathcal{P}_{\Omega}}\left(\varphi^{1}\left(H_{t}^{2}\right), \varphi^{1}\left(H_{t}^{3}\right)\right) d t$ and $\int_{D_{1}}^{B_{1}} \rho_{\mathcal{P}_{\Omega}}\left(\varphi^{1}\left(V_{s}^{1}\right), \varphi^{1}\left(V_{s}^{2}\right)\right) d s$ separately. Now it suffices to keep them separate instead of summing them.

The key estimates in Lemma 3.2 are (3.4), in Lemma 3.3 they are (3.13), (3.14) and the calculation following; in Lemma 4.2 are (4.6), 4.7), 4.8).

We can then repeat the proof of Theorem 1.1 with the difference that in (5.4, (5.6) and so on we use the separate estimates, rather than the summed estimates expressed using Ψ_{α}.

References

[1] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.
[2] D. Campbell, Diffeomorphic approximation of Planar Sobolev Homeomorphisms in OrliczSobolev spaces, J. Funct. Anal. 273 (2017), 125-205.
[3] D. Campbell, S. Hencl A. Kauranen and E. Radici, Strict limits of planar BV homeomorphisms, Nonlinear Analysis 177 (2018), 209-237.
[4] D. Campbell, A. Kauranen and E. Radici, Classification of strict limits of planar BV homeomorphisms, arXiv:2101.09013, 2021.
[5] D. Campbell, A. Kauranen and E. Radici, Classification of area-strict limits of planar BV homeomorphisms, arXiv:..., 2022.
[6] S. Daneri and A. Pratelli, A planar bi-Lipschitz extension theorem, Advances in Calculus of Variations 8 no. 3 (2015), 221-266.
[7] S. Daneri and A. Pratelli, Smooth approximation of bi-Lipschitz orientation-preserving homeomorphisms, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 no. 3 (2014), 567-589.
[8] G. De Philippis and A. Pratelli, The closure of planar diffeomorphisms in Sobolev spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire 37, no. 1 (2020), 181-224.
[9] S. Hencl and A. Pratelli, Diffeomorphic Approximation of $W^{1,1}$ Planar Sobolev Homeomorphisms, J. Eur. Math. Soc 20, no. 3 (2018), 597-656.
[10] T. Iwaniec, L. Kovalev and J. Onnien, Diffeomorphic approximation of Sobolev homeomoprhisms, Arch. Rational Mech. Anal 201, no. 3 (2011), 1047-1067.
[11] T. Iwaniec, L. Kovalev and J. Onnien, Hopf differentials and smoothing Sobolev homeomorphisms, International Mathematics Research Notices 14 (2012), 3256-3277.
[12] T. Iwaniec and J. Onninen, Limits of Sobolev homeomorphisms, J. Eur. Math. Soc 19, no. 2 (2017), 473-505.
[13] A. Pratelli, On the bi-Sobolev planar homeomorphisms and their approximation, Nonlinear Analysis: Theory, Methods and Applications 154 (2017), 258-268.
[14] A. Pratelli and E. Radici, On the planar minimal BV extension problem, Rendiconti Lincei: Matematica e Applicazioni 29, no. 3 (2018), 511-555.
[15] A. Pratelli and E. Radici, Approximation of planar BV homeomorphisms by diffeomorphisms, J. Func. Anal 276 (2019), 659-686.
[16] E. Radici, A planar Sobolev extension theorem for piecewise linear homeomorphisms, Pacific Journal of Mathematics 238 no. 2 (2016), 405-418.
D. Campbell: Department of Mathematics, University of Hradec Králové, Rokitanského 62, 50003 Hradec Králové, Czech Republic

Email address: daniel.campbell@uhk.cz
A. Kauranen: Department of Mathematics and Statistics, University of Jyväskylä, PL 35, 40014 JyvÄsklyÄn yliopisto, Finland

Email address: aapo.p.kauranen@jyu.fi
E. Radici: DISIM - Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, Via Vetoio 1 (Coppito), 67100 L’Aquila (AQ), Italy

Email address: emanuela.radici@univaq.it

[^0]: 2010 Mathematics Subject Classification. Primary 46E35; Secondary 30E10, 58E20.
 Key words and phrases. homeomorphic extension, BV homeomorphisms, Strict approximation in BV.

 The first author was supported by the grant GACR 20-19018Y.

[^1]: ${ }^{1}$ We do not need to utilise the notation $B(x, r)=\{y:|y-x|<r\}$ so there is no danger of confusion when using B to denote a point.

