
FRACTIONAL HARDY-RELLICH INEQUALITIES
VIA A POHOZAEV IDENTITY

NICOLA DE NITTI AND SIDY MOCTAR DJITTE

Abstract. We prove a fractional Hardy-Rellich inequality with an explicit constant in bounded
domains of class Cα with α > max{1, 2s}. The strategy of the proof generalizes an approach
pioneered by E. Mitidieri (Mat. Zametki, 2000) by relying on a fractional Pohozaev identity.

1. Introduction

In [35], G. H. Hardy proved that, if p > 1 and f is a non-negative function in Lp(0,∞), then f is
integrable over the interval (0, x) for every x > 0 and∫ ∞

0

(
1

x

∫ x

0

f(t) dt

)p

dx ≤
(

p

p− 1

)p ∫ ∞

0

f(x)p dx

holds; or, letting u(x) =
∫ x

0
f(t) dt,∫ ∞

0

u(x)p

xp
dx ≤

(
p

p− 1

)p ∫ ∞

0

|u′(x)|p dx.

The constant (p/(p − 1))p was proved to be sharp by Landau in [41]. On a bounded interval, e.g.
Ω = (0, 1) ⊂ R, Hardy also proved that∫ ∞

0

u(x)p

dp(0,1)(x)
dx ≤

(
p

p− 1

)p ∫ ∞

0

|u′(x)|p dx,

where d(0,1)(x) = min{x, 1 − x}. From these beginnings, many Hardy-type inequalities have been
proven and have become fundamental tools in several branches of analysis. We refer to the surveys
[39, 4, 17, 54] for further information and historical context.

The classical N -dimensional generalization of the Hardy inequality states that, for N > 1, 1 ≤ p <
∞, with p ̸= N , and for all u ∈ C∞

0 (RN \ {0}), it holds∫
RN

|u(x)|p

|x|p
dx ⩽

(
p

|N − p|

)p ∫
RN

|∇u(x)|p dx.

More precisely, u may belong to W 1,p
(
RN
)

when 1 ≤ p < N and W 1,p
(
RN \ {0}

)
when N < p <∞.

Here the constant (p/|N − p|)p is sharp and is not attained in these Sobolev spaces. If p = 1, equality
holds for any symmetric decreasing function.

On a domain Ω ⊂ RN with nonempty boundary and 1 ≤ p <∞, it holds

c

∫
Ω

|u(x)|p

dpΩ(x)
dx ≤

∫
Ω

|∇u(x)|p dx,

where dΩ(x) := min{|x − y| : y ̸∈ Ω} is the distance of x from ∂Ω. We refer to, e.g., [53, 43, 5,
44, 11, 19, 20, 33, 43, 45, 46, 50] for further results, including on the best value of the constant cN,p

involved. The problem posed on nilpotent groups has also attracted much attention recently (see, e.g.,
[18, 2, 59, 3, 61]).

2010 Mathematics Subject Classification. 26D10, 46E35, 35R11, 35A15.
Key words and phrases. Hardy inequality; Pohozaev identity; fractional Sobolev spaces; fractional Lapalcian.

1



2 N. DE NITTI AND S. M. DJITTE

A related inequality is due to Rellich (see [55, 56]):

N2(N − 4)2

16

∫
RN

|u(x)|2

|x|4
dx ≤

∫
RN

|∆u(x)|2 dx,

for N ∈ N \ {2} and u ∈ C∞
0

(
RN\{0}

)
; for N = 2, the inequality holds (with constant equal to 1) for

u ∈ C∞
0

(
RN\{0}

)
satisfying (in polar coordinates)∫ +∞

0

u(t, θ) cos θ dθ =

∫ +∞

0

u(t, θ) sin θ dθ = 0

We point to [4, Chapter 6], [27, Chapter 7], and [20, 13, 26] for further information on Rellich-type
inequalities. Among several generalizations, we point out that

cpp,θ

∫
Ω

|u(x)|p

|x|θ+2
dx ≤

∫
Ω

|∆u(x)|p

|x|θ+2−2p
dx, (1.1)

holds for u ∈ C∞
0 (Ω), p > 1 and N > θ+ 2, with θ ∈ R (as proved, e.g., in [50]); the sharp constant is

given by

cp,θ =
(N − 2− θ)[(p− 1)(N − 2) + θ]

p2
.

In the present contribution, we shall focus on establishing a counterpart of (1.1) where the Laplace
operator is replaced by the fractional Laplacian operator (see [21, 1]): namely,∫

Ω

|u|p(x)
|x|θ+2s

dx ≲
∫
Ω

|(−∆)su(x)|p

|x|θ+2s−2sp
dx. (1.2)

Several Hardy-type inequalities are already available in the fractional setting. A starting point, let
us recall the following sharp one proved in [31, Theorem 1.1] (see also [47, Theorem 2] and [48]): Let
N ∈ N, with N ≥ 1, and 0 < s < 1. Then for all u ∈ Ẇ s,p

(
RN
)

in case 1 ≤ p < N/s, and for all
u ∈ Ẇ s,p

(
RN \ {0}

)
in case p > N/s,

CN,s,p

∫
RN

|u(x)|p

|x|ps
dx ≤

∫∫
RN×RN

|u(x)− u(y)|p

|x− y|N+ps
dxdy, (1.3)

with

CN,s,p := 2

∫ 1

0

rps−1
∣∣∣1− r(N−ps)/p

∣∣∣p ΦN,sp(r) dr (1.4)

and

ΦN,s,p(r) := vol(SN−2)

∫ 1

−1

(
1− t2

)N−3
2

(1− 2rt+ r2)
N+ps

2

dt, N ≥ 2,

Φ1,s,p(r) :=

(
1

(1− r)1+ps
+

1

(1 + r)1+ps

)
, N = 1.

The constant CN,s,p is optimal1. If p = 1, equality holds if and only if u is proportional to a sym-
metric decreasing function. If p > 1, the inequality is strict for any function 0 ̸≡ u ∈ Ẇ s,p

(
RN
)

or
Ẇ s,p

(
RN \ {0}

)
, respectively. Here the homogeneous Sobolev spaces Ẇ s

p

(
RN
)

and Ẇ s
p

(
RN \ {0}

)
are

defined as the completion of C∞
0

(
RN
)

for 1 ≤ p < N/s and C∞
0

(
RN \ {0}

)
for p > N/s, respectively,

with respect to the Gagliardo seminorm which is defined in the left-hand side of (1.3).

1See also [31, Eq (3.5) and Eq. (3.6)] for equivalent expressions of CN,s,p. Moreover, from [31, Eq. (1.6)], if p = 2,
then the constant is given more explicitly by

CN,s,2 = 2πN/2 Γ((N + 2s)/4)2

Γ((N − 2s)/4)2
|Γ(−s)|

Γ((N + 2s)/2)
.
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Previously in [37], Herbst proved the inequality

C̃p
N,s,p

∫
RN

|u(x)|p

|x|ps
dx ≤ ∥(−∆)s/2u∥p

Lp(RN )
(1.5)

for 1 < p <∞, s > 0, N > ps and u ∈ C∞
0

(
RN
)
, with the optimal constant

C̃N,s,p = 2−s
Γ
(

N(p−1)
2p

)
Γ
(

N−ps
2p

)
Γ
(

N
2p

)
Γ
(

N(p−1)+ps
2p

) .
We refer also to [30, 9, 62, 6, 38, 42, 27] for related results. In particular, the problem of classifying
and proving the nondegeneracy of minimizers for the fractional Hardy-Sobolev inequality was studied
in [51]. We remark that, for p = 2, the right-hand side of (1.5) is proportional to the one in (1.3)
because of [21, Proposition 3.6] whereas, for p ̸= 2 and 0 < s < 1, it is not; on the other hand, as
pointed out in [31], from [60, Chapter V], it follows that a one-sided inequality holds depending on
whether 1 < p < 2 or p > 2.

Some versions of the fractional Hardy inequality have been obtained in [15, Theorem 1.4], [25, The-
orem 1], [36, Theorem 6.1], and [28, Theorem 1.3]. The inequality on convex sets has been specifically
studied in [10, 7]. Hardy-type inequalities for fractional relativistic operators have been proved in [57]
and, for fractional powers of a discrete Laplacian, in [14]. We refer also to [17] for a short survey of
some of these developments. The higher-order version of the Hardy inequality in RN is contained in
[52, 63] and a survey of some fractional counterpart of the Rellich inequality are also available in the
recent monographs [4, 27]. Namely, from [27, Theorem 7.14],

Ek,N,p,psG(ps, k, p)

∫
Ω

|u(x)|p

Mk+s(x)ps+kp
dx ≤ Sk,p′

∑
|α|=k

∫
Ω

∫
Ω

|Dαu(x)−Dαu(y)|p

|x− y|N+ps
dx dy,

holds for α ∈ NN
0 , k ∈ N, 1 < p < ∞, 1/p < s < 1, and all u ∈ C∞

0 (Ω), where Mk+s is a mean
distance function from the boundary of Ω defined in [27, Eq. (7.4.6)], the constants Sk,p′ , Ek,N,p,ps,
and G(ms, k, p) are defined in [27, Eq. (7.4.3), Eq. (7.4.8), Eq. (7.4.10)], and the following bound
holds for p = 2 (as shown in [27, Eq. (7.6.3)]):

1

2
cN,s

∑
|α|=k

∫
Ω

∫
Ω

|Dαu(x)−Dαu(y)|2

|x− y|N+2s
dxdy ≤

∫
RN

|(−∆)
s+k
2 u(x)|2 dx.

However, to the best of our knowledge, no fractional analogue of (1.1) of the type (1.2) is available
in the literature. The main aim of this paper is to prove it (see Theorem 2.1 below for the precise
statement) by generalizing the strategy pioneered by Mitidieri in [50, Section 3]. In contrast to the
classical case, this approach does not seem to yield sharp constants in the fractional context. On the
other hand, we believe that it is of interest in itself for its simplicity. The key ingredient of the proof is
the fractional Pohozaev identity of [23, 58] (see the next paragraphs for a more detailed outline of the
proof and the main technical difficulties). As a byproduct, we deduce some versions of the fractional
Hardy inequality (1.3).

1.1. Outline and strategy. Let us outline the strategy employed in [50, Section 3] to prove that, for
any function u ∈ C∞

0 (Ω),

cpp,θ

∫
Ω

|u(x)|p

|x|θ+2
dx ≤

∫
Ω

|∆u(x)|p

|x|θ+2−2p
dx, (1.6)

for p > 1 and N > θ + 2, with θ ∈ R. The key observation is that (1.6) can be deduced from an
identity of Rellich-Pohozaev type by suitably choosing an auxiliary function.
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More precisely, let Ω ⊂ RN be a bounded domain with smooth boundary and u, v ∈ C2(Ω̄). Then,
from [49, Corollary 2.1], we have the following Rellich-Pohozaev identity:∫

Ω

(
∆u(x · ∇v) + ∆v(x · ∇u)

)
dx

= (N − 2)

∫
Ω

∇u · ∇v dx+

∫
∂Ω

(
∂νu(x · ∇v) + ∂νv(x · ∇u)− (∇u · ∇v)(x · ν)

)
dσ,

(1.7)

where ν denotes the outward-pointing normal unit vector and ∂ν denotes the external normal derivative
at the point x ∈ ∂Ω. By suitably choosing the function v and applying Hölder’s inequality, (1.7) implies
(1.6). For completeness, we reproduce the computation below.

Let u ∈ C∞
0 (Ω) and, to begin with, let us additionally assume u > 0. Plugging up (for p > 1) into

(1.7) yields∫
Ω

up−1∆u(x · ∇v) dx+ (p− 1)

∫
Ω

up−2|∇u|2(x · ∇v) dx+

∫
Ω

up−1(x · ∇u)∆v dx

= (N − 2)

∫
Ω

up−1∇u · ∇v dx.
(1.8)

We choose v = vε := (|x|θ + ε)−1, for ε > 0 and θ ∈ R, and compute

∇
(

1

|x|θ + ε

)
= −θ x |x|θ−2

(|x|θ + ε)2
,

∆

(
1

|x|θ + ε

)
= −(N − 1)θ

|x|2θ−2

(|x|θ + ε)3
+ 2θ2

|x|2θ−2

(|x|θ + ε)3
− θ(θ − 1)

|x|θ−2

(|x|θ + ε)2
.

Plugging these into (1.8) and letting ε→ 0+ (here we use N > θ + 2), we get∫
Ω

up−1∆u

|x|θ
dx+ (p− 1)

∫
Ω

up−2|∇u|2

|x|θ
dx

= [(N − 2)− (N − 1) + 2θ − (θ − 1)]︸ ︷︷ ︸
=θ

∫
Ω

up−1x · ∇u
|x|θ+2

dx.
(1.9)

The divergence theorem yields∫
Ω

up−1x · ∇u
|x|θ+2

dx = −1

p

∫
Ω

updiv
( x

|x|θ+2

)
dx

= −N − 2− θ

p

∫
Ω

up

|x|θ+2
dx.

(1.10)

By using Cauchy-Schwarz and Hölder’s inequalities, we have

−N − 2− θ

p

∫
Ω

up

|x|θ+2
dx =

∫
Ω

up−1x · ∇u
|x|θ+2

dx ≤
∫
Ω

|∇u| |x| |u|p−1

|x|θ+2
dx

≤
(∫

Ω

|∇u|2|u|p−2

|x|θ
dx

) 1
2
(∫

Ω

up

|x|θ+2
dx

) 1
2

which gives ∫
Ω

|∇u|2|u|p−2

|x|θ
dx ≥

(
N − 2− θ

p

)2 ∫
Ω

up

|x|θ+2
dx. (1.11)

Plugging (1.10)–(1.11) into (1.9), we have[
N − 2− θ

p2

(
(p− 1)(N − 2) + θ

)]∫
Ω

up

|x|θ+2
dx ≤ −

∫
Ω

up−1∆u

|x|θ
dx. (1.12)
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Applying Hölder’s inequality with conjugate exponents p and p/(p− 1), we estimate∫
Ω

up−1∆u

|x|θ
dx =

∫
Ω

up−1

|x|α
∆u

|x|θ−α
dx

≤

(∫
Ω

up

|x|
αp
p−1

dx

) p−1
p (∫

Ω

|∆u|p

|x|(θ−α)p
dx

) 1
p

,

for α ∈ R. Plugging this – with α = (θ + 2) (p−1)
p – into (1.12), we obtain[

N − 2− θ

p2

(
(p− 1)(N − 2) + θ

)]∫
Ω

up

|x|θ+2
dx ≤

(∫
Ω

up

|x|θ+2
dx

) p−1
p
(∫

Ω

|∆u|p

|x|θ+2−p
dx

) 1
p

.

That is,

cpp,θ

∫
Ω

up

|x|θ+2
dx ≤

∫
Ω

|∆u|p

|x|θ+2−2p
dx,

where

cp,θ =
(N − 2− θ)[(p− 1)(N − 2) + θ]

p2
.

To remove the extra assumption u > 0, an approximation argument is needed: we use uµ :=

(u2 + µ2)
1
2 − µ (with µ > 0), follow the steps above, and finally let µ→ 0+.

Our aim here is to extend this method to the fractional setting, our starting point being the frac-
tional Pohozaev identity proved in [23, Theorem 1.3]. Several technical difficulties ensue. The main
one is that functions of the form vε(·) := 1

(ε2+|·|2)
θ
2

are not admissible in the identity [23, Theorem

1.3]. To overcome this issue, we use an approximation technique. We approximate vε by ζkvε where
ζk is a suitable cut-off function supported in Ω (see Lemma A.1). Secondly, we need to compute
limε→0+(−∆)s

(
(ε2 + | · |2)− θ

2

)
(x), which is done in Lemma A.2 below. This computation might be

well-known, but we present it here for the sake of completeness. Finally, we need to estimate (−∆)sup,
for which we rely on Cordoba-Cordoba’s inequality (see [12, Theorem 1.1]). However, as a drawback,
we do not expect the constants involved to be sharp as opposed to the classical case.

The paper is organized as follows. In Section 2, we state our main theorems and present the needed
preliminary notions. The proofs are developed in Section 3. The main technical lemmas used in the
arguments are collected in Appendix A.

2. Generalized fractional Hardy-type inequalities

For 0 < s < 1, the fractional Laplacian operator (−∆)su is defined, for any u ∈ C2(RN )∩L∞(RN ),
through the singular integral

(−∆)su(x) := cN,s p.v.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy, (2.1)

where

cN,s :=
s22sΓ(N+2s

2 )

πN/2Γ(1− s)
(2.2)

(see [32, Proposition 5.6]). It can also be defined weakly for any u ∈ Hs(RN ) by letting〈
(−∆)su, v

〉
:=

cN,s

2

∫∫
RN×RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy =: Es(u, v).

Here, Hs(RN ) is the subspace of those L2-functions u for which the seminorm Es(u, u) is finite.
Throughout this manuscript, we denote by Hs

0(Ω) the subset of L2-functions belonging to Hs(RN )
and such that u ≡ 0 in RN \ Ω. We recall that, by [29, Theorem 2], if Ω has a continuous boundary,
then Hs

0(Ω) coincides with the closure of C∞
0 (Ω) with respect to the seminorm Es(·, ·) (see also [34,

Theorem 1.4.2.1]).
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Our main results read as follows.

Theorem 2.1 (Generalized fractional Hardy-type inequality in bounded domains). Let s ∈ (0, 1) and
θ ≥ 0 be given. Let Ω be a bounded open set of class Cα, with α > max{1, 2s}. Let N ∈ N with
N > θ + 2s. Then, for all u ∈ Cα

0 (Ω), we have[
bN,s,θ

p

]p ∫
Ω

|u|p

|x|θ+2s
dx ≤

∫
Ω

|(−∆)su|p

|x|θ+2s−2sp
dx, (2.3)

for p > 1 and

bN,s,θ

∫
Ω

|u|
|x|θ+2s

dx ≤
∫
Ω

sign(u)(−∆)su

|x|θ
dx, (2.4)

(corresponding to the case p = 1), where

bN,s,θ = cN,s

∫ 1

0

r2s−1(1− rθ)(1− rN−2s−θ)ψ(r) dr, cN,s =
s4sΓ

(
N+2s

2

)
π

N
2 Γ(1− s)

,

ψ(r) = 2 vol(SN−2)

∫ 1

−1

(1− h2)
N−3

2(
1 + r2 − 2rh

)(N+2s)/2
dh.

Taking θ = 2sp − 2s in (2.3) above gives the following version of a result by Herbst [37] (see also
[28, Theorem 1.3] and [62] for related results).

Corollary 2.2. (Improved fractional Hardy inequality) Let s ∈ (0, 1), N
p > 2s and p > 1. Let Ω be a

bounded open set of RN of class Cα with α > max{1, 2s}. Then for all u ∈ Cα
0 (Ω), we have[

bN,s,2s(p−1)

p

]p ∫
Ω

|u|p

|x|2sp
dx ≤

∫
Ω

|(−∆)su|p dx (2.5)

In particular, for p = 2 we deduce, for all u ∈ Hs
0(Ω),[

bN,s/2,s

2

]2 ∫
Ω

u(x)2

|x|2s
dx ≤

∫
Ω

|(−∆)s/2u|2 dx

≤ cN,s

2

[∫∫
RN×RN

(u(x)− u(y))2

|x− y|N+2s
dxdy −

∫
RN\Ω

(∫
Ω

u(y)

|x− y|N+s
dy

)2

dx

]
.

(2.6)

In fact, we have the following more general identity.

Theorem 2.3. Let N ∈ N with N > θ + 2s. Let Ω ⊂ RN be a bounded open set of class Cα with
α > max{1, 2s}. Let s ∈ (0, 1). For any X ∈ C0,1

(
RN ,RN

)
, we define the nonlocal operator

[LKY
u] (x) := p.v.

∫
RN

(u(x)− u(y))KY (x, y) dy (2.7)

where

KY (x, y) =
cN,s

2

[
div Y (x) + div Y (y)− (N + 2s)

(Y (x)− Y (y)) · (x− y)

|x− y|2

]
|x− y|−N−2s. (2.8)

Let θ ≥ 0 and u ∈ Cα
0 (Ω). Then, we have

− bN,s,θ

∫
Ω

u2(x)

|x|θ+2s
div Y (x) dx+ bN,s,θ(θ + 2s)

∫
Ω

u2(x)
x · Y (x)

|x|θ+2s+2
dx

= θ

∫
Ω

x · Y (x)

|x|θ+2
(−∆)su2 dx−

∫
Ω

LKY
u2

|x|θ
dx.

(2.9)

Remark 2.4. Let us collect a few remarks on the main results.
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(1) Taking the limit when s→ 1− in (2.3), we recover the inequality (1.6) announced in [50] with

the constant
[
2θ
p

Γ(N−θ
2 )

Γ(N−θ−2
2 )

]p
.

Indeed, from the fact that

lim
ε→0+

(−∆)s
[

1

(ε2 + | · |2) θ
2

]
(x) = (−∆)s

[
1

| · |θ

]
(x), ∀x ∈ RN \ {0}

(which can be seen by computing (−∆)s(| · |−θ)(x) as in Lemma A.2) and the identity

(−∆)s
[

1

| · |θ

]
(x) = 22s

Γ
(
N−θ
2

)
Γ( 2s+θ

2 )

Γ
(
N−θ−2s

2

)
Γ
(
θ
2

) |x|−(θ+2s), ∀x ̸= 0, N > θ > −2s, (2.10)

(which is contained in [40, Table 1]), we deduce that

bN,s,θ = 22s
Γ
(
N−θ
2

)
Γ( 2s+θ

2 )

Γ
(
N−θ−2s

2

)
Γ
(
θ
2

) −→
2θΓ(N−θ

2 )

Γ
(
N−θ−2

2

) as s→ 1−.

(2) If we replace Ω by RN , using the Pohozaev identity∫
RN

x · ∇u(−∆)sudx = (2s−N)

∫
RN

u(−∆)sudx for all u ∈ C∞
0 (RN ),

we prove by a similar argument (much simpler in fact) that[
bN,s,θ

p

]p ∫
RN

|u|p

|x|θ+2s
dx ≤

∫
RN

|(−∆)su|p

|x|θ+2s−2sp
dx

for all θ > −2s, p > 1 and for all u ∈ C∞
0

(
RN
)
.

(3) When θ = 0, the constant bN,s,0 vanishes. Equation (2.5) gives in particular that∫
Ω

sign(u)(−∆)sudx ≥ 0, for all u ∈ Cα
0 (Ω). (2.11)

Note that an estimate like (2.11) follows also by using a Kato-type inequality and the symmetry
of the fractional Laplace operator (see [22]):∫

RN

sign(u) (−∆)sudx ≥
∫
RN

(−∆)s|u|dx = 0 for all u ∈ C∞
0 (RN ).

(4) We believe that more general Hardy-type inequalities may be obtained by choosing suitably
the vector field Y in (2.9). Indeed, note that the estimate (2.6) follows from (2.9) by taking
Y ≡ idRN .

Remark 2.5. Following closely the proof, we can also obtain the following version of the fractional
Hardy inequality (1.3):

CN,s,2

∫
Ω

w2(x)

|x|2s
dx ≤ 2

cN,s

∫
Ω

w

|x|N−2s
4

(−∆)s(| · |
N−2s

4 w) dx

=

∫∫
RN×RN

(|x|−N−2s
4 w(x)− |y|−N−2s

4 w(y))(|x|N−2s
4 w(x)− |y|N−2s

4 w(y))

|x− y|N+2s
dxdy

=

∫∫
RN×RN

(w(x)− w(y))2

|x− y|N+2s
dx dy −

∫∫
Ω×Ω

(|x|N−2s
4 − |y|N−2s

4 )(w(x)v(y)− w(y)v(x))

|x− y|N+2s
dxdy

for all w ∈ Cα
0 (Ω \ {0}). Here, v(x) := w(x)

|x|
N−2s

4

and CN,s,2 is the sharp constant given in (1.4). This

follows by choosing θ = N−2s
2 and u = |x|N−2s

4 w in (3.11) below (indeed, note that bN,s,N−2s
2

=

CN,s,2 × cN,s).
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3. Proof of the main theorems

In this section, we prove our main results. We start with Theorem 2.1.

Proof of Theorem 2.1. We recall the following approximated Pohozaev identity from [23, Lemma 2.1].
Let Ω be a bounded open set and let u ∈ Cα

0 (Ω) with α > max{1, 2s}. Let Y : RN → RN be a globally
Lipschitz vector field. Then, denoting

EY (u, u) :=
∫∫

RN×RN

(u(x)− u(y))2KY (x, y) dxdy, (3.1)

where

KY (x, y) =
cN,s

2

[
div Y (x) + div Y (y)− (N + 2s)

(Y (x)− Y (y)) · (x− y)

|x− y|2

]
|x− y|−N−2s, (3.2)

we have

EY (u, u) = −2

∫
Ω

Y · ∇u(−∆)sudx, for all u ∈ Cα
0 (Ω). (3.3)

Taking Y ≡ idRN , u := u+ tv, t > 0 in (3.3), and differentiating at t = 0 implies, in particular, that∫
Ω

x · ∇u(−∆)sv dx+

∫
Ω

x · ∇v(−∆)sudx

= −(N − 2s)
cN,s

2

∫∫
RN×RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy

(3.4)

for all u, v ∈ Cα
0 (Ω) with α > max{1, 2s}.

Step 1. Proof for non-negative functions u ∈ Cα
0 (Ω). We start by considering a function u ∈ Cα

0 (Ω)

satisfying u ≥ 0. In (3.4), we replace u by up and v by vk = 1−ρk

(ε2+|·|2)
θ
2
:= ζk

(ε2+|·|2)
θ
2

where ρk is defined

as in Lemma A.1. By the same lemma, we know that vk is admissible in (3.4). With this substitution,
from (3.4), we deduce∫

Ω

x · ∇up(−∆)s

(
ζk

(ε2 + |x|2) θ
2

)
dx︸ ︷︷ ︸

=:Ik

+

∫
Ω

ζkx · ∇

(
1

(ε2 + |x|2) θ
2

)
(−∆)sup dx

+

∫
Ω

x · ∇ζk
(ε2 + |x|2) θ

2

(−∆)sup dx︸ ︷︷ ︸
=:Jk

= −(N − 2s)

∫
Ω

ζk(−∆)sup

(ε2 + |x|2) θ
2

dx.

(3.5)

Recalling the product rule for the fractional Laplacian – i.e.

(−∆)s(uv) = u(−∆)sv + v(−∆)su− Is(u, v),

where

Is(u, v)(x) := cN,s

∫
RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dy, x ∈ RN ,

which holds for functions u and v such that (−∆)su and (−∆)sv exist and∫
RN

|(u(x)− u(y))(v(x)− v(y))|
|x− y|N+2s

dy <∞

(see [8, Proposition 1.5 and Remark 1.6]) – we compute

Ik :=

∫
Ω

x · ∇up(−∆)s

(
ζk

(ε2 + |x|2) θ
2

)
dx
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=

∫
Ω

x · ∇up
[
ζk(−∆)s

(
1

(ε2 + |x|2) θ
2

)
+

1

(ε2 + |x|2) θ
2

(−∆)sζk − Is

(
ζk,

1

(ε2 + |x|2) θ
2

)]
dx

:= I1k + I2k + I3k . (3.6)

By continuity, we have

lim
k→+∞

I1k =

∫
Ω

x · ∇up(−∆)s

(
1

(ε2 + | · |2) θ
2

)
dx. (3.7)

On the other hand, by Lemma A.1, we deduce

lim
k→+∞

I2k = 0 = lim
k→+∞

I3k . (3.8)

To deal with Jk, we consider the global vector field Yε : RN → RN , x 7→ Yε(x) := x
(ε2+|x|2)θ/2 . If

θ ≥ 0, then we can compute that ∥Yε∥C1(RN ,RN ) ≤ C for some C = C(ε, θ) > 0 and therefore
Yε ∈ C0,1(RN ,RN ). Applying (3.3) to U(t, up, ζk) := up + tζk, t > 0 with Y = Yε and differentiating
with respect to t yields

Jk : =

∫
Ω

x · ∇ζk
(ε2 + |x|2) θ

2

(−∆)sup dx

=

∫
Ω

Yε · ∇ζk(−∆)sup dx

= −
∫
Ω

Yε · ∇up(−∆)sζk dx−
∫
R2N

(ζk(x)− ζk(y))(u
p(x)− up(y))KYε(x, y) dxdy,

where KYε
(·, ·) is defined as in (3.2). Since KYε

(·, ·) is symmetric, we may write∫
R2N

(ζk(x)− ζk(y))(u
p(x)− up(y))KYε

(x, y) dx dy =

∫
Ω

up[LKYε
](ζk) dx

with [
LKYε

]
(w)(x) := 2 p.v.

∫
RN

(w(x)− w(y))KYε
(x, y) dy.

Putting everything together, we end up with

Jk = −
∫
Ω

Yε · ∇up(−∆)sζk dx−
∫
Ω

up[LKYε
](ζk) dx =: J1

k + J2
k . (3.9)

From (3.8), we know that J1
k converges to zero as k → +∞. Next, arguing as in the proof of (A.2)

from Lemma A.1 and using the fact that∣∣KYε
(x, y)

∣∣ ≤ C(ε, θ,N, s)|x− y|−N−2s for all x, y ∈ RN , x ̸= y,

we deduce that J2
k converges to zero as well. In conclusion, we have that

lim
k→∞

Jk = lim
k→∞

∫
Ω

x · ∇ζk
(ε2 + |x|2) θ

2

(−∆)sup dx = 0. (3.10)

Putting the computations in (3.5), (3.6), (3.7), (3.8), and (3.10) together; using Lemma A.2 and
passing to the limit k → +∞ and ε→ 0, we deduce

bN,s,θ

∫
Ω

x · ∇up dx

|x|θ+2s
− θ

∫
Ω

(−∆)sup

|x|θ
dx = −(N − 2s)

∫
Ω

(−∆)sup

|x|θ
dx

for all u ∈ Cα
0 (Ω) with α > max{1, 2s}. Using the divergence theorem in the first term then yields

−bN,s,θ(N − 2s− θ)

∫
Ω

up

|x|θ+2s
dx− θ

∫
Ω

(−∆)sup

|x|θ
dx = −(N − 2s)

∫
Ω

(−∆)sup

|x|θ
dx. (3.11)

To conclude the argument, let us consider three cases separately: p = 1, p ∈ [2,+∞), and p ∈ (1, 2).
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Case (a). For p = 1, the inequality (3.11) reads

−bN,s,θ(N − 2s− θ)

∫
Ω

u

|x|θ+2s
dx− θ

∫
Ω

(−∆)su

|x|θ
dx = −(N − 2s)

∫
Ω

(−∆)su

|x|θ
dx,

from which the conclusion follows.
Case (b). For p ≥ 2, we estimate (3.11) using first Cordoba-Cordoba’s inequality (see [12, Theorem

1.1] or [16, Theorem 1.1]) with φ(t) = tp ∈ C2(R+) and then Hölder’s inequality:

bN,s,θ

∫
Ω

up

|x|θ+2s
dx =

∫
Ω

(−∆)sup

|x|θ
dx

≤ p

∫
Ω

up−1(−∆)su

|x|θ
dx =

∫
Ω

up−1

|x|α
(−∆)su

|x|θ−α
dx

≤ p

(∫
Ω

up

|x|
αp
p−1

dx

) p−1
p (∫

Ω

|(−∆)su|p

|x|(θ−α)p
dx

) 1
p

.

Plugging this with α = (θ + 2s) (p−1)
p finishes the prove of the claim for u ∈ Cα

0 (Ω) and u ≥ 0.
Case (c). For p ∈ (1, 2), we cannot apply Cordoba-Cordoba’s inequality directly. Instead, we start

over by replacing up by its convex approximation φt(u) = (t2+u2)
p
2 − tp (with t > 0) in the Pohozaev

identity. Following the same steps as above leads to

−bN,s,θ(N − 2s− θ)

∫
Ω

φt(u)

|x|θ+2s
dx− θ

∫
Ω

(−∆)sφt(u)

|x|θ
dx = −(N − 2s)

∫
Ω

(−∆)sφt(u)

|x|θ
dx.

Then, we compute

bN,s,θ

∫
Ω

φt(u)

|x|θ+2s
dx ≤

∫
Ω

(−∆)sφt(u)

|x|θ
dx

≤
∫
Ω

φ′
t(u)(−∆)su

|x|θ
dx ≤ p

∫
Ω

up−1

|x|α
|(−∆)su|
|x|θ−α

dx

≤ p

(∫
Ω

up

|x|
αp
p−1

dx

) p−1
p (∫

Ω

|(−∆)su|p

|x|(θ−α)p
dx

) 1
p

.

The conclusion follows by letting α = (θ + 2s) (p−1)
p and by using Fatou’s lemma.

Step 2. General case u ∈ Cα
0 (Ω). Let us consider a function u ∈ Cα

0 (Ω) and define, for µ > 0, the
approximation uµ := (u2 + µ2)

1
2 − µ. Since uµ ∈ Cα

0 (Ω) and uµ ≥ 0, we can follow the computations
of Step 1. We conclude by noticing that

∣∣u(u2+µ2)−
1
2

∣∣ ≤ 1 and passing to the limit as µ→ 0+ thanks
to Fatou’s lemma. □

Next, we prove Corollary 2.2.

Proof of Corollary 2.2. We only need to prove that (2.6) holds for all u ∈ Hs
0(Ω). Let u ∈ Hs

0(Ω) and
un ∈ C∞

0 (Ω) such that un → u in Hs
0(Ω). Since[

bN,s/2,s

2

]2 ∫
Ω

un(x)
2

|x|2s
dx ≤

∫
Ω

|(−∆)s/2un|2 dx ≤
∫
RN

|(−∆)s/2un|2 dx = [un]
2
Hs

0(Ω),

it follows that ∫
Ω

un(x)
2

|x|2s
dx→

∫
Ω

u(x)2

|x|2s
dx as n→ ∞. (3.12)

On the other hand, applying Hölder’s inequality and using the fact that (a+ b)2 ≤ 2(a2 + b2) yields∫
Ω

∣∣∣|(−∆)s/2un|2 − |(−∆)s/2u|2
∣∣∣dx ≤

∫
Ω

∣∣∣(−∆)s/2(un − u)
∣∣∣∣∣∣(−∆)s/2un + (−∆)s/2u

∣∣∣dx
≤

√
2
(∫

Ω

∣∣∣(−∆)s/2(un − u)
∣∣∣2 dx)1/2([un]2Hs

0(Ω) + [u]2Hs
0(Ω)

)1/2
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≤ C
[
un − u

]
Hs

0(Ω)

(
1 + [u]2Hs

0(Ω)

)1/2
→ 0 as n→ ∞. (3.13)

Thanks to (3.12)–(3.13), we conclude by passing to the limit in[
bN,s/2,s

2

]2 ∫
Ω

un(x)
2

|x|2s
dx ≤

∫
Ω

|(−∆)s/2un|2 dx.

□

Finally, we give a proof of Theorem 2.3.

Proof of Theorem 2.3. The proof follows the idea of the proof of Theorem 2.1 except that in here we
use the following more general identity from [23, Lemma 2.1]:∫

Ω

Y · ∇u(−∆)sw dx+

∫
Ω

Y · ∇w(−∆)sudx = −
∫
R2N

(w(x)− w(y))(u(x)− u(y))KY (x, y) dxdy

= −
∫
Ω

uLKY
(w) dx (3.14)

for all u,w ∈ Cα
0 (Ω) (α > max{1, 2s}) and all Y ∈ C0,1(RN ,RN ) where LKY

and KY are respectively
given by (2.7) and (2.8) . □

Appendix A. Technical lemmas

In this appendix, we collect the technical lemmas that have been used in the proof of the main
results. First, we estimate the fractional Laplacian of a suitably constructed cut-off function involving
the distance to the boundary of Ω.

Lemma A.1. Let Ω be a bounded open set of class Cα with α > max{1, 2s}. Let ρ ∈ C∞(R) with
ρ ≡ 1 in (−∞, 1], ρ ≡ 0 in [2,+∞) and define ρk(·) = ρ (kδΩ(·)), where δΩ : RN → R is a Cα(RN )
function which coincides with the signed distance function near the boundary ∂Ω (note that, since the
boundary is Cα, the sign distance function is Cα as well). Moreover, we assume that δΩ is positive in
Ω and negative in RN \ Ω. Let ζk := 1− ρk. Then, we have

ζk

(ε2 + | · |2) θ
2

∈ Hs
0(Ω) and

ζk

(ε2 + | · |2) θ
2

∈ Cα
0 (Ω). (A.1)

Moreover, for any u ∈ Cα
0 (Ω), u ≥ 0, we have∫

Ω

x · ∇up 1

(ε2 + |x|2) θ
2

[
(−∆)sζk

]
(x) dx→ 0 as k → ∞, (A.2)

∫
Ω

x · ∇upIs

(
ζk,

1

(ε2 + |x|2) θ
2

)
dx→ 0 as k → +∞, (A.3)

where

Is(v, w)(·) =
cN,s

2

∫
RN

(v(·)− v(·+ y))(w(·)− w(·+ y))

|y|N+2s
dy.

Proof. We start by proving (A.2) and (A.3). Let Ω′′ ⋐ Ω′ ⊂ Ω so that supp(u) ⊂ Ω′′ and let x ∈ Ω′′.
Since δΩ(x) ≥ c > 0, then for k sufficiently large we have ρ(kδΩ(x)) = 0. Therefore,[

(−∆)sζk
]
(x) = −cN,s p.v.

∫
RN

ρk(x)− ρk(y)

|x− y|N+2s
dy

= cN,s

∫
Ω2/k

ρ(kδΩ(y))

|x− y|N+2s
dy

≤ c̄(Ω′,Ω′′, N, s) vol(Ω2/k).
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It follows that ∣∣∣∣∣
∫
Ω

x · ∇up 1

(ε2 + |x|2) θ
2

[
(−∆)sζk

]
(x) dx

∣∣∣∣∣
≤ c̄(Ω′,Ω′′)vol(Ω2/k)

∫
Ω

∣∣∣∣∣x · ∇up 1

(ε2 + |x|2) θ
2

∣∣∣∣∣ dx→ 0 as k → ∞,

which gives (A.2).
Similarly, with x ∈ Ω′′, we have∣∣∣∣∣Is

(
ζk,

1

(ε+ |x|2) θ
2

)
(x)

∣∣∣∣∣ = cN,s

2

∣∣∣∣∣
∫
Ω2/k

−ρ(kδΩ(x))
(
(ε2 + |x|2)− θ

2 − (ε2 + |y|2)− θ
2

)
|x− y|N+2s

dy

∣∣∣∣∣
≤ c̄(Ω′,Ω′′, N, s, ε) vol(Ω2/k),

from which (A.3) follows. To see that ζk

(ε2+|·|2)
θ
2
∈ Hs

0(Ω), first observe that ζk

(ε2+|·|2)
θ
2
≡ 0 in RN \ Ω.

Next let RΩ > 1 so that Ω ⋐ BRΩ
and write

2

cN,s

[
ζk

ε2 + | · |

]2
Hs(RN )

=

∫
RN

∫
RN

(
ζk(x)(ε

2 + |x|2)− θ
2 − ζk(y)(ε

2 + |y|2)− θ
2

)2
|x− y|N+2s

dxdy

=

∫
BRΩ

∫
BRΩ

(
ζk(x)(ε

2 + |x|2)− θ
2 − ζk(y)(ε

2 + |y|2)− θ
2

)2
|x− y|N+2s

dxdy

+

∫
Ω

ζ2k(x)

(ε2 + |x|2)θ

∫
RN\BRΩ

dy

|x− y|N+2s
dx

≤ 2

∫
BRΩ

∫
BRΩ

(
ρk(x)− ρk(y)

)2
(ε2 + |x|2)−θ

|x− y|N+2s
dxdy

+ 2

∫
BRΩ

∫
BRΩ

(
1

(ε2+|x|2)
θ
2
− 1

(ε2+|y|2)
θ
2

)2

|x− y|N+2s
dxdy

+ c

∫
Ω

ζ2k(x)

(ε2 + |x|2)θ/2
dx

∫
RN\BRΩ

dy

1 + |y|N+2s

≤

(
2

ε2θ
∥∇ρk∥L∞(R) + 2

[
1

(ε2 + | · |2) θ
2

]
C1

loc(RN )

)∫
BRΩ

∫
BRΩ

dx dy

|x− y|N+2s−2

+ c

∫
Ω

ζ2k(x)

(ε2 + |x|2)θ/2
dx

∫
RN\BRΩ

dy

1 + |y|N+2s

<∞.

□

Finally, we shall give an explicit computation of the quantity

lim
ε→0+

(−∆)s

[
1

(ε2 + | · |2) θ
2

]
(x).

Lemma A.2. Let ε > 0 and θ > −2s. Then, we have

lim
ε→0+

(−∆)s

[
1

(ε2 + | · |2) θ
2

]
(x) = |x|−(θ+2s)bN,s,θ, for all x ∈ RN \ {0}. (A.4)
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The convergence also holds locally uniformly in RN \ {0}. Here, we introduced the following notation:

bN,s,θ = cN,s

∫ 1

0

r2s−1(1− rθ)(1− rN−2s−θ)ψ(r) dr, (A.5)

cN,s =
s4sΓ

(
N+2s

2

)
π

N
2 Γ(1− s)

, (A.6)

ψ(t) = 2 vol(SN−2)

∫ 1

−1

(1− h2)
N−3

2(
1 + r2 − 2rh

) dh. (A.7)

Proof. For the sake of brevity, we let ψ : R+ → R be defined by

1

vol(SN−2)
ψ(r) : =

∫ π

0

sinN−2(α1)(
1 + r2 − 2r cos(α1)

)(N+2s)/2
dα1

= 2

∫ 1

−1

(1− h2)
N−3

2(
1 + r2 − 2rh

)(N+2s)/2
dh.

Let x ∈ RN \ {0}. By definition and passing into polar coordinates, we compute

(−∆)s

[
1

(ε2 + | · |2) θ
2

]
(x) = p.v.

∫
RN

(
1

(ε2 + |x|2) θ
2

− 1

(ε2 + |y|2) θ
2

)
dy

|x− y|N+2s

= cN,s p.v.

∫ ∞

0

rN−1
(
(ε2 + |x|2)− θ

2 − (ε2 + r2)−
θ
2

)∫
SN−1

dy

(|x|2 + r2 − 2r|x|y1)
N+2s

2

dr

= cN,s|x|−2s p.v.

∫ ∞

0

rN−1

(
1

(ε2 + |x|2) θ
2

− 1

(ε2 + r2|x|2) θ
2

)∫
SN−1

dy

(1 + r2 − 2ryN )
N+2s

2

dr

= 2cN,s|x|−2s p.v.

∫ ∞

0

rN−1

(
1

(ε2 + |x|2) θ
2

− 1

(ε2 + r2|x|2) θ
2

)

× vol(SN−2)

∫ π

0

sinN−2(α1)(
1 + r2 − 2r cos(α1)

)(N+2s)/2
dα1

= cN,s|x|−2s p.v.

∫ ∞

0

rN−1

(
1

(ε2 + |x|2) θ
2

− 1

(ε2 + r2|x|2) θ
2

)
ψ(r) dr

= cN,s|x|−2s

(
p.v.

∫ 1

0

· · · dr + p.v.

∫ ∞

1

· · · dr
)

= cN,s|x|−2s p.v.

∫ 1

0

ψ(r)

(
rN−1

(
1

(ε2 + |x|2) θ
2

− 1

(ε2 + r2|x|2) θ
2

)

+ r2s−1

(
1

(ε2 + |x|2) θ
2

− 1

(ε2 + |x|2
r2 )

θ
2

))
dr. (A.8)

Let us prove that the integral above is finite. To this aim, we distinguish two cases.
Case (a): r ∈ (0, γ] for some γ ∈ ( 6−

√
32

2 , 1). In this case, we use the bound∣∣∣∣∣rN−1

(
1

(ε2 + |x|2) θ
2

− 1

(ε2 + r2|x|2) θ
2

)
+ r2s−1

(
1

(ε2 + |x|2) θ
2

− 1

(ε2 + |x|2
r2 )

θ
2

)∣∣∣∣∣
≤ rN−1

|x|θ

(
1 +

1

rθ

)
+
r2s−1

|x|θ
(1 + rθ). (A.9)
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Case (b): r ∈ [γ, 1). Here, we use the power series expansion

(1 + x)α =

∞∑
n=0

α(α− 1) · · · (α− n+ 1)

n!
xn :=

∞∑
n=0

cα,n x
n (for |x| < 1)

to get, for ε > 0 small enough,∣∣∣∣∣rN−1

(
1

(ε2 + |x|2) θ
2

− 1

(ε2 + r2|x|2) θ
2

)
+ r2s−1

(
1

(ε2 + |x|2) θ
2

− 1

(ε2 + |x|2
r2 )

θ
2

)∣∣∣∣∣
=

1

|x|θ

∣∣∣∣∣
∞∑
k=0

c− θ
2 ,k

(
1− rθ+2k

)(
r2s−1 − rN−1−θ−2k

) ε2k
|x|2k

∣∣∣∣∣
≤ 1

|x|θ

(
(1− rθ)

∣∣r2s−1 − rN−1−θ
∣∣+ ∞∑

k=1

∣∣c− θ
2 ,k

∣∣∣∣r2s−1+2k − rN−1−θ
∣∣ ε2k

(r|x|)2k

)

≤ 1

|x|θ

(
(1− rθ)

∣∣r2s−1 − rN−1−θ
∣∣+ C

∞∑
k=1

ε2k

(r|x|)2k

)

≤ C

|x|θ
(1− rθ)

∣∣r2s−1 − rN−1−θ
∣∣ (A.10)

for some C = C(θ) > 0. In the last line, we used the fact that the power series in the line before
converges uniformly (in r) to zero and hence is controlled by (1− rθ)|r2s−1 − rN−1−θ|.

Moreover, we have∫ 1

0

(
χ(0,γ](r)

(
rN−1

(
1 +

1

rθ

)
+ r2s−1(1 + rθ)

)
ψ(r)

+ χ[γ,1)(r)
|1− rθ|

(1− r)1+2s
r2s−1|1− rN−θ−2s|(1− r)1+2sψ(r)

)
dr <∞. (A.11)

Indeed, since ψ(r) is bounded near zero,∫ 1

0

χ(0,γ](r)

(
rN−1

(
1 +

1

rθ

)
+ r2s−1(1 + rθ)

)
ψ(r) dr <∞ (A.12)

provided that θ > −2s. On the other hand, since

(1− r)1+2sψ(r) =
4

(2
√
r)

N−1
2

(
1− r

2
√
r

)1+2s ∫ 1

0

(h(1− h))
N−3

2(
( 1−r
2
√
r
)2 + h

)N+2s
2

dh,

which is Cs+κ(s)([γ, 1]) (for some κ depending on s) by the choice of γ ∈ ( 6−
√
32

2 , 1) and [24, Lemma
2.1], we have that∫ 1

0

χ[γ,1)(r)
|1− rθ|

(1− r)1+2s
r2s−1|1− rN−θ−2s|(1− r)1+2sψ(r) dr <∞. (A.13)

The claim (A.11) then follows from (A.12) and (A.13).
This implies, in view of (A.9) and (A.10), that the integral in (A.8) converges. Consequently,

(−∆)s

[
1

(ε2 + | · |2) θ
2

]
(x)

=
cN,s

|x|2s

∫ 1

0

ψ(r)

(
rN−1

(
1

(ε2 + |x|2) θ
2

− 1

(ε2 + r2|x|2) θ
2

)
+ r2s−1

(
1

(ε2 + |x|2) θ
2

− 1

(ε2 + |x|2
r2 )

θ
2

))
dr.
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In view of (A.9), (A.10), and (A.11), by Lebesgue’s dominated convergence theorem, we have that

|x|2s

cN,s
lim

ε→0+
(−∆)s

[
1

(ε2 + | · |2) θ
2

]
(x) =

lim
ε→0+

∫ 1

0

ψ(r)

(
rN−1

(ε2 + |x|2) θ
2

− rN−1

(ε2 + r2|x|2) θ
2

+
r2s−1

(ε2 + |x|2) θ
2

− r2s−1

(ε2 + |x|2
r2 )

θ
2

)
dr

=
1

|x|θ

∫ 1

0

r2s−1(1− rθ)(1− rN−2s−θ)ψ(r) dr.

In other words, we conclude that

lim
ε→0+

(−∆)s

[
1

(ε2 + | · |2) θ
2

]
(x) = |x|−(θ+2s)cN,s

∫ 1

0

r2s−1(1− rθ)(1− rN−2s−θ)ψ(r) dr.

□
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