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Abstract. We present a classification of area-strict limits of planar BV home-
omorphisms. This class of mappings allows for cavitations and fractures but ful-
fil a suitable generalization of the INV condition. As pointed out by J. Ball [4],
these features are expected in limit configurations of elastic deformations. In
[12], De Philippis and Pratelli introduced the no-crossing condition which char-
acterizes the W 1,p closure of planar homeomorphisms. In the current paper we
show that a suitable version of this concept is equivalent with a map, f , being
the area-strict limit of BV homeomorphisms. This extends our results from [10],
where we proved that the no-crossing BV condition for a BV map was equiva-
lent with the map being the m-strict limit of homeomorphisms (i.e. fk

∗ f and
|D1fk|(Ω) + |D2fk|(Ω) → |D1f |(Ω) + |D2f |(Ω)). Further we show that the no-
crossing BV condition is equivalent with a seemingly stronger version of the same
condition.

1. Introduction

Over the past few years the classification of weak and strong limits of Sobolev
diffeomorphisms has attracted a lot of interest for its relevance to variational models
of nonlinear elasticity and geometric function theory. The pioneering work in the area
was by Iwaniec and Onninen [23] followed by the more recent result of De Philippis and
Pratelli [12]. Thanks to these results, the classification of weak and strong Sobolev
limits of Sobolev homeomorphisms in the planar setting is now well understood.

In the case that p ≥ 2 the authors of [23] utilise the approximation techniques of
[21, 22] to prove that it is exactly monotone maps which characterize the weak closure
of W 1,p homeomorphisms.

The authors of [12] however, approach the problem using a different technique
introduced in [20] for the diffeomorphic approximation of W 1,1 homeomorphisms.
They prove that the weak and strong closures of W 1,p homeomorphisms coincide for
all 1 ≤ p < ∞ (assuming uniform integrability in the case of p = 1). This result was
examined in the case that the mappings in question equal identity on the boundary
of a square. When p < 2 the closure contains mappings with discontinuities and so
monotonicity is too restrictive to characterize the class. On the other hand, they, quite
surprisingly, proved that the INV condition of Müller and Spector [25] is satisfied by
maps that cannot be the weak Sobolev limits of homeomorphisms (see [12, Section
5.2]) and the situation is not saved even by the restriction of Jf > 0-a.e. for the limit
maps (see [12, Section 5.3]).
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Therefore, it was necessary to introduce a new condition which the authors called
the no-crossing condition. In essence a Sobolev mapping belongs to the (weak or
strong) closure of homeomorphisms if and only if its restriction to ‘almost any’ grid
of horizontal and vertical lines can be uniformly approximated by continuous injective
maps. Let us note it was proved in [9] that the condition that the injective approxi-
mation of the map on a grid cannot be weakened to the condition where the map can
be uniformly approximated by injective maps on a single injective Lipschitz curve.
One advantage of the no-crossing condition is that it does not require the map to
be defined everywhere but only up to a H1-negligible set. The necessity of this was
demonstrated in [12] where they construct limits of planar Sobolev homeomorphisms
presenting cavitations. Therefore, studying the closure of planar homeomorphisms in
the BV setting opens itself as a natural question. As was shown in [8] there are maps
in the limit class which exhibit more complicated discontinuities, like fractures.

The continuity and invertibility properties of candidates for energy minimizing de-
formations in elasticity theory were studied in the pioneering works of Ball [5, 6].
Thanks to the concept of non-interpenetration of matter, it is natural to minimise
in classes of homeomorphisms which satisfy certain boundary conditions. In some
models, however, the energy functional does not guarantee the existence of a home-
omorphic solution and in these cases one is led to find a larger class which contains
the limit maps. While doing so, however, one wants the class to be restrictive enough
to demand its maps exhibit required behaviour of elastic deformations; for example,
the non-interpenetration of the material. One such condition is the INV condition of
Müller and Spector from [25]. This is a kind of monotonicity condition which allows
for cavitation, a phenomenon which has been observed experimentally in deformed
elastic materials (see [14, Figure 4]). Ball proposed generalizing the mathematical
model so as to allow for both cavitations and fracture-type singularities. This is
motivated by several experimental observations, e.g. on ductile fracture of titanium
alloys [26, 27] or in [31, 15] on elastomers, where the experiments suggest that the
strains at the cavity surface produced during cavitation are so large that fracture
occurs at the same time.

One approach to the question of modelling deformations allowing for discontinuities
was studied by Henao and Mora Corral by introducing a term in the energy functional
which penalizes new surface created by the deformations. In the series of results
[16, 17, 18, 19] they prove that the minimizers are one-to-one almost everywhere and
can exhibit fractures.

Another approach was proposed by the authors and Hencl in [8]. Our motivation
was fuelled by interesting BV relaxation results obtained by Kristensen and Rindler
[24] and Rindler and Shaw [30] for Dirchlet-type boundary conditions, and by Báıa,
Krömer and Kruž́ık [3] for Neumann-type conditions. Further motivation came from
recent results in [28] and [29] by the third author and Pratelli on the strict and
area-strict approximation of BV homeomorphisms by diffeomorphisms. We remind
the reader that a sequence fk : Ω → Rn of BV functions converges strictly to f ∈
BV (Ω,Rn) if fk → f in L1(Ω,Rn) and |Dfk|(Ω) → |Df |(Ω). The sequence converges
area-strictly if it converges strictly and it is possible to decompose Dfk as the sum of
two measures µk + νk such that |µk −Daf |(Ω) → 0 and |νk|(Ω) → |Dsf |(Ω), where
Daf and Dsf denote the absolutely and the singular part of Df respectively.
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In this paper we study classes of area-strict limits and the so-dubbed ‘m-strict’
limits of BV homeomorphisms. We say that a sequence of BV maps fk converges
m-strictly to f on Ω if fk → f in L1(Ω) and

(1.1) |D1fk|(Ω) + |D2fk|(Ω) → |D1f |(Ω) + |D2f |(Ω).
It is obvious that area-strict convergence implies strict convergence which in turn
implies m-strict convergence. It is not hard to construct examples which show that
each convergence is sharply weaker than the previous.

In [8] it was shown that strict limits of planar BV homeomorphisms can exhibit
cavities and fractures but still preserve a sort of monotonicity property. Although
there is not enough topological information to meaningfully generalize the INV con-
dition, a type of topological image can be defined and it was shown in [8] that the
intersection of this topological image of two disjoint sets has zero measure. As re-
marked in [10], the proof of this fact in [8] used only the m-strict convergence (not
strict convergence).

It was proved in [10] that the m-strict limits of BV homeomorphisms satisfy the
NCBV condition (see Definition 3.8 for the precise definition and the following para-
graph for an intuition, it is a generalization of the NC condition of [12]) and any
map satisfying the NCBV condition can be approximated m-strictly by BV home-
omorphisms. Given these facts, there were grounds to claim in [10] that the class
of m-strict limits of homeomorphisms is an appropriate class within which to con-
duct BV relaxations which are physically relevant in elasticity. On the other hand,
as in the Sobolev case strong and weak closure of diffeomorphisms coincide, also in
BV the counterpart of strong and weak closure should behave the same way. The
strong closure of diffeomorphisms does not say anything meaningful for elasticity,
hence the strong counterpart has to be understood in this weaker sense of area-strict
convergence. Roughly speaking, area-strict convergence is equivalent to strong con-
vergence in those portions of the domain where the singular part of the derivative
is small, while is equivalent to strict convergence where the singular part is concen-
trated. These classes are also an attractive option since they are much more widely
used and studied. We prove that in fact, somewhat surprisingly the classes coincide
(although we do not claim that an m-strict converging sequence must also converge
strictly). An extra advantage of this result is that being an m-strict limit may be
an easier condition to check since one can restrict oneself to behaviour on almost all
lines reducing the dimension of the problem.

We shall now endeavour to give the reader a rough idea of what the NCBV con-
dition is. We consider a BV map f defined on the unit square. On almost every
horizontal and vertical line the restriction of a BV map is a BV map from the line.
It is not hard to prove that for L2-almost every point X of the domain the restriction
of the BV map to the horizontal and vertical line intersecting X is continuous at X.
Call Γ the union of a finite number of horizontal and vertical lines on each of which the
restriction of f is BV and f⌉Γ is continuous at the intersection point of any two lines.
There is a countable number of points outside of which f⌉Γ is continuous and each
of these points is a jump and lies on exactly one horizontal or vertical segment. We
declare the topological image of each point X ∈ Γ to be the segment connecting the
one-sided limits of f⌉Γ at X. Then the topological image of each of the horizontal and
vertical lines is now a Lipschitz curve. We parametrize this Lipschitz curve by some
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Lipschitz mapping from the grid Γ and call this map the geometric representative of
f . We say that f satisfies the NCBV condition if for every such Γ the geometric
representative of f⌉Γ can be uniformly approximated by a continuous injective map.
See section 3.1 for our concept of restricting a BV map onto a grid and the precise
definition of the NCBV condition. The NCBV + condition is essentially the same as
the NCBV condition but the lines do not have to be only vertical and horizontal,
instead, Γ is the union of piecewise linear injective paths that intersect each other at
most once and the intersection point of any pair is distinct from another pair.

In the following we denote Q(c, r) the square the square centered at c with side 2r,
in particular Q(0, 1) denotes (−1, 1)2. Our main result is the following:

Theorem 1.1. Let f ∈ BV (Q(0, 1);Q(0, 1)) and f(x, y) = (x, y) for every (x, y) ∈
∂Q(0, 1). Then the following conditions are equivalent

(1) f satisfies the NCBV condition,
(2) f satisfies the NCBV + condition,
(3) there exists a sequence fk ∈ BV (Q(0, 1), Q(0, 1)) of diffeomorphisms with fk =

id on ∂Q(0, 1) converging to f area-strictly,
(4) there exists a sequence fk ∈ BV (Q(0, 1), Q(0, 1)) of diffeomorphisms with

fk = id on ∂Q(0, 1) converging to f weakly in BV and |D1fk|(Q(0, 1)) +
|D2fk|(Q(0, 1)) → |D1f |(Q(0, 1)) + |D2f |(Q(0, 1)).

1.1. Overview of the proof. Since (3) implies (4) is obvious and since (4) implies
(1) has been proved in [10], there are two implications to prove, i.e. (1) implies (2)
and (2) implies (3).

To prove (1) implies (2) we assume that we have a good non-straight grid for f
called Γ. Our aim is to create a system of horizontal and vertical segments on which
f remains close to f on Γ. The non-straight grid Γ is the union of γi([0, 1]), where
γi are piecewise linear, injective and continuous. We call Xi,j the unique element of
γi([0, 1]) ∩ γj([0, 1]) whenever the intersection is non-empty.

Our first step is to eliminate the intersection points Xi,j of Γ. These points are
chosen so that limr→0 r

−1|Df |(Q(Xi,j, r)) = 0. We choose a small r > 0 and 4 disjoint
spirals (see Figure 1) with which we replace part of each segment of Γ ending at Xi,j.
By choosing the lines of the spiral carefully and by choosing the r small enough we
guarantee that the oscillation of f⌉Γ∩Q(Xi,j ,r) and the oscillation of f on the spiral are
both much smaller than some σ. Then any injective approximation of f on the spiral
with error σ/2 is also an injective approximation of f on Γ ∩ Q(Xi,j, r) with error
bounded by σ. This step is Proposition 3.17.

For all X ∈ Γ except for a finite number of points where there are ‘large’ jumps of
f⌉Γ we have lim supr→0 r

−1|Df |(Q(X, r)) ≪ σ. We can then find a rectangle RX such
that the oscillation of f on Γ ∩ RX and the oscillation of f on ∂RX are both much
smaller than σ. Then any injective approximation of f on an appropriate part of ∂RX

with error σ/2 is also an injective approximation of f on Γ∩RX with error bounded
by σ. This step is conducted in the proof of Theorem 3.18 by applying Lemma 3.16.

It then remains to deal with the finite number of ‘large’ (say larger than σ
40
) jumps

of f⌉Γ. But these jump points are Lebesgue points of the polar decomposition of Djf
and so it is not hard to find a point very close by which has a very similar jump and
construct a piece-wise horizontal and vertical path with endpoints on Γ and doing
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basically just the same jump as f . See Figure 2 for a depiction of how we do this.
This step is conducted in the proof of Theorem 3.18. After having done the above
3 steps we have an admissible set of horizontal and vertical segments from which we
generate a good straight grid Γ̃.
At this point it is easy to generate an injective approximation of the geometric

representative of f with error σ using the NCBV condition with error sufficiently
smaller than σ and finding an appropriate correspondence of a subset of Γ̃ and Γ.
The proof that (2) implies (3) is quite involved. Some techniques developed in

[10] are also implemented here. In comparison with the approximation in [10] we
have to approximate Daf in L1 and in order to do so we have to use the techniques
developed in [20] (and following papers like [7]). Further the m-strict convergence
in [10] is strictly weaker than even strict convergence and therefore it is necessary
to find a better way to approximate the singular part of the derivative. The new
extension result needed for this approximation has been developed in [11]. It is a
rotated version of the main result in [28], not only for rectangles but also for convex
polygons. Let us now give a short sketch of how we use these results for the proof.

First we find a small set supporting the vast majority of |Dsf |. By dividing this
set into very small squares and using a Lebesgue point-type argument for the polar
decomposition of Dsf we can apply Theorem 2.3 which is taken from [11]. Thanks
to Alberti’s rank-one theorem and the Lebesgue point-type estimate, for each square
Qi we have a unit vector vi such that Dsf⌉Qi

is very close to ui ⊗ vi|Dsf⌉Qi
| for some

unit vector ui. This enables us to make estimates like |Df |(Qi) ≤ (1+ ε)|Dsf |(Qi) ≤
(1+2ε)|⟨Dsf, vi⟩|(Qi) which means that Theorem 2.3 gives an estimate of the energy
of our approximation on Qi by (1 + Cε)|Dsf |(Qi).

From now on we work on the rest of Q(0, 1) where the energy of |Dsf | is already
very small. We separate this set into very small squares and use a Lebesgue point-
type argument for the derivatives to find 4 sets, call them A1, A2, A3, A4. We have
that |Df |(A1) is very small because on every square in A1 we have that |Df |(Qi) ≤
εL2(Qi). The set A2 is very small and so |Df |(A2) is also very small. The set A3

is made of squares where f is very close to a nice affine mapping and A4 is made of
squares where f is very close to an affine mapping with zero Jacobian. We slightly
shift the vertexes of the squares so that the behaviour of f on the boundary of the
resulting convex quadrilaterals is similar to the behaviour of f on the quadrilateral
(by the BV on lines characterization). This allows us to use the extension theorems
from [20] on quadrilaterals in A1 and A2 (Theorem 2.1), and A3 (Theorem 2.2) while
in A4 it is enough to do a straight forward triangularisation. There is then no problem
in proving that the derivative of our approximation is close to Daf in L1.

2. Preliminaries

2.1. Extension Theorems. The following is from [20, Theorem 2.1].

Theorem 2.1. Let φ : ∂Q → R2 be a piecewise linear and one-to-one function. There
is a finitely piecewise affine homeomorphism g : Q → R2 such that g = φ on ∂Q, and∫

Q

|Dg| ≤ C diamQ

∫
∂Q

|Dτφ|.
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The following theorem is [7, Theorem 3.7]. The question is how to approximate a
map which is close to a degenerate linear map Φ (up to a rotation in the pre-image

we may assume that Φ =

Å
d 0
0 0

ã
).

Theorem 2.2. Let d > δ > 0, let r0 ∈ (0, 1) and let Q be a convex set and the
image of [0, r0]

2 in a 2-bi-Lipschitz mapping which is equal to an affine mapping on
co{(0, 0), (0, r0), (r0, 0)} and co{(r0, r0), (0, r0), (r0, 0)}. Then for every φ : ∂Q → R2

finitely piece-wise linear and one-to-one mapping with

(2.1)

∫
∂Q

∣∣∣Dτφ(t)−
Å
d 0
0 0

ã
τ
∣∣∣ dH1(t) < δr0,

and ∥Dτφ∥L∞(∂Q) ≤ d + 2δ, there exists a finitely piece-wise affine homeomorphism
g : Q → R2 such that g = φ on ∂Q and

(2.2)
∥∥∥Dg(x)−

Å
d 0
0 0

ã∥∥∥
L1(Q)

< Cδr20.

LetQi be a convex quadrilateral. For a unit vector vi we denote πvi(x) = v⊥i ⟨x, v⊥i ⟩ =
x − vi⟨x, vi⟩ and πv⊥i

(x) = vi⟨x, vi⟩ = x − v⊥i ⟨x, v⊥i ⟩. For each X ∈ πvi(intQi) there
are exactly two distinct points X∗, X

∗ in ∂Qi such that πvi(X∗) = πvi(X∗) = X and
similarly πv⊥i

(Z∗) = πv⊥i
(Z∗) = Z ∈ πv⊥i

(Qi). To be specific we denote X∗, X
∗ so that

⟨X∗, vi⟩ < ⟨X∗, vi⟩ and Z∗, Z
∗ so that ⟨Z∗, v

⊥
i ⟩ < ⟨Z∗, v⊥i ⟩. Given φ : ∂Q → R2 a

continuous injective map, we call P the bounded connected component of R2 \φ(∂Q)
identified by the Jordan curve φ(∂Q). For any pair of points A,B ∈ P we denote by

(2.3) dP(A,B) the geodesic distance between A and B inside P .

The following is [11, Theorem 1.2].

Theorem 2.3. Let θ ∈ [0, 2π) be fixed and let vθ = (cos θ, sin θ), Q ⊂ R2 be a convex
polygon and φ : ∂Q → R2 be a continuous piecewise linear injective map. Then
for every ε > 0 there exists a finitely piecewise affine homeomorphism g : Q → R2

extending φ, such that

(2.4)

|⟨Dg, vθ⟩|(Q) ≤
∫
πvi (Q)

dP(φ(X
∗), φ(X∗))dH1(X) + ε and

|⟨Dg, v⊥θ ⟩|(Q) ≤
∫
π
v⊥
i
(Q)

dP(φ(Z
∗), φ(Z∗))dH1(Z) + ε.

2.2. Properties of BV maps. In the following we repeat some necessary results
from the structure theory of BV mappings.

The following definition is [2, Definition 2.40]

Definition 2.4 (Tangent measures). We define the set of tangent measures to a Rm

valued Radon measure µ on Rn at x ∈ Rn as the set of all finite Radon measures on
B(0, 1), which are weak* limits of

µ(B(x, r))

|µ(B(x, r))|
as r → 0.
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The following definition is [2, Definition 2.79].

Definition 2.5 (Approximate tangent spaces). Let x ∈ G ⊂ Rn be open and let
µ ∈ M(G,Rm). We say that V , a k-dimensional vector subspace of Rn, is the
approximate tangent space of µ with multiplicity λ ∈ R if

µ(B(x, r))

rk
∗
⇀ λHk

⌉V

as r → 0 and we denote this as Tank(µ, x) := λHk
⌉V .

Let us emphasize that through out the paper we use the standard notation Hk to
denote the k-dimensional Hausdorff measure. The following is [2, Theorem 2.81, (b)]

Theorem 2.6 (Strict convergence of approximate tangent spaces). Let µ be a Rm

valued Radon measure on Rn and assume that lim supr→0+ r−k|µ|(B(x, r)) < ∞. Call
f the function of the polar decomposition of µ i.e. µ = f |µ| and assume further that
x is a Lebesgue point of f with respect to |µ|. Then

ν = Tank(µ, x) if and only if |ν| = Tank(|µ|, x).

The following definition is [2, Definition 3.67]

Definition 2.7 (Approximate jump points). Let f ∈ L1
loc(G,Rm) and let x ∈ G ⊂ Rn

be open. We say that x is an approximate jump point of f if there exist a ̸= b ∈ Rm

and a v ∈ Rn, |v| = 1 such that

lim
r→0

−
∫
B(x,r,v,+)

|f(y)− a|dLn(y) = 0 and lim
r→0

−
∫
B(x,r,v,−)

|f(y)− b|dLn(y) = 0

where B(x, r, v,+) := {y ∈ B(x, r); ⟨y − x, v⟩ > 0} and B(x, r, v,−) := {y ∈
B(x, r); ⟨y − x, v⟩ < 0}.

We denote f+(x) := a and f−(x) := b and up to fixing the orientation of the vector
v the notation is unique. We denote the set of all jump points of f as Jf .

The following is the Federer-Vol’pert theorem as in [2, Theorem 3.78]

Theorem 2.8 (Federer-Vol’pert). For any f ∈ BV(Ω,Rm) the discontinuity set Sf

is countably Hn−1-rectifiable and Hn−1(Sf \ Jf ) = 0. Moreover Df⌉Jf = (f+ − f−)⊗
vHn−1

⌉Jf and

Tann−1(Jf , x) = (v(x))⊥

Tann−1(|Df |⌉Jf , x) = |f+(x)− f−(x)|Hn−1
⌉(v(x))⊥

for Hn−1-almost every x ∈ Jf .

The following is Alberti’s Rank one theorem from [1] as in [2, Theorem 3.94]

Theorem 2.9 (Rank one). Let f ∈ BV(Ω,Rm) and g is the function such that
Df = g|Df | then there exist unit vectors u, v such that g(x) = u(x)⊗ v(x) for |Dsf |-
almost every x ∈ Ω.

Lemma 2.10. Let f ∈ BV(Ω) and let A ⊂ Ω be open then |⟨Df, v⟩|(A) ≤ |Df |(A)
for any |v| = 1.
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Proof. By [13, Theorem 5.2] we have a sequence of smooth functions fk strictly con-
verging to f in BV (Ω). For every unit vector v it is obvious that |⟨Dfk(x), v⟩| ≤
|Dfk(x)| everywhere in Ω. Now integrating over A and using the lower semi continu-
ity of the variation we conclude. □

3. The NCBV property for BV maps

3.1. BV on grids. In [12] the authors introduced a property called the NC condi-
tion that characterises the limits of W 1,p homeomorphisms from Q(0, 1) onto Q(0, 1)
equalling the identity on the boundary. In [10] we generalized this condition for BV
maps, which can even fail to be continuous on a 1-rectifiable set. The essence of these
conditions is that a certain map can be approximated uniformly by a continuous
injective map with error arbitrarily small. Our approach requires choosing a finite
number of points where f is continuous which is in the following proposition.

Proposition 3.1. Let f ∈ BV (Q(0, 1),R2) and let v1, v2, v3, v4 ∈ R2 with |vi| = 1.
Then for almost every (x, y) ∈ Q(0, 1) it holds that

(3.1) f⌉(x,y)+
⋃

i viR is continuous at (x, y)

and

(3.2) lim
r→0

r−1|Df |
(
Q((x, y), r)

)
= 0.

Proof. The claim (3.1) follows from [2, Theorem 3.107] and (3.2) follows from [2,
Proposition 3.92]. □

Corollary 3.2. Let f ∈ BV (Q(0, 1),R2), There exists a set N1, N2 ⊂ [−1, 1],
L1(N1) = L1(N2) = 0 such that

(1) f⌉{x}×[−1,1] is BV on {x} × [−1, 1],
(2) f⌉[−1,1]×{y} is BV on [−1, 1]× {y} and
(3) f⌉{x}×[−1,1]∪[−1,1]×{y} is continuous at (x, y)

for L1-almost every y ∈ [−1, 1]2 if x ∈ [−1, 1]\N1 and for L1-almost every x ∈ [−1, 1]2

if y ∈ [−1, 1] \N2.

Proof. The claim follows from Proposition 3.1 and the Fubini theorem. □

Let

(3.3)
(
f+(·)− f−(·)

)
⊗ v(·)H1

⌉Jf = Djf

be the standard decomposition of Djf mentioned in Theorem 2.8. Also by Theo-
rem 2.8 for H1 almost every x ∈ Jf it holds that

(3.4)
1

r

∫
B(x,r)∩Jf

|(f+(y)− f−(y)
)
⊗ v(y)− (f+(x)− f−(x)

)
⊗ v(x)| dH1

⌉Jf (y) → 0

and we call these points Lebesgue points of (f+(·)− f−(·)
)
⊗ v(·).

Definition 3.3 (Admissible curves for f). Let f ∈ BV (Q(0, 1), Q(0, 1)). Let γi :
[0, 1] → Q(0, 1) ⊂ R2, i = 1, . . . , K be finitely piecewise linear mappings with
γi([0, 1]) ∩ γj([0, 1]) contains at most one point {Xi,j} for all i ̸= j. Let Γ =⋃K

i=1 γi([0, 1]) ⊂ Q(0, 1). We call Γ admissible for f if

(1) f ◦ γi ∈ BV ((0, 1),R2)) for all i,
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(2) f⌉Γ is continuous at γi(si,k) at every point si,k, where {si,k} is the finite set of
endpoints of intervals on which γi is linear,

(3) f⌉Γ is continuous at each Xi,j for every i, j such that γi([0, 1]) ∩ γj([0, 1]) ̸= ∅,
(4) limr→0 r

−1|Df |
(
Q(γi(si,k), r)

)
= 0 for each si,k,

(5) limr→0 r
−1|Df |

(
Q(Xi,j, r)

)
= 0 for each Xi,j.

Note that by Proposition 3.1 ‘almost every’ polyline is admissible.

Definition 3.4 (Good straight grid). Let f ∈ BV (Q(0, 1), Q(0, 1)) and let Γ =

(
⋃K

i=1{xi}× [−1, 1])∪ (
⋃K

j=1[−1, 1]×{yj}) be admissible for f in the sense of Defini-
tion 3.3. We call Γ a good straight grid for f if

(1) every point of Γ∩Jf is a Lebesgue point of
(
f+(·)− f−(·)

)
⊗ v(·) in the sense

of (3.4),
(2) ⟨(1, 0), v(x, yj)⟩ ̸= 0, ⟨(0, 1), v(xi, y)⟩ ̸= 0 for all x, y ∈ [−1, 1] such that

(xi, y), (x, yj) ∈ Γ ∩ Jf , where v(x, y) is the vector from Theorem 2.9.

Definition 3.5. Let f ∈ BV (Q(0, 1), Q(0, 1)) and let Γ ⊂ Q(0, 1) be the union of a
finite number of horizontal and vertical segments. Let Γ̃ be the smallest straight grid
such that Γ̃ ⊃ Γ. Then we say that Γ̃ is the straight grid generated by Γ.

Now we define the object Γ which we refer to as a ‘non-straight grid’.

Definition 3.6 (Good non-straight grid). Let f ∈ BV (Q(0, 1), Q(0, 1)). Let γi :
[0, 1] → Q(0, 1) ⊂ R2, i = 1, . . . , K be finitely piecewise linear mappings with

γi([0, 1])∩ γj([0, 1]) contains at most one point {Xi,j} if i ̸= j. Let Γ =
⋃K

i=1 γi([0, 1])
be admissible for f . We call Γ a good non-straight grid for f if

(1) every point of Γ∩Jf is a Lebesgue point of
(
f+(·)−f+(·)

)
⊗v(·) with respect

to H1
⌉Jf ,

(2) the derivative γ′
i(t) exists and ⟨γ′

i(t), v(γi(t))⟩ ≠ 0 whenever γi(t) ∈ Jf where
v(x, y) is the vector from Theorem 2.9.

Remark 3.7. A simple affine change of variables together with Corollary 3.2 proves
the following. For every pair of distinct directions v1, v2 ∈ R2, |vj| = 1 almost every
line L1 parallel to v1 yields an admissible Γ = L1∪L2 for almost every line L2 parallel
to v2. Informally we can say that ‘almost every’ non-straight grid is admissible for f .
In Theorem 4.3 we show that ‘almost every’ non-straight grid is good for f .

In this paper we often restrict a planar BV map onto lines or good grids (both
straight and non-straight). Since, for almost every line, the restriction of a BV map
is one-dimensional BV on the line, it stands to reason, for a good choice of grid Γ,
that f⌉Γ is also in BV . On the other hand, the space BV (Γ) is not very standard so
we now explain what we mean by this.

Let f : Q(0, 1) → R2 and let Γ be a good non-straight grid. We say that f⌉Γ is BV
on Γ if

(1) f ◦ γi ∈ BV ([0, 1],R2)
(2) f⌉Γ is continuous at each Xi,j.

By Dτf we denote the measure on Γ given by
∑K

i=1D γ′
i

|γ′
i|
f⌉γi([0,1]). The condition (2)

above ensures that {Xi,j : 1 ≤ i < j ≤ K} is a negligible set in |Dτf⌉Γ|. This means
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that we can interpret Dτ as the distributional derivative tangential to Γ outside the
set {Xi,j : 1 ≤ i < j ≤ K} ∪ {γi(si,m) : 1 ≤ i ≤ K}, where the points si,m are those
defined in Deifnition 3.3.

If f ∈ BV (Γ) and |Dτf⌉Γ| is absolutely continuous with respect to H1 then we say
that f⌉Γ is in W 1,1(Γ).
As a matter of convention, when we write ∂τf⌉Γ(X) we refer to the classical partial

derivative of the mapping f in the direction tangential to Γ at X. We avoid writing
this at points Xi,j to avoid ambiguity. It is known for f⌉Γ in BV on Γ (in the sense
described above) that ∂τf⌉Γ exists almost everywhere and the absolutely continuous
part of Dτf⌉Γ can be represented by ∂τf⌉ΓH1

⌉Γ.

Throughout the paper ∇f(x) denotes the approximative derivative of f at x which
for f ∈ BV (Q(0, 1),R2) exists L2 almost everywhere for the correct representative.

Let γ : [0, 1] → Q(0, 1) be a bi-Lipschitz parametrisation of a curve such that
f ◦ γ ∈ BV ((0, 1),R2). We define h : γ([0, 1]) → R2, the geometric representative of
f on γ([0, 1]) as explained below. For each t we define

Y (t) = lim
s→t−

f ◦ γ(s), Z(t) = lim
s→t+

f ◦ γ(s),

l(t) = |Df ◦ γ|([0, t)), L(t) = |Df ◦ γ|([0, t]).

We define the a curve h̃ : [0, 1 + L(1)] → R2 as the constant speed parametrization
of the segment [Y (t)Z(t)] from [l(t) + t, L(t) + t]. Finally, we define

(3.5) h(x) = h̃
(
[1 + L(1)]γ−1(x)

)
on γ([0, 1]).

Let Γ be a good non-straight grid for f then we define h, the geometric repre-
sentative of f on Γ, as follows. For each 1 ≤ i ≤ K we find finitely many intervals
[si,m, si,m+1] covering [0, 1] such that γi is linear on each [si,m, si,m+1], f⌉Γ is continuous
at each γi(si,m) and for each Xi,j there is an m such that γ(si,m) = Xi,j. We define the
map h on each segment [γi(si,m)γi(si,m+1)] as in (3.5). This gives us a map h defined
on the whole of Γ. When we refer to a segment of Γ we mean one of the segments
[γi(si,m)γi(si,m+1)].

Definition 3.8 (No-Crossing BV condition). Let f ∈ BV (Q(0, 1),R2) with f(x) = x
on ∂Q(0, 1). We say that f satisfies the NCBV condition if for every σ > 0 and for
every good straight grid Γ for f , there exists a continuous injective map Hσ : Γ → R2

such that |h(x)−Hσ(x)| < σ for all x ∈ Γ, where h is the geometric representative1

of f on Γ.

Definition 3.9 (No-Crossing BV+ condition). Let f ∈ BV (Q(0, 1),R2) with f(x) =
x on ∂Q(0, 1). We say that f satisfies the NCBV + condition if for every σ > 0 and
for every good non-straight grid Γ for f , there exists a continuous injective map
Hσ : Γ → R2 such that |h(x) − Hσ(x)| < σ for all x ∈ Γ, where h is the geometric
representative2 of f on Γ.

The following lemma was published in [10]. We include its proof here for the
convenience of the reader.

1See the previous paragraphs for the definition.
2See the previous paragraphs for the definition.
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Lemma 3.10. Let X, Y ∈ R2, ε, δ ∈ [0, 1] and L := |X − Y | > 0. Let C ∈ B(X, δL)
and D ∈ B(Y, δL). Let η : [0, 1] → R2 be a path (with constant speed parametrisation)
joining points C and D with arc length l(η) ≤ (1 + ε)L. Let γ : [0, 1] → R2 be the
constant speed parametrisation of the line segment joining X and Y . Then for every
t ∈ [0, 1] |η(t)− γ(t)| ≤

√
3ε+ 12δL.

Proof. We assume without loss of generality that X is the origin and Y = (L, 0). Fix
a point t ∈ [0, 1]. We use the following notation l1 = l(η⌉[0,t]) and l2 = l(η⌉[t,1]) and
thus l1 + l2 = l(η) ≤ (1 + ε)L. At least one of the angles ∢(η(t), (tL, 0), (L, 0)) and
∢((0, 0), (tL, 0), η(t)) is clearly in the range [π/2, π]. We give the proof in the case
where ∢(η(t), (tL, 0), (L, 0)) ∈ [π/2, π]. The proof in the other case is essentially the
same.

We denote the distance between η(t) and (tL, 0) by E and the distance between
(0, 0) and η(t) by D. By the assumption ∢(η(t), (tL, 0), (L, 0)) ∈ [π/2, π] we obtain
from law of cosines that

(3.6) l1 + δ ≥ D ≥
√
L2t2 + E2.

On the other hand, we have l1 = l(η)t ≤ (1+ ε)Lt+ δL. Combining this with (3.6)
and simplifying results in the estimate

E2 ≤ (3ε+ 12δ)L2

□

Definition 3.11 (Good arrival grids). Let the mapping f ∈ BV (Q(0, 1);Q(0, 1)),
let Γ be a good starting grid for f and let γ be the geometrical representative of
f on Γ. Let κ > 0, let the numbers −1 = w0 < w1 < w2 · · · , < wN+1 = 1 and
−1 = z0 < z1 < z2 · · · < zM+1 = 1 satisfy wn+1 − wn < κ and zm+1 − zm < κ for
every 0 ≤ n ≤ N and 0 ≤ m ≤ M . We say that

(3.7) G =
N+1⋃
n=0

{wn} × [−1, 1] ∪
M+1⋃
m=0

[−1, 1]× {zm} ⊆ Q(0, 1)

is a good arrival grid for f associated with Γ and with side-length κ if P := γ−1(G)∩Γ
is a finite set and for every p ∈ P it holds that

· p is not a cross of the grid Γ (i.e. a point (xi, yj)),
· γ(p) is not a cross of the grid G (i.e. a point (wn, zm)),
· p is a point where the derivative ∂τγ(p) exists and ∂τγ(p) ̸= 0,
· ∂τγ(p) is not parallel to the side of G containing γ(p).

An important fact is that good arrival grids always exist. More precisely, we have
the following property, whose proof is a simple variant of the proof of [12, Lemma 3.6]
and can be found in [9, Lemma 4.4].

Lemma 3.12. Let f ∈ BV (Q(0, 1);Q(0, 1)) and let Γ be a good starting grid for f
in Q(0, 1). Then the geometrical representative γ of f on Γ is in W 1,1(Γ, Q(0, 1)).
Moreover, there exists κ̄ = κ̄(L) > 0 such that for any 0 < κ < κ̄ and any Σ ⊂ Γ
H1-negligible set, there exists a good arrival grid G for f associated with Γ, with
side-length κ, and such that γ−1(G) ∩ Σ = ∅.
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We define the concept of the generalized segment, already introduced in [12], which
will be useful throughout the proof of Theorem 1.1.

Definition 3.13 (generalized segments). Let G ⊂ Q(0, 1) ⊂ R2 be a grid (the finite
union of horizontal and vertical lines). Let R be a rectangle of the grid Γ (the closure
of a component of Q(0, 1) \Γ). Let X ̸= Y and X, Y ∈ ∂R ⊂ G. Given ξ > 0 a small
parameter, the generalized segment [XY ] between X and Y in R is defined as the
standard segment [XY ] if the two points are not in the same side of ∂R; otherwise,
[XY ] is the union of two segments of the form [XM ] and [MB] where M is the point
inside R whose distance from the side containing X and Y is ξ|X − Y |/2 and the
projection of M on the segment [XY ] is the mid-point of [XY ].

The following claim about generalized segments holds.

Proposition 3.14. Let R ⊂ R2 be a rectangle and let a, b ∈ ∂R. Let S be a gener-
alized segment from a to b in R with parameter ξ > 0 and let S̃ ⊂ S be a closed and
connected subset of S. Then

H1(S̃) ≤ (1 + ξ) diam(S̃)

Proof. If S is a segment the claim is immediate. In fact, H1(S̃) ≤ diam(S̃). If S is
the union of 2 segments, then after rotation and translation we can interpret S as the
graph of the function ξ|x|. We have diam(S̃) ≥ diam(π(S̃)), where π is the projection
onto the horizontal axis. Using the area formula

H1(S̃) =
√

1 + ξ2 diam(π(S̃)) ≤ (1 + ξ) diam(S̃).

□

3.2. Equivalence of NCBV and NCBV + conditions.

Proposition 3.15. Let f ∈ BV (Q(0, 1)) be an NCBV+ map, then f is an NCBV
map.

Proof. It suffices to see that every good straight grid for f is also a good non-straight
grid for f , which is evident. □

In the following lemma we refer by N1, N2 ⊂ [−1, 1] to the null sets from Corol-
lary 3.2. Further, for all (y1, y2, x1, x2) ∈ [−1, 1]4 we define the (boundary of a) rectan-
gleR(y1,y2,x1,x2) = [(x1, y1)(x2, y1)]∪[(x2, y1)(x2, y2)]∪[(x2, y2)(x1, y2)]∪[(x1, y2)(x1, y1)].

Lemma 3.16. Let f ∈ BV (Q(0, 1)) be an NCBV map and let σ > 0. Then for every
point (x0, y0) ∈ Q(0, 1) where

(3.8) lim inf
r→0

r−1|Df |(Q((x0, y0), r)) ≤ 1
34
σ

there exists a sequence of positive numbers rn → 0 and a sequence of sets An ⊂
((y0 − rn, y0 − 1

2
rn) \ N1) × ((y0 +

1
2
rn, y0 + rn) \ N1) × ((x0 − rn, x0 − 1

2
rn) \ N2) ×

((x0 +
1
2
rn, x0 + rn) \ N2) with L4(An) > 0 and for any (y1, y2, x1, x2) ∈ An it holds

that the straight grid generated by R(y1,y2,x1,x2) is good for f and

(3.9) |Dτf⌉R(y1,y2,x1,x2)
|(R(y1,y2,x1,x2)) <

1
4
σ.
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Proof. By (3.8), we find a sequence rn → 0 so that |Df |(Q((x0, y0), rn)) < 1
33
σrn.

We denote Cy,n = [x0 − rn, x0 + rn] × {y} for any y ∈ [y0 − rn, y0 + rn]. By a
standard disintegration argument (see [2, Theorem 2.28] and [2, Theorem 3.107]) and
Lemma 2.10 we have

rnσ

33
> |Df |(Q((x0, y0), rn))

≥ |⟨Df, (1, 0)⟩|(Q((x0, y0), rn))

=

∫ y0+rn

y0−rn

|Dτf⌉Cy,n|(Cy,n)dy.

We use the argument∫
A

|Dτf⌉Cy,n|(Cy,n) dy ≥ λL1({y ∈ A; |Dτf⌉Cy,n|(Cy,n) ≥ λ})

for both A = (y0 − rn, y0 − 1
2
rn) and for A = (y0 +

1
2
rn, y0 + rn) to get

L1({t ∈ A; |Dτf⌉Cy,n|(Cy,n) < λ}) = 1

2
rn − L1({t ∈ A; |Dτf⌉Cy,n|(Cy,n) ≥ λ})

≥ 1
2
rn −

1

λ

∫
A

|Dτf⌉Cy,n|(Cy,n) dy

> 1
2
rn −

rnσ

33λ
.

Choose λ = 1
16
σ, then

(3.10) L1({t ∈ A; |Dτf⌉Cy,n|(Cy,n) <
1
16
σ}) > 0.

The same estimates hold also for vertical lines.
Call An the subset of ((y0−rn, y0− 1

2
rn)\N1)×((y0+

1
2
rn, y0+rn)\N1)×((x0−rn, x0−

1
2
rn)\N2)× ((x0+

1
2
rn, x0+rn)\N2) whose each component satisfies (3.10). Then An

has positive L4 measure. Without loss of generality we may assume that each point
of An is a Lebesgue point of the set (with respect to L4). By Proposition 3.2 have
that (almost every) [−1, 1]× {x1} ∪ [−1, 1]× {x2} ∪ {y1} × [−1, 1] ∪ {y2} × [−1, 1] is
admissible for f . □

Proposition 3.17. Let f ∈ BV (Q(0, 1),R2) be an NCBV map, let σ > 0 and let
(x0, y0) ∈ Q(0, 1) satisfy

(3.11) lim
r→0

r−1|Df |
(
Q((x0, y0), r)

)
= 0.

Let v1, . . . , v4 ∈ R2 be distinct vectors with |vi| = 1 and call the rays γi = (x0, y0) +
vi[0,∞). Then there exists a constant δ > 0 depending on the vectors vi and an
r0 = r0(σ) > 0 such that for any 0 < r ≤ r0 there exists a set Ar ⊂ Q((x0, y0), δr)
with L2(Ar) > 0 and for every (x̃, ỹ) ∈ Ar there exist four polylines γ̃1, γ̃2, γ̃3, γ̃4 ⊂
Q((x0, y0), r) with the following properties

(1) the point (x̃, ỹ) is an endpoint of all γ̃i, i = 1, . . . , 4 and the second endpoint
of γ̃i (we call it (xi, yi)) lies on γi \ {(x̃, ỹ)},

(2) the point (x̃, ỹ) is the only common point of the curves γ̃i ∪ (xi, yi) + (0,∞)vi
i.e.
[
γ̃i ∪

(
(xi, yi) + (0,∞)vi

)]
∩
[
γ̃j ∪

(
(xj, yj) + (0,∞)vj

)]
= {(x̃, ỹ)} for 1 ≤

i < j ≤ 4,
(3) the collection {γ̃i ∪ (xi, yi) + (0,∞)vi}4i=1 is admissible for f ,
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(4) all segments of γ̃i are parallel to either (1, 0) or (0, 1),
(5) osc(f, γ̃i) ≤ 1

4
σ.

Proof. We separate the plane into 4 quadrants P1 = {(x, y) ∈ R2;x > x0, y ≥
y0}, P2 = {(x, y) ∈ R2;x ≤ x0, y > y0}, P3 = {(x, y) ∈ R2;x < x0, y ≤ y0} and
P4 = {(x, y) ∈ R2;x ≥ x0, y < y0}. Notice that each γi is contained in exactly
one of the quadrants. Further observe that there exists a 0 < δ < 1

8
such that

(γi − u) \ Q((x0, y0),
1
2
) is contained in exactly one quadrant for any |u| < δ (in the

case of vi = (±1, 0) or (0,±1) this may not be the same as the original quadrant).
In every case having chosen |u| < δ we have a uniquely determined quadrant Pi + u
containing γi.
We define the polyline ‘spiral’

γ∗
1 =[(0, 0), (1, 0)] ∪ [(1, 0), (1, 2)] ∪ [(1, 2), (−3, 2)] ∪ [(−3, 2), (−3,−4)]

∪ [(−3,−4)(5,−4)] ∪ [(5,−4), (5, 6)] ∪ [(5, 6), (−7, 6)]

and γ∗
2 , γ

∗
3 , γ

∗
4 are rotations of γ∗

1 by 90, 180 and 270 degrees clockwise. See Figure 1
for an illustration. We use these polylines as a starting point. In the following we
construct γ̃i from γ∗

i by translating, rescaling and truncating them.
We call

γ∗
i,u,r = (x0, y0) + u+ rγ∗

i and Γ(u, r) =
4⋃

i=1

γ∗
i,u,r

for each u ∈ {(x, y) ∈ R2; |x| + |y| ≤ δr} =: Q̃r and r > 0. Then Γ(u, r) ⊂
Q((x0, y0), 8r) for each u ∈ Q̃r. For every u ∈ Q̃r we decompose u = s( 1√

2
, 1√

2
) +

t( 1√
2
,− 1√

2
) for s, t ∈ [− 1√

2
δr, 1√

2
δr]. There exists a number N such that for any fixed

s there is at most N points of the set Γ(0, r) on the corresponding line s( 1√
2
, 1√

2
) +

R( 1√
2
,− 1√

2
).

As explained above, by |Dτf⌉Γ(u,r)| we denote the measure on Γ(u, r) given by the
one-dimensional variation of f on the segments of Γ(u, r). Let us calculate
(3.12)∫

Q̃r

|Dτf⌉Γ(u,r)|(Γ(u, r)) dL2(u)

=

∫ δr√
2

−δr√
2

∫ δr√
2

−δr√
2

|Dτf⌉Γ(s( 1√
2
,
1√
2
)+t(

1√
2
,− 1√

2
),r)

|(Γ(s( 1√
2
, 1√

2
) + t( 1√

2
,− 1√

2
), r)) dt ds

≤
∫ δr√

2

−δr√
2

N
(
|⟨Df, (0, 1)⟩|(Q((x0, y0), 2r)) + |⟨Df, (1, 0)⟩|(Q((x0, y0), 2r))

)
ds

≤ CNδr|Df |
(
Q(x0, y0), 8r

)
.

Using (3.11) we get that

−
∫
Q̃r

|Df|Γ(u,r)|(Γ(u, r)) dL2(u) ≤ Cδ−1r−1|Df |
(
Q(x0, y0), 7r

)
→ 0

as r → 0. Using the standard average values argument (as in the proof of (3.10)) we
find an r0 > 0 such that for any 0 < r < r0 there exists an Ãr ⊂ Q̃r of positive L2
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γ̃2
γ̃3

γ̃4
γ̃1

γ3

γ4

γ2

γ1

Q̃r

Figure 1. The approach to replacing four segments with a common
endpoint by four polylines “spirals” parallel to coordinate axes. Here
the paths have already been renumbered so that the first quadrant is the
successor of the second of the two quadrants containing two segments
which we have also renumbered.

measure such that

(3.13) |Dτf⌉Γ(u,r)|(Γ(u, r)) ≤ 1
4
σ for any u ∈ Ãr.

We may assume that all points of Ãr are Lebesgue points for f .
Now we truncate the curves γ̃∗

i,u,r for u ∈ Ãr so that they satisfy (1) and (2). The
set Γ(u, r) is the union of four polylines, γ∗

i,u,r, each of which is a ‘square spiral’-type
curve anti-clockwise around (x0, y0) + u. Recall that for each u ∈ Ar and for each γi
we have a uniquely determined quadrant Pj such that γi \ Q((x0, y0),

1
2
r) ⊂ Pj + u.

We call Pj+1 the successor of Pj and Pj−1 its predecessor calculating the indexes
mod 4.

Assume that we have u ∈ Ar fixed. We start working with the quadrant whose
predecessor contains the greatest number of segments γi. In the case where each quad-
rant contains exactly one segment we may start with any quadrant. In the case when
there are two quadrants each containing two segments but neither is the successor of
the other we start with the successor of either quadrant containing segments. If there
are two successive quadrants both containing two segments each, we start with the
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v(x0, y0)
⊥

[(x1, y1)(x2, y2)]

P(x0,y0)

(x0, y0)

Figure 2. The situation close to the points of Jf ∩ Γ. The jump
set ‘approaches’ the approximate tangent space. Because (x0, y0) is a
‘Lebesgue’ jump point there are many horizontal segments with jumps
very close to the jump at (x0, y0). Such a horizontal segment can easily
be connected to [(x1, y1)(x2, y2)] by segments parallel to coordinate
axes.

quadrant succeeding the second of these two quadrants. Thus we have determined a
starting quadrant (and without loss of generality) we assume it is P1.

We define γ̃1 as the part of γ∗
1,u,r which goes from (x̃, ỹ) = (x0, y0) + u to its

first intersection with the first segment it meets, (if necessary re-number it to be)
γ1. Then we define each curve γ̃i similarly; γ̃i is the part of γ∗

i,u,r which goes from
(x̃, ỹ) = (x0, y0) + u to its first intersection with the segment (assumed after re-
numbering to be) γi i.e. the first segment which has not yet been taken by a previous
curve. Since there is a finite number of scenarios it is not difficult to check that the
algorithm ensures points (1) and (2) hold by checking on a case by case basis. An
illustration of this process is in Figure 1.

Point (4) is obvious. Point (5) is an obvious result of (3.13). Then, by Proposi-
tion 3.1 {γ̃i ∪ (xi, yi) + (0,∞)vi} is admissible for f for almost every u ∈ Ãr, which is
point (3) where Ar = (x0, y0) + Ãr. □

Theorem 3.18. Let f ∈ BV (Q(0, 1),R2) and f = id on ∂Q(0, 1). It holds that f is
an NCBV + map if and only if it is an NCBV map.

Proof. Thanks to Proposition 3.15 it suffices to show that if f satisfies NCBV then
f satisfies NCBV +. Therefore we take a non-straight grid Γ good for f and, for any
any fixed σ, we construct Γ̃ a straight grid good for f and an injective continuous
map g from Γ̂ ⊂ Γ̃ onto Γ with the property that given any injective approximation
h of f on Γ̃, with ∥h− f∥∞,Γ̃ < σ/4 it holds that ∥h ◦ g−1 − f∥∞,Γ < σ.
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We call Fσ the set of (x0, y0) ∈ Γ ∩ Jf Lebesgue points for
(
f+(·) − f+(·)

)
⊗ v(·)

in the sense of (3.4) such that
∣∣f+(·)− f+(·)

∣∣ ≥ 1
40
σ. Then Fσ is a finite set and for

each (x0, y0) ∈ Fσ there exists exactly one segment [(x1, y1)(x2, y2)] of Γ containing
(x0, y0). Without loss of generality we assume that [(x1, y1)(x2, y2)]∩ Fσ = {(x0, y0)}
and that

∣∣〈(1, 0), v(x0, y0)
〉∣∣ ≥ 1

2
.

By the Federer-Vol’pert theorem, Theorem 2.8 (and Theorem 2.6) we have the
strict convergence of r−1|Df |

(
r[·+ (x0, y0)]

)
to |f+(x0, y0)− f−(x0, y0)|H1

⌉v(x0,y0)⊥
on

B(0, 1) as r → 0 for each point of (x0, y0) ∈ Γ ∩ Fσ. Therefore we get

(3.14) r−1|⟨Df, (1, 0)⟩|
(
(x0−r, x0+r)×(y0− 1

2
r, y0+

1
2
r)
)
→ |f+(x0, y0)−f−(x0, y0)|.

Further we have that [(x1, y1)(x2, y2)] is not parallel to the tangent space v(x0, y0)
⊥.

Therefore we observe the existence of a polyline P(x0,y0) ⊂ Q((x0, y0), r) with segments
parallel to coordinate axes with one endpoint (x̃(x0,y0), ỹ(x0,y0)) ∈ [(x1, y1)(x0, y0)] \
{(x0, y0)} and the other on (x̂(x0,y0), ŷ(x0,y0)) ∈ [(x0, y0)(x2, y2)] \ {(x0, y0)} such that

the straight grid generated by P(x0,y0) (call it Γ̃1) is a good straight grid for f and

(3.15)
∣∣∣|Dτf⌉Γ̃1

|(P(x0,y0))− |f+(x0, y0)− f−(x0, y0)|
∣∣∣ ≤ ( σ

100

)2
.

To ease our notation we denote S(x0,y0),σ = [(x̃(x0,y0), ỹ(x0,y0))(x̂(x0,y0), ŷ(x0,y0))]. Further,
thanks to (3.14), we assume that r > 0 is chosen so small that

(3.16) |Dτf⌉Γ|
(
S(x0,y0),σ

)
≤ |f+(x0, y0)− f−(x0, y0)|+

( σ

100

)2
.

For a depiction of the process see Figure 2. Since we are in position to choose the
x-coordinate of vertical segments and the y-coordinate for horizontal segments for the
polylines P(x0,y0) from sets of positive measure. Therefore we may assume that the
horizontal segments do not have y-coordinate in the set N1 from Corollary 3.2 and
the vertical segments do not have x-coordinate in the set N2 from Corollary 3.2 and
that the straight grid generated by

⋃
(x0,y0)∈Γ∩Fσ

P(x0,y0) is good for f . Further we may

assume that we choose r so small that the squares Q
(
(x0, y0), r

)
for (x0, y0) ∈ Fσ ∩ Γ

are pairwise disjoint and do not contain any of the intersection points Xi,j of Γ.
Let r > 0 be chosen so small thatQ(Xi,j, r)∩Γ is exactly the union of four segments,

Q(Xi,j, r) are pairwise disjoint and are also disjoint with each Q
(
(x0, y0), r

)
for each

(x0, y0) ∈ Fσ∩Γ. For each point Xi,j intersection point of γi([0, 1]) ̸= γj([0, 1]) ⊂ Γ we
find polylines (contained in Q(Xi,j, r)) from Proposition 3.17, where the four segments
from the claim of Proposition 3.17 (there called γ1, . . . , γ4) refer to the four segments

of Γ, which intersect at Xi,j. We will refer to these polylines as γ̃
Xi,j

k , k = 1, 2, 3, 4. By
the fact that Ar has positive measure we can garantee that the straight grid generated

by {γ̃Xi,j

k : i, j, k} and by the polylines {P(x0,y0) : (x0, y0) ∈ Fσ} is a good straight grid

for f . We call this grid Γ̃2.
Recall the notation; for every point (x0, y0) ∈ Fσ we have a segment (above denoted

by Sx0,y0σ). Using an obvious adaptation of the notation of Proposition 3.17, with
[(xk(Xi,j), yk(Xi,j))Xi,j] we denote the segment of endpoints (xk(Xi,j), yk(Xi,j)) and
Xi,j and we define the set

κ = Γ \
( ⋃

(x0,y0)∈Fσ

P(x0,y0) ∪
⋃
Xi,j

4⋃
k=1

[
(xk(Xi,j), yk(Xi,j))Xi,j

])
.
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Figure 3. The above figure depicts how we choose a polyline parallel
to coordinate axes along the boundary of chosen rectangles (shown in
green) between (in this case) an intersection point and a jump point

Obviously κ is a compact set. All points of κ satisfy (3.8). Thus by Lemma 3.16
we have a fine covering of κ with rectangles each of which satisfies (3.9) and each
rectangle is associated to a particular point on κ. We choose a finite covering of κ of
the rectangles from Lemma 3.16 with the rectangles chosen so small that whenever a
pair of rectangles intersect then either

• R1, R2 are associated with points on the same segment of Γ and the associated
points are not disconnected by some (x0, y0) ∈ Fσ

• R1, R2 are associated with points on neighbouring segments of Γ whose com-
mon endpoint is some γi(si,k) (where si, k has been defined in Definition 3.3),
not a point Xi,j.

Each rectangle can be made slightly bigger allowing us to choose horizontal lines with
y-coordinate in [−1, 1] \N1 (similarly for x-coordinate) since the set An has positive
measure. Therefore we may assume that the grid generated by the sides of all the
rectangles and Γ̃2 is a good straight grid for f . We may also assume that the covering
we have chosen is minimal in the sense that it does not contain a strict sub-covering
of κ. This grid is exactly Γ̃ mentioned at the start of the proof.
Now we want to choose the set Γ̂ ⊂ Γ̃. Each of the polylines P(x0,y0) intersect exactly

two of the rectangles R1, R2 chosen in the previous paragraph using Lemma 3.16
(each containing exactly one endpoint of P(x0,y0)). The part of P(x0,y0) included in Γ̂

is P(x0,y0) \ (R1 ∪R2).

For each Xi,j, we defined four polylines γ̃
Xi,j

1 , . . . , γ̃
Xi,j

4 , each of which intersects
exactly one (and distinct) rectangle R1, . . . , R4 chosen using Lemma 3.16. We include

each γ̃
Xi,j

k \Rk in Γ̂ for k = 1, 2, 3, 4 and do this at each Xi,j.
Let R be a rectangle chosen using Lemma 3.16 such that we already have exactly

one point in Γ̂ ∩ ∂R. Then R has a neighbouring R′ (also chosen using Lemma 3.16)

and there exists a path on ∂R from the previously chosen point in Γ̂ ∩ ∂R to a point
in ∂R′. We include this path in Γ̂.
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If we have a rectangle R chosen using Lemma 3.16 such that Γ̂∩∂R contains exactly
two points. Then there exists a path on ∂R between the two points of Γ̂ ∩ ∂R. We
include this path in Γ̂. After dealing with the finite number of rectangles we have
defined Γ̂.

Now we describe how to define g on Γ̂. We define g on Γ̂ ∩ P(x0,y0) as the con-

stant speed map from Γ̂ ∩ P(x0,y0) onto the segment Sx0,y0,σ. Then g is injective and

continuous on Γ̂ ∩ P(x0,y0). On Γ̂ ∩ γ̃
Xi,j

k we define g as the constant speed map onto

the segment
[(
xk(Xi,j), yk(Xi,j)

)
Xi,j

]
. For any pair of rectangles R1, R2 chosen using

Lemma 3.16 we choose a point ZR1,R2 ∈ Γ∩R1∩R2. Then for each rectangle R chosen

using Lemma 3.16 we define g as the constant speed map from Γ̂ ∩ ∂R onto the part
of Γ between the two points ZR,R′ and ZR,R′′ , where R′ and R′′ are the two neighbours
of R. Alternatively if R neighbours R′ and P(x0,y0) we define g as constant speed onto
the part of Γ between ZR,R′ and the corresponding endpoint of the polyline P(x0,y0).

Finally, if R neighbours R′ and γ̃
Xi,j

k we define g as constant speed onto the part of

Γ between ZR,R′ and the corresponding endpoint of the polyline γ̃
Xi,j

k .

We separate Γ̂ into three pieces; parts of ∂R, the polylines γ̃
Xi,j

k ∩Γ̂ and the polylines

P(x0,y0) ∩ Γ̂. In each case we refer to the corresponding polyline as E. In the first two
cases we have that |DfΓ̃|(E) ≤ 1

4
σ by Lemma 3.16 and Proposition 3.17. Then an

injective Hσ with ∥Hσ − f∥∞,Γ̃ < σ/4 has oscillation bounded by 1
2
σ on E. The same

oscillation estimates holds on the segment Γ∩R and f is continuous at the intersection
points of Γ ∩ ∂R. Therefore it holds that ∥Hσ ◦ g−1 − f∥∞,E < σ. The only case

that needs closer consideration is the case of large jumps, i.e. E = P(x0,y0) ∩ Γ̂.

But in this case we have chosen the endpoints of P(x0,y0) ∩ Γ̂ so that their image is
very close to the corresponding one sided limits at the jump point (x0, y0) (by (3.15)
and (3.16) the error is bounded by 4( 1

100
σ)2). Then by Lemma 3.10 we have that

∥Hσ ◦ g−1 − f∥∞,E < 1
4
σ and so we get our required result.

□

4. Construction of a sequence converging area-strictly to f if f
satisfies the NCBV + condition

To approximate f area-strictly we need to isolate the majority of the singular part
of Df from the majority of the absolutely continuous part of Df . That is the goal
of the following lemma.

Lemma 4.1. Let f ∈ BV(Q(0, 1)) and let ε > 0 then there exists a finite number of

squares {Qi}N0
i=1 (whose union we denote as F̃ε =

⋃N0

i=1Qi) such that

|Daf |(F̃ε) ≤ ε|Daf |(Q(0, 1))

and

|Dsf |
(
Q(0, 1) \ F̃ε

)
| ≤ ε|Dsf |

(
Q(0, 1)

)
Further, if |Daf |

(
Q(0, 1)

)
> 0, then

|Dsf |
(
Q(0, 1) \ F̃ε

)
| ≤ ε2|Daf |

(
Q(0, 1)

)
.
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Proof. We assume that |Daf |
(
Q(0, 1)

)
> 0 because the opposite case easily follows

from the proof for this case. We may assume that |Dsf |(Q(0, 1)) > 0 because other-
wise the claim is nothing but the absolute continuity of the integral. Let δ > 0 be a
number chosen small enough that

|Daf |(A) ≤ εmin
{
1, |Daf |

(
Q(0, 1)

)
, |Dsf |

(
Q(0, 1)

)}
for any A ⊂ Q(0, 1) such that L2(A) < δ. We call the set

S =
{
x ∈ Q(0, 1); lim

r→0

|Df |(Q(x, r))

r2
= ∞

}
and similarly we call

AR
M =

{
x ∈ Q(0, 1) :

|Df |(Q(x, r))

r2
> 4M for every 0 < r < R

}
.

Recall that by [2, Proposition 3.92]

(4.1) |Dsf |(Q(0, 1) \ S) = 0.

By the Vitali-Besicovitch theorem [2, Theorem 2.19] we have a countable collection
of pairwise disjoint squares Q(xi, ri) with xi ∈ AR

M and 0 < ri < R covering AR
M (up

to a set of Ln + |Df |-measure 0). Using |Df |(Q(xi,ri))

r2i
> 4M we get

L2(AR
M) ≤

∞∑
i=1

4r2i <
|Df |

(
Q(0, 1)

)
M

.

and by choosing M = δ−12|Df |(Q(0, 1)) we have

(4.2) L2(AR
M) <

δ

2
.

Obviously for all M > 0 and all R0 > 0 we have

S ⊂
⋃

0<R<R0

AR
M ,

especially the inclusion AR1
M ⊂ AR2

M holds for any R1 > R2 > 0. This shows that
L2(S) = 0 but also, using (4.1), that |Dsf |(S \AR

M) → 0 as R → 0+ (the limit makes
sense thanks to the previous inclusion). Find then an R0 such that

|Dsf |(S \ AR0
M ) <

ε

2
|Dsf |(Q(0, 1)), |Dsf |(S \ AR0

M ) <
ε2

2
|Daf |(Q(0, 1)),

L2
(
AR0

M +BR0(0)
)
≤ δ,

(4.3)

where with AR0
M +BR0(0) we mean the set {x ∈ R2 : dist(x,AR0

M ) < R0}.
The Vitali-Besicovitch theorem gives a countable number of pairwise disjoint squares

Qi = Q(xi, Ri), xi ∈ AR0
M with Ri ≤ R0. Since limN→∞ |Dsf |(AR0

M \
⋃N

i=1Qi) = 0 we
can find a N0 such that

|Dsf |
(
AR0

M \
N0⋃
i=1

Qi

)
<

ε

2
|Dsf |

(
Q(0, 1)

)
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and similarly

|Dsf |
(
AR0

M \
N0⋃
i=1

Qi

)
<

ε2

2
|Daf |

(
Q(0, 1)

)
.

Combining the last two estimates with (4.1) and (4.3) we have

|Dsf |
(
Q(0, 1) \

N0⋃
i=1

Qi

)
< ε|Dsf |(Q(0, 1)) and

|Dsf |
(
Q(0, 1) \

N0⋃
i=1

Qi

)
< ε2|Daf |(Q(0, 1)).

On the other hand, by the third of (4.3), (4.2) and the choice of δ, we have

|Daf |
( N0⋃

i=1

Qi

)
≤ εmin{1, |Daf |(Q(0, 1)), |Dsf |(Q(0, 1))}.

□

The following theorem is used to divide Q(0, 1) up into small squares (side length
is 21−K) which have different properties. In the squares of type Eε,K the majority of
the behaviour comes from the singular part of the derivative and the direction map
of the polar decomposition of the derivative satisfies a Lebesgue-point-type estimate
based on the choice of ε. Further we categorise the other squares, which are used
to approximate Daf in L1. The categories are Gε,α,K (where f is very close to a
nice affine map), Tε,α,K (where f is very close to a non-constant affine map with zero
Jacobian) and Wε,α,K (where f is nearly constant or does not behave ‘ε-similarly’ to

any affine map). In the following theorem we refer to the set F̃ε defined in Lemma 4.1.

Theorem 4.2. Let f ∈ BV (Q(0, 1)) be an NCBV map and let ε > 0. There exists
an 0 < α0 < ε such that for any 0 < α ≤ α0 the following holds. There exists a
K = K(ε, α) ∈ N such that the division of Q(0, 1) into K-dyadic squares {Qi}2

2K

i=1 has
the following properties

(1) calling Fε,K the set of K-dyadic squares which themselves intersect F̃ε or

have a neighbouring K-dyadic square that intersects F̃ε and calling F̃ε,K =⋃
Qi∈Fε,K

Qi it holds that

|Daf |(F̃ε,K) ≤ 2ε|Daf |
(
Q(0, 1)

)
,

(2) it holds that

|Dsf |
(
Q(0, 1) \ F̃ε,K

)
≤ ε|Dsf |

(
Q(0, 1)

)
and if |Daf |

(
Q(0, 1)

)
> 0 then

|Dsf |
(
Q(0, 1) \ F̃ε,K

)
≤ ε2|Daf |

(
Q(0, 1)

)
,

(3) there exists a subselection Eε,K of squares of Fε,K (whose union we denote as

Ẽε,K) such that

|Dsf |(Q(0, 1) \ Ẽε,K) ≤ 2ε|Dsf |
(
Q(0, 1)

)
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and for any Qi ∈ Eε,K there exists a wi ∈ Qi ∩ S such that

(4.4)

∫
S∩2Qi

|g(z)− g(wi)|d|Dsf |(z) ≤ ε|Dsf |(4Qi ∩ S),

where g ∈ L1(|Dsf |,R2), g|Dsf | = Dsf is the polar decomposition of Dsf and
g(wi) = ui ⊗ vi for an appropriate |ui| = |vi| = 1.

(4) Further, all squares Qi with Qi ∩ F̃ε = ∅, are separated into three disjoint
categories Gε,α,K, Tε,α,K and Wε,α,K (their unions denoted by G̃ε,α,K, T̃ε,α,K

and W̃ε,α,K) such that

(4.5) |Daf |
(
W̃ε,α,K

)
≤ 8ε

[
|Daf |

(
Q(0, 1)

)
+ 1
]

and, for any Qi = Q(ci, 2
−K) ∈ Gε,α,K∪Tε,α,K there exists an wi ∈ Q(ci, 2

−K−2)
and a set Zi,α ⊂ Q(ci, 2

1−K) with L2(Q(ci, 2
1−K) \ Zi,α) ≤ 2−2K−9 such that

(4.6)

∫
Q(ci,22−K)

|∇f(y)−∇f(wi)|dL2(y) ≤ εα22−2K ,

∥f(·)− f(wi)−∇f(wi)(· − wi)∥L∞(Zi,α) < α42−K ,

α0 ≤ |∇f(wi)| ≤ α−1
0 ,

and

|Dsf |(Qi) ≤ ε|Daf |(Qi).

In the case that Qi ∈ Gε,α,K it holds that α0 < det∇f(wi) and in the case
Qi ∈ Tε,α,K it holds that det∇f(wi) = 0.

Proof.
Step 1. Prove (1) and (2) by applying Lemma 4.1.

The set F̃ε is the union of a finite number of disjoint squares. Then as K → ∞ we
clearly have L2(F̃ε,K \ F̃ε) → 0. Therefore we find a K0 such that for any K ≥ K0 we

have L2(F̃ε,K \ F̃ε) < δ, where δ is so small that |Daf |(A) ≤ ε|Daf |(Q(0, 1)) as soon

as L2(A) < δ. Since F̃ε was chosen so that |Daf |(F̃ε) ≤ ε|Daf |(Q(0, 1)), we satisfy
point (1) of the claim. The set F̃ε,K ⊃ F̃ε and so point (2) of our claim is immediate
from Lemma 4.1.

Step 2. Find a K1 that allows us to prove (3).
Let us call g the function of the so-called polar decomposition of Dsf . Then |g| = 1

|Dsf |-almost everywhere and Dsf = g|Dsf |. The function g ∈ L1(Q(0, 1), |Dsf |,R2)
and so |Dsf | almost every point of S is a Lebesgue point of g with respect to |Dsf |.
Recall that the singular part of the derivative of f is supported on S, i.e. Dsf = Dsf⌉S
(see [2, Proposition 3.92]). As a result of this (see [13, Theorem 1.33]) for |Dsf |-almost
every w ∈ S it holds that

1

|Dsf |(Q(w, r) ∩ S)

∫
Q(w,r)∩S

|g(z)− g(w)|d|Dsf |(z) r→0+−−−→ 0.

Thus, for any given ε the |Dsf | measure of the set of points w ∈ S such that∫
Q(w,r)∩S

|g(z)− g(w)|d|Dsf |(z) > ε|Dsf |(Q(w, r) ∩ S)
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for some 0 < r < 2−K tends to zero as K → ∞. Thus we find a K1 so that the |Dsf |
measure of this set is bounded by ε|Dsf |(Q(0, 1)). Call X̃ε,K the set of w ∈ S such
that∫

Q(w,r)∩S
|g(z)− g(w)|d|Dsf |(z) ≤ ε|Dsf |(Q(w, r) ∩ S) for all 0 < r < 2−K1 .

For any K ≥ K1+1 we have for any Qi = Q(ci, 2
−K) ∈ Fε,K such that Qi ∩ X̃ε,K ̸= ∅

and for any choice of wi ∈ Qi ∩ X̃ε,K that∫
Q(ci,2−K)∩S

|g(z)− g(wi)|d|Dsf |(z) ≤
∫
Q(wi,21−K)∩S

|g(z)− g(wi)|d|Dsf |(z)

≤ ε|Dsf |
(
Q(wi, 2

1−K)
)

≤ ε|Dsf |
(
Q(ci, 2

2−K)
)
.

We define the collection Eε,K (for K ≥ max{K0, K1 +1}) as those squares Qi ∈ Fε,K

such that Qi ∩ X̃ε,K ̸= ∅. By the choice of K1, we have that

|Dsf |
( ⋃

Qi∈Fε,K\Eε,K

Qi

)
= |Dsf |(S \ X̃ε,K) < ε|Dsf |(Q(0, 1)).

These two estimates together with (2) are point (3) of our claim.

Step 3. Choose an appropriate α0 > 0 and for every 0 < α < α0 find an
appropriate K(ε, α).

For every K ≥ max{K0, K1 + 1} we call W ′
ε,K the collection of Qi, the K-dyadic

squares Qi such that

Qi /∈ Fε,K and |Dsf |(2Qi) > ε|Daf |(Qi).

Denote W̃ ′
ε,K =

⋃
Qi∈W ′

ε,K
Qi. Notice that for any Qi /∈ Fε,K we have 2Qi ∩ F̃ε = ∅

by the definition of Fε,K . Then, by the second estimate of point (2), for every K we
have

(4.7) |Daf |(W̃ ′
ε,K) ≤ ε−1

∑
Qi∈W ′

ε,K

|Dsf |(2Qi) ≤ 4ε|Daf |(Q(0, 1)).

The constant 4 is the overlap multiplicity bound for {2Qi}, i.e. a bound for
∑

i χ2Qi
.

The remaining squares Q(0, 1) ⊃ Qi /∈ Fε,K ∪W ′
ε,K satisfy the estimate |Dsf |(2Qi) ≤

ε|Daf |(Qi).
Call P̃α0 the set where

P̃α0 =
{
w ∈ Q(0, 1) \ S; |∇f(w)| > α−1

0

}
∪
{
w ∈ Q(0, 1); 0 < |∇f(w)| < α0

}
∪
{
w ∈ Q(0, 1); 0 < det∇f(w) < α0

}
Our first observation is that as α0 → 0 we have

L2
({

w ∈ Q(0, 1) \ S; |∇f(w)| > α−1
0

})
→ 0

L2
({

w ∈ Q(0, 1); 0 < |∇f(w)| < α0

})
→ 0

L2
({

w ∈ Q(0, 1); 0 < det∇f(w) < α0

})
→ 0,
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because as we send α0 → 0 the sets (which are nested) tend to the empty set. Recall
the choice of the parameter δ, chosen such that |Daf |(A) ≤ ε|Daf |(Q(0, 1)) for any
A such that L2(A) < δ. We find an 0 < α0 < ε such that L2(P̃α0) <

δ
16
.

From [2, Theorem 3.83] we have that L2-almost every point of Q(0, 1) is a point of
approximate differentiability of f . We define Ỹε,α,K as the set of points w ∈ Q(0, 1)
such that

(4.8)

1

L2(Q(w, 8r))

∫
Q(w,8r)

|∇f(z)−∇f(w)|dL2(y) > 2−8εα2 or

L2
({

y ∈ Q(w, 4r) : |f(z)− f(w)−∇f(w)(z − w)| > α4r
})

≥ 2−9r2

for some 0 < r < 2−K . By [2, Theorem 3.83] the L2 measure of Ỹε,α,K tends to zero
as K → ∞. Therefore we find a K2(α) sufficiently large such that for any 0 < α < α0

and any K ≥ K2(α) we have L2(Ỹε,α,K) < δ/16. From now on we require that
K ≥ K2. Also we require 2−K2 < εα0.

Step 4. Designate the squares Gε,α,K , Tε,α,K ,Wε,α,K and prove (4).

Notice that the bound on the measure of P̃α0 and Ỹε,α,K implies that the union

of all K-dyadic squares Qi = Q(ci, 2
−K) such that Q(ci, 2

−K−2) ⊂ P̃α0 ∪ Ỹε,α,K has
measure at most 2δ. Therefore

(4.9) |Daf |(P̃α0 ∪ Ỹε,α,K) ≤ 2ε|Daf |(Q(0, 1))

because of the choice of δ. We call Wε,α,K the collection of those squares either

(i) Qi ∈ W ′
ε,K or

(ii) Q(ci, 2
−K−2) ⊂ P̃α0 ∪ Ỹε,α,K or

(iii) |Daf |(Qi) < 2α02
−2K+2 = 2α0L2(Qi)

In case (iii) we use the fact that L2(Q(0, 1)) = 4 the choice of α0 < ε to get

|Daf |
( ⋃

{i:|Daf |(Qi)<α02−2K+3}

Qi

)
≤

∑
{i:|Daf |(Qi)<2α02−2K+2}

|Daf |(Qi) ≤ 2α04 < 8ε.

This in combination with (4.7) (for case (i)) and (4.9) (for case (ii)) prove the estimate
(4.5).

All the other squares Qi /∈ Fε,K ∪Wε,α,K have a point wi ∈ Q(ci, 2
−K−1) \ (Pα0 ∪

Yε,α,K) and therefore they satisfy the estimates

|∇f(wi)| ≤ α−1
0

and
either det∇f(wi) ≥ α0 or det∇f(wi) = 0

and ∫
Q(ci,22−K)

|∇f(z)−∇f(wi)|dL2(z) ≤
∫
Q(wi,23−K)

|∇f(z)−∇f(wi)|dL2(z)

≤ εα22−2K .

Further the fact that |Daf |(Qi) ≥ 2α0L2(Qi) implies that |∇f(wi)| ≥ 2α0 − εαα0

and since α < ε < 1 we have

α0 ≤ |∇f(wi)| ≤ α−1
0 .
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Moreover, using Q(ci, 2
1−K) ⊂ Q(wi, 2

2−K) and r = 2−K in (4.8) we have that

L2
({

z ∈ Q(ci, 2
1−K) : |f(z)− f(wi)−∇f(wi)(z − wi)| > α42−K

})
< 2−2K−9.

Then, Zi,α ⊂ Q(ci, 2
1−K) being the set where |f(·)−f(wi)−∇f(wi)(·−wi)| ≤ α42−K

satisfies L2
(
Qi \ Zi,α

)
< 2−2K−9. Thus we have proved point (4). □

In [2, Proposition 3.92] the authors introduced the set

Θf = {w ∈ Q(0, 1); lim inf
r→0

r−1|Df |(B(w, r)) > 0}.

We adapt slightly this notion and in the following theorem we use the sets

Θβ
f = {w ∈ Q(0, 1); lim inf

r→0
r−1|Df |(B(w, r)) > 1

10
β}

for β > 0.
In the Theorem‘4.3, for each pair of neighbouring vertexes V, Ṽ of some square Qi

chosen in Theorem 4.2, we find sets HV,Ṽ such that when we create a quadrilateral by

shifting V and Ṽ to a pair of points in HV,Ṽ then the behaviour of f⌉[V,Ṽ ] corresponds
to the behaviour of f inside Qi. In fact we can can create a good non-straight grid for
f by joining neighbouring shifted vertices with segments. Further we get the useful
estimates (4.10) and (4.11).

Theorem 4.3. Let f ∈ BV (Q(0, 1)) be an NCBV map, let ε, β > 0, and let α0 < ε be
the number given by Theorem 4.2 and let 0 < α < min{α0, 2

−9}. Let K = K(ε, α) ∈ N
and {Qi}2

2K

i=1 be the K-dyadic squares chosen in Theorem 4.2. There exists a constant
C > 0 such that the following holds. Let V be a vertex of a square Qi and let Ṽ be one
of its neighbouring vertices. There exists a set HV,Ṽ ⊂ Q(V, 2−K−2) × Q(Ṽ , 2−K−2)

with L4(HV,Ṽ ) ≥ 4
5
L4(Q(V, 2−K−2)×Q(Ṽ , 2−K−2)) with the following properties:

(1) for every pair (X, X̃) ∈ HV,Ṽ both X and X̃ are Lebesgue points of f and we
assume that

f(X) = lim
r→0

−
∫
B(X,r)

f(z)dz and f(X̃) = lim
r→0

−
∫
B(X̃,r)

f(z)dz,

(2) for any pair (X, X̃) ∈ HV,Ṽ the map f⌉LX,X̃
is continuous at X and X̃, where

LX,X̃ is the line passing through X and X̃,

(3) for any pair (X, X̃) ∈ HV,Ṽ the segment [XX̃] intersects the set Θβ
f only at

Lebesgue points of the function (f+(x) − f−(x)) ⊗ v(x) with respect to H1

⌉Θβ
f

and further ⟨X − X̃, v(x)⟩ ≠ 0 at every such point of intersection,
(4) for any pair (X, X̃) ∈ HV,Ṽ it holds that |Df |([XX̃]) = 0,

(5) for any pair (X, X̃) ∈ HV,Ṽ the estimate holds

(4.10) |Dτf⌉[XX̃]|([XX̃]) ≤ C2K |Df |(2Qi).

Further, if V and Ṽ are both vertices of some Qj ∈ Gε,α,K ∪ Tε,α,K (the col-
lection of squares defined in Theorem 4.2) then

(4.11) |Dτ [f(·)−∇f(wj)(·)]⌉[XX̃]|([XX̃]) ≤ Cε|Daf |
(
Q(cj, 2

1−K)
)
2K
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where wj is the point chosen in Theorem 4.2. Moreover

(4.12) X, X̃ ∈ Zj,α,

where Zj,α is the set from Theorem 4.2.

Proof. To satisfy point (1) it suffices to consider a ‘good’ representative of f and
eliminate the set of non-Lebesgue points from Q(V, 2−K−2) and Q(Ṽ , 2−K−2), which
is a set of zero measure. Call N1 the set of all (X, X̃) ∈ Q(V, 2−K−2)×Q(Ṽ , 2−K−2)
such that either X is not a Lebesgue point of f or X̃ is not a Lebesgue point of f .
Clearly L4(N1) = 0.
During the course of this proof we use the mapping

Ψ : (X, X̃) →

(
X − X̃

|X − X̃|
, ⟨X, X−X̃

|X−X̃|⟩, ⟨X̃, X−X̃
|X−X̃|⟩,

≠
X,

Å
0 −1
1 0

ã
X−X̃
|X−X̃|

∑)
.

In the image of Ψ we have the measure

µ := H1
⌉{|X|=1} × L3.

The first space, H1
⌉{|X|=1}, is bi-Lipschitz equivalent with L1

⌉(0,2π) and so the measure

µ is locally bi-Lipschitz equivalent with L4 on R4 which is H4 on R4. In this sense µ
is equivalent with H4 on {(x1, x2, x3, x4, x5) ∈ R5 : x2

1+x2
2 = 1}. We have the validity

of the area formula (for example see [13, Theorem 3.8]) for Ψ, i.e.∫
E

J4Ψ(X, X̃) dL4(X, X̃) =

∫
R5

H0
(
Ψ−1(Z)

)
dH4(Z),

where J4Ψ(X, X̃) =
»∑

λ∈Λ(5,4)[det∇Ψλ(X, X̃)]2 is calculated by the well-known

Cauchy-Binet formula. In fact it is easy to see that Ψ is injective and∫
E

J4Ψ(X, X̃) dL4(X, X̃) = H4(Ψ(E)) ≈ µ(Ψ(E)).

When the arguments satisfy |X − X̃| ≈ 2−K then Ψ is in fact 2K bi-Lipschitz. It is
not difficult to calculate under these circumstances that J4Ψ ≈ 2K . In particular

(4.13) µ(Ψ(N)) = 0 exactly when L4(N) = 0

and in the following we use this property repeatedly.
From [2, Theorem 3.107] we have that for any choice of |u| = 1, L2 almost every

choice ofX ∈ Q(V, 2−K−2), andH1 almost every choice of X̃ ∈ Q(Ṽ , 2−K−2) with X̃ ∈
X+Ru there exists a partial derivative in the direction u at X and at X̃ and therefore
f⌉[XX̃] is continuous at X (and X̃). Call N2 the set of all (X, X̃) ∈ Q(V, 2−K−2) ×
Q(Ṽ , 2−K−2) such that either there is no partial derivative in the direction X−X̃

|X−X̃| at

X or there is no partial derivative in the direction X−X̃
|X−X̃| at X̃. We have from the

above that µ(Ψ(N2)) = 0. Then (4.13) implies that L4(N2) = 0.
As a step towards proving (3) we show that the pairs of X, X̃ whose corresponding

segments intersect Θβ
f at non-Lebesgue points of the map in (3) has zero L4 measure.

Although this is a standard result of structure theory we give some details here. We
denote the so-called jump set of f as Jf . The set Θ0

f ⊃ Θβ
f is a superset of Jf (see
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[2, Proposition 3.92]) and H1(Θ0
f \ Jf ) = 0 implying that Djf = (f+ − f−)⊗ uH1

⌉Θ0
f

(see [2, Lemma 3.76, Theorem 3.77]). Then, since |f+(x) − f−(x)| > 1
10
β for H1

almost every x ∈ Θβ
f , we have that Θβ

f is both 1-rectifiable and H1(Θβ
f ) < ∞ (see

Theorem 2.8). Also we have that f+ − f− ∈ L1(Θβ
f ,H1). Therefore H1 almost every

point of Θβ
f is a Lebesgue point of f+ − f− with respect to H1

⌉Θ0
f
. That is, calling T1

the set of non-Lebesgue points of f+− f− with respect to H1
⌉Θ0

f
, we have H1(T1) = 0.

This in turn implies that for any direction |u| = 1 and its corresponding projection
πu(·) := · − u⟨·, u⟩ we have that H1(πu(T1)) = 0. Let us call N3 the set of (X, X̃)

such that [XX̃] intersects T1. Since H1
(
π X−X̃
|X−X̃|

(T1)
)
= 0 for every possible value of

X−X̃
|X−X̃| , the Fubini theorem gives that µ(Ψ(N3)) = 0 and, by (4.13), L4(N3) = 0.

Now we show that L4 almost every choice of X and X̃ does not meet Θβ
f tangen-

tially, which is a claim of point (3). The set of directions |u| = 1 such that

H1
(
{w ∈ Θβ

f : v(w)⊥u}
)
> 0

is at most countable and so has zero measure since H1(Θβ
f ) < ∞. We call this set of

directions T2. Therefore, for almost every direction |u| = 1 we have that

H1
(
πu

(
Q(V, 2−K−2)

)
∩ πu

(
{w ∈ Θβ

f : v(w)⊥u}
))

= 0

and the same estimate holds after replacing V with Ṽ . Choose any direction |u| = 1
with u /∈ T2 such thatH1

(
πu(Q(V, 2−K−2))∩πu(Q(Ṽ , 2−K−2))

)
> 0. We have that the

set of points X̂ such that X̂ ∈ πu

(
Q(V, 2−K−2)

)
∩πu

(
Q(Ṽ , 2−K−2)

)
and X̂ ∈ πu({w ∈

Θβ
f : v(w)⊥u}) has H1 measure equal zero. This holds for any vector |u| = 1, u /∈ T2.

Call N4 the set of pairs (X, X̃) such that X−X̃
|X−X̃| ∈ T2 or

π X−X̃
|X−X̃|

(X) ∈ π X−X̃
|X−X̃|

(
{x ∈ Θβ

f : v(x)⊥ X−X̃
|X−X̃|}

)
.

The Fubini theorem and (4.13) guarantee that L4(N4) = 0.
Let us fix a direction |u| = 1 then almost every line L parallel to u has |Df |(L ∩

Q(0, 1)) = 0. Therefore using the bi-Lipschitz quality of Ψ we have that the set of
pairs (X, X̃) (call it N5) such that |Df |([XX̃]) > 0 satisfies L4(N5) = 0.
Let |u| = 1 be any vector such that Pu,V,Ṽ ,K := πu(Q(V, 2−K−2))∩πu(Q(Ṽ , 2−K−2)) ̸=

∅. For any p ∈ Pu,V,Ṽ ,K let us also denote Mu,V,K,p := π−1
u (p) ∩ Q(V, 2−K−2) and

Mu,Ṽ K,p := π−1
u (p) ∩ Q(Ṽ , 2−K−2). Then, (because each [X, X̃] ⊂ 2Qi), we have by

the Fubini theorem, [2, Theorem 3.107] and Lemma 2.10∫
Pu,V,Ṽ ,K

∫
Mu,V,K,U×Mu,Ṽ ,K,U

|Dτf⌉[XX̃]|([XX̃]) dH1 ×H1(X, X̃) dH1(U)

≤ C2−2K |⟨Df, u⟩|(2Qi)

≤ C2−2K |Df |(2Qi).
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Integrating this with respect to u and then using the change of variables formula with
Ψ (note that J4Ψ ≈ 2K) we get∫

Q(V,2−K−2)×Q(Ṽ ,2−K−2)

|Dτf⌉[XX̃]|([XX̃])dL4(X, X̃) ≤ C2−3K |Df |(2Qi).

Call N := N1 ∪N2 ∪N3 ∪N4 ∪N5, then L4(N) = 0. Using the Chebyshev inequality
we find a constant λ > 0 (dependent only on f) and a set HV,Ṽ ⊂ Q(V, 2−K−2) ×
Q(Ṽ , 2−K−2) \N such that L4(HV,Ṽ ) ≥ 4

5
L4(Q(V, 2−K−2)×Q(Ṽ , 2−K−2)) and

|Dτf⌉[XX̃]|([XX̃]) ≤ Cλ2K |Df |(2Qi)

for any (X, X̃) ∈ HV,Ṽ , this is (4.10).

Now let us prove (4.11) and (4.12). We assume that Qj = Q(cj, 2
−K) ∈ Gε,α,K ∪

Tε,α,K . Specifically by Theorem 4.2 there exists wj ∈ Q(cj, 2
−K−2)

(4.14)

∫
Q(cj ,22−K)

|∇f(z)−∇f(wj)|dL2(z) ≤ εα22−2K ,

and

(4.15) |Dsf |(2Qj) ≤ ε|Daf |(Qj)

and finally that there exists a set Zj,α ⊂ Q(cj, 2
1−K) with L2

(
Q(cj, 2

1−K) \ Zj,α

)
≤

2−2K−9 such that

∥f(·)− f(wj)−∇f(wj)(· − wj)∥L∞(Zj,α) < α42−K

and

α0 ≤ |∇f(wj)| ≤ α−1
0 , α0 < det∇f(wj).

We integrate over all lines parallel to |u| = 1 a vector such that Pu,V,Ṽ ,K := πu(Q(V, 2−K−2))∩
πu(Q(Ṽ , 2−K−2)) ̸= ∅ and over Mu,V,K,U = π−1

u (U) ∩ Q(V, 2−K−2) and Mu,Ṽ ,K,U =

π−1
u (U) ∩ Q(Ṽ , 2−K−2). First we decompose into the singular and absolutely contin-

uous part∫
Pu,V,Ṽ ,K

∫
Mu,V,K,U

∫
Mu,Ṽ ,K,U

|Dτ [f(·)−∇f(wj)(·)]⌉[XX̃]|([XX̃]) dX̃ dX dH1(U)

≤
∫
Pu,V,Ṽ ,K

∫
Mu,V,K,U

∫
Mu,Ṽ ,K,U

∫
[XX̃]

|∇f(z)−∇f(wj)| dH1(z) dX̃ dX dH1(U)

+

∫
Pu,V,Ṽ ,K

∫
Mu,V,K,U

∫
Mu,Ṽ ,K,U

⟨|Dsf |, u⟩([XX̃])dX̃ dX dH1(U).

Now we use Fubini and the fact that {X ∈ Q(V, 2−K−2) : πu(X) ∈ Pu,V,Ṽ ,K}, {X̃ ∈
Q(Ṽ , 2−K−2) : πu(X̃) ∈ Pu,V,Ṽ ,K} ⊂ 2Qi. Also we use the estimate that every slice of
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Q(V, 2−K−2) has diameter bounded by 2−K to get∫
Pu,V,Ṽ ,K

∫
Mu,V,K,U

∫
Mu,Ṽ ,K,U

∫
[XX̃]

|∇f(z)−∇f(wj)| dH1(z) dX̃ dX dH1(U)

+

∫
Pu,V,Ṽ ,K

∫
Mu,V,K,U

∫
Mu,Ṽ ,K,U

⟨|Dsf |, u⟩([XX̃])dX̃ dX dH1(U)

≤ 2−2K

∫
2Qi

|∇f −∇f(wi)|+ 2−2K |Dsf |(2Qi)

We use (4.14) and (4.15) and then α < α0 ≤ |∇f(wi)| to get

2−2K

∫
2Qi

|∇f −∇f(wi)|+2−2K |Dsf |(2Qi)

≤ εα22−4K + C2−2Kε|Daf |(Qi)

≤ Cεα22−4K + C2−4Kε|∇f(wi)|+ Cεα22−4K

≤ C2−4Kε|∇f(wi)|.
Integrating the above equations over all |u| = 1 and using the change of variables
formula with Ψ (recall that J4Ψ ≈ 2K) and denoting A = (Q(V, 2−K−2) ∩ Zj,α) ×
(Q(Ṽ , 2−K−2) ∩ Zj,α) we get∫

A

|Dτ [f(·)−∇f(wj)(·)]⌉[XX̃]|([XX̃])dL4(X, X̃) ≤ Cε2−3K |Daf |(2Qi).

Because L2
(
Q(cj, 2

1−K) \ Zj,α

)
≤ 2−2K−9, we have that

L2(Q(V, 2−K−2) ∩ Zj,α) ≥ L2(Q(V, 2−K−2))− L2
(
Q(cj, 2

1−K) \ Zj,α

)
≥ 2−2K−4 − 2−2K−9 = 31

32
2−2K−4

= 31
32
L2
(
Q(V, 2−K−2)

)
.

This implies that

L4
((

Q(V, 2−K−2)∩Zj,α

)
×
(
Q(Ṽ , 2−K−2)∩Zj,α

))
≥ 9

10
L4
(
Q(V, 2−K−2)×Q(Ṽ , 2−K−2)

)
.

Again we have, up to increasing the value of λ, that

|Dτ [f(·)−∇f(wj)(·)]⌉[XX̃]|([XX̃]) ≤ Cλε2K |Daf |(2Qi)

for all (X, X̃) ∈ HV,Ṽ ⊂ (Zj,α×Zj,α) while simultaneously L4(HV,Ṽ ) ≥ 4
5
L4(Q(V, 2−K−2)×

Q(Ṽ , 2−K−2)), thus proving (4.11) and concluding our proof. □

In the following proposition we use the following notation. Let P ⊂ R2 be an
injective continuous image of a circle with H1(P) < ∞. Denote the closure of the
bounded component of R2 \ P by P̃ . Let p1, p2 ∈ P̃ , we define

(4.16) dP(p1, p2) = inf
{
l(γ) : γ is a path joining p1, p2; γ ⊂ P̃

}
,

where by a path joining p1 and p2 in P̃ we mean a continuous curve γ : [0, 1] → R2

such that γ(0) = p1 and γ(1) = p2.
The following proposition is the utilization of the NCBV + condition on a good

non-straight grid Γ chosen using the previous theorem. It gives us a map φ defined
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on Γ. The utility of φ is that we are able to find a homeomorphic extension of φ with
estimates that allow us to prove area-strict convergence.

Proposition 4.4. For every ε > 0 let α0 > 0 as in Theorem 4.2. For every 0 < α <
α0 there exists a good non-straight grid for f called Γ and a function φ defined on Γ
such that

(1) Γ is admissible for f ,
(2) every component of Q(0, 1) \ Γ is a convex quadrilateral and contains exactly

one point ci, where ci is the centre of a square Qi the set {Qi}2
2K

i=1 of K-
dyadic squares in Theorem 4.2 and Theorem 4.3 (thanks to this we call the
quadrilaterals Qi the components of Q(0, 1) \ Γ containing ci),

(3) if Qi ∈ Eε,K (the set from Theorem 4.2) and finding ui, vi such that that the
function g of Theorem 4.2 satisfies g(wi) = ui ⊗ vi we have

(4.17)

∫
πvi (Qi)

dφ(∂Qi)(φ(X∗), φ(X
∗)) dH1 ≤ (1 + ε)|Df |(Qi) + Cε2−2K

and

(4.18)

∫
π
v⊥
i
(Qi)

dφ(∂Qi)(φ(Z
∗), φ(Z∗)) dH1(Z) ≤ Cε|Dsf |(4Qi ∩ S) + C2−2Kε.

where πvi(x) = v⊥i ⟨x, v⊥i ⟩ and πv⊥i
(x) = vi⟨x, vi⟩ and where for each X ∈

πvi(Qi) the points X∗, X
∗ are the two distinct points in ∂Qi such that πvi(X∗) =

πvi(X∗) = X and similarly πv⊥i
(Z∗) = πv⊥i

(Z∗) = Z ∈ πv⊥i
(Qi),

(4) for all i = 1, . . . 22K it holds that

|Dτφ|(∂Qi) ≤ C2K |Df |(2Qi),

(5) if Qi ∈ Gε,α,K then φ(x, y) = f(x, y) at each (x, y) vertex of Qi and φ is linear
on each side of ∂Qi

(6) if Qi ∈ Tε,α,K then

(4.19)

∫
∂Qi

|∂τφ−∇f(wi)τ | dH1 ≤ Cε2K |Df |(2Qi).

Proof.
Step 1. Choice of Γ.

Each vertex V of each square Qi has at most four neighbouring vertexes, call them
Ṽ1, . . . , Ṽ4. By the Fubini theorem we have the existence of an X ∈ Q(V, 2−K−2)
such that L2({X̃ : (X, X̃) ∈ HV,Ṽj

}) ≥ 4
5
L2(Q(Ṽj, 2

−K−2)) holds for all j = 1, 2, 3, 4

simultaneously. It follows that it is possible to choose XV ∈ Q(V, 2−K−2) for each V
such that for every pair of neighbours V and Ṽ we have that (XV , XṼ ) ∈ HV,Ṽ . The
squares Qi can be described as the convex hull of their vertexes V1, . . . V4 and the
corresponding quadrilateral Qi is the convex hull of XV1 , . . . , XV4 . By definition it is
not hard to check that {Qi} are pairwise disjoint outside their mutual boundaries,
they are convex quadrilaterals and XV lies in the boundary of Qi exactly when V is a
vertex of Qi. This is point (2). Theorem 4.3 and (XV , XṼ ) ∈ HV,Ṽ guarantees point

(1) of our claim. For every unit vector v the set {(X, X̃) : X−X̃
|X−X̃| = v} has Hausdorff
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dimension 3 and therefore has L4 measure 0. Therefore it is not restrictive to assume
that the sides of Qi are not parallel to vi or v

⊥
i .

In order to prove points (3)-(6) we need to define the map φ. Before we start the
construction of φ itself we add extra lines to the grid Γ to get an augmented grid Γ̃.
Although we do not need to use f on Γ̃\Γ we use the extra lines added to get a good
parametrization of the geometric representative of f on Γ. This is equivalent to the
concept of guidelines from [10].

Step 2. Construction of Γ̃ by the choice of guidelines.
For each Qi ∈ Eα,K , by (4.4), we have |ui| = |vi| = 1 such that∫

S∩2Qi

|g(z)− ui ⊗ vi|d|Dsf |(z) ≤ ε|Dsf |(4Qi ∩ S).

For almost every X ∈ πvi(Qi) we have f⌉[X+Rvi]∩Q(0,1) in BV on [X + Rvi] ∩Q(0, 1).
The corresponding claim holds for almost every Z ∈ πv⊥i

(Qi). It follows from the BV
on lines characterization and Lemma 2.10 that

|⟨Df, vi⟩|(Qi) =

∫
πvi (Qi)

|Dτf⌉[X+Rvi]∩Qi
|([X + Rvi] ∩Q(0, 1)) dH1(X)

and, by (4.4),

|⟨Df, v⊥i ⟩|(Qi) =

∫
π
v⊥
i
(Qi)

|Dτf⌉[Z+Rv⊥i ]∩Qi
|([Z+Rv⊥i ]∩Q(0, 1)) dH1(Z) ≤ ε|Dsf |(4Qi).

Since Γ is admissible for f we have f⌉Γ is BV on Γ. Therefore for each pair, V1, V2

of neighbouring vertices of Qi

(4.20) there exists a finite set JV1,V2 = {X ∈ [V1V2] : |Dτf⌉[V1V2]|({X}) > ε2−2K}.

We call the cardinality of this finite set K.
We now chop Qi into slices parallel to vi. Let us have a locally finite decomposition

of R into pairwise disjoint intervals indexed by m ∈ Z called Im. Then we define
Si,m = Qi ∩ {(x, y) ∈ R2 : ⟨(x, y), v⊥i ⟩ ∈ Im}. Because the sides of Qi are not parallel
to vi it holds that for every X ∈ [πvi(Qi)]

◦ there are exactly two distinct points
X∗, X

∗ ∈ ∂Qi such that πvi(X∗) = πvi(X
∗) = X. For simplicity denote the points X∗

and X∗ such that ⟨X∗, vi⟩ < ⟨X∗, vi⟩. In fact, the sides of ∂Q are separated into two
categories, either the points of the side are all X∗-type points (an upper side) or all
the points of the side are X∗-type points (a lower side). Then we denote S+

i,m the set
of points X∗ ∈ ∂Qi ∩ Si,m that lie on an “upper” side (with respect to vi). Similarly
we call S−

i,m the set of points X∗ ∈ ∂Qi ∩Si,m that lie on a “lower” side (with respect
to vi). By choosing the intervals Im carefully we can achieve that either

(4.21) |Dτf⌉Γ|(∂Qi ∩ Si,m) < ε2−2K or H1(S±
i,m) <

ε

22K |Dτf⌉Γ|(Γ)K

for every i,m. We may assume also that S±
i,m is always a segment.

The argument from the previous paragraph can be repeated in the perpendicular
direction v⊥i (and if necessary increase the number K). This gives us a finite number
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of segments T±
i,m covering ∂Qi and either

|Dτf⌉Γ|(∂Qi ∩ Ti,m) < ε2−2K or H1(T±
i,m) <

ε

22K |Dτf⌉Γ|(Γ)K
.

As before we separate ∂Qi into upper and lower sides (with respect to v⊥i ) and points
on lower sides we denote by Z∗ and points on upper sides we denote by Z∗. Note that
even if S−

i,m = T−
i,m then S+

i,m ̸= T+
i,m.

By Remark 3.7, we have for H1-almost every X ∈ πvi(Qi) that
(4.22)
Γ ∪ ([X + viR] ∩Qi) ∪ ([Z + v⊥i R] ∩Qi) is admissible for f , for H1-almost every Z.

Then for every Si,m such that |Dτf⌉Γ|(∂Qi ∩Si,m) < ε2−2K we find an Xi,m satisfying
(4.22) and such that

(4.23) H1
(
πvi(Si,m)

)
|Dτf⌉[Xi,m+Rvi]∩Qi

|([Xi,m + Rvi] ∩Qi) ≤ |Dvif |(Si,m ∩Qi).

By X∗
i,m we denote the point in [Xi,m +Rvi]∩S+

i,m and by Xi,m,∗ we denote the point

in [Xi,m + Rvi] ∩ S−
i,m (for clarification see Figure 4).

Similarly, for each Ti,m we find an Zi,m ∈ Ti,m such that

(4.24) Γ ∪
⋃
m,i

([Xi,m + viR] ∩Qi) ∪ ([Zi,m + v⊥i R] ∩Qi)

is admissible for f and

(4.25) H1
(
πv⊥i

(Ti,m)
)
|Dτf⌉[Zi,m+Rv⊥i ]∩Qi

|([Zi,m + Rv⊥i ] ∩Qi) ≤ |Dv⊥i
f |(Ti,m ∩Qi)

for every Ti,m such that |Dτf⌉Γ|(Ti,m) < ε2−2K . The choice ofXi,m, Zi,m will be exactly
what we need to get the estimate (4.17) and (4.18). To fix a temporary notation, we

call Γ̂ the good non-straight grid for f which is constructed by repeating the process
in (4.24) for every Qi such that Qi ∈ Eε,K .

The Figure 4 can help orient the reader in the following construction. For Si,m

such that |Dτf⌉Γ|(∂Qi ∩ Si,m) ≥ ε2−2K we find pairs of points X+
i,m, X

−
i,m ∈ πvi(Si,m)

satisfying (4.22) such that the sets

Sl
i,m = {(x, y) ∈ Si,m : ⟨(x, y), v⊥i ⟩ ≤ ⟨X−

i,m, v
⊥
i ⟩}

and
Sr
i,m = {(x, y) ∈ Si,m : ⟨(x, y), v⊥i ⟩ ≥ ⟨X+

i,m, v
⊥
i ⟩}

satisfy

(4.26) |Dτf⌉Γ|(∂Qi ∩ π−1
vi
(Sl

i,m)) < ε2−2K and |Dτf⌉Γ|(∂Qi ∩ π−1
vi
(Sr

i,m)) < ε2−2K .

Similarly, for Ti,m such that |Dτf⌉Γ|(∂Qi ∩ Ti,m) ≥ ε2−2K we find pairs of points
Z+

i,m, Z
−
i,m ∈ πvi(Ti,m) such that

Γ̃ := Γ̂ ∪
⋃
m

([X±
i,m + viR] ∩Qi) ∪ ([Z±

i,m + v⊥i R] ∩Qi)

is admissible for f and such that the sets

T l
i,m = {(x, y) ∈ R2 : ⟨(x, y), vi⟩ ≤ ⟨Z−

i,m, vi⟩}
and

T r
i,m = {(x, y) ∈ R2 : ⟨(x, y), vi⟩ ≥ ⟨Z+

i,m, vi⟩}
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satisfy

(4.27) |Dτf⌉Γ|(∂Qi ∩ π−1
v⊥i
(T l

i,m)) < ε2−2K and |Dτf⌉Γ|(∂Qi ∩ π−1
v⊥i
(T r

i,m)) < ε2−2K .

As argued above we have that almost every choice of X±
i,m permits almost any choice

of Z±
i,m′ and so there is no obstacle in choosing X±

i,m and Z±
i,m for every m and for each

Qi so that the resulting set Γ̃ is a good non-straight grid for f .

Step 3. Injective approximations of the geometric representative of f .
By φ̂ we denote the geometric representative of f on Γ̃ as defined in (3.5) and its

following paragraphs. Then Lemma 3.12 provides a good arrival grid, G, associated
with Γ̃ and φ̂ with side length κ = ε

2K+1
in the sense of Definition 3.11.

By the definition of the good arrival grid G, the set P := φ̂−1(G) ∩ Γ̃ is finite and
does not contain any vertices of Γ̃. Nor does φ̂(Γ̃) intersect any vertex of G (the
points denoted as (wn, zm) in Definition 3.11). Further, for every point (x, y) ∈ P , it
holds that the derivative of φ̂ at (x, y) tangential to Γ̃ (we denote it as ∂τ φ̂(x, y)) has
non-zero component perpendicular to the side of G containing φ̂(x, y) (the existence
of ∂τ φ̂ at all points of P is a requirement of the good arrival grid, see Definition 3.11).
Therefore there exists a smallest perpendicular component whose size is v > 0.
For each point a ∈ P we have some da > 0 such that when (x, y) ∈ Γ̃ and |(x, y)−

a| < da then

φ̂(x, y)− φ̂(a)− ∂τ φ̂(a)[(x, y)− a] <
v

3
|(x, y)− a|.

Since P is finite we define d := mina∈P da > 0. As a consequence, the images through
φ̂ of the endpoints of the segments B(a, d) ∩ Γ̃ have distance at least vd

2
from φ̂(a).

By making d smaller if necessary we can assume that each B(a, d) ∩ Γ̃ is a segment
and each pair of these (finitely many) segments is disjoint neither does any of the
segments contain any vertex of Γ̃. The choice of the number d has been made so
that the following holds; let c be an endpoint of the segment of B(a, d) ∩ Γ̃ then
|φ̂(c)− φ̂(a)| ≥ vd

2
and this holds for all a ∈ P .

On the other hand, being φ̂
(
Γ̃ \

⋃
a∈P B(a, d)

)
a closed set, it follows that there

exists a σ0 > 0 such that

(4.28) dist

Å
φ̂
(
Γ̃ \

⋃
a∈P

B
(
a, d
))

,G
ã
≥ 3σ0.

We have that Γ̃ is a good non-straight grid and so the NCBV + condition enjoyed
by f garantees the existence of injective uniform approximations of φ̂. Equation
(4.28) immediately implies that for any 0 < σ ≤ σ0 and any φ̃σ, continuous injective
approximation of φ̂ with ∥φ̃σ − φ̂∥∞,Γ̃ ≤ σ, it holds that φ̃−1

σ (G) ⊂
⋃

a∈P B
(
a, d
)
∩ Γ̃.

Let

ρ′ = min{|a− b| : a ∈ φ̂(P ), b vertex of G}
and

ρ′′ = min{|a− b| : a ̸= b, a,b ∈ φ̂(P )}
Finally, we set

ρ = min{ρ′, ρ′, σ0,
1

100
}.
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Notice that ρ is positive due to the properties of good arrival grid. Let

(4.29) 0 < σ ≤ ε2ρ

12(2K + 1)
.

Then by applying the NCBV + condition to φ̂ we get a continuous injective φ̃σ with
∥φ̃σ − φ̂∥∞,Γ < σ.

We adjust the map φ̃σ as follows. For each a ∈ P = φ̂−1(G) ∩ Γ̃ we find the first
and last point (i.e. the points furthest away from a) on the segment B(a, d)∩ Γ̃ (call
them a− and a+ respectively) such that φ̃σ(a

±) ∈ B(φ̂(a), 2σ). Notice that (4.28)
and the choice of σ imply that

φ̂
(
Γ̃ \

⋃
a∈P

B
(
a, d
))

∩
( ⋃

a∈P

B(φ̂(a), 2σ)
)
= ∅,

hence we have that φ̃σ intersects B(φ̂(a), 2σ) only on the segments B(a, d)∩ Γ̃, a ∈ P .
We define

˜̃φσ(t) =
|t− a+|
|a+ − a−|

φ̃σ(a
−) +

|t− a−|
|a+ − a−|

φ̃σ(a
+) for all t ∈ [a−a+] and a ∈ P

then we set
˜̃φσ(t) = φ̃σ(t) for t ∈ Γ̃ \

⋃
a∈P

[a−a+].

By construction, it follows that ˜̃φσ(t) is again continuous, injective and ∥ ˜̃φσ−φ̂∥L∞(Γ̃) ≤
7σ. Since ˜̃φσ(a

−) and ˜̃φσ(a
+) must be separated by G there is exactly one point ã in

each [a−a+] which is mapped onto G ∩B(φ̂(a), 2σ).
At this stage we use ˜̃φσ and the arrival grid G to define a piecewise linear map

from Γ̃ to R2. We will call this map φ. We start by specifying the image, φ(Γ̃).
For each segment of Γ̃ we have a finite number of points ã such that ˜̃φσ(ã) ∈ G.
Whenever we have a pair of adjacent points ã1, ã2 lying on a common segment of Γ̃
such that ˜̃φσ(ã1) and ˜̃φσ(ã2) lie on two distinct sides of a rectangle in G we define
the segment Sa1,a2 = [ ˜̃φσ(ã1) ˜̃φσ(ã2)] where a1 and a2 are the unique points in P for
which ãi ∈ B(ai, d).
Let us now consider a pair of adjacent ã1 and ã2 for which ˜̃φσ(ã1), ˜̃φσ(ã2) lie on the

same side of a rectangle in G. Firstly notice that for any such pair ã1 and ã2 there
exists an 0 < ξa1,a2 so small that the generalized segments (see Definition 3.13) with
ξ = ξa1,a2 intersect only those previously defined straight segments Sa3,a4 for which
˜̃φσ([ã1ã2]) was already intersecting ˜̃φσ([ã3ã4]). We define

ξ = 1
2
min

{
ξa1,a2 : a1, a2 ∈ P adjacent and f(a1), f(a2) lie on a common side of G

}
.

We assume that ξ < κ < ε and define Sa1,a2 as the generalised segment from ˜̃φσ(ã1)

to ˜̃φσ(ã2) with the chosen ξ.
It is very easy to check that any pair Sa1,a2 and Sa3,a4 as defined above, where a1, a2

and a3, a4 are pairs of adjacent points of P lying on a common segment of Γ̃, intersect
each other if and only if ˜̃φσ([ã1ã2]) intersects ˜̃φσ([ã3ã4]). Further, any two (distinct)
paths can have at most one intersection.

Now we are in a position to define the map φ on Γ̃. We define φ(a) = ˜̃φσ(ã) for all
a ∈ P and for all the corresponding ã. Further, for every {Xi,j} = γi([0, 1])∩γj([0, 1]),
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intersection point of the grid Γ̃, there exists exactly two pairs of adjacent a1, a2 ∈ P
(both lying on γi) and a3, a4 ∈ P (both lying on γj) closest to Xi,j on γi and γj
respectively. That is there exists a t1, t2, t3, t4 ∈ [0, 1] such that γi(t1) = a1, γi(t2) = a2,
γj(t3) = a3, γj(t3) = a3 further γi((t1, t2)) ∩ P = ∅ and γj((t3, t4)) ∩ P = ∅.
Then, by construction, there exists exactly one point of intersection call it Xi,j in

the set Sa1,a2 ∩ Sa3,a4 and we define φ(Xi,j) = Xi,j. Thus we have separated the grid

Γ̃ into simple segments lying between adjacent intersections with G, intersecting seg-
ments of Γ̃ or a combination of the two. In each case there is a clear correspondence
between the endpoints of remaining segments in Γ̃ and (parts of the possibly gener-
alized) segments defined in the previous paragraph. We define φ by parametrizing
these segments (or possibly paths consisting of 2 segments) at constant speed from
the corresponding segments in Γ̃.
Thus we obtain a continuous injective piecewise linear mapping φ : Γ̃ → Q(0, 1)

satisfying ∥φ̂−φ∥L∞(Γ̃) ≤ 4κ ≤ ε4(2K+1)−1. The last step we make in order to define
φ is to redefine it as linear on each side of ∂Qi ∈ Gε,α,K keeping the same values at
its vertices. By the definition of Gε,α,K (especially (4.6)) it is not hard to see that
this modification keeps φ continuous, injective and piecewise linear. We refer to [7],
Proof of Theorem 4.1, Step 3, the detailed argument. Thus we have achieved point
(5) of the claim.

Step 4. Estimates.
We claim that for any pair of points a, b ∈ [ab] ⊂ Γ̃ we have that

(4.30) |Dτφ|([ab]) ≤ (1 + ξ)(1 + ε) (|Dτ φ̂|([ab]) + 4κ) .

Indeed it holds that |φ̂(a)− φ(a)| ≤ 3σ ≤ 1
2
ερ for each a ∈ P . Immediately from the

definition of ρ we obtain that for any pair a, a′ ∈ P adjacent on a segment of Γ̃ we
have that either φ̂(a) = φ̂(a′) or |φ̂(a) − φ̂(a′)| ≥ ρ. In the first case we know that
the length of the curve given by φ̂ on [aa′] is at least 100σ by (4.28), ε < 1

100
, and

σ ≤ ε2ρ ≤ εσ0. On the other hand we have |φ(a)− φ(a′)| < 6σ and so the length of
Saa′ is at most (1 + ξ)6σ ≤ 12σ < 100σ. Therefore, on such segments we in fact have
that |Dτφ|([aa′]) < |Dτ φ̂|([aa′]).

In the second case we have that |φ̂(a)− φ̂(a′)| ≥ ρ and, by (4.29), that

|φ(a)− φ̂(a)| < 3σ ≤ ερ

and the same holds also for a′. We can estimate by the triangle inequality and (4.29)
that

|φ(a)− φ(a′)| ≤ |φ(a)− φ̂(a)|+ |φ̂(a)− φ̂(a′)|+ |φ̂(a′)− φ(a′)|
≤ |φ̂(a)− φ̂(a′)|+ 6σ

≤ (1 + ε)|φ̂(a)− φ̂(a′)|.
Now, because the length of the generalized segment between a and b with parameter
ξ has length bounded by (1 + ξ)|a− b| (see Proposition 3.14), we get that

(4.31) |Dτφ|([aa′]) ≤ (1 + ξ)(1 + ε)|Dτ φ̂|([aa′])

for any a, a′ ∈ P adjacent on a segment in Γ̃. Summing over subsegments we see
immediately that the same holds for any a, a′ ∈ P lying on a segment of Γ̃ but not
necessarily adjacent.
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The argument for a general pair a, b both lying on a single segment of Γ̃ is as follows.
We use the estimate (4.31) on the maximal segment [a1a2] ⊂ [a, b] for a1, a2 ∈ P . Now
it remains to estimate the length of the image of [aa1] and [a2b]; or if [ab] ∩ P = ∅
then we have to estimate the length of the image of [ab] knowing that [ab] ∩ P = ∅.
Let us deal with the former case first; the latter case readily follows from the first.
We can deal with each segment separately so let us estimate the length of φ([aa1]).
The image of [aa1] is a generalized segment contained in some rectangle, i.e. {(x, y) ∈
R2 : wn < x < wn+1, zm < y < zm+1} of G. The diameter of each rectangle of G
is bounded by 2 ε

2K+1
. Then also the diameter of φ([aa1]) is also bounded by 2 ε

2K+1
.

On the other hand by Proposition 3.14 the length of φ([aa1]) is bounded by (1 + ξ)
times its diameter. Therefore, the length of φ([aa1]) is bounded by 2(1+ξ) ε

2K+1
. The

same estimate holds for the length of φ([a2b]) and indeed for φ([ab]) if [ab] ∩ P = ∅.
Assuming then that [ab] ∩ P ̸= ∅ we combine (4.31) with

H1(φ([aa1])), H1(φ([a2b])) ≤ (1 + ξ)2
ε

2K + 1

we get (4.30), since κ = ε
2K+1

. In the case that [ab] ∩ P = ∅ then H1(φ([ab])) ≤
(1 + ξ)2 ε

2K+1
and so (4.30) holds.

The estimate in (4) follows immediately from (XV , XṼ ) ∈ HV,Ṽ for each adjacent

V, Ṽ and (4.10). Similarly we get the estimate (6) immediately from (4.11).
Let us now prove the estimate (4.17). As in (4.21), each Si,m has either

|Dτf⌉∂Qi
|(S+

i,m), |Dτf⌉∂Qi
|(S−

i,m) < ε2−2K

or

max{|Dτf⌉∂Qi
|(S+

i,m), |Dτf⌉∂Qi
|(S−

i,m)} ≥ ε2−2K , but H1
(
πvi(Si,m)

)
<

ε

22K |Dτf⌉Γ|(Γ)
.

We start with the first case. Figure 4 should help identify the following sets. We
define the set

A+
i,m :=

[
S+
i,m−1 ∪ S+

i,m ∪ S+
i,m+1

]
∩
{
X ∈ R2 : ⟨Yi,m−1, v

⊥
i ⟩ ≤ ⟨X, v⊥i ⟩ ≤ ⟨Yi,m+1, v

⊥
i ⟩
}
,

A−
i,m :=

[
S−
i,m−1 ∪ S−

i,m ∪ S−
i,m+1

]
∩
{
X ∈ R2 : ⟨Yi,m−1, v

⊥
i ⟩ ≤ ⟨X, v⊥i ⟩ ≤ ⟨Yi,m+1, v

⊥
i ⟩
}
,

where Yi,m−1 = Xi,m−1 if Si,m−1 is in the first category of (4.21) and Yi,m−1 = X+
i,m−1

if Si,m−1 is in the second category of (4.21) and Yi,m+1 = Xi,m+1 if Si,m+1 is in the first
category of (4.21) and Yi,m+1 = X−

i,m+1 if Si,m+1 is in the second category of (4.21).
In all of the above cases we have

|Dτf⌉∂Qi
|(A+

i,m ∩ S+
i,m+1), |Dτf⌉∂Qi

|(A+
i,m ∩ S+

i,m−1) ≤ ε2−2K .

By the choice of Si,m being first category in (4.21) we have |Dτf⌉∂Qi
|(A+

i,m) ≤ 3ε2−2K .

For each X∗ ∈ S+
i,m we can estimate (using (4.30))

|Dτφ|([X∗X∗
i,m]) ≤ |Dτf⌉∂Qi

|(A+
i,m) + 4κ ≤ 3ε2−2K + 4ε2−K .

The above estimate is done on the bottom side in the same way, specifically

|Dτφ|([X∗Xi,m,∗]) ≤ |Dτf⌉∂Qi
|(A−

i,m) + 4κ ≤ 3ε2−2K + 4ε2−K .

for all X∗ ∈ S−
i,m.
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Si,m−1 Si,m Si,m+1

X∗
i,m−1

Xi,m−1,∗

X∗
i,m

Xi,m,∗ X−
i,m+1,∗

X−,∗
i,m+1

⊂ [S+
i,m−1 ∪ S+

i,m]

⊂ [S−
i,m−1 ∪ S−

i,m]

⊂ [S+
i,m ∪ S+,l

i,m+1]

⊂ [S−
i,m ∪ S−,l

i,m+1]

Figure 4. A depiction of the layout of the sets Si,m, S±
i,m and the

points X∗
i,m, Xi,m,∗. The set Si,m−1 is category-1 and Si,m+1 is category-

2. The variation along the purple and teal segments is small by the
choice of Xi,m−1, Xi,m, X

−
i,m+1.

For each X∗ ∈ S−
i,m and X∗ ∈ S+

i,m with πvi(X∗) = πvi(X
∗). We define the path

pX∗,X∗ ⊂ Γ̃ ∩Qi as

p(X∗, X∗) := [X∗X∗
i,m] ∪ [X∗

i,mXi,m,∗] ∪ [Xi,m,∗, X∗].

We estimate using (4.30) and (4.23) that

|Dτφ|([X∗
i,mXi,m,∗]) ≤ (1 + ε)(1 + ξ)|Dτf⌉[Xi,m+Rvi]∩Qi

|([Xi,m + Rvi] ∩Qi) + 4κ

≤ (1 + ε)(1 + ξ)
|Dvif |(Si,m ∩Qi)

H1
(
πvi(Si,m)

) + 4κ.

Combining the above estimates we get

|Dτφ|(p(X∗, X∗)) ≤ (1 + ε)(1 + ξ)
|Dvif |(Si,m ∩Qi)

H1
(
πvi(Si,m)

) + 6ε2−2K + 12κ.

This means that (see (2.3))

(4.32) dφ(∂Qi)(φ(X
∗), φ(X∗)) ≤ (1 + ε)(1 + ξ)

|Dvif |(Si,m ∩Qi)

H1
(
πvi(Si,m)

) + 6ε2−2K + 12κ

for every opposing pair X∗, X
∗ in Si,m of first category.

For opposing pairs X∗, X
∗ in Si,m for Si,m in the second category of (4.21) we use

the estimate

(4.33)
dφ(∂Qi)(φ(X

∗), φ(X∗)) ≤ (1 + ε)(1 + ξ)|Dτf⌉Γ|(∂Qi) + 4κ

≤ (1 + ε)(1 + ξ)|Dτf⌉Γ|(Γ) + 4κ.
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For opposing pairs in the perpendicular direction, i.e. Z∗ ∈ T−
i,m, Z

∗ ∈ T+
i,m we

estimate in the same way using (4.25) in place of (4.23). For Z∗ ∈ T+
i,m, Z∗ ∈ T−

i,m we
get
(4.34)

dφ(∂Qi)(φ(Z
∗), φ(Z∗)) ≤


(1+ε)(1+ξ)|D

v⊥
i
f |(Ti,m∩Qi)

H1
(
π
v⊥
i
(Ti,m)

) + 6ε2−2K + 12κ T±
i,m is category 1

(1 + ε)(1 + ξ)|Dτf⌉Γ|(Γ) + 4κ T±
i,m is category 2.

Find θi ∈ [0, 2π) such that vi = (cos θi, sin θi). We denote the set of indexes m such
that Si,m is category 1 by C1 and category 2 by C2. We denote the set of indexes m
such that Ti,m is category 1 by C3 and category 2 by C4. We use the admissibility of

Γ̃ (especially |Df |(Γ̃) = 0) to prove (4.17)∫
πvi (Qi)

dφ(∂Qi)(φ(X
∗), φ(X∗)) dH1(X)

≤ (1 + ε)(1 + ξ)
[ ∑
m∈C1

|Dvif |(Si,m ∩Qi)

+
∑
m∈C2

|Dτf⌉Γ|(Γ)
ε

22K |Dτf⌉Γ|(Γ)K

]
+ [6ε2−2K + 12κ]H1(πvi(Qi))

≤ (1 + ε)(1 + ξ)|Df |(Qi) + C2−2Kε.

Recall our notation g|Dsf | = Dsf and by the Theorem 2.9 we have g = u(X)⊗ v(X)
for |Dsf |-almost every X. We have |⟨v(X), v⊥i ⟩| ≤ C|v(X)− vi|+ C|⟨vi, v⊥i ⟩|. Using
this and (4.4) we calculate∫

π
v⊥
i
(Qi)

dφ(∂Qi)(φ(Z
∗), φ(Z∗)) dH1(Z)

≤ (1 + ε)(1 + ξ)
[ ∑
m∈C3

|Dv⊥i
f |(Ti,m ∩Qi) +

∑
m∈C4

|Dτf⌉Γ|(Γ)
ε

22K |Dτf⌉Γ|(Γ)K

]
+ [6ε2−2K + 12κ]H1(πvi(Qi))

≤ (1 + ε)(1 + ξ)|⟨Df, v⊥i ⟩|(Qi) + C2−Kε

≤ (1 + ε)(1 + ξ)ε|Dsf |(4Qi ∩ S) + C2−2Kε

Proving (4.18). □

Now it suffices to extend the mapping φ defined in Proposition 4.4 to get a BV
homeomorphism. This is the content of the following theorem.

Theorem 4.5. Let f ∈ BV (Q(0, 1);Q(0, 1)), let f(x, y) = (x, y) for (x, y) ∈ ∂Q(0, 1)
and let f satisfy the NCBV + condition. Then there exists a sequence fk ∈ BV (Q(0, 1), Q(0, 1)),
fk = id on ∂Q(0, 1) converging to f area-strictly.

Proof. Given ε > 0 we get a good non-straight grid for f called Γ and a mapping φ
from Proposition 4.4.

Step 1. Extend φ to get a homeomorphism.
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Let us start by extending φ on the ‘good’ quadrilaterals, i.e. on Qi such that
Qi ∈ Gε,α,K . We have that φ is linear on each side of Qi. Further by the choice of
X,X ′, the vertices of Qi, (specifically (4.12)) we have

(4.35) |f(X)− f(X ′)−∇f(wi)(X −X ′)| < α42−K .

Recall that we have α ≤ |∇f(wi)| ≤ α−1, α < det∇f(wi), which implies that
|∇f(wi)v| ≥ α2 for all |v| = 1. Therefore, since |X − X ′| ≥ 2−K−1, we have
|∇f(wi)(X −X ′)| ≥ 2−K−1α2. By Proposition 4.4, step 1 we have that Qi is convex
and so also is ∇f(wi)Qi. Therefore (4.35) guarantees that φ(∂Qi) is a convex quadri-
lateral. Then we can choose any pair of opposing corners of Qi, call them X and X ′.
We define φ as linear continuous on the segment [XX ′]. Then Qi is composed of two
triangles and φ is continuous and linear on each side of each triangle and therefore
φ extends to an affine map on each triangle, which we call g. By the convexity of
φ(∂Qi) we get the injectivity of the map g on each Qi.

On the quadrilaterals Qi such that Qi ∈ Tε,α,K we apply Theorem 2.2. For each
quadrilateral Qi such that Qi ∈ Eε,K we find a θi such that vi = (cos θi, sin θi) and
we apply Theorem 2.3 with the parameter ε from Theorem 2.3 ε2−2K . On the other
quadrilaterals, i.e. Qi such that Qi ∈ Wε,α,K ∪ [Fε,K \ Eε,K ] we apply Theorem 2.1.

The map g is injective on Q(0, 1) because it is injective on each Qi, because g = φ
on Γ and because φ is injective on Γ.

Step 2. Convergence estimates.
It is not hard to observe the L1 convergence. Since ∥g∥∞ < 2 and the set L2(F̃ε,K ∪

P̃α0) < δ < ε it remains to consider the set Q(0, 1) \ [F̃ε,K ∪ P̃α0 ]. On each of the Qi

we use (4.6) and the Poincaré inequality to get

∥f − g∥L1(Qi) ≤ C2−3Kα−1
0

and since 2−K < εα0 we get that ∥f − g∥1 < Cε.
Let us call Ω = Q(0, 1)\

⋃
Qi∈Eε,K

Qi. We want to estimate ∥DgχΩ−Daf∥L1(Q(0,1)).

For L2-almost all points of Qi with Qi ∈ Gε,α,K we have |Dg − ∇f(wi)| ≤ 2α4 by
(4.35) and we chose α < ε. Therefore using (4.6) we have∫

Qi

|Dg −Daf | ≤ 3ε3L2(Qi).

Summing this over Qi ∈ Gε,α,K we bound the sum by ε.
Now we calculate on Qi for Qi ∈ Tε,α,K . Summing the estimate from Theorem 2.2

using the estimate from (4.19) we get∑
i

∫
Qi

|Dg −Daf | ≤ Cε|Df |(Q).

By the definition of Wε,α,K and Fε,K \ Eε,K we have that

|Df |

Ñ ⋃
Qi∈Wε,α,K∪[Fε,K\Eε,K ]

Qi

é
≤ Cε.



40 D. CAMPBELL, A. KAURANEN, AND E. RADICI

On each Qi such that Qi ∈ Wε,α,K ∪ [Fε,K \ Eε,K ] we have

|Dg|
Å ⋃

Qi∈Wε,α,K∪[Fε,K\Eε,K ]

Qi

ã
≤ C|Df |

Å ⋃
Qi∈Wε,α,K∪[Fε,K\Eε,K ]

Qi

ã
≤ Cε.

Therefore, recalling that ∥Daf∥L1(Q(0,1)\Ω) < ε|Daf |(Q(0, 1)) by Lemma 4.1, we con-
clude that

∥(Dg)χΩ −Daf∥L1(Q(0,1)) < Cε.

It remains to prove that ∥Dg∥L1(Q(0,1)\Ω) ≤ |Dsf |(Q(0, 1)) + Cε in order to prove
the area strict convergence. In the following we use the fact that

|Dg|(Qi) ≤ |⟨Dg, vi⟩|(Qi) + |⟨Dg, v⊥i ⟩|(Qi).

On the set in question we defined g using Theorem 2.3 and thanks to (4.17), (4.18)
and Theorem 4.2, points 2) and 3) we have

|Dg|(Q(0, 1) \ Ω) ≤
∑

Qi∈Eε,K

|⟨Dg, vi⟩|(Qi) + |⟨Dg, v⊥i ⟩|(Qi)

≤
∑

Qi∈Eε,K

(1 + ε)|Df |(Qi) + Cε2−2K + Cε|Dsf |(4Qi ∩ S)

≤ (1 + Cε)|Dsf |(Q(0, 1)) + Cε

because
∑

i χ4Qi
≤ 25. □

Proof of Theorem 1.1. The equivalence of points 1) and 2) is in Theorem 3.18. The
implication 2) implies 3) is Theorem 4.5. Trivially 3) implies 4). The equivalence of
4) and 1) was proved in [10]. □
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