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Abstract. Nonparametric g-surfaces in Euclidean space have recently
been characterized by Bildhauer-Fuchs in terms of closure of a 1-form as-
sociated to the so called asymptotic normal. This 1-form can be written
by means of the pull-back of a canonical vector-valued 1-form through
a suitable map depending on the asymptotic normal, that in the min-
imal surfaces case agrees with the Gauss graph map. We show that a
similar characterization holds true for g-hypersurfaces of any high di-
mension N , but this time in terms of a canonical vector valued form of
degree N − 1. In the minimal hypersurfaces case, we finally discuss the
lack of a relationship between the previous result and existence of good
parameterizations, when N is greater than two.

Introduction

We deal with critical points of the functional

Fg(u) :=

∫
BN

g(|∇u|) dLN , u ∈ C2(BN ,R)

on smooth real valued functions u defined in the unit ball BN in RN , in any
dimension N ≥ 2.

The isotropic functional is given by integration with respect to Lebesgue
measure LN of a non-negative and smooth integrand g : [0,+∞)→ R acting
on the modulus of the gradient ∇u.

The associated Euler-Lagrange equation reads as

(0.1) div
(
Ξ(|∇u|)∇u

)
= 0 , Ξ(t) :=

g′(t)

t

provided that Ξ(t) and Ξ′(t) are bounded functions in [0,+∞), see (2.5).
If a smooth function u satisfies equation (0.1), the graph Gu is commonly

said to be a g-hypersurface in RN+1.
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2 D. MUCCI

In this paper, we show in any dimension N ≥ 2 that the validity of
equation (0.1) is equivalent to the closure of a suitable RN+1-valued (N−1)-
form in BN . This differential form is essentially obtained through the pull-
back of a canonical vector valued differential form by means of a natural
extension of the asymptotic normal introduced by Bildhauer-Fuchs [3] in
dimension N = 2.

More precisely, denoting respectively by RN+1
x and RN+1

y the ambient
spaces where the graph Gu and the g-normal ν̃u to u live, our Main Result
involves a map depending on both the graph map and g-normal,

Φ̃u : BN → RN+1
x × RN+1

y

see (1.1), (1.2), and (1.4).

Notice that in the model case when g(t) =
√

1 + t2, so that Fg(u) is

the area functional, we have Ξ(t) = (1 + t2)−1/2 and (0.1) reduces to the
nonparametric minimal hypersurfaces equation:

div

(
∇u√

1 + |∇u|2

)
= 0 .

Moreover, in that case the g-normal reduces to the unit normal νu to Gu

(0.2) νu :=
1√

1 + |∇u|2
(
−∇u, 1

)
and finally Φ̃u agrees with the Gauss graph map

(0.3) Φu(x̃) :=
(
(x̃, u(x̃)), νu(x̃)

)
, x̃ ∈ BN .

Furthermore, we denote by Φ̃ #
u ω the pull-back through the map Φ̃u of a

differential form ω in RN+1
x × RN+1

y , by d the exterior derivative operator,

and by Ω(N) the (naturally oriented) volume N -form in RN , see (1.5). We
finally remark that for vector valued forms, both pull-back and exterior
derivative are defined componentwise.

Referring to Sec. 1 for further notation and details, we are now in position
to state the Main Result of this paper, that holds true in any dimension.

Theorem 0.1. Let N ≥ 2 integer. There exists a canonical RN+1-valued
(N − 1)-form ω̄(N−1) in RN+1

x × RN+1
y such that for any smooth function

u ∈ C2(BN ,R)

dΦ̃ #
u ω̄

(N−1) = div
(

Ξ(|∇u|)∇u
)

(−∇u, 1) ∧ Ω(N) .

Therefore, the graph Gu is a g-hypersurface in RN+1
x if and only if Φ̃ #

u ω̄(N−1)

is a closed RN+1-valued (N − 1)-form in BN .

We refer to Theorems 2.1 or 4.1 for a more precise statement in dimension
N = 2 or N ≥ 3, and to equations (2.1), (4.5), (4.6) for the explicit expres-

sion of the canonical form ω̄(N−1) in dimension N = 2, 3, 4, respectively.
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In low dimension N = 2, compare equation (2.3) below, our Main Result
was essentially obtained in [3], where the authors extended a classical prop-
erty concerning minimal surfaces in R3. This crucial property, which yields
to existence of isothermal parameters, was written in terms of differential
forms by Dierkes-Hildebrandt-Sauvigny in Sec. 2.2 of their treatise [5].

The role of the Gauss graph map (0.3) in the analysis of functionals
depending on curvatures of codimension one surfaces, goes back to the ex-
cellent work by Anzellotti-Serapioni-Tamanini [2], see also [4]. The Gauss
graph map is a main tool also in [9], where a relaxed curvature energy for
nonparametric surfaces in R3 is analyzed, and more recently in [8], where
elastic thin shells without through-the-thickness shear are depicted as Gauss
graphs of parametric surfaces.

We finally present the plan of the paper. Notation is fixed in Sec. 1,
whereas Theorem 0.1 in low dimension N = 2 is proved in Sec. 2. In Sec. 3,
we then collect some known results concerning (asymptotic) conformal pa-
rameterizations, showing how they can be obtained from our Main Result
in low dimension N = 2. Theorem 0.1 in high dimension N ≥ 3 is proved in
Sec. 4. Finally, in Sec. 5 we discuss the reason why in high dimension N ≥ 3
our Main Result does not lead to existence of “good parameterizations”,
compared to the two-dimensional case treated by Bildhauer-Fuchs [3].

1. Notation

We set x = (x̃, xN+1) ∈ RN+1
x , where x̃ := (x1, . . . , xN ), so that the graph

of a function u ∈ C2(BN ,R) is the nonparametric hypersurface

Gu := {x ∈ RN+1
x | xN+1 = u(x̃)} .

We also denote by f,i the partial derivative of a smooth function f : BN → R
in the i-th coordinate direction, so that the gradient of u reads as ∇u =
(u,1, . . . , u,N ), and by f,ij the second order partial derivatives

f,ij := ∂xi∂xjf = ∂xj∂xif , i, j = 1, . . . , N .

Extending to high dimension N ≥ 3 the definition of asymptotic normal
introduced in [3] in caseN = 2, for a given integrand g as in the introduction,
we call g-normal to the graph Gu at (x̃, u(x̃)) the (N + 1)-vector

ν̃u(x̃) :=
(
ν̃ 1
u (x̃), . . . , ν̃ Nu (x̃), ν̃ N+1

u (x̃)
)

with first N components defined by

(1.1) ν̃ ju := −Ξ(|∇u|)u,j , j = 1, . . . , N

where Ξ(t) is given by (0.1), and last component

(1.2) ν̃ N+1
u := Ξ(|∇u|) + ϑ(|∇u|) , ϑ(t) := g(t)− tg′(t)− Ξ(t) .

Therefore, in the minimal hypersurfaces case g(t) =
√

1 + t2, we get

(1.3) Ξ(t) =
1√

1 + t2
, ϑ(t) ≡ 0 , ν̃u = νu
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where νu is the unit normal to Gu, see (0.2).
Denoting by y = (y1, . . . , yN , yN+1) the coordinates in the vector space

RN+1
y where the g-normal lives, we correspondingly introduce the map

Φ̃u : BN → RN+1
x × RN+1

y

defined in terms of the g-normal (1.1)–(1.2) by

(1.4) Φ̃u(x̃) :=
(
(x̃, u(x̃)), ν̃u(x̃)

)
.

Moreover, (dx1, . . . ,dxN ,dxN+1) and (dy1, . . . ,dyN ,dyN+1) denote the
dual bases of covectors in RN+1

x and RN+1
y , respectively, where d is the

exterior derivative operator. Therefore, the volume N -form in the domain
RN that appears in Theorem 0.1 is:

(1.5) Ω(N) := dx1 ∧ · · · ∧ dxN

whereas the differential of e.g. the function u and the j-th component of ν̃u
become the 1-forms:

du =

N∑
i=1

u,i dxi , dν̃ ju =

N∑
i=1

ν̃ ju,i dxi , j = 1, . . . , N + 1 .

We also denote by Φ̃ #
u ω the pull-back through the map Φ̃u of a differential

form ω in RN+1
x ×RN+1

y , and recall that for vector valued forms, both pull-
back and exterior derivative are defined componentwise. For further details
on differential forms we refer e.g. to Sec. 2.2.2 of the treatise [6].

Remark 1.1. We finally point out that the nonparametric hypersurface Gu
is the image of BN through the graph map X(x̃) := (x̃, u(x̃)), and hence it
is naturally equipped with the metric g ij := ∂iX • ∂jX = δij + u,iu,j , for

i, j = 1, . . . N , where • is the scalar product in RN+1
x and δij is Kronecker

symbol, so that

g := det(g ij) = 1 + |∇u|2 .

Denoting by (g ij) the inverse to the metric tensor (g ij), we also have

g ii = g−1 · (1 + |∇u|2 − u,i2) , g ij = −g−1 · u,iu,j if i 6= j .

2. The surface case

In this section, we prove Theorem 0.1 in low dimension N = 2. Namely,
in Theorem 2.1 we recover a result that goes back to [3, Thm. 1.2].

For this purpose, we introduce the R3-valued 1-form ω̄(1) in R3
x × R3

y

(2.1) ω̄(1) :=

 −y2 dx3 + y3 dx2

−y3 dx1 + y1 dx3

−y1 dx2 + y2 dx1
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(where from now on we denote vector-valued forms as column vectors) and

observe that the R3-valued 1-form in B2 given by the pull-back of ω̄(1)

through the map Φ̃u from (1.4) becomes:
(2.2)

Φ̃ #
u ω̄

(1) =

 Ξ(|∇u|)u,1u,2 dx1 +
(
Ξ(|∇u|) (1 + u,2

2) + ϑ(|∇u|)
)

dx2

−
(
Ξ(|∇u|) (1 + u,1

2) + ϑ(|∇u|)
)

dx1 − Ξ(|∇u|)u,1u,2 dx2

Ξ(|∇u|)u,1 dx2 − Ξ(|∇u|)u,2 dx1

 .

In particular, one recovers the notation from [3] in terms of vector product
× in R3. In fact, denoting by vT the transpose of a line vector v ∈ R3, after
an identification of R3

y with R3
x we have:

(2.3) Φ̃ #
u ω̄

(1) = −(ν̃u × dX)T , X(x1, x2) := (x1, x2, u(x1, x2)) .

In the model case g(t) =
√

1 + t2, so that equations (1.3) hold, and hence

Φ̃u agrees with the Gauss graph map (0.3), it is readily checked that

dΦ #
u ω̄

(1) = div

(
∇u√

1 + |∇u|2

)
(−u,1, −u,2, 1)T dx1 ∧ dx2

so that Φ #
u ω̄(1) is a closed 1-form in B2 if and only if the graph Gu is a

nonparametric minimal surface in R3.

Theorem 2.1. Let N = 2 and let Φ̃u be given by (1.4), with g-normal
defined by (1.1) and (1.2) for some integrand g as in the introduction. Then,
for any smooth function u ∈ C2(B2,R), we have

dΦ̃ #
u ω̄

(1) = div
[
Ξ(|∇u|)∇u

]
(−u,1, −u,2, 1)T dx1 ∧ dx2

where the function Ξ(t) is given by (0.1) and the canonical 1-form ω̄(1) by

(2.1). Therefore, the graph Gu is a g-surface in R3 if and only if Φ̃ #
u ω̄(1) is

a closed R3-valued 1-form in B2.

Proof. We first observe that by (2.2) we can write the differential
(2.4)

dΦ̃ #
u ω̄(1) = [

div
(
Ξ(|∇u|) (u,2

2, −u,1u,2)
)

+ ∂x1(Ξ + ϑ)(|∇u|)
]

dx1 ∧ dx2[
div
(
Ξ(|∇u|) (−u,1u,2, u,12)

)
+ ∂x2(Ξ + ϑ)(|∇u|)

]
dx1 ∧ dx2

div
(
Ξ(|∇u|)∇u

)
dx1 ∧ dx2

 .

Recalling (1.2), we get

(2.5) Ξ(t) =
g′(t)

t
, Ξ′(t) =

g′′(t) t− g′(t)
t2

,

(Ξ + ϑ)′(t) = −t g′′(t) ∀ t > 0

so that for i = 1, 2 we infer:

(2.6) ∂xiΞ(|∇u|) =
g′′(t) t− g′(t)

t3
u,αu,αi

∂xi(Ξ + ϑ)(|∇u|) = −g′′(t)u,αu,αi
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where (here and in the sequel) in the right-hand side we have set t = |∇u|,
and the summation on repeated indices α = 1, 2 is adopted.

Denoting by ∆u the Laplacean of u and by • the scalar product in R2,
we have:

div
(
Ξ(|∇u|)∇u

)
= ∇(Ξ(|∇u|) • ∇u+ Ξ(|∇u|) ∆u

=
g′′(t)t− g′(t)

t3
(
(u,1u,11 + u,2u,12)u,1 + (u,1u,12 + u,2u,22)u,2

)
+
g′(t)

t

(
u,11 + u,22

)
=
g′′(t)

t2
(
u,1

2u,11 + u,2
2u,22 + 2u,1u,2u,12

)
+
g′(t)

t3
(
u,2

2u,11 + u,1
2u,22 − 2u,1u,2u,12

)
.

Moreover, as to e.g. the second line in equation (2.4), we compute:

−
[
div
(
Ξ(|∇u|) (−u,1u,2, u,12)

)
+ ∂x2(Ξ + ϑ)(|∇u|)

]
=
g′′(t)t− g′(t)

t3
(
(u,1u,11 + u,2u,12)u,1u,2 − (u,1u,12 + u,2u,22)u,1

2
)

+
g′(t)

t

(
u,2u,11 − u,1u,12

)
+ g′′(t)

(
u,1u,12 + u,2u,22

)
=
g′′(t)

t2
(
u,1

2u,2u,11 + u,2
3u,22 + 2u,1u,2

2u,12

)
+
g′(t)

t3
(
u,2

3u,11 + u,1
2u,2u,22 − 2u,1u,2

2u,12

)
= u,2 div

(
Ξ(|∇u|)∇u

)
.

Finally, concerning the first line in equation (2.4), we similarly obtain

div
(
Ξ(|∇u|) (u,2

2, −u,1u,2)
)

+ ∂x1(Ξ + ϑ)(|∇u|) = −u,1 div
(
Ξ(|∇u|)∇u

)
and hence the assertion readily follows. �

Remark 2.2. In the model case when g(t) =
√

1 + t2, on account of Re-
mark 1.1, equation (2.4) becomes:

(2.7) dΦ #
u ω̄

(1) =

 div
(
g−1/2(1 + u,2

2, −u,1u,2)
)

dx1 ∧ dx2

div
(
g−1/2(−u,1u,2, 1 + u,1

2)
)

dx1 ∧ dx2

div
(
g−1/2∇u

)
dx1 ∧ dx2

 .

Therefore, denoting by A ∈ C2(B2,R2×2) the symmetric tensor valued func-
tion with components by

(2.8) Aij := g 1/2 g ij

for i, j = 1, 2, in the previous proof we have just checked that

(2.9) − divA = (∇u)Tdiv(g−1/2∇u)

on B2, where divergence is computed along the raw components.
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3. (Asymptotic) conformal parameterizations

In this section, we apply Theorem 2.1 to find existence of “good param-
eterizations” of nonparametric g-surfaces. For completeness, we also recall
how isothermal parameters are obtained in the minimal surfaces case.

Using an argument similar to the one exploited by Bildhauer-Fuchs in [3],
we obtain the following

Corollary 3.1. Let N = 2 and let u ∈ C2(B2,R) satisfy the Euler-Lagrange

equation (0.1). Then, there exists a smooth vector field F̃ : B2 → R2 such
that for each x̃ ∈ B2

(3.1)

∇F̃ =

(
Ξ(|∇u|) (1 + u,1

2) + ϑ(|∇u|) Ξ(|∇u|)u,1u,2
Ξ(|∇u|)u,1u,2 Ξ(|∇u|) (1 + u,2

2) + ϑ(|∇u|)

)
.

Conversely, the existence of a smooth vector field satisfying (3.1) implies the
validity of Euler-Lagrange equation (0.1).

Proof. Consider the couple of 1-forms

(3.2)
ω̃1 :=

(
Ξ(|∇u|) (1 + u,1

2) + ϑ(|∇u|)
)

dx1 + Ξ(|∇u|)u,1u,2 dx2

ω̃2 := Ξ(|∇u|)u,1u,2 dx1 +
(

Ξ(|∇u|) (1 + u,2
2) + ϑ(|∇u|)

)
dx2 .

In Theorem 2.1, we have seen that their differentials satisfy equations

dω̃1 = u,2 · div
(
Ξ(|∇u|)∇u

)
dx1 ∧ dx2

dω̃2 = −u,1 · div
(
Ξ(|∇u|)∇u

)
dx1 ∧ dx2 .

Therefore, B2 being simply-connected, both ω̃1 and ω̃2 are exact 1-forms
in B2 if and only if the function u is a solution to equation (0.1). In that

case, it then suffices to choose F̃ = (F̃ 1, F̃ 2), where F̃ i ∈ C2(B2,R) satisfies

dF̃ i = ω̃i, for i = 1, 2. �

In the minimal surfaces case, one then readily obtains the classical ex-
istence result of a conformal parameterization for the graph map X(x̃) =
(x̃, u(x̃)), compare e.g. [5, Sec. 2.3].

Proposition 3.2. If Gu is a nonparametric minimal surface in R3, and F̃ is
given by Corollary 3.1 in correspondence to g(t) =

√
1 + t2, then the vector

field

(3.3) Λ(x̃) := x̃+ F̃ (x̃)

defines a smooth diffeomorphism z = Λ(x̃) from B2 onto its image, a smooth

domain Ω̂ of R2, and the parameterization

(3.4) X̂(z) :=
(
Λ−1(z), u(Λ−1(z))) , z = (z1, z2) ∈ Ω̂

of the graph map is conformal. Precisely, at any point z ∈ Ω̂

(3.5) ∂ziX̂ • ∂zjX̂ = δij U
2 , i, j = 1, 2
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with conformal factor U2(z) := f(g (Λ−1(z))), where

f(g ) =
g

2g 1/2 + (1 + g )
, g = 1 + |∇u|2 .

Proof. When g(t) =
√

1 + t2, the differentials of the 1-forms ω̃i in (3.2)
satisfy equations:

d
(
g−1/2(1 + u,1

2) dx1 + g−1/2 u,1u,2 dx2
)

= u,2 · div
(
g−1/2∇u

)
dx1 ∧ dx2

d
(
g−1/2 u,1u,2 dx1 + g−1/2(1 + u,2

2) dx2
)

= −u,1 · div
(
g−1/2∇u

)
dx1 ∧ dx2

and hence we obtain a smooth vector field F̃ : B2 → R2 such that
(3.6)

∇F̃ =
(
g−1/2g ij

)
=

(
g−1/2 (1 + u,1

2) g−1/2 u,1u,2
g−1/2 u,1u,2 g−1/2 (1 + u,2

2)

)
on B2

see (3.1). With this choice, definition (3.3) gives a smooth diffeomorphism
onto its image (cf. e.g. [3, Prop. 5.1]) and on account of (2.8) we obtain

det∇Λ = 1 + trA+ detA = 1 + g−1/2(2 + |∇u|2) + 1 = 2 + g−1/2(1 + g )

∇Λ−1 =
1

det∇Λ

(
1 + g−1/2(1 + u,2

2) −g−1/2u,1u,2
−g−1/2u,1u,2 1 + g−1/2(1 + u,1

2)

)
=:

(
α γ
γ β

)
so that the parameterization X̂ in (3.4) satisfies

∇X̂ =

 α γ
γ β

αu,1 + γ u,2 γ u,1 + β u,2

 .

Therefore, the conformality relations (3.5) hold, with conformal factor

U2 =
2g 1/2 + (1 + g )(

2 + g−1/2(1 + g )
)2 =

g

2g 1/2 + (1 + g )

where g is computed at x̃ = Λ−1(z) ∈ B2. Further details are omitted. �

We recall that the first general existence proof for the nonparametric
Plateau problem was given by A. Haar [7] in 1927, whereas analyticity
of minimizers was firstly achieved by T. Radó. The starting point of the
classical proof is the following exactness criterion for 1-forms in R2 with
continuous coefficients:

Lemma (Haar) Let Ω ⊂ R2 be a simply connected, bounded, open set, and
let u, v ∈ C0(Ω̄) such that∫

Ω
(u ζ,1 + v ζ,2) dL2 = 0 ∀ ζ ∈ C1

0 (Ω) .

Then, the 1-form ω := u dx2 − v dx1 is exact in Ω.

Referring to the mimeographed notes [1] for further details on the clas-
sical approach, we only point out that Haar’s lemma yields to existence of
isothermal parameters, but it only works in dimension N = 2. In some
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sense, that is the reason why in high dimension N ≥ 3 our Main Result does
not lead to existence of “good parameterizations”, see Sec. 5 below.

Finally, we recall that the previous argument was essentially exploited in
[3] for g-surfaces Gu, provided that g is of class C2, with g′(0) = 0, g′′(t) > 0
for all t > 0, that for some real numbers a,A > 0, b, B ≥ 0,

at− b ≤ g(t) ≤ At+B for all t ≥ 0

and finally that ∫ +∞

0
t g′′(t) dt <∞ .

With these assumptions, in fact, in [3, Thm. 1.3] it is shown that the vector
field from (3.3) is a smooth diffeomorphism z = Λ(x̃) onto its image, and
that equation (3.4) defines a so called asymptotic conformal parameterization
of the g-surface Gu.

4. The high dimension case

In this section, we prove Theorem 0.1 in high dimension N ≥ 3. It is
restated in Theorem 4.1 below.

For this purpose, we come back to Remark 2.2. Following the notation
from Remark 1.1, we denote again by A ∈ C2(BN ,RN×N ) the symmetric
tensor valued function with components as in (2.8), for i, j = 1, . . . , N , and
observe that formula (2.9) continues to hold. Therefore, we wish to find a

canonical RN+1-valued (N − 1)-form ω̄(N−1), that in components reads as

ω̄(N−1) =
(
ω

(N−1)
1 , ω

(N−1)
2 , . . . , ω

(N−1)
N , ω

(N−1)
N+1

)T
in such a way that according to equation (2.7) one has

(4.1) dΦ #
u ω̄

(N−1) =


div(A1

1, . . . , A
1
N ) dx1 ∧ · · · ∧ dxN

div(A2
1, . . . , A

2
N ) dx1 ∧ · · · ∧ dxN

...
div(AN1 , . . . , A

N
N ) dx1 ∧ · · · ∧ dxN

div(g−1/2∇u) dx1 ∧ · · · ∧ dxN

 .

Clearly, the last component of ω̄(N−1) is given by

(4.2) ω
(N−1)
N+1 := −

N∑
j=1

(−1)j−1yj d̂xj

where for j = 1, . . . , N we denote by d̂xj the (N−1)-covector in RN obtained
by deleting dxj from the ordered N -covector dx1 ∧ · · · ∧ dxN , i.e.,

d̂xj := dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxN

so that

(4.3) (−1)j−1dxj ∧ d̂xj = dx1 ∧ · · · ∧ dxN .
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In fact, recalling (1.1), (1.2), and (1.4), by (4.2) we compute the pull-back

Φ̃ #
u ω

(N−1)
N+1 =

N∑
j=1

(−1)j−1Ξ(|∇u|)u,j d̂xj

so that by (4.3) we get:

(4.4) dΦ̃ #
u ω

(N−1)
N+1 = div

(
Ξ(|∇u|)∇u

)
dx1 ∧ · · · ∧ dxN .

When N = 3, we define the four components of ω̄(2) as follows:

(4.5)


ω

(2)
1 := y2 dx3 ∧ dx4 + y3 dx4 ∧ dx2 + y4 dx2 ∧ dx3

ω
(2)
2 := −

(
y3 dx4 ∧ dx1 + y4 dx1 ∧ dx3 + y1 dx3 ∧ dx4

)
ω

(2)
3 := y4 dx1 ∧ dx2 + y1 dx2 ∧ dx4 + y2 dx4 ∧ dx1

ω
(2)
4 := −

(
y1dx2 ∧ dx3 + y2dx3 ∧ dx1 + y3dx1 ∧ dx2

)
and when N = 4, instead, the five components of ω̄(4) are:

(4.6)



ω̄
(3)
1 := −y2dx3 ∧ dx4 ∧ dx5 + y3dx4 ∧ dx5 ∧ dx2

−y4dx5 ∧ dx2 ∧ dx3 + y5dx2 ∧ dx3 ∧ dx4

ω̄
(3)
2 := −y3dx4 ∧ dx5 ∧ dx1 + y4dx5 ∧ dx1 ∧ dx3

−y5dx1 ∧ dx3 ∧ dx4 + y1dx3 ∧ dx4 ∧ dx5

ω̄
(3)
3 := −y4dx5 ∧ dx1 ∧ dx2 + y5dx1 ∧ dx2 ∧ dx4

−y1dx2 ∧ dx4 ∧ dx5 + y2dx4 ∧ dx5 ∧ dx1

ω
(3)
4 := −y5dx1 ∧ dx2 ∧ dx3 + y1dx2 ∧ dx3 ∧ dx5

−y2dx3 ∧ dx5 ∧ dx1 + y5dx5 ∧ dx1 ∧ dx2

ω
(3)
5 := −y1dx2 ∧ dx3 ∧ dx4 + y2dx3 ∧ dx4 ∧ dx1

−y3dx4 ∧ dx1 ∧ dx2 + y4dx1 ∧ dx2 ∧ dx3 .

With this notation, in fact, it can be checked that equation (4.1) holds true

for N = 3, 4. Notice moreover that the 3-form ω̄(3) has a similar structure
to the one of the 1-form ω̄(1) we defined in (2.1) when N = 2.

For N ≥ 5, we have to define ω̄(N−1) in such a way that equation (4.1)

continues to hold. Therefore, for N ≥ 5 odd, the structure of ω̄(N−1) is sim-
ilar to the one of case N = 3 in (4.5), whereas for N ≥ 6 even, its structure
is similar to the one of case N = 4 in (4.6). Their explicit expression can
be obtained starting from the expression in cases N = 3 or N = 4, and by
distinguishing between N ≥ 5 odd or even.

More precisely, for i = 1, . . . , N + 1, the i-th component of ω̄(N−1) is
made of N terms, each one involving a coefficient yj1 and N −1 differentials
dxj2 ∧ · · · ∧ dxjN , where the N indices jk, for k = 1, . . . , N , are defined in
an increasing and cyclical way by means of the ordered multi-index which
complements i in (1, . . . , N + 1). The main feature is that when N is odd,
compare (4.5), a constant sign ±1 appears, depending on the parity of the
index i, whereas when N is even, compare (4.6), alternating signs appear.

Since we did not find a satisfactory synthetic notation, for N ≥ 5 the
explicit expression of ω̄(N−1) is omitted, for the sake of brevity.
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We are now in position to prove the Main Result of this paper:

Theorem 4.1. Let N ≥ 3 and let Φ̃u be given by (1.4), with g-normal de-
fined by (1.1) and (1.2) for some integrand g as in the introduction. More-

over, let ω̄(N−1) denote the canonical RN+1-valued (N − 1)-form defined as
above (see (4.5) and (4.6) for N = 3, 4, respectively). Then, for any smooth
function u ∈ C2(BN ,R)

(4.7) dΦ̃ #
u ω̄

(N−1) = div
[
Ξ(|∇u|)∇u

]
(−∇u, 1)T dx1 ∧ · · · ∧ dxN

where the function Ξ(t) is given by (0.1). Therefore, the graph Gu is a

g-hypersurface in RN+1 if and only if Φ̃ #
u ω̄(N−1) is a closed RN+1-valued

(N − 1)-form in BN .

Proof. Let a ∈ C1(BN ,RN×N ) be the symmetric tensor-valued field associ-
ated to a given function u ∈ C2(BN ,R) and with components

(4.8) a ij := δij |∇u|2 − u,i u,j , i, j = 1, . . . , N .

Also, denote by a i the i-th raw vector field of a , namely:

(4.9) a i :=
(
a i1, . . . , a iN

)
, i = 1, . . . , N .

According to Remark 1.1, we point out that the inverse (g ij) of the metric
tensor (g ij) of the nonparametric hypersurface Gu satisfies

g ij = g−1 (δij + a ij) ∀ i, j = 1, . . . , N .

In particular, definition (2.8) can be equivalently written as

(4.10) Aij := g−1/2 (δij + a ij) , i, j = 1, . . . , N .

With this notation, and recalling that ω
(N−1)
i denotes the i-th compo-

nent of the canonical form ω̄(N−1), we have already obtained that the last
component satisfies equation (4.4). On account of formulas (1.1), (1.2), and
(1.4), it then suffices to check the validity for i = 1, . . . , N of equations

(4.11) dΦ̃ #
u ω

(N−1)
i =

[
div
(
Ξ(|∇u|) a i

)
+∂xi

(
(Ξ+ϑ)(|∇u|)

)]
dx1∧· · ·∧dxN

and then of equations

(4.12) div
(
Ξ(|∇u|) a i

)
+ ∂xi

(
(Ξ + ϑ)(|∇u|)

)
= −u,i · div

(
Ξ(|∇u|)∇u

)
in any dimension N ≥ 2. In fact, equation (4.7) readily follows from (4.4),
(4.11), and (4.12).

Notice that on account of (4.10), when g(t) =
√

1 + t2 equation (4.11)
becomes the i-th line of formula (4.1), whereas in accordance with (2.9) for
the case N = 2, equation (4.12) reads as

divAi = −u,i · div

(
∇u√

1 + |∇u|2

)
, i = 1, . . . , N .
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The rest of the proof is then divided in three steps. Firstly, we write more
explicitly the expression in the right-hand side of equation (4.4). Secondly,
according to the notation from (4.8), we show that for i = 1, . . . , N

(4.13) Φ̃ #
u ω

(N−1)
i =

N∑
j=1

(−1)j−1Ξ(|∇u|) a ij d̂xj + (−1)i−1(Ξ +ϑ)(|∇u|) d̂xi

so that on account of (4.9) we readily obtain the validity of equations (4.11),
by differentiation. Finally, we show that formulas (4.12) hold true for every
i = 1, . . . , N .

We shall give the details of the proof of formulas (4.13) and (4.12) for
i = 1 and in dimension N = 3. When N ≥ 4 or i ≥ 2, the previous formulas
are checked in a similar way, by essentially distinguishing when N is odd or
even. Therefore, the proof in these other cases will be omitted, for the sake
of brevity. Finally, we recall that when N = 2 formulas (4.13) and (4.12)
have been proved in Theorem 2.1. Therefore, we follow the same strategy.

Step 1: we write explicitly the expression of div
(
Ξ(|∇u|)∇u

)
. To this pur-

pose, recalling formulas (2.5), equations (2.6) hold for each i = 1, . . . , N ,
where again we shall denote t = |∇u|, and the summation on repeated in-
dices α, β = 1, . . . , N is adopted. Therefore, denoting by ∆u the Laplacean
of u and by • the scalar product in RN , in any dimension N ≥ 2 we have:

(4.14)

div
(
Ξ(|∇u|)∇u

)
= ∇(Ξ(|∇u|) • ∇u+ Ξ(|∇u|) ∆u

=
g′′(t)t− g′(t)

t3
u,αu,βu,αβ +

g′(t)

t
u,αα

=
g′′(t)

t2
u,αu,βu,αβ +

g′(t)

t3
σαβu,αu,βu,αβ

where in the last addendum we have set

σαβ :=

{
+1 if α = β
−1 if α 6= β

α, β = 1, . . . , N .

Step 2: we prove formula (4.13) for N = 3 and i = 1. By using the first line
in definition (4.5), we compute the pull-back

Φ̃ #
u ω̄

(2)
1 = ν̃ 2

u dx3 ∧ du+ ν̃ 3
u du ∧ dx2 + ν̃ 4

u dx2 ∧ dx3

= −Ξ(t)u,2 dx3 ∧ du− Ξ(t)u,3 du ∧ dx2 + (Ξ + ϑ)(t) dx2 ∧ dx3

= Ξ(t) (u,2
2 + u,3

2) dx2 ∧ dx3 + Ξ(t)u,1u,2 dx1 ∧ dx3

−Ξ(t)u,1u,3 dx1 ∧ dx2 + (Ξ + ϑ)(t) dx2 ∧ dx3

that on account of definition (4.8) agrees with the right-hand side of formula
(4.13), when N = 3 and i = 1.
Step 3: we prove formula (4.12) for N = 3 and i = 1. Since by (4.8)–(4.9)

a 1 = (u,2
2 + u,3

2, −u,1u,2, −u,1u,3)
div a 1 = u,2u,12 + u,3u,13 − u,1(u,22 + u,33)
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using again equations (2.6) we compute:

div
(
Ξ(|∇u|) a 1

)
+ ∂x1

(
(Ξ + ϑ)(|∇u|)

)
=
g′′(t)t− g′(t)

t3
(
(u,1u,11 + u,2u,12 + u,3u,13) (u,2

2 + u,3
2)

−(u,1u,12 + u,2u,22 + u,3u,23)u,1u,2
−(u,1u,13 + u,2u,23 + u,3u,33)u,1u,3

)
+
g′(t)

t

(
u,2u,12 + u,3u,13 − u,1(u,22 + u,33)

)
−g′′(t)

(
u,1u,11 + u,2u,12 + u,3u,13

)
= −u,1 ·

g′′(t)

t2
(
u,1

2u,11 + u,2
2u,22 + u,3

2u,33

+2 (u,1u,2u,12 + u,1u,3u,13 + u,2u,3u,23)
)

−u,1 ·
g′(t)

t3
(
u,1

2u,11 + u,2
2u,22 + u,3

2u,33

−2 (u,1u,2u,12 + u,1u,3u,13 + u,2u,3u,23)
)
.

Therefore, since when N = 3 equation (4.14) becomes:

div
(
Ξ(|∇u|)∇u

)
=

g′′(t)

t2
(
u,1

2u,11 + u,2
2u,22 + u,3

2u,33

+2 (u,1u,2u,12 + u,1u,3u,13 + u,2u,3u,23)
)

+
g′(t)

t3
(
u,1

2u,11 + u,2
2u,22 + u,3

2u,33

−2 (u,1u,2u,12 + u,1u,3u,13 + u,2u,3u,23)
)

formula (4.12) holds true for N = 3 and i = 1, as required. �

5. On good parameterizations of g-hypersurfaces

In this section, we discuss the lack of validity of a similar argument to the
one in Corollary 3.1, in high dimension N ≥ 3.

Namely, one might ask if it exists a smooth vector field F̃ : BN → RN
such that a property similar to (3.1) holds true, for g-hyperfusfaces Gu.
Recall that in the particular case of nonparametric minimal surfaces in R3,
condition (3.1) becomes (3.6).

When e.g. N = 3, according to the notation (4.8)–(4.9), in Theorem 4.1

we have shown that if equation div
(
g−1/2∇u

)
= 0 holds, then the 2-forms

ω1 := g−1/2
(

(1 + a 11) dx2 ∧ dx3 + a 12 dx3 ∧ dx1 + a 13 dx1 ∧ dx2
)

ω2 := g−1/2
(
a 21 dx2 ∧ dx3 + (1 + a 22) dx3 ∧ dx1 + a 13 dx1 ∧ dx2

)
ω3 := g−1/2

(
a 31 dx2 ∧ dx3 + a 32 dx3 ∧ dx1 + (1 + a 13) dx1 ∧ dx2

)
are closed, whence exact in B3. Therefore, there exist three smooth 1-forms
ηi in B3 such that dηi = ωi for i = 1, 2, 3.
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Such a property is clearly equivalent to the existence of three smooth
vector fields Ψi : B3 → R3 such that curl Ψi = fi for i = 1, 2, 3, where

f1 := g−1/2
(
1 + u2

,2 + u2
,3, −u,1u,2, −u,1u,3

)
f2 := g−1/2

(
−u,1u,2, 1 + u2

,3 + u2
,1, −u,2 u,3

)
f3 := g−1/2

(
−u,1u,3, −u,2u,3, 1 + u2

,1 + u2
,2

)
.

On the other hand, on account of (4.7) and (4.10), when N = 3 we have
seen that the tensor-valued field

(5.1) A := g−1/2

 1 + u2
,2 + u2

,3 −u,1u,2 −u,1u,3
−u,1u,2 1 + u2

,3 + u2
,1 −u,2u,3

−u,1u,3 −u,2u,3 1 + u2
,1 + u2

,2


satisfies divA = 0, where divergence is computed along the raw vector fields

Ai, compare (3.6). However, given a tensor-valued field Ã ∈ C1(B3,R3×3)
depending on u, the existence of a vector field F : B3 → R3 such that

∇F = Ã on B3

implies the necessary condition curl Ã = 0, where curl is again computed

along the raw vector fields Ãi. Such a curl-free condition should be obtained
as a consequence of the validity of equation div

(
g−1/2∇u

)
= 0, and of

course this is not the case for Ã = A in (5.1). In a similar way, in any
high dimension N ≥ 3 it is not clear how to obtain a suitable tensor-valued

field Ã ∈ C1(BN ,RN×N ) depending on u that agrees with the gradient of a
smooth vector field F ∈ C2(BN ,RN ), by exploiting Theorem 4.1 for minimal
hypersurfaces.

In fact, if a function u ∈ C2(BN ,R) satisfies the Euler-Lagrange equation
(0.1), by Theorem 4.1 we infer the existence of a RN+1-valued (N − 2)-form

η(N−2) in BN such that

dη(N−2) = Φ̃ #
u ω̄

(N−1)

and hence it is only in low dimension N = 2 that one may proceed as
in Corollary 3.1, by working with the first two components of the smooth
function η(0) ∈ C1(B2,R3) .
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