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via Santa Marta 3, I-50139 Firenze, Italy

e-mail: paolomaria.mariano@unifi.it, paolo.mariano@unifi.it

Domenico Mucci 1

DSMFI, Università di Parma
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Abstract

We consider elastic thin shells without through-the-thickness shear and depict them
as Gauss graphs of parametric surfaces. (We use the term shells in a sense including
plates and thin films.) We consider an energy depending on the first derivative of
the Gauss map (so, it includes curvatures) and its second-rank minors. For it we
prove existence of minimizers in terms of currents carried by Gauss graphs. In the
limiting process we adopt sequences of competitors that satisfy a condition that
prevents self-penetration of matter.
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1 Introduction

Shells are three-dimensional bodies with one dimension that is largely smaller
than the others. This geometric class of bodies includes plates, the relaxed
shape of which is flat, and thin films, characterized by vanishing thickness.
Such geometric features suggest to represent shells by looking at their mid-
dle surface only, with the proviso of assigning to each point of such a surface
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information on the out-of-middle-surface behavior. Every point of the middle
surface is thus endowed with degrees of freedom that are additional to those
natural for a point in 3D space. The information attached to each point of
the middle surface summarizes the through-the-thickness behavior in a way
rendered precise in each specific model. The variability of possible choices gen-
erated a number of models, each implying peculiar analytical problems. How-
ever, pertinent analyses appear in a sense more manageable than those based
on looking at shells as genuine three-dimensional bodies. A related question
concerns the rigorous justification of such approximate models. In the elastic
case, non trivial relevant results are available. For them, the energy scaling
with the thickness plays a crucial role (pertinent analyses are in reference [10];
see also [14], [9], [19] on this matter).

In 1958 [8], Jerald LaVerne Ericksen and Clifford Ambrose Truesdell III re-
sumed the 1909 theory by Eugène and François Cosserat, noticing that Cos-
serat’s surfaces were an appropriate ground for models of beams and shells.
Such surfaces are endowed with out-of-surface vector field, free to rotate (each
vector at a point independently of its neighbors) under surface deformation
but constrained to avoid falling within the tangent plane to the surface at each
point. In this way, looking at shells, one considers at each point on the middle
surface any out-of-middle-surface material fiber as a rigid body. Of course the
scheme can be further enriched but also reduced, as, for example, when we
consider such an additional vector field to coincide with the fields of normal
to the middle surface that we consider to be smooth.

This last choice is the one that we adopt in the analyses presented here.
With it we avoid considering through-the-thickness shear. We have however
the advantage to look at the deformed shell as the Gauss graph of a smooth
surface. Such a graph is the set of pairs (y, ν(y)), where y ∈ R3 is a point over
the deformed surface and ν(y) the pertinent normal to the surface itself. Of
course, with u a deformation from Ω, a bounded domain in R2, into R3, we
have a map Φu assigning to each x ∈ Ω the pair (u(x), νu(x)) = (y, ν(y)). In
such a geometric setting, we consider an elastic shell with an energy given by

Fq(u) :=
∫

Ω

(
|DΦu(x)|q + f(| adj2∇u(x)|)

)
dx+ E (u) , (1.1)

where adj2∇u indicates the second-rank minors of ∇u, E (u) is a potential
of external body actions, f a convex function, and |DΦu(x)|2 = |∇u(x)|2 +
|∇νu(x)|2 (in (1.1) unitary dimensional constants are left understood, for the
sake of simplicity). With this energy we account for bending and in-tangent-
plane stretching and shear. We leave a part out-of-tangent-plane shear and
thickness stretching, the latter due to Poisson’s effect.

We prove here existence of minimizers for such an energy in terms of currents
carried by Gauss graphs. For this reason we speak of our result as describing
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weak deformations for shells. In the proof we adopt minimizing sequences of
deformed shells with non-vanishing thickness. Physics suggests the existence
of at least subsequences of this type. Roughly speaking, under elongation in
the middle surface tangent plane, Poisson’s effect does not allow a reduction
of shell thickness below the one of a single atomic layer.

With this type of sequences, we are able to assure that each their element
avoids self-penetration of matter. And such a property is stable in the limit
process.

2 Background analytical material

First, we collect some basic aspects concerning currents associated with graphs
of approximately differentiable maps. Then, we connect them with Gauss
graphs of surfaces in the Euclidean space. Eventually, we recall some structure
properties about weak limits of currents carried by Gauss graphs.

2.1 Currents carried by approximately differentiable maps

The theory of currents is systematically discussed in the two-volume treatise
[12] (see also [13]). Here, we limit ourselves to maps u : Ω→ R3, where Ω is a
bounded domain in R2. We indicate by y points in R3 while with x those in
R2.

For u ∈ L1(Ω,R3) an almost everywhere (a.e.) approximately differentiable
map, we denote by ∇u its approximate gradient. Measurable functions into
topological spaces with a countable basis can be approximated by continuous
functions on arbitrarily large portions of their domain (this is Lusin’s theo-
rem). Such continuous functions are what we call the Lusin representatives
of the original functions. So, the map u has a Lusin representative on the
subset Ω̃ of Lebesgue points pertaining to both u and ∇u. Also, we have
L 2(Ω \ Ω̃) = 0. We shall thus denote by adj2 F ∈ R3 the 3-vector given by
the 2× 2 minors of a matrix F ∈M3×2.

Definition 2.1 We say that u belongs to A 1(Ω,R3) if ∇u ∈ L1(Ω,M3×2) and
adj2∇u ∈ L1(Ω,R3).

The graph of a map u ∈ A 1(Ω,R3) is defined by

Gu :=
{

(x, y) ∈ Ω× R3 | x ∈ Ω̃, y = ũ(x)
}
,
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where ũ(x) is the Lebesgue value of u. It turns out that Gu is a countably
2-rectifiable set of Ω × R3, with H 2(Gu) < ∞, where H k denotes the k-
dimensional Hausdorff measure. The approximate tangent plane at (x, u(x))
is generated by the vectors t1(x) = (1, 0, ∂1u(x)) and t2 = (0, 1, ∂2u(x)), where
the partial derivatives are the column vectors of the gradient ∇u, and we take
∇u(x) as the Lebesgue value of ∇u at x ∈ Ω̃. Therefore, the 2-vector

ξ(x) :=
t1(x) ∧ t2(x)

|t1(x) ∧ t2(x)|

provides an orientation to the graph Gu.

Integration of compactly supported smooth 2-forms ω in D2(Ω × R3) on Gu
defines the current Gu carried by the graph of u, namely

〈Gu, ω〉 :=
∫

Gu

〈ω, ξ〉 dH 2 .

Gu is called an integer multiplicity (in short i.m.) rectifiable current in R2(Ω×
R3), with mass M(Gu) equal to the area H 2(Gu) pertaining to the graph of u,
so a finite mass. (We write R2 instead of the natural D2 to recall the rectifiable
nature of the current.) Since the Jacobian of the graph map x 7→ (x, u(x)) is
equal to |t1(x) ∧ t2(x)|, by the area formula we get

M(Gu) = H 2(Gu) =
∫

Ω

√
1 + |∇u|2 + |adj2∇u|2 dx <∞ .

By duality, the boundary of Gu is the 1-current ∂Gu acting on D1(Ω × R3),
the space of compactly supported smooth 1-forms η in Ω× R3, as

〈∂Gu, η〉 := 〈Gu, dη〉, η ∈ D1(Ω× R3) ,

where dη is the differential of η. By Stokes theorem we get

∂Gu = 0 on D1(Ω× R3) (2.1)

if u is of class C1. However, in general, the boundary ∂Gu does not vanish
and may not have finite mass in Ω×R3. On the other hand, if ∂Gu has finite
mass, the boundary rectifiability theorem states that ∂Gu is an i.m. rectifiable
current in R1(Ω× R3).

Example 1 If u is a Sobolev map in W 1,q(Ω,R3), with q ≥ 1, the approximate
gradient agrees with the density of the weak derivative of u. Moreover, since
| adj2∇u| ≤ c |∇u|2, we get W 1,2(Ω,R3) ⊂ A 1(Ω,R3).

The null-boundary condition (2.1) holds true for Sobolev maps u ∈ W 1,2(Ω,R3),
by approximation. In fact, if {uh} ⊂ C1(Ω,R3) is such that uh → u strongly
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in W 1,2, by dominated convergence we infer that Guh converges to Gu weakly
as currents, i.e., 〈Guh , ω〉 → 〈Gu, ω〉 for each ω ∈ D2(Ω × R3). So, condition
(2.1) is preserved in the weak limit process.

Take Ω = B2, with B2 the unit disk centered at the origin O, and u : B2 → R3

as the zero-homogeneous map

u(x) = ϕ
(
x

|x|

)
, x 6= O

for some Lipschitz-continuous map ϕ : ∂B2 → R3. Then, u ∈ W 1,q(B2,R3) for
each q < 2, and adj2∇u = 0, by the area formula, whence u ∈ A 1(B2,R3).
However (compare Example 2 in reference [12, vol. I, Sec. 3.2.2]), we compute

(∂Gu) B2 × R3 = −δO × ϕ#[[ ∂B2 ]] , (2.2)

where δO is the Dirac mass at the origin and ϕ#[[ ∂B2 ]] is the image through
the map ϕ of the 1-current [[ ∂B2 ]] associated with the naturally oriented unit
circle ∂B2. Therefore, condition (2.1) fails to hold whenever ϕ#[[ ∂B2 ]] is non-
trivial (see Examples 2 and 3 below).

2.2 Gauss graphs of smooth surfaces

We summarize in this section some issues concerning Gauss graphs of surfaces
with codimension one. Our main reference is [5] (see also [4]). Such notions are
essential for the rest of this work because we refer to functionals depending
on curvatures.

Given a smooth (say C2), bounded, and oriented surface M ⊂ R3, with
smooth boundary ∂M , the Gauss map ν : M → S2 associates to each point
y in M the unit normal ν(y) ∈ S2, where

S2 := {z ∈ R3 : |z| = 1} .

The graph of such a map, or Gauss graph, is the 2-dimensional surface in R6

given by

GM := {(y, ν(y)) | u ∈M } ⊂M × S2 ⊂ R3 × R3
z ' R6 ,

where R3
z is the isomorphic copy of R3 in which we consider embedded the

sphere S2.

Therefore, we shall denote by (ε1, ε2) and (e1, e2, e3) the canonical bases of
R2 and R3

y, respectively, and by (ε1, ε2) and (e1, e2, e3) the natural dual bases

defined by εi · εj = δ ji and eh · ek = δ kh , where the interposed dot means
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dual pairing. In particular, we will identify the dual bases with (dx1, dx2) and
(dy1, dy2, dy3), which are naturally dual to ( ∂

∂x1
, ∂
∂x2

) and ( ∂
∂y1
, ∂
∂y2
, ∂
∂y3

). We

also correspondingly denote by (ε1, ε2, ε3) the canonical basis of R3
z, and by

(dz1, dz2, dz3) the dual basis, after adopting the previous identification.

The Hodge star, applied to the normal vector ν(y), defines a 2-form over the
tangent space at y. We then have a field, that we call a tangent 2-vector
field τ : M → ∧2 TM ⊂ ∧2 R3

y with values τ(y) = ∗ν(y). Denoting by
Φ : M → R3

y × R3
z the graph map Φ(y) := (y, ν(y)), a continuous tangent

2-vector field ξ : GM → ∧2(R3
y × R3

z) is given by ξ(y, ν(y)) :=
∧2 dΦ(τ(y)).

Since |ξ| ≥ 1 on GM , the normalized 2-vector field
−→
ζ := ξ/|ξ| determines

an orientation to GM . Therefore, the corresponding i.m. rectifiable 2-current
[[ GM ]] in R2(R3

y × R3
z) carried by the Gauss graph has multiplicity one and

support contained in M × S2. Its action on compactly supported smooth 2-
forms ω in R3

y × R3
z is (by integration) given by

〈[[ GM ]], ω〉 =
∫

GM
〈ω(y, z),

−→
ζ (y, z)〉 dH 2 , ω ∈ D2(R3

y × R3
z) .

By Stokes’ theorem, the boundary current ∂[[ GM ]] acts by integration of 1-
forms on the naturally oriented boundary of GM , so that ∂[[ GM ]] = 0 if M
is a closed smooth surface.

The tangential Jacobian JM
Φ of the graph map is given by

JM
Φ (y) =

(
1 + (k1

2 + k2
2) + (k1k2)2

)1/2

, y ∈M

where k1 = k1(y) and k2 = k2(y) are the principal curvatures at y ∈ M .
In fact, we have JM

Φ (y) = |ξ(y, ν(y))|. Moreover, denoting by τ 1 and τ 2 the
principal directions, and considering the natural homomorphism v 7→ ṽ from
R3
y onto R3

z, we get

ξ(y, ν(y)) = τ 1 ∧ τ 2 +
(
k2τ 1 ∧ τ̃ 2 − k1τ 2 ∧ τ̃ 1

)
+ k1k2 τ̃ 1 ∧ τ̃ 2 . (2.3)

Also, with

H :=
1

2
(k1 + k2)

the mean curvature and

K := k1k2

the Gauss curvature, so that k1,2 = H±
√

H2 −K, we may equivalently write

(JM
Φ )2 = 1 + (2H)2 − 2K + K2 = 4H2 + (1−K)2 .
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Therefore, by the area formula, area of the Gauss graph is

H 2(GM ) =
∫

M

(
1 + (k1

2 + k2
2) + (k1k2)2

)1/2

dH 2

=
∫

M

√
1 + (4H2 − 2K) + K2 dH 2 .

(2.4)

It agrees with the mass M([[ GM ]]) of the current [[ GM ]].

The curvature functional ‖M ‖ of a smooth surface M ⊂ R3
y is defined in

reference [5] to be

‖M ‖ := H 2(M ) +
∫

M

√
k2

1 + k2
2 dH

2 +
∫

M
|k1k2| dH 2 . (2.5)

It can be equivalently written as

‖M ‖ :=
∫

M

(
1 +
√

4H2 − 2K + |K|
)
dH 2

so that, by formula (2.4), we obtain bounds such as

1

2
‖M ‖ ≤H 2(GM ) ≤ ‖M ‖ , H 2(GM ) = M([[ GM ]]) .

Also, two real measures on R3
y × R3

z are naturally associated with mean and
Gauss curvatures [5]:

χM
1 := −Φ#(H H 2 M ) , χM

2 := Φ#(K H 2 M ) . (2.6)

Consequently, for any ψ ∈ C0(R3
y × R3

z) we have

〈χM
1 , ψ〉 = −

∫
M

H(y)ψ(y, ν(y)) dH 2(y) ,

and
〈χM

2 , ψ〉 =
∫

M
K(y)ψ(y, ν(y)) dH 2(y) .

In terms of the current [[ GM ]], such curvature measures read

〈χM
` , ψ〉 = (−1)`〈[[ GM ]], ψΘ`〉 ∀ψ ∈ C∞c (R3

y × R3
z) , ` = 1, 2 .

Θ` = Θ`(y, z) are 2-forms in R3
y × R3

z, defined in [5]. For two-dimensional
surfaces they are explicitly given by

Θ1 :=
1

2

(
z1(dy2 ∧ dz3 − dy3 ∧ dz2) + z2(dy3 ∧ dz1 − dy1 ∧ dz3)

+z3(dy1 ∧ dz2 − dy2 ∧ dz1)
)

Θ2 := z1dz2 ∧ dz3 + z2dz3 ∧ dz1 + z3dz1 ∧ dz2 .

(2.7)
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Remark 2.1 The dependence of mean curvature from the sign of principal
curvatures motivates the introduction of a factor −1 in order to recover, for
parametric surfaces, standard notations (see expression (3.13) below).

2.3 Weak limits of Gauss graphs

Weak limits Σ of sequences of currents carried by Gauss graphs of smooth
surfaces {Mh} are analyzed in reference [5]. Assuming for simplicity that each
Mh is closed, supported in a given compact set K ⊂ R3, and suph ‖Mh‖ <∞,
it turns out that possibly passing to a subsequence the currents [[ GM h ]] weakly
converge in D2(R3

y ×R3
z) to an i.m. rectifiable current Σ in R2(R3

y ×R3
z), with

null boundary, ∂Σ = 0, and with support contained in K × S2.

We thus have

〈Σ, ω〉 =
∫
R
θ 〈ω,−→η 〉 dH 2 ∀ω ∈ D2(R3

y × R3
z)

for some 2-rectifiable subset R of K × S2, some positive and integer-valued
H 2 R-measurable multiplicity function θ : R → N+, and some H 2 R-
measurable function −→η : R→ ∧2(R3

y×R3
z) such that −→η (y, z) is a unit 2-vector

orienting the approximate tangent 2-space T(y,z)R to R at (y, z), for H 2-a.e.
(y, z) ∈ R. In that case, one usually writes Σ = [[R, θ,−→η ]]. We also denote by

p : R3
y × R3

z → R3
y (2.8)

the orthogonal projection onto the first factor. Therefore, P := p(R) is a
2-rectifiable set. Finally, ϕ and ϕ∗ denote the canonical 1-form and 2-form,
respectively given by

ϕ(y, z) := z1dy1 + z2dy2 + z3dy3 ,

ϕ∗(y, z) := z1dy2 ∧ dy3 + z2dy3 ∧ dy1 + z3dy1 ∧ dy2 .

Theorem 2.1 ([5]) With the previous notation, the following statements hold:

(1) 〈Σ, η ∧ ϕ〉 = 0 for each η ∈ D1(R3
y × R3

z) ;
(2) 〈Σ, ψ ϕ∗〉 ≥ 0 for each ψ ∈ C(R3

y × R3
z) such that ψ ≥ 0 ;

(3) for H 2-a.e. y ∈ P

p|R
−1({x}) ⊂ {(x, ν(x)), (x,−ν(x))} ,

where ν : P → S2 is an H 2 P -measurable map with ν(y) orthogonal to
the approximate tangent 2-space TyP , for H 2-a.e. y ∈ P .
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Remark 2.2 We finally recall from reference [5] that property (1) is equiva-
lent to the orthogonality condition

v • (z, 0R3
z
) = 0 ∀ v ∈ T(y,z)R

for H 2-a.e. (y, z) ∈ R, where • denotes the scalar product in R6. As in
reference [5], the stratification

−→η = η(0) + η(1) + η(2)

holds, where according to the number of εj-entries we have set

η(0) =
∑

1≤i<j≤3

ηijei ∧ ej , η(1) =
3∑

i,j=1

ηijei ∧ εj , η(2) =
∑

1≤i<j≤3

ηijεi ∧ εj .

Then, it turns out that properties (1) and (2) are equivalent to

〈Σ, ψ ϕ∗〉 =
∫
R
ψ |η(0)| θ dH 2 ∀ψ ∈ C(R3

y × R3
z) .

3 Two-dimensional representation of plates and shells, and the re-
lated Gauss graphs

As already recalled in the Introduction, shells (we include plates and thin films
in the nomenclature, as special cases) are bodies for which one dimension is
largely smaller with respect to the others. This geometric peculiarity suggests
approximate representations of shells as two-dimensional bodies, each point of
which is endowed with additional information on what happens in the (real)
thickness (essential references on the matter are [8], [20], [21], [2]; see also for
related analyses [3], [17], [18], [15]).

In this view, we consider a planar reference configuration for the shell middle
surface, i.e., we refer in essence to something that can be a plate in some
configuration. So, we select a two-dimensional smooth domain Ω in R2, where
Cartesian coordinates x = (x1, x2) are fixed. A differentiable map u : Ω→ R3,
say u = (u1, u2, u3), represents a deformation. It is taken to determine an
immersion of Ω into R3. The tangent plane to the deformed shape is assumed
not to degenerate. Formally, it is tantamount to impose |adj2∇u(x)| > 0 for
any x ∈ Ω. In other words, if ∂iu denotes a column vector of the gradient
matrix ∇u, the previous condition is equivalent to say that the vector product
∂1u× ∂2u does not vanish at every point. Normal to the deformed shape

Mu = u(Ω)
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is the unit vector

νu(x) :=
∂1u(x)× ∂2u(x)

|∂1u(x)× ∂2u(x)|
. (3.1)

It can be considered as a descriptor of out-of-middle-surface shell behavior.
However, such an information can be carried out by an S2-valued vector field
x 7→ ζ(x) defined over Ω and constrained to be at every x ∈ Ω such that

(∂1u(x)× ∂2u(x)) • ζ(x) > 0 (3.2)

where • is the scalar product in R3. In both cases we are representing a shell as
a Cosserat surface (see [8], [20], [21]). By choosing ζ we allow the description
of through-the-thickness shear, while with νu we exclude it. We adopt here
this last choice so that smooth deformed shells are represented by parametric
surfaces.

3.1 Gauss graphs of parametric surfaces

In the present setting, the Gauss graph of the surface Mu = u(Ω) is described
by

GM u = {Φu(x) | x ∈ Ω} (3.3)

where Φu : Ω→ R3
y × R3

z is the smooth map

Φu(x) := (u(x), νu(x)) . (3.4)

The first fundamental form of Mu is given by the symmetric matrix

I =

E F

F G

 :=

 |∂1u|2 ∂1u • ∂2u

∂1u • ∂2u |∂2u|2


with determinant

g = gu := EG− F 2 = |∂1u× ∂2u|2 = | adj2∇u|2 . (3.5)

Second derivatives ∂2
i,ju of the deformation map u, where ∂2

2,1u = ∂2
1,2u, deter-

mine the second fundamental form given by the symmetric matrix

II =

 ` m

m n

 :=

∂2
1,1u • νu ∂2

1,2u • νu
∂2

2,1u • νu ∂2
2,2u • νu

 =
1
√
gu

∂2
1,1u • n ∂2

1,2u • n

∂2
2,1u • n ∂2

2,2u • n


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where, for short-hand notation, we have denoted n := ∂1u × ∂2u, so that
gu = |n|2. Therefore, the mean curvature at u(x) becomes

Hu =
1

2g
(En+G`− 2Fm)

=
1

2gu3/2

(
|∂1u|2∂2

2,2u+ |∂2u|2∂2
1,1u− 2(∂1u • ∂2u)∂2

1,2u
)
• n

(3.6)

and the Gauss curvature

Ku =
`n−m2

EG− F 2
=

1

gu2

(
(∂2

1,1u • n)(∂2
2,2u • n)− (∂2

1,2u • n)2
)
. (3.7)

The tangent space at a point (y, z) in the Gauss graph GM u is oriented by
the wedge product

ξu(x) := ∂1Φu(x) ∧ ∂2Φu(x) , x ∈ Ω , (y, z) = (u(x), νu(x)) .

We have

∂αΦu = (∂αu
1, ∂αu

2, ∂αu
3, ∂ανu

1, ∂ανu
2, ∂ανu

3) , α = 1, 2

and hence, according to the number of εj-entries, we can write as before the
stratification

ξu = ξ(0)
u + ξ(1)

u + ξ(2)
u

where

ξ(0)
u =

∑
1≤i<j≤3

det

∂1u
i ∂2u

i

∂1u
j ∂2u

j

 ei ∧ ej
ξ(1)
u =

3∑
i,j=1

det

 ∂1u
i ∂2u

i

∂1νu
j ∂2νu

j

 ei ∧ εj
ξ(2)
u =

∑
1≤i<j≤3

det

∂1νu
i ∂2νu

i

∂1νu
j ∂2νu

j

 εi ∧ εj .
(3.8)

As a consequence of the expression (2.4), by the area formula we can write
the Gauss graph area H 2(GM u) as∫

Ω

√
gu
√

1 + (4H2
u − 2Ku) + K2

u dx =∫
Mu

√
1 + (4H2

u − 2Ku) + K2
u dH

2 =
∫

Ω
|ξu| dx ,

(3.9)

which yields a formula for the Jacobian JΦu of Φu:

JΦu = |ξu| =
√
gu
√

1 + (4H2
u − 2Ku) + K2

u . (3.10)
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Finally, by the expression (2.3) we infer

|ξ(0)
u |2 = gu , |ξ(1)

u |2 = gu (4H2
u − 2Ku) , |ξ(2)

u |2 = gu K2
u . (3.11)

3.2 Currents carried by Gauss graphs of parametric surfaces

Let u : Ω → R3 a smooth function with ∂1u × ∂2u 6= 0 everywhere. Assume
‖u‖∞ ≤ K < ∞. The current [[ GM u ]] in R2(R6) is defined as above, with
Mu = u(Ω). The Gauss graph surface GM u is equipped with the natural
orientation induced by the function u, so that

−→
ζu(y, z) :=

ξu
|ξu|

(x) , (y, z) = (u(x), νu(x)) ∈ GM u .

We shall restrict to the action of compactly supported forms in R3 × S2. By
the definition (3.3) we thus equivalently have [[ GM u ]] = Φu#[[ Ω ]], i.e.,

〈[[ GM u ]], ω〉 =
∫

Ω
Φu

#ω ∀ω ∈ D2(R3 × S2) .

Moreover, recalling the notation (2.8) we have (see formula (5.1) below)

p#[[ GM u ]] = p#(Φu#[[ Ω ]]) = (p ◦ Φu)#[[ Ω ]] = u#[[ Ω ]] .

3.3 Absence of cancellation

A property that we call the absence of cancellations plays a role here. So far
we left a part direct references to the shell thickness, considering it implicitly
very thin. Take it to be vanishing, i.e., infinitesimal. Take also circumstances
in which two pieces of the deformed shell Mu = u(Ω) are in contact, with the
same or opposite orientation. More precisely, we have two pairwise disjoint
and connected open sets A,B ⊂ Ω such that both the restrictions u|A and
u|B are injective, but u(A) = u(B). Then, for each x ∈ A there exists a
unique point x̃ = x̃(x) ∈ B such that u(x) = u(x̃), and the map x 7→ x̃(x)
is a diffeomorphism from A to B. Moreover, notice that a unit 2-vector field
orienting the tangent plane to Mu at y = u(x) is

τu := ∗νu =
ξ(0)
u

|ξ(0)
u |

=
1

|∂1u× ∂2u|
∑

1≤i<j≤3

det

∂1u
i ∂2u

i

∂1u
j ∂2u

j

 ei ∧ ej .
Therefore, one of the two following alternatives holds: either τu(x) = τu(x̃(x))
for all x ∈ A, or τu(x) = −τu(x̃(x)) for all x ∈ A, according to the fact that
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the diffeomorphism from A to B preserves or reverses the natural orienta-
tion. In both cases, the tangent plane to u(Ω) at u(x) agrees with the one at
u(x̃(x)). In the first case, u#[[A ]] = u#[[B ]] and the image current u#[[A ∪B ]]
has multiplicity two, whereas in the second one u#[[A ]] = −u#[[B ]], whence
u#[[A ∪B ]] = 0, a cancellation occurs and actually

M(u#[[ Ω ]]) <
∫

Ω
|ξ(0)
u | dx , |ξ(0)

u | = | adj2∇u| .

However, since in the second case νu(x) = −νu(x̃(x)) for each x ∈ A, by the
expressions (3.8) we infer that

ξ(0)
u (x) = −α ξ(0)

u (x̃(x)) , ξ(2)
u (x) = β ξ(2)

u (x̃(x))

for some α, β > 0, whence ξu(x) 6= ±ξu(x̃(x)), and definitely no cancellation
occurs in the Gauss graph current [[ GM u ]]. In conclusion, even in presence of
cancellations for the projected current u#[[ Ω ]] = p#[[ GM u ]], we always have

M([[ GM u ]]) = H 2(GM u) =
∫

Ω
|ξu| dx <∞ . (3.12)

Compare Example 3 below for a deformation with folding.

3.4 Action of the Gauss graph current and curvature measures formulas

For the sake of completeness, we compute the action of a current [[ GM u ]] over
the Gauss graph and explicit formulas for the curvature measures χMu

` .

Since for i, j = 1, 2, 3

Φu
#dyi = ∂1u

i dx1 + ∂2u
i dx2 , Φu

#dzj = ∂1νu
j dx1 + ∂2νu

j dx2

the pull-back of the basis of 2-forms in R3
y × R3

z gives the fifteen formulas

Φu
#(dyi ∧ dyj) = det

∂1u
i ∂2u

i

∂1u
j ∂2u

j

 dx1 ∧ dx2 , 1 ≤ i < j ≤ 3

Φu
#(dyi ∧ dzj) = det

 ∂1u
i ∂2u

i

∂1νu
j ∂2νu

j

 dx1 ∧ dx2 , i, j = 1, 2, 3

Φu
#(dzi ∧ dzj) = det

∂1νu
i ∂2νu

i

∂1νu
j ∂2νu

j

 dx1 ∧ dx2 , 1 ≤ i < j ≤ 3 .

Therefore, for each compactly supported smooth function ψ ∈ C∞c (R3 × S2)
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we obtain

〈[[ GM u ]], ψ dyi ∧ dyj〉 =
∫

Ω
ψ(Φu) det

∂1u
i ∂2u

i

∂1u
j ∂2u

j

 dx , 1 ≤ i < j ≤ 3

〈[[ GM u ]], ψ dyi ∧ dzj〉 =
∫

Ω
ψ(Φu) det

 ∂1u
i ∂2u

i

∂1νu
j ∂2νu

j

 dx , i, j = 1, 2, 3

〈[[ GM u ]], ψ dzi ∧ dzj〉 =
∫

Ω
ψ(Φu) det

∂1νu
i ∂2νu

i

∂1νu
j ∂2νu

j

 dx , 1 ≤ i < j ≤ 3 .

By referring to the expressions (2.6), if M = Mu for some smooth and injective
function u : Ω→ R3 as above, we may write

χMu
1 := −Φu#(Hu H 2 Mu) , χMu

2 := Φu#(Ku H 2 Mu)

where Hu and Ku are given by (3.6) and (3.7). In terms of the Gauss graph
current [[ GM u ]], on account of definitions (2.7) we thus get

〈χMu
` , ψ〉 = (−1)`〈[[ GM u ]], ψΘ`) ∀ψ ∈ C∞c (R3 × S2) , ` = 1, 2 .

In fact, recalling that [[ GM u ]] = Φu#[[ Ω ]] we obtain the following formulas:

−Φu
#Θ1 =

√
gu Hu dx

1 ∧ dx2 , Φu
#Θ2 =

√
gu Ku dx

1 ∧ dx2

where gu is given by (3.5). Therefore, for any ψ ∈ C∞c (R3 × S2) we have

χMu
1 (ψ) =

∫
Ω
ψ(Φu)

√
gu Hu dx , χMu

2 (ψ) =
∫

Ω
ψ(Φu)

√
gu Ku dx . (3.13)

We omit any further detail and address to reference [16] for a similar compu-
tation involving Gauss graphs of smooth Cartesian surfaces.

4 The energy

If we consider only pure bending, the energy refers to the curvature functional
‖GM u‖ defined by the expression (2.5). By the area formula, it agrees with
the energy functional E (u) defined by

E (u) :=
∫

Ω

√
gu
(
1 +

√
4H2

u − 2Ku + |Ku|
)
dx .

On account of the expressions (3.9), (3.10), and (3.11), we get

E (u) =
∫

Ω

(
|ξ(0)
u |+ |ξ(1)

u |+ |ξ(2)
u |
)
dx (4.1)
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where |ξu|2 = |ξ(0)
u |2 + |ξ(1)

u |2 + |ξ(2)
u |2 and, by (3.8),

|ξ(0)
u |2 = gu = |∂1u× ∂2u|2 = | adj2∇u|2

|ξ(1)
u |2 = gu (4H2

u − 2Ku) =
3∑

i,j=1

(
∂1u

i ∂2νu
j − ∂2u

i ∂1νu
j
)2
.

|ξ(2)
u |2 = gu K2

u =
∑

1≤i<j≤3

(
∂1νu

i ∂2νu
j − ∂2νu

i ∂1νu
j
)2
.

(4.2)

On account of the expression (3.12), we have

1

2
E (u) ≤M([[ GM u ]]) ≤ E (u) .

We aim at a bound for the total variation of the function u and of the Gauss
map νu. Also, we wish to preserve condition ∂1u×∂2u 6= 0, where |∂1u×∂2u| =
| adj2∇u|. These two issues suggest us to work with an expression of the energy
given by

Fq(u) :=
∫

Ω

(
|DΦu(x)|q + f(| adj2∇u(x)|)

)
dx+ E (u) (4.3)

for some real exponent q > 1. The map Φu is given by formula (3.4), so that

|DΦu(x)|2 = |∇u(x)|2 + |∇νu(x)|2 , x ∈ Ω (4.4)

and f :]0,+∞[→ R+ is a positive and convex function with linear growth at
+∞ and such that f(ρ)→ +∞ as ρ→ 0+, as e.g. f(ρ) = ρ−1 ∨ ρ.

Here, the presence of ∇u implies considering middle surface stretch and shear.
We leave a part the consequent thickness stretching (due to the Poisson’s
effect), considering it not prominent from an energetic point of view as the
thickness is thin and possibly vanishing in the minimizing sequences.

5 Closure properties

Theorem 5.1 For q > 1 and K > 0, let {uh}h ⊂ C2(Ω) a sequence satisfying
suph Fq(uh) <∞ and suph ‖uh‖∞ ≤ K. There exists a map u ∈ W 1,q(Ω,R3),
with ‖u‖∞ ≤ K, and a (not relabeled) subsequence such that

(1) uh ⇀ u weakly in W 1,q(Ω,R3
y),

(2) for L 2-a.e. x ∈ Ω, one has ∂1u× ∂2u 6= 0, and | adj2∇u| ∈ L1(Ω), and
(3) νuh ⇀ νu weakly in W 1,q(Ω,R3

z), where the approximate normal νu(x)
is defined for L 2-a.e. x ∈ Ω by (3.1), but in terms of the approximate
gradient ∇u.
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Proof. We repeatedly pass to not relabeled subsequences. The first assertion
is trivial. Since

M(Guh) ≤
∫

Ω
(1 + |∇uh|+ | adj2∇uh|) dx ,

by formulas (4.1) and (4.2) we get suph M(Guh) <∞. Therefore, by the closure
theorem for Cartesian currents (see [12]) there exists a current T such that

T = Gu + ST

with Guh ⇀ T weakly in D2(Ω × R3) and ST ∈ D1(Ω × R3), which we write
in short T ∈ cart(Ω × R3). This implies | adj2∇u| ∈ L1(Ω). Moreover, since
the integrand f is a convex function, by L 2-a.e. convergence of the gradients
∇uh to the approximate gradient ∇u, which follows from Lq-convergence, we
get ∫

Ω
f(| adj2∇u|) dx ≤ lim inf

h→∞

∫
Ω
f(| adj2∇uh|) dx <∞ .

Hence, condition ∂1u × ∂2u 6= 0 a.e. in Ω. We finally obtain weak W 1,q and
L 2-a.e. convergence of νuh to νu.

If u is the limit function in Theorem 5.1, we can express the energy E (u) by
equation (4.1), where the three terms |ξ(`)

u |, ` = 0, 1, 2, are defined L 2-a.e. on
Ω by the right-hand side of the system (4.2), now in terms of the approximate
gradient of u and νu.

We impose Dirichlet-type boundary conditions as follows:

(H) there exists an open set Ω̃ ⊂ R2, with Ω ⊂ Ω̃, and an injective function
ũ ∈ C2(Ω̃) such that each uh can be smoothly extended to Ω̃ so that
uh = ũ on Ω̃ \ Ω.

Recalling the notation (2.8), we also denote by π̃ : R2 ×R3
y → R3

y the orthog-
onal projection onto the second factor.

Theorem 5.2 Let {uh}h as in Theorem 5.1. Assume that condition (H) holds.
Then, passing to a (not relabeled) subsequence, the Gauss graph [[ Muh ]] weakly
converge to a current Σ ∈ R2(R3 × S2) satisfying the properties listed in The-
orem 2.1. Moreover,

p#Σ = π̃#T = u#[[ Ω ]] + π̃#ST (5.1)

where T = Gu + ST is the current in cart(Ω × R3) obtained in Theorem
5.1. In addition, the estimates ‖Σ‖ ≥ E (u) and E (u) ≤ lim inf

h→∞
E (uh) hold.

Eventually, Fq(u) ≤ lim inf
h→∞

Fq(uh).

Proof. The boundary condition (H) yields a uniform bound on mass and
curvatures of the boundary currents ∂uh#[[ Ω ]] = uh#[[ ∂Ω ]]. Therefore, we can
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apply the closure theorem on Gauss graphs proven in reference [5], obtaining
the current Σ that satisfies the properties listed in Theorem 2.1. Since

p#[[ Muh ]] = uh#[[ Ω ]] = π̃#Guh ,

by the weak convergence Guh ⇀ T obtained in the proof of Theorem 5.1, we
get the projection formula (5.1).

Even if a cancellation may occur in the projected current p#Σ, the argument
exploited in Section 3.3 (see relations (3.12)) allows us to conclude that

M(Σ) = M(Φu#[[ Ω ]]) + M(Σ− Φu#[[ Ω ]]) .

As a consequence, by lower semicontinuity we get

‖Φu#[[ Ω ]]‖ ≤ ‖Σ‖ ≤ lim inf
h→∞

‖[[ Muh ]]‖ ,

where ‖Φu#[[ Ω ]]‖ = E (u) and ‖[[ Muh ]]‖ = E (uh) for each h. The lower semi-
continuity inequalities readily follow.

6 Avoiding self-penetration

Under large bending, distant portions of shells may touch. Physics, however,
suggest that an appropriate model should avoid solutions describing self-
penetration of the matter. A constraint excluding such a possibility is then
required in the setting represented here. Evidently, for it the shell thickness –
otherwise not exploited directly so far – should play a role. We propose a way
to obtain such a necessary constraint on the basis of what is done for fully
three-dimensional bodies.

Let u : Ω→ R3 be a map of class C2(Ω), with ∂1u× ∂2u 6= 0 on Ω. For s > 0
let vu,s : U → R3, where U := Ω× (−h

2
, h

2
), h the constant shell thickness, be

given by
vu,s(x1, x2, x3) := u(x1, x2) + s x3 νu(x1, x2) . (6.1)

We compute

det∇vu,s = s |∂1u× ∂2u|+ s2x3 λu(x) + s3x2
3 µu(x)

on U , where

λu(x) := ν1
u

(
∂1u

2 ∂2νu
3 − ∂2u

2 ∂1νu
3 + ∂1νu

2 ∂2u
3 − ∂2νu

2 ∂1u
3
)

+ ν2
u

(
∂1u

3 ∂2νu
1 − ∂2u

3 ∂1νu
1 + ∂1νu

3 ∂2u
1 − ∂2νu

3 ∂1u
1
)

+ ν3
u

(
∂1u

1 ∂2νu
2 − ∂2u

1 ∂1νu
2 + ∂1νu

1 ∂2u
2 − ∂2νu

1 ∂1u
2
)
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and

µu(x) := νu
1
(
∂1νu

2 ∂2νu
3 − ∂2νu

2 ∂1νu
3
)

+ νu
2
(
∂1νu

3 ∂2νu
1 − ∂2νu

3 ∂1νu
1
)

+ νu
3
(
∂1νu

1 ∂2νu
2 − ∂2νu

1 ∂1νu
2
)
.

By the equiboundedness of λu(x) and µu(x), we infer that s−1 det∇vu,s →
|∂1u× ∂2u| as s→ 0+ uniformly on U . Hence, we get

det∇vu,s(x1, x2, x3) > 0 ∀ (x1, x2, x3) ∈ U ,

if s > 0 is sufficiently small. On account of the relations (4.2) and (4.4), we
also estimate

|∇vu,s|+ | adj2∇vu,s|+ | det∇vu,s| ≤ c
(
|DΦuh|+ |ξ(0)

u |+ |ξ(1)
u |+ |ξ(2)

u |
)

(6.2)

for some absolute constant c > 0, not depending on u.

Moreover, since the principal curvatures of the deformed surface u(Ω) are
bounded, there exists s = s(u) > 0 such that for each (x1, x2) ∈ Ω we can
find a neighborhood V of (x1, x2) in Ω such that the restriction of vu,s to
V × (−h

2
, h

2
) is injective.

In order to obtain global injectivity, one may e.g. impose the well-known
Ciarlet-Nečas condition [6]. In reference [7], under suitable additional hypo-
theses, the inequality ∫

Ω
| adj2∇u| dx ≤H 2(u(Ω))

is proposed. However, it is violated by a folding deformation. Then, what
is suggested in reference [7] is to adopt a notion of approximately injective
deformations. It requires (in a sense not precised here) that the parametric
surface u : Ω → R3 is approximable by sequences of functions uh such that
each uh can be seen as a parameterization of the middle surface of a thick shell
satisfying the Ciarlet-Nečas condition, considering the thickness progressively
vanishing. This property yields to a more reasonable scenario from a physical
point of view.

6.1 Possible admissible deformations

We go along the path summarized above to avoid self-penetration of matter.
We start by a condition introduced in 1989 by M. Giaquinta, G. Modica, and J.
Souček [11] (see also [12, Vol. II, Sec. 2.3.2]). It is equivalent to Ciarlet-Nečas’
one.
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For a sufficiently smooth map v : U → R3 with det∇v > 0 a.e. in U , a fit
region in R3, by setting w = (x1, x2, x3), the global invertibility condition above
mentioned reads∫

U
f(w, v(w)) det∇v(w) dw ≤

∫
R3

sup
w∈U

f(w, y) dy (6.3)

for every compactly supported smooth function f : U ×R3 → [0,+∞). Weak
convergence in terms of currents preserves such condition. It implies L 3-a.e.
injectivity.

Theorem 6.1 Let {uh} satisfy assumptions in Theorems 5.1 and 5.2. Assume
that, for every h, the function vh = vuh,sh given by expression (6.1) satisfies
the global invertibility condition (6.3), for some sh ∈ (0, 1). The weak limit
deformation map u is the trace on x3 = 0 of a function v : U → R3 satisfying
|∇v|, | adj2∇v|, det∇v ∈ L1(U), det∇v ≥ 0 a.e. in U , and condition (6.3).

Proof. For every h, we have already seen that by taking sh ∈ (0, 1) sufficiently
small, the function vh = vuh,sh also satisfies det∇vh > 0 on U . Furthermore,
on account of the estimate (6.2), we infer that the current Gvh carried by the
graph of vh has finite mass, which satisfies the bound

M(Gvh) ≤ c
(∫

Ω
(1 + |∇Φuh|) dx+ E (uh)

)
∀h .

Therefore, we get suph M(Gvh) <∞, whereas, by the smoothness hypothesis,
∂Gvh = 0 on U ×R3. As a consequence, by the closure theorem for Cartesian
currents, it turns out that a (not relabeled) subsequence satisfies Gvh ⇀ T̃
weakly in D3(U × R3) for some Cartesian current T̃ ∈ cart(U × R3). Let v
denote the underlying function to T̃ , so that T̃ = Gv + S

T̃
. We find that

v : U → R3 is approximately differentiable a.e. in U . Also, all the minors of
its approximate gradient ∇v are in L1(U).

By the weak convergence Gvh ⇀ T̃ , it turns out that the function v satisfies
the global invertibility condition (6.3), too, whereas det∇v ≥ 0 a.e. in U .

In addition, if we look at Gvh as an i.m. rectifiable current in R3
w ×R3

y, slicing
theory implies that the restriction of Gvh to (Ω × {0}) × R3 agrees with the
graph current Guh . Therefore, by the weak convergence of Gvh to T̃ and of
Guh to T , where, we recall, T̃ = Gv + S

T̃
and T = Gu + ST , it turns out that

the restriction of T̃ to (Ω×{0})×R3 agrees with the current T . This property
indicates us that u is the trace of v on Ω× {0}. So, the proof is complete.

Remark 6.1 A sort of thickness condition holds if we choose a size s0 > 0
and assume that vh = vuh,sh satisfies the constraint (6.3) and det∇vh > 0 on
U for some sh ≥ s0. In this case the function v is given L 3-a.e. by (6.1), where
s ≥ s0 and the unit normal νu is defined L 2-a.e. in Ω by the formula (3.1),

19



now in terms of the approximate gradient ∇u of the limit deformation u.

Moreover, in order to preserve the local orientation, namely det∇v > 0 a.e.
on U , we may add to the energy functional (4.3) a term of the type∫

U
| det∇vu,s|−r dx , r > 0 .

6.2 Weak deformations for shells

Fix q > 1, K > 0, and ũ : Ω̃ → R3, together with the boundary condition
(H). On account of the above results, we may say that a function u : Ω→ R3

represents a weak deformation for a shell, and we write for short u ∈ A =
A (q,K, ũ), provided that the following properties hold:

(1) u ∈ W 1,q(Ω,R3) with ‖u‖∞ ≤ K, ∂1u × ∂2u 6= 0 for L 2-a.e. x ∈ Ω, and
| adj2∇u| ∈ L1(Ω) (see Theorem 5.1); moreover, the approximate normal
νu belongs to W 1,q(Ω,S2) (see definition (3.1));

(2) u = ũ on Ω̃ \ Ω (see Theorem 5.2); moreover, there exists a current
Σ ∈ R2(R3×S2) satisfying Theorem 2.1, such that the projection formula
(5.1) holds, where T = Gu + ST ∈ cart(Ω× R3), and ‖Σ‖ ≥ E (u);

(3) u is the trace on x3 = 0 of a function v : U → R3 satisfying |∇v|,
| adj2∇v|, det∇v ∈ L1(U), det∇v ≥ 0 a.e. in U , and the global invertibil-
ity condition (6.3) (see Theorem 6.1).

For future use, we also denote by Ã = Ã (q,K, ũ) the class of maps u that are
generated by a weak limit process as in Theorems 5.1, 5.2, and 6.1. It may be
called the class representing smoothly accessible weak deformations for shells.

Therefore, Ã ⊂ A , and we expect that equality holds: if u represents a weak
deformed thin film, then we can find a sequence {uh} as in the above mentioned
theorems such that uh ⇀ u weakly in W 1,q(Ω,R3).

The smooth density property for a generic weak deformation u of a shell is an
open question. However, due to the Dirichlet-type boundary condition (H),
and to the equiboundedness hypothesis, all the involved weak convergences
as currents, say Guh ⇀ T , [[ GM uh ]] ⇀ Σ, and Gvh ⇀ T̃ are metrizable.
Therefore, we can apply a diagonal argument and prove the following existence
result:

Theorem 6.2 For q > 1, K > 0, and ũ as in (H), let Ã denote the class of
smoothly accessible weak deformation of shells. Then, the problem

inf{Fq(u) | u ∈ Ã }
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for the energy defined by formula (4.3) has a solution in the class Ã .

Proof. Let {uk} ⊂ Ã a minimizing sequence. Then, possibly passing to a (not
relabeled) subsequence uk ⇀ u∞ weakly in W 1,q to some u∞ ∈ W 1,q(Ω,R3),
and νuk ⇀ νu∞ weakly in W 1,q where, we recall, νuk is defined L 2-a.e. in Ω
as in formula (3.1), for each k ∈ N := N ∪ {∞}. Moreover, for each k ∈ N
we can find a sequence {u(k)

h }h that satisfies Theorems 5.1, 5.2, and 6.1, such

that u
(k)
h ⇀ uk weakly in W 1,q, as h → ∞. Due to the metrizable character

of the (weak) convergences involved, by a diagonal argument we infer that

actually u ∈ Ã . Moreover, arguing as in the proof of Theorem 5.2, by the
weak convergences uk ⇀ u∞ and νuk ⇀ νu∞ in W 1,q, where q > 1, we obtain

‖Φu∞#[[ Ω ]]‖ ≤ lim inf
k→∞

‖Φuk#[[ Ω ]]‖ ,

where ‖Φuk#[[ Ω ]]‖ = E (uk) for each k ∈ N. We thus get

Fq(u∞) ≤ lim inf
k→∞

Fq(uk) = inf{Fq(u) | u ∈ Ã }

and the proof is complete.

7 Shells with holes and fractures

If u represents a weak deformation for a shell, as in the previous section, where
q = 2, the membership of u to the Sobolev class W 1,2(Ω,R3) yields that the
graph current Gu satisfies the null-boundary condition (2.1). On account of the
Dirichlet-type condition (H), this implies that ∂u#[[ Ω ]] = u#[[ ∂Ω ]]. Therefore,
when q ≥ 2, we are actually avoiding the formation of fractures.

Things change when the growth exponent q is lower than two.

Let Ω = B2 be the unit disk at the origin O. Let u : B2 → R3 be given by

u(x) =
(
|x|+ 1

)
· ϕ
(
x

|x|

)
, x 6= O

for some Lipschitz-continuous map ϕ : ∂B2 → R3. We have u ∈ W 1,q(B2,R3)
and adj2∇u ∈ Lq(B2,R3) for each q < 2, whence u ∈ A 1(B2,R3).

Consequently, we are presuming the existence of a hole at the origin in B2, and
the deformed hole has a boundary that is described by the map ϕ. Moreover,
formula (2.2) continues to hold. More precisely, viewing the graph Gu as a
current in R2(R2 × R3), one gets:

∂Gu = Ψ[ϕ]#[[ ∂B2 ]]− δO × ϕ#[[ ∂B2 ]]
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where Ψ[ϕ] : ∂B2 → R2×R3 is the Lipschitz map Ψ[ϕ](x) := (x, 2ϕ(x)), that
parameterizes the exterior boundary of the graph of u.

Example 2 We can stretch the hole (without bending) by taking, in polar
coordinates, ϕ(cos θ, sin θ) := (cos θ, sin θ, 0), so that

u(x) =
(
x+

x

|x|
, 0
)
.

Denoting by [[D2 ]] the 2-current given by integration of 2-forms on the posi-
tively oriented disk

D2 := {(y1, y2) ∈ R2 | y2
1 + y2

2 < 1} ,

we get
ϕ#[[ ∂B2 ]] = ∂[[D2 ]]× δ0 , Ψ[ϕ](x) = (x, (2x, 0)) .

Example 3 We can stretch, bend, and fold the hole by letting

ϕ(cos θ, sin θ) :=



(cos 4θ, sin 4θ, −1) if 0 ≤ θ ≤ π/2

(1, 0, 4θ/π − 3) if π/2 ≤ θ ≤ π

(cos 4θ, − sin 4θ, 1) if π ≤ θ ≤ 3π/2

(1, 0, 7− 4θ/π) if 3π/2 ≤ θ < 2π .

In this case, we get

ϕ#[[ S1 ]] = ∂[[D2 ]]× (δ1 − δ−1)

and a cancellation occurs. A similar cancellation occurs in the image current
u#[[B2 ]]. In fact, denoting by Ωk, for k = 1, . . . , 4, the four quarters of the
holed unit disk B2 \ {O}

Ωk := {(ρ cos θ, ρ sin θ) | 0 < ρ < 1, (k − 1) π/2 < θ < k π/2}

it turns out that u(Ω2) = u(Ω4), i.e., folding without self-penetration of matter
occurs, but u#[[ Ω2 ]] = −u#[[ Ω4 ]], and actually

u#[[ Ω ]] = u#[[ Ω1 ]] + u#[[ Ω3 ]] .

More precisely, coming back to Remark 3.3, the map

x̃(ρ cos θ, ρ sin θ) := (ρ cos(π/2− θ), ρ sin(π/2− θ))

is an orientation reversing diffeomorphism from Ω2 to Ω4 such that

u(x) = u(x̃(x)) , τu(x) = −τu(x̃(x)) ∀x ∈ Ω2 .
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Thus, by formulas (3.8) we have ξ(0)
u (x) = −ξ(0)

u (x̃(x)) and ξ(2)
u (x) = ξ(2)

u (x̃(x))
for each x ∈ Ω2, whence no cancellation occurs in the Gauss graph current
[[ GM u ]].

In our previous results, when q < 2 we did not consider an energy term
accounting for the occurrence of holes. For it, a physically reasonable choice
could be given by the hole boundary size in the deformed surface u(Ω). In
Example 2, the latter contribution might be represented by the graph current
boundary mass

H (u) := M((∂Gu) Ω× R3) .

In fact, sequences of currents Guh carried by the graph of functions uh ∈
W 1,q(Ω,R3) that satisfy

sup
h

(
Fq(uh) + H (uh)

)
<∞

for some q > 1, sub-converge (in the sense of currents) to an element Gu in
the same class. Two drawbacks appear.

First, the term H (u) does not have a satisfactory physical significance, in
general. The map in Example 3, e.g., satisfies H (u) = M(ϕ#[[ S1 ]]) = 4π, but
the curve ϕ : ∂B2 → R3

y describing a hole in the deformed configuration has
length equal to 4(π + 1).

Also, most importantly, in this framework we are not allowed to apply the
closure theorem on Gauss graphs by reference [5]. In fact, since equality
∂u#[[ Ω ]] = u#[[ ∂Ω ]] fails to hold, the boundary condition (H) does not gua-
rantee a uniform bound on curvatures of the boundary terms produced by the
holes.

Similar problems appear if one tries to analyze fractured shells. In that case,
a natural ambient is given by suitable deformations u : Ω → R3 that belong
to the class of special functions of bounded variation. Referring to the treatise
[1] for an accurate analysis of SBV functions, we only observe here that the
jump set S(u) describes a crack path in the reference configuration, whereas
fractures in the deformed shape may be described again by the term H (u).
In fact, a map u ∈ A 1(Ω,R3) satisfying H (u) < ∞, actually belongs to the
class SBV (Ω,R3) (compare [13, Prop. 3.3.1]).

For those reasons, in order to apply the closure theorem on Gauss graphs by
reference [5] (that in Theorem 5.2 – where we worked with Cartesian currents
– led to the validity of Theorem 2.1), one has to introduce a further energy
term that bounds the curvature of the Gauss graph boundary of the deformed
surface u(Ω). For these issues, future work is necessary.
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8 Additional remarks

The analyses presented here can be extended variously:

• We could consider through-the-thickness shear by opting for an out-of-
tangent-plane vector field ζ in the deformed shape.
• We could look at multi-layer shells, with consequent need of refining the

scheme adopted here.
• Different modeling needs would emerge if we would consider a through-

the-thickness microstructure. An example is a thin film of a smectic liquid
crystal.

All the previous issues involve both modeling and analytical questions. Look-
ing back to what we have discussed here, a purely analytical open problem
emerges: the regularity of minimizers assured by Theorem 6.2. This is probably
a nontrivial matter of future specialist work.
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