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Abstract. In this survey paper we report our recent results concerning
a notion of curvatures for irregular curves defined in Euclidean spaces or
in Riemannian surfaces. Some of our ideas are inspired among the others
by the work of Professor Yurii G. Reshetnyak and of the Russian school
(especially A. D. Alexandrov), who e.g. pointed out the relevant notion
of modulus of a curve, the properties of one sidedly smooth curves,
and the role of integral geometric formulas for the rotation of spherical
curves.

Dedicated to the memory of Professor Yurii Reshetnyak.

Introduction

The theory of irregular curves in Euclidean spaces and Riemannian mani-
folds owes a lot, among the others, to the contribution of the Russian school,
especially to the work by A. D. Alexandrov and Yu. G. Reshetnyak.

Some crucial results contained in the treatise [3], such has the notion
of modulus of a curve, the properties of one sidedly smooth curves, and
the role of integral geometric formulas for the rotation of spherical curves,
have guided us in the proof of our results contained in [22, 23, 24], that are
reported in this survey paper.

After collecting in Sec. 1 some background material and preliminary facts,
in Sec. 2 we analyze irregular curves in the Euclidean space R3, see [22]. In
Sec. 3, we treat a notion of weak curvatures in high dimension Euclidean
spaces, see [23]. Finally, Sec. 4 concerns the intrinsic curvature of irregular
curves supported in a Riemannian surface, see [24].

It is a great honor for us to give a contribution to this Special Issue on
Analysis, Geometry and PDE in memory of Professor Yurii Reshetnyak.

1. Background material and preliminary results

This preliminary section contains some well-known facts about length and
total curvature of curves in Euclidean spaces. We then briefly discuss some
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relevant integral-geometric formulas. Finally, we deal with the geodesic
curvature of smooth curves into Riemannian surfaces.

1.1. Total variation. We refer to Secs. 3.1 and 3.2 of [4] for the following
notation.

Let I ⊂ R be a bounded open interval, and N ∈ N+. A vector-valued
summable function u : I → RN+1 is said to be of bounded variation if its
distributional derivative Du is a finite RN+1-valued measure in I.

The total variation |Du|(I) of a function u ∈ BV(I,RN+1) is given by

|Du|(I) := sup
{∫

I
ϕ′(s) • u(s) ds | ϕ ∈ C∞c (I,RN+1) , ‖ϕ‖∞ ≤ 1

}
and hence it does not depend on the choice of the representative in the
equivalence class of the functions that agree L1-a.e. in I with u, where L1

is the Lebesgue measure in R.
A sequence {un} ⊂ BV(I,RN+1) converges to u ∈ BV(I,RN+1) weakly-∗

in BV if un → u strongly in L1(I,RN+1) and supn |Dun|(I) < ∞. In this
case, the lower semicontinuity inequality holds:

|Du|(I) ≤ lim inf
n→∞

|Duh|(I) .

If in addition |Duh|(I)→ |Du|(I), we say that {uh} strictly converges to u.
The weak-∗ compactness theorem yields that if {un} ⊂ BV(I,RN+1)

converges L1-a.e. on I to a function u, and if suph |Dun|(I) < ∞, then
u ∈ BV(I,RN+1) and a subsequence of {un} weakly-∗ converges to u.

Let u ∈ BV(I,RN+1). Since each component of u is the difference of two
monotone functions, it turns out that u is continuous outside an at most
countable set, and that both the right and left limits u(s±) := limt→s± u(t)
exist for every s ∈ I. Also, u is an L∞ function that is differentiable L1-a.e.
on I, with derivative u̇ in L1(I,RN+1).

The total variation of u agrees with the essential variation VarRN+1(u),
which is equal to the pointwise variation of any good representative of u
in its equivalence class. A good (or precise) representative is e.g. given
by choosing u(s) = (u(s+) + u(s−))/2 at the discontinuity points. Letting
u±(s) := u(s±) for every s ∈ I, both the left- and right-continuous functions
u± are good representatives.

If u ∈ BV(I,RN+1), the decomposition into the absolutely continuous,
Jump, and Cantor parts holds:

Du = Dau+DJu+DCu , |Du|(I) = |Dau|(I) + |DJu|(I) + |DCu|(I) .

More precisely, one splits Du = Dau + Dsu into the absolutely continuous
and singular parts w.r.t. Lebesgue measure L1. The Jump set Ju being the
(at most countable) set of discontinuity points of any good representative of
u, and δs denoting the unit Dirac mass at s ∈ I, one has:

Dau = u̇L1 , DJu =
∑
s∈Ju

[u(s+)− u(s−)] δs , DCu = Dsu (I \ Ju) .
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Also, any u ∈ BV(I,RN+1) can be represented by u = ua + uJ + uC ,
where ua is a Sobolev function in W 1,1(I,RN+1), uJ is a Jump function,
and uC is a Cantor function, so that

|Dau|(I) = |Dua|(I) , |DJu|(I) = |DuJ |(I) , |DCu|(I) = |DuC |(I) .

Finally, we recall that if u, v ∈ BV(I) := BV(I,R), the product uv ∈
BV(I). In the particular case in which the Jump sets coincide, Ju = Jv = J ,
the chain rule formula (cf. [4, Sec. 3.10]) yields:

Da(uv) = (u̇v + uv̇)L1 , DC(uv) = uDCv + vDCu ,

DJ(uv) =
∑
s∈J

[u(s+)v(s+)− u(s−)v(s−)] δs

where we can choose any good representatives of u and v in the second
equality.

1.2. Length. Consider a curve c in the Euclidean space RN+1 parameter-
ized by the continuous map c : [a, b] → RN+1, with components c(t) =
(c1(t), . . . , cN+1(t)). Any polygonal curve P inscribed in c, say P � c, is
obtained by choosing a finite partition D := {a = t0 < t1 < . . . < tm−1 <
tm = b} of [a, b], say P = P (D), and letting P : [a, b] → RN+1 such that
P (ti) = c(ti) for i = 0, . . . ,m, and P (t) affine on each interval Ii := [ti−1, ti].
We call meshP the maximum lenght of its edges.

The length L(c) of c is defined by

L(c) := sup{L(P ) | P � c}
and c is said to be rectifiable if L(c) < ∞. By uniform continuity, for
each ε > 0 we can find δ > 0 such that meshP < ε if meshD < δ and
P = P (D). As a consequence, taking Pn = P (Dn), where {Dn} is any
sequence of partitions of I such that meshDn → 0, we get meshPn → 0 and
hence the convergence L(Pn) → L(c) of the length functional. Finally, the
curve c is rectifiable if and only if c ∈ BV(I,RN+1), and in that case

L(c) = VarRN+1(c) = |Dc|(I) .

1.3. Total curvature. We call rotation k∗(P ) of a polygonal curve P in
RN+1 the sum of the exterior angles between consecutive segments. Milnor
[20] defined total curvature TC(c) of a curve c in RN+1 by

TC(c) := sup{k∗(P ) | P � c} .
Then TC(P ) = k∗(P ) for each polygonal P . Moreover, if a curve c has com-
pact support and finite total curvature, TC(c) < ∞, then it is a rectifiable
curve, see Example 1.4 below for a proof.

Assume now that a rectifiable curve c is parameterized by arc-length, so
that c = c(s), with s ∈ [0, L] = IL, where IL := (0, L) and L = L(c). If

c is smooth and regular, one has TC(c) =
∫ L

0 |k| ds, where k(s) := c̈(s)
is the curvature vector. More generally, since c is a Lipschitz function, by
Rademacher’s theorem (cf. [4, Thm. 2.14]) it is differentiable L1-a.e. in
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IL. Denoting by ḟ := d
dsf the derivative w.r.t. arc-length parameter s,

the tantrix t = ċ exists a.e., and actually t : IL → RN+1 is a function of
bounded variation. Since moreover t(s) ∈ SN for a.e. s, where SN is the
Gauss hyper-sphere

SN := {y ∈ RN+1 : |y| = 1}

we shall write t ∈ BV(IL, SN ). The essential variation VarSN (t) of t in SN
differs from VarRN+1(t), as its definition involves the geodesic distance dSN
in SN instead of the Euclidean distance in RN+1. Therefore, VarRN+1(t) ≤
VarSN (t), and equality holds if and only if t has a continuous representative.
More precisely, by decomposing t = ta + tJ + tC , one obtains:

(1.1) VarSN (t) =

∫ L

0
|ṫ| ds+

∑
s∈Jt

dSN (t(s+), t(s−)) + |DCt|(IL)

whereas in the formula for VarRN+1(t), that is equal to |Dt|(IL), one has to
replace in (1.1) the geodesic distance dSN (t(s+), t(s−)) with the Euclidean
distance |t(s+)− t(s−)| at each Jump point s ∈ Jt.

Notice moreover that the Cantor componentDCt is non-trivial, in general.

Example 1.1. Let e.g. γ : I → R2, where I = (0, 1), denote the Cartesian
curve γ(t) := (t, u(t)) in R2 given by the graph of the primitive u(t) :=∫ t

0 v(λ) dλ of the classical Cantor-Vitali function v : I → R associated to the

“middle thirds” Cantor set. It turns out that t = (1 + v2)−1/2(1, v), whence
t is a Cantor function, i.e., Dat = DJt = 0, and

Dt(I) = DCt(I) =

∫
I

1

(1 + v2)3/2
(−v, 1) dDCv .

The angle ω between the unit vectors (1, 0) and t satisfies ω = arctan v ∈
BV(I). Therefore, Dω(I) = DCω(I) =

∫
I

1
1+v2

dDCv, which yields

|Dω|(I) =

∫
I

1

1 + v2
d|DCv| = |Dt|(I) = TC(γ) =

π

4
.

The following facts hold:

(1) if P and P ′ are inscribed polygonals and P ′ is obtained by adding a
vertex in c to the vertices of P , then k∗(P ) ≤ k∗(P ′) ;

(2) if c has finite total curvature, for each point v in c, small open arcs
of c with an end point equal to v have small total curvature.

As a consequence, compare [28], it turns out that TC(c) = VarSN (t), see
(1.1), and the total curvature of c is equal to the limit of k∗(Pn) for any
sequence {Pn} of polygonals in RN+1 inscribed in c such that meshPn → 0.
More precisely, if tn is the tantrix of Pn, then VarSN (tn)→ VarSN (t).

Remark 1.2. For future use, we recall how equality

(1.2) TC(c) = VarSN (t) , t = ċ
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is checked for rectifiable curves c in RN+1 with finite total curvature (and
parameterized in arc-length). In case N = 1, we apply a “planar” version
of the Gauss-Bonnet theorem, see Theorem 4.8 below.

Let Pn be an inscribed polygonal to the curve c : [0, L] → RN+1 and
generated by the consecutive vertices c(si), where 0 = s0 < s1 < · · · < sm =
L, and call vi the oriented segment of Pn from c(si−1) to c(si). If tn is
the tantrix of Pn in SN , the value of tn in vi is an average of the values
of the restriction of the tantrix t of c to (si−1, si), when completed to a
continuous curve in SN by connecting with geodesic arcs the points t(s−)
and t(s+) for each s ∈ Jt∩(si−1, si), in the sense of Alexandrov-Reshetnyak
[3]. This property implies that VarSN (th) ≤ VarSN (t). If {Pn} is an inscribed
sequence satisfying meshPn → 0, the weak BV convergence of tn to t implies
the lower semicontinuity inequality VarSN (t) ≤ lim infn VarSN (tn), yielding
the strict convergence VarSN (tn) → VarSN (t). Using that VarSN (tn) →
TC(c), one gets (1.2).

When c is a planar curve, i.e., when N = 1, the value of tn ∈ S1 on the
segment vi is equal to one of the values of the “completion” in S1 of the
restriction of the tantrix t to the interval ]si−1, si[.

Actually, this property can be rewritten in terms of angle functions, and
hence of the “planar” version of the Gauss-Bonnet theorem 4.8.

1.4. Curvature force. The curvature force was introduced in [6] by J. M.
Sullivan and his collaborators as the distributional derivative of the tangent
indicatrix of rectifiable curves c in RN+1 with finite total curvature.

The curvature force TC∗(P ) of a polygonal is the total variation in RN+1

of the tantrix tP :

TC∗(P ) := VarRN+1(tP ) .

In particular, if P � c, with the previous notation one has:

TC∗(P ) =
m−1∑
i=1

2 sin(θi/2)

where θi is the i-th turning angle. Defining the Euclidean total curvature,
or curvature force, of c by

TC∗(c) := sup{TC∗(P ) | P � c}
then c has finite curvature force if and only if it has finite total curvature. In
addition, compare [21], if a rectifiable curve c is parameterized in arc-length,
and t := ċ(s), s ∈ IL, we recover the definition by Sullivan [28]:

Proposition 1.3. If TC∗(c) <∞, then t is a function of bounded variation
in BV(IL, SN ), and its total variation in RN+1 is equal to the curvature
force, i.e.

|Dt|(IL) = VarRN+1(t) = TC∗(c) .

Notice that the curve c from Example 1.1 satisfies TC∗(c) = TC(c),
compare [1]. Therefore, the occurrence of a Cantor-part in the derivative
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of the tantrix does not change the computation when considering the total
variation in S1 or in R2.

The curvature force comes into play when computing the first variation
of length. In fact, let c : [0, L]→ RN+1 parameterized in arc length, and let
cε a variation of c under which the motion of each point c(s) is smooth in
time and with initial velocity ξ(s), where ξ : [0, L] → RN+1 is a Lipschitz
continuous function of arc length. The first variation formula gives

δξL(c) :=
d

dε
L(cε)|ε=0 =

∫ L

0
t(s) • ξ̇(s) ds

where t(s) = ċ(s) and ξ̇(s) are defined for a.e. s, by Rademacher’s theorem.
If c is of class C2, integrating by parts one gets

δξL(c) = −
∫ L

0
ṫ(s) • ξ(s) ds+

(
t(L) • ξ(L)− t(0) • ξ(0)

)
where in terms of the (positive) first curvature k and first unit normal n(s)
one has ṫ(s) = k(s) n(s).

More generally, if c is a rectifiable curve with finite total curvature, then
t is a function of bounded variation, the right and left limits t(s±) ∈ SN−1

are well defined for each s ∈]0, L[, and the distributional derivative Dt is a
finite vector-valued measure. Therefore, if in addition ξ(0) = ξ(L) = 0

δξL(c) =

∫ L

0
t(s) • ξ̇(s) ds = −〈Dt, ξ〉

whence the first variation δξL(c) of the length has distributional order one.
The measure K := Dt is called in [6] curvature force, and in the smooth

case one has K = k n ds. If c is a piecewise smooth function, one has the
decomposition K = Ka + Ks, where the absolutely continuous component
Ka is equal to k n dL1 ]0, L[, whereas the singular component Ks is given
by a sum of Dirac masses concentrated at the corner points of the curve c.

More precisely, if s ∈]0, L[ is such that t(s−) 6= t(s+), then K({c(s)}) =
(t(s+) − t(s−)) δc(s). Therefore, if θ ∈]0, π] is the shortest angle in the

Gauss sphere SN between t(s±), so that dS2(t(s+), t(s−)) = θ, one has
|K|({c(s)}) = ‖t(s+)− t(s−)‖ = 2 sin(θ/2).

1.5. Integral-geometric formulas. Several classical properties of curves
in Euclidean spaces can be proved in a somewhat cleaner way by exploiting
suitable integral-geometric formulas, that we now recall.

For 0 ≤ j ≤ N − 1 integer, denote by Gj+1RN+1 the Grassmannian
of unoriented (j + 1)-planes in RN+1. It is a compact group, and it can be
equipped with a unique rotationally invariant probability measure µj+1. For
p ∈ Gj+1RN+1, we denote by πp the orthogonal projection of RN+1 onto p.
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If c is a (rectifiable) curve in RN+1, the integral-geometric formula for the
length reads as

L(c) =
σj
σN
·
∫
Gj+1RN+1

L(πp(c)) dµj+1(p)

where σj and σN are positive constants only depending on j and N , respec-
tively, see e.g. [3, Sec. 4.8].

Let us also recall the average result due to Fáry [13], who showed that
the total curvature of a curve (with finite total curvature) is the average of
the total curvatures of all its projections onto (j + 1)-planes:

TC(c) =

∫
Gj+1RN+1

TC(πp(c)) dµj+1(p) ∀j = 0, . . . , N − 1 .

Following [28, Prop. 4.1], it suffices to prove the average formula for an angle,
hence for the rotation k∗(P ) of a polygonal P , and then use the monotone
convergence theorem.

Example 1.4. We e.g. readily check that if a curve c in RN+1 has compact
support and finite total curvature, then c is a rectifiable curve. In fact, one
has L(πp(c)) ≤ d (TC(πp(c)) + 1) for µ1-a.e. p ∈ G1RN+1, where d is the
diameter of c. Therefore, the previous average formulas (with j = 0) yield

L(c) =
σ0

σN

∫
G1RN+1

L(πp(c)) dµ1(p)

≤ σ0 d

σN

∫
G1RN+1

(TC(πp(c)) + 1) dµ1(p) =
σ0 d

σN
(TC(c) + 1) <∞ .

We now deal with polygonal curves in the sphere SN . Following [3], given
x ∈ SN we denote by ηp(x) the nearest point to x on the j-dimensional

sphere Sjp := SN ∩ p. It is well-defined by

(1.3) ηp(x) :=
πp(x)

|πp(x)|

provided that x is not orthogonal to the (j + 1)-plane p, i.e., if x does

not belong to the (N − j − 1)-sphere Sjp
⊥

of SN given by the polar to Sjp.
Therefore, if γ is a polygonal curve in SN , it turns out that the projected
curve ηp(γ) is well-defined for µj+1-a.e. p ∈ Gj+1RN+1.

The geodesic rotation Kg(γ) of a polygonal curve γ in SN is given by
the sum of the turning angles at the edges of γ, see [3], so that clearly
TC(γ) = LSN (γ) + Kg(γ). The following integral-geometric formulas, that
are proved in [3, Thm. 6.2.2, p. 190] for j = 1, actually hold true for larger
ranges of values of j.
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Theorem 1.5. Given a polygonal curve γ in SN , for any integer 1 ≤ j ≤
N − 1 one has

LSN (γ) =

∫
Gj+1RN+1

LSjp(ηp(γ)) dµj+1(p)

Kg(γ) =

∫
Gj+1RN+1

Kg(ηp(γ)) dµj+1(p) .

As a consequence, since TC(ηp(γ)) = LSjp(ηp(γ)) + Kg(ηp(γ)), one gets:

TC(γ) =

∫
Gj+1RN+1

TC(ηp(γ)) dµj+1(p) .

The average formula concerning the length of spherical curves was proved
in [3, Thm. 4.8.3, p. 108].

Proposition 1.6. Given a rectifiable curve c in SN , for any integer 1 ≤
j ≤ N − 1 one has

L(c) =

∫
Gj+1RN+1

L(ηp(c)) dµj+1(p) .

In the sequel, we shall also consider polygonal curves in RPN , the real
projective space. It is given by the quotient RPN := SN/ ∼, the equivalence
relation being y ∼ ỹ ⇐⇒ y = ỹ or y = −ỹ. We denote by [y] an element
of RPN , and by Π : SN → RPN the canonical projection Π(y) := [y]. Recall
that RPN is a complete metric space, when equipped with the induced metric

dRP2([y], [ỹ]) := min{dSN (y, ỹ), dSN (y,−ỹ)} .

Now, denote by RPjp the projective j-space corresponding to the j-sphere

Sjp, for any p ∈ Gj+1RN+1, and let η̃p denote the nearest point projection of

RPN onto RPjp, i.e., η̃p([x]) := [ηp(x)], for x ∈ SN \Sjp
⊥

, where ηp is given by
(1.3). Following the proof of Theorem 1.5 from [23], one similarly obtains:

Proposition 1.7. Given a polygonal curve γ in RPN , for any integer 1 ≤
j ≤ N − 1 we have

LRPN (γ) =

∫
Gj+1RN+1

LRPj
p
(η̃p(γ)) dµj+1(p)

Kg(γ) =

∫
Gj+1RN+1

Kg(η̃p(γ)) dµj+1(p)

and hence

TC(γ) =

∫
Gj+1RN+1

TC(η̃p(γ)) dµj+1(p) .
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1.6. Curves into Riemannian surfaces. Let now M be a smooth (of
class C3), closed, and compact immersed surface in RN+1, with N ≥ 2.

If c is a smooth and regular curve in M, parameterized by arc-length,
the unit tangent vector t(s) := ċ(s) satisfies ṫ • t ≡ 0, whence the curvature
vector k(s) := ṫ(s) is orthogonal to t(s), and decomposes as

k(s) = Kg(s) u(s) + Kn(s) n(s) .

When N = 2, the triad (t,n,u), where n(s) := ν(c(s)), ν(p) being the
unit normal to the tangent 2-space TpM in R3, and u(s) := n(s)×t(s) is the
unit conormal, is called the Darboux frame along c, whereas Kg := k•u and
Kn := k • n are called the geodesic and normal curvature of c, respectively.
The Frenet-Serret formulas in R3, see (2.4), yield to the Darboux system:

(1.4) ṫ = Kgu + Knn , ṅ = −Knt− Tgu , u̇ = −Kgt + Tgn

where Tg := ṅ • (t × n) is the geodesic torsion of the curve. If c is a
geodesic on M, we have Kg ≡ 0, whence the Darboux frame agrees (up to
the sign) with the Frenet frame, and the conormal u with the bi-normal
vector. In particular, the normal curvature Kn and the geodesic torsion Tg
are equal (up to the sign) to the scalar curvature and to the torsion of c in
R3, respectively.

If N ≥ 3, the unit conormal u : [0, L] → SN is obtained through a
positive rotation of t on the tangent space TcM along c, so that t • u ≡ 0,
and n : [0, L] → SN is a smooth normal unit vector field (a section of the
normal bundle of M). Finally, the projection Kgu of k onto the tangent
bundle is an intrinsic object.

Let X denote a tangent vector field along the smooth curve c in M, so
that X : [0, L] → RN+1 satiisfies X(s) ∈ Tc(s)M for each s. Then, X is a

parallel transport along c if Ẋ(s) ⊥ Tc(s)M for each s. Since d
ds |X(s)|2 =

2X(s) • Ẋ(s) = 0, a parallel transport preserves the length of the initial
tangent vector X(0). We shall then assume |X(0)| = 1, so that |X(s)| = 1
for each s.

It is well-known that the geodesic curvature of c satisfies

(1.5) Kg(s) = Θ̇(s) ∀ s ∈ [0, L]

where Θ(s) is the oriented angle from the parallel transport X(s) to the
tangent vector t(s) to c, so that

(1.6) X(s) = cos Θ(s) t(s)− sin Θ(s) u(s) , s ∈ [0, L]

compare e.g. [26, 13.6.1] for a proof. We thus get the formula for the total
intrinsic curvature of c, namely:

(1.7) TCM(c) =

∫ L

0
|Kg(s)| ds =

∫ L

0
|Θ̇(s)| ds
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compare e.g. [7]. In particular, when N = 2 and X(s) • t(s) 6= 0, by (1.6)
one gets

(1.8) tan Θ(s) = −X(s) • u(s)

X(s) • t(s)
.

The parallel transport (1.6) is a well-defined smooth vector field for each
regular and piecewise smooth curve c, once the initial position X(0) is pre-
scribed. Moreover, the angle Θ is a function of bounded variation, with
a finite number of Jump points in correspondence to the values {si | i =
1, . . .m} of the arc-length parameter s ∈ IL where c(s) fails to be smooth,
the corner points c(si) of c. More precisely, Θ is a special function of
bounded variation in SBV(IL), i.e., DCΘ = 0, and its distributional deriv-

ative decomposes as DΘ = Θ̇L1 +DJΘ . The derivative Θ̇ agrees with the
geodesic curvature Kg outside the corner points of c, and the Jump compo-
nent DJΘ is a sum of Dirac masses centered at the related points si, with
weight given by the oriented turning angles αi between the incoming and
outcoming unit tangent vectors at each corner point of c, i.e.

DΘ = Kg L1 +

n∑
i=1

αi δsi , |DΘ|(IL) =

∫ L

0
|Kg| ds+

n∑
i=1

|αi|

If N = 2, since the Darboux formulas (1.4) hold true outside the points
si, by the smoothness of X

Ẋ = − sin Θ Θ̇ t− cos Θ Θ̇ u + cos Θ ṫ− sin Θ u̇

and the parallel transport of piecewise smooth curves satisfies, for s 6= si,

Ẋ = (cos ΘKn − sin ΘTg) n .

If N ≥ 3, on account of (1.6), by decomposing the derivative

u̇ = (u̇ • t) t + u̇⊥

of the unit conormal into the tangential and normal component to M, and
recalling that u̇ • t = −t • u = −Θ̇, the parallel transport of (piecewise)
smooth curves this time satisfies

Ẋ = cos ΘKn n− sin Θ u̇⊥ ,

where u̇⊥ = u̇ when c is a geodesic arc.

Example 1.8. If M = S2, the unit sphere in R3, taking polar coordinates

r(θ, ϕ)T = (sin θ cosϕ, sin θ sinϕ, cos θ) , θ ∈ [0, π] , ϕ ∈ [0, 2π]

a smooth spherical curve c can be parameterized by c(s) = r(θ(s), ϕ(s))T

for suitable angle functions θ(s) and ϕ(s). In terms of the usual frame eθ,
eϕ, and n(θ, ϕ) = eθ × eϕ, the outward unit normal, and letting v(s) :=
v(θ(s), ϕ(s)), for v = eθ, eϕ, or n, we thus have for any s ∈ [0, L]

(1.9)
t(s) := ċ(s) = θ̇(s) eθ(s) + sin θ(s) ϕ̇(s) eϕ(s) ,

θ̇(s)2 + sin2 θ(s) ϕ̇(s)2 = 1 .
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Taking a tangent vector field X along c, say X(s) := α(s) eθ(s)+β(s) eϕ(s),
where s ∈ [0, L], the condition for a parallel transport turns out to be
equivalent to the first order system for the unknown coefficients:

(1.10)

{
α̇(s) = cos θ(s) ϕ̇(s)β(s)

β̇(s) = − cos θ(s) ϕ̇(s)α(s)
s ∈ [0, L]

which has a unique solution for any given initial position X(0) ∈ Tc(0)S2.
On account of (1.8), and since by (1.9) the unit conormal along c is

(1.11) u(s) := n(s)× t(s) = − sin θ(s) ϕ̇(s) eθ(s) + θ̇(s) eϕ(s)

one then computes

Θ̇ = sin θ (ϕ̈ θ̇ − θ̈ ϕ̇) + cos θ ϕ̇ (sin2 θ ϕ̇2 + 2θ̇2) .

On the other hand, recalling formula (1.9), the curvature vector of c is

(1.12) k = ṫ = (θ̈ − sin θ cos θ ϕ̇2) eθ + (2 cos θ θ̇ ϕ̇+ sin θ ϕ̈) eϕ − n

and hence by (1.11) the geodesic curvature becomes

(1.13) Kg = k • u = sin θ (ϕ̈ θ̇ − θ̈ ϕ̇) + cos θ ϕ̇ (sin2 θ ϕ̇2 + 2θ̇2)

where (sin2 θ ϕ̇2 + 2θ̇2) = (1 + θ̇2), so that one recovers equation (1.5).

Example 1.9. If c = cθ0 is the parallel with constant co-latitude θ0 ∈
]0, π/2], we choose θ(s) ≡ θ0 and ϕ(s) = s/ sin θ0, where s ∈ [0, L], with
L := L(cθ0) = 2π sin θ0. By (1.9) and (1.11), one has

t(s) = eϕ(θ0, s/ sin θ0) , u(s) = −eθ(θ0, s/ sin θ0) ∀ s

and by solving the system (1.10) as above, on account of (1.12) and (1.13)
one obtains

Θ(s) = cot θ0 · s , Kg = Θ̇ ≡ cot θ0 ∀ s .

Therefore, according to (1.7) one recovers for any θ0 ∈]0, π/2] the formula

TCS2(cθ0) =

∫ 2π sin θ0

0
|Θ̇(s)| ds = 2π cos θ0

for the total intrinsic curvature of the parallel, compare e.g. [7]. In partic-
ular, TCS2(cθ0) is equal to zero when θ0 = π/2, i.e., when cθ0 is a great
circle, whence a geodesic in S2.

2. Weak binormal and total absolute torsion

In this section, we collect our results from [22] concerning irregular curves
in the Euclidean space R3.
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2.1. Total absolute torsion of polygonal curves. Assume now N = 2,
and let P a polygonal curve in R3 with consecutive vertices vi, i = 0, . . . ,m,
where m ≥ 3 and P is not closed, i.e., v0 6= vm. Without loss of generality,
we assume that every oriented segment σi := [vi−1, vi] has positive length
L(σi) := ‖vi − vi−1‖, for i = 1, . . . ,m, and that two consecutive segments
are never aligned, i.e., the vector product σi × σi+1 6= 0R3 for each i =
1, . . . ,m − 1. If the vector product σi × σi+1 is null, we replace σi+1 with
the oriented segment [vi, vj+1], where j is the first index greater than i such
that σj × σj+1 6= 0R3 . If σj × σj+1 = 0R3 for each j > i, we set bi = bi−1 in
(2.1) below.

In the definition by M. A. Penna [25], the discrete unit binormal is the
unit vector given at each interior vertex vi of P by the formula:

(2.1) bi :=
σi × σi+1

‖σi × σi+1‖
, i = 1, . . . ,m− 1 .

The torsion of P is a function τ (σi) of the interior oriented segments σi
defined as follows. Let i = 2, . . . ,m− 1. If the three segments σi−1, σi, σi+1

are coplanar, i.e., if bi−1 × bi = 0R3 , one sets τ (σi) = 0. Otherwise,

τ (σi) :=
θi
L(σi)

where θi denotes the angle between −π/2 and π/2 whose magnitude is the
undirected angle between the binormals bi−1 and bi, and whose sign is equal
to the sign of the scalar product between the linearly independent vectors
bi−1× bi and σi. Penna then defined the total torsion of P through the sum:

m−1∑
i=2

τ (σi) · L(σi) =
m−1∑
i=2

θi .

In a similar way, we define the total absolute torsion of P by:

TAT(P ) :=
m−1∑
i=2

|τ (σi)| · L(σi) =
m−1∑
i=2

|θi| .

We thus consider angles between unoriented osculating planes. In fact, it
may happen that the planes span (σi−1, σi) and span (σi, σi+1) are almost
parallel, but the directed angle between the binormal vectors bi and bi+1 is
equal to π − ε for ε > 0 small. However, one gets |θi| = ε, since in general

|θi| = min{arccos(bi−1 • bi), arccos(−bi−1 • bi)} ∈ [0, π/2] .

Notice that the total absolute torsion of P can be equivalently defined
through the formula:

TAT(P ) :=
m−1∑
i=2

θ̃i

where θ̃i ∈ [0, π/2] is the shortest angle in S2 between the unoriented geo-
desic arcs γi−1 and γi meeting at the edge ti of tP . Therefore, any reasonable
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notion of binormal (for non-smooth curves) naturally lives in the projective
plane RP2.

2.2. Binormal indicatrix of polygonal curves. From another viewpoint,
W. Fenchel [14] in the 1950’s exploited the spherical polarity of the tangent
and binormal indicatrix in order to analyze differential geometric properties
of smooth curves in R3. In his survey, Fenchel proposed a general method
that gathers several results on curves in a unified scheme. We point out
that Fenchel deals with C4 rectifiable curves (parameterized by arc-length)
such that at each point it is well-defined the osculating plane, that is, a
plane containing the linearly independent vectors t := ċ and c̈, such that its
suitably oriented normal unit vector b, the binormal vector, is of class C2,
and the two vectors ṫ and ḃ never vanish simultaneously. He then defines
the principal normal by the vector product

(2.2) n := b× t .

Since the derivatives of t and b are perpendicular to both t and b, the
curvature k and torsion τ are well-defined through the formulas:

ṫ = k n , ḃ = −τ n .

As a consequence, one has

ṅ = −k t + τ b

and hence the Frenet-Serret formulas hold true, but Fenchel allows both
curvature and torsion to be zero or negative. Related arguments have been
treated in [5, 11, 12, 19, 29].

By melting together the approaches due to Penna and Fenchel, we define
binormal indicatrix bP of a polygonal P in R3 as the arc-length parameter-
ization bP of the polar in RP2 of the tangent indicatrix tP .

For this purpose, we recall that the support of tP is the union of m − 1
geodesic arcs γi, where γi has initial point ti and end point ti+1, for i =
1, . . . ,m − 1. Since we assumed that consecutive segments of P are never
aligned, each arc γi is non-trivial and well-defined. Then, the discrete unit
binormal bi ∈ S2 from definition (2.1) is the “north pole” corresponding to
the great circle passing through γi and with the same orientation as γi.

For any i = 2, . . . ,m − 1, we denote by Γi the geodesic arc in RP2 with
initial point [bi−1] and end point [bi]. Then Γi is degenerate when bi−1 = ±bi,
i.e., when the three segments σi−1, σi, σi+1 are coplanar. We thus have

LRP2(Γi) = θ̃i = |θi| for each i, and hence

m−1∑
i=2

LRP2(Γi) = TAT(P ) .

Also, for i < m− 2 the end point of Γi is equal to the initial point of Γi+1.
Finally, if TAT(P ) = 0, i.e., if the polygonal P is coplanar, all the arcs Γi
degenerate to a point [b] ∈ RP2, which actually identifies the binormal to P .
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Figure 1. An example of a polygonal curve with tangent
indicatrix moving as in the left figure. The weak binormal
indicatrix moves as in the right figure. Since the weak binor-
mal indicatrix lives in the projective space RP2, in the figure
we have drawn one of its two possible liftings into S2.

Definition 2.1. Polar of the tangent indicatrix tP is the oriented curve
in RP2 obtained by connecting the consecutive geodesic arcs Γi, for i =
2, . . . ,m− 1.

The polar of tP connects by geodesic arcs in RP2 the consecutive discrete
binormals [bi] of the polygonal P , and its length is equal to the total absolute
torsion TAT(P ) of P . In particular, it is a rectifiable curve. This property
allows us to introduce a suitable weak notion of binormal.

Definition 2.2. We denote binormal indicatrix of the polygonal P the arc-
length parameterization bP of the polar in RP2 of the tangent indicatrix tP
(see Figure 1).

We thus have bP : [0, T ] → RP2, where T := LRP2(bP ) = TAT(P ).

Moreover, bP is Lipschitz-continuous and piecewise smooth, with |ḃP | = 1
everywhere except to a finite number of points. Therefore, the total absolute
torsion TAT(P ) of P is equal to the length of the curve bP . We remark that
a similar definition has been introduced by T. F. Banchoff in his paper [5]
on space polygons.

However, differently from what happens for length and total curvature,
the monotonicity formula fails to hold. More precisely, if P ′ is a polygonal
inscribed in P , by the triangular inequality we have L(P ′) ≤ L(P ) and
TC(P ′) ≤ TC(P ), compare e.g. [28, Cor. 2.2], but it may happen that
TAT(P ′) > TAT(P ). This is due to the fact that the total absolute torsion
of a polygonal P can be computed as the sum of min{θi, π − θi}, where θi
is the turning angle of the tantrix tP at the i-th vertex.
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Figure 2. The tantrix of the polygonal P , in blue color, and
of the inscribed polygonal P ′, in red color. The drawing is
courtesy offered by the young artist Sofia Saracco.

Example 2.3. The polygonal P is made of six segments σi, for i = 1, . . . , 6,
where the first three ones and the last three ones lay on two different planes
Π1 and Π2. Then the tantrix tP connects with geodesic arcs in S2 the con-
secutive points vi := σi/L(σi), for i = 1, . . . , 6, where the triplets v1, v2, v3

and v4, v5, v6 lay on two geodesic arcs, which are inscribed in the great circles
corresponding to the vector spaces spanning the planes Π1 and Π2, respec-
tively. If both the angles α and β of tP at the points v3 and v4 are small,
then TAT(P ) = α+ β.

Let P ′ be the inscribed polygonal obtained by replacing the segments σ3

and σ4 of P with the segment σ between the first point of σ3 and the last
point of σ4. The tantrix tP ′ connects with geodesic arcs the consecutive
points v1, v2, w, v5, v6, where the point w lays in the minimal geodesic arc
between v3 and v4. Now, assume that the turning angle ε of tP ′ at the
point v5 satisfies α < ε < π/2, and that the two geodesic triangles with
vertices v2, v3, w and w, v4, v5 have the same area. By suitably choosing the
position of the involved vertices, and by using Gauss-Bonnet theorem in the
computation, it turns out that TAT(P ′) − TAT(P ) = 2(ε − α) > 0, see
Figure 2.

2.3. Total absolute torsion and weak binormal. For the above reasons,
the total absolute torsion TAT(c) of a curve c in R3 is defined by following
the approach due to Alexandrov-Reshetnyak [3], that involves the notion of
modulus µc(P ), namely:

TAT(c) := lim
ε→0+

sup{TAT(P ) | P � c , µc(P ) < ε} .
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The modulus µc(P ) of a polygonal P inscribed in c is the maximum of
the diameter of the arcs of c determined by the consecutive vertices in P .
Notice that if c is a polygonal curve itself, there exists ε > 0 such that any
polygonal P inscribed in c and with modulus µc(P ) < ε satisfies tP = tc,
whence bP = bc and definitely we get TAT(P ) = TAT(c). It suffices indeed
to take ε lower than half of the mesh of the polygonal c, so that in every
segment of c there are at least two vertices of P .

Therefore, if TAT(c) < ∞, for any sequence {Ph} of polygonal curves
inscribed in c and satisfying µc(Ph) → 0, one has suph TAT(Ph) < ∞,
and one can also find an optimal sequence as above in such a way that
TAT(Ph)→ TAT(c). The following result is proved in [22].

Theorem 2.4. Let c be a rectifiable curve in R3 with finite total curvature
TC(c) and finite (and non-zero) total absolute torsion T := TAT(c). Then,
there exists a rectifiable curve bc : [0, T ]→ RP2 parameterized by arc-length,
so that

(2.3) LRP2(bc) = TAT(c)

holds, satisfying the following property. For any sequence {Pn} of inscribed
polygonal curves, let bn : [0, T ] → RP2 denote for each h the parame-
terization with constant velocity of the binormal indicatrix bPn of Pn. If
µc(Pn)→ 0, then bn → bc uniformly on [0, T ] and LRP2(bn)→ LRP2(bc).

Our weak binormal bc only depends on the curve c. Recalling that
LRP2(bh) = TAT(Ph), we indeed obtain:

Proposition 2.5. Let c be a rectifiable curve in R3 with both finite to-
tal curvature TC(c) and total absolute torsion TAT(c). Then for any se-
quence {Pn} of inscribed polygonal curves such that µc(Pn) → 0, one has
TAT(Pn)→ TAT(c).

2.4. Relationship with the smooth binormal. Let now c be a smooth
regular curve in R3 defined through arc-length parameterization. Assuming
c̈ 6= 0 everywhere, and letting t := ċ, n := ṫ/|ṫ|, k := |ṫ|, b := t × n, the
classical Frenet-Serret formulas for the spherical frame (t, n, b) of c give:

(2.4) ṫ = k n , ṅ = −k t + τ b , ḃ = −τ n

where k is the (positive) curvature and τ the torsion of the curve.

Remark 2.6. Notice that a rectifiable curve may have unbounded total
curvature but zero torsion (just consider a planar curve). Conversely, by
taking s ∈ [0, 1] and letting k(s) ≡ 1 and τ (s) = (1− s)−1, solutions to the
Frenet-Serret system (2.4) are rectifiable curves c such that

∫
c k ds = 1 but∫

c |τ | ds = +∞.

For smooth curves, the total absolute torsion, which agrees with the length
of the smooth binormal curve b in the Gauss sphere S2, actually agrees with



ON THE CURVATURES OF IRREGULAR CURVES 17

the total geodesic curvature of the smooth tantrix t in S2. In fact, on account
of the density result from [25, Prop. 4], by Proposition 2.5 one readily obtains

(2.5) TAT(c) =

∫
c
|τ | ds .

As the following example shows, the (absolute value of the) torsion may
be seen as the curvature of the tantrix, when computed in the sense of the
spherical geometry.

Example 2.7. Given R > 0 and K ≥ 0, we let c : [−L/2, L/2]→ R3 denote
the helicoidal curve

c(s) := (R cos(s/v), R sin(s/v),Ks/(2πv)) , s ∈ [−L/2, L/2]

where we denote v := (R2 + (K/2π)2)1/2 and choose L := 2πv, so that
|ċ| ≡ 1 and the length L(c) = L. Moreover, c(±L/2) = (±R, 0,±K/2), and
c(0) = (R, 0, 0). We thus have

t(s) = v−1(−R sin(s/v), R cos(s/v),K/2π)
n(s) = (− cos(s/v),− sin(s/v), 0)
b(s) = v−1((K/2π) sin(s/v),−(K/2π) cos(s/v), R)

so that both curvature and torsion are constant, k ≡ Rv−2, τ ≡ v−2(K/2π).
Therefore, the integral of the curvature and of the torsion of c are:∫
c
k ds = L · k =

2πR

v
,

∫
c
|τ | ds = L · τ =

K

v
, v := (R2 + (K/2π)2)1/2.

We can compute the spherical curvature kS2(t) of the tantrix t, a closed
curve embedded in the Gauss sphere S2 and parameterizing (when K > 0) a
small circle whose radius depends on R and K. To this aim, we first consider
a sequence of (strongly converging) polygonal curves {tn} in S2 inscribed
in the tantrix t. Namely, for each n ∈ N+ we let tn(i) := t(si), where
si = (L/n)i and i ∈ Z∩ [−n, n], and consider the closed spherical polygonal
generated by the consecutive points tn(i) ∈ S2. The total curvature of tn
is equal to the sum of the width in S2 of the angles between consecutive
segments. The turning angle in S2 of two consecutive geodesic segments
tn(i − 1)tn(i) and tn(i)tn(i + 1), agrees with the angle between the two
planes in R3 spanned by 0R3 and the end points of the above segments, i.e.,
between the normals tn(i − 1) × tn(i) and tn(i) × tn(i + 1). By symmetry,
such an angle θn does not depend on the choice of i. The total spherical
curvature of the polygonal being equal to n · θn, one obtains:

lim
n→∞

n · θn =
K

v
.

Here, we have considered a sequence {tn} of polygonal curves in S2 in-
scribed in the tantrix t of c and converging to t in the sense of the Hausdorff
distance. In general, each tn is not the tangent indicatrix of a polygonal
inscribed in c. However, the total spherical curvature n · θn of tn clearly
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agrees with the length in RP2 of the polar of tn, which is constructed as
above, see Definition 2.1.

Now, one may similarly consider a sequence {Pn} of polygonals inscribed
in c, each one made of n segments with the same length, so that meshPn →
0. The total absolute torsion TAT(Pn) of Pn agrees with the length in RP2

of the binormal indicatrix bPn , see Definition 2.2. One can similarly show
that LRP2(bPn)→ K/v as n→∞, in accordance with the formula in (2.5).
By uniform convergence, we have thus obtained the total curvature of t in
S2. In conclusion, we have:∫

t
kS2(t) ds =

K

v
=

∫
c
|τ | ds .

We now see that the binormal b(s) of c agrees with the value of a suitable
lifting of the weak binormal bc in S2, when computed at the expected point.

Theorem 2.8. In the latter smoothness hypotheses, for each s ∈]0, L[ there
exists t(s) ∈ [0, T ] such that

b(s) = b̃c(t(s))

for a unique lifting b̃c of bc in S2. Moreover, t(s) is equal to the total absolute
torsion TAT(c|[0,s]) of the curve c|[0,s] : [0, s]→ R3. In particular, we have:

(2.6) t(s) =

∫ s

0
|τ (λ)| dλ ∀ s ∈ [0, L] .

Notice that if in particular the torsion τ of c (almost) never vanishes, the
function t(s) : [0, L]→ [0, T ] in equation (2.6) is strictly increasing, and its
inverse s(t) : [0, T ]→ [0, L] gives

b̃c(t) = b(s(t)) ∀ t ∈ [0, T ] , T = TAT(c) .

Therefore, in this case, the weak binormal bc in RP2, when suitably lifted
to S2, agrees with the arc-length parameterization of the binormal b of c.

Remark 2.9. The hypothesis TC(c) <∞ in Theorem 2.4 may sound a bit
unnatural, and actually a technical point, since it allows us to prove that bc
has constant velocity one, so that (2.3) holds true.

To this purpose, we recall that the definition of complete torsion CT(P ) of
polygonals P given by Alexandrov-Reshetnyak [3], who essentially take the
distance in S2 between consecutive discrete binormals, implies that planar
polygonals may have positive torsion at “inflections points”. Defining the
complete torsion CT(c) of curves c in R3 as the supremum of the complete
torsion of the inscribed polygonals, they obtain in [3, p. 244] that any curve
with finite complete torsion and with no points of return must have finite
total curvature.

With our definition of torsion, the above implication clearly fails to hold,
see Remark 2.6. On the other hand, equality (2.5) is violated if one considers
the complete torsion from [3], since for a smooth planar curve with inflection
points, one has CT(c) > 0.
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We finally notice that a curve with finite total curvature and total absolute
torsion may have infinite complete torsion in the sense of [3]: just take a
smooth planar curve with a countable set of inflection points.

2.5. Complete tangent indicatrix. Similar features concerning the tantrix
hold. Our curve tc is strictly related with the complete tangent indicatrix in
the sense of Alexandrov-Reshetnyak [3].

Proposition 2.10. Let c be a rectifiable curve in R3 with finite total curva-
ture C := TC(c) and with no points of return. Then, there exists a rectifiable
curve tc : [0, C]→ S2, parameterized by arc-length, so that LS2(tc) = TC(c),
satisfying the following property. For any sequence {Pn} of inscribed polyg-
onal curves such that meshPn → 0, denoting by tn : [0, C]→ S2 the param-
eterization with constant velocity of the tangent indicatrix tPn of Pn, then
tn → tc uniformly on [0, C] and LS2(tn)→ LS2(tc).

If c has points of return, i.e., if e.g. for some s ∈]0, L[ we have t(s−) =
−t(s+), the curve tc is uniquely determined up to the choice of the geodesic
arc in S2 connecting t(s−) and t(s+). In the smooth case, we also have:

Proposition 2.11. Let c : [0, L]→ R3 be a curve of class C2 parameterized
in arc-length, so that L = L(c), and let tc : [0, C] → S2 the rectifiable
curve in S2 defined in Proposition 2.10, so that C = TC(c). Then, for each
s ∈]0, L[ there exists k(s) ∈ [0, C] such that the tangent indicatrix t := ċ
satisfies

t(s) = tc(k(s)) .

Moreover, k(s) is equal to the total curvature TC(c|[0,s]) of the curve c|[0,s] :

[0, s]→ R3, whence:

(2.7) k(s) =

∫ s

0
k(λ) dλ ∀ s ∈ [0, L]

where k(λ) := ‖c̈(λ)‖ is the curvature of c at the point c(λ).

As before, if the curvature k of c (almost) never vanishes, the function
k(s) : [0, L] → [0, C] in equation (2.7) is strictly increasing, and its inverse
s(k) : [0, C]→ [0, L] gives

tc(k) = t(s(k)) ∀ k ∈ [0, C] , C = TC(c) .

2.6. Weak principal normal. When looking for a possible weak notion
of principal normal, a drawback appears. In fact, in Penna’s approach [25],
the curvature of an open polygonal P is a non-negative measure µP concen-
trated at the interior vertices, whereas the torsion is a signed measure νP
concentrated at the interior segments. Since these two measures are mutu-
ally singular, in principle there is no way to extend Fenchel’s formula (2.2)
in order to define the principal normal.

To overcome this problem, we proceed as follows. Firstly, for a polygonal

P we choose two suitable curves t̃P , b̃P : [0, C + T ] → RP2, where C =
TC(P ) and T = TAT(P ), that on one side inherit the properties of the
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Figure 3. The weak normal indicatrix of the curve whose
tangent and binormal indicatrix are those in Figure 1 of page
14. Again, for the sake of the illustration we consider one of
the two liftings of the normal indicatrix into the sphere S2.

tangent and binormal indicatrix tP and bP , respectively, and on the other
side take account of the order in which curvature and torsion are defined
along P . More precisely, one of the two curves is constant when the other
one parameterizes a geodesic arc, whose length is equal to the curvature
or to the (absolute value of the) torsion at one vertex or segment of P ,
respectively. As in Fenchel’s approach, by exploiting the polarity of the

curves t̃P and b̃P , the weak normal of the polygonal is well-defined by the
inner product

nP (s) := b̃P (s)× t̃P (s) ∈ RP2 , s ∈ [0, T + C]

see Figure 3. Notice that by our definition we have:

LRP2(nP ) = TC(P ) + TAT(P ) .

As a consequence, using again an approximation procedure, the weak
principal normal of a rectifiable curve c with finite total curvature and fi-
nite complete torsion is well-defined as a rectifiable curve nc in RP2. We
recall that condition CT(c) <∞ is stronger than the more natural assump-
tion TAT(c) < ∞. Moreover, it turns out that the product formula (2.2)
continues to hold in a suitable sense, and we also have:

LRP2(nc) = TC(c) + TAT(c) .

In particular, for smooth curves whose curvature (almost) never vanishes,
the principal normal n agrees with a lifting of a suitable parameterization
of the weak normal nc. More precisely, we obtain:

[n(s(t))] = nc(t) ∈ RP2 ∀ t ∈ [0,TC(c) + TAT(c)]
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where s(t) is the inverse of the increasing and bijective function

t(s) :=

∫ s

0
(k(λ) + |τ (λ)|) dλ , s ∈ [0,L(c)] .

2.7. Spherical indicatrices of smooth curves. The trihedral (t, n, b) is
well-defined everywhere in case of regular curves γ in R3 of class C2 such
that γ′(t) and γ′′(t) are always independent vectors, and the Frenet-Serret
formulas (2.4) hold true if in addition γ is of class C3. On the other hand,
Fenchel in [14] used a geometric approach in order to define (under weaker
hypotheses on the curve) the osculating plane. He chooses the binormal b as
a smooth function. Therefore, the principal normal is the smooth function
given by n = b×t. The Frenet-Serret formulas continue to hold, but this time
the curvature may vanish and even be negative. He also calls k-inflection or
τ -inflection a point of the curve where the curvature or the torsion changes
sign, respectively.

Assume now that γ : [a, b]→ R3 satisfies the following properties:

(1) γ is differentiable at each t ∈ [a, b] and γ′(t) 6= 0R3 , i.e., γ is a regular
curve;

(2) for each t0 ∈]a, b[, the function γ is of class Cn in a neighborhood

of t0, for some n ≥ 2, and γ(n)(t0) 6= 0R3 , but γ(k)(t0) = 0R3 for
2 ≤ k ≤ n− 1, if n ≥ 3.

In that case, denoting as above by c(s) the arc-length parameterization of
the curve γ, it turns out that the Frenet-Serret frame (t, b, n) is well-defined
for each s0 ∈ [0, L] by:

(2.8)
t(s0) := ċ(s0) , b(s0) :=

ċ(s0)× c(n)(s0)

‖c(n)(s0)‖
,

n(s0) := b(s0)× t(s0) =
c(n)(s0)

‖c(n)(s0)‖

where s0 = s(t0) and n ≥ 2 as above. Furthermore, c̈(s0) = 0R3 at a finite
or countable set of points, and if c̈(s0) 6= 0R3 , then n(s0) = c̈(s0)/‖c̈(s0)‖.
Finally, [b] and [n] are continuous functions with values in RP2.

If in addition we assume that γ is of class C3, it turns out that the Frenet-
Serret formulas (2.4) hold true outside the at most countable set of inflection
points. In fact, c̈(s) = 0R3 only at isolated points s ∈ [0, L].

Example 2.12. Let c : [−1, 1]→ R3 be a regular curve with derivative

ċ(s) =
1√
2

(
1, s2,

√
1− s4

)
, s ∈ [−1, 1]

so that ‖ċ(s)‖ ≡ 1 and hence t(s) = ċ(s). For s ∈]− 1, 1[, we compute

c̈(s) =

√
2s√

1− s4

(
0,
√

1− s4,−s2
)
, c(3)(s) =

√
2
(

0, 1,
s2(s4 − 3)

(1− s4)3/2

)
.
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Therefore, if 0 < |s| < 1 we have c̈(s) 6= 0R3 and hence

n(s) =
s

|s|
(
0,
√

1− s4,−s2
)
, b(s) =

s

|s|
1√
2

(
−1, s2,

√
1− s4

)
.

In particular, the normal and binormal can be extended by continuity at
s = ±1 by letting n(±1) := (0, 0,∓1) and b(±1) := 2−1/2(∓1,±1, 0). Fur-
thermore, for 0 < |s| < 1 we get:

k(s) := ‖c̈(s)‖ =

√
2|s|√

1− s4
, τ (s) :=

(
ċ(s)× c̈(s)

)
• c(3)(s)

‖c̈(s)‖2
= −

√
2s√

1− s4

and hence k(s) → 0 and τ (s) → 0 as s → 0, whereas both k and τ are
summable functions in L1(−1, 1). Moreover, the Frenet-Serret formulas (2.4)
hold true in the open intervals ]− 1, 0[ and ]0, 1[.

Since t(0) = 2−1/2(1, 0, 1), c̈(0) = 0R3 , and c(3)(0) = 2−1/2(0, 1, 0), by the
formulas in (2.8) we get:

b(0) :=
ċ(0)× c(3)(0)

‖c(3)(0)‖
=

1√
2

(−1, 0, 1) , n(0) := b(0)× t(0) = (0, 1, 0)

and hence both the unit normal and binormal are not continuous at s = 0.
However, since [n(s)] → [n(0)] and [b(s)] → [b(0)] as s → 0, they are both
continuous as functions with values in RP2. Notice also that

(2.9)
ṅ(s)

‖ṅ(s)‖
=

s

|s|
(
0, −s2,−

√
1− s4

)
, s 6= 0 .

We finally compute the total curvature and the total absolute torsion of
c. With t = s2, we have:

TC(c) =

∫ 1

−1
k(s) ds =

∫ 1

−1

√
2|s|√

1− s4
ds =

√
2

∫ 1

0

1√
1− t2

dt =
π√
2

and similarly

TAT(c) =

∫ 1

−1
|τ (s)| ds =

∫ 1

−1

√
2|s|√

1− s4
ds =

π√
2
.

In fact, c is regular at s = 0, whence there is no turning angle at c(0),
whereas b(0−) = −b(0+), so that also the total absolute torsion is zero at
c(0). On the other hand, due to the occurrence of an inflection point at
c(0), the complete torsion in the sense of Alexandrov-Reshetnyak [3] yields
a contribution equal to π at c(0), so that CT(c) = TAT(c) + π.

With the assumptions written above, the statements of Theorem 2.8 and
Proposition 2.11 continue to hold. More precisely, using that the non-
negative curvature k(λ) and the torsion τ (λ) may vanish only at a negligible
set of inflection points, we readily obtain the following relations concerning
the trihedral (t, b, n) :
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(1) t(s1(k)) = tc(k) ∈ S2 for k ∈ [0, C], where s1 : [0, C] → [0, L] is the
inverse of the function

(2.10) k(s) :=

∫ s

0
k(λ) dλ , s ∈ [0, L] ;

(2) [b(s2(t))] = bc(t) ∈ RP2 for t ∈ [0, T ], where s2 : [0, T ] → [0, L] is
the inverse of the function

t(s) :=

∫ s

0
|τ (λ)| dλ , s ∈ [0, L] ;

(3) [n(s3(ρ))] = nc(ρ) ∈ RP2 for ρ ∈ [0, C + T ], where s3 : [0, C + T ] →
[0, L] is the inverse of the function

ρ(s) :=

∫ s

0
(k(λ) + |τ (λ)|) dλ , s ∈ [0, L] .

Example 2.13. Going back to Example 2.12, we compute

k(s) :=

∫ s

−1
k(λ) dλ =

1√
2

(π
2

+
s

|s|
arcsin(s2)

)
, s ∈ [−1, 1]

and hence s1(k) = | cos(
√

2k)|1/2, where k ∈ [0, C], with C = π/
√

2, so that

tc(k) := t(s1(k)) =
1√
2

(
1, | cos(

√
2k)|, sin(

√
2k)
)
, k ∈ [0, π/

√
2]

with k(0) = π/(2
√

2) and tc(k(0)) = 2−1/2(1, 0, 1). Notice moreover that

ṫc(k) =

{ (
0,− sin(

√
2k), cos(

√
2k)
)

if k ∈ [0, π/(2
√

2)[(
0, sin(

√
2k), cos(

√
2k)
)

if k ∈]π/(2
√

2), π/
√

2]

so that ṫc(k(0)±) = (0,±1, 0). We also get

bc(t) =
[
2−1/2

(
−1, | cos(

√
2t)|, sin(

√
2t)
)]
, k ∈ [0, T ] , T = π/

√
2

where t(0) = π/(2
√

2) and bc(t(0)) =
[
2−1/2 (−1, 0, 1)

]
. Finally,

ḃc(t) =

{ [(
0,− sin(

√
2k), cos(

√
2k)
)]

if t ∈ [0, π/(2
√

2)[[
(0, sin(

√
2k), cos(

√
2k)
]

if t ∈]π/(2
√

2), π/
√

2]

so that ḃc(t(0)+) = ḃc(t(0)−) = [(0, 1, 0)], whence bc has no corner points.

2.8. Torsion force. Similarly to the curvature force K, a torsion force mea-
sure T can be obtained by means of tangential variations of the length
LS2(tc) of the tangent indicatrix tc that we built up in Proposition 2.10, for
any rectifiable curve c with finite total curvature.

For this purpose, we assume that tc, ε is a variation of tc under which the
motion of each point tc(k) is smooth in time and with initial velocity ξ(s),
where ξ : [0, C]→ R3 is a Lipschitz continuous function of arc length k, with
ξ(0) = ξ(C) = 0. Since we deal with tangential variations, we assume in
addition that ξ(k) ∈ Ttc(k)S2 for each k. The first variation formula gives:

δξLS2(tc) :=
d

dε
LS2(tc, ε)|ε=0 =

∫ C

0
ṫc(k) • ξ̇(k) dk
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where ṫc(k) and ξ̇(k) are defined for a.e. k. Therefore, in general we obtain:

(2.11) δξLS2(tc) =

∫ C

0
ṫc(k) • ξ̇(k) dk =: −〈Dṫc, ξ〉

and hence the first variation δξLS2(tc) has distributional order one if and

only if the arc-length derivative ṫc of the tantrix tc is a function of bounded
variation. By the way, this condition is satisfied if in addition the curve c
has finite complete torsion, CT(c) < ∞. In this case, there exists a finite
measure T , that we call torsion force, such that 〈T , ξ〉 = 〈Dṫc, ξ〉 for each
smooth tangential vector field ξ along tc.

If c is of class C3 and c̈(s) 6= 0R3 for each s ∈]0, L[, we compute

ẗc(k) = n′(s1) ṡ1(k) = −t(s1) +
τ (s1)

k(s1)
b(s1) , s1 = s1(k)

for each k ∈ [0, C], where s1 : [0, C] → [0, L] is the inverse of the function
k(s) in (2.10). Moreover, the tangential component to S2 of the second
derivative ẗc(k), i.e., the geodesic curvature of tc at the point tc(k), agrees
with the quotient between the torsion and the scalar curvature of the initial
curve c at the point c(s1), where s1 = s1(k).

In fact, the Darboux frame along tc is the triad (T,N,U), where T(k) :=
ṫc(k), N(k) := ν(tc(k)), ν(p) being the unit normal to the tangent 2-space
TpS2, and U(k) := N(k)×T(k) is the unit conormal. The curvature vector

K(k) := Ṫ(k) = ẗc(k) is orthogonal to T(k), and thus decomposes as

K(k) = Kg(k) U(k) + Kn(k) N(k)

where Kg := K • U and Kn := K • N denote the geodesic and normal
curvature of tc, respectively. By changing variable, we get

T(k) = n(s1) , N(k) = t(s1) , U(k) = b(s1)

and hence we obtain for each k ∈ [0, C]

Kg(k) =
τ (s1)

k(s1)
, Kn(k) ≡ −1 , s1 = s1(k) .

As a consequence, integrating by parts in (2.11) we get

〈Dṫc, ξ〉 =

∫ C

0
Kg(k) b(s1(k)) • ξ(k) dk =

∫ C

0

τ (s1)

k(s1)
b(s1) • ξ(k) dk

where, we recall, ξ(k) ∈ Ttc(k)S2 for each k. Therefore, by changing variable

s = s1(k), since ds = k(s1(k))−1 dk we recover the expected formula:

〈Dṫc, ξ〉 =

∫ L

0
τ (s) b(s) • ξ(k(s)) ds .

Therefore, if c is smooth we have obtained

(2.12) T = k#

(
τ b dL1 ]0, L[

)
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i.e., T is the push forward of the measure τ b dL1 ]0, L[ by the function
k(s) defined in (2.10), and its total mass is equal to

∫
c |τ | ds.

If c is piecewise smooth, we obtain again the decomposition T = T a +
T s. By Proposition 2.11, the absolutely continuous component T a takes
the same form as in the right-hand side of (2.12), where this time k(s) :=
TC(c|[0,s]). Moreover, using that t(s) = tc(k(s)), if c is smooth at s we

have t′(s) = ṫc(k(s)) · k′(s), with k′(s) = k(s), hence by the first formula in
(2.4) we get ṫc(k(s)) = n(s). If in addition c has no points of return, the
torsion force T only depends on c, and the singular component T s is a sum
of Dirac masses concentrated at the corner points x = tc(k) of the curve
tc, with weight ṫc(k+) − ṫc(k−). If θ is the turning angle of tc at x, then
‖ṫc(k+)− ṫc(k−)‖ = 2 sin(θ/2).

In Example 2.13, at x = tc(k(0)) = 2−1/2(1, 0, 1) we have ṫc(k(0)±) =
(0,±1, 0), so that θ = π and ‖ṫc(k(0)+)− ṫc(k(0)−)‖ = 2.

3. Weak curvatures of high order

In this section, we survey our results from [23] concerning weak curvatures
of rectifiable curves in high dimension Euclidean spaces RN+1, where N ≥ 3.

3.1. Gram-Schmidt procedure. When dealing with polygonal curves P
in high dimension Euclidean spaces, the polarity argument we exploited in
the previous section fails to hold. Therefore, we follow a different approach,
based on the orthonormalization procedure.

To this purpose, we recall that the extension of the classical notions by
Frenet-Serret to smooth curves c in RN+1, where N ≥ 3, goes back to the
contribution by C. Jordan [17]. He noticed that by applying the Gram-

Schmidt procedure to the independent vectors ċ(s), c(2)(s), . . . , c(N)(s) one
obtains a moving frame e(s) := (t(s),n1(s), . . . ,nN (s)) along the curve,
where t is the tantrix and nj is the j-th curvature, for j = 1, . . . , N . Assum-
ing c parameterized by arc-length s, the Jordan system ė(s) = F (s) e(s) in-
volves a skew-symmetric and tri-diagonal square matrix F (s) of order N+1,
whose entries depend on the curvature functions kj(s), where j = 1, . . . , N .

In this framework, H. Gluck [15] produced an algorithm for computing
the higher order curvatures, whereas more recently E. Gutkin [16] studied
curvature estimates, natural invariants, and discussed the case of curves
contained in Riemannian manifolds and homogeneous spaces. Finally, in
the last section of his more recent survey paper [27], Reshetnyak also dis-
cussed possible ways to extend their theory of irregular curves to the high
codimension case.

Coming bach to Jordan’s approach, we now consider a curve c : [a, b] →
RN+1 of class C3 parameterized by arc-length, so that ‖ċ‖ = 1. Denot-

ing by c(k) the k-th arc-length derivative of c, assume that the triplet
(ċ(s), c(2)(s), c(3)(s)) is linearly independent for each s. The first two Jordan
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formulas give
ṫ = k1 n1 , ṅ1 = −k1 t + k2 n2

where t := ċ ∈ SN is the unit tangent vector, k1 := ‖c(2)‖ the first curvature,

n1 := c(2)/‖c(2)‖ ∈ SN the first unit normal, k2 ∈ R the second curvature,
and n2 ∈ SN the second unit normal. Notice that when N = 2 one has
k2 = τ , the torsion of the curve, and n2 = b, the binormal vector b := t×n.
We thus compute

k2 n2 = k1 t + ṅ1 = ‖c(2)‖ ċ +
d

ds

( c(2)

‖c(2)‖

)
=

1

‖c(2)‖

(
‖c(2)‖2 ċ + c(3) − c(2) • c(3)

‖c(2)‖2
c(2)
)
.

Recalling that ċ • c(2) = 0 and ċ • c(3) = −‖c(2)‖2, according to the Gram-
Schmidt procedure one has:

n2 =
c(3)⊥

‖c(3)⊥‖
, c(3)⊥ := c(3) − c(3) • ċ

‖ċ‖2
ċ− c(3) • c(2)

‖c(2)‖2
c(2) .

We wish to write Taylor expansions at a given point s ∈]a, b[. Therefore,
for each h > 0 small enough we consider the three vectors

(3.1)
v0(h) :=

c(s+ h)− c(s− h)

2h
, v1(h) :=

c(s− 3h)− c(s− h)

2h
,

v2(h) :=
c(s+ 3h)− c(s+ h)

2h
.

In the sequel, we omit to write the dependence on s, and denote by o(hn) a
continuous vector function such that ‖o(hn)‖ = o(hn), for each n ∈ N, i.e.,
‖o(hn)‖/hn → 0 as h→ 0.

By taking the third order expansions of c(s) and by applying the Gram-
Schmidt procedure, we obtain the following formulas:

t(h) :=
v0(h)

‖v0(h)‖
= ċ +

1

6

(
‖c(2)‖2 ċ + c(3)

)
h2 + o(h2)

N1(h) := v1(h)−v1(h) • v0(h)

‖v0(h)‖2
v0(h) = 2c(2) h−2

(
‖c(2)‖2ċ+c(3)

)
h2+o(h2)

n1(h) :=
N1(h)

‖N1(h)‖
=

c(2)

‖c(2)‖
+
(
−‖c(2)‖ ċ+

c(3) • c(2)

‖c(2)‖3
c(2)− 1

‖c(2)‖
c(3)
)
h+o(h)

N2(h) := v2(h)− v2(h) • v0(h)

‖v0(h)‖2
v0(h)− v2(h) • n1(h)

‖n1(h)‖2
n1(h)

= 4
(
‖c(2)‖2ċ− c(3) • c(2)

‖c(2)‖2
c(2) + c(3)

)
h2 + o(h2) = 4c(3)⊥h2 + o(h2)

n2(h) :=
N2(h)

‖N2(h)‖
=

c(3)⊥

‖c(3)⊥‖
+ o(h0) .

In case of high codimension N ≥ 3, we wish to extend the previous
formulas to the higher normals. For this purpose, the curve c is said to be
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smoothly turning at order j + 1, for j ∈ {1, . . . , N}, if c is of class Cj+2 and

at any point s ∈ [a, b] the vectors (ċ(s), c(2)(s), . . . , c(j+1)(s)) are linearly
independent. When j = N , the curve is said to be smoothly turning. If the
curve c is closed, the same condition is required at any s ∈ R, once the curve
is extended by periodicity.

If a curve is smoothly turning, we set:

t = n0 := ċ , n1 :=
c(2)

‖c(2)‖
,

c(j+1)⊥ := c(j+1) −
j−1∑
k=0

(
c(j+1) • nk

)
nk , nj :=

c(j+1)⊥

‖c(j+1)⊥‖
, j = 2, . . . , N .

The Jordan frame (t,n1, . . . ,nN ) of the curve c satisfies the system:

(3.2) ṫ = k1 n1 , ṅ1 = −k1 t + k2 n2 , ṅj = −kj nj−1 + kj+1 nj+1

for j = 2, . . . , N − 1, where kj is the j-th curvature of the curve at c(s).
The last equation ṅN = −kN nN−1 holds true since the curve c is dif-

ferentiable (N + 2)-times at the point s. When N = 2, it agrees with

the third Frenet-Serret equation, ḃ = −τ n. Since moreover the vectors
(ċ(s), c(2)(s), . . . , c(N+1)(s)) are linearly independent, the last curvature kN
is always non-zero. More generally, if c is smoothly turning at order j + 1,
where j < N , only the first j + 1 Jordan formulas in (3.2) are satisfied.

Following the notation from (3.1), for k = 0, 1, . . . , N and for h > 0 small
we define:

(3.3) vk(h) :=


c(s+ (k + 1)h)− c(s+ (k − 1)h)

2h
if k is even

c(s− (k + 2)h)− c(s− kh)

2h
if k is odd .

By performing the Gram-Schmidt procedure to (v0(h),v1(h), . . . ,vN (h)),
we also denote as before

t(h) = n0(h) :=
v0(h)

‖v0(h)‖
,

N1(h) := v1(h)−
(
v1(h) • t(h)

)
t(h) , n1(h) :=

N1(h)

‖N1(h)‖
and for j = 2, . . . , N

Nj(h) := vj(h)−
j−1∑
k=0

(
vj(h) • nk(h)

)
nk(h) , nj(h) :=

Nj(h)

‖Nj(h)‖
.

If c is a smoothly turning curve, and (t,n1, . . . ,nN ) is the Jordan frame
of c at a given point s ∈]a, b[, then we have:

t(h) = t + o(1) , nj(h) = nj + o(1) ∀ j = 1, . . . , N .

In general, the higher order coefficients of the expansions of the terms
nj(h) depend on the choice of the vectors vk(h) we made in (3.3), and their
existence requires more regularity on the curve c.
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3.2. Discrete normals to polygonal curves. Let P be a polygonal curve
in RN+1, for which we follow the previous notation, and assume that P
does not lay in a line segment of RN+1. For any i = 1, . . . ,m, we let v1

i
denote the first unit vector vh, with h > i, such that [vh] 6= [vi], so that
the linearly independent vectors (vi, v

1
i ) span a 2-dimensional vector space

Π2(P, vi), that may be called the discrete osculating 2-space of P at vi. We
then choose the orthogonal direction to v1

i in Π2(P, vi). Therefore, by the
Gram-Schmidt procedure, we let

N1(P, i) := vi −
(
vi • v1

i

)
v1
i , n1(P, i) :=

N1(P, i)

‖N1(P, i)‖

and consider the equivalence class [n1(P, i)] in RPN . If P is closed, we
trivially extend the notation by listing the vectors vi in a cyclical way. If P
is not closed and for some i > 1 there are no vectors vh, with h > i, such
that [vh] 6= [vi], we let [n1(P, i)] := [n1(P, i− 1)].

In a similar way, if N ≥ 3 we can define the discrete j-th normal of P ,
for each j = 2, . . . , N − 1. We thus assume that P does not lay in an affine
subspace of RN+1 of dimension lower than j + 1. For any i, we choose v1

i

as above. By iteration on k = 2, . . . , j, once we have defined vk−1
i = vl, we

let vki denote the first unit vector vh, with h > l, such that v1
i , v

2
i , . . . , v

k
i

are linearly independent. Therefore, the vectors (vi, v
1
i , v

2
i , . . . , v

j
i ) span a

(j+1)-dimensional vector space Πj+1(P, vi), that may be called the discrete
osculating (j + 1)-space of P at vi.

By means of the Gram-Schmidt procedure, we then choose the orthogonal

direction nj(P, i) ∈ SN to (v1
i , v

2
i , . . . , v

j
i ) in Πj+1(P, vi), and consider the

equivalence class [nj(P, i)]. If P is closed, we trivially extend the notation
by listing the vectors vi in a cyclical way. If P is not closed and for some
i > 1 there are no j vectors satisfying the linear independence as above, we
let [nj(P, i)] := [nj(P, i− 1)].

Finally, if P does not lay in an affine subspace of RN+1 of dimension lower
than N , the last discrete normal [nN (P, i)] is given by the equivalence class
of the orthogonal directions to the discrete osculating N -space ΠN (P, vi) of
P at vi.

Definition 3.1. With the previous notation, for any j = 1, . . . , N , we call
discrete j-th normal of P the curve [nj ](P ) in RPN obtained by connecting

[nj(P, i)] with [nj(P, i+ 1)] by means of a minimal geodesic arc in RPN , for
each i = 1, . . . ,m, and also [nj(P,m)] with [nj(P, 1)], if P is closed.

When N = 2, i.e., for polygonal curves in R3, the last discrete normal
[n2](P ) agrees with the discrete binormal analyzed in the previous section,
whence

LRP2([n2](P )) = TAT(P ) .
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On the other hand, the first discrete normal [n1](P ) is different from the
weak normal from the previous section, where we exploited the polarity in
the Gauss sphere S2.

The following convergence result implies that our notion of j-th normal
to a polygonal curve P is the discrete counterpart of the j-th normal to a
smooth curve c.

Theorem 3.2. Let c : [a, b] → RN+1 a smoothly turning curve at order
j + 1, for some j ∈ {1, . . . , N}. Then, there exists a sequence {Pn} of
inscribed polygonals, with meshPn → 0, such that the length LRPN ([nj ](Pn))
of the discrete j-th normal to Pn converges to the length LSN (nj) of the j-th
normal nj to the curve c, i.e.,

lim
n→∞

LRPN ([nj ](Pn)) =

∫ b

a
‖ṅj(s)‖ ds .

We recall that by the Jordan formulas (3.2), for each s ∈]a, b[ one has

‖ṅj(s)‖ =
√

k2
j (s) + k2

j+1(s)

if j < N , whereas for the last normal ‖ṅN (s)‖ = |kN (s)|. Moreover, when
N = 2, the last normal n2 and curvature k2 agree with the binormal and
torsion of the curve c in R3, respectively.

3.3. Total curvature estimates for the discrete normals. Let c be a
smoothly turning curve, so that the last Jordan equation ṅN = −kN nN−1

holds, where the last curvature kN is always non-zero. If T denotes the unit
tangent vector to the curve nN in SN , one has T = −nN−1, whence by (3.2)

we get |Ṫ| =
√

k2
N−1 + k2

N and hence the total curvature of nN is equal to

the length of the (N − 1)-th normal:

TC(nN ) = L(nN−1) =

∫ b

a

√
k2
N−1(s) + k2

N (s) ds .

If e.g. N = 2, then n2 = b, n1 = n, k1 = k, and k2 = τ , and we thus get:

TC(b) = L(n) =

∫ b

a

√
k2(s) + τ 2(s) ds .

We now consider polygonal curves P in RN+1. An analogous inequality
concerning the discrete last curvature holds true, provided that P does not
lay in an affine subspace of RN+1 of dimension lower than N , namely:

TC([nN ](P )) ≤ LRPN ([nN−1](P )) + LRPN ([nN ](P )) .

Moreover, referring to the first section for the notation, for any 1 ≤ j ≤
N − 1 and for µj+1-a.e. p ∈ Gj+1RN+1, the projection formulas

[nj ](πp(P )) = η̃p([nj ](P ))

hold, and for j ≥ 2, also:

[nj−1](πp(P )) = η̃p([nj−1](P )) .
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Using Proposition 1.7, we thus readily obtain for any 1 ≤ j ≤ N − 1

LRPN ([nj ](P )) =

∫
Gj+1RN+1

LRPj
p
([nj ](πp(P ))) dµj+1(p) .

and for j = 1 also:

(3.4) LRPN ([n1](P )) ≤ TC(P ) .

Finally, using again Proposition 1.7, we are able to extend the total cur-
vature estimate to the intermediate normals, namely:

TC([nj ](P )) ≤ LRPN ([nj−1](P )) + LRPN ([nj ](P ))

for every j = 2, . . . , N , whereas for j = 1

TC([n1](P )) ≤ LSN (tP ) + LRPN ([n1](P )) , LSN (tP ) = TC(P ) .

3.4. Relaxed total variation of the normals to a curve. We now in-
troduce a relaxed notion of total variation of the j-th normal to a curve.
Due to the lack of monotonicity, see Example 2.3, we make use again of the
notion of modulus.

Definition 3.3. Let c be a curve in RN+1. The relaxed total variation of
the j-th normal to c is given by

Fj(c) := lim
ε→0+

sup{LRPN ([nj ](P )) | P ≺ c , µc(P ) < ε} j = 1, . . . , N

where [nj ](P ) is the discrete j-th normal to the inscribed polygonal P , see
Definition 3.1.

Notice that when N = 2, the relaxed total variation of the last normal
agrees with the notion of total absolute torsion for curves c in R3, namely

F2(c) = TAT(c) .

If Fj(c) < ∞ for some j = 1, . . . , N , one has supn LRPN ([nj ](Pn)) < ∞
for any sequence {Pn} of polygonal curves inscribed in c and satisfying
µc(Pn)→ 0. Also, one can find an optimal sequence as above in such a way
that LRPN ([nj ](Pn)) → Fj(c) as n → ∞. Moreover, by the observations

that we made in the previous section, for any polygonal curve P in RN+1

we obtain:

Fj(P ) = LRPN ([nj ](P )) ∀ j = 1, . . . , N

and hence we can re-write the integral-geometric formulas for polygonals as:

(3.5) Fj(P ) =

∫
Gj+1RN+1

Fj(πp(P )) dµj+1(p) , 1 ≤ j ≤ N − 1 .

However, in order to extend formula (3.5) to the relaxed total variation of
the normals to a curve c, we cannot argue as for the total curvature, where
one applies the monotone convergence theorem to a sequence of approximat-
ing polygonals with Pn ≺ Pn+1 ≺ c for each n, compare e.g. [28, Prop. 4.1].
In fact, we have seen that the monotonicity property fails to hold.
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Remark 3.4. For any curve c in RN+1, the relaxed total variation of the
first normal is always lower than the total curvature:

(3.6) F1(c) ≤ TC(c) .

In fact, if c has finite total curvature, one has:

TC(c) = lim
ε→0+

sup{TC(P ) | P ≺ c , µc(P ) < ε}

and hence (3.6) readily follows from (3.4). Notice moreover that in general,
strict inequality holds in (3.6). In fact, for e.g. a polygonal curve P in R2,
in the quantity LRP1([n1](P )) we take distances in the projective line, so
that a contribution of TC(P ) given by a turning angle θ greater than π/2,
corresponds to a contribution π − θ for the length of [n1](P ).

3.5. Weak normals to non-smooth curves. For curves c in RN+1 such
that Fj(c) <∞, we obtain a weak notion of j-th normal.

Theorem 3.5. Let 2 ≤ j ≤ N , and let c a curve in RN+1 such that Fj(c) <

∞ and Fj−1(c) <∞. There exists a rectifiable curve [nj ](c) : [0, Lj ]→ RPN
parameterized by arc-length, where Lj := Fj(c), so that

LRPN ([nj ](c)) = Fj(c)

satisfying the following property. For any sequence {Pn} of inscribed polyg-

onal curves, let γjn : [0, Lj ] → RPN denote for each n the parameterization
with constant velocity of the discrete j-th normal [nj ](Pn) to Pn, see Defi-

nition 3.1. If µc(Pn)→ 0, then γjn → [nj ](c) uniformly on [0, Lj ] and

LRPN (γjn) = LRPN ([nj ](Pn))→ LRPN ([nj ](c))

as n → ∞, where, we recall, LRPN ([nj ](Pn)) = Fj(Pn). Moreover, the
arc-length derivative of the curve [nj ](c) is a function of bounded variation.
Finally, in the case j = 1, for any curve c in RN+1 satisfying TC(c) <∞,
one has F1(c) <∞ and the same conclusion as above holds true.

The curve [nj ](c) in Theorem 3.5 may be called weak j-th normal to the
curve c. In fact, under the hypotheses of Theorem 3.5, a continuity property
holds: for any sequence {Pn} of inscribed polygonals satisfying µc(Pn)→ 0

lim
n→∞

LRPN ([nj ](Pn)) = Fj(c) .

Moreover, by Theorem 3.5 we get the integral-geometric formula:

Fj(c) =

∫
Gj+1RN+1

Fj(πp(c))) dµj+1(p) .

In particular, if c : [a, b] → RN+1 is a smoothly turning curve at order
j + 1, we obtain:

Fj(c) =

∫ b

a
‖ṅj(s)‖ ds
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where, we recall, ‖ṅj(s)‖ =
√

k2
j (s) + k2

j+1(s), when j < N , and ‖ṅN (s)‖ =

|kN (s)|, when j = N .

3.6. Relationship with the smooth normals. If c : [a, b] → RN+1 is a
smoothly turning curve at order j + 1, the weak j-th normal [nj ](c) agrees

(up to a lifting from RPN to SN ) with the arc-length parameterization of the
smooth j-th normal nj to c. More precisely, recalling that Π : SN → RPN
is the canonical projection, one has

[nj ](c)(t) = Π(nj(ψj(t))) ∀ t ∈ [0, Lj ]

where ψj : [0, Lj ]→ [a, b] is the inverse of the bijective and C1-class transi-
tion function

(3.7) ϕj(s) :=

∫ s

a
‖ṅj(λ)‖ dλ , s ∈ [a, b] .

Now, we have already noticed that existence of the osculating plane to a
smooth curve c in R3 is guaranteed by the requirement that at each point
s there exists a non-zero higher order derivative c(k)(s). The continuity of
the osculating plane Π2(c, s) as a function of arc-length parameter, indeed,
ensures that the normal vector n (and hence the binormal vector b = t×n,
too) is continuous when seen as a function in the projective plane RP2,
compare Example 2.12.

In order to deal with high dimension osculating spaces, the analogous
sufficient condition is existence of j + 1 independent derivatives c(k)(s) of
the curve near each point c(s).

To this purpose, an open rectifiable curve c : [a, b] → RN+1, parameter-
ized in arc-length, is called mildly smoothly turning at order j+ 1 if for each
s ∈ [a, b] the function c is of class Cm in a neighborhood of s, for some
integer m ≥ j + 2, and there exist j integers 1 < i2 < . . . < ij+1 < m such

that the (j+1)-vector (ċ∧c(i2)∧· · ·∧c(ij+1))(s) is non-trivial. When j = N ,
the curve is said to be mildly smoothly turning.

Extending the approach by Jordan [17], if 1 < i2 < . . . < ij+1 are the

smallest integers such that the (j+1)-vector (ċ∧c(i2)∧· · ·∧c(ij+1))(s) is non-
trivial, the j-th normal nj(s) is defined by the last term in the Gram-Schmidt

procedure to the ordered list of independent vectors ċ, c(i2), . . . , c(ij+1) com-
puted at s. If c is a mildly smoothly turning curve, we also set nN :=
∗(t ∧ n1 ∧ · · · ∧ nN−1), where ∗ is Hodge operator.

The main feature is the existence and continuity of the osculating (j+1)-
spaces along the curve. In fact, if a curve c is mildly smoothly turning at
order j + 1, we have:

(1) equipping the set of unoriented (j + 1)-planes with the canonical
metric, the osculating (j + 1)-space Πj+1(c, s) is well-defined and
continuous, as s ∈]a, b[;

(2) there exists a finite set Σ of points in ]a, b[ such that the (j+1)-vector

(ċ ∧ c(2) ∧ · · · ∧ c(j+1))(s) is non-trivial on ]a, b[\Σ;
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(3) the first j formulas in the Jordan system (3.2) are satisfied in each
connected component of ]a, b[\Σ;

(4) the corresponding curvature terms kh are continuous functions on
]a, b[, that may possibly be equal to zero only at the singular points
si ∈ Σ.

Now, at each point si ∈ Σ the normals may be discontinuous. However,
the continuity of the osculating (j + 1)-space along the curve implies that

nk(si−) = ±nk(si+) ∀ k = 1, . . . , j

and hence the first j unit normals are continuous when seen as a function
into the projective space RPN .

Moreover, it turns out that the osculating (j + 1)-space function s 7→
Πj+1(c, s) is of class C1(]a, b[), w.r.t. the canonical metric of unoriented
(j + 1)-spaces in RN+1. In addition, the curvature terms kj−1 and kj are
always non-zero on ]a, b[\Σ. We thus obtain:

ṅj(si−)

‖ṅj(si−)‖
= ± ṅj(si+)

‖ṅj(si+)‖
∈ SN

according to formula (2.9) from Example 2.12. Finally, if the curve is mildly
smoothly turning, the last formula in the Jordan system (3.2) holds true,
too, on ]a, b[\Σ.

We now extend the convergence result obtained in Theorem 3.2.

Proposition 3.6. Let c be a mildly smoothly turning curve at order j+1, for
some 1 ≤ j ≤ N . Then there exists a sequence {Pn} of inscribed polygonals,
with meshPn → 0, such that

lim
n→∞

LRPN ([nj ](Pn)) =

∫ b

a
‖ṅj(s)‖ ds .

Moreover, we have

Fj(c) =

∫ b

a
‖ṅj(s)‖ ds <∞ .

Finally, denoting by ψj : [0, Lj ] → [a, b] the inverse of the bijective and
absolutely continuous transition function (3.7), we obtain:

[nj ](c)(t) = Π(nj(ψj(t))) ∀ t ∈ [0, Lj ]

We finally remark that if a smooth curve fails to satisfy the previous
linear independence property, then the osculating (j + 1)-space fails to be
continuous, in general.

Example 3.7. Let f : R→ R be the C∞ but not analytic function

f(x) :=

{
e−1/x2 if x 6= 0
0 if x = 0 .
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The function f has all derivatives vanishing in zero. Let us consider the
curve γ : [−1, 1]→ R3 defined as

γ(t) :=

{ (
t, f(t), 0

)
if t ≤ 0(

t, 0, f(t)
)

if t ≥ 0 .

It is smooth (C∞), but all its derivatives vanish in zero, whence it does
not satisfy the previous assumptions. The same is true if one considers a
re-parametrization c of γ in arc-length.

Since for t ≤ 0 the curve lies in the plane π1 = {z = 0} and for t ≥ 0
it lies in the plane π2 = {y = 0}, the torsion of the curve is always zero,
b is constant out of t = 0, and b and n jump of an angle of π/2 at t = 0.
By modifying the plane π2, it is immediate to find an example in which the
curve has both the normal n and binormal b jumping of an arbitrary angle
α at t = 0. Notice that since t is continuous and b = t× n, the jump angle
α must be the same for both n and b.

The previous example is easily adapted to curves in RN+1 having an
arbitrary number of normals jumping of arbitrary angles. Notice, though,
that since the last normal nN is determined by the vectors t,n1, . . . ,nN−1,
the angle of jump of nN is determined by those of the other normals.

3.7. Curvature measures. Similar arguments to the ones concerning the
torsion force, can be repeated for the weak j-th normals of open curves.
To this purpose, we recall that in Theorem 3.5, we also showed that the
arc-length derivative of the curve [nj ](c) in RPN is a function of bounded
variation. For simplicity, we denote here by γj : [0, Lj ] → SN a continuous

lifting of the curve [nj ](c), so that γ̇j is a function of bounded variation,

with ‖γ̇j‖ ≡ 1. Moreover, we have:

LSN (γj) = LRPN ([nj ](c)) = Fj(c) .

We assume that γjε is a variation of γj under which the motion of each
point γj(t) is smooth in time and with initial velocity ξ(t), where ξ :
[0, Lj ]→ RN+1 is a Lipschitz continuous function with ξ(0) = ξ(Lj) = 0, so

that ξ̇(t) is defined for a.e. t, by Rademacher’s theorem.
Denoting by Dγ̇j the finite measure given by the distributional derivative

of γ̇j , the first variation formula of the length of the curve γj gives:

(3.8) δξLSN (γj) :=
d

dε
LSN (γjε)|ε=0 =

∫ Lj

0
γ̇j(t) • ξ̇(t) dt =: −〈Dγ̇j , ξ〉 .

If c is a polygonal curve P , the weak j-th normal agrees with the dis-
crete j-th normal [nj ](P ) from Definition 3.1, obtained by connecting the

consecutive points [nj(P, i)] with minimal geodesic arcs in RPN . Therefore,
the arc-length derivative of the lifting γj has a discontinuity in correspon-
dence eventually to the points [nj(P, i)], where the norm of the jump is
equal to the turning angle between the consecutive geodesic arcs meeting
at [nj(P, i)]. Therefore, the total variation of the measure Dγ̇j is equal
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to the total curvature of the curve γ̇j in RN+1, and hence to the sum
LRPN ([nj ](P )) + TCRPN ([nj ](P )), where TCRPN is the intrinsic total curva-

ture of the curve in RPN .
Assume now that the curve c is smoothly turning at order j+1. Possibly

considering the antipodal continuous lifted function of [nj ](c), by Proposi-
tion 3.6, for every t ∈ [0, Lj ] we have γj(t) = nj(ψj(t)). Then, by changing
variable t = ϕj(s) we can write

〈Dγ̇j , ξ〉 = −
∫ b

a
γ̇j(ϕj(s)) •

d

ds
[ξ(ϕj(s))] ds

and hence, using that

(3.9) γ̇j(t) =
ṅj(s)

‖ṅj(s)‖
, t = ϕj(s)

and integrating by parts, since ξ(ϕj(a)) = ξ(ϕj(b)) = 0 we obtain:

〈Dγ̇j , ξ〉 = −
∫ b

a

ṅj(s)

‖ṅj(s)‖
• d

ds
[ξ(ϕj(s))] ds =

∫ b

a

d

ds

ṅj(s)

‖ṅj(s)‖
• ξ(ϕj(s)) ds .

Therefore, the function γ̇j is of class C1(]a, b[), and the distributional deriv-
ative of γ̇j is an absolutely continuous measure

(3.10) Dγ̇j = ϕj#µj , µj :=
d

ds

ṅj(s)

‖ṅj(s)‖
L1 ]a, b[

given by the push forward of the measure µj by the function t = ϕj(s).
In general, when j < N the denominator ‖ṅj‖ in formula (3.9) involves

two curvatures. Therefore, the explicit computation of the density of the
measure µj involves five normals and four curvatures. We now consider in
particular the simpler case of the last normal.

Example 3.8. When j = N , we recall the last two Jordan formulas:

ṅN−1 = −kN−1 nN−2 + τ nN , ṅN = −τ nN−1

where we have denoted τ := kN , the last curvature (that is, the torsion,
when N = 2, in which case the Frenet-Serret formulas give n0 = t, n1 = n,
k1 = k, and n2 = b). Denoting by sgn τ the constant sign of the non-zero
smooth function τ (s), we thus obtain:

ṅN (s)

‖ṅN (s)‖
= − sgn τ · nN−1(s) ,

d

ds

ṅN (s)

‖ṅN (s)‖
= sgn τ ·

(
kN−1 nN−2 − τ nN

)
(s) .

Now, we restrict to consider tangential variations in formula (3.8), i.e.,
we assume in addition that ξ(t) ∈ Tγj(t)SN for each t. We correspondingly

deduce that the tangential component D>γN of the measure DγN satisfies:

D>γN = sgn τ · ϕN #

(
kN−1 nN−2 dL1 ]a, b[

)
where, we recall, ϕN (s) :=

∫ s
a ‖ṅN (λ)‖ dλ =

∫ s
a |τ (λ)| dλ.
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If the curve c is mildly smoothly turning at order j + 1, then the dis-
tributional derivative of the arc-length derivative of [nj ](c) is an absolutely
continuous measure, and on account of (3.10) we get to:

D
d

dt
[nj ](c) = ϕ#

j µ̃j , µ̃j :=
d

ds

(
Π ◦ ṅj(s)

‖ṅj(s)‖

)
L1 ]a, b[

a formula that makes sense by means of an isometric embedding of RPN
into some Euclidean space.

4. Intrinsic curvature of curves into Riemannian surfaces

In this section we collect our results from [24] concerning the intrinsic
curvature of irregular curves supported in a Riemannian surface.

We thus let M be a smooth (at least of class C3), closed, and compact
immersed surface in RN+1, with N ≥ 2. We remark thatM is not assumed
to be oriented, when N ≥ 3.

4.1. Total intrinsic curvature. The (intrinsic) rotation kM(P ) of a polyg-
onal P in M is the sum of the turning angles between the consecutive geo-
desic arcs of P . The polygonal P is said to be inscribed in a curve c : [a, b]→
M if P is obtained by choosing a partition a ≤ t0 < t1 < · · · < tm ≤ b and
connecting with geodesic segments the consecutive points c(ti) of the curve.
For a general curve c supported in M, we shall denote by PM(c) the class
of polygonals in M which are inscribed in c. Also, if c is rectifiable (and
parameterized in arc-length) the mesh of a polygonal P in PM(c) is equiv-
alently given by the maximum of the length of the arcs of c bounded by the
consecutive vertexes of P . Notice that one clearly has kM(P ) ≤ TC(P ),
and that the difference TC(P )−kM(P ) is equal to the sum of the integrals
of the modulus of the normal curvature Kn of the geodesic arcs of P .

If e.g. M = SN , the unit hyper-sphere in RN+1, then Kn ≡ −1 and hence
TC(P ) = kS2(P ) + L(P ). In general, by smoothness and compactness of
M, the normal curvature of geodesic arcs of M is uniformly bounded, and
hence there exists a constant cM > 0 depending on M such that for each
polygonal P in M

TC(P ) ≤ kM(P ) + cM · L(P ) .

The following property has been proved in [7].

Theorem 4.1. ([7, Thm. 3.4]) Let c be a regular curve in M of class C2,
parameterized by arc-length. Then, for any sequence {Pn} ⊂ PM(c) such
that meshPn → 0, one has

lim
n→∞

kM(Pn) =

∫
c
|Kg| ds =

∫ L

0
|Kg(s)| ds .

As a consequence, for a curve c in M, one is tempted to define its total
intrinsic curvature as in the Euclidean case, i.e., as the supremum of the
intrinsic rotation kM(P ) computed among all the polygonals P in PM(c).
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However, as observed in [7], ifM has positive sectional (Gauss) curvature, as
e.g. M = S2, the latter definition does not work. In fact, if P, P ′ ∈ PM(c),
and P ′ is obtained by adding a vertex in c to the vertices of P , then the
monotonicity inequality kM(P ) ≤ kM(P ′) holds true in general provided
that M has non-positive sectional curvature. In fact, it relies on the fact
that in this case the sum of the interior angles of a geodesic triangle of M
is not greater than π, see [7, Lemma 4.1].

Example 4.2. If e.g. M = S2, and c is a parallel which is not a great
circle, then the opposite inequality kS2(P ) ≥ kS2(P ′) holds, and for any
P ∈ PS2(c) one has kS2(P ) >

∫
c |Kg| ds, see Example 1.9.

In order to overcome this drawback, the good intrinsic notion turns out
to be the one proposed by S. B. Alexander and R. L. Bishop [2], that goes
back to the one considered by Alexandrov-Reshetnyak [3]. For this purpose,
compare e.g. [18], we recall that the modulus µc(P ) of a polygonal P in
PM(c) is the maximum of the geodesic diameter of the arcs of c determined
by the consecutive vertexes in P . For ε > 0, we also let

Σε(c) := {P ∈ PM(c) | µc(P ) < ε} .

Definition 4.3. The total intrinsic curvature of a curve c in M is

TCM(c) := lim
ε→0+

sup{kM(P ) | P ∈ Σε(c)} .

Clearly, the above limit is equal to the infimum as ε > 0 of sup{kM(P ) |
P ∈ Σε(c)}. Moreover, arguing as in [18, Prop. 2.1], for a polygonal P inM
we always have TCM(P ) = kM(P ). Also, sinceM is compact, a curve with
finite total curvature TCM(c) < ∞ is rectifiable, too (cf. [18, Prop. 2.4]).
Most importantly, making use of a result by Dekster [8], as a consequence
of [18, Prop. 2.4] one obtains:

Proposition 4.4. The total curvature TCM(c) of any curve c inM is equal
to the limit of the rotation kM(Ph) of any sequence of polygonals {Ph} ⊂
PM(c) such that µc(Ph)→ 0.

Proposition 4.4 is proved in [3, Thm. 6.3.2], when M = S2, and in [7,
Prop. 4.3], whenM has non-positive Gauss curvature. The proof for general
smooth surfaces M is obtained by arguing as in [18, Prop. 2.4], where it is
firstly proved for curves in CAT(K) spaces. It suffices to observe that the
Gauss curvature ofM is bounded, provided thatM is smooth and compact.
A crucial step is the following result (cf. [3, Thm. 2.1.3]): if TCM(c) <∞,
for each ε > 0 there exists δ > 0 such that if γ is an arc of c with geodesic
diameter lower than δ, the length of γ is smaller than ε. As a consequence, if
{Pn} ⊂ PM(c) is such that the modulus µc(Pn)→ 0, then also meshPn → 0,
the converse implication being trivial.

Proposition 4.4 fills the gap given by the lack of monotonicity observed
e.g. in Example 4.2, yielding to the conclusion that Definition 4.3 involves
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a control on the modulus and not on the mesh, at least when the sectional
curvature of M fails to be non-negative.

As a consequence, by Theorem 4.1 one infers that for smooth curves c
in M one has TCM(c) =

∫
c |Kg| ds. By [7, Cor. 3.6], for piecewise smooth

curves c in M one similarly obtains that

(4.1) TCM(c) =

∫ L

0
|Kg(s)| ds+

∑
i

|αi| .

In this formula, the integral is computed separately outside the corner points
of c, where the geodesic curvature Kg is well-defined, and the second adden-
dum denotes the finite sum of the absolute value of the oriented turning
angles αi between the incoming and outcoming unit tangent vectors at each
corner point of c. Therefore, for piecewise smooth curves we can rewrite
formula (4.1) as

TCM(c) =

∫ L

0
|ṫ • u| ds+

∑
s∈Jt

dSN (t(s+), t(s−)) .

For a curve c in M, we clearly have TCM(c) ≤ TC(c), but it is false in
general that if TCM(c) <∞, then also TC(c) <∞. If one e.g. takes a curve
in S2 that winds around an equator infinitely many times, its total intrinsic
curvature is zero but its length and total curvature are both infinite.

To this purpose, we recently found a flaw in [3, Thm. 6.3.1], where the
authors erroneously stated that if the geodesic turn of a spherical curve is
finite, then its spatial turn is also finite. This is true if the spherical diameter
of the curve is smaller than a dimensional constant δ0. In this case, in fact,
for polygonal curves in S2 they obtain the inequality k∗(P ) ≤ π + 2kS2(P )
between Euciledan and geodesic rotation. Therefore, their statement holds
true provided that the curve can be divided in a finite number of arcs with
spherical diameter smaller than δ0. However, the latter property is false, in
general, if the curve fails to be rectifiable, as the previous example shows.

Dealing with rectifiable curves c in M, one instead has

TCM(c) <∞ ⇐⇒ TC(c) <∞ .

In fact, the normal curvature of geodesic arcs ofM being uniformly bounded,
we recover the nontrivial implication ⇒ in the previous equivalence by ar-
guing as in the model case M = S2 considered in [3].

As a consequence, in the sequel we shall always assume that c : IL →
M ⊂ RN+1 is a rectifiable curve parameterized in arc-length, where IL =
(0, L) and L = L(c).

If in addition TCM(c) <∞, moreover, the curve is one-sidedly smooth in
the sense of [3, Sec. 3.1], i.e., it has a left and a right tangent T±(s) at all
the points c(s) in the so called “strong sense”. This implies that for each
s ∈ [0, L[ and δ > 0 we can find ε > 0 such that any secant inscribed in
the arc c| [s,s+ε] forms with the straight line T+(s) an angle less than δ, and
similarly for the left tangent.
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In addition, recalling that the tantrix t is a function of bounded variation,
the weak conormal u ∈ BV(IL,SN ) is well defined, and u(s) ∈ Tc(s)M for
a.e. s ∈ IL, and one has

DCt = u (u •DCt)

i.e., the Cantor component DCt of the distributional derivative of the tantrix
is tangential to M.

4.2. Weak parallel transport. The following compactness property holds:

Theorem 4.5. Let c be a rectifiable curve in M with finite total intrinsic
curvature, parameterized by arc-length. Let {Pn} ⊂ PM(c) be such that the
modulus µc(Pn)→ 0. For each n, let Pn : [0, L]→M be parameterized with
constant velocity, and let Xn : IL → R3 be the parallel transport along Pn,
with constant initial condition Xn(0) = t(0) ∈ SN . Then, possibly passing
to a subsequence, the sequence {Xn} strongly converges in W 1,1 to some
function X ∈W 1,1(IL,RN+1) satisfying

X(s) = cos Θ(s) t(s)− sin Θ(s) u(s)

for L1-a.e. s ∈ IL, where t = ċ is the unit tangent vector, and the conormal
u agrees with the weak-∗ BV-limit of the sequence {un} of conormals to a
subsequence of {Pn}. Furthermore, t and u are functions in BV(IL, S2),
and the angle function Θ has bounded variation in BV(IL).

In principle, the angle function Θ depends on the subsequence corre-
sponding to the approximating sequence {Pn}. In order to overcome this
drawback, we introduce the energy functional:

(4.2) F(t) :=

∫ L

0
|ṫ • u| ds+ |DCt|(IL) +

∑
s∈Jt

dSN (t(s+), t(s−))

where, we recall, ṫ • u is the tangential component of the differential of the
tantrix t := ċ, so that |ṫ| ≥ |ṫ • u|, as M is “curved”. Therefore, by (1.1)
we clearly have F(t) ≤ VarSN (t), where strict inequality holds in general.

Remark 4.6. In Theorem 4.5, we may and do assume that at each Jump
point s ∈ JΘ, the Jump

[Θ]s := Θ(s+)−Θ(s−)

is bounded by π, i.e., |[Θ]s| ≤ π.

The optimal angle function Θ this way obtained is essentially unique,
and hence the parallel transport X along irregular curves c with finite total
curvature is well-defined in the W 1,1 setting. In fact, we have

Theorem 4.7. Under the hypotheses of Theorem 4.5, and on account of
Remark 4.6, we have

|DΘ|(IL) = F(t) .
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More precisely, by decomposing |DΘ|(IL) we have:

|DaΘ|(IL) =

∫ L

0
|ṫ • u| ds , |DCΘ|(IL) = |DCt|(IL) ,

|DJΘ|(IL) =
∑
s∈Jt

dSN (t(s+), t(s−)) .

4.3. Gauss-Bonnet theorem. Gauss-Bonnet formula holds true in the
setting of domains in M bounded by simple and closed curves with finite
total curvature:

Theorem 4.8. Let M be a smooth, closed, compact, and immersed surface
in RN+1, where N ≥ 3. Let c : [0, L]→M be a simple and closed rectifiable
curve with finite total curvature, TCM(c) < ∞. Let k(s) ds := DΘ[0, s),
where Θ is the left-continuous representative of the optimal angle function
of the parallel transport along c, see Theorems 4.5 and 4.7, so that∫ L

0
k(s) ds = Θ(L)−Θ(0) .

Let U be the open set in M enclosed by the oriented curve c. Moreover,
assume that U is simply connected, and that for a.e. s ∈ IL the tangent vec-
tor t(s) is positively oriented w.r.t. the natural orientation on the boundary
of U at c(s). Finally, let K denote the Gauss curvature of M, and α the
oriented angle from t(L−) to t(0+) at the junction point c(0) = c(L). Then
we have: ∫

U
K dA = 2π −

∫ L

0
k(s) ds− α .

Notice that if c is smooth, we know that DΘ = Θ̇L1, with Θ̇(s) =

Kg(s) for each s, so that we recover the classical formula, as
∫ L

0 k(s) ds =∫
c Kg(s) ds. In a similar way one may proceed in the case of piecewise

smooth curves, this time obtaining an extra term given by the sum of the
oriented turning angles at the corner points of c, in correspondence to the
Jump points of the angle function Θ in IL, plus a possible extra term at
the junction point c(0) = c(L). Therefore, our Theorem 4.8 extends the
classical Gauss-Bonnet theorem to the wider class of curves with finite total
curvature.

If TCM(c) = ∞, in fact, we expect that there is no way to find a finite
measure that contains the information (given by the derivative DΘ of the
angle function of the parallel transport along the curve) on the “signed
geodesic curvature” of the curve c.

Finally, a more general result could be obtained if U fails to be simply-
connected, assuming M oriented. This time, the term 2π · χ(U) appears,
χ(U) being the Euler-Poincaré characteristic of U .

4.4. Representation formula. By the sequential lower-semicontinuity of
the total variation w.r.t. the weak-∗ convergence, in Theorem 4.5 (that holds
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true for curves contained in surfaces M of RN+1) we only have

|DΘ|(IL) ≤ lim
h→∞

|DΘh|(IL) = lim
h→∞

kM(Ph) = TCM(c)

where the last equality follows from Proposition 4.4. As a consequence, by
Theorem 4.7 we obtain:

(4.3) TCM(c) ≥ F(t)

where F(t) is the energy functional given by (4.2), and we expect that
equality holds in (4.3) in full generality.

In fact, for piecewise smooth and regular curves c in M, one has:

F(t) =

∫ L

0
|Kg(s)| ds+

∑
i

|αi|

so that it suffices to apply Theorem 4.1 and (4.1).

Remark 4.9. It is readily checked that equality holds in (4.3) for convex or
concave curves with finite total intrinsic curvature, i.e., for simple and closed
curves c such that the right-hand (or left-end) side region with boundary
the trace of c is a geodesically-convex subset of M. For non-closed curves,
this means that all the length minimizing arcs connecting two points of the
curve lie on the same side w.r.t. the tantrix of the curve. In this case, in
fact, for any polygonal Pn in M inscribed in c, the angle Θn of the parallel
transport along Pn is a monotone function. Therefore, for each (a, b) ⊂ IL
we have |DΘh|(a, b) = |Θh(b−) − Θh(a+)|. The a.e. convergence of Θn to
Θ, that holds true for a subsequence, yields that the angle Θ is a monotone
function, too, whence |DΘ|(a, b) = |Θ(b−) − Θ(a+)|. As a consequence,
we obtain the strict convergence |DΘh|(I) → |DΘ|(I), which implies the
equality sign in (4.3), on account of Theorem 4.7.

By exploiting (in Proposition 4.11) the generalized Gauss-Bonnet theo-
rem 4.8, we are able to prove that equality holds in (4.3), even in the non
trivial case of surfaces M with positive Gauss curvature.

Theorem 4.10. LetM a smooth (at least of class C3), closed, and compact
(not necessarily oriented) immersed surface in RN+1. For every rectifiable
curve c in M with finite total curvature, TCM(c) <∞,

TCM(c) = F(t)

where F(t) is given by (4.2) and t = ċ is the tantrix of the curve.

Theorem 4.10 holds true as a consequence of the following

Proposition 4.11. Let c : [0, L]→M be a rectifiable curve with finite total
curvature (parameterized by arc-length), and let Θ denote the left-continuous
representative of the optimal angle of the parallel transport X along c, with
initial condition X(0) = t(0). Let {Pn} ⊂ PM(c) with modulus µc(Pn) →
0. Assume that Pn is generated by the consecutive vertexes c(si), where
0 = s0 < s1 < · · · < sm = L (with {si} and m depending on n), and
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that every si is not a Jump point of the angle function Θ. Also, let Θn

denote the angle of the parallel transport Xn along Pn, with initial condition
Xn(0) = t(0). Then, for n sufficiently large there exists a piecewise constant

function Θ̃n : IL → R such that:

(a) for each i = 1, . . . ,m, there exists a parameter s̃i ∈ [si−1, si[ such
that

Θ̃h(s) = ti Θ(s̃i+) + (1− ti)Θ(s̃i−)

for any s ∈]si−1, si[, where ti ∈ [0, 1] ;

(b) Var(Θn) ≤ Var(Θ̃n) + εn, where εn → 0+ as n→∞.

Proposition 4.11 is proved by exploiting Theorem 4.8, and it is based on
the following localization result, which is illustrated in Figure 4.

Lemma 4.12. Given any one-sidedly smooth curve γ : [0, L] → M, pa-
rameterized in arc length, there is ε0 > 0 such that for any [a, b] ⊂ [0, L]
satisfying b − a < ε0 we can find a simply-connected closed set Ω ⊂ M for
which γ([a, b]) ⊂ Ω and γ(a), γ(b) ∈ ∂Ω, in such a way that the minimal
geodesic arcs connecting any couple of points in the curve γ([a, b]) are con-
tained in Ω. In particular, the geodesic arc connecting γ(a) and γ(b) divides
Ω in two connected components.

B

γ(a) γ(b)

Ωa+ Ωb−
γ

ga,b
−1 +1

+1

−1

Figure 4. The simply-connected closed set Ω = B ∩ Ωa+ ∩
Ωb− of Lemma 4.12. The arc γ is drawn with a continuous
line, and the geodesic arc connecting γ(a) and γ(b) with a
dashed line.

The argument outlined in Remark 1.2 is the starting point to takle the
proof of Proposition 4.11 where, moreover, we have to consider the angle of
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the parallel transport, and to deal with the extra term given by the integral
of the Gauss curvature.

In order to illustrate our strategy, for a planar curve c in R2, we thus
denote by ω(s) the oriented angle from t(s) to the fixed direction t(0), where
we choose t equal to the left-continuous representative of the BV-function ċ.
We assume moreover that Pn : [0, L] → R2 is parameterized with constant
velocity on each interval ]si−1, si[, in such a way that Pn(si) = c(si) for each
i, and that every si is not a Jump point of t.

If ωh(s) is the oriented angle from tn(s) to t(0), then ωn(s) is constant
on each interval ]si−1, si[. In order to show that Var(ωh) → Var(ω), by
[27, Lemma 1] we may and do assume that c is a simple arc. Also, by
Lemma 4.12 we can reduce to the following situation, for h large enough.

Denote by ∠t(s)vi the oriented angle from t(s) to vi, where s ∈ [si−1, si[,
and vi is the oriented segment of Pn from c(si−1) to c(si). For i = 1, . . . ,m,
letting αi := ∠t(si−1)vi, if αi 6= 0, we choose the first parameter si in the
interval ]si−1, si] such that c(si) ∈ vi. Then, by Lemma 4.12, the angle
βi := ∠t(si)vi cannot have the same sign as αi, i.e., αi · βi ≤ 0. Moreover,
denoting by γi the oriented closed curve given by the join of the arc ci :=
c|[si−1,si] plus the segment of Pn from c(si) to c(si−1), the index of γi on the
open set Ui enclosed by γi is equal to the sign of αi, see Figure 4. Whence:

ω(si)− ω(si−1) = αi − βi , αi 6= 0 , αi · βi ≤ 0 .

Letting now fi(s) := ω(s)−ω(si−1), we get fi(si−1) < αi and fi(si) ≥ αi,
when αi > 0 and βi ≤ 0, whereas fi(si−1) > αi and fi(si) ≤ αi, when αi < 0
and βi ≥ 0. Therefore, using that ω is a function of bounded variation, we
find s̃i ∈]si−1, si[ such that either αi = ti fi(s̃i+) + (1− ti)fi(s̃i−) for some
ti ∈ [0, 1], if s̃i is a Jump point of fi, or αi = fi(s̃i), otherwise. When αi = 0,
we clearly have αi = fi(0).

Recall that ω(s0) = 0 and αi := ∠t(si−1)vi. Setting βi := ∠t(si)vi, by
the previous discussion based on Lemma 4.12, we also get:

ω(sj)− ω(sj−1) = αj − βj ∀ j = 1, . . . ,m .

Moreover, for j = 1, . . . ,m− 1, the oriented turning angle of the polygonal
Pn at the corner point c(sj) is equal to αj+1−βj . We thus have ωn(s) = α1

if s ∈]s0, s1[, whereas if s ∈]si−1, si[, and i = 2, . . . ,m, then

ωh(s) = α1 +

i−1∑
j=1

(αj+1 − βj) = αi +

i−1∑
j=1

(αj − βj)

= αi +

i−1∑
j=1

(ω(sj)− ω(sj−1)) = αi + ω(si−1) .

We thus conclude that for each i = 1, . . . ,m there exists s̃i ∈ [si−1, si[ and
ti ∈ [0, 1] such that

ωh(s) = ti ω(s̃i+) + (1− ti)ω(s̃i−) ∀ s ∈]si−1, si[ .



44 D. MUCCI AND A. SARACCO

The above property, that actually expresses the parallelism condition in
terms of angle functions, implies that ωm is a competitor to the computation
of the essential variation of ω, whence Var(ωn) ≤ Var(ω). By the weak-∗

BV convergence of ωn to ω, which ensures that Var(ω) ≤ lim infn Var(ωn),
we obtain the strict convergence Var(ωn)→ Var(ω).

4.5. Curves into Riemannian surfaces. Our previous results extend the
more general case of curves into Riemannian surfaces, i.e., 2-dimensional

Riemannian manifolds (M̃, g). We assume that M̃ is smooth (at least of
class C3), closed, and compact. Recall that we can always find a smooth

isometric embedding F : M̃ ↪→ RN+1 of M̃ into a surface M = F (M̃)
immersed in the (N + 1)-dimensional Euclidean space, for some N ≥ 3.
Since the total intrinsic curvature of piecewise smooth curves involves the
geodesic curvature and the turning angles at corner points, we do not need

M̃ to be oriented.

We first extend Definition 4.3, by saying that the total intrinsic curvature

of any curve γ in M̃ is

TCM̃(γ) := lim
ε→0+

sup{kM̃(P̃ ) | P̃ ∈ Σε(γ)}

where Σε(γ) is the class of polygonals P̃ in M̃ inscribed in γ and with

modulus µγ(P̃ ) < ε, and kM̃(P̃ ) is the rotation of P̃ , both modulus and

rotation being defined as in the case of surfaces M in RN+1.

Theorem 4.13. For every curve γ in M̃ with finite total intrinsic curvature,
we have

TCM̃(γ) = F(t)

where the energy functional F(t) is defined by (4.2) in correspondence to the
tangent indicatrix t = ċ of c = F ◦ γ, and F is any isometric embedding of

M̃ as above.

In order to prove Theorem 4.13, following e.g. [10, Sec. 4.12], on small

open domains U of M̃ homeomorphic to a disk, we introduce the geodesic
polar coordinates ds2 = dr2 + g(r, φ) dφ2, where g is a non-negative smooth
function on U . We shall denote by f,r, f,φ, f,rr, f,rφ, and f,φφ the partial
first and second derivatives of a function f(r, φ) on U . The coefficient g of
the Riemannian metric satisfies

lim
r→0

g = 0 , lim
r→0

(
√
g),r = 1 ∀φ

compare [9, Sec. 4.6]. Also, in coordinates the non-trivial Christoffel coeffi-
cients of the Levi-Civita connection ∇g of the Riemannian metric are

Γ1
22 = −1

2
g,r , Γ2

12 = Γ2
21 =

1

2g
g,r , Γ2

22 =
1

2g
g,φ .

Let γ : I → M̃ be a smooth and regular curve parameterized by arc-

length. Assume that γ(Ĩ) ⊂ U for some open interval Ĩ ⊂ I. Also, we
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choose the pole of the coordinates not lying on the trace γ(Ĩ) of the curve.
Therefore, there exists a positive real constant c such that g(r, φ) ≥ c > 0

for every (r, φ) ∈ γ(Ĩ).
In coordinates, we thus have γ(s) = (r(s), φ(s)) for some smooth functions

r(s) and φ(s) satisfying 〈γ̇(s), γ̇(s)〉g = ṙ2 + g(r, φ) φ̇2 = 1 for every s ∈ Ĩ.
Therefore, the unit tangent vector and unit conormal are

γ̇ = (ṙ, φ̇) , γ̇⊥ := (−g1/2φ̇, g−1/2ṙ) .

The acceleration vector ∇γ̇ γ̇ can be written in components as (∇γ̇ γ̇)k =

γ̈k + Γkij γ̇
iγ̇j , for k = 1, 2, so that in the previous local coordinates we get

(4.4) (∇γ̇ γ̇)1 = r̈ − 1

2
g,r φ̇

2 , (∇γ̇ γ̇)2 = φ̈+
1

g
g,r ṙ φ̇+

1

2g
g,φ φ̇

2 .

We have 〈∇γ̇ γ̇, γ̇〉g = 0, whence ∇γ̇ γ̇ = Kg γ̇
⊥, where Kg := 〈∇γ̇ γ̇, γ̇⊥〉g is

the geodesic curvature of γ, so that |Kg| = |∇γ̇ γ̇|g. This yields to the local
expression:

(4.5)
Kg =

√
g
[
−φ̇ (∇γ̇ γ̇)1 + ṙ (∇γ̇ γ̇)2

]
=
√
g
[
(ṙ φ̈− φ̇ r̈) +

1

2

(
g,r φ̇

3 + 2
g,r
g
ṙ2 φ̇+

g,φ
g
ṙ φ̇2

)]
.

Example 4.14. If e.g. M̃ =M = S2 and g(r, φ) = sin2 r, with r = θ and
φ = ϕ, using that

Γ1
22 = − sin θ cos θ , Γ2

12 = Γ2
21 = cot θ , Γ2

22 = 0

we recover the formula (1.13) for Kg.

Remark 4.15. We also recall that if ω denotes the angle between γ̇ and
the fixed direction (1, 0), we find

tanω =
√
g
φ̇

ṙ
, ω̇ = Kg − (

√
g),r φ̇ .

Therefore, if the curve γ parameterizes the positively oriented boundary of
the smooth domain U , by Stokes theorem, compare [10, Sec. 4.12], one has∮

∂U
(
√
g),r φ̇ ds = −

∫
U

K dA , K = − 1
√
g

(
√
g),rr

where K is the Gauss curvature of (M̃, g), yielding to the local formula of
Gauss-Bonnet theorem: ∫

U
K dA = 2π −

∮
∂U

Kg ds .

Now, given an isometric embedding F : M̃ ↪→M⊂ RN+1, we let g and ∇
denote the (Gaussian) metric and (Levi-Civita) connection induced by the
Euclidean metric of RN+1 on M. The pull-back of g and of ∇ through F
agree with the metric g and Levi-Civita connection ∇g on M, respectively.
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Therefore, in local coordinates as above, writing F = F (r, φ) : U → RN+1,
we have

(4.6) F,r • F,r = 1 , F,r • F,φ = 0 , F,φ • F,φ = g .

By computing the partial second derivatives, we thus obtain the six formulas
for the scalar products in RN+1

(4.7)
F,r • F,rr = 0 , F,r • F,rφ = 0 , F,r • F,φφ = −1

2
g,r ,

F,φ • F,rr = 0 , F,φ • F,rφ =
1

2
g,r , F,φ • F,φφ =

1

2
g,φ .

Letting c(s) := F◦γ(s), where s ∈ Ĩ, the unit tangent vector and conormal
corresponding to γ̇ and γ̇⊥ take the expression

t = ṙ F,r + φ̇ F,φ , u = −g1/2φ̇ F,r + g−1/2ṙ F,φ .

The curvature vector of the curve c in RN+1 then becomes

(4.8) k = ṫ = r̈ F,r + φ̈ F,φ + ṙ2 F,rr + 2 ṙ φ̇ F,rφ + φ̇2 F,φφ .

Computing the geodesic curvature of c inM through the formula Kg := ṫ•u,
by (4.6) and (4.7) we obtain:

Kg = −g1/2 φ̇
(
r̈ + φ̇2

(
−1

2
g,r

))
+ g−1/2ṙ

(
g φ̈+ 2 ṙ φ̇

(1

2
g,r

)
+ φ̇2

(1

2
g,φ

))
=
√
g
[
(ṙ φ̈− φ̇ r̈) +

1

2

(
g,r φ̇

3 + 2
g,r
g
ṙ2 φ̇+

g,φ
g
ṙ φ̇2

)]
which agrees with the local expression (4.5) for the geodesic curvature of γ

in M̃.

Remark 4.16. If γ is a geodesic in M̃, the curve c = F ◦ γ is a geodesic
in M, whence the curvature vector ṫ is orthogonal to both F,r and F,φ. By
(4.8), (4.6) and (4.7) we have

0 = ṫ • F,r = r̈ − 1

2
g,r φ̇

2 , 0 = ṫ • F,φ = g φ̈+ g,r ṙ φ̇+
1

2
g,φ φ̇

2

and hence for a geodesic c one recovers the local expressions of the equations
∇γ̇ γ̇ = 0 from (4.4) :

(4.9) r̈ =
1

2
g,r φ̇

2 , φ̈ = − 1

2g

(
2g,r ṙ φ̇+ g,φ φ̇

2
)
.

Summing up, length, angles and geodesics are preserved by isometries,
and the intrinsic local expression (4.5) does not depend on the choice of
isometric embedding. In a similar way, one checks that the rotation of a

polygonal P̃ in M̃ is an intrinsic notion. As a consequence, we obtain:

Proposition 4.17. For any piecewise smooth curve γ in M̃, we have

TCM̃(γ) = TCM(c) if c := F ◦ γ
independently of the chosen isometric embedding F .
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Moreover, all the previous results obtained for curves c in surfaces M of

RN+1 extend to curves γ in a Riemannian surface (M̃, g). In fact, it suffices
to work with c = F ◦ γ for any isometric embedding F , and to use standard
arguments based on local geodesic coordinates and partition of unity.

We point out that a bit of care is needed when checking the validity of the
compactness theorem 4.5. In fact, by a quick inspection it turns out that its
proof is the unique point of the previous theory where we used non-intrinsic
quantities. On account of Proposition 4.17 and Theorem 4.10, we finally
conclude with the validity of Theorem 4.13.

4.6. Development of curves. The original idea of parallel transport by
Tullio Levi-Civita involves the concept of development of a curve on a sur-
face. If e.g. M = S2, it corresponds to drawing in a plane the points of
the trace of the oriented curve in S2 as the 2-sphere rolls without slipping
or spinning in the plane, while staying tangent to the plane at the points of
the curve. The above construction implies that the scalar curvature of the
developed curve on R2 is equal to the modulus of the geodesic curvature of
the given curve in S2, see Example 4.18.

We now wish to analyze the relationship between the definition of total
intrinsic curvature and the notion of development of a smooth curve. We
point out that similar arguments, based on considering iterations of the de-
velopment of the “complete tangent indicatrix”, are proposed by Reshetnyak
[27] as a way to treat the “curvatures” of an irregular curve in RN+1.

Following e.g. [9], if γ : I →M is a regular, smooth, and simple curve on
a surface M ⊂ R3, and ṅ(s) 6= 0, where, we recall, n(s) is the unit normal
n(s) := γ̇(s)/‖γ̇(s)‖, then the envelope of the tangent planes is the ruled
surface Σ parameterized by

X(s, v) := γ(s) + v
n(s)× ṅ(s)

|ṅ(s)|

that in case M = S2 clearly becomes X(s, v) := γ(s) + v u(s). Around
the trace of the curve, the ruled surface Σ has zero Gauss curvature, and
hence, by Minding’s theorem, it is locally isometric to a planar domain. The
parallel transport of tangent fields X(s) along the curve is the same, when
considering γ either as a curve on M or as a curve on Σ. In particular,
when X(s) = t(s), one can use either local coordinates on M or on Σ in
order to obtain the geodesic curvature Kg of the curve γ. As a consequence,
the parallel transport can be computed locally by pulling back the parallel
transport along the development of the curve on the plane R2.

Moreover, we can define a tubular neighborhood (a strip) Σ of the enve-
lope of the tangent planes to M along γ, in such a way that Σ is a surface
with Gauss curvature equal to zero. As a consequence, the total curvature
TCΣ(γ) of γ as a curve in Σ is well-defined, according to Definition 4.3, by
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taking inscribed polygonals P̃ in Σ with modulus sufficiently small (accord-
ing to the width of the strip Σ, which actually depends on the maximum of
the modulus of the geodesic curvature of the curve).

By means of the same vertexes as for P̃ , we may correspondingly consider
the polygonal P inM inscribed in γ. However, in general the rotation of P

in M is different from the rotation of P̃ in Σ, i.e.,

kM(P ) 6= kΣ(P̃ ) .

In fact, if e.g. γ is a parallel of the 2-sphere M = S2, and the vertexes

of P are taken at equidistant points along γ, then the angles between P̃
and γ are equal to the angles between the developed curve in R2 and the
corresponding polygonal, whence they are smaller than the angles between
P and γ.

Example 4.18. Following Example 1.9, if M = S2 and γ = cθ0 is the
parallel with constant co-latitude θ0 ∈]0, π/2], the geodesic polar coordinates
on S2 give g = sin2 r, so that r(s) ≡ θ0 and φ(s) = s/ sin θ0, where s ∈
[0, 2π sin θ0]. The geodesic polar coordinates on Σ give instead g = r2,
whence r(s) ≡ tan θ0 and φ(s) = cot θ0 · s, where again s ∈ [0, 2π sin θ0].
Therefore, the corresponding developed curve γ̃ in R2 is the arc of a circle
of radius tan θ0 and length 2π sin θ0, i.e.,

γ̃(s) = tan θ0

(
cos(cot θ0 · s), sin(cot θ0 · s)

)
, s ∈ [0, 2π sin θ0] .

The pointwise scalar curvature of γ̃ is the reciprocal of the curvature radius
of γ̃, and hence it is equal to the pointwise geodesic curvature Kg ≡ cot θ0 of
the parallel c = cθ0 , whereas the total curvature of γ̃ is equal to 2π cos θ0,
i.e., to the total curvature TCS2(cθ0) of the parallel.

Notwithstanding, the total curvature TCΣ(γ) of γ in the strip Σ can be
computed by means of its development:

Proposition 4.19. Let γ be a regular, smooth, and simple curve on a
smooth surface M⊂ R3, with ṅ 6= 0 everywhere. We have:

TCΣ(γ) =

∫
γ
|Kg| ds .

Now, for any smooth curve γ as in Proposition 4.19, Theorem 4.1 says
that the total curvature TCM(γ) agrees with the integral on the right-hand
side of the previous formula, whence we get:

TCM(γ) = TCΣ(γ) .

In particular, if {Pn} ⊂ PM(γ) satisfies µγ(Pn) → 0, and {P̃n} is (for n
large enough) the corresponding sequence of inscribed polygonals in Σ, even

if in general one has kM(Pn) 6= kΣ(P̃n), we conclude that

lim
n→∞

kM(Pn) = lim
n→∞

kΣ(P̃n) =

∫
γ
|Kg| ds .
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