# ON GENERALIZED NONPARAMETRIC MINIMAL HYPERFURFACES IN HIGH DIMENSION 

DOMENICO MUCCI


#### Abstract

Nonparametric $g$-surfaces in Euclidean space have recently been characterized by Bildhauer-Fuchs in terms of closure of a 1 -form associated to the so called asymptotic normal. This 1-form can be written by means of the pull-back of a canonical vector-valued 1 -form through a suitable map depending on the asymptotic normal, that in the minimal surfaces case agrees with the Gauss graph map. We show that a similar characterization holds true for g-hypersurfaces of any high dimension $N$, but this time in terms of a canonical vector valued form of degree $N-1$. In the minimal hypersurfaces case, we finally discuss the lack of a relationship between the previous result and existence of good parameterizations, when $N$ is greater than two.


## Introduction

We deal with critical points of the functional

$$
\mathcal{F}_{g}(u):=\int_{B^{N}} g(|\nabla u|) d \mathcal{L}^{N}, \quad u \in C^{2}\left(B^{N}, \mathbb{R}\right)
$$

on smooth real valued functions $u$ defined in the unit ball $B^{N}$ in $\mathbb{R}^{N}$, in any dimension $N \geq 2$.

The isotropic functional is given by integration with respect to Lebesgue measure $\mathcal{L}^{N}$ of a non-negative and smooth integrand $g:[0,+\infty) \rightarrow \mathbb{R}$ acting on the modulus of the gradient $\nabla u$.

The associated Euler-Lagrange equation reads as

$$
\begin{equation*}
\operatorname{div}(\Xi(|\nabla u|) \nabla u)=0, \quad \Xi(t):=\frac{g^{\prime}(t)}{t} \tag{0.1}
\end{equation*}
$$

provided that $\Xi(t)$ and $\Xi^{\prime}(t)$ are bounded functions in $[0,+\infty)$, see 2.5).
If a smooth function $u$ satisfies equation (0.1), the graph $\mathcal{G}_{u}$ is commonly said to be a $g$-hypersurface in $\mathbb{R}^{N+1}$.

[^0]In this paper, we show in any dimension $N \geq 2$ that the validity of equation $(0.1)$ is equivalent to the closure of a suitable $\mathbb{R}^{N+1}$-valued $(N-1)$ form in $B^{N}$. This differential form is essentially obtained through the pullback of a canonical vector valued differential form by means of a natural extension of the asymptotic normal introduced by Bildhauer-Fuchs [3] in dimension $N=2$.

More precisely, denoting respectively by $\mathbb{R}_{x}^{N+1}$ and $\mathbb{R}_{y}^{N+1}$ the ambient spaces where the graph $\mathcal{G}_{u}$ and the $g$-normal $\widetilde{\nu}_{u}$ to $u$ live, our Main Result involves a map depending on both the graph map and $g$-normal,

$$
\widetilde{\Phi}_{u}: B^{N} \rightarrow \mathbb{R}_{x}^{N+1} \times \mathbb{R}_{y}^{N+1}
$$

see (1.1), 1.2), and (1.4).
Notice that in the model case when $g(t)=\sqrt{1+t^{2}}$, so that $\mathcal{F}_{g}(u)$ is the area functional, we have $\Xi(t)=\left(1+t^{2}\right)^{-1 / 2}$ and (0.1) reduces to the nonparametric minimal hypersurfaces equation:

$$
\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=0
$$

Moreover, in that case the $g$-normal reduces to the unit normal $\nu_{u}$ to $\mathcal{G}_{u}$

$$
\begin{equation*}
\nu_{u}:=\frac{1}{\sqrt{1+|\nabla u|^{2}}}(-\nabla u, 1) \tag{0.2}
\end{equation*}
$$

and finally $\widetilde{\Phi}_{u}$ agrees with the Gauss graph map

$$
\begin{equation*}
\Phi_{u}(\widetilde{x}):=\left((\widetilde{x}, u(\widetilde{x})), \nu_{u}(\widetilde{x})\right), \quad \widetilde{x} \in B^{N} \tag{0.3}
\end{equation*}
$$

Furthermore, we denote by $\widetilde{\Phi}_{u}^{\#} \omega$ the pull-back through the map $\widetilde{\Phi}_{u}$ of a differential form $\omega$ in $\mathbb{R}_{x}^{N+1} \times \mathbb{R}_{y}^{N+1}$, by d the exterior derivative operator, and by $\Omega^{(N)}$ the (naturally oriented) volume $N$-form in $\mathbb{R}^{N}$, see 1.5 . We finally remark that for vector valued forms, both pull-back and exterior derivative are defined componentwise.

Referring to Sec. 1 for further notation and details, we are now in position to state the Main Result of this paper, that holds true in any dimension.
Theorem 0.1. Let $N \geq 2$ integer. There exists a canonical $\mathbb{R}^{N+1}$-valued $(N-1)$-form $\bar{\omega}^{(N-1)}$ in $\mathbb{R}_{x}^{N+1} \times \mathbb{R}_{y}^{N+1}$ such that for any smooth function $u \in C^{2}\left(B^{N}, \mathbb{R}\right)$

$$
\mathrm{d} \widetilde{\Phi}_{u}^{\#} \bar{\omega}^{(N-1)}=\operatorname{div}(\Xi(|\nabla u|) \nabla u)(-\nabla u, 1) \wedge \Omega^{(N)}
$$

Therefore, the graph $\mathcal{G}_{u}$ is a g-hypersurface in $\mathbb{R}_{x}^{N+1}$ if and only if $\widetilde{\Phi}_{u}^{\#} \bar{\omega}^{(N-1)}$ is a closed $\mathbb{R}^{N+1}$-valued $(N-1)$-form in $B^{N}$.

We refer to Theorems 2.1 or 4.1 for a more precise statement in dimension $N=2$ or $N \geq 3$, and to equations (2.1), 4.5), 4.6) for the explicit expression of the canonical form $\bar{\omega}^{(N-1)}$ in dimension $N=2,3,4$, respectively.

In low dimension $N=2$, compare equation (2.3) below, our Main Result was essentially obtained in [3, where the authors extended a classical property concerning minimal surfaces in $\mathbb{R}^{3}$. This crucial property, which yields to existence of isothermal parameters, was written in terms of differential forms by Dierkes-Hildebrandt-Sauvigny in Sec. 2.2 of their treatise [5].

The role of the Gauss graph map (0.3) in the analysis of functionals depending on curvatures of codimension one surfaces, goes back to the excellent work by Anzellotti-Serapioni-Tamanini [2, see also 4]. The Gauss graph map is a main tool also in [9, where a relaxed curvature energy for nonparametric surfaces in $\mathbb{R}^{3}$ is analyzed, and more recently in [8, where elastic thin shells without through-the-thickness shear are depicted as Gauss graphs of parametric surfaces.

We finally present the plan of the paper. Notation is fixed in Sec. 1 . whereas Theorem 0.1 in low dimension $N=2$ is proved in Sec. 2. In Sec. 3, we then collect some known results concerning (asymptotic) conformal parameterizations, showing how they can be obtained from our Main Result in low dimension $N=2$. Theorem 0.1 in high dimension $N \geq 3$ is proved in Sec. 4 . Finally, in Sec. 5 we discuss the reason why in high dimension $N \geq 3$ our Main Result does not lead to existence of "good parameterizations", compared to the two-dimensional case treated by Bildhauer-Fuchs [3].

## 1. Notation

We set $x=\left(\widetilde{x}, x_{N+1}\right) \in \mathbb{R}_{x}^{N+1}$, where $\widetilde{x}:=\left(x_{1}, \ldots, x_{N}\right)$, so that the graph of a function $u \in C^{2}\left(B^{N}, \mathbb{R}\right)$ is the nonparametric hypersurface

$$
\mathcal{G}_{u}:=\left\{x \in \mathbb{R}_{x}^{N+1} \mid x_{N+1}=u(\widetilde{x})\right\} .
$$

We also denote by $f_{, i}$ the partial derivative of a smooth function $f: B^{N} \rightarrow \mathbb{R}$ in the $i$-th coordinate direction, so that the gradient of $u$ reads as $\nabla u=$ ( $u_{, 1}, \ldots, u_{, N}$ ), and by $f_{, i j}$ the second order partial derivatives

$$
f_{, i j}:=\partial_{x_{i}} \partial_{x_{j}} f=\partial_{x_{j}} \partial_{x_{i}} f, \quad i, j=1, \ldots, N .
$$

Extending to high dimension $N \geq 3$ the definition of asymptotic normal introduced in [3] in case $N=2$, for a given integrand $g$ as in the introduction, we call $g$-normal to the graph $\mathcal{G}_{u}$ at $(\widetilde{x}, u(\widetilde{x}))$ the $(N+1)$-vector

$$
\widetilde{\nu}_{u}(\widetilde{x}):=\left(\widetilde{\nu}_{u}^{1}(\widetilde{x}), \ldots, \widetilde{\nu}_{u}^{N}(\widetilde{x}), \widetilde{\nu}_{u}^{N+1}(\widetilde{x})\right)
$$

with first $N$ components defined by

$$
\begin{equation*}
\widetilde{\nu}_{u}^{j}:=-\Xi(|\nabla u|) u_{, j}, \quad j=1, \ldots, N \tag{1.1}
\end{equation*}
$$

where $\Xi(t)$ is given by (0.1), and last component

$$
\begin{equation*}
\widetilde{\nu}_{u}^{N+1}:=\Xi(|\nabla u|)+\vartheta(|\nabla u|), \quad \vartheta(t):=g(t)-t g^{\prime}(t)-\Xi(t) . \tag{1.2}
\end{equation*}
$$

Therefore, in the minimal hypersurfaces case $g(t)=\sqrt{1+t^{2}}$, we get

$$
\begin{equation*}
\Xi(t)=\frac{1}{\sqrt{1+t^{2}}}, \quad \vartheta(t) \equiv 0, \quad \widetilde{\nu}_{u}=\nu_{u} \tag{1.3}
\end{equation*}
$$

where $\nu_{u}$ is the unit normal to $\mathcal{G}_{u}$, see (0.2).
Denoting by $y=\left(y_{1}, \ldots, y_{N}, y_{N+1}\right)$ the coordinates in the vector space $\mathbb{R}_{y}^{N+1}$ where the $g$-normal lives, we correspondingly introduce the map

$$
\widetilde{\Phi}_{u}: B^{N} \rightarrow \mathbb{R}_{x}^{N+1} \times \mathbb{R}_{y}^{N+1}
$$

defined in terms of the $g$-normal (1.1)-(1.2) by

$$
\begin{equation*}
\widetilde{\Phi}_{u}(\widetilde{x}):=\left((\widetilde{x}, u(\widetilde{x})), \widetilde{\nu}_{u}(\widetilde{x})\right) . \tag{1.4}
\end{equation*}
$$

Moreover, ( $\mathrm{d} x^{1}, \ldots, \mathrm{~d} x^{N}, \mathrm{~d} x^{N+1}$ ) and ( $\mathrm{d} y^{1}, \ldots, \mathrm{~d} y^{N}, \mathrm{~d} y^{N+1}$ ) denote the dual bases of covectors in $\mathbb{R}_{x}^{N+1}$ and $\mathbb{R}_{y}^{N+1}$, respectively, where d is the exterior derivative operator. Therefore, the volume $N$-form in the domain $\mathbb{R}^{N}$ that appears in Theorem 0.1 is:

$$
\begin{equation*}
\Omega^{(N)}:=\mathrm{d} x^{1} \wedge \cdots \wedge \mathrm{~d} x^{N} \tag{1.5}
\end{equation*}
$$

whereas the differential of e.g. the function $u$ and the $j$-th component of $\widetilde{\nu}_{u}$ become the 1 -forms:

$$
\mathrm{d} u=\sum_{i=1}^{N} u_{, i} \mathrm{~d} x^{i}, \quad \mathrm{~d} \widetilde{\nu}_{u}^{j}=\sum_{i=1}^{N} \widetilde{\nu}_{u, i}^{j} \mathrm{~d} x^{i}, \quad j=1, \ldots, N+1 .
$$

We also denote by $\widetilde{\Phi}_{u}^{\#} \omega$ the pull-back through the map $\widetilde{\Phi}_{u}$ of a differential form $\omega$ in $\mathbb{R}_{x}^{N+1} \times \mathbb{R}_{y}^{N+1}$, and recall that for vector valued forms, both pullback and exterior derivative are defined componentwise. For further details on differential forms we refer e.g. to Sec. 2.2.2 of the treatise [6].

Remark 1.1. We finally point out that the nonparametric hypersurface $\mathcal{G}_{u}$ is the image of $B^{N}$ through the graph map $X(\widetilde{x}):=(\widetilde{x}, u(\widetilde{x}))$, and hence it is naturally equipped with the metric $\mathfrak{g}_{i j}:=\partial_{i} X \bullet \partial_{j} X=\delta_{i j}+u_{, i} u_{, j}$, for $i, j=1, \ldots N$, where $\bullet$ is the scalar product in $\mathbb{R}_{x}^{N+1}$ and $\delta_{i j}$ is Kronecker symbol, so that

$$
\mathfrak{g}:=\operatorname{det}\left(\mathfrak{g}_{i j}\right)=1+|\nabla u|^{2} .
$$

Denoting by $\left(\mathfrak{g}^{i j}\right)$ the inverse to the metric tensor $\left(\mathfrak{g}_{i j}\right)$, we also have

$$
\mathfrak{g}^{i i}=\mathfrak{g}^{-1} \cdot\left(1+|\nabla u|^{2}-u_{, i}{ }^{2}\right), \quad \mathfrak{g}^{i j}=-\mathfrak{g}^{-1} \cdot u_{, i} u_{, j} \quad \text { if } \quad i \neq j .
$$

## 2. The surface case

In this section, we prove Theorem 0.1 in low dimension $N=2$. Namely, in Theorem 2.1 we recover a result that goes back to [3, Thm. 1.2].

For this purpose, we introduce the $\mathbb{R}^{3}$-valued 1-form $\bar{\omega}^{(1)}$ in $\mathbb{R}_{x}^{3} \times \mathbb{R}_{y}^{3}$

$$
\bar{\omega}^{(1)}:=\left(\begin{array}{l}
-y_{2} \mathrm{~d} x^{3}+y_{3} \mathrm{~d} x^{2}  \tag{2.1}\\
-y_{3} \mathrm{~d} x^{1}+y_{1} \mathrm{~d} x^{3} \\
-y_{1} \mathrm{~d} x^{2}+y_{2} \mathrm{~d} x^{1}
\end{array}\right)
$$

(where from now on we denote vector-valued forms as column vectors) and observe that the $\mathbb{R}^{3}$-valued 1 -form in $B^{2}$ given by the pull-back of $\bar{\omega}^{(1)}$ through the map $\widetilde{\Phi}_{u}$ from (1.4) becomes:

$$
\widetilde{\Phi}_{u}^{\#} \bar{\omega}^{(1)}=\left(\begin{array}{c}
\Xi(|\nabla u|) u_{, 1} u_{, 2} \mathrm{~d} x^{1}+\left(\Xi(|\nabla u|)\left(1+u_{, 2}{ }^{2}\right)+\vartheta(|\nabla u|)\right) \mathrm{d} x^{2}  \tag{2.2}\\
-\left(\Xi(|\nabla u|)\left(1+u, 1^{2}\right)+\vartheta(|\nabla u|)\right) \mathrm{d} x^{1}-\Xi(|\nabla u|) u_{, 1} u u_{, 2} \mathrm{~d} x^{2} \\
\Xi(|\nabla u|) u_{, 1} \mathrm{~d} x^{2}-\Xi(|\nabla u|) u_{, 2} \mathrm{~d} x^{1}
\end{array}\right) .
$$

In particular, one recovers the notation from [3] in terms of vector product $\times$ in $\mathbb{R}^{3}$. In fact, denoting by $v^{T}$ the transpose of a line vector $v \in \mathbb{R}^{3}$, after an identification of $\mathbb{R}_{y}^{3}$ with $\mathbb{R}_{x}^{3}$ we have:

$$
\begin{equation*}
\widetilde{\Phi}_{u}^{\#} \bar{\omega}^{(1)}=-\left(\widetilde{\nu}_{u} \times \mathrm{d} X\right)^{T}, \quad X\left(x_{1}, x_{2}\right):=\left(x_{1}, x_{2}, u\left(x_{1}, x_{2}\right)\right) . \tag{2.3}
\end{equation*}
$$

In the model case $g(t)=\sqrt{1+t^{2}}$, so that equations (1.3) hold, and hence $\widetilde{\Phi}_{u}$ agrees with the Gauss graph map (0.3), it is readily checked that

$$
\mathrm{d} \Phi_{u}^{\#} \bar{\omega}^{(1)}=\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)\left(-u_{, 1},-u_{, 2}, 1\right)^{T} \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2}
$$

so that $\Phi_{u}^{\#} \bar{\omega}^{(1)}$ is a closed 1-form in $B^{2}$ if and only if the graph $\mathcal{G}_{u}$ is a nonparametric minimal surface in $\mathbb{R}^{3}$.

Theorem 2.1. Let $N=2$ and let $\widetilde{\Phi}_{u}$ be given by (1.4), with g-normal defined by (1.1) and (1.2) for some integrand $g$ as in the introduction. Then, for any smooth function $u \in C^{2}\left(B^{2}, \mathbb{R}\right)$, we have

$$
\mathrm{d} \widetilde{\Phi}_{u}^{\#} \bar{\omega}^{(1)}=\operatorname{div}[\Xi(|\nabla u|) \nabla u]\left(-u_{, 1},-u_{, 2}, 1\right)^{T} \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2}
$$

where the function $\Xi(t)$ is given by (0.1) and the canonical 1-form $\bar{\omega}^{(1)}$ by (2.1). Therefore, the graph $\mathcal{G}_{u}$ is a g-surface in $\mathbb{R}^{3}$ if and only if $\widetilde{\Phi}_{u}^{\#} \bar{\omega}^{(1)}$ is a closed $\mathbb{R}^{3}$-valued 1 -form in $B^{2}$.

Proof. We first observe that by (2.2) we can write the differential

$$
\begin{align*}
& \mathrm{d} \widetilde{\Phi}_{u}^{\#} \bar{\omega}^{(1)}=  \tag{2.4}\\
& \quad\left(\begin{array}{c}
{\left[\operatorname{div}\left(\Xi(|\nabla u|)\left(u_{, 2}^{2},-u, 1 u, 2\right)\right)+\partial_{x_{1}}(\Xi+\vartheta)(|\nabla u|)\right] \mathrm{d} x^{1} \wedge \mathrm{~d} x^{2}} \\
\left.\operatorname{div}\left(\Xi(|\nabla u|)\left(-u_{, 1} u, 2, u, 1^{2}\right)\right)+\partial_{x_{2}}(\Xi+\vartheta)(|\nabla u|)\right] \mathrm{d} x^{1} \wedge \mathrm{~d} x^{2} \\
\operatorname{div}(\Xi(|\nabla u|) \nabla u) \mathrm{d} x^{1} \wedge \mathrm{~d} x^{2}
\end{array}\right) .
\end{align*}
$$

Recalling (1.2), we get

$$
\begin{gather*}
\Xi(t)=\frac{g^{\prime}(t)}{t}, \quad \Xi^{\prime}(t)=\frac{g^{\prime \prime}(t) t-g^{\prime}(t)}{t^{2}},  \tag{2.5}\\
(\Xi+\vartheta)^{\prime}(t)=-t g^{\prime \prime}(t) \quad \forall t>0
\end{gather*}
$$

so that for $i=1,2$ we infer:

$$
\begin{align*}
\partial_{x_{i}} \Xi(|\nabla u|) & =\frac{g^{\prime \prime}(t) t-g^{\prime}(t)}{t^{3}} u_{, \alpha} u_{, \alpha i}  \tag{2.6}\\
\partial_{x_{i}}(\Xi+\vartheta)(|\nabla u|) & =-g^{\prime \prime}(t) u_{, \alpha} u_{, \alpha i}
\end{align*}
$$

where (here and in the sequel) in the right-hand side we have set $t=|\nabla u|$, and the summation on repeated indices $\alpha=1,2$ is adopted.

Denoting by $\Delta u$ the Laplacean of $u$ and by $\bullet$ the scalar product in $\mathbb{R}^{2}$, we have:

$$
\begin{aligned}
& \operatorname{div}(\Xi(|\nabla u|) \nabla u)=\nabla(\Xi(|\nabla u|) \bullet \nabla u+\Xi(|\nabla u|) \Delta u \\
&= \frac{g^{\prime \prime}(t) t-g^{\prime}(t)}{t^{3}}\left(\left(u_{, 1} u_{, 11}+u_{, 2} u_{, 12}\right) u_{, 1}+\left(u_{, 1} u_{, 12}+u_{, 2} u_{, 22}\right) u_{, 2}\right) \\
&+\frac{g^{\prime}(t)}{t}\left(u_{, 11}+u_{, 22}\right) \\
&= \frac{g^{\prime \prime}(t)}{t^{2}}\left(u_{, 1}^{2} u_{, 11}+u_{, 2}^{2} u_{, 22}+2 u_{, 1} u_{, 2} u_{, 12}\right) \\
&+\frac{g^{\prime}(t)}{t^{3}}\left(u_{, 2}^{2} u_{, 11}+u_{, 1}^{2} u_{, 22}-2 u_{, 1} u_{, 2} u_{, 12}\right)
\end{aligned}
$$

Moreover, as to e.g. the second line in equation 2.4 , we compute:

$$
\begin{aligned}
- & {\left[\operatorname{div}\left(\Xi(|\nabla u|)\left(-u_{, 1} u_{, 2}, u_{, 1}^{2}\right)\right)+\partial_{x_{2}}(\Xi+\vartheta)(|\nabla u|)\right] } \\
= & \frac{g^{\prime \prime}(t) t-g^{\prime}(t)}{t^{3}}\left(\left(u_{, 1} u_{, 11}+u_{, 2} u_{, 12}\right) u_{, 1} u_{, 2}-\left(u_{, 1} u_{, 12}+u_{, 2} u_{, 22}\right) u_{, 1}^{2}\right) \\
& +\frac{g^{\prime}(t)}{t}\left(u_{, 2} u_{, 11}-u_{, 1} u_{, 12}\right)+g^{\prime \prime}(t)\left(u_{, 1} u_{, 12}+u_{, 2} u_{, 22}\right) \\
= & \frac{g^{\prime \prime}(t)}{t^{2}}\left(u_{, 1}{ }^{2} u_{, 2} u_{, 11}+u_{, 2}^{3} u_{, 22}+2 u_{, 1} u_{, 2}^{2} u_{, 12}\right) \\
& +\frac{g^{\prime}(t)}{t^{3}}\left(u_{, 2}^{3} u_{, 11}+u_{, 1}^{2} u_{, 2} u_{, 22}-2 u_{, 1} u_{, 2}^{2} u_{, 12}\right) \\
= & u_{, 2} \operatorname{div}(\Xi(|\nabla u|) \nabla u) .
\end{aligned}
$$

Finally, concerning the first line in equation 2.4 , we similarly obtain

$$
\operatorname{div}\left(\Xi(|\nabla u|)\left(u_{, 2}^{2},-u_{, 1} u_{, 2}\right)\right)+\partial_{x_{1}}(\Xi+\vartheta)(|\nabla u|)=-u_{, 1} \operatorname{div}(\Xi(|\nabla u|) \nabla u)
$$

and hence the assertion readily follows.
Remark 2.2. In the model case when $g(t)=\sqrt{1+t^{2}}$, on account of Remark 1.1. equation (2.4 becomes:

$$
\mathrm{d} \Phi_{u}^{\#} \bar{\omega}^{(1)}=\left(\begin{array}{c}
\operatorname{div}\left(\mathfrak{g}^{-1 / 2}\left(1+u_{, 2}^{2},-u_{, 1} u_{, 2}\right)\right) \mathrm{d} x^{1} \wedge \mathrm{~d} x^{2}  \tag{2.7}\\
\operatorname{div}\left(\mathfrak{g}^{-1 / 2}\left(-u_{, 1} u_{, 2}, 1+u_{, 1}^{2}\right)\right) \mathrm{d} x^{1} \wedge \mathrm{~d} x^{2} \\
\operatorname{div}\left(\mathfrak{g}^{-1 / 2} \nabla u\right) \mathrm{d} x^{1} \wedge \mathrm{~d} x^{2}
\end{array}\right)
$$

Therefore, denoting by $A \in C^{2}\left(B^{2}, \mathbb{R}^{2 \times 2}\right)$ the symmetric tensor valued function with components by

$$
\begin{equation*}
A_{j}^{i}:=\mathfrak{g}^{1 / 2} \mathfrak{g}^{i j} \tag{2.8}
\end{equation*}
$$

for $i, j=1,2$, in the previous proof we have just checked that

$$
\begin{equation*}
-\operatorname{div} A=(\nabla u)^{T} \operatorname{div}\left(\mathfrak{g}^{-1 / 2} \nabla u\right) \tag{2.9}
\end{equation*}
$$

on $B^{2}$, where divergence is computed along the raw components.

## 3. (ASYMPTOTIC) CONFORMAL PARAMETERIZATIONS

In this section, we apply Theorem 2.1 to find existence of "good parameterizations" of nonparametric $g$-surfaces. For completeness, we also recall how isothermal parameters are obtained in the minimal surfaces case.

Using an argument similar to the one exploited by Bildhauer-Fuchs in [3], we obtain the following

Corollary 3.1. Let $N=2$ and let $u \in C^{2}\left(B^{2}, \mathbb{R}\right)$ satisfy the Euler-Lagrange equation (0.1). Then, there exists a smooth vector field $\widetilde{F}: B^{2} \rightarrow \mathbb{R}^{2}$ such that for each $\widetilde{x} \in B^{2}$

$$
\nabla \widetilde{F}=\left(\begin{array}{cc}
\Xi(|\nabla u|)\left(1+u_{, 1}^{2}\right)+\vartheta(|\nabla u|) & \Xi(|\nabla u|) u_{, 1} u_{, 2}  \tag{3.1}\\
\Xi(|\nabla u|) u_{, 1} u_{, 2} & \Xi(|\nabla u|)\left(1+u_{, 2}^{2}\right)+\vartheta(|\nabla u|)
\end{array}\right)
$$

Conversely, the existence of a smooth vector field satisfying (3.1) implies the validity of Euler-Lagrange equation (0.1).

Proof. Consider the couple of 1-forms

$$
\begin{align*}
& \widetilde{\omega}^{1}:=\left(\Xi(|\nabla u|)\left(1+u_{, 1}^{2}\right)+\vartheta(|\nabla u|)\right) \mathrm{d} x^{1}+\Xi(|\nabla u|) u_{, 1} u_{, 2} \mathrm{~d} x^{2} \\
& \widetilde{\omega}^{2}:=\Xi(|\nabla u|) u_{, 1} u_{, 2} \mathrm{~d} x^{1}+\left(\Xi(|\nabla u|)\left(1+u_{,_{2}}{ }^{2}\right)+\vartheta(|\nabla u|)\right) \mathrm{d} x^{2} \tag{3.2}
\end{align*}
$$

In Theorem 2.1, we have seen that their differentials satisfy equations

$$
\begin{aligned}
\mathrm{d} \widetilde{\omega}^{1} & =u_{, 2} \cdot \operatorname{div}(\Xi(|\nabla u|) \nabla u) \mathrm{d} x^{1} \wedge \mathrm{~d} x^{2} \\
\mathrm{~d} \widetilde{\omega}^{2} & =-u_{, 1} \cdot \operatorname{div}(\Xi(|\nabla u|) \nabla u) \mathrm{d} x^{1} \wedge \mathrm{~d} x^{2}
\end{aligned}
$$

Therefore, $B^{2}$ being simply-connected, both $\widetilde{\omega}^{1}$ and $\widetilde{\omega}^{2}$ are exact 1-forms in $B^{2}$ if and only if the function $u$ is a solution to equation 0.1). In that case, it then suffices to choose $\widetilde{F}=\left(\widetilde{F}^{1}, \widetilde{F}^{2}\right)$, where $\widetilde{F}^{i} \in C^{2}\left(B^{2}, \mathbb{R}\right)$ satisfies $\mathrm{d} \widetilde{F}^{i}=\widetilde{\omega}^{i}$, for $i=1,2$.

In the minimal surfaces case, one then readily obtains the classical existence result of a conformal parameterization for the graph map $X(\widetilde{x})=$ $(\widetilde{x}, u(\widetilde{x}))$, compare e.g. [5, Sec. 2.3].
Proposition 3.2. If $\mathcal{G}_{u}$ is a nonparametric minimal surface in $\mathbb{R}^{3}$, and $\widetilde{F}$ is given by Corollary 3.1 in correspondence to $g(t)=\sqrt{1+t^{2}}$, then the vector field

$$
\begin{equation*}
\Lambda(\widetilde{x}):=\widetilde{x}+\widetilde{F}(\widetilde{x}) \tag{3.3}
\end{equation*}
$$

defines a smooth diffeomorphism $z=\Lambda(\widetilde{x})$ from $B^{2}$ onto its image, a smooth domain $\widehat{\Omega}$ of $\mathbb{R}^{2}$, and the parameterization

$$
\begin{equation*}
\widehat{X}(z):=\left(\Lambda^{-1}(z), u\left(\Lambda^{-1}(z)\right)\right), \quad z=\left(z_{1}, z_{2}\right) \in \widehat{\Omega} \tag{3.4}
\end{equation*}
$$

of the graph map is conformal. Precisely, at any point $z \in \widehat{\Omega}$

$$
\begin{equation*}
\partial_{z_{i}} \widehat{X} \bullet \partial_{z_{j}} \widehat{X}=\delta_{i j} U^{2}, \quad i, j=1,2 \tag{3.5}
\end{equation*}
$$

with conformal factor $U^{2}(z):=f\left(\mathfrak{g}\left(\Lambda^{-1}(z)\right)\right)$, where

$$
f(\mathfrak{g})=\frac{\mathfrak{g}}{2 \mathfrak{g}^{1 / 2}+(1+\mathfrak{g})}, \quad \mathfrak{g}=1+|\nabla u|^{2} .
$$

Proof. When $g(t)=\sqrt{1+t^{2}}$, the differentials of the 1-forms $\widetilde{\omega}^{i}$ in (3.2) satisfy equations:

$$
\begin{gathered}
\mathrm{d}\left(\mathfrak{g}^{-1 / 2}\left(1+u_{1}{ }^{2}\right) \mathrm{d} x^{1}+\mathfrak{g}^{-1 / 2} u_{1,1} u_{2} \mathrm{~d} x^{2}\right)=u_{, 2} \cdot \operatorname{div}\left(\mathfrak{g}^{-1 / 2} \nabla u\right) \mathrm{d} x^{1} \wedge \mathrm{~d} x^{2} \\
\mathrm{~d}\left(\mathfrak{g}^{-1 / 2} u_{, 1} u, 2 \mathrm{~d} x^{1}+\mathfrak{g}^{-1 / 2}\left(1+u_{, 2}{ }^{2}\right) \mathrm{d} x^{2}\right)=-u, 1 \cdot \operatorname{div}\left(\mathfrak{g}^{-1 / 2} \nabla u\right) \mathrm{d} x^{1} \wedge \mathrm{~d} x^{2}
\end{gathered}
$$

and hence we obtain a smooth vector field $\widetilde{F}: B^{2} \rightarrow \mathbb{R}^{2}$ such that

$$
\nabla \widetilde{F}=\left(\mathfrak{g}^{-1 / 2} \mathfrak{g}_{i j}\right)=\left(\begin{array}{cc}
\mathfrak{g}^{-1 / 2}\left(1+u_{1}{ }^{2}\right) & \mathfrak{g}^{-1 / 2} u_{, 1} u_{, 2}  \tag{3.6}\\
\mathfrak{g}^{-1 / 2} u_{, 1} u_{, 2} & \mathfrak{g}^{-1 / 2}\left(1+u_{, 2}{ }^{2}\right)
\end{array}\right) \quad \text { on } B^{2}
$$

see (3.1). With this choice, definition (3.3) gives a smooth diffeomorphism onto its image (cf. e.g. [3, Prop. 5.1]) and on account of (2.8) we obtain

$$
\operatorname{det} \nabla \Lambda=1+\operatorname{tr} A+\operatorname{det} A=1+\mathfrak{g}^{-1 / 2}\left(2+|\nabla u|^{2}\right)+1=2+\mathfrak{g}^{-1 / 2}(1+\mathfrak{g})
$$

$\nabla \Lambda^{-1}=\frac{1}{\operatorname{det} \nabla \Lambda}\left(\begin{array}{cc}1+\mathfrak{g}^{-1 / 2}\left(1+u_{, 2}{ }^{2}\right) & -\mathfrak{g}^{-1 / 2} u_{, 1} u_{, 2} \\ -\mathfrak{g}^{-1 / 2} u_{, 1} u_{, 2} & 1+\mathfrak{g}^{-1 / 2}\left(1+u, 1^{2}\right)\end{array}\right)=:\left(\begin{array}{cc}\alpha & \gamma \\ \gamma & \beta\end{array}\right)$
so that the parameterization $\widehat{X}$ in (3.4) satisfies

$$
\nabla \hat{X}=\left(\begin{array}{cc}
\alpha & \gamma \\
\gamma & \beta \\
\alpha u_{, 1}+\gamma u_{, 2} & \gamma u_{, 1}+\beta u_{, 2}
\end{array}\right)
$$

Therefore, the conformality relations (3.5) hold, with conformal factor

$$
U^{2}=\frac{2 \mathfrak{g}^{1 / 2}+(1+\mathfrak{g})}{\left(2+\mathfrak{g}^{-1 / 2}(1+\mathfrak{g})\right)^{2}}=\frac{\mathfrak{g}}{2 \mathfrak{g}^{1 / 2}+(1+\mathfrak{g})}
$$

where $\mathfrak{g}$ is computed at $\widetilde{x}=\Lambda^{-1}(z) \in B^{2}$. Further details are omitted.
We recall that the first general existence proof for the nonparametric Plateau problem was given by A. Haar [7] in 1927, whereas analyticity of minimizers was firstly achieved by T. Radó. The starting point of the classical proof is the following exactness criterion for 1 -forms in $\mathbb{R}^{2}$ with continuous coefficients:
Lemma (Haar) Let $\Omega \subset \mathbb{R}^{2}$ be a simply connected, bounded, open set, and let $u, v \in C^{0}(\bar{\Omega})$ such that

$$
\int_{\Omega}\left(u \zeta_{, 1}+v \zeta_{, 2}\right) d \mathcal{L}^{2}=0 \quad \forall \zeta \in C_{0}^{1}(\Omega)
$$

Then, the 1 -form $\omega:=u \mathrm{~d} x^{2}-v \mathrm{~d} x^{1}$ is exact in $\Omega$.
Referring to the mimeographed notes [1] for further details on the classical approach, we only point out that Haar's lemma yields to existence of isothermal parameters, but it only works in dimension $N=2$. In some
sense, that is the reason why in high dimension $N \geq 3$ our Main Result does not lead to existence of "good parameterizations", see Sec. 5 below.

Finally, we recall that the previous argument was essentially exploited in [3] for $g$-surfaces $\mathcal{G}_{u}$, provided that $g$ is of class $C^{2}$, with $g^{\prime}(0)=0, g^{\prime \prime}(t)>0$ for all $t>0$, that for some real numbers $a, A>0, b, B \geq 0$,

$$
a t-b \leq g(t) \leq A t+B \quad \text { for all } t \geq 0
$$

and finally that

$$
\int_{0}^{+\infty} t g^{\prime \prime}(t) d t<\infty
$$

With these assumptions, in fact, in [3, Thm. 1.3] it is shown that the vector field from (3.3) is a smooth diffeomorphism $z=\Lambda(\widetilde{x})$ onto its image, and that equation (3.4) defines a so called asymptotic conformal parameterization of the $g$-surface $\mathcal{G}_{u}$.

## 4. The high dimension case

In this section, we prove Theorem 0.1 in high dimension $N \geq 3$. It is restated in Theorem4.1 below.

For this purpose, we come back to Remark 2.2. Following the notation from Remark 1.1, we denote again by $A \in C^{2}\left(B^{N}, \mathbb{R}^{N \times N}\right)$ the symmetric tensor valued function with components as in 2.8 , for $i, j=1, \ldots, N$, and observe that formula $(2.9)$ continues to hold. Therefore, we wish to find a canonical $\mathbb{R}^{N+1}$-valued $(N-1)$-form $\bar{\omega}^{(N-1)}$, that in components reads as

$$
\bar{\omega}^{(N-1)}=\left(\omega_{1}^{(N-1)}, \omega_{2}^{(N-1)}, \ldots, \omega_{N}^{(N-1)}, \omega_{N+1}^{(N-1)}\right)^{T}
$$

in such a way that according to equation 2.7 one has

$$
\mathrm{d} \Phi_{u}^{\#} \bar{\omega}^{(N-1)}=\left(\begin{array}{c}
\operatorname{div}\left(A_{1}^{1}, \ldots, A_{N}^{1}\right) \mathrm{d} x^{1} \wedge \cdots \wedge \mathrm{~d} x^{N}  \tag{4.1}\\
\operatorname{div}\left(A_{1}^{2}, \ldots, A_{N}^{2}\right) \mathrm{d} x^{1} \wedge \cdots \wedge \mathrm{~d} x^{N} \\
\vdots \\
\operatorname{div}\left(A_{1}^{N}, \ldots, A_{N}^{N}\right) \mathrm{d} x^{1} \wedge \cdots \wedge \mathrm{~d} x^{N} \\
\operatorname{div}\left(\mathfrak{g}^{-1 / 2} \nabla u\right) \mathrm{d} x^{1} \wedge \cdots \wedge \mathrm{~d} x^{N}
\end{array}\right) .
$$

Clearly, the last component of $\bar{\omega}^{(N-1)}$ is given by

$$
\begin{equation*}
\omega_{N+1}^{(N-1)}:=-\sum_{j=1}^{N}(-1)^{j-1} y_{j} \widehat{d x^{j}} \tag{4.2}
\end{equation*}
$$

where for $j=1, \ldots, N$ we denote by $\widehat{\mathrm{d} x^{j}}$ the $(N-1)$-covector in $\mathbb{R}^{N}$ obtained by deleting $\mathrm{d} x^{j}$ from the ordered $N$-covector $\mathrm{d} x^{1} \wedge \cdots \wedge \mathrm{~d} x^{N}$, i.e.,

$$
\widehat{\mathrm{d} x^{j}}:=\mathrm{d} x^{1} \wedge \cdots \wedge \mathrm{~d} x^{j-1} \wedge \mathrm{~d} x^{j+1} \wedge \cdots \wedge \mathrm{~d} x^{N}
$$

so that

$$
\begin{equation*}
(-1)^{j-1} \mathrm{~d} x^{j} \wedge \widehat{\mathrm{~d} x^{j}}=\mathrm{d} x^{1} \wedge \cdots \wedge \mathrm{~d} x^{N} \tag{4.3}
\end{equation*}
$$

In fact, recalling (1.1), (1.2), and (1.4), by (4.2) we compute the pull-back

$$
\widetilde{\Phi}_{u}^{\#} \omega_{N+1}^{(N-1)}=\sum_{j=1}^{N}(-1)^{j-1} \Xi(|\nabla u|) u_{, j} \widehat{\mathrm{~d} x^{j}}
$$

so that by (4.3) we get:

$$
\begin{equation*}
\mathrm{d} \widetilde{\Phi} \widetilde{\Phi}_{u}^{\#} \omega_{N+1}^{(N-1)}=\operatorname{div}(\Xi(|\nabla u|) \nabla u) \mathrm{d} x^{1} \wedge \cdots \wedge \mathrm{~d} x^{N} . \tag{4.4}
\end{equation*}
$$

When $N=3$, we define the four components of $\bar{\omega}^{(2)}$ as follows:

$$
\left\{\begin{array}{rr}
\omega_{1}^{(2)} & :=  \tag{4.5}\\
\omega_{2}^{(2)} & := \\
\omega_{3}^{(2)} & -\left(y_{3} \mathrm{~d} x^{3} \wedge \mathrm{~d} x^{4}+y_{3} \mathrm{~d} x^{4} \wedge \mathrm{~d} x^{1}+y_{4} \mathrm{~d} x^{1} \wedge y_{4} \mathrm{~d} x^{2} \wedge \mathrm{~d} x^{3}+y_{1} \mathrm{~d} x^{3} \wedge \mathrm{~d} x^{4}\right) \\
\omega_{4}^{(2)} \mathrm{d} x^{1} \wedge \mathrm{~d} x^{2}+y_{1} \mathrm{~d} x^{2} \wedge \mathrm{~d} x^{4}+y_{2} \mathrm{~d} x^{4} \wedge \mathrm{~d} x^{1} \\
\omega_{4} & -\left(y_{1} \mathrm{~d} x^{2} \wedge \mathrm{~d} x^{3}+y_{2} \mathrm{~d} x^{3} \wedge \mathrm{~d} x^{1}+y_{3} \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2}\right)
\end{array}\right.
$$

and when $N=4$, instead, the five components of $\bar{\omega}^{(4)}$ are:

$$
\left\{\begin{align*}
\bar{\omega}_{1}^{(3)}:= & -y_{2} \mathrm{~d} x^{3} \wedge \mathrm{~d} x^{4} \wedge \mathrm{~d} x^{5}+y_{3} \mathrm{~d} x^{4} \wedge \mathrm{~d} x^{5} \wedge \mathrm{~d} x^{2}  \tag{4.6}\\
& -y_{4} \mathrm{~d} x^{5} \wedge \mathrm{~d} x^{2} \wedge \mathrm{~d} x^{3}+y_{5} \mathrm{~d} x^{2} \wedge \mathrm{~d} x^{3} \wedge \mathrm{~d} x^{4} \\
\bar{\omega}_{2}^{(3)}:= & -y_{3} \mathrm{~d} x^{4} \wedge \mathrm{~d} x^{5} \wedge \mathrm{~d} x^{1}+y_{4} \mathrm{~d} x^{5} \wedge \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{3} \\
& -y_{5} \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{3} \wedge \mathrm{~d} x^{4}+y_{1} \mathrm{~d} x^{3} \wedge \mathrm{~d} x^{4} \wedge \mathrm{~d} x^{5} \\
\bar{\omega}_{3}^{(3)}:= & -y_{4} \mathrm{~d} x^{5} \wedge \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2}+y_{5} \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2} \wedge \mathrm{~d} x^{4} \\
& -y_{1} \mathrm{~d} x^{2} \wedge \mathrm{~d} x^{4} \wedge \mathrm{~d} x^{5}+y_{2} \mathrm{~d} x^{4} \wedge \mathrm{~d} x^{5} \wedge \mathrm{~d} x^{1} \\
\omega_{4}^{(3)}:= & -y_{5} \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2} \wedge \mathrm{~d} x^{3}+y_{1} \mathrm{~d} x^{2} \wedge \mathrm{~d} x^{3} \wedge \mathrm{~d} x^{5} \\
& -y_{2} \mathrm{~d} x^{3} \wedge \mathrm{~d} x^{5} \wedge \mathrm{~d} x^{1}+y_{5} \mathrm{~d} x^{5} \wedge \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2} \\
\omega_{5}^{(3)}:= & -y_{1} \mathrm{~d} x^{2} \wedge \mathrm{~d} x^{3} \wedge \mathrm{~d} x^{4}+y_{2} \mathrm{~d} x^{3} \wedge \mathrm{~d} x^{4} \wedge \mathrm{~d} x^{1} \\
& -y_{3} \mathrm{~d} x^{4} \wedge \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2}+y_{4} \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2} \wedge \mathrm{~d} x^{3} .
\end{align*}\right.
$$

With this notation, in fact, it can be checked that equation (4.1) holds true for $N=3,4$. Notice moreover that the 3 -form $\bar{\omega}^{(3)}$ has a similar structure to the one of the 1-form $\bar{\omega}^{(1)}$ we defined in (2.1) when $N=2$.

For $N \geq 5$, we have to define $\bar{\omega}^{(N-1)}$ in such a way that equation (4.1) continues to hold. Therefore, for $N \geq 5$ odd, the structure of $\bar{\omega}^{(N-1)}$ is similar to the one of case $N=3$ in 4.5), whereas for $N \geq 6$ even, its structure is similar to the one of case $N=4$ in (4.6). Their explicit expression can be obtained starting from the expression in cases $N=3$ or $N=4$, and by distinguishing between $N \geq 5$ odd or even.

More precisely, for $i=1, \ldots, N+1$, the $i$-th component of $\bar{\omega}^{(N-1)}$ is made of $N$ terms, each one involving a coefficient $y_{j_{1}}$ and $N-1$ differentials $\mathrm{d} x^{j_{2}} \wedge \cdots \wedge \mathrm{~d} x^{j_{N}}$, where the $N$ indices $j_{k}$, for $k=1, \ldots, N$, are defined in an increasing and cyclical way by means of the ordered multi-index which complements $i$ in $(1, \ldots, N+1)$. The main feature is that when $N$ is odd, compare (4.5), a constant sign $\pm 1$ appears, depending on the parity of the index $i$, whereas when $N$ is even, compare (4.6), alternating signs appear.

Since we did not find a satisfactory synthetic notation, for $N \geq 5$ the explicit expression of $\bar{\omega}^{(N-1)}$ is omitted, for the sake of brevity.

We are now in position to prove the Main Result of this paper:
Theorem 4.1. Let $N \geq 3$ and let $\widetilde{\Phi}_{u}$ be given by (1.4), with g-normal defined by (1.1) and (1.2) for some integrand $g$ as in the introduction. Moreover, let $\bar{\omega}^{(N-1)}$ denote the canonical $\mathbb{R}^{N+1}$-valued $(N-1)$-form defined as above (see 4.5) and 4.6) for $N=3,4$, respectively). Then, for any smooth function $u \in C^{2}\left(B^{N}, \mathbb{R}\right)$

$$
\begin{equation*}
\mathrm{d} \widetilde{\Phi}_{u}^{\#} \bar{\omega}^{(N-1)}=\operatorname{div}[\Xi(|\nabla u|) \nabla u](-\nabla u, 1)^{T} \mathrm{~d} x^{1} \wedge \cdots \wedge \mathrm{~d} x^{N} \tag{4.7}
\end{equation*}
$$

where the function $\Xi(t)$ is given by 0.1). Therefore, the graph $\mathcal{G}_{u}$ is a $g$-hypersurface in $\mathbb{R}^{N+1}$ if and only if $\tilde{\Phi}_{u}^{\#} \bar{\omega}^{(N-1)}$ is a closed $\mathbb{R}^{N+1}$-valued ( $N-1$ )-form in $B^{N}$.
Proof. Let $\mathfrak{a} \in C^{1}\left(B^{N}, \mathbb{R}^{N \times N}\right)$ be the symmetric tensor-valued field associated to a given function $u \in C^{2}\left(B^{N}, \mathbb{R}\right)$ and with components

$$
\begin{equation*}
\mathfrak{a}^{i j}:=\delta_{i j}|\nabla u|^{2}-u_{i,} u_{, j}, \quad i, j=1, \ldots, N . \tag{4.8}
\end{equation*}
$$

Also, denote by $\mathfrak{a}^{i}$ the $i$-th raw vector field of $\mathfrak{a}$, namely:

$$
\begin{equation*}
\mathfrak{a}^{i}:=\left(\mathfrak{a}^{i 1}, \ldots, \mathfrak{a}^{i N}\right), \quad i=1, \ldots, N \tag{4.9}
\end{equation*}
$$

According to Remark 1.1, we point out that the inverse $\left(\mathfrak{g}^{i j}\right)$ of the metric tensor $\left(\mathfrak{g}_{i j}\right)$ of the nonparametric hypersurface $\mathcal{G}_{u}$ satisfies

$$
\mathfrak{g}^{i j}=\mathfrak{g}^{-1}\left(\delta_{i j}+\mathfrak{a}^{i j}\right) \quad \forall i, j=1, \ldots, N .
$$

In particular, definition (2.8) can be equivalently written as

$$
\begin{equation*}
A_{j}^{i}:=\mathfrak{g}^{-1 / 2}\left(\delta_{i j}+\mathfrak{a}^{i j}\right), \quad i, j=1, \ldots, N \tag{4.10}
\end{equation*}
$$

With this notation, and recalling that $\omega_{i}^{(N-1)}$ denotes the $i$-th component of the canonical form $\bar{\omega}^{(N-1)}$, we have already obtained that the last component satisfies equation (4.4). On account of formulas (1.1), (1.2), and (1.4), it then suffices to check the validity for $i=1, \ldots, N$ of equations
(4.11) $\mathrm{d} \widetilde{\Phi}_{u}^{\#} \omega_{i}^{(N-1)}=\left[\operatorname{div}\left(\Xi(|\nabla u|) \mathfrak{a}^{i}\right)+\partial_{x_{i}}((\Xi+\vartheta)(|\nabla u|))\right] \mathrm{d} x^{1} \wedge \cdots \wedge \mathrm{~d} x^{N}$
and then of equations

$$
\begin{equation*}
\operatorname{div}\left(\Xi(|\nabla u|) \mathfrak{a}^{i}\right)+\partial_{x_{i}}((\Xi+\vartheta)(|\nabla u|))=-u_{, i} \cdot \operatorname{div}(\Xi(|\nabla u|) \nabla u) \tag{4.12}
\end{equation*}
$$

in any dimension $N \geq 2$. In fact, equation (4.7) readily follows from (4.4), (4.11), and 4.12).

Notice that on account of (4.10), when $g(t)=\sqrt{1+t^{2}}$ equation (4.11) becomes the $i$-th line of formula (4.1), whereas in accordance with (2.9) for the case $N=2$, equation (4.12) reads as

$$
\operatorname{div} A^{i}=-u_{, i} \cdot \operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right), \quad i=1, \ldots, N .
$$

The rest of the proof is then divided in three steps. Firstly, we write more explicitly the expression in the right-hand side of equation (4.4). Secondly, according to the notation from (4.8), we show that for $i=1, \ldots, N$

$$
\begin{equation*}
\widetilde{\Phi}_{u}^{\#} \omega_{i}^{(N-1)}=\sum_{j=1}^{N}(-1)^{j-1} \Xi(|\nabla u|) \mathfrak{a}^{i j} \widehat{\mathrm{~d} x^{j}}+(-1)^{i-1}(\Xi+\vartheta)(|\nabla u|) \widehat{\mathrm{d} x^{i}} \tag{4.13}
\end{equation*}
$$

so that on account of 4.9 we readily obtain the validity of equations 4.11, by differentiation. Finally, we show that formulas 4.12 hold true for every $i=1, \ldots, N$.

We shall give the details of the proof of formulas (4.13) and (4.12) for $i=1$ and in dimension $N=3$. When $N \geq 4$ or $i \geq 2$, the previous formulas are checked in a similar way, by essentially distinguishing when $N$ is odd or even. Therefore, the proof in these other cases will be omitted, for the sake of brevity. Finally, we recall that when $N=2$ formulas 4.13 and 4.12 have been proved in Theorem 2.1. Therefore, we follow the same strategy.

Step 1: we write explicitly the expression of $\operatorname{div}(\Xi(|\nabla u|) \nabla u)$. To this purpose, recalling formulas (2.5), equations (2.6) hold for each $i=1, \ldots, N$, where again we shall denote $t=|\nabla u|$, and the summation on repeated indices $\alpha, \beta=1, \ldots, N$ is adopted. Therefore, denoting by $\Delta u$ the Laplacean of $u$ and by $\bullet$ the scalar product in $\mathbb{R}^{N}$, in any dimension $N \geq 2$ we have:

$$
\begin{align*}
\operatorname{div}(\Xi(|\nabla u|) \nabla u) & =\nabla(\Xi(|\nabla u|) \bullet \nabla u+\Xi(|\nabla u|) \Delta u \\
& =\frac{g^{\prime \prime}(t) t-g^{\prime}(t)}{t^{3}} u_{, \alpha} u_{, \beta} u_{, \alpha \beta}+\frac{g^{\prime}(t)}{t} u_{, \alpha \alpha}  \tag{4.14}\\
& =\frac{g^{\prime \prime}(t)}{t^{2}} u_{, \alpha} u_{, \beta} u_{, \alpha \beta}+\frac{g^{\prime}(t)}{t^{3}} \sigma_{\alpha \beta} u_{, \alpha} u_{, \beta} u_{, \alpha \beta}
\end{align*}
$$

where in the last addendum we have set

$$
\sigma_{\alpha \beta}:=\left\{\begin{array}{ll}
+1 & \text { if } \alpha=\beta \\
-1 & \text { if } \alpha \neq \beta
\end{array} \quad \alpha, \beta=1, \ldots, N\right.
$$

Step 2: we prove formula 4.13 for $N=3$ and $i=1$. By using the first line in definition 4.5, we compute the pull-back

$$
\begin{aligned}
\widetilde{\Phi}_{u}^{\#} \bar{\omega}_{1}^{(2)}= & \widetilde{\nu}_{u}^{2} \mathrm{~d} x^{3} \wedge \mathrm{~d} u+\widetilde{\nu}_{u}^{3} \mathrm{~d} u \wedge \mathrm{~d} x^{2}+\widetilde{\nu}_{u}^{4} \mathrm{~d} x^{2} \wedge \mathrm{~d} x^{3} \\
= & -\Xi(t) u_{, 2} \mathrm{~d} x^{3} \wedge \mathrm{~d} u-\Xi(t) u_{, 3} \mathrm{~d} u \wedge \mathrm{~d} x^{2}+(\Xi+\vartheta)(t) \mathrm{d} x^{2} \wedge \mathrm{~d} x^{3} \\
= & \Xi(t)\left(u_{, 2}^{2}+u_{, 3}^{2}\right) \mathrm{d} x^{2} \wedge \mathrm{~d} x^{3}+\Xi(t) u_{, 1} u_{, 2} \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{3} \\
& -\Xi(t) u_{, 1} u_{, 3} \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2}+(\Xi+\vartheta)(t) \mathrm{d} x^{2} \wedge \mathrm{~d} x^{3}
\end{aligned}
$$

that on account of definition (4.8) agrees with the right-hand side of formula (4.13), when $N=3$ and $i=1$.

Step 3: we prove formula 4.12 for $N=3$ and $i=1$. Since by $4.8-4.9$ )

$$
\begin{aligned}
\mathfrak{a}^{1} & =\left(u_{, 2}^{2}+u_{, 3}^{2},-u_{, 1} u_{, 2},-u_{, 1} u_{, 3}\right) \\
\operatorname{div} \mathfrak{a}^{1} & =u_{, 2} u_{, 12}+u_{, 3} u_{, 13}-u_{, 1}\left(u_{, 22}+u_{, 33}\right)
\end{aligned}
$$

using again equations 2.6 we compute:

$$
\begin{aligned}
& \operatorname{div}\left(\Xi(|\nabla u|) \mathfrak{a}^{1}\right)+\partial_{x_{1}}((\Xi+\vartheta)(|\nabla u|)) \\
& =\frac{g^{\prime \prime}(t) t-g^{\prime}(t)}{t^{3}}\left(\left(u_{, 1} u_{, 11}+u_{, 2} u_{, 12}+u_{, 3} u_{, 13}\right)\left(u_{, 2}^{2}+u_{, 3}^{2}\right)\right. \\
& -\left(u_{, 1} u_{, 12}+u_{, 2} u_{, 22}+u_{, 3} u_{, 23}\right) u_{, 1} u_{, 2} \\
& \left.-\left(u_{, 1} u_{, 13}+u_{, 2} u_{, 23}+u_{, 3} u_{, 33}\right) u_{, 1} u_{, 3}\right) \\
& +\frac{g^{\prime}(t)}{t}\left(u_{, 2} u_{, 12}+u_{, 3} u_{, 13}-u_{, 1}\left(u_{, 22}+u_{, 33}\right)\right) \\
& \quad-g^{\prime \prime}(t)\left(u_{, 1} u_{, 11}+u_{, 2} u_{, 12}+u_{, 3} u_{, 13}\right) \\
& =-\quad-u_{, 1} \cdot \frac{g^{\prime \prime}(t)}{t^{2}}\left(u_{, 1}^{2} u_{, 11}+u_{, 2}^{2} u_{, 22}+u_{, 3}^{2} u_{, 33}\right. \\
& \\
& \left.\quad+2\left(u_{, 1} u_{, 2} u_{, 12}+u_{, 1} u_{, 3} u_{, 13}+u_{, 2} u_{, 3} u_{, 23}\right)\right) \\
& -u_{, 1} \cdot \frac{g^{\prime}(t)}{t^{3}}\left(u_{, 1}^{2} u_{, 11}+u_{, 2}^{2} u_{, 22}+u_{, 3}^{2} u_{, 33}\right. \\
& \\
& \left.\quad-2\left(u_{, 1} u_{, 2} u_{, 12}+u_{, 1} u_{, 3} u_{, 13}+u_{, 2} u_{, 3} u_{, 23}\right)\right)
\end{aligned}
$$

Therefore, since when $N=3$ equation (4.14) becomes:

$$
\begin{aligned}
\operatorname{div}(\Xi(|\nabla u|) \nabla u)= & \frac{g^{\prime \prime}(t)}{t^{2}}\left(u_{, 1}{ }^{2} u_{, 11}+u_{, 2}{ }^{2} u_{, 22}+u_{, 3}{ }^{2} u_{, 33}\right. \\
& \left.+2\left(u_{, 1} u_{, 2} u_{, 12}+u_{, 1} u_{, 3} u_{, 13}+u_{, 2} u_{, 3} u_{, 23}\right)\right) \\
+ & \frac{g^{\prime}(t)}{t^{3}}\left(u_{, 1}{ }^{2} u_{, 11}+u_{, 2}{ }^{2} u_{, 22}+u_{, 3}{ }^{2} u_{, 33}\right. \\
& \left.-2\left(u_{, 1} u_{, 2} u_{, 12}+u_{, 1} u_{, 3} u_{, 13}+u_{, 2} u_{, 3} u_{, 23}\right)\right)
\end{aligned}
$$

formula 4.12 holds true for $N=3$ and $i=1$, as required.

## 5. On GOOD PARAMETERIZATIONS OF $g$-HYPERSURFACES

In this section, we discuss the lack of validity of a similar argument to the one in Corollary 3.1, in high dimension $N \geq 3$.

Namely, one might ask if it exists a smooth vector field $\widetilde{F}: B^{N} \rightarrow \mathbb{R}^{N}$ such that a property similar to 3.1 holds true, for $g$-hyperfusfaces $\mathcal{G}_{u}$. Recall that in the particular case of nonparametric minimal surfaces in $\mathbb{R}^{3}$, condition (3.1) becomes (3.6).

When e.g. $N=3$, according to the notation (4.8)-4.9), in Theorem 4.1 we have shown that if equation $\operatorname{div}\left(\mathfrak{g}^{-1 / 2} \nabla u\right)=0$ holds, then the 2 -forms

$$
\begin{aligned}
\omega^{1} & :=\mathfrak{g}^{-1 / 2}\left(\left(1+\mathfrak{a}^{11}\right) \mathrm{d} x^{2} \wedge \mathrm{~d} x^{3}+\mathfrak{a}^{12} \mathrm{~d} x^{3} \wedge \mathrm{~d} x^{1}+\mathfrak{a}^{13} \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2}\right) \\
\omega^{2} & :=\mathfrak{g}^{-1 / 2}\left(\mathfrak{a}^{21} \mathrm{~d} x^{2} \wedge \mathrm{~d} x^{3}+\left(1+\mathfrak{a}^{22}\right) \mathrm{d} x^{3} \wedge \mathrm{~d} x^{1}+\mathfrak{a}^{13} \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2}\right) \\
\omega^{3} & :=\mathfrak{g}^{-1 / 2}\left(\mathfrak{a}^{31} \mathrm{~d} x^{2} \wedge \mathrm{~d} x^{3}+\mathfrak{a}^{32} \mathrm{~d} x^{3} \wedge \mathrm{~d} x^{1}+\left(1+\mathfrak{a}^{13}\right) \mathrm{d} x^{1} \wedge \mathrm{~d} x^{2}\right)
\end{aligned}
$$

are closed, whence exact in $B^{3}$. Therefore, there exist three smooth 1-forms $\eta^{i}$ in $B^{3}$ such that $\mathrm{d} \eta^{i}=\omega^{i}$ for $i=1,2,3$.

Such a property is clearly equivalent to the existence of three smooth vector fields $\Psi^{i}: B^{3} \rightarrow \mathbb{R}^{3}$ such that curl $\Psi^{i}=f_{i}$ for $i=1,2,3$, where

$$
\begin{aligned}
& f_{1}:=\mathfrak{g}^{-1 / 2}\left(1+u_{, 2}^{2}+u_{, 3}^{2},-u_{, 1} u_{, 2},-u_{, 1} u_{, 3}\right) \\
& f_{2}:=\mathfrak{g}^{-1 / 2}\left(-u_{, 1} u_{, 2}, 1+u_{, 3}^{2}+u_{, 1}^{2},-u_{, 2} u_{, 3}\right) \\
& f_{3}:=\mathfrak{g}^{-1 / 2}\left(-u_{, 1} u_{, 3},-u_{, 2} u_{, 3}, 1+u_{, 1}^{2}+u_{, 2}^{2}\right) .
\end{aligned}
$$

On the other hand, on account of (4.7) and 4.10 , when $N=3$ we have seen that the tensor-valued field

$$
A:=\mathfrak{g}^{-1 / 2}\left(\begin{array}{ccc}
1+u_{, 2}^{2}+u_{, 3}^{2} & -u_{, 1} u_{, 2} & -u_{, 1} u_{, 3}  \tag{5.1}\\
-u_{, 1} u_{, 2} & 1+u_{, 3}^{2}+u_{, 1}^{2} & -u_{, 2} u, 3 \\
-u_{, 1} u, 3 & -u_{, 2} u_{, 3} & 1+u_{, 1}^{2}+u_{, 2}^{2}
\end{array}\right)
$$

satisfies $\operatorname{div} A=0$, where divergence is computed along the raw vector fields $A^{i}$, compare (3.6). However, given a tensor-valued field $\widetilde{A} \in C^{1}\left(B^{3}, \mathbb{R}^{3 \times 3}\right)$ depending on $u$, the existence of a vector field $F: B^{3} \rightarrow \mathbb{R}^{3}$ such that

$$
\nabla F=\widetilde{A} \quad \text { on } B^{3}
$$

implies the necessary condition curl $\widetilde{A}=0$, where curl is again computed along the raw vector fields $\widetilde{A}^{i}$. Such a curl-free condition should be obtained as a consequence of the validity of equation $\operatorname{div}\left(\mathfrak{g}^{-1 / 2} \nabla u\right)=0$, and of course this is not the case for $\widetilde{A}=A$ in (5.1). In a similar way, in any high dimension $N \geq 3$ it is not clear how to obtain a suitable tensor-valued field $\widetilde{A} \in C^{1}\left(B^{N}, \mathbb{R}^{N \times N}\right)$ depending on $u$ that agrees with the gradient of a smooth vector field $F \in C^{2}\left(B^{N}, \mathbb{R}^{N}\right)$, by exploiting Theorem 4.1 for minimal hypersurfaces.

In fact, if a function $u \in C^{2}\left(B^{N}, \mathbb{R}\right)$ satisfies the Euler-Lagrange equation (0.1), by Theorem 4.1 we infer the existence of a $\mathbb{R}^{N+1}$-valued ( $N-2$ )-form $\eta^{(N-2)}$ in $B^{N}$ such that

$$
\mathrm{d} \eta^{(N-2)}=\widetilde{\Phi}_{u}^{\#} \bar{\omega}^{(N-1)}
$$

and hence it is only in low dimension $N=2$ that one may proceed as in Corollary 3.1, by working with the first two components of the smooth function $\eta^{(0)} \in C^{1}\left(B^{2}, \mathbb{R}^{3}\right)$.

## References

[1] Anzellotti G., Giaquinta M., Massari U., Modica G., Pepe L. (1974), Note sul problema di Plateau. Editrice Tecnico Scientifica, Pisa.
[2] Anzellotti G., Serapioni R., Tamanini I. (1990), Curvatures, Functionals, Currents. Indiana Univ. Math. J. 39, 617-669.
[3] Bildhauer M., Fuchs M. (2022), Some geometric properties of nonparametric $\mu$-surfaces in $\mathbb{R}^{3}$, J. Geom. Anal. 32 113. https://doi.org/10.1007/s12220-021-00819-6
[4] Delladio S. (1997), Special generalized Gauss graphs and their application to minimization of functionals involving curvatures. J. Reine Angew. Math. 486, 17-43.
[5] Dierkes U., Hildebrandt S., Sauvigny, F. (2010), Minimal surfaces. Grundlehren der Mathematischen Wissenschaften, vol. 336. Springer, Heidelberg (revised and enlarged second edition).
[6] Giaquinta M., Modica G., Souček J. (1998), Cartesian currents in the calculus of variations. I. Cartesian currents. Ergebnisse der Mathematik und ihrer Grenzgebiete, no. 37, Springer-Verlag, Berlin.
[7] Haar A. (1927), Über das Plateausche Problem. Math. Ann. 97 no. 1, 124-158.
[8] Mariano P. M., Mucci D. (2021), Equilibrium of thin shells under large strains without through-the-thickness shear and self-penetration of matter. Preprint.
[9] Mucci D. (2021), On the curvature energy of Cartesian surfaces. J. Geom. Anal. 31, 8460-8519.
(D. Mucci) Dipartimento di Scienze Matematiche, Fisiche ed Informatiche, Università di Parma, Parco Area delle Scienze 53/A, I-43124 Parma, Italy

Email address: domenico.mucci@unipr.it


[^0]:    2010 Mathematics Subject Classification. 49Q15; 53A10; 58 E 15.
    Key words and phrases. generalized surfaces, canonical forms, parameterizations.
    I wish to thank M. Bildhauer for several interesting discussions. The research of D.M. was partially supported by the GNAMPA of INDAM.

