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Abstract. This work is devoted to the analysis of the interplay between internal variables and
high-contrast microstructure in inelastic solids. As a concrete case-study, by means of variational
techniques, we derive a macroscopic description for an elastoplastic medium. Specifically, we
consider a composite obtained by filling the voids of a periodically perforated stiff matrix by soft
inclusions. We study the Γ-convergence of the related energy functionals as the periodicity tends
to zero, the main challenge being posed by the lack of coercivity brought about by the degeneracy
of the material properties in the soft part. We prove that the Γ-limit, which we compute with
respect to a suitable notion of convergence, is the sum of the contributions resulting from each of
the two components separately. Eventually, convergence of the energy minimizing configurations
is obtained.
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1. Introduction

The present paper is concerned with the variational analysis of some integral functionals that
model the stored energy of materials governed by finite-strain elastoplasticity with hardening.
Our goal is to derive, by means of Γ-convergence, the effective macroscopic energy of a special
class of heterogeneous materials, those with a so called high-contrast microstructure. The interest
in such media stems from the experimental observation of an infinite number of band gaps in
their mechanical behavior: high-contrast materials, indeed, exhibit infinitely many interval of
frequencies in which wave propagation is not allowed. This, in turn, makes them extremely
interesting for possible cloaking applications. Some recent ones in civil engineering, for example
in seismic waves cloaking, and in the modeling of advanced sensor and actuator devices call for
advancements in the mathematical modeling of those classes of high-contrast materials that have
not been fully studied yet, like the ones we consider here.

The mathematical literature on high-contrast materials is vast. To keep our presentation
concise, we only point out that, besides results for stratified elastoplastic composites [14, 15, 22, 25],
the only additional available contributions in the inelastic setting concern the study of brittle
fracture problems [5, 6, 42]. For the modeling of nonlinear elastic high-contrast composites we
single out the works [10, 13].

When undertaking the analysis of high-contrast media beyond the elastic purview, hurdles are
posed by the mathematical treatment of possible internal variables and dissipative effects, as
well as by their interplay with the high-contrast microstructure. In this paper we initiate such
task by focusing on the case-study of finite elastoplasticity (see, e.g., [37]). At this first stage we
neglect both the difficulties due to possible lack of coercivity for the dissipative effects and those
associated with time evolution. Thus, we focus here on a static model for a single time-step with
a global regularization on the gradient of the plastic strain, and leave the analysis of different
regimes and the passage to the limit in the quasistatic evolutions for future investigations.

The present study grounds on a previous result that we obtained in [24], where we addressed
the static homogenization of elastoplastic microstructures in the large strain regime. As in
that work, our starting point is the description of the medium at the microscopic level. We let
Ω ⊂ R3 be an open, bounded, connected set with Lipschitz boundary, and we suppose it to be
the reference configuration of an elastoplastic body that exhibits the following microstructure:
denoting by ε > 0 the microscale, we suppose that a stiff perforated matrix Ω1

ε sits in Ω and
that its pores are filled by soft inclusions, which form the set Ω0

ε (see Figure 2). Let us denote
by SL(3) the group of 3 × 3 real matrices with determinant equal to 1. When the matrix and
the inclusions exhibit the same plastic-hardening H, the functionals encoding the stored energy
associated with the deformation y ∈ W 1,2(Ω;R3) and the plastic strain P ∈ W 1,q(Ω;K), with
q > 3 and K ⊂ SL(3) a given compact set, read

Jε(y, P ) :=
�

Ω0
ε

W 0
ε

(
ε∇y(x)P−1(x)

)
dx+

�
Ω1

ε

W 1
(
∇y(x)P−1(x)

)
dx

+
�

Ω
H
(
P (x)

)
dx+

�
Ω

|∇P (x)|q dx,
(1.1)

where {W 0
ε }ε>0 and W 1 are, respectively, the elastic energy densities of the inclusions and of the

matrix.
Let us briefly comment on some modeling choices underlying (1.1). The factor ε multiplying

the argument of W 0
ε encodes the high-contrast between the two components, and it results in a

loss of coercivity in the problem. From a modeling perspective, this heuristically means that
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very large deformations of the inclusions are allowed or, in other words, that the inclusions are
very soft – whence the expression high-contrast to describe the difference between the phases.

As for the hardening term, note that also additional hardening variables have been taken into
account in the literature, see [38, 39] for a modeling overview. Here, for the purpose of putting
the high-contrast behavior to the foreground, we give up full generality and restrict ourselves to
the case in which only a hardening dependence on the plastic strain is given. A discussion on
alternative modeling choices is also presented in Remark 2.3.

Our main result describes the asymptotics of the functionals Jε, and it is presented in
Theorem 2.7. The precise mathematical framework of our analysis is described in Section 2,
where further details on the definitions and on the roles of the terms in Jε may be found.

We work under the classical assumption that the elastic behavior of our sample Ω is indepen-
dent of preexistent plastic distortions. Then, the deformation gradient ∇y associated with a
deformation y : Ω → R3 of the body decomposes into an elastic strain and a plastic one. In the
framework of linearized elastoplasticity the decomposition would take an additive form. In the
case at stake, that of finite plasticity [34, 36, 39, 38], the existence of an intermediate configuration
determined by purely plastic distortions is instead assumed, and it is then supposed that elastic
deformations are applied to such intermediate configuration. Mathematically, these hypotheses
amount to a multiplicative decomposition of the gradient of a deformation y ∈ W 1,2(Ω;R3):

∇y(x) = Fel(x)P (x) for a. e. x ∈ Ω,

for a suitable elastic strain Fel ∈ L2(Ω;R3×3) and a plastic strain P ∈ L2(Ω; SL(3)). On the one
hand, such multiplicative structure has recently found an atomistic validation in the framework
of crystal plasticity by means of a discrete-to-continuum analysis [18, 19]. On the other hand,
alternative models for finite plasticity have been proposed. However, since a discussion of fine
modeling issues goes beyond the scopes of our work, we do not dwell here on a comparison of the
various modeling theories. We refer the reader interested in this topic to, e.g., [23, 31, 32, 40].

Finally, we comment on the regularizing term in ∇P in the energy (1.1). As mentioned before,
at this stage we assume it to provide coercivity of the energy with respect to the plastic-strain
variables on the whole set Ω. From a modeling point of view, we note that this regularization
is common in engineering models, for it prevents the formation of microstructures, see [7, 11].
Alternative higher order regularizations are discussed in [27].

Let us conclude our introduction with a few words on the proofs. A delicate point is choosing
a suitable notion of convergence that ensures effective compactness properties. Indeed, the fact
that the energy contribution in the soft inclusions is evaluated in terms of ε∇y leads to a loss of
coercivity, and, subsequently, to the loss of compactness in classical weak Sobolev topologies.
On the other hand, using the strong two-scale convergence of the gradients (as in [13]) does not
guarantee convergence of minimizers of Jε to minimizers of the limiting functional. To cope with
this difficulty, we adapt the approach of [26] and introduce an ad hoc notion of convergence for
deformations, to which we refer as convergence in the sense of extensions. Roughly speaking, a
sequence of deformations converges in the sense of extensions if it is bounded in L2 and can be
extended in W 1,2 in such a way that the extensions are weakly compact in the Sobolev sense,
cf. Definition 2.4 and Remarks 2.5 and 2.6 for the precise definition and some basic properties. For
the plastic strains, we argue instead by using the uniform convergence. This choice is motivated
by the fact that sequences of deformations and plastic strains with uniformly bounded energies
are precompact with respect to the convergence resulting from pairing the two mentioned above.
Thus our Γ-convergence analysis directly entails convergence of minimizers. We observe that this
result can easily be extended to functionals which take into account also plastic dissipation. We
refer to Section 6 for a more detailed discussion on this point.
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Our approach to the proofs resorts to extension results on perforated domains, to two-scale
convergence and periodic unfolding techniques, as well as to equiintegrability arguments used to
control the behavior of the microstructure close to the boundary of the set Ω. A key step is a
splitting procedure that allows to treat the soft and the stiff parts separately.

Outline of the paper. The setup of our analysis and the main result, Theorem 2.7, are
presented in Section 2. Section 3 contains some useful preliminaries. In Section 4 we discuss the
equicoercivity of the energy functionals under consideration and the splitting procedure. The
asymptotic behavior of the soft inclusions is characterized in Section 5. The ground is then laid
for the proof of Theorem 2.7, which is contained in Section 6 together with a variant including
plastic dissipation and a comparison with the aforementioned result from [13].

2. Mathematical setting and results

Hereafter, Ω is an open, bounded, and connected set with Lipschitz boundary in R3. Working
in the 3-dimensional space is not essential, and our analysis can be easily adapted to the setting
of Rd with d = 2 or d > 3. The spaces of real-valued 3 × 3 and 3 × 3 × 3 tensors are denoted
by R3×3 and by R3×3×3, respectively. We adopt the symbol I for the identity matrix. By | · |
we denote indiscriminately the Euclidean norms in R3, R3×3 and R3×3×3. To deal with plastic
strains, we recall the classical notation

SL(3) := {F ∈ R3×3 : detF = 1}.

If A ⊂ R3 is a measurable set, we denote by L3(A) its three-dimensional Lebesgue measure.
Finally, we simply write ∥ · ∥Lp for the norm of a function in Lp(Ω;R3), Lp(Ω;R3×3), or
Lp(Ω;R3×3×3) when no ambiguity arises, and we specify the integration domain only when
necessary.

A fundamental role in our study is played by the following notion of variational convergence,
see the monograph [21] for a thorough treatment:

Definition 2.1. Let X be a set endowed with a notion of convergence. We say that a family of
functionals {Gε}, with Gε : X → [−∞,+∞], Γ-converges as ε → 0 to G : X → [−∞,+∞] if for
all x ∈ X and all infinitesimal sequences {εk}k∈N the following holds:

(1) for every sequence {xk}k∈N ⊂ X such that xk → x, we have

G(x) ≤ lim inf
k→+∞

Gεk
(xk);

(2) there exists a sequence {xk}k∈N ⊂ X such that xk → x and

lim sup
k→+∞

Gεk
(xk) ≤ G(x).

When X is equipped with a topology τ , we write e.g. Γ(τ)-convergence to stress what the
underlying convergence for sequences in X is. In what follows, for notational convenience, we
indicate the dependence on εk by means of the subscript k alone, e.g., Jk := Jεk

.
Our aim is to study elastoplastic media with high-contrast periodic microstructure in the case

of soft inclusions inserted in a perforated stiff matrix. Letting Q := (0, 1)3 be the periodicity cell,
in order to describe the geometry in precise terms, we start by considering a set E1 ⊂ R3 that is
open, connected, Q-periodic, and has Lipschitz boundary, cf. [1] or [9, Chapter 19]. We recall
that the set E1 ⊂ R3 is Q-periodic if E1 + t = E1 for all t ∈ Z3. The set E1 is then employed to
define the microstructure as follows.
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Figure 1. The periodicity cell Q and its partition into the soft inclusion Q0

(white) and the stiff matrix Q1 (gray).

Q0

Q0

Q1

First, at the scale level ε = 1, we define

Q1 := Q ∩ E1 and Q0 := Q \Q1,

where the sets Q0 and Q1 represent, respectively, the inclusion and the matrix of the unit cell Q
(see Figure 1). Note that, according to the definition of Q1, it holds that

E1 :=
⋃

t∈Z3

(t+Q1). (2.1)

Second, Q0 is translated and rescaled to describe the set of soft inclusions. Precisely, given a
(small) λ > 0, we define the collection of inclusions at a scale ε > 0 as

Ω0
ε :=

⋃
t∈Tε

ε(t+Q0), where Tε :=
{
t ∈ Z3 : dist

(
ε(t+Q0), ∂Ω

)
> λε

}
. (2.2)

Since Ω represents the region of space occupied by the whole composite, the stiff matrix is then
given by

Ω1
ε := Ω \ Ω0

ε, (2.3)

see Figure 2. Note that the set Ω1
ε is connected and Lipschitz, and that (2.2) ensures that

the inclusions are compactly contained in Ω, since they are separated from the boundary by a
strip of width λε. Our assumptions allow for some flexibility on the geometry of the inclusions,
which could for instance form interconnected fibers (see Figure 3). Indeed, differently from other
works (e.g. [13]), we do not prescribe that the unit perforation Q0 is compactly contained in Q.
Therefore, the geometry considered in this paper is on the one hand less restrictive than that in
the seminal contributions on perforated domains, but on the other hand it is less general than
that in [1].

Our Γ-convergence result deals with the asymptotic behavior, as ε tends to 0, of the family
{Jε} defined by (1.1). Before stating the result, we collect the hypotheses we use in the following
lines.

The elastic energy density of the stiff matrix W 1 : R3×3 → [0,+∞] satisfies the following:
E1: It is 2-coercive and has at most quadratic growth, that is, there exist 0 < c1 ≤ c2 such

that for all F ∈ R3×3

c1|F |2 ≤ W 1(F ) ≤ c2
(
|F |2 + 1

)
.

E2: It is 2-Lipschitz: there exists c3 > 0 such that for all F1, F2 ∈ R3×3

|W 1(F1) −W 1(F2)| ≤ c3 (1 + |F1| + |F2|) |F1 − F2|.
The assumptions on the soft energy densities W 0

ε : R3×3 → [0,+∞] are analogous:
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Figure 2. The microstructure of the composite in Ω. The soft inclusions that
form Ω0

ε correspond to the white holes, while the grey region represents the matrix
Ω1

ε. Note that the perforations do not intersect the boundary.

ε

Figure 3. In the 3-dimensional space, interconnected soft fibers do not disconnect
the matrix. A simple case is depicted here: the cylindrical perforation Q0 runs
through the periodicity cell and its complement Q1 is connected.

Q0

Q1

E3: There exist 0 < c1 ≤ c2 such that for all F ∈ R3×3, and all ε > 0,

c1|F |2 ≤ W 0
ε (F ) ≤ c2

(
|F |2 + 1

)
.

E4: There exists c3 > 0 such that for all F1, F2 ∈ R3×3, and all ε > 0,∣∣∣W 0
ε (F1) −W 0

ε (F2)
∣∣∣ ≤ c3 (1 + |F1| + |F2|) |F1 − F2|.

E5: There exists W 0 : R3×3 → [0,+∞] such that for all F ∈ R3×3

lim
ε→0

W 0
ε (F ) = W 0(F ).

Remark 2.2. The function W 0 possesses the same growth and regularity properties of W 0
ε .

Our assumptions rule out non-impenetrability constraints at the level of the energy. A blow-up
of the energy on matrices with non-positive determinant is desirable from a modeling point
of view, but at the same time very difficult to handle and yet to be done in the context of
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homogenization. Frame indifference is instead compatible with our hypotheses, and up to adding
a constant, conditions E1 and E3 fulfill the physical requirement that rigid motions have zero
elastic energy. We also note that the choice of considering a family {W 0

ε } instead of a fixed W 0

for the soft stored elastic energy is somehow standard in the literature, see, e.g., [13, Remark 2]
for a motivational example in the context of solid mechanics.

Next, we list the assumptions on the hardening H : R3×3 → [0,+∞].

H1: Assume that a Finsler structure on SL(3) is assigned. H(F ) is finite if and only if F ∈ K,
where K ⊂ SL(3) is a geodesically convex, compact neighborhood of I.

H2: The restriction of H to K is Lipschitz continuous.

The requirement that K is geodesically convex with respect to the Finsler structure assigned
on SL(3) is the crucial ingredient to invoke [24, Theorem 2.2], which in our context is employed
to capture the asymptotic behavior of the stiff matrix, see Theorem 3.8. We refer to [24] for a
discussion on the role of the Finsler geometry for the homogenization of elastoplastic media, and
to Subsection 3.5 for a summary of the tools from that theory that we need here. In particular,
the existence of a set K complying with H1 is settled in Lemma 3.10 below.

Requirement H1 prescribes that the effective domain of H coincides with a compact set K
containing I. Then it follows that there exists cK > 0 such that

|F | + |F−1| ≤ cK for every F ∈ K, (2.4)

because SL(3) is by definition well separated from 0. As a consequence, plastic strains with finite
hardening are uniformly bounded in L∞, and, in particular, we infer that for any F ∈ K and
G ∈ R3×3

|G| =
∣∣∣GF−1F

∣∣∣ ≤ cK

∣∣∣GF−1
∣∣∣ . (2.5)

Remark 2.3. Note that in principle it would be reasonable to suppose that the soft and the stiff
components feature different hardening behaviors. For instance, it could be imposed that the
soft hardening is evaluated on an ε-rescaling of the plastic stress, thus replicating the structure
of the elastic contribution. As the only available tool to deal with periodic homogenization
at finite strains is [24, Theorem 2.2], we leave such scenarios for possible future investigation
and restrict ourselves to a simpler setting, namely we choose to model both hardening terms
by a single function satisfying H1 and H2. We point out that under these assumptions making
a distinction between H i = H i(P ), i = 0, 1 would not require any substantial change in our
approach, therefore we dispense with it. Qualitatively, keeping the soft hardening contribution
of order 1 amounts to the situation in which, for small ε, elastic deformations much larger than
the plastic ones are allowed.

We can now state the homogenization result for high-contrast elastoplastic media. Since we
want our analysis to yield convergence of minima and minimizers of Jε to the ones of the limiting
energy, we need to introduce a convergence that is compliant with the degeneracy of the soft
inclusions. For shortness, we refer to it as convergence in the sense of extensions, even though
the name is not at all standard.

Definition 2.4. Let {εk} be an infinitesimal sequence. We say that {yk} ⊂ W 1,2(Ω;R3) converges
to y ∈ W 1,2(Ω;R3) in the sense of extensions with respect to the scales εk if the following hold:

(1) {yk} is bounded in L2(Ω;R3);
(2) there exists a sequence {ỹk} ⊂ W 1,2(Ω;R3) such that yk = ỹk in Ω1

k := Ω1
εk

and ỹk ⇀ y

weakly in W 1,2(Ω;R3).
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Remark 2.5. Let ỹk = ỹ′
k a.e. in Ω1

k. Let as well ỹk → y and ỹ′
k → y′ strongly in L2(Ω;R3)

(e.g., y and y′ are W 1,2(Ω;R3)-weak limits of the respective sequences). Then, recalling (2.1)
and (2.3), and observing that Ω ∩ εkE

1 ⊂ Ω1
k, we get

0 = lim
k→+∞

�
Ω1

k

|ỹk − ỹ′
k| dx ≥ lim

k→+∞

�
Ω
χεkE1(x)|ỹk − ỹ′

k| dx = L3(Q1)
�

Ω
|y − y′| dx.

From this, we conclude that y = y′ a.e. in Ω. In particular, if the limit in the sense of extensions
exists, then it is unique.

Remark 2.6. By (2.2), there exists a neighborhood Ok of ∂Ω in Ω such that Ω1
k ∩Ok ≡ Ω ∩Ok.

Therefore, if y and ỹ coincide in Ω1
k, their traces on ∂Ω are also equal.

Bearing in mind that we set q > 3, the asymptotic behavior of the family {Jε} is described in
the next theorem:

Theorem 2.7. Let {W 1} and {W 0
ε } satisfy E1–E5, and let H satisfy H1–H2. For all y ∈

L2(Ω;R3) and P ∈ Lq(Ω; SL(3)) there exists a functional

J (y, P ) := Γ- lim
ε→0

Jε(y, P ),

where the underlying convergences are the one in the sense of extensions and the uniform one,
respectively for the first and for the second argument. The Γ-limit is characterized as follows:

J (y, P ) = J 0(P ) + J 1(y, P ),

J 0(P ) :=


L3(Q0)

�
Ω

[
Q′W 0(0, P−1(x)

)
+H

(
P (x)

)]
dx if P ∈ W 1,q(Ω;K),

+∞ otherwise in Lq(Ω; SL(3)),
(2.6)

and

J 1(y, P ) :=



�
Ω

[
W̃ 1

hom
(
∇y(x), P (x)

)
+ L3(Q1)H

(
P (x)

)
+ |∇P (x)|q

]
dx

if (y, P ) ∈ W 1,2(Ω;R3) ×W 1,q(Ω;K),

+∞ otherwise in L2(Ω;R3) × Lq(Ω; SL(3)).

(2.7)

Here, for F,G ∈ R3×3,

Q′W 0(F,G) := inf
{�

Q
W 0

((
F + ∇v(z)

)
G
)

dz : v ∈ W 1,2
0 (Q;R3)

}
, (2.8)

while

W̃ 1
hom(F,G) := lim

λ→+∞

1
λ3 inf

{�
(0,λ)3∩E1

W 1
((
F + ∇y(x)

)
G−1

)
dx : y ∈ W 1,2

0 ((0, λ)3;R3)
}
.

The formula defining Q′W 0 provides a variant of the classical quasiconvex envelope of W 0.
We refer to Section 5 for further discussion on this point.

Remark 2.8. In principle, it cannot be excluded that some nontrivial energy densities W 0
ε

do not contribute to the elastic homogenized energy, in the sense that, when finite, for the
corresponding J 0 we have

J 0(P ) = L3(Q0)
�

Ω
H
(
P (x)

)
dx.
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As an instance of this phenomenon, we consider the following example. For any F ∈ R3×3, we
let W 0

ε (F ) = W 0(F ) := |F |2. Conditions E3–E5 are satisfied by definition. Since for any fixed
G ∈ R3×3 the function F 7→ W 0

G(F ) := W 0(FG) is convex, it is, in particular, also quasiconvex.
Hence, Q′W 0(0, G) = W 0(0, G) = W 0(0) = 0.

As a byproduct of our asymptotic analysis, we are in a position to infer convergence of the
minimization problems associated with the energy functionals and of the related (quasi) mini-
mizers.

Corollary 2.9. Let the assumptions and notation of Theorem 2.7 hold, and let {(yk, Pk)} ⊂
W 1,2

0 (Ω;R3) ×W 1,q(Ω;K) be a sequence of almost minimizers, that is,

lim
k→+∞

(
Jk(yk, Pk) − inf Jk(y, P )

)
= 0,

where the infimum is taken over W 1,2
0 (Ω;R3) × W 1,q(Ω;K). Then, there exists a minimizer

(y, P ) ∈ W 1,2
0 (Ω;R3) ×W 1,q(Ω;K) of J such that, up to subsequences, yk → y in the sense of

extensions and Pk → P uniformly. Moreover,
inf Jk → min J .

Remark 2.10. The conclusion of the previous corollary is not affected if the homogeneous
boundary conditions on {yk} are replaced by more general (and physical) ones, for example
yk = u on a non negligible subset of ∂Ω for a given u ∈ W 1,2(Ω;R3).

Note, instead, that global forcing terms such as

Fext(y) := −
�

Ω
f · y dx for a given f ∈ W 1,2(Ω;R3)

cannot be added to the functionals Jk without need of further analysis. Indeed, the functional
Fext is not continuous with respect to the convergence in Definition 2.4, and therefore standard
results about continuous perturbations in the context of Γ-convergence cannot be invoked.

The proof of Theorem 2.7 consists of three steps. First, we study the compactness properties
of sequences {(yε, Pε)} satisfying supε Jε(yε, Pε) ≤ C and characterize their limits. Second, we
show that the two components of the material can be studied independently. Finally, we perform
the analysis of each component separately. In view of this approach, it is useful to introduce the
functionals that account for the two different contributions, namely

E0
ε (y, P ) :=

�
Ω
χ0

ε(x)
[
W 0

ε

(
ε∇y(x)P−1(x)

)
+H

(
P (x)

)]
dx, (2.9)

E1
ε (y, P ) :=

�
Ω
χ1

ε(x)
[
W 1

(
∇y(x)P−1(x)

)
+H

(
P (x)

)]
dx, (2.10)

where, for i = 0, 1, χi
ε(x) denotes the characteristic function of Ωi

ε (i.e., χi
ε(x) = 1 if x ∈ Ωi

ε and
χi

ε(x) = 0 otherwise). We also decompose the functional Jε accordingly:
Jε = J 0

ε + J 1
ε ,

with

J 0
ε (y, P ) :=

{
E0

ε (y, P ) if (y, P ) ∈ W 1,2(Ω;R3) ×W 1,q(Ω;K),
+∞ otherwise in L2(Ω;R3) × Lq(Ω; SL(3)),

(2.11)

J 1
ε (y, P ) :=

{
E1

ε (y, P ) + ∥∇P∥q
Lq(Ω;R3×3×3) if (y, P ) ∈ W 1,2(Ω;R3) ×W 1,q(Ω;K),

+∞ otherwise in L2(Ω;R3) × Lq(Ω; SL(3)).
(2.12)
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In contrast to J 1
ε (y, P ), whose asymptotic behavior is derived from [24, Theorem 2.2], the soft

part requires a dedicated treatment. This happens already in the setting of nonlinear elasticity
(see [13]). We obtain the following proposition, whose proof is given in Subsection 5.4.

Proposition 2.11. For an infinitesimal sequence {εk}, consider J 0
k and J 0 as in (2.11) and

(2.6), respectively. Let also P ∈ W 1,q(Ω; SL(3)).

(1) For every sequence {(vk, Pk)} ⊂ W 1,2
0 (Ω0

k;R3) × W 1,q(Ω; SL(3)) such that {εk∇vk} is
2-equiintegrable and that Pk → P uniformly, we have

J 0(P ) ≤ lim inf
k→+∞

J 0
k (vk, Pk).

(2) There exists a bounded sequence {vk} ⊂ L2(Ω;R3), with {vk} ⊂ W 1,2
0 (Ω0

k;R3) for each k,
such that

lim sup
k→+∞

J 0
k (vk, Pk) ≤ J 0(P ),

provided Pk → P uniformly.

In the statement above, the space W 1,2
0 (Ω0

ε;R3) is regarded for each ε as a subset of W 1,2(Ω;R3)
by extending its elements to 0 on Ω1

ε. The reason why we are only interested in functions with
null traces roots in the splitting procedure, cf. (4.11) in Proposition 4.3.

Remark 2.12. Let Ω ⊂ R3 be bounded Lipschitz domain and, for p > 1, let us consider the
local integral functionals on W 1,p(Ω;R3)

v 7→
�

Ω
Wk(∇v) dx.

If the energy densities {Wk} satisfy standard p-growth conditions, as a consequence of Rellich-
Kondrachov theorem, the Γ-limits with respect to the strong Lp-convergence and with respect to
the weak W 1,p-convergence coincide (if they exist).

For the sequence of functionals

v 7→
�

Ω
Wk(εk∇v) dx, (2.13)

again under standard growth conditions for {Wk}, the analysis is more delicate. The natural
bound that follows from the p-coercivity is ∥εk∇vk∥Lp ≤ C, and it suggests the use of weak
two-scale convergence (see Subsection 3.3). However, this estimate alone is not enough to deduce
convergence of the sequence {vk}: a further control on the ε-difference quotients is required to
guarantee that a two-scale variant of Rellich-Kondrachov theorem holds (see [44, Theorem 4.4]).

In other words, in our degenerate setting, compactness of sequences of gradients, say {εk∇vk},
does not bring compactness of {vk}. This explains why we need to exploit the specific geom-
etry of the perforated medium to recover the bound on ∥vk∥L2 , see the proof of item (2) in
Proposition 2.11.

We note incidentally that, by means of Lemma 3.6(4) below, it can be shown that the Γ-limit of
the functionals (2.13) with respect to the strong two-scale convergence in Lp of {vk} is the same
as the one computed by combining the latter convergence and the weak two-scale convergence of
{εk∇vk}. Those are not suitable choices for our goals, though, because, as we commented above,
they do not match the natural compactness of the problem. This explains why in [13], where
strong two-scale convergence is considered, the asymptotic behavior of minimum problems is not
immediately determined by the Γ-convergence (see [13, Section 10]). We also refer to Section 6
for a comparison between our findings and the ones in [13].
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3. Preliminaries

We gather in this section the technical tools to be employed in the sequel.

3.1. A decomposition lemma. In our analysis of heterogeneous media it will be often desirable
to disregard the energy contributions arising from the region close to ∂Ω, for the composite
fails to be periodic there (recall definitions (2.2)–(2.3)). To this aim, it is natural to resort to
p-equiintegrability arguments, because such boundary strip has small measure. We recall that a
family C ⊂ Lp(Ω;R3) is said to be p-equiintegrable if for all δ > 0 there exists m > 0 such that

sup
u∈C

�
E

|u|p dx < δ whenever E ⊂ Ω satisfies L3(E) < m.

The ensuing lemma grants that for any bounded sequence in Lp we can always find another
one which is p-equiintegrable and “does not differ too much” from the given one.

Lemma 3.1 (Theorem 2.20 in [3]; see also Lemma 1.2 in [29]). Let Ω be as in Section 2. For any
sequence {vk} ⊂ W 1,2(Ω;R3) such that vk ⇀ v weakly in W 1,2(Ω;R3) there exist a subsequence
{kj} and a sequence {uj} ⊂ W 1,2(Ω;R3) satisfying the following:

(1) uj ⇀ v weakly in W 1,2(Ω;R3);
(2) uj = v in a neighborhood of ∂Ω;
(3) {∇uj} is 2-equiintegrable;
(4) limj→+∞ L3({x ∈ Ω : vkj

(x) ̸= uj(x)}) = 0.

Property (4) yields limj→+∞ L3({∇vkj
̸= ∇uj}) = 0, because by standard properties of

Sobolev functions (see, e.g., [30, Lemma 7.7]) the inclusion {vkj
̸= uj} ⊇ {∇vkj

̸= ∇uj} holds
true.

3.2. A couple of tools to deal with periodic heterogeneous media. The periodic geometry
of the composite calls for an extension result for Sobolev maps on perforated domains. Since the
perforations of the matrix are well detached from the boundary, by applying [9, Lemma B.7] the
following can be proved:

Lemma 3.2 (Lemma 8 in [13]). Let Ω be open and bounded, and let Ω1
ε be as in Section 1. There

exists a linear and continuous extension operator
Tε : W 1,2(Ω1

ε;R3) → W 1,2(Ω;R3)
such that for all y ∈ W 1,2(Ω1

ε;R3)
Tεy = y a. e. in Ω1

ε,

∥Tεy∥L2(Ω;R3) ≤ c ∥y∥L2(Ω1
ε;R3),

∥∇(Tεy)∥L2(Ω;R3×3) ≤ c ∥∇y∥L2(Ω1
ε;R3×3),

where c is independent of ε and Ω.

Remark 3.3. Even though the lemma above is a classical result, it is worth clarifying the way
we employ it.

In the sequel, we always work with sequences which are already defined on the whole Ω. When
we apply Lemma 3.2 to such a sequence, say {yε} ⊂ W 1,2(Ω;R3), it is tacitly understood that
the functions that are extended are the restrictions yε⌞Ω1

ε. So, in a sense, the process modifies yε

on the region occupied by the soft inclusions rather than extending it. Note that the modification
is a true one, because Tε cannot be the identity. The two crucial points for our analysis are that

(1) if {yε⌞Ω1
ε} and {∇yε⌞Ω1

ε} are bounded in L2, then {Tεyε} is bounded in W 1,2(Ω;R3);
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(2) if {yε} is bounded in L2(Ω;R3) and {∇yε} is a 2-equiintegrable sequence, then {∇(Tεyε)}
is 2-equiintegrable as well.

The second property follows from the construction of Tε, which is modeled on the proof of [9,
Lemma B.8] by patching together the extensions from W 1,2(Q1;R3) to W 1,2(Q;R3) given by [9,
Lemma B.7] via partitions of unity (this is also the reason why the constant c above depends
only on Q1). The extensions in [9, Lemma B.7] preserve equiintegrability, because they rely on
the classical reflection procedure.

The first application of the extension lemma is the following Poincaré inequality on periodic
heterogeneous media (cf. formula (4.5) in [2] where, however, the proof is not provided).

Proposition 3.4. Let Ω, Ω0
ε and Ω1

ε be as in Section 1. There exists a constant c independent
of ε and such that for every y ∈ W 1,2

0 (Ω;R3)

∥y∥L2(Ω;R3) ≤ c
(
ε∥∇y∥L2(Ω0

ε;R3×3) + ∥∇y∥L2(Ω1
ε;R3×3)

)
.

Proof. For ε fixed, we use the extension operator Tε from Lemma 3.2 to obtain

∥y∥L2(Ω) ≤ ∥y − Tεy∥L2(Ω) + ∥Tεy∥L2(Ω)

= ∥y − Tεy∥L2(Ω0
ε) + ∥Tεy∥L2(Ω).

(3.1)

Observe that Tεy ∈ W 1,2
0 (Ω;R3), as Tεy = y a. e. in Ω1

ε and there exists a tubular neighborhood
O of ∂Ω such that Ω1

ε ∩O ≡ Ω ∩O. Then, by the standard Poincaré’s inequality,

∥Tεy∥L2(Ω) ≤ c∥∇(Tεy)∥L2(Ω) ≤ c∥∇y∥L2(Ω1
ε). (3.2)

Observe also that y−Tεy ∈ W 1,2
0 (Ω0

ε;R3). In view of the periodic structure of Ω0
ε and of Poincaré

inequality on each cube, we infer

∥y − Tεy∥2
L2(Ω0

ε) =
∑
t∈Tε

∥y − Tεy∥2
L2(ε(t+Q0))

=
∑
t∈Tε

ε3
�

Q0

|y(ε(t+ z)) − Tεy(ε(t+ z))|2 dz

≤ c
∑
t∈Tε

ε5
�

Q0

|∇(y − Tεy)(ε(t+ z))|2 dz

= cε2∥∇(y − Tεy)∥2
L2(Ω0

ε),

where c depends only on Q0. By applying again Lemma 3.2 we find

∥y − Tεy∥L2(Ω0
ε) ≤ cε

(
∥∇y∥L2(Ω0

ε) + ∥∇y∥L2(Ω1
ε)
)
.

This, together with (3.1) and (3.2), yields the result. □

3.3. Two-scale convergence and the unfolding method. From a mathematical perspective,
the high-contrast structure of the functional Jε results in the absence of uniform bounds in L2

for sequences with equibounded energy; indeed, only bounds on {ε∇yεP
−1
ε } are available. Such

degenerate bounds are conveniently dealt with by means of two-scale convergence [2, 41], whose
definition we recall next. Hereafter, the subscript per denotes spaces of Q-periodic functions, e.g.

W 1,2
per(R3) := {u ∈ W 1,2

loc (R3) : u(x+ t) = u(x) a.e. for all t ∈ Z3}.



HOMOGENIZATION OF HIGH-CONTRAST MEDIA 13

Definition 3.5. Let {εk} ⊂ (0,+∞) be infinitesimal. A sequence {yk} ⊂ L2(Ω;R3) weakly
two-scale converges in L2 to a function y ∈ L2(Ω;L2

per(R3;R3)) (notation: yk
2
⇀ y) if for every

v ∈ L2(Ω;Cper(R3;R3))

lim
k→+∞

�
Ω
yk(x) · v

(
x,

x

εk

)
dx =

�
Ω

�
Q
y(x, z) · v(x, z) dz dx.

A sequence {yk} ⊂ L2(Ω;R3) strongly two-scale converges in L2 to y ∈ L2(Ω;L2
per(R3;R3))

(notation: yk
2→ y) if yk

2
⇀ y in L2 and ∥yk∥L2(Ω;R3) → ∥y∥L2(Ω×Q;R3).

Recalling that for i = 0, 1 χi
k(x) = 1 if x ∈ Ωi

k and χi
k(x) = 0 otherwise, an example of strong

two-scale convergence is provided by the sequences {χ0
k} and {χ1

k}. Indeed,

χi
k

2→ χi strongly two-scale in L2, (3.3)

where χi(x, z) := χQi(z) for all (x, z) ∈ Ω ×Q.
We collect in the next lemma some basic properties of two-scale convergence which we will

resort to in the following. Proofs and more details can be found in [2, 43, 44].

Lemma 3.6. Let {εk} ⊂ (0,+∞) be infinitesimal and consider {yk} ⊂ L2(Ω;R3).

(1) If {yk} is weakly two-scale convergent, then it is bounded in L2(Ω;R3); conversely, if
{yk} is bounded in L2(Ω;R3), then it admits a weakly two-scale convergent subsequence.

(2) If yk
2
⇀ y weakly two-scale in L2, then yk ⇀

�
Q y( · , z) dz weakly in L2(Ω;R3).

(3) If yk
2
⇀ y weakly two-scale in L2 and if {χk} ⊂ L∞(Ω) is a bounded sequence that

converges to χ ∈ L∞(Ω) in measure, then χkyk
2
⇀ χy weakly two-scale in L2.

(4) Suppose that {yk} ⊂ W 1,2(Ω;R3) and that {yk} and {εk∇yk} are bounded in L2. Then,
there exists y ∈ L2(Ω;W 1,2

per(R3;R3)) such that, up to subsequences, yk
2
⇀ y and εk∇yk

2
⇀

∇zy weakly two-scale in L2.

Two-scale convergence in L2 can be related to L2 convergence by means of unfolding operator,
which, for ε > 0, is the map Sε : L2(Ω) → L2(R3 ×Q;R3) defined as

Sεy(x, z) := ŷ
(
ε

⌊
x

ε

⌋
+ εz

)
, (3.4)

where ŷ denotes the extension of y by 0 outside Ω and ⌊ · ⌋ is the floor function.

Lemma 3.7. If {yε} ⊂ L2(Ω;R3) is bounded, the following hold:

(1) yε
2
⇀ y weakly two-scale in L2 if and only if Sεyε ⇀ y weakly in L2(R3 ×Q;R3);

(2) yε
2→ y strongly two-scale in L2 if and only if Sεyε → y strongly in L2(R3 ×Q;R3).

In addition, if {yε} is 2-equiintegrable, the family of unfoldings {Sεyε} is also 2-equiintegrable on
R3 ×Q. Lastly, if y ∈ W 1,2(Ω;R3), then

Sε(ε∇y)(x, z) = ∇z(Sεy)(x, z) a.e. in R3 ×Q.

For a proof of Lemma 3.7 and for further reading on the unfolding operator we refer to
[43, 44, 16, 17].
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3.4. Homogenization of connected media in finite plasticity. We present a variant of [24,
Theorem 2.2] that is instrumental in dealing with the analysis of the stiff matrix. Its proof is an
adaptation of the one in [24], the most substantial difference being the use of [9, Theorem 19.1]
instead of [9, Theorem 14.5].

Recalling that we chose q > 3, we work in the space W 1,2(Ω;R3) ×W 1,q(Ω;K) endowed with
the topology τ characterized by

(yk, Pk) τ→ (y, P ) if and only if

yk → y strongly in L2(Ω;R3),
Pk → P uniformly.

(3.5)

Theorem 3.8. Let E be an open and connected set that is Q-periodic and that has Lipschitz
boundary. For every (y, P ) ∈ W 1,2(Ω;R3) ×W 1,q(Ω;K), let

W̃ (x, F ) := χE(x)W 1(F ), H̃(x, P ) := χE(x)H(P ),
and define

Fε(y, P ) :=
�

Ω
W̃

(
x

ε
,∇y(x)P−1(x)

)
dx+

�
Ω
H̃

(
x

ε
, P (x)

)
dx+

�
Ω

|∇P (x)|q dx, (3.6)

which we extend by setting
Fε(y, P ) = +∞ on

[
L2(Ω;R3) × Lq(Ω; SL(3))

]
\
[
W 1,2(Ω;R3) ×W 1,q(Ω;K)

]
.

If W 1 and H satisfy E1–E2 and H1–H2, respectively, then for all (y, P ) ∈ L2(Ω;R3)×Lq(Ω; SL(3))
the Γ-limit

F(y, P ) := Γ(τ)- lim
ε→0

Fε(y, P )

exists and we have that

F(y, P ) =



�
Ω

(
W̃hom(∇y(x), P (x)) + H̃hom(P (x)) + |∇P (x)|q

)
dx

if (y, P ) ∈ W 1,2(Ω;R3) ×W 1,q(Ω;K),

+∞ otherwise in L2(Ω;R3) × Lq(Ω; SL(3)),

where W̃hom : R3×3 ×K → [0,+∞) and H̃hom : K → [0,+∞) are defined as

W̃hom(F,G) := lim
λ→+∞

1
λ3 inf

{�
(0,λ)3

W̃
(
x, (F + ∇y(x))G−1) dx : y ∈ W 1,2

0 ((0, λ)3;R3)
}
,

H̃hom(F ) :=
�

Q
H̃(z, F ) dz.

We observe that the theorem above is similar in spirit to homogenization results for perforated
domains. The case at stake is however different, in that later we will deal with functions defined
on the nonperforated domain Ω. This simplifies the analysis, because it spares us the need to
extend Sobolev maps valued at SL(3).

Thanks to Lemma 3.1, we are able to refine the choice of recovery sequences for F . This will
come in handy in the proof of Corollary 2.9.

Corollary 3.9. Under the assumptions of Theorem 3.8, for any (y, P ) ∈ W 1,2(Ω;R3) ×
W 1,q(Ω;K) there exists a recovery sequence (yk, Pk) for F(y, P ) satisfying the following:

(1) yk ⇀ y weakly in W 1,2(Ω;R3);
(2) yk = y in a neighborhood of ∂Ω;
(3) {∇yk} is 2-equiintegrable.
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Proof. Let {(wk, Pk)} be a recovery sequence for F(y, P ) as provided by Theorem 3.8. We apply
Lemma 3.1 to {wk}. We deduce the existence of sequences {kj} and {uj} ⊂ W 1,2(Ω;R3) such
that the sequence defined by

yk :=
{
uj if k = kj for some j ∈ N,
y otherwise

satisfies properties (1)–(3) and (yk, Pk) τ→ (y, P ). Moreover

lim
j→+∞

L3(Nj) = 0,

where Nj := {x ∈ Ω : wkj
(x) ̸= uj(x)}.

We are left to prove that {(yk, Pk)} satisfies the upper limit inequality. Loosely speaking,
this is a consequence of the fact that passing to a 2-equiintegrable sequence “does not increase
the energy”. Upon passing to a subsequence, which we do not relabel, we can assume that
{Fk(yk, Pk)} is convergent. We first focus on the elastic and hardening parts of the energy Fkj

.
It holds that �

Ω

[
W

(
x

εkj

,∇wkj
P−1

kj

)
+H

(
x

εkj

, Pkj

)]
dx

=
�

Nj

[
W

(
x

εkj

,∇wkj
P−1

kj

)
+H

(
x

εkj

, Pkj

)]
dx

+
�

Ω\Nj

[
W

(
x

εkj

,∇ujP
−1
kj

)
+H

(
x

εkj

, Pkj

)]
dx

≥
�

Ω\Nj

[
W

(
x

εkj

,∇ujP
−1
kj

)
+H

(
x

εkj

, Pkj

)]
dx,

so that

lim sup
j→+∞

�
Ω

[
W

(
x

εkj

,∇wkj
P−1

kj

)
+H

(
x

εkj

, Pkj

)]
dx

≥ lim sup
j→+∞

�
Ω\Nj

[
W

(
x

εkj

,∇ujP
−1
kj

)
+H

(
x

εkj

, Pkj

)]
dx

= lim sup
j→+∞

�
Ω

[
W

(
x

εkj

,∇ujP
−1
kj

)
+H

(
x

εkj

, Pkj

)]
dx,

where the equality follows from the growth condition E1 and from the 2-equiintegrability of {∇uj}
(recall that supk∈N ∥P−1

k ∥∞ ≤ C), together with the boundedness of H. Therefore, coming back
to the full functional Fkj

,

lim
j→+∞

Fkj
(wkj

, Pkj
)

≥ lim sup
j→+∞

�
Ω

[
W

(
x

εkj

,∇wkj
P−1

kj

)
+H

(
x

εkj

, Pkj

)]
dx+ lim inf

j→+∞

�
Ω

|∇Pkj
|q dx

≥ lim sup
j→+∞

�
Ω

[
W

(
x

εkj

,∇ujP
−1
kj

)
+H

(
x

εkj

, Pkj

)]
dx+ lim inf

j→+∞

�
Ω

|∇Pkj
|q dx

≥ lim
j→+∞

Fkj
(uj , Pkj

).

(3.7)
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Recalling that {(wk, Pk)} is a recovery sequence and that we can assume {Fk(yk, Pk)} to be
convergent, we find

lim
k→+∞

Fk(yk, Pk) = lim
j→+∞

Fkj
(uj , Pkj

) ≤ lim
j→+∞

Fkj
(wkj

, Pkj
) = F(y, P ),

which in turn yields that {(yk, Pk)} is also a recovery sequence. □

3.5. Finsler structure on SL(3). In order to apply the results on homogenization of elastoplastic
media in [24], we endow SL(3) with a Finsler structure. In doing so, we follow [38], whose approach
is based on the notion of plastic dissipation. Such line of thought links the geometry of SL(3) to
the physics of the system under consideration, and allows to conveniently include dissipation
effects in the model, see Subsection 6.3.

We start from the observation that SL(3) is a smooth manifold with respect to the topology
induced by the inclusion in R3×3. For every F ∈ SL(3) the tangent space at F is characterized as

TF SL(3) = F sl(3) := {FM ∈ R3×3 : trM = 0},

and, in particular, TISL(3) coincides with sl(3) := {M ∈ R3×3 : trM = 0}. To the purpose of
endowing SL(3) with a Finsler structure, we consider a function ∆I : sl(3) → [0,+∞) on which
we make the following assumptions (cf. [4, Section 1.1] and [38, Section 1]):

D1: It is C2 on sl(3) \ {0};
D2: It is positively 1-homogeneous: ∆I(cM) = c∆I(M) for all c > 0 and M ∈ sl(3);
D3: The function ∆2

I/2 is strongly convex;
D4: It is 1-coercive and has at most linear growth: there exist 0 < c4 ≤ c5 such that for all

M ∈ sl(3)
c4|M | ≤ ∆I(M) ≤ c5|M |.

Note that we consider more restrictive regularity assumptions than the ones in [38] because
we appeal to results of differential geometry, where smoothness is customarily required. The
drawback of this choice is that in our analysis we cannot encompass some models, such as single
crystal plasticity. However, on the positive side, our assumptions cover Von Mises plasticity, see
[33, 38] and [24, Example 3.6].

Let TSL(3) denote the tangent bundle to SL(3). We can “translate” ∆I to the tangent spaces
other than sl(3) by setting

∆: TSL(3) → [0,+∞)
(F,M) 7→ ∆I(F−1M). (3.8)

Then, it can be proved that (SL(3),∆) is a C2 Finsler manifold. For an introduction to Finsler
geometry we refer to the monograph [4].

Next, we introduce the family C(F0, F1) of piecewise C2 curves Φ: [0, 1] → SL(3) such that
Φ(0) = F0 and Φ(1) = F1. We set

D(F0, F1) := inf
{� 1

0
∆
(
Φ(t), Φ̇(t)

)
dt : Φ ∈ C(F0, F1)

}
, (3.9)

where Φ̇ is the velocity of the curve. The function D provides a non-symmetric distance on
SL(3): it is positive, attains 0 if and only if it is evaluated on the diagonal of SL(3) × SL(3), and
satisfies the triangular inequality; in general, however, D(F0, F1) ̸= D(F1, F0).

Note that under assumptions D1–D3 it follows that ∆ is subadditive (see [4, Theorem 1.2.2]),
hence convex. Therefore, by an application of the direct method of the calculus of variations
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(cf. [38, Theorem 5.1]) it can be proved that for every F0, F1 ∈ SL(3) there exists a curve
Φ ∈ C1,1([0, 1]; SL(3)) such that Φ(0) = F0, Φ(1) = F1 and

D(F0, F1) =
� 1

0
∆
(
Φ(t), Φ̇(t)

)
dt. (3.10)

We call such a Φ a shortest path between F0 and F1.
A geodesic between F0 and F1, instead, is a path that is a critical point of the length functional

under variations that do not alter the endpoints. When for any couple of points in a given subset
S of a Finsler manifold there is a unique shortest path contained in S joining those points, we
say that S is geodesically convex.

The existence of a compact set K meeting the requirements in H1 is guaranteed by the
following lemma, whose proof is the content of [24, Remark 3.5].

Lemma 3.10. Assume that a C2 Finsler structure on SL(3) is assigned. Then, there exists a
geodesically convex, compact neighborhood of I.

4. Compactness and splitting

We now turn to the analysis of the high-contrast energy in (1.1). We investigate in this
section the compactness properties of sequences with equibounded energy. We will see that, as a
consequence of the behavior of the hardening functional H, we can reduce the problem to the
case of pure elasticity addressed by K. Cherdantsev & M. Cherednichenko [13], and we
adapt their approach.

Lemma 4.1 (Compactness). Let {εk} be an infinitesimal sequence. We suppose that {(yk, Pk)}k∈N ⊂
L2(Ω;R3) × Lq(Ω; SL(3)) satisfies

∥yk∥L2(Ω;R3) ≤ C, Jk(yk, Pk) ≤ C

for some C ≥ 0, uniformly in k. Let us denote by ỹk the extension of yk in the sense of
Remark 3.3 above. Then, there exist subsequences of {εk}, {yk}, and {Pk}, which we do not
relabel, as well as y ∈ L2(Ω;W 1,2

per(R3;R3)), y1 ∈ W 1,2(Ω;R3), v ∈ L2(Ω;W 1,2
0 (Q0;R3)), and

P ∈ W 1,q(Ω;K) such that the following hold:

y(x, z) = y1(x) + v(x, z) for a. e. (x, z) ∈ Ω ×Q, (4.1)

yk
2
⇀ y weakly two-scale in L2, (4.2)

εk∇yk
2
⇀ ∇zv weakly two-scale in L2, (4.3)

ỹk ⇀ y1 weakly in W 1,2(Ω;R3), (4.4)
Pk → P, P−1

k → P−1 weakly in W 1,q(Ω; SL(3)) and uniformly in C(Ω̄; SL(3)),
∇ỹkP

−1
k ⇀ ∇y1P−1 weakly in L2(Ω;R3×3). (4.5)

Proof. From the definition of Jk, for all k ∈ N

∥∇Pk∥Lq ≤ C. (4.6)

Besides, for all k, hypothesis E3, the definition of H and the bound (2.4) imply∥∥∥εkχ
0
k∇ykP

−1
k

∥∥∥
L2

+
∥∥∥χ1

k∇ykP
−1
k

∥∥∥
L2

≤ C, (4.7)

∥Pk∥L∞ +
∥∥∥P−1

k

∥∥∥
L∞

≤ C. (4.8)
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Thanks to (2.5), from the first estimate we deduce∥∥∥εkχ
0
k∇yk

∥∥∥
L2

+
∥∥∥χ1

k∇yk

∥∥∥
L2

≤ C, (4.9)

which is precisely formula (21) in [13]. Thus, for what concerns the sequence of deformations,
the same bounds as the purely elastic case are retrieved. While referring to [13] for details, here
we limit ourselves to sketch how (4.9) entails two-scale compactness.

The boundedness of {yk} in L2 and Lemma 3.6(4) yield the existence of a function y ∈
L2(Ω;W 1,2

per(R3;R3)) such that, up to subsequences, (4.2) holds and

εk∇yk
2
⇀ ∇zy weakly two-scale in L2. (4.10)

Thanks to (3.3) and Lemma 3.6(3), we also infer that

χ1
kyk

2
⇀ χ1y, εkχ

1
k∇yk

2
⇀ χ1∇zy weakly two-scale in L2.

Moreover, there exist y1 ∈ W 1,2(Ω;R3) and v ∈ L2(Ω;W 1,2
0 (Q0;R3)) such that the decomposition

(4.1) and the convergence (4.4) hold. By combining (4.1) and (4.10), (4.3) follows.
We now turn to the sequence of plastic strains. By (4.6) and (4.8), we see that {Pk} is bounded

in W 1,q(Ω;K). Since q > 3, Morrey’s embedding yields the uniform convergence of (a subsequence
of) {Pk} to some P ∈ W 1,q(Ω;K) (note that the uniform convergence of {Pk} ⊂ W 1,q(Ω;K)
yields that P attains values in K as well). Therefore, by definition of the inverse matrix

P−1
k = (cofPk)T

detPk
= (cofPk)T ,

we also deduce that P−1
k → P−1 uniformly.

Finally, we observe that, thanks to (4.4) and the uniform convergence of {P−1
k }, (4.5) is also

inferred. □

It is well-known that Γ-limits are not additive. In our case, however, we are able to show that
the asymptotic behavior of the functionals Jε is given exactly by the sum of the Γ-limits of the
soft and of the stiff contributions. Such splitting will enable us to treat the Γ-limits of J 0

ε and of
J 1

ε separately. We premise a simple lemma, which deals with the hardening part of the energy.
We recall that, for i = 0, 1, χi

k is the characteristic function of Ωi
k.

Lemma 4.2. Under assumptions H1–H2, for any sequence {Pk} ⊂ W 1,q(Ω;K) converging
uniformly to P ∈ W 1,q(Ω;K) it holds that

lim
k→+∞

�
Ω
χi

k(x)H
(
Pk(x)

)
dx = L3(Qi)

�
Ω
H
(
P (x)

)
dx for i = 0, 1.

Proof. Let us focus on the case i = 0 first. We set

E0 :=
⋃

t∈Z3

(t+Q0) = R3 \ E1,

By definition of Ω0
k (see (2.2)), we have

Ω ∩ (εkE
0 \ Ω0

k) ⊂ {x ∈ Ω : dist(x, ∂Ω) ≤ λεk}.
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Since {H(Pk)} is uniformly bounded by H1 and H2, we see that

lim
k→+∞

�
Ω
χ0

k(x)H
(
Pk(x)

)
dx

= lim
k→+∞

�
Ω
χεkE0(x)H

(
Pk(x)

)
dx− lim

k→+∞

�
Ω

(
χεkE0(x) − χ0

k(x)
)
H
(
Pk(x)

)
dx

= lim
k→+∞

�
Ω
χεkE0(x)H

(
Pk(x)

)
dx.

Then, by the Lipschitz continuity of H on its domain,

lim
k→+∞

�
Ω
χεkE0(x)H

(
Pk(x)

)
dx = lim

k→+∞

�
Ω
χεkE0(x)H

(
P (x)

)
dx

= L3(Q0)
�

Ω
H
(
P (x)

)
dx.

The case i = 1 follows from the previous one by the identities χ1
k = χΩ − χ0

k and L3(Q1) =
1 − L3(Q0). □

The splitting process is explained by the ensuing proposition.

Proposition 4.3 (Splitting). Let {εk} be an infinitesimal sequence, and let {(yk, Pk)}k∈N ⊂
W 1,2(Ω;R3) ×W 1,q(Ω; SL(3)) be a sequence satisfying

∥yk∥L2(Ω;R3) ≤ C, Jk(yk, Pk) ≤ C

for some C ≥ 0, uniformly in k. Let ỹk be the extension of yk in the sense of Remark 3.3, and let
v ∈ L2(Ω;W 1,2

0 (Q0;R3)) be as in Lemma 4.1. Then, defining vk := yk − ỹk, the following hold:

{vk} ⊂ W 1,2
0 (Ω0

k;R3), (4.11)
∥vk∥L2(Ω;R3) ≤ C,

εk∇vk
2
⇀ ∇zv weakly two-scale in L2, (4.12)

lim inf
k→+∞

J 0
k (vk, Pk) + lim inf

k→+∞
J 1

k (ỹk, Pk) ≤ lim inf
k→+∞

Jk(yk, Pk), (4.13)

lim sup
k→+∞

Jk(yk, Pk) ≤ lim sup
k→+∞

J 0
k (vk, Pk) + lim sup

k→+∞
J 1

k (ỹk, Pk). (4.14)

Moreover, in (4.13), {vk} may be replaced with another sequence {wk} ⊂ W 1,2
0 (Ω0

k;R3) such that
{εk∇wk} is 2-equiintegrable and εk∇wk ⇀ 0 weakly in L2(Ω;R3×3).

Proof. We first prove that (4.12) – (4.14) hold for the sequence {vk}. Afterwards, we will show
how to recover the equiintegrability for the sequence of gradients.

We split the functional Jk evaluated on (yk, Pk) as follows:

Jk(yk, Pk) = J 0
k (yk, Pk) + J 1

k (yk, Pk)
= J 0

k (vk, Pk) + J 1
k (ỹk, Pk) + Rk, (4.15)

where J 0
k and J 1

k are as in (2.11) and (2.12), and

Rk := J 0
k (yk, Pk) − J 0

k (vk, Pk)

=
�

Ω
χ0

k

[
W 0

ε

(
εk∇ykP

−1
k

)
−W 0

ε

(
εk∇vkP

−1
k

)]
dx.

We next show that Rk is asymptotically negligible.
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Hypothesis E4 yields

|Rk| ≤ c3

�
Ω
χ0

k

(
1 +

∣∣∣εk∇ykP
−1
k

∣∣∣+ ∣∣∣εk∇vkP
−1
k

∣∣∣) ∣∣∣εk∇ỹkP
−1
k

∣∣∣ dx. (4.16)

Since {(yk, Pk)} is equibounded in energy, the sequences {εkχ
0
k∇ykP

−1
k }, {χ1

k∇ykP
−1
k }, and

{P−1
k } are bounded in suitable Lebesgue spaces (see (4.7) and (4.8)). By the properties of the

extension operator Tε in Lemma 3.2, we deduce that�
Ω

∣∣∣∇ỹkP
−1
k

∣∣∣2 dx ≤ c

�
Ω

|∇ỹk|2 dx ≤ c

�
Ω

∣∣∣χ1
k∇yk

∣∣∣2 dx ≤ c

�
Ω

∣∣∣χ1
k∇ykP

−1
k

∣∣∣2 dx ≤ C

(recall estimate (2.5)). So, thanks to (4.3), we deduce that

εk∇vk = εk∇yk − εk∇ỹk
2
⇀ ∇zv weakly two-scale in L2,

In particular, by Lemma 3.6(1), {εkχ
0
k∇vkP

−1
k } is bounded in L2(Ω;R3×3). By applying Hölder’s

inequality to the right-hand side of (4.16), we then find Rk = O(εk). Owing to (4.15) we conclude
that (4.13) and (4.14) hold.

To complete the proof, we are only left to establish the existence of the sequence {wk}. Upon
extraction of a subsequence, which we do not relabel, we may assume that in (4.13) the lower
limit involving J 0

k is a limit. From the equiboundedness of the energy, by arguing as in the lines
before (4.9), we get

∥εk∇yk∥L2 ≤ C, ∥χ1
k∇yk∥L2 ≤ C. (4.17)

Then, (4.3) holds and, by Lemma 3.6(2), we obtain

εk∇yk ⇀ 0 weakly in L2(Ω;R3×3).
Lemma 3.1 applied to the sequence {εk∇yk} yields two sequences, {kj} and {uj} ⊂ W 1,2(Ω;R3),
such that {εkj

∇uj} is 2-equiintegrable,

εkj
∇uj ⇀ 0 weakly in L2(Ω;R3×3), (4.18)

lim
j→+∞

L3(Nj) = 0, with Nj := {x ∈ Ω : ykj
(x) ̸= uj(x)}.

Besides, we have
εkj
χ1

kj
∇uj → 0 strongly in L2(Ω;R3×3). (4.19)

Indeed, it holds that
∥εkj

χ1
kj

∇uj∥L2(Ω) = ∥εkj
χ1

kj
∇uj∥L2(Nj) + ∥εkj

χ1
kj

∇ykj
∥L2(Ω\Nj)

≤ ∥εkj
∇uj∥L2(Nj) + εkj

∥χ1
kj

∇ykj
∥L2(Ω),

and the conclusion follows by the 2-equiintegrability of {εkj
∇uj} and from (4.17).

We now define ũj := Tkj
uj , with Tkj

as in Lemma 3.2. From Remark 3.3 it follows that
{εkj

∇ũj} is 2-equiintegrable as well. Thus, the sequence defined by

wk :=
{
uj − ũj if k = kj for some j ∈ N,
0 otherwise

has the properties that wk ∈ W 1,2
0 (Ω0

k;R3) and {εk∇wk} is 2-equiintegrable. Moreover,

εk∇wk ⇀ 0 weakly in L2(Ω;R3×3).
To see this, we write

εkj
∇wkj

= εkj
∇uj − εkj

∇ũj .
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The first term converges to 0 weakly in L2(Ω;R3×3), as stated in (4.18). Additionally, Lemma 3.2
entails

∥εkj
∇ũj∥L2 ≤ c∥εkj

χ1
kj

∇uj∥L2 ,

and the weak convergence of {εk∇wk} follows from (4.19).
We are now ready to prove the validity of (4.13) when {εk∇vk} is replaced by the 2-

equiintegrable sequence {εk∇wk}. By the definition of the sequence at stake, we have

εkj
(∇vkj

− ∇wkj
) = εkj

(∇ykj
− ∇uj) − εkj

(∇ỹkj
− ∇ũj) a. e. in Ω. (4.20)

Lemma 3.2 yields

εkj
∥∇ỹkj

− ∇ũj∥L2(Ω) = εkj
∥∇
(
Tkj

(ykj
− uj)

)
∥L2(Ω)

≤ cεkj
∥χ1

kj
∇(ykj

− uj)∥L2(Ω)

= cεkj
∥χ1

kj
(∇ykj

− ∇uj)∥L2(Nj)

≤ c
(
εkj

∥χ1
kj

∇ykj
∥L2(Ω) + ∥εkj

∇uj∥L2(Nj)
)
.

Thus, (4.17) and the 2-equiintegrability of {εkj
∇uj} entail

εkj

(
∇ỹkj

− ∇ũj

)
→ 0 strongly in L2(Ω;R3×3). (4.21)

Therefore, using (4.20) and the fact that the densities W 0
kj

are bounded from below, we have
�

Ω
χ0

kj
(x)W 0

kj

(
εkj

∇vkj
(x)P−1

kj
(x)
)

dx

=
�

Nj

χ0
kj

(x)W 0
kj

(
εkj

∇vkj
(x)P−1

kj
(x)
)

dx

+
�

Ω\Nj

χ0
kj

(x)W 0
kj

((
εkj

∇wkj
(x) − εkj

(∇ỹkj
(x) − ∇ũj(x))

)
P−1

kj
(x)
)

dx

−
�

Ω\Nj

χ0
kj

(x)W 0
kj

(
εkj

∇wkj
(x)P−1

kj
(x)
)

dx+
�

Ω\Nj

χ0
kj

(x)W 0
kj

(
εkj

∇wkj
(x)P−1

kj
(x)
)

dx

≥ −c
(�

Ω\Nj

|εkj
(∇ỹkj

(x) − ∇ũj(x))|2 dx
)1/2

+
�

Ω\Nj

χ0
kj

(x)W 0
kj

(
εkj

∇wkj
(x)P−1

kj
(x)
)

dx,

where the Lipschitz regularity E4 and Hölder’s inequality were employed to derive the last bound
(recall that supk∈N ∥P−1

k ∥∞ ≤ C). We now take the limit in the inequality above. According to
Lemma 4.2, the hardening term has a limit. Therefore, also the elastic contribution is convergent,
and it satisfies

lim
k→+∞

J 0
k (vk, Pk) = lim

j→+∞

�
Ω
χ0

kj
(x)W 0

kj

(
εkj

∇vkj
(x)P−1

kj
(x)
)

dx+ L3(Q0)
�

Ω
H
(
P (x)

)
dx.

The strong converge (4.21) implies

lim
j→+∞

�
Ω
χ0

kj
(x)W 0

kj

(
εkj

∇vkj
(x)P−1

kj
(x)
)

dx

≥ lim inf
j→+∞

�
Ω\Nj

χ0
kj

(x)W 0
kj

(
εkj

∇wkj
(x)P−1

kj
(x)
)

dx

= lim inf
j→+∞

�
Ω
χ0

kj
(x)W 0

kj

(
εkj

∇wkj
(x)P−1

kj
(x)
)

dx,
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where the equality follows from the growth condition E3 and from the equiintegrability of
{εkj

∇wkj
}. We thereby infer

lim inf
k→+∞

J 0
k (wk, Pk) ≤ lim inf

j→+∞
J 0

kj
(wkj

, Pkj
) ≤ lim

k→+∞
J 0

k (vk, Pk),

and this concludes the proof. □

5. Γ-limit of the soft component

We devote this section to the study of the asymptotics of the functional J 0
ε in (2.11), which

encodes the energy of the inclusions. After some observations on the limiting functional J 0 in
(2.6), in the second and third subsections we deal respectively with the lower and with the upper
limit inequality for the elastic part of the energy. The other contributions will be taken into
account in Subsection 5.4, where we prove Proposition 2.11.

5.1. The limiting functional. The definition of Q′W 0 in (2.8), which encodes the limiting
elastic contribution of the soft inclusions, may be regarded as a variant of the well known
Dacorogna’s formula for the quasiconvex envelope [20, Theorem 6.9]. As such, the infimum in
(2.8) does not depend on Q, and we may rewrite Q′W 0 as follows:

Q′W 0(F,G) = inf
{ 

Q0
W 0

((
F + ∇v(z)

)
G
)

dz : v ∈ W 1,2
0 (Q0;R3)

}
. (5.1)

Note that here quasiconvexification occurs just with respect to the first argument, since a very
strong convergence is considered for the second one (cf. Proposition 5.4 below). The fact that
different variables in a problem may call for different relaxation procedures has been already
observed. As an example, we mention the concept of cross-quasiconvexity introduced by Le Dret
& Raoult [35] to deal with dimension reduction problems in elasticity.

For the sake of completeness, we explicitly mention some basic properties of Q′W 0. Note
that in the following lemma we use the symbol W 0 to denote a generic function rather than the
specific one in E5.

Lemma 5.1. Let W 0 : R3×3 → R, and assume there exist 0 < c1 ≤ c2 such that for all F ∈ R3×3

c1|F |2 ≤ W 0(F ) ≤ c2
(
|F |2 + 1

)
.

Let Q′W 0 be as in (2.8).
(1) For all F,G ∈ R3×3

c1|FG|2 ≤ Q′W 0(F,G) ≤ c2
(
|FG|2 + 1

)
,

and for all G ∈ R3×3 there exists c := c(G) > 0 such that for all F1, F2 ∈ R3×3∣∣∣Q′W 0(F1, G) − Q′W 0(F2, G)
∣∣∣ ≤ c (1 + |F1| + |F2|) |F1 − F2|.

Suppose further that there exists c3 > 0 such that for all F1, F2 ∈ R3×3∣∣∣W 0(F1) −W 0(F2)
∣∣∣ ≤ c3 (1 + |F1| + |F2|) |F1 − F2|. (5.2)

(2) Then, Q′W 0(F, · ) is continuous for all F ∈ R3×3.
(3) If {Pk} ⊂ W 1,q(Ω; SL(3)) converges weakly to P ∈ W 1,q(Ω; SL(3)), then for any V ∈

L2(Ω;R3×3)

lim
k→+∞

�
Ω

Q′W 0(V (x), P−1
k (x)

)
dx =

�
Ω

Q′W 0(V (x), P−1(x)
)

dx.
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Proof. The growth conditions on Q′W 0 are an immediate consequence of the ones on W 0 and of
the definition of Q′W 0.

For what concerns the 2-Lipschitz property, let us set W 0
G(F ) := W 0(FG) for any fixed G ∈

R3×3. Then, Q′W 0( · , G) coincides with the quasiconvex envelope of W 0
G. By [20, Remark 5.4(iii)]

it follows that Q′W 0( · , G) is separately convex, and hence, in view of the growth assumptions
on W 0, the proof of item (1) is concluded by [20, Proposition 2.32].

As for assertion (2), let Gk → G in R3×3. In view of (5.2), for every δ > 0 there exists cδ > 0
such that

Q′W 0(F,Gk) − Q′W 0(F,G) ≤ cδ|Gk −G| + δ.

Similarly, for any k ∈ N there exists vk ∈ W 1,p
0 (Q;R3×3) such that

Q′W 0(F,Gk) − Q′W 0(F,G)

≥ −c3|Gk −G|
�

Q

(
1 + |(F + ∇vk)Gk| + |(F + ∇vk)G|

)
|F + ∇vk| dx− 1

k
.

Thanks to the coercivity of the integrand, it follows that {∇vk} is bounded in L2, whence

Q′W 0(F,Gk) − Q′W 0(F,G) ≥ −c |Gk −G| − 1
k

for a constant c independent of k. The continuity of Q′W 0(F, · ) is then proved by letting first
k → +∞ and then δ → 0.

Finally, taking into account properties (1) and (2), as well as the compact embedding of
W 1,q(Ω) into C(Ω̄), we can employ the dominated convergence theorem to obtain the continuity
property in (3). □

We now exhibit an alternative expression for the soft limiting elastic energy, which is to be
exploited in the proof of Proposition 5.7.

Lemma 5.2. For every couple (V, P ) ∈ L2(Ω;R3×3) ×W 1,q(Ω; SL(3)) we have�
Ω

Q′W 0(V (x), P−1(x)
)

dx

= inf
{�

Ω

 
Q0
W 0

((
V (x) + ∇zw(x, z)

)
P−1(x)

)
dz dx : w ∈ L2(Ω;W 1,2

0 (Q0;R3))
}
.

(5.3)

The identity above rests on a measurable selection criterion that we recall next.

Lemma 5.3 (Lemma 3.10 in [28]). Let S be a multifunction defined on the measurable space
X and taking values in the collection of subsets of the separable metric space Y . If S(x) is
nonempty and open in Y for every x ∈ X, and if the set { x ∈ X : y ∈ S(x) } is measurable for
every y ∈ Y , then S admits a measurable selection, that is, there exists a measurable function
s : X → Y such that s(x) ∈ S(x) for all x ∈ X.

The previous lemma is a variant of [12, Theorem III.6], and we refer to that monograph for a
comprehensive treatment of measurable selection principles.

Proof of Lemma 5.2. The argument follows the one proposed in [28, Corollary 3.2].
Let us fix w ∈ L2(Ω;W 1,2

0 (Q0;R3)), so that, for almost every x ∈ Ω, w(x, · ) ∈ W 1,2
0 (Q0;R3).

Hence, according to (5.1), we have

Q′W 0(V (x), P−1(x)
)

≤
 

Q0
W 0

((
V (x) + ∇zw(x, z)

)
P−1(x)

)
dz for a. e. x ∈ Ω,
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whence, after integration over Ω, we deduce that in (5.3) the left-hand side is smaller that the
righ-hand one.

In order to establish the opposite inequality, we first observe that, by (5.1), for every x ∈ Ω
and every δ > 0 there exists vx,δ ∈ W 1,2

0 (Q0;R3) such that 
Q0
W 0

((
V (x) + ∇vx,δ(z)

)
P−1(x)

)
dz − Q′W 0(V (x), P−1(x)

)
< δ. (5.4)

We introduce the multifunction S defined for x ∈ Ω by

S(x) :=
{
v ∈ W 1,2

0 (Q0;R3) : (5.4) holds for vx,δ = v
}
.

We show that it admits a measurable selection. To this purpose observe that, as a consequence
of the growth assumptions on W 0 and the dominated convergence theorem, S(x) is a nonempty,
open subset of W 1,2

0 (Q0;R3) for every x ∈ Ω. Second, for every v ∈ W 1,2
0 (Q0;R3) the set

{x ∈ Ω : v ∈ S(x)} is measurable, because it is the sublevel set of a measurable function.
Thanks to Lemma 5.3, for every δ > 0 we retrieve a measurable function wδ : Ω → W 1,2

0 (Q0;R3)
that satisfies�

Ω

 
Q0
W 0

((
V (x) + ∇zwδ(x, z)

)
P−1(x)

)
dz dx ≤

�
Ω

Q′W 0(V (x), P−1(x)
)

+O(δ).

In particular, by the growth conditions on W 0, wδ must belong to L2(Ω;W 1,2
0 (Q0;R3)). Therefore,

since δ is arbitrary, we conclude that the left-hand side in (5.3) bounds from above the right-hand
one. □

5.2. Lower bound for the elastic energy. The goal of this subsection is to prove the ensuing:

Proposition 5.4. Let {W 0
k }k satisfy assumptions E3–E5, and let P ∈ W 1,q(Ω; SL(3)). For every

sequence {(vk, Pk)} ⊂ W 1,2
0 (Ω0

k;R3) ×W 1,q(Ω; SL(3)) such that {εk∇vk} is 2-equiintegrable and
Pk → P uniformly, it holds that

L3(Q0)
�

Ω
Q′W 0(0, P−1(x)

)
dx ≤ lim inf

k→+∞

�
Ω
χ0

k(x)W 0
k

(
εk∇vk(x)P−1

k (x)
)

dx. (5.5)

At a first glance, it may look bizarre that no convergence for the sequence {εk∇vk} is
prescribed. The statement becomes clearer once we recall that if Qf is the quasiconvex envelope
of f : R3×3 → R, then

Qf(0) ≤
 

Ω
f
(
∇v(x)

)
dx

for any v ∈ W 1,∞
0 (Ω;R3).

In order to establish (5.5), it is convenient to unfold the elastic energy.

Lemma 5.5. Let {W 0
k }k satisfy assumptions E3–E5. For any (v, P ) ∈ W 1,2(Ω;R3)×W 1,q(Ω; SL(3))

it holds that�
Ω
χ0

k(x)W 0
k

(
εk∇v(x)P−1(x)

)
dx =

∑
t∈Tk

�
εk(t+Q)

�
Q0
W 0

k

(
∇z v̂(x, z)P̂−1(x, z)

)
dz dx, (5.6)

where v̂ := Skv, P̂ := SkP and Sk := Sεk
is the unfolding operator introduced in Lemma 3.7.

Proof. According to the definition of Ω0
k in (2.2), the left-hand side of (5.6) equals

ε3
k

∑
t∈Tk

�
Q0
W 0

k

(
εk∇v

(
εk(t+ z)

)
P−1(εk(t+ z)

))
dz.
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We use the unfolding operator to rewrite this quantity as a double integral. Recalling Lemma 3.7,
we first observe that for every t ∈ Tk and z ∈ Q0 we have the identities

Sk(εk∇v)(εkt, z) = εk∇v
(
εk(t+ z)

)
, SkP

−1(εkt, z) = P−1(εk(t+ z)
)
.

Then, we also have
Sk(εk∇v) = ∇z

(
Skv

)
= ∇z v̂, SkP

−1 = (SkP )−1 = P̂−1.

We obtain �
Ω
χ0

k(x)W 0
k

(
εk∇v(x)P−1(x)

)
dx

= ε3
k

∑
t∈Tk

�
Q0
W 0

k

(
Sk(εk∇v)(εkt, z)Sk(P−1)(εkt, z)

)
dz

=
∑
t∈Tk

�
εk(t+Q)

�
Q0
W 0

k

(
∇z v̂

(
εk

⌊
x

εk

⌋
, z

)
P̂−1

(
εk

⌊
x

εk

⌋
, z

))
dz dx,

because ⌊x/εk⌋ = t for all x ∈ εk(t+Q). Since, in general, it holds that

Sku

(
εk

⌊
x

εk

⌋
, z

)
= u

(
εk

⌊
x

εk

⌋
+ εkz

)
= Sku(x, z),

identity (5.6) follows. □

A crucial ingredient in the proof of Proposition 5.4 is a sort of lower semicontinuity result for
the elastic contribution to the energy.

Lemma 5.6. Let {W 0
k }k satisfy assumptions E3–E5. Let also {wk} ⊂ L2(Ω;W 1,2

0 (Q0;R3)) be
such that {∇zwk} is 2-equiintegrable. Then, for all P ∈ W 1,q(Ω; SL(3)),

L3(Q0)
�

Ω
Q′W 0(0, P−1(x)

)
dx ≤ lim inf

k→+∞

�
Ω

�
Q0
W 0

k

(
∇zwk(x, z)P−1

k (x)
)

dz dx,

whenever Pk → P uniformly.

Proof. From (5.1) it follows that for all k ∈ N

L3(Q0)
�

Ω
Q′W 0(0, P−1

k (x)
)

dx ≤
�

Ω

�
Q0
W 0(∇zwk(x, z)P−1

k (x)
)

dz dx. (5.7)

Next, relying on the pointwise convergence of {W 0
k } to W 0, we adapt the argument in the proof

of [21, Theorem 5.14] to pass from W 0 to W 0
k on the right-hand side (see also [26, Lemma 5.2]

for a similar result in the context of A -quasiconvexity). Fix δ > 0. If {∇zwk} is 2-equiintegrable,
then so is {∇zwkP

−1
k }. Therefore, since the 2-growth assumptions on {W 0

k } transfer to the
pointwise limit W 0, there exists r > 0 such that

sup
k∈N

�
{(x,z)∈Ω×Q0:|∇zwk(x,z)P −1

k
(x)|>r}

W 0(∇zwk(x, z)P−1
k (x)

)
dz dx ≤ δ. (5.8)

Owing to assumption E4 and Remark 2.2, we can find ρ > 0 such that for every F,G ∈ R3×3

contained in the open ball B(0, ρ)
sup
k∈N

|W 0
k (F ) −W 0

k (G)| + |W 0(F ) −W 0(G)| ≤ δ. (5.9)

Let now F1, . . . , Fn ∈ B(0, r) be such that

B(0, r) ⊂
n⋃

i=1
B (Fi, ρ) . (5.10)
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Due to the pointwise convergence of W 0
k to W 0, for any such Fi there exist k̄i ∈ N such that

|W 0
k (Fi)−W 0(Fi)| ≤ δ if k > k̄i. Letting k̄ := max{k̄1, . . . , k̄n}, it follows that for any i = 1, . . . , n

|W 0
k (Fi) −W 0(Fi)| ≤ δ if k > k̄. (5.11)

By (5.10), for every G ∈ B(0, r) there exists i ∈ {1, . . . , n} such that G ∈ B(Fi, ρ). For this
particular i, the combination of the triangle inequality, (5.9) and (5.11) yields
|W 0

k (G) −W 0(G)| ≤ |W 0
k (G) −W 0

k (Fi)| + |W 0
k (Fi) −W 0(Fi)| + |W 0(G) −W 0(Fi)| ≤ 3δ, (5.12)

for every G ∈ B(0, r) and every k > k̄.
Thanks to Lemma 5.1(3) and (5.7) we deduce

L3(Q0)
�

Ω
Q′W 0(0, P−1(x)

)
dx

= L3(Q0) lim
k→+∞

�
Ω

Q′W 0(0, P−1
k (x)

)
dx

≤ lim inf
k→+∞

�
Ω

�
Q0
W 0(∇zwk(x, z)P−1

k (x)
)

dz dx

≤ lim inf
k→+∞

�
{(x,z)∈Ω×Q0:|∇zwk(x,z)P −1

k
(x)|≤r}

W 0(∇zwk(x, z)P−1
k (x)

)
dz dx+ δ

≤ lim inf
k→+∞

�
Ω

�
Q0
W 0

k

(
∇zwk(x, z)P−1

k (x)
)

dz dx+ 3δL6(Ω ×Q0) + δ,

where the second inequality is due to (5.8), and the last one to (5.12). The arbitrariness of δ > 0
yields the conclusion. □

We are now ready to prove the lower bound for the elastic contribution of the soft part.

Proof of Proposition 5.4. Let v̂k := Skvk. In view of the 2-equiintegrability of the sequence
{εk∇vk} and of Lemma 3.7, {∇z v̂k} is 2-equiintegrable as well, and it is hence a fortiori bounded
in L2. From Lemma 5.5, restricting the summation in (5.6) to the set of translations

T̂k :=
{
t ∈ Z3 : dist

(
ε(t+Q), ∂Ω

)
> λε

}
⊂ Tk,

we deduce

lim inf
k→+∞

�
Ω
χ0

k(x)W 0
k

(
εk∇vk(x)P−1

k (x)
)

dx ≥ lim inf
k→+∞

�
Ω̂k

�
Q0
W 0

k

(
∇z v̂k(x, z)P−1

k (x)
)

dz dx,

where
Ω̂k :=

⋃
t∈T̂k

εk(t+Q). (5.13)

We rewrite the right-hand side of the previous inequality as the difference between the integrals

I ′
k :=

�
Ω

�
Q0
W 0

k

(
∇z v̂k(x, z)P−1

k (x)
)

dz dx,

I ′′
k :=

�
Ω\Ω̂k

�
Q0
W 0

k

(
∇z v̂k(x, z)P−1

k (x)
)

dz dx.

Being that {∇z v̂k} 2-equiintegrable, the sequence {∇z v̂kP
−1
k } is also 2-equiintegrable. Thus, by

the growth condition E3 and the fact that Ω \ Ω̂k ⊂ {x ∈ Ω : dist(x, ∂Ω) ≤ (λ+
√

3)ε}, we obtain
lim

k→+∞
I ′′

k = 0.
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Taking into account Lemma 5.6 we conclude

lim inf
k→+∞

�
Ω
χ0

k(x)W 0
k

(
εk∇vk(x)P−1

k (x)
)

dx ≥ lim inf
k→+∞

I ′
k ≥ L3(Q0)

�
Ω

Q′W 0(0, P−1(x)
)

dx.

□

5.3. Upper bound for the elastic energy. In this subsection we address the proof of upper
Γ-limit inequality for the elastic contribution of the soft component. Differently from the previous
subsection, in order to establish the desired inequality we perform an analysis that is genuinely
two-scale, in the sense that we interpret 0 as the average with respect to the periodic variable of
the two-scale limit of the sequence {εk∇vk}.

Proposition 5.7. Let {W 0
k }k satisfy assumptions E3–E5, and let P ∈ W 1,q(Ω; SL(3)). For all

δ > 0 there exists a sequence {vk} ⊂ W 1,2
0 (Ω0

k;R3) such that εk∇vk ⇀ 0 weakly in L2(Ω;R3×3)
and that

lim sup
k→+∞

�
Ω
χ0

k(x)W 0
k

(
εk∇vk(x)P−1

k (x)
)

dx < L3(Q0)
�

Ω
Q′W 0(0, P−1(x)

)
dx+ δ, (5.14)

whenever Pk → P uniformly.

We begin with a lemma that provides a strong two-scale approximation of any sufficiently
regular function. The result has already appeared in [13, Lemma 22] where, however, the proof
is just sketched. In Section 6 we state and prove a more detailed version of this lemma (i.e.,
Lemma 6.1) and compare our result with the one in [13].

Lemma 5.8. Let w ∈ L2(Ω;W 1,2
0 (Q0;R3)) ∩ C2(Ω × Q0;R3). Then, there exists a sequence

{vk} ⊂ L2(Ω;R3) such that, letting v̂k := Skvk, it holds that

∇z v̂k → ∇zw strongly in L2(Ω ×Q;R3×3). (5.15)

We are now ready to prove the Γ-limsup inequality for the soft inclusions functional.

Proof of Proposition 5.7. According to Lemma 5.2, for every δ > 0 there exists wδ ∈ L2(Ω;W 1,2
0 (Q0;R3))

satisfying �
Ω

�
Q0
W 0(∇zwδ(x, z)P−1(x)

)
dz dx < L(Q0)

�
Ω

Q′W 0(0, P−1(x)
)

dx+ δ (5.16)

We would like to apply Lemma 5.8 which, however, requires wδ ∈ L2(Ω;W 1,2
0 (Q0;R3)) ∩C2(Ω ×

Q0;R3). We therefore establish the inequality first for a sufficiently regular wδ, and we then
extend the result by a density argument.
Case 1: wδ regular

Let wδ ∈ L2(Ω;W 1,2
0 (Q0;R3)) ∩ C2(Ω × Q0;R3). We consider the recovery sequence {vk}

coming from Lemma 5.8. Lemmas 3.7 and 3.6(2) yield εk∇vk ⇀ 0 weakly in L2(Ω;R3×3).
Assumption E4 and Hölder’s inequality entail∑

t∈Tk

�
εk(t+Q)

�
Q0

∣∣∣W 0
k

(
∇z v̂k(x, z)P−1

k (x)
)

−W 0
k

(
∇zwδ(x, z)P−1

k (x)
)∣∣∣ dz dx

≤ c
∑
t∈Tk

(�
εk(t+Q)

�
Q0

|∇z v̂k(x, z) − ∇zwδ(x, z)|2 dz dx
)1/2

,
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where the constant c bounds ∥P−1
k ∥L∞ . Thanks to the strong convergence of {∇z v̂k}, we obtain

that the term above is infinitesimal when k → +∞. From Lemma 5.5 we then deduce

lim sup
k→+∞

�
Ω
χ0

k(x)W 0
k

(
εk∇vk(x)P−1

k (x)
)

dx

= lim sup
k→+∞

∑
t∈Tk

�
εk(t+Q)

�
Q0
W 0

k

(
∇zwδ(x, z)P−1

k (x)
)

dz dx

= lim sup
k→+∞

∑
t∈Tk

�
εk(t+Q)

�
Q0
W 0

k

(
∇zwδ(x, z)P−1(x)

)
dz dx

= lim sup
k→+∞

∑
t∈Tk

�
εk(t+Q)

�
Q0
W 0

(
∇zwδ(x, z)P−1(x)

)
dz dx,

where the second identity follows from E4 and the last one from E5. Note also that, by absolute
continuity of the Lebesgue integral,

lim sup
k→+∞

∑
t∈Tk

�
εk(t+Q)

�
Q0
W 0

(
∇zwδ(x, z)P−1(x)

)
dz dx

=
�

Ω

�
Q0
W 0

(
∇zwδ(x, z)P−1(x)

)
dz dx.

Therefore, combining the equalities that we have just found with (5.16), we achieve the conclusion
in the case under consideration.
Case 2: wδ generic
Let now wδ ∈ L2(Ω;W 1,2

0 (Q0;R3)). By density, we retrieve a function w̃δ ∈ C∞
c (Ω;C∞

c (Q0;R3))
such that �

Ω

�
Q0
W 0(∇zw̃δ(x, z)P−1(x)

)
dz ≤

�
Ω

�
Q0
W 0(∇zwδ(x, z)P−1(x)

)
dz + δ.

To achieve the conclusion, it only suffices to repeat the argument in Case 1 for w̃δ. □

5.4. Proof of Proposition 2.11. We are eventually in a position to reap the fruits of the
previous subsections.

Proof of Proposition 2.11. Let us start with the lower limit inequality. If the lower limit of
J 0

k (vk, Pk) is not finite, there is nothing to prove. Otherwise, statement (1) in Proposition 2.11
follows by combining Proposition 5.4 and Lemma 4.2.

As for the upper bound, Proposition 5.7 provides for all δ > 0 a sequence {vk} ⊂ W 1,2
0 (Ω0

k;R3)
such that εk∇vk ⇀ 0 weakly in L2(Ω;R3×3) and (5.14) holds. By the Poincaré inequality on
perforated media (see Proposition 3.4), it follows that {vk} is bounded in L2(Ω;R3). We employ
again Lemma 4.2 to deduce that

lim sup
k→+∞

J 0
k (vk, Pk) < J 0(P ) + δ.

This inequality is actually equivalent to the desired one (cf. [8, Section 1.2]), and the proof is
therefore concluded. □

6. Conclusions and a variant of the problem with plastic dissipation

We devote this final section to the proof of the homogenization result for high-contrast
composites and to the discussion of a variant of the problem featuring plastic dissipation.
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6.1. Proof of Theorem 2.7 and convergence of minimum problems. As we outlined before,
the proof of Theorem 2.7 is achieved by combining the splitting procedure in Proposition 4.3
with Theorem 3.8 and Proposition 2.11, which account for the asymptotics of the stiff and the
soft components, respectively. Once the homogenization theorem is on hand, the convergence of
the minimum problems and of their minimizers will follow thanks to the compactness result in
Lemma 4.1.

Proof of Theorem 2.7. Let {εk} be an infinitesimal sequence and let us fix y ∈ L2(Ω;R3) and
P ∈ Lq(Ω; SL(3)). We separate the proof of the lower and of the upper limit inequalities.

Lower bound
We consider a sequence {(yk, Pk)} ⊂ L2(Ω;R3) × Lq(Ω; SL(3)) such that yk → y in the sense of
extensions and that Pk → P uniformly. The only case to discuss is the one in which the lower
limit of Jk(yk, Pk) is finite, and we may thus assume that {Jk(yk, Pk)} is bounded. Keeping in
force the notation of Definition 2.4, we let {ỹk} ⊂ W 1,2(Ω;R3) be a sequence such that yk = ỹk

in Ω1
k and ỹk ⇀ y weakly in W 1,2(Ω;R3). In the light of (4.4) and Remark 2.5, we may without

loss of generality assume that ỹk := Tkyk, with Tk as in Lemma 3.2.
We now apply Proposition 4.3, which yields {vk} ⊂ W 1,2

0 (Ω0
k;R3) satisfying (4.13) and such

that {vk} is bounded in L2 and that {εk∇vk} is 2-equiintegrable. In particular, εkvk → 0 strongly
in L2, and hence (εkvk, Pk) τ→ (0, P ). Besides, Proposition 2.11 yields

J 0(P ) ≤ lim inf
k→+∞

J 0
k (vk, Pk).

At this stage, recalling (4.13), the proof of the lower bound is concluded as soon as we show that

J 1(y, P ) ≤ lim inf
k→+∞

J 1
k (ỹk, Pk) = lim inf

k→+∞
J 1

k (yk, Pk) (6.1)

with J 1(y, P ) given by (2.7). This is what we prove next.
Let us set

Ŵ 1(x, F ) := χE1(x)W 1(F ), Ĥ(x, P ) := χE1(x)H(P ),

Ĵ 1
k (y, P ) :=

�
Ω

[
Ŵ 1

(
x

εk
,∇ỹP−1

)
+ Ĥ

(
x

εk
, P

)
+ |∇P |q

]
dx. (6.2)

It holds

lim inf
k→+∞

Ĵ 1
k (ỹk, Pk) ≤ lim inf

k→+∞
J 1

k (ỹk, Pk).

Since (ỹk, Pk) τ→ (y, P ), by applying Theorem 3.8 to the left-hand side of the previous inequality,
(6.1) is deduced.

Upper bound
If P /∈ W 1,q(Ω;K) there is nothing to prove; let us then assume that P ∈ W 1,q(Ω;K).

As we have already observed, {Ĵ 1
k } satisfies the requirements of Theorem 3.8. In view of

Corollary 3.9, for any (y, P ) ∈ W 1,2(Ω;R3) ×W 1,q(Ω;K) there exists a sequence {(uk, Pk)} ⊂
W 1,2(Ω;R3) ×W 1,q(Ω;K) such that {∇uk} is 2-equiintegrable, (uk, Pk) τ→ (y, P ), and

lim sup
k→+∞

Ĵ 1
k (uk, Pk) ≤ J 1(y, P ).
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Note that

0 ≤ J 1
k (uk, Pk) − Ĵ 1

k (uk, Pk)

=
�

Ω

(
χ1

k(x) − χεkE1(x)
)(
W 1(∇ukP

−1
k ) +H(Pk)

)
dx

≤ c

�
Ω

(
χ1

k(x) − χεkE1(x)
)(

|∇uk|2 + 1
)

dx

for all k ∈ N. Thanks to the 2-equiintegrability of {∇uk}, we deduce

lim sup
k→+∞

J 1
k (uk, Pk) = lim sup

k→+∞
Ĵ 1

k (uk, Pk) ≤ J 1(y, P ). (6.3)

We now focus on the soft part. Proposition 2.11 grants the existence of a bounded sequence
{vk} ⊂ L2(Ω;R3) such that {vk} ⊂ W 1,2

0 (Ω0
k;R3) and

lim sup
k→+∞

J 0
k (vk, Pk) ≤ J 0(P ), (6.4)

where {Pk} is as in (6.3). Notice that if yk := uk + vk, then {Jk(yk, Pk)} is bounded and {yk}
converges to y in the sense of extensions (recall Remark 2.5). Letting ỹk := Tkyk, thanks to
(4.14) we conclude the proof of the upper limit inequality:

lim sup
k→+∞

Jk(yk, Pk) ≤ lim sup
k→+∞

J 0
k (yk − ỹk, Pk) + lim sup

k→+∞
J 1

k (ỹk, Pk)

= lim sup
k→+∞

J 0
k (vk, Pk) + lim sup

k→+∞
J 1

k (uk, Pk)

≤ J (y, P ).

In the previous lines, the equality is a consequence of the facts that {∇uk} and {∇ỹk} are
bounded and that uk = yk on Ω1

k, whereas the last bound is accounted for by (6.3) and (6.4). □

Finally, we are only left to establish the convergence of the minimum problems associated with
the energy functionals Jε. What we need is an adaptation of the Γ-convergence statement that
we have just proved so as to make it comply with Dirichlet boundary conditions. To this aim,
as it is customary (see, e.g., [9, Proposition 11.7]), we could employ the fundamental estimate
derived in [24] on the functionals {Ĵ 1

k } in (6.2); indeed, boundary data concern only the stiff
part, cf. Remark 2.6. In the light of Corollary 3.9 we can adopt an alternative strategy.

Proof of Corollary 2.9. Since {(yk, Pk)} is a sequence of almost-minimizers, there exists C such
that Jk(yk, Pk) ≤ C. The 2-growth condition from below, together with Proposition 3.4, provides
a bound on ∥yk∥L2 . By Lemma 4.1, there exists (y, P ) ∈ W 1,2

0 (Ω;R3) ×W 1,q(Ω;K) such that,
up to subsequences, yk → y in the sense of extensions and Pk → P uniformly. Theorem 2.7
ensures that

J (y, P ) ≤ lim inf
k→+∞

Jk(yk, Pk).

We now prove the existence of a recovery sequence meeting the boundary conditions. As sug-
gested by Remark 2.6, we focus on the stiff part. Let us consider again the functional Ĵ 1

k in (6.2).
Since the sequence {Ĵ 1

k } falls within the scopes of Theorem 3.8, for any (ŷ, P̂ ) ∈ W 1,2
0 (Ω;R3) ×

W 1,q(Ω;K) Corollary 3.9 provides a sequence {(uk, P̂k)} ⊂ W 1,2
0 (Ω;R3) ×W 1,q(Ω;K) such that

{∇uk} is 2-equiintegrable, (uk, P̂k) τ→ (ŷ, P̂ ) and

lim sup
k→+∞

Ĵ 1
k (uk, P̂k) ≤ J 1(y, P ).
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By reasoning as in the proof of the upper bound in Theorem 2.7 we retrieve a sequence
{ŷk, P̂k} ∈ W 1,2

0 (Ω;R3) × W 1,q(Ω;K) such that ŷk → ŷ in the sense of extensions, P̂k → P̂
uniformly and

lim sup
k→+∞

Jk(ŷk, P̂k) ≤ J (ŷ, P̂ ),

whence

lim sup
k→+∞

(inf Jk) ≤ inf J .

Recalling that {(yk, Pk)} is a sequence of almost minimizers, we conclude

inf J ≤ J (y, P ) ≤ lim inf
k→+∞

Jk(yk, Pk) = lim inf
k→+∞

inf Jk ≤ inf J ,

as desired. □

6.2. A non degenerate upper bound for the soft component. We proved in Section 5
that the limiting behavior of the soft inclusions is described by a degenerate functional. However,
under our assumptions, a non-degenerate upper bound may still be established, as we prove in
the remainder. The argument follows [13], where Cherdantsev & Cherednichenko derived
the effective energy of high-contrast nonlinear elastic materials. Differently from us, the Γ-limit
that they retrieve keeps track of both the macro- and the microscopic variable, and this roots in
the choice of a stronger notion of convergence. The drawback of such an approach is the lack of
compactness for sequences with equibounded energy. It was shown in [26, Example 2.12] that,
when weaker topologies are considered, the quasiconvex envelope does not provide the correct
limiting energy density for the lower Γ-limit.

We start by proving a more detailed version of Lemma 5.8.

Lemma 6.1 (cf. Lemma 22 in [13]). Let w ∈ L2(Ω;W 1,2
0 (Q0;R3)) ∩C2(Ω ×Q0;R3). Then, there

exists a sequence {wk} ⊂ L2(Ω;W 1,2
per(R3;R3)) such that ∇zwk → ∇zw strongly in L2(Ω×Q;R3×3).

Besides, setting for x ∈ Ω

vk(x) := wk

(
x,

x

εk

)
, (6.5)

{vk} converges strongly two-scale to w in L2 and (5.15) holds.

Proof. We extend w by setting it equal to 0 onQ\Q0, so as to obtain a function in L2(Ω;W 1,2
per(R3;R3))

which, by a slight abuse of notation, we denote again by w.
Keeping in mind the definition of Ω̂k (see (5.13)), for (x̄, z̄) ∈ Ω × R3 we define wk(x̄, z̄) in

terms of the averages of w( · , z̄) on the cubes that form Ω̂k:

wk(x̄, z̄) :=


 

εk(t+Q)
w(x, z̄) dx if x̄ ∈ εk(t+Q) for some t ∈ T̂k,

0 for any other x̄ ∈ Ω.
(6.6)

By definition, wk( · , z) is piecewise constant for all z ∈ Q̄. Moreover, for almost every x ∈ Ω,
wk(x, · ) is Q-periodic as well as weakly differentiable, and ∇zwk → ∇zw strongly in L2(Ω ×
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Q;R3×3). Indeed, from (6.6) and Jensen’s inequality, we have that�
Ω

�
Q

|∇zwk(x, z) − ∇zw(x, z)|2 dz dx

=
�

Ω̂k

�
Q

|∇zwk(x, z) − ∇zw(x, z)|2 dz dx+
�

Ω\Ω̂k

�
Q

|∇zw(x, z)|2 dz dx

=
∑
t∈T̂k

�
εk(t+Q)

�
Q

|∇zwk(x, z) − ∇zw(x, z)|2 dz dx+ o(1)

≤
∑
t∈T̂k

�
εk(t+Q)

�
Q

 
εk(t+Q)

∣∣∇zw(ξ, z) − ∇zw
(
x, z)

∣∣2 dξ dz dx+ o(1),

and the last term is infinitesimal for k → +∞ (recall that w ∈ C2 and the mean value theorem
applies).

We now turn to the functions vk given by (6.5). First of all we point out that, thanks to the
regularity of w, vk is measurable because it is C2 in the second argument (see [2, Section 5]),
and vanishes on Ω1

k. Besides, it belongs to W 1,2
0 (Ω0

k;R3). Second, we show that {vk} converges
weakly two-scale to w in L2. To this aim, let us fix ϕ ∈ C(Ω̄;Cper(R3;R3)). We find�

Ω
vk(x) · ϕ

(
x,

x

εk

)
dx =

�
Ω0

k

wk

(
x,

x

εk

)
· ϕ
(
x,

x

εk

)
dx

=
∑
t∈Tk

�
εk(t+Q0)

wk

(
x,

x

εk

)
· ϕ
(
x,

x

εk

)
dx

= ε3
k

∑
t∈Tk

�
Q0
wk

(
εk(t+ z), z

)
· ϕ
(
εk(t+ z), z

)
dz

=
∑
t∈T̂k

�
Q0

�
εk(t+Q)

w(x, z) · ϕ
(
εk(t+ z), z

)
dx dz

=
�

Ω̂k

�
Q0
w(x, z) · ϕk(x, z) dz dx,

where ϕk(x, z) := ϕ(εk(t + z), z) if x ∈ εk(t + Q) with t ∈ T̂k. By the dominated convergence
theorem, we infer

lim
k→+∞

�
Ω
vk(x) · ϕ

(
x,

x

εk

)
dx =

�
Ω

�
Q0
w(x, z) · ϕ(x, z) dz dx,

that is, vk
2
⇀ w weakly two-scale in L2 (recall that w(x, z) = 0 if z ∈ Q1).

In order to prove that strong two-scale convergence actually holds, we study the limiting
behavior of the L2 norm of {vk}. On the one hand, the weak two-scale convergence yields

∥w∥L2(Ω×Q) ≤ lim inf
k→+∞

∥vk∥L2(Ω). (6.7)

On the other hand, from the properties of {wk} and a change of variables we have the identities�
Ω

|vk(x)|2 dx =
�

Ω0
k

∣∣∣∣wk

(
x,

x

εk

)∣∣∣∣2 dx =
∑
t∈Tk

�
εk(t+Q0)

∣∣∣∣wk

(
x,

x

εk

)∣∣∣∣2 dx

=
∑
t∈Tk

ε3
k

�
Q0

∣∣wk

(
εk(t+ z), z

)∣∣2 dz =
∑
t∈T̂k

ε3
k

�
Q0

∣∣∣∣∣
 

εk(t+Q)
w(x, z) dx

∣∣∣∣∣
2

dz.
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Thanks to Jensen’s inequality we deduce�
Ω

|vk(x)|2 dx ≤
∑
t∈T̂k

ε3
k

�
Q0

 
εk(t+Q)

|w(x, z)|2 dx dz =
�

Q0

�
Ω̂k

|w(x, z)|2 dx dz.

This, combined with (6.7), ensures that

lim
k→+∞

∥vk∥L2(Ω) = ∥w∥L2(Ω×Q).

In view of Definition 3.5 the conclusion is achieved.
Finally, the strong convergence (5.15) follows by observing that, if x ∈ εk(t+Q), it holds that

∇z v̂k(x, z) = ∇zwk

(
εk(t+ z), z

)
.

□

We are now in a position to prove a non-degenerate upper Γ-limit inequality that is the
counterpart of the one in Proposition 5.7 under the current stronger convergence assumptions.

Proposition 6.2. Let {W 0
k }k satisfy assumptions E3–E5. For any (w,P ) ∈ L2(Ω;W 1,2

0 (Q0;R3))×
W 1,q(Ω; SL(3)). there exists a sequence {vk} ⊂ W 1,2

0 (Ω0
k;R3) such that:

(1) vk
2→ w strongly two-scale in L2;

(2) εk∇vk
2
⇀ ∇zw weakly two-scale in L2;

(3) whenever Pk → P uniformly, it holds that

lim sup
k→+∞

�
Ω
χ0

k(x)W 0
k

(
εk∇vk(x)P−1

k (x)
)

dx ≤
�

Ω

�
Q0

Q′W 0(∇zw(x, z), P−1(x)
)

dz dx,

where Q′W 0 is given by (2.8).

The conclusion is not a straightforward consequence of Lemma 6.1, because along the sequence
{vk} in (6.5) we would not end up with the correct limiting energy density. Therefore, the actual
recovery sequence is obtained by adding a “correction” to vk.

Proof of Proposition 6.2. The proof consists of several steps. At first, to circumvent measurability
issues, it is convenient to consider a sufficiently regular w. Under such assumption, we are able
to construct a recovery sequence of the form vk = ṽk + w̃k, where {ṽk} is provided by Lemma 6.1
and {w̃k} allows to pass from the densities W 0

k to Q′W 0
k . The definition of w̃k is given in Step 1,

while Step 2 deals with the upper limit inequality in the regular case. The general statement is
eventually retrieved by approximation.
Step 1: construction of w̃k for a regular w

Let us assume that w ∈ L2(Ω;W 1,2
0 (Q0;R3)) ∩ C2(Ω × Q0;R3). We consider a cover of Q0

made of cubes whose edge length is εk. We set Σ̂k := { s ∈ Z3 : εk(s+Q) ⊂ Q0 } and, for all
(t, s) ∈ T̂k × Σ̂k, we introduce the averages

Ak(t, s) :=
 

εk(t+Q)

 
εk(s+Q)

∇zw(x, z) dz dx (6.8)

and the piecewise constant functions

Ak(x, z) :=

Ak(t, s) if (x, z) ∈ εk(t+Q) × εk(s+Q), (t, s) ∈ T̂k × Σ̂k,

0 otherwise.
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We record here for later use that, by means of Lebesgue differentiation and dominated convergence
theorems, it follows

lim
k→+∞

∥Ak − ∇zw∥2
L2(Ω×Q)

= lim
k→+∞

∑
t∈T̂k

∑
s∈Σ̂k

�
εk(t+Q)

�
εk(s+Q)

|Ak(t, s) − ∇zw(x, z)|2 dz dx

= 0.

(6.9)

By the definition of Q′W 0
k , for all k ∈ N there exists ψk ∈ W 1,2

0 (Q;R3) such that�
Q
χ0(z)W 0

k

((
Ak(t, s) + ∇ψk(z)

)
P−1

k (x)
)

dz ≤ Q′W 0
k

(
Ak(t, s), P−1(x)

)
+ 1
k
. (6.10)

Note that, due to the smoothness of w, the averages Ak are bounded uniformly in k, t and
s. In the light of Lemma 5.1, the values Q′W 0

k

(
Ak(t, s), P−1(x)

)
are uniformly bounded as

well. Therefore, by combining (6.10) with assumption E3, we deduce that {ψk} is bounded in
W 1,2

0 (Q;R3).
A change of variables in (6.10) yields�

εk(s+Q)
χ0
(
z

εk
− s

)
W 0

k

((
Ak(t, s) + ∇ψk

(
z

εk
− s

))
P−1(x)

)
dz

≤ ε3
k

(
Q′W 0

k

(
Ak(t, s), P−1(x)

)
+ 1
k

)
, (6.11)

and that suggests us to introduce the functions

ψ̃k(x, z) :=

εkψk

(
z

εk
− s

)
if (x, z) ∈ εk(t+Q) × εk(s+Q), (t, s) ∈ T̂k × Σ̂k,

0 otherwise.

Note that, for each k and x ∈ Ω, ψ̃k(x, · ) admits a weak derivative with respect to z; thus, by
summing over (t, s) ∈ T̂k × Σ̂k, from (6.11) we may write∑

(t,s)∈T̂k×Σ̂k

�
εk(t+Q)

�
εk(s+Q)

χ0
(
z

εk
− s

)
W 0

k

((
Ak(x, z) + ∇zψ̃k(x, z)

)
P−1(x)

)
dz dx

≤
∑

(t,s)∈T̂k×Σ̂k

�
εk(t+Q)

ε3
k

(
Q′W 0

k

(
Ak(t, s), P−1

k (x)
)

+ 1
k

)
dx. (6.12)

We also observe that, since {ψk} is bounded, ψ̃k → 0 strongly in L2(Ω ×Q;R3). Then, given
that {∇zψ̃} is bounded L2(Ω ×Q;R3×3), it must converge weakly in L2 to 0. It follows that, if
wk is as in Lemma 6.1 and if (x, z) ∈ εk(t+Q) × εk(s+Q) with (t, s) ∈ T̂k × Σ̂k,

∇z(wk + ψ̃k) ⇀ ∇zw weakly in L2(Ω ×Q;R3×3). (6.13)
We further notice that

w̃k(x) := ψ̃k

(
x,

x

εk

)
=

∑
(t,s)∈T̂k×Σ̂k

εkψk

(
x

ε2
k

− s

)
χεk(t+Q)(x)χεk(s+Q)

(
x

εk

)
is a measurable function. A quick application of the definition of weak derivative proves also
that w̃k belongs to W 1,2

0 (Ω0
k;R3).
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Step 2: w regular
We now turn to the proof of the limsup inequality along the sequence {vk} defined as

vk := ṽk + w̃k, (6.14)
where

ṽk(x) := wk

(
x,

x

εk

)
with wk as in Lemma 6.1, and where {w̃k} was introduced in Step 1. We have

v̂k(x, z) := Skvk(x, z) = wk

(
εk

⌊
x

εk

⌋
+ εkz, z

)
+ ψ̃k

(
εk

⌊
x

εk

⌋
+ εkz, z

)
,

so that if (x, z) ∈ εk(t+Q) × εk(s+Q)

∇z v̂k(x, z) = ∇zwk

(
εk(t+ z), z

)
+ ∇ψk

(
z

εk
− s

)
. (6.15)

Taking into account (6.13), (6.15) and Lemma 3.7(1), it follows that

εk∇vk
2
⇀ ∇zw weakly two-scale in L2.

Recalling Lemma 5.5, we have that

lim sup
k→+∞

�
Ω
χ0

k(x)W 0
k

(
εk∇vk(x)P−1

k (x)
)

dx

= lim sup
k→+∞

∑
t∈Tk

�
εk(t+Q)

�
Q0
W 0

k

(
∇z v̂k(x, z)P−1

k (x)
)

dz dx

= lim sup
k→+∞

Ik,

where

Ik :=
∑

(t,s)∈T̂k×Σ̂k

�
εk(t+Q)

�
εk(s+Q)

W 0
k

(
∇z v̂k(x, z)P−1

k (x)
)

dz dx.

Indeed, v̂k vanishes if x ∈ Ω\Ω̂k or if z ∈ Q0 \∪{εk(s+Q) : s ∈ Σ̂k}, and the sequence {W 0
k (0)} is

bounded by virtue of E3. Therefore, since the measure of Ω\Ω̂k and of Q0 \∪{εk(s+Q) : s ∈ Σ̂k}
vanish for k → +∞, the second equality holds.

Being the value of ∇z v̂k (x, z) expressed by formula (6.15), we introduce

I ′
k :=

∑
t,s

�
εk(t+Q)

�
εk(s+Q)

W 0
k

((
Ak(t, s) + ∇ψk

(
z

εk
− s

))
P−1

k (x)
)

dz dx,

where the summation runs over T̂k × Σ̂k. By exploiting assumption E4 and Hölder’s inequality,
we obtain the estimate∣∣Ik − I ′

k

∣∣ ≤ c
∑
t,s

�
εk(t+Q)

�
εk(s+Q)

∣∣∣(∇zwk

(
εk(t+ z), z

)
−Ak(t, s)

)
P−1

k (x)
∣∣∣2 dz dx.

In view of Lemma 6.1 and (6.9) we deduce
lim

k→+∞

∣∣Ik − I ′
k

∣∣ = 0. (6.16)

Next, let us set

I ′′
k :=

�
Ω̂k

�
Q0

Q′W 0
k

(
Ak(x, z), P−1

k (x)
)

dz dx.
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According to (6.12), the difference between the integrands of I ′
k and I ′′

k is of order k−1:

lim
k→+∞

∣∣I ′
k − I ′′

k

∣∣ = 0. (6.17)

Finally, we compare I ′′
k and the limiting functional. We have∣∣∣∣∣I ′′

k −
�

Ω

�
Q0

Q′W 0(∇zw(x, z), P−1(x)
)

dz dx
∣∣∣∣∣

≤
�

Ω̂k

�
Q0

∣∣∣Q′W 0
k

(
Ak(x, z), P−1

k (x)
)

− Q′W 0
k

(
∇zw(x, z), P−1

k (x)
)∣∣∣ dz dx

+
�

Ω̂k

�
Q0

∣∣∣Q′W 0
k

(
∇zw(x, z), P−1

k (x)
)

− Q′W 0
k

(
∇zw(x, z), P−1(x)

)∣∣∣ dz dx

+
�

Ω̂k

�
Q0

∣∣∣Q′W 0
k

(
∇zw(x, z), P−1(x)

)
− Q′W 0(∇zw(x, z), P−1(x)

)∣∣∣ dz dx

+
�

Ω\Ω̂k

�
Q0

Q′W 0(∇zw(x, z), P−1(x)
)

dz dx.

All the terms on the right-hand side vanish as k → +∞. Indeed, by using the Lipschitz continuity
of Q′W 0

k (see Lemma 5.1(1)) and the uniform bound on {Pk}, the first summand is controlled
by the norm of Ak − ∇zv, which, according to (6.9), is infinitesimal. For what concerns the
second term, Lemma 5.1(2) and the uniform convergence of {Pk} imply that the integrand is
infinitesimal for k → +∞. The third quantity vanishes because {Q′W 0

k } pointwise converges
to Q′W 0 (recall that they are just variants of the quasiconvex envelopes). Lastly, the fourth
summand is negligible since L3(Ω \ Ω̂k) tends to 0.

On the whole, taking into account (6.16) and (6.17), we conclude

lim
k→+∞

Ik =
�

Ω

�
Q0

Q′W 0(∇zw(x, z), P−1(x)
)

dz dx.

Step 3: w generic
The argument follows the one of Case 2 in the proof of Proposition 5.7.

□

6.3. A variant with plastic dissipation. With a view to applying Theorem 2.7 to time-
dependent problems, it is useful to modify the functionals Jε by adding a term that encodes
the plastic dissipation mechanism of the system. Precisely, we take into account the non-
symmetric distance D : R3×3 × R3×3 → [0,+∞] in (3.9) and we define the dissipation between
P0, P1 : Ω → SL(3) as

D(P0;P1) :=
�

Ω
D(P0, P1) dx.

From a physical viewpoint, if P0, P1 : Ω → SL(3) are admissible plastic strains, D(P0, P1) is
interpreted as the minimum amount of energy that is dissipated when the system moves from
a plastic configuration to another. Then, assuming that P̄ ∈ W 1,q(Ω; SL(3)) represents a
pre-existent plastic strain of the body, we set

J diss
ε (y, P ) := Eε(y, P ) + D(P̄ ;P ) + ∥∇P∥q

Lq(Ω;R3×3×3). (6.18)
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In the same spirit of (2.9) and (2.10), we distinguish between the dissipation of the inclusions
and the one of the matrix, respectively

D0
ε(P̄ ;P ) :=

�
Ω
χ0

ε(x)D(P̄ , P ) dx, D1
ε(P̄ ;P ) :=

�
Ω
χ1

ε(x)D(P̄ , P ) dx.

For what concerns the compactness of sequences with equibounded energy, we notice that the
presence of the dissipation D does not affect Lemma 4.1: the same conclusions hold if the bound
on Jk(yk, Pk) is replaced by a bound on J diss

k (yk, Pk).
Also our Γ-convergence results easily extend to the family {J diss

ε }. The dissipation is indeed a
continuous perturbation:

Lemma 6.3. Let P, P̄ ∈ C(Ω;K) be given. If {Pk} ⊂ C(Ω;K) converges uniformly to P , then

lim
k→+∞

Di
k(P̄ ;Pk) = L3(Qi)D(P̄ ;P ) for i = 0, 1.

Proof. We first observe that if Pk → P pointwise, then

D
(
Pk(x), P (x)

)
→ 0, D

(
P (x), Pk(x)

)
→ 0. (6.19)

To see this, let γ be such that for all (t, F,G) ∈ [0, 1] × SL(3) × SL(3), γ(t, F,G) is the evaluation
at t of the unique minimizing geodesic connecting F and G, cf. Lemma 3.10. Then, by (3.9) and
the definition of γ,

D
(
Pk(x), P (x)

)
=
� 1

0
∆
(
γ
(
t, Pk(x), P (x)

)
, γ̇
(
t, Pk(x), P (x)

))
dt

≤ c

� 1

0
|γ̇
(
t, Pk(x), P (x)

)
| dt,

where the inequality follows from the definition of ∆ in (3.8) and (2.4). Since γ̇ is continuous
and bounded, by dominated convergence we deduce that the last term vanishes as k → +∞. In
a similar fashion, we show that D(P, Pk) → 0 as well.

As second step, we notice that

D
(
P̄ (x), Pk(x)

)
→ D

(
P̄ (x), P (x)

)
. (6.20)

Indeed, the triangular inequality yields

D
(
P̄ (x), P (x)

)
−D

(
Pk(x), P (x)

)
≤ D

(
P̄ (x), Pk(x)

)
≤ D

(
P̄ (x), P (x)

)
+D

(
P (x), Pk(x)

)
,

and the assertion follows as a consequence of (6.19).
Finally, we observe that (6.20) grants that

lim
k→+∞

Di
k(P̄ ;Pk) = lim

k→+∞

�
Ω
χi

k(x)D
(
P̄ (x), P (x)

)
dx,

and the conclusion is achieved by arguing as in Lemma 4.2. □
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