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Abstract. We prove that, on any sub-Riemannian manifold endowed with a positive
smooth measure, the Bakry–Émery inequality for the corresponding sub-Laplacian,

1
2∆(∥∇u∥2) ≥ g(∇u, ∇∆u) + K∥∇u∥2, K ∈ R,

implies the existence of enough Killing vector fields on the tangent cone to force the latter
to be Euclidean at each point, yielding the failure of the curvature-dimension condition
in full generality. Our approach does not apply to non-strictly-positive measures. In
fact, we prove that the weighted Grushin plane does not satisfy any curvature-dimension
condition, but, nevertheless, does admit an a.e. pointwise version of the Bakry–Émery
inequality. As recently observed by Pan and Montgomery, one half of the weighted
Grushin plane satisfies the RCD(0, N) condition, yielding a counterexample to gluing
theorems in the RCD setting.

1. Introduction and statements

In the last twenty years, there has been an impressive effort in extending the concept of
‘Ricci curvature lower bound’ to non-Riemannian structures, and even to general metric
spaces equipped with a measure (metric-measure spaces, for short). We refer the reader
to the ICM notes [3] for a survey of this line of research.

There are two distinct points of view on the matter, traditionally known as the La-
grangian and Eulerian approaches, respectively.

The Lagrangian point of view is the one adopted by Lott–Villani and Sturm [36, 48,
49]. In this formulation, Ricci curvature lower bounds are encoded by convexity-type
inequalities for entropy functionals on the Wasserstein space. Such inequalities are called
curvature-dimension conditions, CD(K, N) for short, where K ∈ R represents the lower
bound on the curvature and N ∈ [1, ∞] stands for an upper bound on the dimension.

The Eulerian point of view, instead, employs the metric-measure structure to define an
energy form and, in turn, an associated diffusion operator. The notion of Ricci curvature
lower bound is therefore encoded in the so-called Bakry–Émery inequality, BE(K, N) for
short, for the diffusion operator, which can be expressed in terms of a suitable Gamma
calculus, see the monograph [10].

Thanks to several key contributions [4, 6, 7, 24], the Lagrangian and the Eulerian ap-
proaches are now known to be essentially equivalent. In particular, CD(K, N) always
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implies BE(K, N) in infinitesimal Hilbertian metric-measure spaces, as introduced in [25],
while the converse implication requires further technical assumptions.

Such synthetic theory of curvature-dimension conditions, besides being consistent with
the classical notions of Ricci curvature and dimension on smooth Riemannian manifolds,
is stable under pointed-measure Gromov–Hausdorff convergence. Furthermore, it yields
a comprehensive approach for establishing all results typically associated with Ricci cur-
vature lower bounds, like Poincaré, Sobolev, log-Sobolev and Gaussian isoperimetric in-
equalities, as well as Brunn–Minkowski, Bishop–Gromov and Bonnet–Myers inequalities.

1.1. The sub-Riemannian framework. Although the aforementioned synthetic cur-
vature-dimension conditions embed a large variety of metric-measure spaces, a relevant
and widely-studied class of smooth structures is left out—the family of sub-Riemmanian
manifolds. A sub-Riemannian structure is a natural generalization of a Riemannian one,
in the sense that its distance is induced by a scalar product that is defined only on a
smooth sub-bundle of the tangent bundle, whose rank possibly varies along the manifold.
See the monographs [2, 40,45] for a detailed presentation.

The first result in this direction was obtained by Driver–Melcher [23], who proved that
an integrated version of the BE(K, ∞), the so-called pointwise gradient estimate for the
heat flow, is false for the three-dimensional Heisenberg group.

In [31], Juillet proved the failure of the CD(K, ∞) property for all Heisenberg groups
(and even for the strictly related Grushin plane, see [32]). Later, Juillet [33] extended his
result to any sub-Riemannian manifold endowed with a possibly rank-varying distribution
of rank strictly smaller than the manifold’s dimension, and with any positive smooth
measure, by exploiting the notion of ample curves introduced in [1]. The idea of [31, 33]
is to construct a counterexample to the Brunn–Minkowski inequality.

The ‘no-CD theorem’ of [31] was extended to all Carnot groups by Ambrosio and the
second-named author in [8, Prop. 3.6] with a completely different technique, namely, by
exploiting the optimal version of the reverse Poincaré inequality obtained in [16].

In the case of sub-Riemannian manifolds endowed with an equiregular distribution and
a positive smooth measure, Huang–Sun [29] proved the failure of the CD(K, N) condition
for all values of K ∈ R and N ∈ (1, ∞) contradicting a bi-Lipschitz embedding result.

Very recently, in order to address the structures left out in [33], Magnabosco–Rossi [37]
recently extended the ‘no-CD theorem’ to almost-Riemannian manifolds M of dimension 2
or strongly regular. The approach of [37] relies on the localization technique developed by
Cavalletti–Mondino [19] in metric-measure spaces.

To complete the picture, we mention that several replacements for the Lott–Sturm–
Villani curvature-dimension property have been proposed and studied in the sub-Rieman-
nian framework in recent years. Far from being complete, we refer the reader to [11–15,38]
for an account on the Lagrangian approach, to [17] concerning the Eulerian one, and finally
to [47] for a first link between entropic inequalities and contraction properties of the heat
flow in the special setting of metric-measure groups.

Main aim. At the present stage, a ‘no-CD theorem’ for sub-Riemannian structures in
full generality is missing, since the aforementioned approaches [8, 23, 29, 31, 33, 37] either
require the ambient space to satisfy some structural assumptions, or leave out the infinite
dimensional case N = ∞.
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The main aim of the present paper is to fill this gap by showing that (possibly rank-
varying) sub-Riemannian manifolds do not satisfy any curvature bound in the sense of
Lott–Sturm–Villani or Bakry–Émery when equipped with a positive smooth measure, i.e.,
a Radon measure whose density in local charts with respect to the Lebesgue measure is
a strictly positive smooth function.

1.2. Failure of the Bakry–Émery inequality. The starting point of our strategy is
the weakest curvature-dimension condition, as we now define.
Definition 1.1 (Bakry–Émery inequality). We say that a sub-Riemannian manifold
(M, d) endowed with a positive smooth measure m satisfies the Bakry–Émery BE(K, ∞)
inequality, for K ∈ R, if

1
2 ∆(∥∇u∥2) ≥ g(∇u, ∇∆u) + K∥∇u∥2 for all u ∈ C∞(M), (1.1)

where ∆ is the corresponding sub-Laplacian, and ∇ the sub-Riemannian gradient.
Our first main result is the following rigidity property for sub-Riemannian structures

supporting the Bakry–Émery inequality (1.1).
Theorem 1.2 (no-BE). Let (M, d) be a complete sub-Riemannian manifold endowed
with a positive smooth measure m. If (M, d, m) satisfies the BE(K, ∞) inequality for some
K ∈ R, then rank Dx = dim M at each x ∈ M , so that (M, d) is Riemannian.

The idea behind our proof of Theorem 1.2 is to show that the metric tangent cone
in the sense of Gromov [26] at each point of (M, d) is Euclidean. This line of thought is
somehow reminiscent of the deep structural result for RCD(K, N) spaces, with K ∈ R and
N ∈ (1, ∞), proved by Mondino–Naber [39]. However, differently from [39], Theorem 1.2
provides information about the metric tangent cone at each point of the manifold. Showing
that the distribution D is Riemannian at almost every point in fact would not be enough,
as this would not rule out almost-Riemannian structures.

Starting from (1.1), we first blow-up the sub-Riemannian structure and pass to its
metric-measure tangent cone, showing that (1.1) is preserved with K = 0. Note that, in
this blow-up procedure, the positivity of the density of m is crucial, since otherwise the
resulting metric tangent cone would be endowed with the null measure.

The resulting blown-up sub-Riemannian space is isometric to a homogeneous space
of the form G/H, where G = exp g is the Carnot group associated to the underlying
(finite-dimensional and stratified) Lie algebra g of bracket-generating vector fields, and
H = exp h is its subgroup corresponding to the Lie subalgebra h of vector fields vanishing
at the origin, see [18]. Of course, the most difficult case is when H is non-trivial, that is,
the tangent cone is not a Carnot group.

At this point, the key idea is to show that the Bakry–Émery inequality BE(K, ∞)
implies the existence of special isometries on the tangent cone.
Definition 1.3 (Sub-Riemannian isometries). Let M be a sub-Riemannian manifold,
with distribution D and metric g. A diffeomorphism ϕ : M → M is an isometry if

(ϕ∗D)|x = Dϕ(x) for all x ∈ M, (1.2)
and, furthermore, ϕ∗ is an orthogonal map with respect to g. We say that a smooth vector
field V is Killing if its flow ϕV

t is an isometry for all t ∈ R.
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For precise definitions of g and h in the next statement, we refer to Section 2.4.

Theorem 1.4 (Existence of Killing fields). Let (M, d) be a complete sub-Riemannian
manifold equipped with a positive smooth measure m If (M, d, m) satisfies the BE(K, ∞)
inequality for some K ∈ R, then, for the nilpotent approximation at any given point, there
exists a vector space i ⊂ g1 such that

g1 = i ⊕ h1 (1.3)
and every Y ∈ i is a Killing vector field.

The existence of the space of isometries i forces the Lie algebra g to be commutative and
of maximal rank, thus implying that the original manifold (M, d) was in fact Riemannian.

Theorem 1.5 (Killing implies commutativity). If there exists a subspace i ⊂ g1 of Killing
vector fields such that g1 = i ⊕ h1, then g is commutative.

Theorem 1.5 states that, if a Carnot group contains enough horizontal symmetries, then
it must be commutative. As it will be evident from its proof, Theorem 1.5 holds simply
assuming that, for each V ∈ i, the flow ϕV

t is pointwise distribution-preserving, namely it
satisfies (1.2), without being necessarily isometries.

1.3. Infinitesimal Hilbertianity. The Bakry–Émery inequality BE(K, ∞) in (1.1) is a
consequence of the CD(K, ∞) condition as soon as the ambient metric-measure space is
infinitesimal Hilbertian as defined in [25].

Let (X, d) be a complete separable metric space, m be a locally bounded Borel mea-
sure, and q ∈ [1, ∞). We let |Du|w,q ∈ Lq(X, m) be the minimal q-upper gradient of a
measurable function u : X → R, see [5, Sec. 4.4]. We define the Banach space

W1,q(X, d, m) = {u ∈ Lq(X, m) : |Du|w,q ∈ Lq(X, m)}
with the norm

∥u∥W1,q(X,d,m) =
(
∥u∥q

Lq(X,m) + ∥|Du|w,q∥q
Lq(X,m)

)1/q
.

Definition 1.6 (Infinitesimal Hilbertianity). A metric measure space (X, d, m) is in-
finitesimally Hilbertian if W1,2(X, d, m) is a Hilbert space.

The infinitesimal Hilbertianity of sub-Riemannian structures has been recently proved
in [35], with respect to any Radon measure. In particular, Theorem 1.2 immediately
yields the following ‘no-CD theorem’ for sub-Riemannian manifolds, thus extending all
the aforementioned results [8, 23,29,31,33,37].

Corollary 1.7 (no-CD). Let (M, d) be a complete sub-Riemannian manifold endowed
with a positive smooth measure m. If (M, d, m) satisfies the CD(K, ∞) condition for some
K ∈ R, then (M, d) is Riemannian.

However, since the measure in Corollary 1.7 is positive and smooth, we can avoid to
rely on the general result of [35], instead providing a simpler and self-contained proof
of the infinitesimal Hilbertianity property. In particular, we prove the following result,
which actually refines [35, Th. 5.6] in the case of smooth measures. In the following,
HW1,q(M, m) denotes the sub-Riemannian Sobolev spaces (see Section 2.2).
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Theorem 1.8 (Infinitesimal Hilbertianity). Let q ∈ (1, ∞). Let (M, d) be a complete sub-
Riemannian manifold equipped with a positive smooth measure m. The following hold.

(i) W1,q(M, d, m) = HW1,q(M, m), with |Du|w,q = ∥∇u∥ m-a.e. on M for all u ∈
W1,q(M, d, m). In particular, taking q = 2, (M, d, m) is infinitesimally Hilbertian.

(ii) If (M, d, m) satisfies the CD(K, ∞) condition for some K ∈ R, then the Bakry–
Émery BE(K, ∞) inequality (1.1) holds on M .

Note that Theorem 1.8 holds for less regular measures, see Remark 3.6.

Remark 1.9 (The case of a.e. smooth measures). Theorem 1.8 can be adapted also to
the case of a Borel and locally finite measure m which is smooth and positive only on Ω,
where Ω ⊂ M is an open set with m(∂Ω) = 0. In this case, we obtain HW1,q(Ω, m) =
W1,q(Ω, d, m), with |Du|w,q = ∥∇u∥ m-a.e. on Ω for all u ∈ W1,q(Ω, d, m). In particular,
if m is smooth and positive out of a closed set Z, with m(Z) = 0, an elementary ap-
proximation argument proves that (M, d, m) is infinitesimally Hilbertian and, if (M, d, m)
satisfies the CD(K, ∞) condition for K ∈ R, then the Bakry-Émery BE(K, ∞) inequality
(1.1) holds on M \Z. This is the case, for example, of the Grushin planes and half-planes
with weighted measures of Section 1.5. The proof follows the same argument of the one of
Theorem 1.8, exploiting the locality of the q-upper gradient, see for example [5, Sec. 8.2]
and [25, Prop. 2.6], and similar properties for the distributional derivative.

1.4. An alternative approach to the ‘no-CD theorem’. We mention an alternative
proof of the ‘no-CD theorem’ for almost-Riemannian structures (i.e., sub-Riemannian
structures that are Riemannian outside a closed nowhere dense singular set). The strategy
relies on the Gromov-Hausdorff continuity of the metric tangent at interior points of
geodesics in RCD(K, N) spaces, with N < ∞, proved by Deng in [22],

For example, consider the standard Grushin plane (introduced in Section 1.5) equipped
with a smooth positive measure. The curve γ(t) = (t, 0), t ∈ R, is a geodesic between
any two of its point. The metric tangent at γ(t) is (isometric to) the Euclidean plane for
every t ̸= 0, while it is (isometric to) the Grushin plane itself for t = 0. Since the Grushin
plane cannot be bi-Lipschitz embedded into the Euclidean plane, the two spaces are at
positive Gromov-Hausdorff distance, contradicting the continuity result.

This strategy has a few drawbacks. On the one hand, it relies on the (non-trivial)
machinery developed in [22]. Consequently, this argument does not work in the case
N = ∞. On the other hand, the formalization of this strategy for general almost-Rie-
mannian structures requires certain quantitative bi-Lipschitz non-embedding results for
almost-Riemannian structures into Euclidean spaces, which we are able to prove only
under the same assumptions of [37].

1.5. Weighted Grushin structures. When the density of the smooth measure is al-
lowed to vanish, the ‘no-CD theorem’ breaks down. In fact, in this situation, the following
two interesting phenomena occur:
(A) the Bakry-Émery BE(K, ∞) inequality no longer implies the CD(K, ∞) condition;
(B) there exist almost-Riemannian structures with boundary satisfying the CD(0, N)

condition for N ∈ [1, ∞].
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We provide examples of both phenomena on the so-called weighted Grushin plane. This
is the sub-Riemannian structure on R2 induced by the family F = {X, Y }, where

X = ∂x, Y = x ∂y, (x, y) ∈ R2. (1.4)
The induced distribution D = span{X, Y } has maximal rank outside the singular region
S = {x = 0} and rank 1 on S. Since [X, Y ] = ∂y on R2, the resulting sub-Riemannian
metric space (R2, d) is Polish and geodesic. It is almost-Riemannian in the sense that, out
of S, the metric is locally equivalent to the Riemannian one given by the metric tensor

g = dx ⊗ dx + 1
x2 dy ⊗ dy, x ̸= 0. (1.5)

We endow the metric space (R2, d) with the weighted Lebesgue measure
mp = |x|p dx dy,

where p ∈ R is a parameter. The choice p = −1 corresponds to the Riemannian density

volg = 1
|x|

dx dy, x ̸= 0, (1.6)

so that
mp = e−V volg, V (x) = −(p + 1) log |x|, x ̸= 0. (1.7)

We call the metric-measure space Gp = (R2, d, mp) the (p-)weighted Grushin plane.
We can now state the following result, illustrating phenomenon (A).

Theorem 1.10. Let p ∈ R and let Gp = (R2, d, mp) be the weighted Grushin plane.
(i) If p ≥ 0, then Gp does not satisfy the CD(K, ∞) property for all K ∈ R.

(ii) If p ≥ 1, then Gp satisfies the BE(0, ∞) inequality (1.1) almost everywhere.

To prove (i), we show that the corresponding Brunn–Minkowski inequality is violated.
In fact, the case p = 0 is due to Juillet [32], while the case p > 0 can be achieved via a
simple argument which was pointed out to us by J. Pan. Claim (ii), instead, is obtained
by direct computations.

Somewhat surprisingly, the weighted Grushin half -plane G+
p —obtained by restricting

the metric-measure structure of Gp to the (closed) half-plane [0, ∞)×R—does satisfy the
CD(0, N) condition for sufficiently large N ∈ [1, ∞]. Precisely, we can prove the following
result, illustrating phenomenon (B).

Theorem 1.11. Let p ≥ 1. The weighted Grushin half-plane G+
p satisfies the CD(0, N)

condition if and only if N ≥ Np, where Np ∈ (2, ∞] is given by

Np = (p + 1)2

p − 1 + 2, (1.8)

with the convention that N1 = ∞. Furthermore, G+
p is infinitesimally Hilbertian, and it

is thus an RCD(0, N) space for N ≥ Np.

While we were completing this work, Pan and Montgomery [41] observed that the spaces
built in [20, 42] as Ricci limits are actually the weighted Grushin half-spaces presented
above. Our construction and method of proof are more direct with respect to the approach
of [20, 42], and easily yield sharp dimensional bounds.
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1.6. Counterexample to gluing theorems. We end this introduction with an inter-
esting by-product of our analysis, in in connection with the so-called gluing theorems.

Perelman’s Doubling Theorem [43, Sect. 5.2] states that a finite dimensional Alexan-
drov space with a curvature lower bound can be doubled along its boundary yielding an
Alexandrov space with same curvature lower bound and dimension. This result has been
extended by Petrunin [44, Th. 2.1] to the gluing of Alexandrov spaces.

It is interesting to understand whether these classical results hold true for general
metric-measure spaces satisfying synthetic Ricci curvature lower bounds in the sense of
Lott–Sturm–Villani. In [34], the gluing theorem was proved for CD(K, N) spaces with
Alexandrov curvature bounded from below (while it is false for MCP spaces, see [46]).

Here we obtain that, in general, the assumption of Alexandrov curvature bounded
from below cannot be removed from the results in [34]. More precisely, Theorems 1.10
and 1.11, and the fact that the metric-measure double of the Grushin half-plane G+

p is Gp

(see [46, Prop. 6]) yield the following corollary.

Corollary 1.12 (Counterexample to gluing in RCD spaces). For all N ≥ 10, there exists
a geodesically convex RCD(0, N) metric-measure space with boundary such that its metric-
measure double does not satisfy the CD(K, ∞) condition for any K ∈ R.

In [34, Conj. 1.6], the authors conjecture the validity of the gluing theorem for non-
collapsed RCD(K, N), with N the Hausdorff dimension of the metric-measure space.
As introduced in [21], a non-collapsed RCD(K, N) space is an infinitesimally Hilbertian
CD(K, N) space with m = H N , where H N denotes the N -dimensional Hausdorff mea-
sure of (X, d). Since the weighted half-Grushin spaces are indeed collapsed, Corollary 1.12
also shows that the non-collapsing assumption cannot be removed from [34, Conj. 1.6].
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2. Preliminaries

In this section, we introduce some notation and recall some results about sub-Rieman-
nian manifolds and curvature-dimension conditions.

2.1. Sub-Riemannian structures. For L ∈ N, we let F = {X1, . . . , XL} be a family
of smooth vector fields globally defined on a smooth n-dimensional manifold M , n ≥ 2.
The (generalized) sub-Riemannian distribution induced by the family F is defined by

D =
⊔

x∈M

Dx, Dx = span{X1|x, . . . , XL|x} ⊂ TxM, x ∈ M. (2.1)
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Note that we do not require the dimension of Dx to be constant as x ∈ M varies, that is,
we may consider rank-varying distributions. With a standard abuse of notation, we let

Γ(D) = C∞-module generated by F .

Notice that, for any smooth vector field V , it holds

V ∈ Γ(D) =⇒ Vx ∈ Dx for all x ∈ M,

but the converse is false in general. We let

∥V ∥x = min
{

|u| : u ∈ RL such that V =
L∑

i=1
ui Xi|x, Xi ∈ F

}
(2.2)

whenever V ∈ D and x ∈ M . The norm ∥ · ∥x induced by the family F satisfies the
parallelogram law and, consequently, it is induced by a scalar product

gx : Dx × Dx → R.

An admissible curve is a locally Lipschitz in charts path γ : [0, 1] → M such that there
exists a control u ∈ L∞([0, 1];RL) such that

γ̇(t) =
L∑

i=1
ui(t)Xi|γ(t) for a.e. t ∈ [0, 1].

The length of an admissible curve γ is defined via the norm (2.2) as

length(γ) =
∫ 1

0
∥γ̇(t)∥γ(t) dt

and the Carnot–Carathéodory (or sub-Riemannian) distance between x, y ∈ M is

d(x, y) = inf{length(γ) : γ admissible with γ(0) = x, γ(1) = y}.

We assume that the family F satisfies the bracket-generating condition

TxM = {X|x : X ∈ Lie(F )} for all x ∈ M, (2.3)

where Lie(F ) is the smallest Lie subalgebra of vector fields on M containing F , namely,

Lie(F ) = span
{
[Xi1 , . . . , [Xij−1 , Xij

]] : Xiℓ
∈ F , j ∈ N

}
.

Under the assumption (2.3), the Chow–Rashevskii Theorem implies that d is a well-defined
finite distance on M inducing the same topology of the ambient manifold.

2.2. Gradient, sub-Laplacian and Sobolev spaces. The gradient of a function u ∈
C∞(M) is the unique vector field ∇u ∈ Γ(D) such that

g(∇u, V ) = du(V ) for all V ∈ Γ(D). (2.4)

One can check that ∇u can be globally represented as

∇u =
L∑

i=1
Xiu Xi, with ∥∇u∥2 =

L∑
i=1

(Xiu)2, (2.5)

even if the family F is not linearly independent, see Corollary A.2 for a proof.



FAILURE OF CD CONDITIONS ON SUB-RIEMANNIAN MANIFOLDS 9

We equip the manifold M with a positive smooth measure m. The sub-Laplacian of a
function u ∈ C∞(M) is the unique function ∆u ∈ C∞(M) such that∫

M
g(∇u, ∇v) dm = −

∫
M

v ∆u dm (2.6)

for all v ∈ C∞
c (M). On can check that ∆u can be globally represented as

∆u =
L∑

i=1

(
X2

i u + Xiu divm(Xi)
)

, (2.7)

see Corollary A.2 for a proof. In (2.7), divmV is the divergence of the vector field V
computed with respect to m, that is,∫

M
v divm(V ) dm = −

∫
M

g(∇v, V ) dm for all v ∈ C∞
c (M).

For q ∈ [1, ∞), we say that u ∈ L1
loc(M, m) has q-integrable distributional Xi-derivative

if there exists a function Xiu ∈ Lq(M, m) such that∫
M

vXiu dm =
∫

M
uX∗

i v dm for all v ∈ C∞
c (M),

where X∗
i v = −Xiv − v divm(Xi) denotes the adjoint action of Xi. We thus let

HW1,q(M, m) = {u ∈ Lq(M, m) : Xiu ∈ Lq(M, m), i = 1, . . . , L}
be the usual horizontal W1,q Sobolev space induced by the the family F and the measure m
on M , endowed with the natural norm

∥u∥HW1,q(M,m) =
(
∥u∥q

Lq(M,m) + ∥∇u∥q
Lq(M,m)

)1/q

for all u ∈ HW1,q(M, m), where ∇u =
L∑

i=1
Xiu Xi in accordance with (2.5) and

∥∇u∥q
Lq(M,m) =

∫
M

∥∇u∥q dm.

2.3. Privileged coordinates. Following [18, 30], we introduce privileged coordinates, a
fundamental tool in the description of the tangent cone of sub-Riemannian manifolds.

Given a multi-index I ∈ {1, . . . , L}×i, i ∈ N, we let |I| = i be its length and we set
XI = [XI1 , [. . . , [XIi−1 , XIi

]]]].
Accordingly, we define

D i
x = span{XI |x : |I| ≤ i} (2.8)

and
ki(x) = dim D i

x

for all x ∈ M and i ∈ N. In particular, D0
x = {0} and D1

x = Dx as in (2.1) for all x ∈ M .
The spaces defined in (2.8) naturally yield the filtration

{0} = D0
x ⊂ D1

x ⊂ · · · ⊂ Ds(x)
x = TxM

for all x ∈ M , where s = s(x) ∈ N is the step of the sub-Riemannian structure at the
point x. We say that x ∈ M is a regular point if the dimension of each space D i

y remains
constant as y ∈ M varies in an open neighborhood of x, otherwise x is a singular point.
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Definition 2.1 (Adapted and privileged coordinates). Let o ∈ M and let U ⊂ M be an
open neighborhood of o. We say that the local coordinates given by a diffeomorphism
z : U → Rn are adapted at o if they are centered at o, i.e. z(o) = 0, and ∂z1|0, . . . , ∂zki

|0
form a basis for D i

o in these coordinates for all i = 1, . . . , s(o). We say that the adapted
coordinate zi has weight wi = j if ∂zi

|0 ∈ D j
o \ D j−1

o . Furthermore, we say that the coor-
dinates z are privileged at o if they are adapted at o and, in addition, zi(x) = O(d(x, o)wi)
for all x ∈ U and i = 1, . . . , n.

Privileged coordinates exist in a neighborhood of any point, see [18, Th. 4.15].

2.4. Nilpotent approximation. From now on, we fix a set of privileged coordinates
z : U → Rn around a point o ∈ M in the sense of Definition 2.1. Without loss of
generality, we identify the coordinate domain U ⊂ M with Rn and the base point o ∈ M
with the origin 0 ∈ Rn. Similarly, the vector fields in F defined on U are identified with
vector fields on Rn, and the restriction of the sub-Riemannian distance d to U is identified
with a distance function on Rn, which is induced by the family F , for which we keep the
same notation.

On (Rn, F ), we define a family of dilations, for λ ≥ 0, by letting
dilλ : Rn → Rn, dilλ(z1, . . . , zn) = (λw1z1, . . . , λwnzn)

for all z = (z1, . . . , zn) ∈ Rn, where the wi’s are the weights given by Definition 2.1. We
say that a differential operator P is homogeneous of degree −d ∈ Z if

P (f ◦ dilλ) = λ−d(Pf) ◦ dilλ for all λ > 0 and f ∈ C∞(Rn). (2.9)
Note that the monomial zi is homogeneous of degree wi, while the vector field ∂zi

is
homogeneous of degree −wi, for i = 1, . . . , n. As a consequence, the differential operator

zµ1
1 · · · · · zµn

n

∂|ν|

∂zν1
1 · · · ∂zνn

n

, νi, µj ∈ N ∪ {0},

is homogeneous of degree ∑n
i=1 wi(µi − νi). For more details, see [18, Sec. 5].

We can now introduce the new family
F̂ =

{
X̂1, . . . , X̂L

}
by defining

X̂i = lim
ε→0

Xε
i , Xε

i = ε (dil1/ε)∗Xi, (2.10)
for all i = 1, . . . , L, where (dil1/ε)∗ stands for the usual push-forward via the differential
of the dilation map dil1/ε, see [18, Sec. 5.3]. The convergence in (2.10) can be actually
made more precise, in the sense that

Xε
i = X̂i + Rε

i , i = 1, . . . , L,

where Rε
i locally uniformly converges to zero as ε → 0, see [18, Th. 5.19].

The family F̂ is a set of complete vector fields on Rn, homogeneous of degree −1, with
polynomial coefficients, and can be understood as the ‘principal part’ of F upon blow-up
by dilations. Since F satisfies the bracket-generating condition (2.3), also the new family
F̂ is bracket-generating at all points of Rn, and thus induces a finite sub-Riemannian
distance d̂, see [18, Prop. 5.17]. The resulting n-dimensional sub-Riemannian structure
(Rn, F̂ ) is called nilpotent approximation of (Rn, F ) at 0 ∈ Rn.
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The family F̂ =
{
X̂1, . . . , X̂L

}
generates a finite-dimensional stratified Lie algebra

g = Lie(F̂ ) = g1 ⊕ · · · ⊕ gs

of step s = s(0) ∈ N, where the grading is given by the degree of the vector fields,
according to the definition in (2.9), that is, the layer gi corresponds to vector fields
homogeneous of degree −i with respect to dilations, see [18, Sec. 5.4]. In particular,
g1 = span

{
X̂1, . . . , X̂L

}
, so that g is generated by its first stratum, namely,

gj+1 = [g1, gj], ∀j = 1, . . . , s − 1. (2.11)
Finally, define the Lie subalgebra of vector fields vanishing at 0,

h =
{
X̂ ∈ g : X̂|0 = 0

}
= h1 ⊕ · · · ⊕ hs,

which inherits the grading from the one of g,
hj+1 = [h1, hj], ∀j = 1, . . . , s − 1. (2.12)

It is a fundamental fact [18, Th. 5.21] that the nilpotent approximation (Rn, F̂ ) is diffeo-
morphic to the homogeneous sub-Riemannian space G/H, where G is the Carnot group
G = exp g (explicitly realized as the subgroup of the flows of the vector fields of g acting
on Rn from the right) and H = exp h is the Carnot subgroup induced by h.

In particular, if 0 ∈ Rn is a regular point, then H = {0}, and so the nilpotent approxi-
mation (Rn, F̂ ) is diffeomorphic to the Carnot group G, see [18, Prop. 5.22].

Recall that the smooth measure m on the original manifold M can be identified with
a smooth measure on U ≃ Rn, for which we keep the same notation. In particular, m
is absolutely continuous with respect to the n-dimensional Lebesgue measure L n on Rn,
with m = ρ L n for some positive smooth function ρ : Rn → (0, ∞). The corresponding
blow-up measure on the nilpotent approximation is naturally given by

m̂ = lim
ε→0

mε = ρ(0) L n, mε = εQ (dil1/ε)#m,

in the sense of weak∗ convergence of measures in Rn, where

Q =
n∑

i=1
i wi ∈ N

is the so-called homogeneous dimension of (Rn, F̂ ) and (dil1/ε)# stands for the push-
forward in the measure-theoretic sense via the dilation map dil1/ε. Consequently, without
loss of generality, we can assume that ρ(0) = 1, thus endowing (Rn, F̂ ) with the n-
dimensional Lebesgue measure. Notice that divL nX̂i = 0, for all i = 1, . . . , L, since
each X̂i is homogeneous of degree −1. Hence, by (2.7), the sub-Laplacian of a function
u ∈ C∞(Rn) can be globally represented as

∆̂u =
L∑

i=1
X̂ 2

i u. (2.13)

It is worth noticing that the metric space (Rn, d̂ ) induced by the nilpotent approxi-
mation (Rn, F̂ ) actually coincides with the metric tangent cone at o ∈ M of the metric
space (M, d) in the sense of Gromov [26], see [18, Th. 7.36] for the precise statement.



12 L. RIZZI AND G. STEFANI

In fact, the sub-Riemmanian distance dε induced by the vector fields Xε
i , i = 1, . . . , L,

defined in (2.10) is uniformly converging to the distance d̂ on compact sets as ε → 0.
It is not difficult to check that the family {(Rn, dε, mε, 0)}ε>0 of pointed metric-measure

spaces converge to the pointed metric-measure space (Rn, d̂, L n, 0) as ε → 0 in the pointed
measure Gromov–Hausdorff topology, see [13, Sec. 10.3] for details.

2.5. The curvature-dimension condition. We end this section by recalling the defi-
nition of curvature-dimension conditions of introduced in [36,48,49].

On a Polish (i.e., separable and complete) metric space (X, d), we let P(X) be the set
of probability Borel measures on X and define the Wasserstein (extended) distance W2

W2
2(µ, ν) = inf

{∫
X×X

d2(x, y) dπ : π ∈ Plan(µ, ν)
}

∈ [0, ∞],

for µ, ν ∈ P(X), where
Plan(µ, ν) = {π ∈ P(X × X) : (p1)#π = µ, (p2)#π = ν},

where pi : X ×X → X, i = 1, 2, are the projections on each component and T#µ ∈ P(Y )
denotes the push-forward measure given by any µ-measurable map T : X → X. The
function W2 is a distance on the Wasserstein space

P2(X) =
{

µ ∈ P(X) :
∫

X
d2(x, x0) dµ(x) < ∞ for some, and thus any, x0 ∈ X

}
.

Note that (P2(X), W2) is a Polish metric space which is geodesic as soon as (X, d) is. In
addition, letting Geo(X) be the set of geodesics of (X, d), namely, curves γ : [0, 1] → X
such that d(γs, γt) = |s−t| d(γ0, γ1), for all s, t ∈ [0, 1], any W2-geodesic µ : [0, 1] → P2(X)
can be (possibly non-uniquely) represented as µt = (et)♯ν for some ν ∈ P(Geo(X)), where
et : Geo(X) → X is the evaluation map at time t ∈ [0, 1].

We endow the metric space (X, d) with a non-negative Borel measure m such that
m is finite on bounded sets and supp(m) = X.

We define the (relative) entropy functional Entm : P2(X) → [−∞, +∞] by letting

Entm(µ) =
∫

X
ρ log ρ dm

if µ = ρm and ρ log ρ ∈ L1(X, m), while we set Entm(µ) = +∞ otherwise.
Definition 2.2 (CD(K, ∞) property). We say that a metric-measure space (X, d, m)
satisfies the CD(K, ∞) property if, for any µ0, µ1 ∈ P2(X) with Entm(µi) < +∞, i = 0, 1,
there exists a W2-geodesic [0, 1] ∋ s 7→ µs ∈ P2(X) joining them such that

Entm(µs) ≤ (1 − s) Entm(µ0) + s Entm(µ1) − K

2 s(1 − s) W2
2(µ0, µ1) (2.14)

for every s ∈ [0, 1].
The geodesic K-convexity of Entm in (2.14) can be reinforced to additionally encode an

upper bound on the dimension on the space, as recalled below. For N ∈ (1, ∞), we let

SN(µ, m) = −
∫

X
ρ−1/N dµ, µ = ρm + µ⊥,

be the N -Rényi entropy of µ ∈ P2(X) with respect to m, where µ = ρm + µ⊥ denotes
the Radon–Nikodym decomposition of µ with respect to m.
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Definition 2.3 (CD(K, N) property). We say that a metric-measure space (X, d, m)
satisfies the CD(K, N) property for some N ∈ [1, ∞) if, for any µ0, µ1 ∈ P2(X) with
µi = ρim, i = 0, 1, there exists a W2-geodesic [0, 1] ∋ s 7→ µs ∈ P2(X) joining them, with
µs = (es)♯ν for some ν ∈ P(Geo(X)) such that

SN ′(µs, m) ≤ −
∫

Geo(X)

[
τ

(1−s)
K,N ′ (d(γ0, γ1))ρ−1/N ′

0 (γ0) + τ
(s)
K,N ′(d(γ0, γ1))ρ−1/N ′

1 (γ1)
]

dν(γ)

for every s ∈ [0, 1], N ′ ≥ N . Here τ
(s)
K,N is the model distortion coefficient, see [49, p. 137].

Remark 2.4. The CD(0, N) corresponds to the convexity of the N ′-Rényi entropy
SN ′(µs, m) ≤ (1 − s)SN ′(µ0, m) + sSN ′(µ1, m),

for every s ∈ [0, 1] and N ′ ≥ N , with µ0, µ1 ∈ P2(X) as in Definition 2.3.

Remark 2.5. For a CD(K, N) metric-measure space, K and N represent a lower bound
on the Ricci tensor and an upper bond on the dimension, respectively, and we have

CD(K, N) =⇒ CD(K, N ′) for all N ′ ≥ N, N, N ′ ∈ [1, ∞],
CD(K, N) =⇒ CD(K ′, N) for all K ′ ≤ K, K, K ′ ∈ R.

In particular, the CD(K, ∞) condition (2.14) is the weakest of all the curvature-dimension
conditions for fixed K ∈ R.

3. Proofs

We first deal with Theorems 1.4 and 1.5, from which Theorem 1.2 immediately follows.

3.1. Proof of Theorem 1.4. We divide the proof in four steps.

Step 1: passing to the nilpotent approximation via blow-up. Let (Rn, F̂ ) be the nilpotent
approximation of (M, F ) at some fixed point o ∈ M as explained in Section 2.4. Let
u ∈ C∞

c (M) and, without loss of generality, let us assume that supp u is contained in the
domain of the privileged coordinates at o ∈ M . In particular, we identify u with a C∞

c

function on Rn. We now apply (1.1) to the dilated function
uε = u ◦ dil1/ε ∈ C∞

c (Rn), for ε > 0,

and evaluate this expression at the point dilε(x) ∈ Rn. Exploiting the expressions in Corol-
lary A.2, we get that

L∑
i,j=1

Xε
i u
(
Xε

ijju − Xε
jjiu

)
− (Xε

iju)2 + Rε
i,j u ≤ 0, (3.1)

where Xε
i is as in (2.10) , Xijk = XiXjXk whenever i, j, k ∈ {1, . . . , L}, and Rε

i,j is a
reminder locally uniformly vanishing as ε → 0. Therefore, letting ε → 0 in (3.1), by the
convergence in (2.10) we get

L∑
i,j=1

X̂iu
(
X̂ijju − X̂jjiu

)
−
(
X̂iju

)2
≤ 0, (3.2)

which is (1.1) with K = 0 for the nilpotent approximation (Rn, F̂ ).
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Step 2: improvement via homogeneous structure. We now show that (3.2) implies a
stronger identity, see (3.4) below, obtained from (3.2) by removing the squared term and
replacing the inequality with an equality. Recall, in particular, the definition of weight of
(privileged) coordinates in Definition 2.1. We take u ∈ C∞(Rn) of the form

u = α + γ,

where α and γ are homogeneous polynomial of weighted degree 1 and at least 3, respec-
tively. Since XIα = 0 as soon as the multi-index satisfies |I| ≥ 2 (see [18, Prop. 4.10]),
we can take the terms with lowest homogeneous degree in (3.2) to get

L∑
i,j=1

X̂iα
(
X̂ijjγ − X̂jjiγ

)
=

L∑
i=1

X̂iα
[
X̂i, ∆̂

]
(γ) ≤ 0

for all such α and γ. In the second equality, we used the fact that the sub-Laplacian ∆̂ is
a sum of squares as in (2.13). Since α can be replaced with −α, we must have that

L∑
i=1

X̂iα
[
X̂i, ∆̂

]
(γ) = 0. (3.3)

Observing that X̂iα is homogeneous of degree 0, and thus a constant function, we can
rewrite (3.3) as [

L∑
i=1

X̂iα X̂i, ∆̂
]

(γ) = 0, (3.4)

which is the seeked improvement of (3.2).

Step 3: construction of the space i ⊂ g1. Let Pn
1 be the vector space of homogeneous

polynomials of weighted degree 1 on Rn. Notice that

Pn
1 = span{zi | i = 1, . . . , k1}, k1 = dim D |0,

that is, Pn
1 is generated by the monomials given by the coordinates of lowest weight. We

now define a linear map ϕ : Pn
1 → g1 by letting

ϕ[α] = ∇̂α =
L∑

i=1
X̂iα X̂i

for all α ∈ Pn
1 (recall Corollary A.2). We claim that ϕ is injective. Indeed, if ϕ[α] = 0 for

some α ∈ Pn
1 , then, by applying the operator ϕ[α] to the polynomial α, we get

0 = ϕ[α](α) =
(

L∑
i=1

X̂iα X̂i

)
(α) =

L∑
i=1

(X̂iα)2.

Thus X̂iα = 0 for all i = 1, . . . , L. Hence α must have weighted degree at least 2.
However, since α is homogeneous of weighted degree 1, we conclude that α = 0, proving
that ker ϕ = {0}. We can thus define the subspace

i = ϕ[Pn
1 ] ⊂ g1.
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By (3.4), any X̂ ∈ i is such that [X̂, ∆̂](γ) = 0 for any homogeneous polynomial γ
of degree at least 3. Exploiting the definitions given in Section 2.4, we observe that a
differential operator P , homogeneous of weighted degree −d ∈ Z, has the form

P =
∑
µ,ν

aµ,νzµ ∂|ν|

∂zν
, (3.5)

where µ = (µ1, . . . , µn), ν = (ν1, . . . , νn), µi, νj ∈ N ∪ {0}, aµ,ν ∈ R, and the weighted
degree of every addend in (3.5) is equal to −d, namely, ∑n

i=1(µi − νi)wi = −d.
Thus, since X̂ and ∆̂ are homogeneous differential operators of order −1 and −2,

respectively, then [X̂, ∆̂] has order −3, see [18, Prop. 5.16]. It follows that [X̂, ∆̂] = 0 as
differential operator acting on C∞(Rn).

We now show (1.3). Let us first observe that i ∩ h = {0}. Indeed, if ϕ[α] ∈ h for some
α ∈ Pn

1 , that is, ϕ[α]|0 = 0, then X̂iα|0 = 0 for all i = 1, . . . , L. Since X̂iα is a constant
function, this implies ϕ[α] = 0, as claimed. Therefore, since dim i = dimPn

1 = k1, we must
have g1 = i ⊕ h1 thanks to Lemma 3.1 below.

Lemma 3.1. With the same notation of Section 2.4, if g1 = v ⊕ h1, then dim v = k1.

Proof. We claim that the dimension of v is preserved by evaluation at zero, that is,
dim v|0 = dim v, where dim v|0 is the dimension of v|0 as a subspace of T0Rn, while
dim v is the dimension of v as a subspace of g. Indeed, we have the trivial inequality
dim v|0 ≤ dim v. On the other hand, if strict inequality holds, then v must contain non-
zero vector fields vanishing at zero, contradicting the fact that v ∩ h = {0}. Therefore,
since dim g1|0 = k1 and dim h1|0 = 0, we get dim v = dim v|0 = k1 as desired. □

Step 4: proof of the Killing property. We have so far proved the existence of i such that
g1 = i ⊕ h1, and such that any element Y ∈ i commutes with the sub-Laplacian ∆̂. We
now show that all such Y is a Killing vector field.

Let Y ∈ i. Since [Y, ∆̂] = 0, the induced flow ϕY
s , for s ∈ R, commutes with ∆̂ when

acting on smooth functions, that is,

∆̂(u ◦ ϕY
s ) = (∆̂u) ◦ ϕY

s (3.6)

for all u ∈ C∞(Rn) and s ∈ R. Recall the sub-Riemannian Hamiltonian Ĥ : T ∗Rn → R,

Ĥ(λ) = 1
2

L∑
i=1

⟨λ, X̂i⟩2, (3.7)

for all λ ∈ T ∗Rn. By (2.13), Ĥ is the principal symbol of ∆̂. Thus, from (3.6) it follows

Ĥ ◦
(
ϕY

s

)∗
= Ĥ,

for all s ∈ R, where the star denotes the pull-back, and thus
(
ϕY

s

)∗
is a diffeomorphism

on T ∗Rn. This means that ϕY
s is an isometry, as we now show. Indeed, for any given

x ∈ Rn, the restriction Ĥ|T ∗
xRn is a quadratic form on T ∗

xRn, so (ϕY
s )∗ must preserve its

kernel, that is,
(ϕY

s )∗ ker Ĥ|T ∗
ϕY

s (x)
Rn = ker Ĥ|T ∗

xRn (3.8)
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for all x ∈ Rn. By (3.7), it holds ker Ĥ|T ∗
xRn = D̂⊥

x , where ⊥ denotes the annihilator of a
vector space. By duality, from (3.8) we obtain that (ϕY

s )∗D̂x = D̂ϕY
s (x) for all x ∈ Rn as

required by (1.2). Finally, for λ ∈ T ∗
x M , let λ# ∈ Dx be uniquely defined by gx(λ#, V ) =

⟨λ, V ⟩x for all V ∈ Dx, and notice that the map λ 7→ λ# is surjective on Dx. Then it holds
∥λ#∥2

x = 2Ĥ(λ), see Lemma A.1. Thus, since (ϕY
s )∗ preserves Ĥ, the map (ϕY

s )∗ preserves
the sub-Riemannian norm, and thus g. This means that ϕY

s is an isometry, concluding
the proof of Theorem 1.4. □

3.2. Proof of Theorem 1.5. We claim that
gj = hj for all j ≥ 2. (3.9)

Note that (3.9) is enough to conclude the proof of Theorem 1.5, since, from (3.9) combined
with (2.11) and (2.12), we immediately get that

g = g1 ⊕ h2 ⊕ · · · ⊕ hs.

In particular, we deduce that g|0 = g1|0, which in turn implies that g must be commu-
tative, otherwise the bracket-generating condition would fail. To prove (3.9), we proceed
by induction on j ≥ 2 as follows.

Proof of the base case j = 2. We begin by proving the base case j = 2 in (3.9). To this
aim, let X̂ ∈ i and Ŷ ∈ g1. By definition of Lie bracket, we can write(

ϕX̂
−s

)
∗
Ŷ = s

[
X̂, Ŷ

]
+ o(s) as s → 0,

where ϕX̂
s , for s ∈ R, is the flow of X̂. Since g1|x = D̂ |x for all x ∈ Rn, and since X̂ is

Killing (in particular (1.2) holds for its flow), we have that [X̂, Ŷ ]|x ∈ D̂ |x for all x ∈ Rn.
Since [X̂, Ŷ ] ∈ g2 and so, in particular, [X̂, Ŷ ] is homogeneous of degree −2, we have

[X̂, Ŷ ]|0 =
∑

j : wj=2
aj ∂zj

|0,

for some constants aj ∈ R. But we also must have that [X̂, Ŷ ]|0 ∈ D̂ |0 and so, since

D̂ |0 = span
{
∂zj

: wj = 1
}

according to Definition 2.1, [X̂, Ŷ ]|0 = 0, that is, [X̂, Ŷ ] ∈ h. We thus have proved that
[i, g1] ⊂ h2. In particular, since g1 = i ⊕ h1, we get

[i, i] ⊂ h2 and [i, h1] ⊂ h2, (3.10)
from which we readily deduce (3.9) for j = 2.

Proof of the induction step. Let us assume that (3.9) holds for some j ∈ N, j ≥ 2. Since
g1 = i ⊕ h1, by the induction hypothesis we can write

gj+1 = [g1, gj] = [g1, hj] = [i, hj] + [h1, hj] = [i, hj] + hj+1.

We thus just need to show that [i, hj] ⊂ hj+1 for all j ∈ N with j ≥ 2. Note that we
actually already proved the case j = 1 in (3.10). Again arguing by induction (taking
j = 1 as base case), by the Jacobi identity and (3.10) we have

[i, hj+1] = [i, [h1, hj]] = [h1, [hj, i]] + [hj, [i, h1]] ⊂ [h1, hj+1] + [hj, h2] = hj+2
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as desired, concluding the proof of the induction step. □

Remark 3.2 (Proof of Theorem 1.5 in the case h = {0}). The proof of Theorem 1.5 is
much simpler if the nilpotent approximation (Rn, F̂ ) is a Carnot group, i.e., h = {0}.
Indeed, in this case, the base case j = 2 in (3.9) immediately implies that g2 = h2 = {0},
which in turn gives g = g1, so that g is commutative.

3.3. Proof of Theorem 1.8. In the following, we assume that the reader is familiar with
the notions of upper gradient and of q-upper gradient, see [5] for the precise definitions.
The next two lemmas are proved in [27] for sub-Riemannians structures on Rn equipped
with the Lebesgue measure, and are immediately extended to the weighted case.

Lemma 3.3. Let (M, d, m) be as in Theorem 1.8. If u ∈ C(M) and 0 ≤ g ∈ L1
loc(M, m)

be an upper gradient of u, then u ∈ HW1,1
loc(M, m) with ∥∇u∥ ≤ g m-a.e. In particular, if

u ∈ Lip(M, d), then ∥∇u∥ ≤ Lip(u).

Proof. Without loss of generality we may assume that M = Ω ⊂ Rn is a bounded open
set, the sub-Riemannian structure is induced by a family of smooth bracket-generating
vector fields F = {X1, . . . , XL} on Ω and m = θL n, where θ : Ω → [0, ∞) is smooth
and satisfies 0 < infΩ θ ≤ supΩ θ < ∞. Hence, L1(Ω, θL n) = L1(Ω, L n) as sets, with
equivalent norms, so that 0 ≤ g ∈ L1

loc(Ω, L n) is an upper gradient of u ∈ C(Ω). Hence,
by [27, Th. 11.7], we get that u ∈ HW1,1

loc(Ω, L n), with ∥∇u∥ ≤ g L n-a.e., and thus
θL n-a.e., on Ω. By definition of distributional derivative, we can write∫

Ω
v Xiu dx =

∫
Ω

u [−Xiv + div(Xi)v] dx, ∀ v ∈ C1
c (Ω), i = 1, . . . , L,

where div denotes the Euclidean divergence. We apply the above formula with test
function v = θw, for any w ∈ C1

c (Ω), getting∫
Ω

w Xiu θ dx =
∫

Ω
u

[
−Xiw + div(Xi)w + Xiθ

θ
w

]
θ dx, ∀ w ∈ C1

c (Ω), i = 1, . . . , L.

The function within square brackets is the adjoint X∗
i w with respect to the measure

θL n. It follows that HW1,q(Ω, θL n) = HW1,q(Ω, L n) as sets, with equivalent norms. In
particular, u ∈ W1,1

D ,loc(Ω, θL n) as desired. □

Lemma 3.4 (Meyers–Serrin). Let (M, d, m) be as in Theorem 1.8 and let q ∈ [1, ∞).
Then HW1,q(M, m) ∩ C∞(M) is dense in HW1,q(M, m).

Proof. Up to a partition of unity and exhaustion argument, we can reduce to the case
M = Ω ⊂ Rn is a bounded open set and m = θL n, where θ : Ω → [0, ∞) is as in the
previous proof, so that HW1,q(Ω, L n) = HW1,q(Ω, θL n) as sets, with equivalent norms.
In particular, we can assume that θ ≡ 1. This case is proved in [27, Th. 11.9]. □

Lemma 3.5. Let (M, d, m) be as in Theorem 1.8 and let q ∈ [1, ∞). If u ∈ HW1,q(M, m),
then ∥∇u∥ is the minimal q-upper gradient of u.

Proof. Let us first prove that ∥∇u∥ is a q-upper gradient of u. Indeed, by Lemma 3.4, we
can find (uk)k∈N ⊂ HW1,q(M, m) ∩ C∞(M) such that uk → u in HW1,q(M, m) as k → ∞.
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It is well-known that the sub-Riemannian norm of the gradient of a smooth function is
an upper gradient, see [27, Prop. 11.6]. Thus, for uk it holds

|uk(γ(1)) − uk(γ(0))| ≤
∫

γ
∥∇uk∥ ds.

Arguing as in [28, p. 179], using Fuglede’s lemma (see [28, Lem. 7.5 and Sec. 10]), we pass
to the limit for k → ∞ in the previous equality, outside a q-exceptional family of curves.
This proves that any Borel representative of ∥∇u∥ is a q-upper gradient of u.

We now prove that ∥∇u∥ is indeed minimal. Let 0 ≤ g ∈ Lq(M, m) be any q-upper
gradient of u. Arguing as in [28, p. 194], we can find a sequence (gk)k∈N ⊂ Lq(M, m) of
upper gradients of u such that gk ≥ g for all k ∈ N and gk → g both pointwise m-a.e.
on M and in Lq(M, m) as k → ∞. By Lemma 3.3, we thus must have that ∥∇u∥ ≤ gk

m-a.e. on M for all k ∈ N. Hence, passing to the limit, we conclude that ∥∇u∥ ≤ g m-a.e.
on M for any q-upper gradient g, concluding the proof. □

We are now ready to deal with the proof of Theorem 1.8.

Proof of (i). Recall that, here, q > 1. We begin by claiming that

W1,q(M, d, m) ⊂ HW1,q(M, m) (3.11)

isometrically, with ∥∇u∥ = |Du|w,q. Indeed, let u ∈ W1,q(M, d, m). By a well-known
approximation argument, combining [5, Prop. 4.3, Th. 5.3 and Th. 7.4], we find (uk)k∈N ⊂
Lip(M, d) ∩ W1,q(M, d, m) such that

uk → u and |Duk|w,q → |Du|w,q in Lq(M, m). (3.12)

Since uk ∈ Lip(M, d), by Lemma 3.3 we know that uk ∈ HW1,q(M, m). Hence, by
Lemma 3.5, |Duk|w,q = ∥∇uk∥, and we immediately get that

sup
k∈N

∫
M

∥∇uk∥q dm < ∞.

Therefore, up to passing to a subsequence, (Xiuk)k∈N is weakly convergent in Lq(M, m),
say Xiuk ⇀ αi ∈ Lq(M, m), for all i = 1, . . . , L. We thus get that u ∈ HW1,q(M, m) with
Xiu = αi and thus ∇u = ∑L

i=1 αiXi. By stability of q-upper gradients, [5, Th. 5.3 and
Thm. 7.4], ∥∇u∥ is a q-upper gradient of u. By semi-continuity of the norm, we obtain∫

M
∥∇u∥q dm ≤ lim inf

k→∞

∫
M

∥∇uk∥q dm =
∫

M
|Du|qw,q dm,

where we used (3.12). By definition of minimal q-upper gradient we thus get that ∥∇u∥ =
|Du|w,q m-a.e., and the claimed inclusion in (3.11) immediately follows.

We now observe that it also holds

HW1,q(M, m) ∩ C∞(M) ⊂ W1,q(M, d, m), (3.13)

with ∥∇u∥ = |Du|w,q. We just need to notice that, if u ∈ C∞(M), then ∥∇u∥ is an
upper gradient of u, see [27, Prop. 11.6]. Therefore, by Lemma 3.3, ∥∇u∥ must coincide
with the minimal q-upper gradient of u, i.e., ∥∇u∥ = |Du|w m-a.e., and (3.13) readily
follows. In view of the isometric inclusions (3.11) and (3.13), and of the density provided
by Lemma 3.4, this concludes the proof of (i). □
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Proof of (ii). Let us assume that (M, d, m) satisfies the CD(K, ∞) property for some
K ∈ R. By the previous point (i), we know that (M, d, m) satisfies the RCD(K, ∞)
property. Consequently, since clearly C∞

c (M) ⊂ W1,2(M, d, m) by (3.13), [6, Rem. 6.3]
(even if the measure m is σ-finite, see [4, Sec. 7] for a discussion) implies that

1
2

∫
M

∆v ∥∇u∥2 dm −
∫

M
v g(∇u, ∇∆u) dm ≥ K

∫
M

v ∥∇u∥2 dm

for all u, v ∈ C∞
c (M) with v ≥ 0 on M , from which we readily deduce (1.1). □

Remark 3.6. The above proofs work for more general measures m. Namely, we can
assume that, locally on any bounded coordinate neighborhood Ω ⊂ Rn, m = θL n with
θ ∈ W1,1(Ω, L n) ∩ L∞(Ω, L n). In this case, the positivity of m corresponds to the
requirement that θ is locally essentially bounded from below away from zero, in charts.

3.4. Proof of Theorem 1.10. We prove the two points in the statement separately.

Proof of (i). The case p = 0 has been already considered by Juillet in [32]. For p > 0,
we can argue as follows. Let A0 = [−ℓ − 1, −ℓ] × [0, 1] and A1 = [ℓ, ℓ + 1] × [0, 1] for ℓ > 0.
We will shortly prove that the midpoint set

A1/2 =
{

q ∈ R2 : ∃ q0 ∈ A0, ∃ q1 ∈ A1 with d(q, q0) = d(q, q1) = 1
2 d(q0, q1)

}
satisfies

A1/2 ⊂ [−1 − εℓ, 1 + εℓ] × [0, 1] (3.14)
for some εℓ > 0, with εℓ ↓ 0 as ℓ → ∞. Since mp(A0) = mp(A1) ∼ ℓp as ℓ → ∞, we get√

mp(A0) mp(A1) > mp(A1/2)

for large ℓ > 0. This contradicts the logarithmic Brunn–Minkowski BM(0, ∞) inequality,
which is a consequence of the CD(0, ∞) condition, see [50, Th. 30.7].

To prove (3.14), let qi ∈ Ai, qi = (xi, yi), and let γ(t) = (x(t), y(t)), t ∈ [0, 1], be a
geodesic such that γ(i) = qi, with i = 0, 1. We first note that

min{y0, y1} ≤ y(t) ≤ max{y0, y1} for all t ∈ [0, 1], (3.15)

since any curve that violates (3.15) can be replaced by a strictly shorter one satisfy-
ing (3.15). In particular, we get that A1/2 ⊂ R × [0, 1]. Let us now observe that

|xa − xb| ≤ d(a, b) ≤ |xa − xb| + |ya − yb|
max{|xa|, |xb|}

for all a = (xa, ya) and b = (xb, yb) with xa, xb ̸= 0. Therefore, if q = (x, y) ∈ A1/2, then

|x − x0| ≤ d(q, q0) = 1
2 d(q0, q1) ≤ ℓ + 1 + O(1/ℓ)

and, similarly, |x − x1| ≤ ℓ + 1 + O(1/ℓ). Since x0 ∈ [−ℓ − 1, −ℓ] and x1 ∈ [ℓ, ℓ + 1], we
deduce that |x| ≤ 1 + O(1/ℓ), concluding the proof of the claimed (3.14). □
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Proof of (ii). Out of the negligible set {x = 0}, the metric g on Gp given by (1.5) is
locally Riemannian. Recalling (1.6) and (1.7), the BE(K, ∞) inequality (1.1) is implied by
the lower bound Ric∞,V ≥ K via Bochner’s formula, where Ric∞,V is the ∞-Bakry–Émery
Ricci tensor of (R2, g, e−V volg), see [50, Ch. 14, Eqs. (14.36) – (14.51)]. By Lemma 3.7
below, we have Ric∞,V ≥ 0 for all p ≥ 1, concluding the proof. □

Lemma 3.7. Let p ∈ R and N > 2. The N-Bakry–Émery Ricci tensor of the Grushin
metric (1.5), with weighted measure mp = |x|p dx dy, for all x ̸= 0 is

RicN,V = p − 1
x2 g −(p + 1)2

N − 2
dx ⊗ dx

x2 ,

with the convention that 1/∞ = 0.

Proof. The N -Bakry–Émery Ricci tensor of a n-dimensional weighted Riemannian struc-
ture (g, e−V volg), for N > n, is given by

RicN,V = Ricg + HessgV − dV ⊗ dV

N − n
, (3.16)

see [50, Eq. (14.36)]. In terms of the frame (1.4), the Levi-Civita connection is given by

∇XX = ∇XY = 0, ∇Y X = −1
x

Y, ∇Y Y = 1
x

X,

whenever x ̸= 0. Recalling that, from (1.7), V (x) = −(p + 1) log |x|, for x ̸= 0, we obtain

Ricg = − 2
x2 g, HessgV = (p + 1)

x2 g, dV = −p + 1
x

dx, (3.17)

whenever x ̸= 0. The conclusion thus follows by inserting (3.17) into (3.16). □

3.5. Proof of Theorem 1.11. The statement is a consequence of the geodesic convexity
of G+

p and the computation of the N -Bakry–Émery curvature in Lemma 3.7. Since the
proof uses quite standard arguments, we simply sketch its main steps.

The interior of G+
p , i.e., the open half-plane, can be regarded as a (non-complete)

weighted Riemannian manifold with metric g as in (1.5) and weighted volume as in (1.7).
Let µ0, µ1 ∈ P2(G+

p ), µ0, µ1 ≪ mp, with bounded support contained in the Riemannian
region {x > ε}, for some ε ≥ 0.

Let (µs)s∈[0,1] be a W2-geodesic joining µ0 and µ1. By a well-known representation
theorem (see [50, Cor. 7.22]), there exists ν ∈ P(Geo(G+

p )), supported on the set
Γ = (e0 × e1)−1(supp µ0 × supp µ1), such that µs = (es)♯ν for all s ∈ [0, 1]. Since the
set {x ≥ ε} is a geodesically convex subset of the full Grushin plane Gp (by the same
argument of [46, Prop. 5]), any γ ∈ Γ is contained for all times in the region {x > 0}.
Therefore, Γ is a set of Riemannian geodesics contained in the weighted Riemannian struc-
ture ({x > 0}, g, e−V volg). By Lemma 3.7, we have RicN,V ≥ 0 for all N ≥ Np, where Np

is as in (1.8). At this point, a standard argument shows that the Rényi entropy is convex
along Wasserstein geodesics joining µ0 with µ1, see the proof of [49, Th. 1.7] for example.

The extension to µ0, µ1 ∈ P2(G+
p ), with µ0, µ1 ≪ mp and compact support possibly

touching the singular region {x = 0}, is achieved via a standard approximation argument.
More precisely, one reduces to the previous case and exploits the stability of optimal
transport [50, Th. 28.9] and the lower semi-continuity of the Rényi entropy [50, Th. 29.20].
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Finally, the extension to general µ0, µ1 ∈ P2(G+
p ) follows the routine argument outlined

in [9, Rem. 2.12], which works when µs = (es)♯ν, s ∈ [0, 1], and ν is concentrated on a set
of non-branching geodesics. This proves the ‘if’ part of the statement.

The ‘only if’ part is also standard. The CD(0, N) condition for N > 2 implies that, on
the Riemannian region {x > 0}, RicN,V ≥ 0, but this is false for N < Np.

The fact that G+
p is infinitesimally Hilbertian follows from Remark 1.9, by noting that

mp is positive and smooth out of the closed set {x = 0}, which has zero measure. An
alternative proof follows from the observation that G+

p is a Ricci limit, see [42]. □

Appendix A. Gradient and Laplacian representations formulas

For the reader’s convenience, in this appendix we provide a short proof of the repre-
sentation formulas (2.5) and (2.7), in the rank-varying case.

Lemma A.1. For λ ∈ T ∗M , let λ# ∈ D be uniquely defined by

g(λ#, V ) = ⟨λ, V ⟩

for all V ∈ D , where ⟨·, ·⟩ denotes the action of covectors on vectors. Then

∥λ#∥2 =
L∑

i=1

〈
λ#, Xi

〉2
. (A.1)

As a consequence, if λ, µ ∈ T ∗M , then

g(λ#, µ#) =
L∑

i=1
⟨λ, Xi⟩⟨µ, Xi⟩. (A.2)

Proof. Given u ∈ RL, we set Xu = ∑L
i=1 uiXi and define

u∗ ∈ argmin
{
v 7→ |v| : v ∈ RL, Xv = Xu

}
.

In other words, for Xu ∈ D , u∗ is the element of minimal Euclidean norm such that
Xu∗ = Xu. Note that, by definition, it holds ∥Xu∥ = |u∗|. We thus have

∥λ#∥ = sup
{
g(λ#, X) : ∥X∥ = 1, X ∈ D

}
= sup

{
g(λ#, Xu) : |u∗| = 1, u ∈ RL

}
.

We now claim that

sup
{
g(λ#, Xu) : |u∗| = 1, u ∈ RL

}
= sup

{
g(λ#, Xu) : |u| = 1, u ∈ RL

}
. (A.3)

Indeed, the inequality ≤ in (A.3) is obtained by observing that Xu = Xu∗ for any u ∈ RL.
To prove the inequality ≥ in (A.3), we observe that, if u ∈ RL is such that |u| = 1 and
0 < |u∗| < 1, then v = u/|u∗| satisfies |v∗| = 1 and gives

g(λ#, Xv) > g(λ#, Xv) |u∗| = g(λ#, Xu). (A.4)

Furthermore, if |u| = 1 and u∗ = 0, then Xu = 0 so also in this case we find v ∈ Rn with
v∗ = 1 such that (A.4) holds. This ends the proof of the claimed (A.3). Hence, since

g(λ#, Xu) =
L∑

i=1
g(λ#, Xi) ui,
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we easily conclude that

∥λ#∥ = sup
{
g(λ#, Xu) : |u| = 1, u ∈ RL

}
=

√√√√ L∑
i=1

g(λ#, Xi)2,

proving (A.1). Equality (A.2) then follows by polarization. □

Corollary A.2. The following formulas hold:

∇u =
L∑

i=1
Xiu Xi, (A.5)

∆u =
L∑

i=1

(
X2

i u + Xiu divm(Xi)
)

, (A.6)

g(∇u, ∇v) =
L∑

i=1
Xiu Xiv, (A.7)

for all u, v ∈ C∞(M). In particular, ∥∇u∥ = ∑L
i=1(Xiu)2 for all u ∈ C∞(M).

Proof. We prove each formula separately.
Proof of (A.5). Recalling the definition in (2.4), we can pick λ = du in (A.2) to get

〈
du, µ#

〉
= g(∇u, µ#) =

L∑
i=1

⟨du, Xi⟩⟨µ, Xi⟩

=
L∑

i=1
Xiu ⟨µ, Xi⟩ = g

(
µ#,

L∑
i=1

Xiu Xi

)

whenever µ ∈ T ∗
x M . Since the map #: T ∗

x M → Dx is surjective, we immediately get (A.5).
Proof of (A.6). Recall that

divm(fX) = Xf + f divm(X)

for any f ∈ C∞(M) and X ∈ Γ(TM). Hence, from the definition in (2.6), we can compute

∆u = divm(∇u) =
L∑

i=1
divm(Xiu Xi) =

L∑
i=1

(
X2

i u Xi + Xiu divm(Xi)
)

,

which is the desired (A.6).
Proof of (A.7). Choosing λ = du and µ = dv in (A.2), we can compute

g(∇u, ∇v) =
L∑

i=1
⟨du, Xi⟩ ⟨dv, Xi⟩ =

L∑
i=1

Xiu Xiv

and the proof is complete. □
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